1 | /* |
2 | * inet fragments management |
3 | * |
4 | * This program is free software; you can redistribute it and/or |
5 | * modify it under the terms of the GNU General Public License |
6 | * as published by the Free Software Foundation; either version |
7 | * 2 of the License, or (at your option) any later version. |
8 | * |
9 | * Authors: Pavel Emelyanov <xemul@openvz.org> |
10 | * Started as consolidation of ipv4/ip_fragment.c, |
11 | * ipv6/reassembly. and ipv6 nf conntrack reassembly |
12 | */ |
13 | |
14 | #include <linux/list.h> |
15 | #include <linux/spinlock.h> |
16 | #include <linux/module.h> |
17 | #include <linux/timer.h> |
18 | #include <linux/mm.h> |
19 | #include <linux/random.h> |
20 | #include <linux/skbuff.h> |
21 | #include <linux/rtnetlink.h> |
22 | #include <linux/slab.h> |
23 | #include <linux/rhashtable.h> |
24 | |
25 | #include <net/sock.h> |
26 | #include <net/inet_frag.h> |
27 | #include <net/inet_ecn.h> |
28 | #include <net/ip.h> |
29 | #include <net/ipv6.h> |
30 | |
31 | /* Use skb->cb to track consecutive/adjacent fragments coming at |
32 | * the end of the queue. Nodes in the rb-tree queue will |
33 | * contain "runs" of one or more adjacent fragments. |
34 | * |
35 | * Invariants: |
36 | * - next_frag is NULL at the tail of a "run"; |
37 | * - the head of a "run" has the sum of all fragment lengths in frag_run_len. |
38 | */ |
39 | struct ipfrag_skb_cb { |
40 | union { |
41 | struct inet_skb_parm h4; |
42 | struct inet6_skb_parm h6; |
43 | }; |
44 | struct sk_buff *next_frag; |
45 | int frag_run_len; |
46 | }; |
47 | |
48 | #define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb)) |
49 | |
50 | static void fragcb_clear(struct sk_buff *skb) |
51 | { |
52 | RB_CLEAR_NODE(&skb->rbnode); |
53 | FRAG_CB(skb)->next_frag = NULL; |
54 | FRAG_CB(skb)->frag_run_len = skb->len; |
55 | } |
56 | |
57 | /* Append skb to the last "run". */ |
58 | static void fragrun_append_to_last(struct inet_frag_queue *q, |
59 | struct sk_buff *skb) |
60 | { |
61 | fragcb_clear(skb); |
62 | |
63 | FRAG_CB(q->last_run_head)->frag_run_len += skb->len; |
64 | FRAG_CB(q->fragments_tail)->next_frag = skb; |
65 | q->fragments_tail = skb; |
66 | } |
67 | |
68 | /* Create a new "run" with the skb. */ |
69 | static void fragrun_create(struct inet_frag_queue *q, struct sk_buff *skb) |
70 | { |
71 | BUILD_BUG_ON(sizeof(struct ipfrag_skb_cb) > sizeof(skb->cb)); |
72 | fragcb_clear(skb); |
73 | |
74 | if (q->last_run_head) |
75 | rb_link_node(&skb->rbnode, &q->last_run_head->rbnode, |
76 | &q->last_run_head->rbnode.rb_right); |
77 | else |
78 | rb_link_node(&skb->rbnode, NULL, &q->rb_fragments.rb_node); |
79 | rb_insert_color(&skb->rbnode, &q->rb_fragments); |
80 | |
81 | q->fragments_tail = skb; |
82 | q->last_run_head = skb; |
83 | } |
84 | |
85 | /* Given the OR values of all fragments, apply RFC 3168 5.3 requirements |
86 | * Value : 0xff if frame should be dropped. |
87 | * 0 or INET_ECN_CE value, to be ORed in to final iph->tos field |
88 | */ |
89 | const u8 ip_frag_ecn_table[16] = { |
90 | /* at least one fragment had CE, and others ECT_0 or ECT_1 */ |
91 | [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = INET_ECN_CE, |
92 | [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = INET_ECN_CE, |
93 | [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = INET_ECN_CE, |
94 | |
95 | /* invalid combinations : drop frame */ |
96 | [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE] = 0xff, |
97 | [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0] = 0xff, |
98 | [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_1] = 0xff, |
99 | [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff, |
100 | [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = 0xff, |
101 | [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = 0xff, |
102 | [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff, |
103 | }; |
104 | EXPORT_SYMBOL(ip_frag_ecn_table); |
105 | |
106 | int inet_frags_init(struct inet_frags *f) |
107 | { |
108 | f->frags_cachep = kmem_cache_create(f->frags_cache_name, f->qsize, 0, 0, |
109 | NULL); |
110 | if (!f->frags_cachep) |
111 | return -ENOMEM; |
112 | |
113 | return 0; |
114 | } |
115 | EXPORT_SYMBOL(inet_frags_init); |
116 | |
117 | void inet_frags_fini(struct inet_frags *f) |
118 | { |
119 | /* We must wait that all inet_frag_destroy_rcu() have completed. */ |
120 | rcu_barrier(); |
121 | |
122 | kmem_cache_destroy(f->frags_cachep); |
123 | f->frags_cachep = NULL; |
124 | } |
125 | EXPORT_SYMBOL(inet_frags_fini); |
126 | |
127 | static void inet_frags_free_cb(void *ptr, void *arg) |
128 | { |
129 | struct inet_frag_queue *fq = ptr; |
130 | |
131 | /* If we can not cancel the timer, it means this frag_queue |
132 | * is already disappearing, we have nothing to do. |
133 | * Otherwise, we own a refcount until the end of this function. |
134 | */ |
135 | if (!del_timer(&fq->timer)) |
136 | return; |
137 | |
138 | spin_lock_bh(&fq->lock); |
139 | if (!(fq->flags & INET_FRAG_COMPLETE)) { |
140 | fq->flags |= INET_FRAG_COMPLETE; |
141 | refcount_dec(&fq->refcnt); |
142 | } |
143 | spin_unlock_bh(&fq->lock); |
144 | |
145 | inet_frag_put(fq); |
146 | } |
147 | |
148 | void inet_frags_exit_net(struct netns_frags *nf) |
149 | { |
150 | nf->high_thresh = 0; /* prevent creation of new frags */ |
151 | |
152 | rhashtable_free_and_destroy(&nf->rhashtable, inet_frags_free_cb, NULL); |
153 | } |
154 | EXPORT_SYMBOL(inet_frags_exit_net); |
155 | |
156 | void inet_frag_kill(struct inet_frag_queue *fq) |
157 | { |
158 | if (del_timer(&fq->timer)) |
159 | refcount_dec(&fq->refcnt); |
160 | |
161 | if (!(fq->flags & INET_FRAG_COMPLETE)) { |
162 | struct netns_frags *nf = fq->net; |
163 | |
164 | fq->flags |= INET_FRAG_COMPLETE; |
165 | rhashtable_remove_fast(&nf->rhashtable, &fq->node, nf->f->rhash_params); |
166 | refcount_dec(&fq->refcnt); |
167 | } |
168 | } |
169 | EXPORT_SYMBOL(inet_frag_kill); |
170 | |
171 | static void inet_frag_destroy_rcu(struct rcu_head *head) |
172 | { |
173 | struct inet_frag_queue *q = container_of(head, struct inet_frag_queue, |
174 | rcu); |
175 | struct inet_frags *f = q->net->f; |
176 | |
177 | if (f->destructor) |
178 | f->destructor(q); |
179 | kmem_cache_free(f->frags_cachep, q); |
180 | } |
181 | |
182 | unsigned int inet_frag_rbtree_purge(struct rb_root *root) |
183 | { |
184 | struct rb_node *p = rb_first(root); |
185 | unsigned int sum = 0; |
186 | |
187 | while (p) { |
188 | struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); |
189 | |
190 | p = rb_next(p); |
191 | rb_erase(&skb->rbnode, root); |
192 | while (skb) { |
193 | struct sk_buff *next = FRAG_CB(skb)->next_frag; |
194 | |
195 | sum += skb->truesize; |
196 | kfree_skb(skb); |
197 | skb = next; |
198 | } |
199 | } |
200 | return sum; |
201 | } |
202 | EXPORT_SYMBOL(inet_frag_rbtree_purge); |
203 | |
204 | void inet_frag_destroy(struct inet_frag_queue *q) |
205 | { |
206 | struct netns_frags *nf; |
207 | unsigned int sum, sum_truesize = 0; |
208 | struct inet_frags *f; |
209 | |
210 | WARN_ON(!(q->flags & INET_FRAG_COMPLETE)); |
211 | WARN_ON(del_timer(&q->timer) != 0); |
212 | |
213 | /* Release all fragment data. */ |
214 | nf = q->net; |
215 | f = nf->f; |
216 | sum_truesize = inet_frag_rbtree_purge(&q->rb_fragments); |
217 | sum = sum_truesize + f->qsize; |
218 | |
219 | call_rcu(&q->rcu, inet_frag_destroy_rcu); |
220 | |
221 | sub_frag_mem_limit(nf, sum); |
222 | } |
223 | EXPORT_SYMBOL(inet_frag_destroy); |
224 | |
225 | static struct inet_frag_queue *inet_frag_alloc(struct netns_frags *nf, |
226 | struct inet_frags *f, |
227 | void *arg) |
228 | { |
229 | struct inet_frag_queue *q; |
230 | |
231 | q = kmem_cache_zalloc(f->frags_cachep, GFP_ATOMIC); |
232 | if (!q) |
233 | return NULL; |
234 | |
235 | q->net = nf; |
236 | f->constructor(q, arg); |
237 | add_frag_mem_limit(nf, f->qsize); |
238 | |
239 | timer_setup(&q->timer, f->frag_expire, 0); |
240 | spin_lock_init(&q->lock); |
241 | refcount_set(&q->refcnt, 3); |
242 | |
243 | return q; |
244 | } |
245 | |
246 | static struct inet_frag_queue *inet_frag_create(struct netns_frags *nf, |
247 | void *arg, |
248 | struct inet_frag_queue **prev) |
249 | { |
250 | struct inet_frags *f = nf->f; |
251 | struct inet_frag_queue *q; |
252 | |
253 | q = inet_frag_alloc(nf, f, arg); |
254 | if (!q) { |
255 | *prev = ERR_PTR(-ENOMEM); |
256 | return NULL; |
257 | } |
258 | mod_timer(&q->timer, jiffies + nf->timeout); |
259 | |
260 | *prev = rhashtable_lookup_get_insert_key(&nf->rhashtable, &q->key, |
261 | &q->node, f->rhash_params); |
262 | if (*prev) { |
263 | q->flags |= INET_FRAG_COMPLETE; |
264 | inet_frag_kill(q); |
265 | inet_frag_destroy(q); |
266 | return NULL; |
267 | } |
268 | return q; |
269 | } |
270 | |
271 | /* TODO : call from rcu_read_lock() and no longer use refcount_inc_not_zero() */ |
272 | struct inet_frag_queue *inet_frag_find(struct netns_frags *nf, void *key) |
273 | { |
274 | struct inet_frag_queue *fq = NULL, *prev; |
275 | |
276 | if (!nf->high_thresh || frag_mem_limit(nf) > nf->high_thresh) |
277 | return NULL; |
278 | |
279 | rcu_read_lock(); |
280 | |
281 | prev = rhashtable_lookup(&nf->rhashtable, key, nf->f->rhash_params); |
282 | if (!prev) |
283 | fq = inet_frag_create(nf, key, &prev); |
284 | if (prev && !IS_ERR(prev)) { |
285 | fq = prev; |
286 | if (!refcount_inc_not_zero(&fq->refcnt)) |
287 | fq = NULL; |
288 | } |
289 | rcu_read_unlock(); |
290 | return fq; |
291 | } |
292 | EXPORT_SYMBOL(inet_frag_find); |
293 | |
294 | int inet_frag_queue_insert(struct inet_frag_queue *q, struct sk_buff *skb, |
295 | int offset, int end) |
296 | { |
297 | struct sk_buff *last = q->fragments_tail; |
298 | |
299 | /* RFC5722, Section 4, amended by Errata ID : 3089 |
300 | * When reassembling an IPv6 datagram, if |
301 | * one or more its constituent fragments is determined to be an |
302 | * overlapping fragment, the entire datagram (and any constituent |
303 | * fragments) MUST be silently discarded. |
304 | * |
305 | * Duplicates, however, should be ignored (i.e. skb dropped, but the |
306 | * queue/fragments kept for later reassembly). |
307 | */ |
308 | if (!last) |
309 | fragrun_create(q, skb); /* First fragment. */ |
310 | else if (last->ip_defrag_offset + last->len < end) { |
311 | /* This is the common case: skb goes to the end. */ |
312 | /* Detect and discard overlaps. */ |
313 | if (offset < last->ip_defrag_offset + last->len) |
314 | return IPFRAG_OVERLAP; |
315 | if (offset == last->ip_defrag_offset + last->len) |
316 | fragrun_append_to_last(q, skb); |
317 | else |
318 | fragrun_create(q, skb); |
319 | } else { |
320 | /* Binary search. Note that skb can become the first fragment, |
321 | * but not the last (covered above). |
322 | */ |
323 | struct rb_node **rbn, *parent; |
324 | |
325 | rbn = &q->rb_fragments.rb_node; |
326 | do { |
327 | struct sk_buff *curr; |
328 | int curr_run_end; |
329 | |
330 | parent = *rbn; |
331 | curr = rb_to_skb(parent); |
332 | curr_run_end = curr->ip_defrag_offset + |
333 | FRAG_CB(curr)->frag_run_len; |
334 | if (end <= curr->ip_defrag_offset) |
335 | rbn = &parent->rb_left; |
336 | else if (offset >= curr_run_end) |
337 | rbn = &parent->rb_right; |
338 | else if (offset >= curr->ip_defrag_offset && |
339 | end <= curr_run_end) |
340 | return IPFRAG_DUP; |
341 | else |
342 | return IPFRAG_OVERLAP; |
343 | } while (*rbn); |
344 | /* Here we have parent properly set, and rbn pointing to |
345 | * one of its NULL left/right children. Insert skb. |
346 | */ |
347 | fragcb_clear(skb); |
348 | rb_link_node(&skb->rbnode, parent, rbn); |
349 | rb_insert_color(&skb->rbnode, &q->rb_fragments); |
350 | } |
351 | |
352 | skb->ip_defrag_offset = offset; |
353 | |
354 | return IPFRAG_OK; |
355 | } |
356 | EXPORT_SYMBOL(inet_frag_queue_insert); |
357 | |
358 | void *inet_frag_reasm_prepare(struct inet_frag_queue *q, struct sk_buff *skb, |
359 | struct sk_buff *parent) |
360 | { |
361 | struct sk_buff *fp, *head = skb_rb_first(&q->rb_fragments); |
362 | struct sk_buff **nextp; |
363 | int delta; |
364 | |
365 | if (head != skb) { |
366 | fp = skb_clone(skb, GFP_ATOMIC); |
367 | if (!fp) |
368 | return NULL; |
369 | FRAG_CB(fp)->next_frag = FRAG_CB(skb)->next_frag; |
370 | if (RB_EMPTY_NODE(&skb->rbnode)) |
371 | FRAG_CB(parent)->next_frag = fp; |
372 | else |
373 | rb_replace_node(&skb->rbnode, &fp->rbnode, |
374 | &q->rb_fragments); |
375 | if (q->fragments_tail == skb) |
376 | q->fragments_tail = fp; |
377 | skb_morph(skb, head); |
378 | FRAG_CB(skb)->next_frag = FRAG_CB(head)->next_frag; |
379 | rb_replace_node(&head->rbnode, &skb->rbnode, |
380 | &q->rb_fragments); |
381 | consume_skb(head); |
382 | head = skb; |
383 | } |
384 | WARN_ON(head->ip_defrag_offset != 0); |
385 | |
386 | delta = -head->truesize; |
387 | |
388 | /* Head of list must not be cloned. */ |
389 | if (skb_unclone(head, GFP_ATOMIC)) |
390 | return NULL; |
391 | |
392 | delta += head->truesize; |
393 | if (delta) |
394 | add_frag_mem_limit(q->net, delta); |
395 | |
396 | /* If the first fragment is fragmented itself, we split |
397 | * it to two chunks: the first with data and paged part |
398 | * and the second, holding only fragments. |
399 | */ |
400 | if (skb_has_frag_list(head)) { |
401 | struct sk_buff *clone; |
402 | int i, plen = 0; |
403 | |
404 | clone = alloc_skb(0, GFP_ATOMIC); |
405 | if (!clone) |
406 | return NULL; |
407 | skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list; |
408 | skb_frag_list_init(head); |
409 | for (i = 0; i < skb_shinfo(head)->nr_frags; i++) |
410 | plen += skb_frag_size(&skb_shinfo(head)->frags[i]); |
411 | clone->data_len = head->data_len - plen; |
412 | clone->len = clone->data_len; |
413 | head->truesize += clone->truesize; |
414 | clone->csum = 0; |
415 | clone->ip_summed = head->ip_summed; |
416 | add_frag_mem_limit(q->net, clone->truesize); |
417 | skb_shinfo(head)->frag_list = clone; |
418 | nextp = &clone->next; |
419 | } else { |
420 | nextp = &skb_shinfo(head)->frag_list; |
421 | } |
422 | |
423 | return nextp; |
424 | } |
425 | EXPORT_SYMBOL(inet_frag_reasm_prepare); |
426 | |
427 | void inet_frag_reasm_finish(struct inet_frag_queue *q, struct sk_buff *head, |
428 | void *reasm_data) |
429 | { |
430 | struct sk_buff **nextp = (struct sk_buff **)reasm_data; |
431 | struct rb_node *rbn; |
432 | struct sk_buff *fp; |
433 | |
434 | skb_push(head, head->data - skb_network_header(head)); |
435 | |
436 | /* Traverse the tree in order, to build frag_list. */ |
437 | fp = FRAG_CB(head)->next_frag; |
438 | rbn = rb_next(&head->rbnode); |
439 | rb_erase(&head->rbnode, &q->rb_fragments); |
440 | while (rbn || fp) { |
441 | /* fp points to the next sk_buff in the current run; |
442 | * rbn points to the next run. |
443 | */ |
444 | /* Go through the current run. */ |
445 | while (fp) { |
446 | *nextp = fp; |
447 | nextp = &fp->next; |
448 | fp->prev = NULL; |
449 | memset(&fp->rbnode, 0, sizeof(fp->rbnode)); |
450 | fp->sk = NULL; |
451 | head->data_len += fp->len; |
452 | head->len += fp->len; |
453 | if (head->ip_summed != fp->ip_summed) |
454 | head->ip_summed = CHECKSUM_NONE; |
455 | else if (head->ip_summed == CHECKSUM_COMPLETE) |
456 | head->csum = csum_add(head->csum, fp->csum); |
457 | head->truesize += fp->truesize; |
458 | fp = FRAG_CB(fp)->next_frag; |
459 | } |
460 | /* Move to the next run. */ |
461 | if (rbn) { |
462 | struct rb_node *rbnext = rb_next(rbn); |
463 | |
464 | fp = rb_to_skb(rbn); |
465 | rb_erase(rbn, &q->rb_fragments); |
466 | rbn = rbnext; |
467 | } |
468 | } |
469 | sub_frag_mem_limit(q->net, head->truesize); |
470 | |
471 | *nextp = NULL; |
472 | skb_mark_not_on_list(head); |
473 | head->prev = NULL; |
474 | head->tstamp = q->stamp; |
475 | } |
476 | EXPORT_SYMBOL(inet_frag_reasm_finish); |
477 | |
478 | struct sk_buff *inet_frag_pull_head(struct inet_frag_queue *q) |
479 | { |
480 | struct sk_buff *head, *skb; |
481 | |
482 | head = skb_rb_first(&q->rb_fragments); |
483 | if (!head) |
484 | return NULL; |
485 | skb = FRAG_CB(head)->next_frag; |
486 | if (skb) |
487 | rb_replace_node(&head->rbnode, &skb->rbnode, |
488 | &q->rb_fragments); |
489 | else |
490 | rb_erase(&head->rbnode, &q->rb_fragments); |
491 | memset(&head->rbnode, 0, sizeof(head->rbnode)); |
492 | barrier(); |
493 | |
494 | if (head == q->fragments_tail) |
495 | q->fragments_tail = NULL; |
496 | |
497 | sub_frag_mem_limit(q->net, head->truesize); |
498 | |
499 | return head; |
500 | } |
501 | EXPORT_SYMBOL(inet_frag_pull_head); |
502 | |