1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2007-2017 Nicira, Inc.
4 */
5
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8#include "flow.h"
9#include "datapath.h"
10#include <linux/uaccess.h>
11#include <linux/netdevice.h>
12#include <linux/etherdevice.h>
13#include <linux/if_ether.h>
14#include <linux/if_vlan.h>
15#include <net/llc_pdu.h>
16#include <linux/kernel.h>
17#include <linux/jhash.h>
18#include <linux/jiffies.h>
19#include <linux/llc.h>
20#include <linux/module.h>
21#include <linux/in.h>
22#include <linux/rcupdate.h>
23#include <linux/if_arp.h>
24#include <linux/ip.h>
25#include <linux/ipv6.h>
26#include <linux/sctp.h>
27#include <linux/tcp.h>
28#include <linux/udp.h>
29#include <linux/icmp.h>
30#include <linux/icmpv6.h>
31#include <linux/rculist.h>
32#include <net/geneve.h>
33#include <net/ip.h>
34#include <net/ipv6.h>
35#include <net/ndisc.h>
36#include <net/mpls.h>
37#include <net/vxlan.h>
38#include <net/tun_proto.h>
39#include <net/erspan.h>
40
41#include "drop.h"
42#include "flow_netlink.h"
43
44struct ovs_len_tbl {
45 int len;
46 const struct ovs_len_tbl *next;
47};
48
49#define OVS_ATTR_NESTED -1
50#define OVS_ATTR_VARIABLE -2
51
52static bool actions_may_change_flow(const struct nlattr *actions)
53{
54 struct nlattr *nla;
55 int rem;
56
57 nla_for_each_nested(nla, actions, rem) {
58 u16 action = nla_type(nla);
59
60 switch (action) {
61 case OVS_ACTION_ATTR_OUTPUT:
62 case OVS_ACTION_ATTR_RECIRC:
63 case OVS_ACTION_ATTR_TRUNC:
64 case OVS_ACTION_ATTR_USERSPACE:
65 case OVS_ACTION_ATTR_DROP:
66 break;
67
68 case OVS_ACTION_ATTR_CT:
69 case OVS_ACTION_ATTR_CT_CLEAR:
70 case OVS_ACTION_ATTR_HASH:
71 case OVS_ACTION_ATTR_POP_ETH:
72 case OVS_ACTION_ATTR_POP_MPLS:
73 case OVS_ACTION_ATTR_POP_NSH:
74 case OVS_ACTION_ATTR_POP_VLAN:
75 case OVS_ACTION_ATTR_PUSH_ETH:
76 case OVS_ACTION_ATTR_PUSH_MPLS:
77 case OVS_ACTION_ATTR_PUSH_NSH:
78 case OVS_ACTION_ATTR_PUSH_VLAN:
79 case OVS_ACTION_ATTR_SAMPLE:
80 case OVS_ACTION_ATTR_SET:
81 case OVS_ACTION_ATTR_SET_MASKED:
82 case OVS_ACTION_ATTR_METER:
83 case OVS_ACTION_ATTR_CHECK_PKT_LEN:
84 case OVS_ACTION_ATTR_ADD_MPLS:
85 case OVS_ACTION_ATTR_DEC_TTL:
86 default:
87 return true;
88 }
89 }
90 return false;
91}
92
93static void update_range(struct sw_flow_match *match,
94 size_t offset, size_t size, bool is_mask)
95{
96 struct sw_flow_key_range *range;
97 size_t start = rounddown(offset, sizeof(long));
98 size_t end = roundup(offset + size, sizeof(long));
99
100 if (!is_mask)
101 range = &match->range;
102 else
103 range = &match->mask->range;
104
105 if (range->start == range->end) {
106 range->start = start;
107 range->end = end;
108 return;
109 }
110
111 if (range->start > start)
112 range->start = start;
113
114 if (range->end < end)
115 range->end = end;
116}
117
118#define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
119 do { \
120 update_range(match, offsetof(struct sw_flow_key, field), \
121 sizeof((match)->key->field), is_mask); \
122 if (is_mask) \
123 (match)->mask->key.field = value; \
124 else \
125 (match)->key->field = value; \
126 } while (0)
127
128#define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask) \
129 do { \
130 update_range(match, offset, len, is_mask); \
131 if (is_mask) \
132 memcpy((u8 *)&(match)->mask->key + offset, value_p, \
133 len); \
134 else \
135 memcpy((u8 *)(match)->key + offset, value_p, len); \
136 } while (0)
137
138#define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \
139 SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
140 value_p, len, is_mask)
141
142#define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask) \
143 do { \
144 update_range(match, offsetof(struct sw_flow_key, field), \
145 sizeof((match)->key->field), is_mask); \
146 if (is_mask) \
147 memset((u8 *)&(match)->mask->key.field, value, \
148 sizeof((match)->mask->key.field)); \
149 else \
150 memset((u8 *)&(match)->key->field, value, \
151 sizeof((match)->key->field)); \
152 } while (0)
153
154static bool match_validate(const struct sw_flow_match *match,
155 u64 key_attrs, u64 mask_attrs, bool log)
156{
157 u64 key_expected = 0;
158 u64 mask_allowed = key_attrs; /* At most allow all key attributes */
159
160 /* The following mask attributes allowed only if they
161 * pass the validation tests. */
162 mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
163 | (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)
164 | (1 << OVS_KEY_ATTR_IPV6)
165 | (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)
166 | (1 << OVS_KEY_ATTR_TCP)
167 | (1 << OVS_KEY_ATTR_TCP_FLAGS)
168 | (1 << OVS_KEY_ATTR_UDP)
169 | (1 << OVS_KEY_ATTR_SCTP)
170 | (1 << OVS_KEY_ATTR_ICMP)
171 | (1 << OVS_KEY_ATTR_ICMPV6)
172 | (1 << OVS_KEY_ATTR_ARP)
173 | (1 << OVS_KEY_ATTR_ND)
174 | (1 << OVS_KEY_ATTR_MPLS)
175 | (1 << OVS_KEY_ATTR_NSH));
176
177 /* Always allowed mask fields. */
178 mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
179 | (1 << OVS_KEY_ATTR_IN_PORT)
180 | (1 << OVS_KEY_ATTR_ETHERTYPE));
181
182 /* Check key attributes. */
183 if (match->key->eth.type == htons(ETH_P_ARP)
184 || match->key->eth.type == htons(ETH_P_RARP)) {
185 key_expected |= 1 << OVS_KEY_ATTR_ARP;
186 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
187 mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
188 }
189
190 if (eth_p_mpls(eth_type: match->key->eth.type)) {
191 key_expected |= 1 << OVS_KEY_ATTR_MPLS;
192 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
193 mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
194 }
195
196 if (match->key->eth.type == htons(ETH_P_IP)) {
197 key_expected |= 1 << OVS_KEY_ATTR_IPV4;
198 if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
199 mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
200 mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4;
201 }
202
203 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
204 if (match->key->ip.proto == IPPROTO_UDP) {
205 key_expected |= 1 << OVS_KEY_ATTR_UDP;
206 if (match->mask && (match->mask->key.ip.proto == 0xff))
207 mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
208 }
209
210 if (match->key->ip.proto == IPPROTO_SCTP) {
211 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
212 if (match->mask && (match->mask->key.ip.proto == 0xff))
213 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
214 }
215
216 if (match->key->ip.proto == IPPROTO_TCP) {
217 key_expected |= 1 << OVS_KEY_ATTR_TCP;
218 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
219 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
220 mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
221 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
222 }
223 }
224
225 if (match->key->ip.proto == IPPROTO_ICMP) {
226 key_expected |= 1 << OVS_KEY_ATTR_ICMP;
227 if (match->mask && (match->mask->key.ip.proto == 0xff))
228 mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
229 }
230 }
231 }
232
233 if (match->key->eth.type == htons(ETH_P_IPV6)) {
234 key_expected |= 1 << OVS_KEY_ATTR_IPV6;
235 if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
236 mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
237 mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6;
238 }
239
240 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
241 if (match->key->ip.proto == IPPROTO_UDP) {
242 key_expected |= 1 << OVS_KEY_ATTR_UDP;
243 if (match->mask && (match->mask->key.ip.proto == 0xff))
244 mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
245 }
246
247 if (match->key->ip.proto == IPPROTO_SCTP) {
248 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
249 if (match->mask && (match->mask->key.ip.proto == 0xff))
250 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
251 }
252
253 if (match->key->ip.proto == IPPROTO_TCP) {
254 key_expected |= 1 << OVS_KEY_ATTR_TCP;
255 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
256 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
257 mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
258 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
259 }
260 }
261
262 if (match->key->ip.proto == IPPROTO_ICMPV6) {
263 key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
264 if (match->mask && (match->mask->key.ip.proto == 0xff))
265 mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
266
267 if (match->key->tp.src ==
268 htons(NDISC_NEIGHBOUR_SOLICITATION) ||
269 match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
270 key_expected |= 1 << OVS_KEY_ATTR_ND;
271 /* Original direction conntrack tuple
272 * uses the same space as the ND fields
273 * in the key, so both are not allowed
274 * at the same time.
275 */
276 mask_allowed &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
277 if (match->mask && (match->mask->key.tp.src == htons(0xff)))
278 mask_allowed |= 1 << OVS_KEY_ATTR_ND;
279 }
280 }
281 }
282 }
283
284 if (match->key->eth.type == htons(ETH_P_NSH)) {
285 key_expected |= 1 << OVS_KEY_ATTR_NSH;
286 if (match->mask &&
287 match->mask->key.eth.type == htons(0xffff)) {
288 mask_allowed |= 1 << OVS_KEY_ATTR_NSH;
289 }
290 }
291
292 if ((key_attrs & key_expected) != key_expected) {
293 /* Key attributes check failed. */
294 OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
295 (unsigned long long)key_attrs,
296 (unsigned long long)key_expected);
297 return false;
298 }
299
300 if ((mask_attrs & mask_allowed) != mask_attrs) {
301 /* Mask attributes check failed. */
302 OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
303 (unsigned long long)mask_attrs,
304 (unsigned long long)mask_allowed);
305 return false;
306 }
307
308 return true;
309}
310
311size_t ovs_tun_key_attr_size(void)
312{
313 /* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
314 * updating this function.
315 */
316 return nla_total_size_64bit(payload: 8) /* OVS_TUNNEL_KEY_ATTR_ID */
317 + nla_total_size(payload: 16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
318 + nla_total_size(payload: 16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
319 + nla_total_size(payload: 1) /* OVS_TUNNEL_KEY_ATTR_TOS */
320 + nla_total_size(payload: 1) /* OVS_TUNNEL_KEY_ATTR_TTL */
321 + nla_total_size(payload: 0) /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
322 + nla_total_size(payload: 0) /* OVS_TUNNEL_KEY_ATTR_CSUM */
323 + nla_total_size(payload: 0) /* OVS_TUNNEL_KEY_ATTR_OAM */
324 + nla_total_size(payload: 256) /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
325 /* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS and
326 * OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS is mutually exclusive with
327 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
328 */
329 + nla_total_size(payload: 2) /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
330 + nla_total_size(payload: 2); /* OVS_TUNNEL_KEY_ATTR_TP_DST */
331}
332
333static size_t ovs_nsh_key_attr_size(void)
334{
335 /* Whenever adding new OVS_NSH_KEY_ FIELDS, we should consider
336 * updating this function.
337 */
338 return nla_total_size(NSH_BASE_HDR_LEN) /* OVS_NSH_KEY_ATTR_BASE */
339 /* OVS_NSH_KEY_ATTR_MD1 and OVS_NSH_KEY_ATTR_MD2 are
340 * mutually exclusive, so the bigger one can cover
341 * the small one.
342 */
343 + nla_total_size(NSH_CTX_HDRS_MAX_LEN);
344}
345
346size_t ovs_key_attr_size(void)
347{
348 /* Whenever adding new OVS_KEY_ FIELDS, we should consider
349 * updating this function.
350 */
351 BUILD_BUG_ON(OVS_KEY_ATTR_MAX != 32);
352
353 return nla_total_size(payload: 4) /* OVS_KEY_ATTR_PRIORITY */
354 + nla_total_size(payload: 0) /* OVS_KEY_ATTR_TUNNEL */
355 + ovs_tun_key_attr_size()
356 + nla_total_size(payload: 4) /* OVS_KEY_ATTR_IN_PORT */
357 + nla_total_size(payload: 4) /* OVS_KEY_ATTR_SKB_MARK */
358 + nla_total_size(payload: 4) /* OVS_KEY_ATTR_DP_HASH */
359 + nla_total_size(payload: 4) /* OVS_KEY_ATTR_RECIRC_ID */
360 + nla_total_size(payload: 4) /* OVS_KEY_ATTR_CT_STATE */
361 + nla_total_size(payload: 2) /* OVS_KEY_ATTR_CT_ZONE */
362 + nla_total_size(payload: 4) /* OVS_KEY_ATTR_CT_MARK */
363 + nla_total_size(payload: 16) /* OVS_KEY_ATTR_CT_LABELS */
364 + nla_total_size(payload: 40) /* OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6 */
365 + nla_total_size(payload: 0) /* OVS_KEY_ATTR_NSH */
366 + ovs_nsh_key_attr_size()
367 + nla_total_size(payload: 12) /* OVS_KEY_ATTR_ETHERNET */
368 + nla_total_size(payload: 2) /* OVS_KEY_ATTR_ETHERTYPE */
369 + nla_total_size(payload: 4) /* OVS_KEY_ATTR_VLAN */
370 + nla_total_size(payload: 0) /* OVS_KEY_ATTR_ENCAP */
371 + nla_total_size(payload: 2) /* OVS_KEY_ATTR_ETHERTYPE */
372 + nla_total_size(payload: 40) /* OVS_KEY_ATTR_IPV6 */
373 + nla_total_size(payload: 2) /* OVS_KEY_ATTR_ICMPV6 */
374 + nla_total_size(payload: 28) /* OVS_KEY_ATTR_ND */
375 + nla_total_size(payload: 2); /* OVS_KEY_ATTR_IPV6_EXTHDRS */
376}
377
378static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
379 [OVS_VXLAN_EXT_GBP] = { .len = sizeof(u32) },
380};
381
382static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
383 [OVS_TUNNEL_KEY_ATTR_ID] = { .len = sizeof(u64) },
384 [OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = { .len = sizeof(u32) },
385 [OVS_TUNNEL_KEY_ATTR_IPV4_DST] = { .len = sizeof(u32) },
386 [OVS_TUNNEL_KEY_ATTR_TOS] = { .len = 1 },
387 [OVS_TUNNEL_KEY_ATTR_TTL] = { .len = 1 },
388 [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
389 [OVS_TUNNEL_KEY_ATTR_CSUM] = { .len = 0 },
390 [OVS_TUNNEL_KEY_ATTR_TP_SRC] = { .len = sizeof(u16) },
391 [OVS_TUNNEL_KEY_ATTR_TP_DST] = { .len = sizeof(u16) },
392 [OVS_TUNNEL_KEY_ATTR_OAM] = { .len = 0 },
393 [OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS] = { .len = OVS_ATTR_VARIABLE },
394 [OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS] = { .len = OVS_ATTR_NESTED,
395 .next = ovs_vxlan_ext_key_lens },
396 [OVS_TUNNEL_KEY_ATTR_IPV6_SRC] = { .len = sizeof(struct in6_addr) },
397 [OVS_TUNNEL_KEY_ATTR_IPV6_DST] = { .len = sizeof(struct in6_addr) },
398 [OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS] = { .len = OVS_ATTR_VARIABLE },
399 [OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE] = { .len = 0 },
400};
401
402static const struct ovs_len_tbl
403ovs_nsh_key_attr_lens[OVS_NSH_KEY_ATTR_MAX + 1] = {
404 [OVS_NSH_KEY_ATTR_BASE] = { .len = sizeof(struct ovs_nsh_key_base) },
405 [OVS_NSH_KEY_ATTR_MD1] = { .len = sizeof(struct ovs_nsh_key_md1) },
406 [OVS_NSH_KEY_ATTR_MD2] = { .len = OVS_ATTR_VARIABLE },
407};
408
409/* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */
410static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
411 [OVS_KEY_ATTR_ENCAP] = { .len = OVS_ATTR_NESTED },
412 [OVS_KEY_ATTR_PRIORITY] = { .len = sizeof(u32) },
413 [OVS_KEY_ATTR_IN_PORT] = { .len = sizeof(u32) },
414 [OVS_KEY_ATTR_SKB_MARK] = { .len = sizeof(u32) },
415 [OVS_KEY_ATTR_ETHERNET] = { .len = sizeof(struct ovs_key_ethernet) },
416 [OVS_KEY_ATTR_VLAN] = { .len = sizeof(__be16) },
417 [OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
418 [OVS_KEY_ATTR_IPV4] = { .len = sizeof(struct ovs_key_ipv4) },
419 [OVS_KEY_ATTR_IPV6] = { .len = sizeof(struct ovs_key_ipv6) },
420 [OVS_KEY_ATTR_TCP] = { .len = sizeof(struct ovs_key_tcp) },
421 [OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
422 [OVS_KEY_ATTR_UDP] = { .len = sizeof(struct ovs_key_udp) },
423 [OVS_KEY_ATTR_SCTP] = { .len = sizeof(struct ovs_key_sctp) },
424 [OVS_KEY_ATTR_ICMP] = { .len = sizeof(struct ovs_key_icmp) },
425 [OVS_KEY_ATTR_ICMPV6] = { .len = sizeof(struct ovs_key_icmpv6) },
426 [OVS_KEY_ATTR_ARP] = { .len = sizeof(struct ovs_key_arp) },
427 [OVS_KEY_ATTR_ND] = { .len = sizeof(struct ovs_key_nd) },
428 [OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
429 [OVS_KEY_ATTR_DP_HASH] = { .len = sizeof(u32) },
430 [OVS_KEY_ATTR_TUNNEL] = { .len = OVS_ATTR_NESTED,
431 .next = ovs_tunnel_key_lens, },
432 [OVS_KEY_ATTR_MPLS] = { .len = OVS_ATTR_VARIABLE },
433 [OVS_KEY_ATTR_CT_STATE] = { .len = sizeof(u32) },
434 [OVS_KEY_ATTR_CT_ZONE] = { .len = sizeof(u16) },
435 [OVS_KEY_ATTR_CT_MARK] = { .len = sizeof(u32) },
436 [OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
437 [OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4] = {
438 .len = sizeof(struct ovs_key_ct_tuple_ipv4) },
439 [OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6] = {
440 .len = sizeof(struct ovs_key_ct_tuple_ipv6) },
441 [OVS_KEY_ATTR_NSH] = { .len = OVS_ATTR_NESTED,
442 .next = ovs_nsh_key_attr_lens, },
443 [OVS_KEY_ATTR_IPV6_EXTHDRS] = {
444 .len = sizeof(struct ovs_key_ipv6_exthdrs) },
445};
446
447static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
448{
449 return expected_len == attr_len ||
450 expected_len == OVS_ATTR_NESTED ||
451 expected_len == OVS_ATTR_VARIABLE;
452}
453
454static bool is_all_zero(const u8 *fp, size_t size)
455{
456 int i;
457
458 if (!fp)
459 return false;
460
461 for (i = 0; i < size; i++)
462 if (fp[i])
463 return false;
464
465 return true;
466}
467
468static int __parse_flow_nlattrs(const struct nlattr *attr,
469 const struct nlattr *a[],
470 u64 *attrsp, bool log, bool nz)
471{
472 const struct nlattr *nla;
473 u64 attrs;
474 int rem;
475
476 attrs = *attrsp;
477 nla_for_each_nested(nla, attr, rem) {
478 u16 type = nla_type(nla);
479 int expected_len;
480
481 if (type > OVS_KEY_ATTR_MAX) {
482 OVS_NLERR(log, "Key type %d is out of range max %d",
483 type, OVS_KEY_ATTR_MAX);
484 return -EINVAL;
485 }
486
487 if (type == OVS_KEY_ATTR_PACKET_TYPE ||
488 type == OVS_KEY_ATTR_ND_EXTENSIONS ||
489 type == OVS_KEY_ATTR_TUNNEL_INFO) {
490 OVS_NLERR(log, "Key type %d is not supported", type);
491 return -EINVAL;
492 }
493
494 if (attrs & (1ULL << type)) {
495 OVS_NLERR(log, "Duplicate key (type %d).", type);
496 return -EINVAL;
497 }
498
499 expected_len = ovs_key_lens[type].len;
500 if (!check_attr_len(attr_len: nla_len(nla), expected_len)) {
501 OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
502 type, nla_len(nla), expected_len);
503 return -EINVAL;
504 }
505
506 if (!nz || !is_all_zero(fp: nla_data(nla), size: nla_len(nla))) {
507 attrs |= 1ULL << type;
508 a[type] = nla;
509 }
510 }
511 if (rem) {
512 OVS_NLERR(log, "Message has %d unknown bytes.", rem);
513 return -EINVAL;
514 }
515
516 *attrsp = attrs;
517 return 0;
518}
519
520static int parse_flow_mask_nlattrs(const struct nlattr *attr,
521 const struct nlattr *a[], u64 *attrsp,
522 bool log)
523{
524 return __parse_flow_nlattrs(attr, a, attrsp, log, nz: true);
525}
526
527int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[],
528 u64 *attrsp, bool log)
529{
530 return __parse_flow_nlattrs(attr, a, attrsp, log, nz: false);
531}
532
533static int genev_tun_opt_from_nlattr(const struct nlattr *a,
534 struct sw_flow_match *match, bool is_mask,
535 bool log)
536{
537 unsigned long opt_key_offset;
538
539 if (nla_len(nla: a) > sizeof(match->key->tun_opts)) {
540 OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
541 nla_len(a), sizeof(match->key->tun_opts));
542 return -EINVAL;
543 }
544
545 if (nla_len(nla: a) % 4 != 0) {
546 OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
547 nla_len(a));
548 return -EINVAL;
549 }
550
551 /* We need to record the length of the options passed
552 * down, otherwise packets with the same format but
553 * additional options will be silently matched.
554 */
555 if (!is_mask) {
556 SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
557 false);
558 } else {
559 /* This is somewhat unusual because it looks at
560 * both the key and mask while parsing the
561 * attributes (and by extension assumes the key
562 * is parsed first). Normally, we would verify
563 * that each is the correct length and that the
564 * attributes line up in the validate function.
565 * However, that is difficult because this is
566 * variable length and we won't have the
567 * information later.
568 */
569 if (match->key->tun_opts_len != nla_len(nla: a)) {
570 OVS_NLERR(log, "Geneve option len %d != mask len %d",
571 match->key->tun_opts_len, nla_len(a));
572 return -EINVAL;
573 }
574
575 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
576 }
577
578 opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
579 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
580 nla_len(a), is_mask);
581 return 0;
582}
583
584static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
585 struct sw_flow_match *match, bool is_mask,
586 bool log)
587{
588 struct nlattr *a;
589 int rem;
590 unsigned long opt_key_offset;
591 struct vxlan_metadata opts;
592
593 BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
594
595 memset(&opts, 0, sizeof(opts));
596 nla_for_each_nested(a, attr, rem) {
597 int type = nla_type(nla: a);
598
599 if (type > OVS_VXLAN_EXT_MAX) {
600 OVS_NLERR(log, "VXLAN extension %d out of range max %d",
601 type, OVS_VXLAN_EXT_MAX);
602 return -EINVAL;
603 }
604
605 if (!check_attr_len(attr_len: nla_len(nla: a),
606 expected_len: ovs_vxlan_ext_key_lens[type].len)) {
607 OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
608 type, nla_len(a),
609 ovs_vxlan_ext_key_lens[type].len);
610 return -EINVAL;
611 }
612
613 switch (type) {
614 case OVS_VXLAN_EXT_GBP:
615 opts.gbp = nla_get_u32(nla: a);
616 break;
617 default:
618 OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
619 type);
620 return -EINVAL;
621 }
622 }
623 if (rem) {
624 OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
625 rem);
626 return -EINVAL;
627 }
628
629 if (!is_mask)
630 SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
631 else
632 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
633
634 opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
635 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
636 is_mask);
637 return 0;
638}
639
640static int erspan_tun_opt_from_nlattr(const struct nlattr *a,
641 struct sw_flow_match *match, bool is_mask,
642 bool log)
643{
644 unsigned long opt_key_offset;
645
646 BUILD_BUG_ON(sizeof(struct erspan_metadata) >
647 sizeof(match->key->tun_opts));
648
649 if (nla_len(nla: a) > sizeof(match->key->tun_opts)) {
650 OVS_NLERR(log, "ERSPAN option length err (len %d, max %zu).",
651 nla_len(a), sizeof(match->key->tun_opts));
652 return -EINVAL;
653 }
654
655 if (!is_mask)
656 SW_FLOW_KEY_PUT(match, tun_opts_len,
657 sizeof(struct erspan_metadata), false);
658 else
659 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
660
661 opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
662 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
663 nla_len(a), is_mask);
664 return 0;
665}
666
667static int ip_tun_from_nlattr(const struct nlattr *attr,
668 struct sw_flow_match *match, bool is_mask,
669 bool log)
670{
671 bool ttl = false, ipv4 = false, ipv6 = false;
672 bool info_bridge_mode = false;
673 __be16 tun_flags = 0;
674 int opts_type = 0;
675 struct nlattr *a;
676 int rem;
677
678 nla_for_each_nested(a, attr, rem) {
679 int type = nla_type(nla: a);
680 int err;
681
682 if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
683 OVS_NLERR(log, "Tunnel attr %d out of range max %d",
684 type, OVS_TUNNEL_KEY_ATTR_MAX);
685 return -EINVAL;
686 }
687
688 if (!check_attr_len(attr_len: nla_len(nla: a),
689 expected_len: ovs_tunnel_key_lens[type].len)) {
690 OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
691 type, nla_len(a), ovs_tunnel_key_lens[type].len);
692 return -EINVAL;
693 }
694
695 switch (type) {
696 case OVS_TUNNEL_KEY_ATTR_ID:
697 SW_FLOW_KEY_PUT(match, tun_key.tun_id,
698 nla_get_be64(a), is_mask);
699 tun_flags |= TUNNEL_KEY;
700 break;
701 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
702 SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
703 nla_get_in_addr(a), is_mask);
704 ipv4 = true;
705 break;
706 case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
707 SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
708 nla_get_in_addr(a), is_mask);
709 ipv4 = true;
710 break;
711 case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
712 SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src,
713 nla_get_in6_addr(a), is_mask);
714 ipv6 = true;
715 break;
716 case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
717 SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
718 nla_get_in6_addr(a), is_mask);
719 ipv6 = true;
720 break;
721 case OVS_TUNNEL_KEY_ATTR_TOS:
722 SW_FLOW_KEY_PUT(match, tun_key.tos,
723 nla_get_u8(a), is_mask);
724 break;
725 case OVS_TUNNEL_KEY_ATTR_TTL:
726 SW_FLOW_KEY_PUT(match, tun_key.ttl,
727 nla_get_u8(a), is_mask);
728 ttl = true;
729 break;
730 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
731 tun_flags |= TUNNEL_DONT_FRAGMENT;
732 break;
733 case OVS_TUNNEL_KEY_ATTR_CSUM:
734 tun_flags |= TUNNEL_CSUM;
735 break;
736 case OVS_TUNNEL_KEY_ATTR_TP_SRC:
737 SW_FLOW_KEY_PUT(match, tun_key.tp_src,
738 nla_get_be16(a), is_mask);
739 break;
740 case OVS_TUNNEL_KEY_ATTR_TP_DST:
741 SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
742 nla_get_be16(a), is_mask);
743 break;
744 case OVS_TUNNEL_KEY_ATTR_OAM:
745 tun_flags |= TUNNEL_OAM;
746 break;
747 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
748 if (opts_type) {
749 OVS_NLERR(log, "Multiple metadata blocks provided");
750 return -EINVAL;
751 }
752
753 err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
754 if (err)
755 return err;
756
757 tun_flags |= TUNNEL_GENEVE_OPT;
758 opts_type = type;
759 break;
760 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
761 if (opts_type) {
762 OVS_NLERR(log, "Multiple metadata blocks provided");
763 return -EINVAL;
764 }
765
766 err = vxlan_tun_opt_from_nlattr(attr: a, match, is_mask, log);
767 if (err)
768 return err;
769
770 tun_flags |= TUNNEL_VXLAN_OPT;
771 opts_type = type;
772 break;
773 case OVS_TUNNEL_KEY_ATTR_PAD:
774 break;
775 case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
776 if (opts_type) {
777 OVS_NLERR(log, "Multiple metadata blocks provided");
778 return -EINVAL;
779 }
780
781 err = erspan_tun_opt_from_nlattr(a, match, is_mask,
782 log);
783 if (err)
784 return err;
785
786 tun_flags |= TUNNEL_ERSPAN_OPT;
787 opts_type = type;
788 break;
789 case OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE:
790 info_bridge_mode = true;
791 ipv4 = true;
792 break;
793 default:
794 OVS_NLERR(log, "Unknown IP tunnel attribute %d",
795 type);
796 return -EINVAL;
797 }
798 }
799
800 SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
801 if (is_mask)
802 SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
803 else
804 SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
805 false);
806
807 if (rem > 0) {
808 OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
809 rem);
810 return -EINVAL;
811 }
812
813 if (ipv4 && ipv6) {
814 OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
815 return -EINVAL;
816 }
817
818 if (!is_mask) {
819 if (!ipv4 && !ipv6) {
820 OVS_NLERR(log, "IP tunnel dst address not specified");
821 return -EINVAL;
822 }
823 if (ipv4) {
824 if (info_bridge_mode) {
825 if (match->key->tun_key.u.ipv4.src ||
826 match->key->tun_key.u.ipv4.dst ||
827 match->key->tun_key.tp_src ||
828 match->key->tun_key.tp_dst ||
829 match->key->tun_key.ttl ||
830 match->key->tun_key.tos ||
831 tun_flags & ~TUNNEL_KEY) {
832 OVS_NLERR(log, "IPv4 tun info is not correct");
833 return -EINVAL;
834 }
835 } else if (!match->key->tun_key.u.ipv4.dst) {
836 OVS_NLERR(log, "IPv4 tunnel dst address is zero");
837 return -EINVAL;
838 }
839 }
840 if (ipv6 && ipv6_addr_any(a: &match->key->tun_key.u.ipv6.dst)) {
841 OVS_NLERR(log, "IPv6 tunnel dst address is zero");
842 return -EINVAL;
843 }
844
845 if (!ttl && !info_bridge_mode) {
846 OVS_NLERR(log, "IP tunnel TTL not specified.");
847 return -EINVAL;
848 }
849 }
850
851 return opts_type;
852}
853
854static int vxlan_opt_to_nlattr(struct sk_buff *skb,
855 const void *tun_opts, int swkey_tun_opts_len)
856{
857 const struct vxlan_metadata *opts = tun_opts;
858 struct nlattr *nla;
859
860 nla = nla_nest_start_noflag(skb, attrtype: OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
861 if (!nla)
862 return -EMSGSIZE;
863
864 if (nla_put_u32(skb, attrtype: OVS_VXLAN_EXT_GBP, value: opts->gbp) < 0)
865 return -EMSGSIZE;
866
867 nla_nest_end(skb, start: nla);
868 return 0;
869}
870
871static int __ip_tun_to_nlattr(struct sk_buff *skb,
872 const struct ip_tunnel_key *output,
873 const void *tun_opts, int swkey_tun_opts_len,
874 unsigned short tun_proto, u8 mode)
875{
876 if (output->tun_flags & TUNNEL_KEY &&
877 nla_put_be64(skb, attrtype: OVS_TUNNEL_KEY_ATTR_ID, value: output->tun_id,
878 padattr: OVS_TUNNEL_KEY_ATTR_PAD))
879 return -EMSGSIZE;
880
881 if (mode & IP_TUNNEL_INFO_BRIDGE)
882 return nla_put_flag(skb, attrtype: OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE)
883 ? -EMSGSIZE : 0;
884
885 switch (tun_proto) {
886 case AF_INET:
887 if (output->u.ipv4.src &&
888 nla_put_in_addr(skb, attrtype: OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
889 addr: output->u.ipv4.src))
890 return -EMSGSIZE;
891 if (output->u.ipv4.dst &&
892 nla_put_in_addr(skb, attrtype: OVS_TUNNEL_KEY_ATTR_IPV4_DST,
893 addr: output->u.ipv4.dst))
894 return -EMSGSIZE;
895 break;
896 case AF_INET6:
897 if (!ipv6_addr_any(a: &output->u.ipv6.src) &&
898 nla_put_in6_addr(skb, attrtype: OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
899 addr: &output->u.ipv6.src))
900 return -EMSGSIZE;
901 if (!ipv6_addr_any(a: &output->u.ipv6.dst) &&
902 nla_put_in6_addr(skb, attrtype: OVS_TUNNEL_KEY_ATTR_IPV6_DST,
903 addr: &output->u.ipv6.dst))
904 return -EMSGSIZE;
905 break;
906 }
907 if (output->tos &&
908 nla_put_u8(skb, attrtype: OVS_TUNNEL_KEY_ATTR_TOS, value: output->tos))
909 return -EMSGSIZE;
910 if (nla_put_u8(skb, attrtype: OVS_TUNNEL_KEY_ATTR_TTL, value: output->ttl))
911 return -EMSGSIZE;
912 if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
913 nla_put_flag(skb, attrtype: OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
914 return -EMSGSIZE;
915 if ((output->tun_flags & TUNNEL_CSUM) &&
916 nla_put_flag(skb, attrtype: OVS_TUNNEL_KEY_ATTR_CSUM))
917 return -EMSGSIZE;
918 if (output->tp_src &&
919 nla_put_be16(skb, attrtype: OVS_TUNNEL_KEY_ATTR_TP_SRC, value: output->tp_src))
920 return -EMSGSIZE;
921 if (output->tp_dst &&
922 nla_put_be16(skb, attrtype: OVS_TUNNEL_KEY_ATTR_TP_DST, value: output->tp_dst))
923 return -EMSGSIZE;
924 if ((output->tun_flags & TUNNEL_OAM) &&
925 nla_put_flag(skb, attrtype: OVS_TUNNEL_KEY_ATTR_OAM))
926 return -EMSGSIZE;
927 if (swkey_tun_opts_len) {
928 if (output->tun_flags & TUNNEL_GENEVE_OPT &&
929 nla_put(skb, attrtype: OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
930 attrlen: swkey_tun_opts_len, data: tun_opts))
931 return -EMSGSIZE;
932 else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
933 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
934 return -EMSGSIZE;
935 else if (output->tun_flags & TUNNEL_ERSPAN_OPT &&
936 nla_put(skb, attrtype: OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS,
937 attrlen: swkey_tun_opts_len, data: tun_opts))
938 return -EMSGSIZE;
939 }
940
941 return 0;
942}
943
944static int ip_tun_to_nlattr(struct sk_buff *skb,
945 const struct ip_tunnel_key *output,
946 const void *tun_opts, int swkey_tun_opts_len,
947 unsigned short tun_proto, u8 mode)
948{
949 struct nlattr *nla;
950 int err;
951
952 nla = nla_nest_start_noflag(skb, attrtype: OVS_KEY_ATTR_TUNNEL);
953 if (!nla)
954 return -EMSGSIZE;
955
956 err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
957 tun_proto, mode);
958 if (err)
959 return err;
960
961 nla_nest_end(skb, start: nla);
962 return 0;
963}
964
965int ovs_nla_put_tunnel_info(struct sk_buff *skb,
966 struct ip_tunnel_info *tun_info)
967{
968 return __ip_tun_to_nlattr(skb, output: &tun_info->key,
969 ip_tunnel_info_opts(tun_info),
970 swkey_tun_opts_len: tun_info->options_len,
971 tun_proto: ip_tunnel_info_af(tun_info), mode: tun_info->mode);
972}
973
974static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
975 const struct nlattr *a[],
976 bool is_mask, bool inner)
977{
978 __be16 tci = 0;
979 __be16 tpid = 0;
980
981 if (a[OVS_KEY_ATTR_VLAN])
982 tci = nla_get_be16(nla: a[OVS_KEY_ATTR_VLAN]);
983
984 if (a[OVS_KEY_ATTR_ETHERTYPE])
985 tpid = nla_get_be16(nla: a[OVS_KEY_ATTR_ETHERTYPE]);
986
987 if (likely(!inner)) {
988 SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
989 SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
990 } else {
991 SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
992 SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
993 }
994 return 0;
995}
996
997static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
998 u64 key_attrs, bool inner,
999 const struct nlattr **a, bool log)
1000{
1001 __be16 tci = 0;
1002
1003 if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
1004 (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
1005 eth_type_vlan(ethertype: nla_get_be16(nla: a[OVS_KEY_ATTR_ETHERTYPE])))) {
1006 /* Not a VLAN. */
1007 return 0;
1008 }
1009
1010 if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
1011 (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
1012 OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
1013 return -EINVAL;
1014 }
1015
1016 if (a[OVS_KEY_ATTR_VLAN])
1017 tci = nla_get_be16(nla: a[OVS_KEY_ATTR_VLAN]);
1018
1019 if (!(tci & htons(VLAN_CFI_MASK))) {
1020 if (tci) {
1021 OVS_NLERR(log, "%s TCI does not have VLAN_CFI_MASK bit set.",
1022 (inner) ? "C-VLAN" : "VLAN");
1023 return -EINVAL;
1024 } else if (nla_len(nla: a[OVS_KEY_ATTR_ENCAP])) {
1025 /* Corner case for truncated VLAN header. */
1026 OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
1027 (inner) ? "C-VLAN" : "VLAN");
1028 return -EINVAL;
1029 }
1030 }
1031
1032 return 1;
1033}
1034
1035static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
1036 u64 key_attrs, bool inner,
1037 const struct nlattr **a, bool log)
1038{
1039 __be16 tci = 0;
1040 __be16 tpid = 0;
1041 bool encap_valid = !!(match->key->eth.vlan.tci &
1042 htons(VLAN_CFI_MASK));
1043 bool i_encap_valid = !!(match->key->eth.cvlan.tci &
1044 htons(VLAN_CFI_MASK));
1045
1046 if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
1047 /* Not a VLAN. */
1048 return 0;
1049 }
1050
1051 if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
1052 OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
1053 (inner) ? "C-VLAN" : "VLAN");
1054 return -EINVAL;
1055 }
1056
1057 if (a[OVS_KEY_ATTR_VLAN])
1058 tci = nla_get_be16(nla: a[OVS_KEY_ATTR_VLAN]);
1059
1060 if (a[OVS_KEY_ATTR_ETHERTYPE])
1061 tpid = nla_get_be16(nla: a[OVS_KEY_ATTR_ETHERTYPE]);
1062
1063 if (tpid != htons(0xffff)) {
1064 OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
1065 (inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
1066 return -EINVAL;
1067 }
1068 if (!(tci & htons(VLAN_CFI_MASK))) {
1069 OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_CFI_MASK bit.",
1070 (inner) ? "C-VLAN" : "VLAN");
1071 return -EINVAL;
1072 }
1073
1074 return 1;
1075}
1076
1077static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
1078 u64 *key_attrs, bool inner,
1079 const struct nlattr **a, bool is_mask,
1080 bool log)
1081{
1082 int err;
1083 const struct nlattr *encap;
1084
1085 if (!is_mask)
1086 err = validate_vlan_from_nlattrs(match, key_attrs: *key_attrs, inner,
1087 a, log);
1088 else
1089 err = validate_vlan_mask_from_nlattrs(match, key_attrs: *key_attrs, inner,
1090 a, log);
1091 if (err <= 0)
1092 return err;
1093
1094 err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
1095 if (err)
1096 return err;
1097
1098 *key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1099 *key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
1100 *key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1101
1102 encap = a[OVS_KEY_ATTR_ENCAP];
1103
1104 if (!is_mask)
1105 err = parse_flow_nlattrs(attr: encap, a, attrsp: key_attrs, log);
1106 else
1107 err = parse_flow_mask_nlattrs(attr: encap, a, attrsp: key_attrs, log);
1108
1109 return err;
1110}
1111
1112static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
1113 u64 *key_attrs, const struct nlattr **a,
1114 bool is_mask, bool log)
1115{
1116 int err;
1117 bool encap_valid = false;
1118
1119 err = __parse_vlan_from_nlattrs(match, key_attrs, inner: false, a,
1120 is_mask, log);
1121 if (err)
1122 return err;
1123
1124 encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_CFI_MASK));
1125 if (encap_valid) {
1126 err = __parse_vlan_from_nlattrs(match, key_attrs, inner: true, a,
1127 is_mask, log);
1128 if (err)
1129 return err;
1130 }
1131
1132 return 0;
1133}
1134
1135static int parse_eth_type_from_nlattrs(struct sw_flow_match *match,
1136 u64 *attrs, const struct nlattr **a,
1137 bool is_mask, bool log)
1138{
1139 __be16 eth_type;
1140
1141 eth_type = nla_get_be16(nla: a[OVS_KEY_ATTR_ETHERTYPE]);
1142 if (is_mask) {
1143 /* Always exact match EtherType. */
1144 eth_type = htons(0xffff);
1145 } else if (!eth_proto_is_802_3(proto: eth_type)) {
1146 OVS_NLERR(log, "EtherType %x is less than min %x",
1147 ntohs(eth_type), ETH_P_802_3_MIN);
1148 return -EINVAL;
1149 }
1150
1151 SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
1152 *attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1153 return 0;
1154}
1155
1156static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
1157 u64 *attrs, const struct nlattr **a,
1158 bool is_mask, bool log)
1159{
1160 u8 mac_proto = MAC_PROTO_ETHERNET;
1161
1162 if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
1163 u32 hash_val = nla_get_u32(nla: a[OVS_KEY_ATTR_DP_HASH]);
1164
1165 SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
1166 *attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
1167 }
1168
1169 if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
1170 u32 recirc_id = nla_get_u32(nla: a[OVS_KEY_ATTR_RECIRC_ID]);
1171
1172 SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
1173 *attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
1174 }
1175
1176 if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
1177 SW_FLOW_KEY_PUT(match, phy.priority,
1178 nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
1179 *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
1180 }
1181
1182 if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
1183 u32 in_port = nla_get_u32(nla: a[OVS_KEY_ATTR_IN_PORT]);
1184
1185 if (is_mask) {
1186 in_port = 0xffffffff; /* Always exact match in_port. */
1187 } else if (in_port >= DP_MAX_PORTS) {
1188 OVS_NLERR(log, "Port %d exceeds max allowable %d",
1189 in_port, DP_MAX_PORTS);
1190 return -EINVAL;
1191 }
1192
1193 SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
1194 *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1195 } else if (!is_mask) {
1196 SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
1197 }
1198
1199 if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
1200 uint32_t mark = nla_get_u32(nla: a[OVS_KEY_ATTR_SKB_MARK]);
1201
1202 SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
1203 *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
1204 }
1205 if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
1206 if (ip_tun_from_nlattr(attr: a[OVS_KEY_ATTR_TUNNEL], match,
1207 is_mask, log) < 0)
1208 return -EINVAL;
1209 *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
1210 }
1211
1212 if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
1213 ovs_ct_verify(net, attr: OVS_KEY_ATTR_CT_STATE)) {
1214 u32 ct_state = nla_get_u32(nla: a[OVS_KEY_ATTR_CT_STATE]);
1215
1216 if (ct_state & ~CT_SUPPORTED_MASK) {
1217 OVS_NLERR(log, "ct_state flags %08x unsupported",
1218 ct_state);
1219 return -EINVAL;
1220 }
1221
1222 SW_FLOW_KEY_PUT(match, ct_state, ct_state, is_mask);
1223 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
1224 }
1225 if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
1226 ovs_ct_verify(net, attr: OVS_KEY_ATTR_CT_ZONE)) {
1227 u16 ct_zone = nla_get_u16(nla: a[OVS_KEY_ATTR_CT_ZONE]);
1228
1229 SW_FLOW_KEY_PUT(match, ct_zone, ct_zone, is_mask);
1230 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
1231 }
1232 if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
1233 ovs_ct_verify(net, attr: OVS_KEY_ATTR_CT_MARK)) {
1234 u32 mark = nla_get_u32(nla: a[OVS_KEY_ATTR_CT_MARK]);
1235
1236 SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
1237 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
1238 }
1239 if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
1240 ovs_ct_verify(net, attr: OVS_KEY_ATTR_CT_LABELS)) {
1241 const struct ovs_key_ct_labels *cl;
1242
1243 cl = nla_data(nla: a[OVS_KEY_ATTR_CT_LABELS]);
1244 SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
1245 sizeof(*cl), is_mask);
1246 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
1247 }
1248 if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)) {
1249 const struct ovs_key_ct_tuple_ipv4 *ct;
1250
1251 ct = nla_data(nla: a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4]);
1252
1253 SW_FLOW_KEY_PUT(match, ipv4.ct_orig.src, ct->ipv4_src, is_mask);
1254 SW_FLOW_KEY_PUT(match, ipv4.ct_orig.dst, ct->ipv4_dst, is_mask);
1255 SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1256 SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1257 SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv4_proto, is_mask);
1258 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4);
1259 }
1260 if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)) {
1261 const struct ovs_key_ct_tuple_ipv6 *ct;
1262
1263 ct = nla_data(nla: a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6]);
1264
1265 SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.src, &ct->ipv6_src,
1266 sizeof(match->key->ipv6.ct_orig.src),
1267 is_mask);
1268 SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.dst, &ct->ipv6_dst,
1269 sizeof(match->key->ipv6.ct_orig.dst),
1270 is_mask);
1271 SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1272 SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1273 SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv6_proto, is_mask);
1274 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
1275 }
1276
1277 /* For layer 3 packets the Ethernet type is provided
1278 * and treated as metadata but no MAC addresses are provided.
1279 */
1280 if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) &&
1281 (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)))
1282 mac_proto = MAC_PROTO_NONE;
1283
1284 /* Always exact match mac_proto */
1285 SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask);
1286
1287 if (mac_proto == MAC_PROTO_NONE)
1288 return parse_eth_type_from_nlattrs(match, attrs, a, is_mask,
1289 log);
1290
1291 return 0;
1292}
1293
1294int nsh_hdr_from_nlattr(const struct nlattr *attr,
1295 struct nshhdr *nh, size_t size)
1296{
1297 struct nlattr *a;
1298 int rem;
1299 u8 flags = 0;
1300 u8 ttl = 0;
1301 int mdlen = 0;
1302
1303 /* validate_nsh has check this, so we needn't do duplicate check here
1304 */
1305 if (size < NSH_BASE_HDR_LEN)
1306 return -ENOBUFS;
1307
1308 nla_for_each_nested(a, attr, rem) {
1309 int type = nla_type(nla: a);
1310
1311 switch (type) {
1312 case OVS_NSH_KEY_ATTR_BASE: {
1313 const struct ovs_nsh_key_base *base = nla_data(nla: a);
1314
1315 flags = base->flags;
1316 ttl = base->ttl;
1317 nh->np = base->np;
1318 nh->mdtype = base->mdtype;
1319 nh->path_hdr = base->path_hdr;
1320 break;
1321 }
1322 case OVS_NSH_KEY_ATTR_MD1:
1323 mdlen = nla_len(nla: a);
1324 if (mdlen > size - NSH_BASE_HDR_LEN)
1325 return -ENOBUFS;
1326 memcpy(&nh->md1, nla_data(a), mdlen);
1327 break;
1328
1329 case OVS_NSH_KEY_ATTR_MD2:
1330 mdlen = nla_len(nla: a);
1331 if (mdlen > size - NSH_BASE_HDR_LEN)
1332 return -ENOBUFS;
1333 memcpy(&nh->md2, nla_data(a), mdlen);
1334 break;
1335
1336 default:
1337 return -EINVAL;
1338 }
1339 }
1340
1341 /* nsh header length = NSH_BASE_HDR_LEN + mdlen */
1342 nh->ver_flags_ttl_len = 0;
1343 nsh_set_flags_ttl_len(nsh: nh, flags, ttl, NSH_BASE_HDR_LEN + mdlen);
1344
1345 return 0;
1346}
1347
1348int nsh_key_from_nlattr(const struct nlattr *attr,
1349 struct ovs_key_nsh *nsh, struct ovs_key_nsh *nsh_mask)
1350{
1351 struct nlattr *a;
1352 int rem;
1353
1354 /* validate_nsh has check this, so we needn't do duplicate check here
1355 */
1356 nla_for_each_nested(a, attr, rem) {
1357 int type = nla_type(nla: a);
1358
1359 switch (type) {
1360 case OVS_NSH_KEY_ATTR_BASE: {
1361 const struct ovs_nsh_key_base *base = nla_data(nla: a);
1362 const struct ovs_nsh_key_base *base_mask = base + 1;
1363
1364 nsh->base = *base;
1365 nsh_mask->base = *base_mask;
1366 break;
1367 }
1368 case OVS_NSH_KEY_ATTR_MD1: {
1369 const struct ovs_nsh_key_md1 *md1 = nla_data(nla: a);
1370 const struct ovs_nsh_key_md1 *md1_mask = md1 + 1;
1371
1372 memcpy(nsh->context, md1->context, sizeof(*md1));
1373 memcpy(nsh_mask->context, md1_mask->context,
1374 sizeof(*md1_mask));
1375 break;
1376 }
1377 case OVS_NSH_KEY_ATTR_MD2:
1378 /* Not supported yet */
1379 return -ENOTSUPP;
1380 default:
1381 return -EINVAL;
1382 }
1383 }
1384
1385 return 0;
1386}
1387
1388static int nsh_key_put_from_nlattr(const struct nlattr *attr,
1389 struct sw_flow_match *match, bool is_mask,
1390 bool is_push_nsh, bool log)
1391{
1392 struct nlattr *a;
1393 int rem;
1394 bool has_base = false;
1395 bool has_md1 = false;
1396 bool has_md2 = false;
1397 u8 mdtype = 0;
1398 int mdlen = 0;
1399
1400 if (WARN_ON(is_push_nsh && is_mask))
1401 return -EINVAL;
1402
1403 nla_for_each_nested(a, attr, rem) {
1404 int type = nla_type(nla: a);
1405 int i;
1406
1407 if (type > OVS_NSH_KEY_ATTR_MAX) {
1408 OVS_NLERR(log, "nsh attr %d is out of range max %d",
1409 type, OVS_NSH_KEY_ATTR_MAX);
1410 return -EINVAL;
1411 }
1412
1413 if (!check_attr_len(attr_len: nla_len(nla: a),
1414 expected_len: ovs_nsh_key_attr_lens[type].len)) {
1415 OVS_NLERR(
1416 log,
1417 "nsh attr %d has unexpected len %d expected %d",
1418 type,
1419 nla_len(a),
1420 ovs_nsh_key_attr_lens[type].len
1421 );
1422 return -EINVAL;
1423 }
1424
1425 switch (type) {
1426 case OVS_NSH_KEY_ATTR_BASE: {
1427 const struct ovs_nsh_key_base *base = nla_data(nla: a);
1428
1429 has_base = true;
1430 mdtype = base->mdtype;
1431 SW_FLOW_KEY_PUT(match, nsh.base.flags,
1432 base->flags, is_mask);
1433 SW_FLOW_KEY_PUT(match, nsh.base.ttl,
1434 base->ttl, is_mask);
1435 SW_FLOW_KEY_PUT(match, nsh.base.mdtype,
1436 base->mdtype, is_mask);
1437 SW_FLOW_KEY_PUT(match, nsh.base.np,
1438 base->np, is_mask);
1439 SW_FLOW_KEY_PUT(match, nsh.base.path_hdr,
1440 base->path_hdr, is_mask);
1441 break;
1442 }
1443 case OVS_NSH_KEY_ATTR_MD1: {
1444 const struct ovs_nsh_key_md1 *md1 = nla_data(nla: a);
1445
1446 has_md1 = true;
1447 for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++)
1448 SW_FLOW_KEY_PUT(match, nsh.context[i],
1449 md1->context[i], is_mask);
1450 break;
1451 }
1452 case OVS_NSH_KEY_ATTR_MD2:
1453 if (!is_push_nsh) /* Not supported MD type 2 yet */
1454 return -ENOTSUPP;
1455
1456 has_md2 = true;
1457 mdlen = nla_len(nla: a);
1458 if (mdlen > NSH_CTX_HDRS_MAX_LEN || mdlen <= 0) {
1459 OVS_NLERR(
1460 log,
1461 "Invalid MD length %d for MD type %d",
1462 mdlen,
1463 mdtype
1464 );
1465 return -EINVAL;
1466 }
1467 break;
1468 default:
1469 OVS_NLERR(log, "Unknown nsh attribute %d",
1470 type);
1471 return -EINVAL;
1472 }
1473 }
1474
1475 if (rem > 0) {
1476 OVS_NLERR(log, "nsh attribute has %d unknown bytes.", rem);
1477 return -EINVAL;
1478 }
1479
1480 if (has_md1 && has_md2) {
1481 OVS_NLERR(
1482 1,
1483 "invalid nsh attribute: md1 and md2 are exclusive."
1484 );
1485 return -EINVAL;
1486 }
1487
1488 if (!is_mask) {
1489 if ((has_md1 && mdtype != NSH_M_TYPE1) ||
1490 (has_md2 && mdtype != NSH_M_TYPE2)) {
1491 OVS_NLERR(1, "nsh attribute has unmatched MD type %d.",
1492 mdtype);
1493 return -EINVAL;
1494 }
1495
1496 if (is_push_nsh &&
1497 (!has_base || (!has_md1 && !has_md2))) {
1498 OVS_NLERR(
1499 1,
1500 "push_nsh: missing base or metadata attributes"
1501 );
1502 return -EINVAL;
1503 }
1504 }
1505
1506 return 0;
1507}
1508
1509static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
1510 u64 attrs, const struct nlattr **a,
1511 bool is_mask, bool log)
1512{
1513 int err;
1514
1515 err = metadata_from_nlattrs(net, match, attrs: &attrs, a, is_mask, log);
1516 if (err)
1517 return err;
1518
1519 if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
1520 const struct ovs_key_ethernet *eth_key;
1521
1522 eth_key = nla_data(nla: a[OVS_KEY_ATTR_ETHERNET]);
1523 SW_FLOW_KEY_MEMCPY(match, eth.src,
1524 eth_key->eth_src, ETH_ALEN, is_mask);
1525 SW_FLOW_KEY_MEMCPY(match, eth.dst,
1526 eth_key->eth_dst, ETH_ALEN, is_mask);
1527 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1528
1529 if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
1530 /* VLAN attribute is always parsed before getting here since it
1531 * may occur multiple times.
1532 */
1533 OVS_NLERR(log, "VLAN attribute unexpected.");
1534 return -EINVAL;
1535 }
1536
1537 if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1538 err = parse_eth_type_from_nlattrs(match, attrs: &attrs, a, is_mask,
1539 log);
1540 if (err)
1541 return err;
1542 } else if (!is_mask) {
1543 SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
1544 }
1545 } else if (!match->key->eth.type) {
1546 OVS_NLERR(log, "Either Ethernet header or EtherType is required.");
1547 return -EINVAL;
1548 }
1549
1550 if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1551 const struct ovs_key_ipv4 *ipv4_key;
1552
1553 ipv4_key = nla_data(nla: a[OVS_KEY_ATTR_IPV4]);
1554 if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
1555 OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
1556 ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
1557 return -EINVAL;
1558 }
1559 SW_FLOW_KEY_PUT(match, ip.proto,
1560 ipv4_key->ipv4_proto, is_mask);
1561 SW_FLOW_KEY_PUT(match, ip.tos,
1562 ipv4_key->ipv4_tos, is_mask);
1563 SW_FLOW_KEY_PUT(match, ip.ttl,
1564 ipv4_key->ipv4_ttl, is_mask);
1565 SW_FLOW_KEY_PUT(match, ip.frag,
1566 ipv4_key->ipv4_frag, is_mask);
1567 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1568 ipv4_key->ipv4_src, is_mask);
1569 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1570 ipv4_key->ipv4_dst, is_mask);
1571 attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1572 }
1573
1574 if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
1575 const struct ovs_key_ipv6 *ipv6_key;
1576
1577 ipv6_key = nla_data(nla: a[OVS_KEY_ATTR_IPV6]);
1578 if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
1579 OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
1580 ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
1581 return -EINVAL;
1582 }
1583
1584 if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
1585 OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x)",
1586 ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
1587 return -EINVAL;
1588 }
1589
1590 SW_FLOW_KEY_PUT(match, ipv6.label,
1591 ipv6_key->ipv6_label, is_mask);
1592 SW_FLOW_KEY_PUT(match, ip.proto,
1593 ipv6_key->ipv6_proto, is_mask);
1594 SW_FLOW_KEY_PUT(match, ip.tos,
1595 ipv6_key->ipv6_tclass, is_mask);
1596 SW_FLOW_KEY_PUT(match, ip.ttl,
1597 ipv6_key->ipv6_hlimit, is_mask);
1598 SW_FLOW_KEY_PUT(match, ip.frag,
1599 ipv6_key->ipv6_frag, is_mask);
1600 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1601 ipv6_key->ipv6_src,
1602 sizeof(match->key->ipv6.addr.src),
1603 is_mask);
1604 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1605 ipv6_key->ipv6_dst,
1606 sizeof(match->key->ipv6.addr.dst),
1607 is_mask);
1608
1609 attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1610 }
1611
1612 if (attrs & (1ULL << OVS_KEY_ATTR_IPV6_EXTHDRS)) {
1613 const struct ovs_key_ipv6_exthdrs *ipv6_exthdrs_key;
1614
1615 ipv6_exthdrs_key = nla_data(nla: a[OVS_KEY_ATTR_IPV6_EXTHDRS]);
1616
1617 SW_FLOW_KEY_PUT(match, ipv6.exthdrs,
1618 ipv6_exthdrs_key->hdrs, is_mask);
1619
1620 attrs &= ~(1ULL << OVS_KEY_ATTR_IPV6_EXTHDRS);
1621 }
1622
1623 if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1624 const struct ovs_key_arp *arp_key;
1625
1626 arp_key = nla_data(nla: a[OVS_KEY_ATTR_ARP]);
1627 if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1628 OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1629 arp_key->arp_op);
1630 return -EINVAL;
1631 }
1632
1633 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1634 arp_key->arp_sip, is_mask);
1635 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1636 arp_key->arp_tip, is_mask);
1637 SW_FLOW_KEY_PUT(match, ip.proto,
1638 ntohs(arp_key->arp_op), is_mask);
1639 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1640 arp_key->arp_sha, ETH_ALEN, is_mask);
1641 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1642 arp_key->arp_tha, ETH_ALEN, is_mask);
1643
1644 attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1645 }
1646
1647 if (attrs & (1 << OVS_KEY_ATTR_NSH)) {
1648 if (nsh_key_put_from_nlattr(attr: a[OVS_KEY_ATTR_NSH], match,
1649 is_mask, is_push_nsh: false, log) < 0)
1650 return -EINVAL;
1651 attrs &= ~(1 << OVS_KEY_ATTR_NSH);
1652 }
1653
1654 if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1655 const struct ovs_key_mpls *mpls_key;
1656 u32 hdr_len;
1657 u32 label_count, label_count_mask, i;
1658
1659 mpls_key = nla_data(nla: a[OVS_KEY_ATTR_MPLS]);
1660 hdr_len = nla_len(nla: a[OVS_KEY_ATTR_MPLS]);
1661 label_count = hdr_len / sizeof(struct ovs_key_mpls);
1662
1663 if (label_count == 0 || label_count > MPLS_LABEL_DEPTH ||
1664 hdr_len % sizeof(struct ovs_key_mpls))
1665 return -EINVAL;
1666
1667 label_count_mask = GENMASK(label_count - 1, 0);
1668
1669 for (i = 0 ; i < label_count; i++)
1670 SW_FLOW_KEY_PUT(match, mpls.lse[i],
1671 mpls_key[i].mpls_lse, is_mask);
1672
1673 SW_FLOW_KEY_PUT(match, mpls.num_labels_mask,
1674 label_count_mask, is_mask);
1675
1676 attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1677 }
1678
1679 if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1680 const struct ovs_key_tcp *tcp_key;
1681
1682 tcp_key = nla_data(nla: a[OVS_KEY_ATTR_TCP]);
1683 SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1684 SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1685 attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1686 }
1687
1688 if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1689 SW_FLOW_KEY_PUT(match, tp.flags,
1690 nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1691 is_mask);
1692 attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1693 }
1694
1695 if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1696 const struct ovs_key_udp *udp_key;
1697
1698 udp_key = nla_data(nla: a[OVS_KEY_ATTR_UDP]);
1699 SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1700 SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1701 attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1702 }
1703
1704 if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1705 const struct ovs_key_sctp *sctp_key;
1706
1707 sctp_key = nla_data(nla: a[OVS_KEY_ATTR_SCTP]);
1708 SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1709 SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1710 attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1711 }
1712
1713 if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1714 const struct ovs_key_icmp *icmp_key;
1715
1716 icmp_key = nla_data(nla: a[OVS_KEY_ATTR_ICMP]);
1717 SW_FLOW_KEY_PUT(match, tp.src,
1718 htons(icmp_key->icmp_type), is_mask);
1719 SW_FLOW_KEY_PUT(match, tp.dst,
1720 htons(icmp_key->icmp_code), is_mask);
1721 attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1722 }
1723
1724 if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1725 const struct ovs_key_icmpv6 *icmpv6_key;
1726
1727 icmpv6_key = nla_data(nla: a[OVS_KEY_ATTR_ICMPV6]);
1728 SW_FLOW_KEY_PUT(match, tp.src,
1729 htons(icmpv6_key->icmpv6_type), is_mask);
1730 SW_FLOW_KEY_PUT(match, tp.dst,
1731 htons(icmpv6_key->icmpv6_code), is_mask);
1732 attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1733 }
1734
1735 if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1736 const struct ovs_key_nd *nd_key;
1737
1738 nd_key = nla_data(nla: a[OVS_KEY_ATTR_ND]);
1739 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1740 nd_key->nd_target,
1741 sizeof(match->key->ipv6.nd.target),
1742 is_mask);
1743 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1744 nd_key->nd_sll, ETH_ALEN, is_mask);
1745 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1746 nd_key->nd_tll, ETH_ALEN, is_mask);
1747 attrs &= ~(1 << OVS_KEY_ATTR_ND);
1748 }
1749
1750 if (attrs != 0) {
1751 OVS_NLERR(log, "Unknown key attributes %llx",
1752 (unsigned long long)attrs);
1753 return -EINVAL;
1754 }
1755
1756 return 0;
1757}
1758
1759static void nlattr_set(struct nlattr *attr, u8 val,
1760 const struct ovs_len_tbl *tbl)
1761{
1762 struct nlattr *nla;
1763 int rem;
1764
1765 /* The nlattr stream should already have been validated */
1766 nla_for_each_nested(nla, attr, rem) {
1767 if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED)
1768 nlattr_set(attr: nla, val, tbl: tbl[nla_type(nla)].next ? : tbl);
1769 else
1770 memset(nla_data(nla), val, nla_len(nla));
1771
1772 if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1773 *(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1774 }
1775}
1776
1777static void mask_set_nlattr(struct nlattr *attr, u8 val)
1778{
1779 nlattr_set(attr, val, tbl: ovs_key_lens);
1780}
1781
1782/**
1783 * ovs_nla_get_match - parses Netlink attributes into a flow key and
1784 * mask. In case the 'mask' is NULL, the flow is treated as exact match
1785 * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1786 * does not include any don't care bit.
1787 * @net: Used to determine per-namespace field support.
1788 * @match: receives the extracted flow match information.
1789 * @nla_key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1790 * sequence. The fields should of the packet that triggered the creation
1791 * of this flow.
1792 * @nla_mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_*
1793 * Netlink attribute specifies the mask field of the wildcarded flow.
1794 * @log: Boolean to allow kernel error logging. Normally true, but when
1795 * probing for feature compatibility this should be passed in as false to
1796 * suppress unnecessary error logging.
1797 */
1798int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1799 const struct nlattr *nla_key,
1800 const struct nlattr *nla_mask,
1801 bool log)
1802{
1803 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1804 struct nlattr *newmask = NULL;
1805 u64 key_attrs = 0;
1806 u64 mask_attrs = 0;
1807 int err;
1808
1809 err = parse_flow_nlattrs(attr: nla_key, a, attrsp: &key_attrs, log);
1810 if (err)
1811 return err;
1812
1813 err = parse_vlan_from_nlattrs(match, key_attrs: &key_attrs, a, is_mask: false, log);
1814 if (err)
1815 return err;
1816
1817 err = ovs_key_from_nlattrs(net, match, attrs: key_attrs, a, is_mask: false, log);
1818 if (err)
1819 return err;
1820
1821 if (match->mask) {
1822 if (!nla_mask) {
1823 /* Create an exact match mask. We need to set to 0xff
1824 * all the 'match->mask' fields that have been touched
1825 * in 'match->key'. We cannot simply memset
1826 * 'match->mask', because padding bytes and fields not
1827 * specified in 'match->key' should be left to 0.
1828 * Instead, we use a stream of netlink attributes,
1829 * copied from 'key' and set to 0xff.
1830 * ovs_key_from_nlattrs() will take care of filling
1831 * 'match->mask' appropriately.
1832 */
1833 newmask = kmemdup(p: nla_key,
1834 size: nla_total_size(payload: nla_len(nla: nla_key)),
1835 GFP_KERNEL);
1836 if (!newmask)
1837 return -ENOMEM;
1838
1839 mask_set_nlattr(attr: newmask, val: 0xff);
1840
1841 /* The userspace does not send tunnel attributes that
1842 * are 0, but we should not wildcard them nonetheless.
1843 */
1844 if (match->key->tun_proto)
1845 SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1846 0xff, true);
1847
1848 nla_mask = newmask;
1849 }
1850
1851 err = parse_flow_mask_nlattrs(attr: nla_mask, a, attrsp: &mask_attrs, log);
1852 if (err)
1853 goto free_newmask;
1854
1855 /* Always match on tci. */
1856 SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
1857 SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);
1858
1859 err = parse_vlan_from_nlattrs(match, key_attrs: &mask_attrs, a, is_mask: true, log);
1860 if (err)
1861 goto free_newmask;
1862
1863 err = ovs_key_from_nlattrs(net, match, attrs: mask_attrs, a, is_mask: true,
1864 log);
1865 if (err)
1866 goto free_newmask;
1867 }
1868
1869 if (!match_validate(match, key_attrs, mask_attrs, log))
1870 err = -EINVAL;
1871
1872free_newmask:
1873 kfree(objp: newmask);
1874 return err;
1875}
1876
1877static size_t get_ufid_len(const struct nlattr *attr, bool log)
1878{
1879 size_t len;
1880
1881 if (!attr)
1882 return 0;
1883
1884 len = nla_len(nla: attr);
1885 if (len < 1 || len > MAX_UFID_LENGTH) {
1886 OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1887 nla_len(attr), MAX_UFID_LENGTH);
1888 return 0;
1889 }
1890
1891 return len;
1892}
1893
1894/* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1895 * or false otherwise.
1896 */
1897bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1898 bool log)
1899{
1900 sfid->ufid_len = get_ufid_len(attr, log);
1901 if (sfid->ufid_len)
1902 memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1903
1904 return sfid->ufid_len;
1905}
1906
1907int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1908 const struct sw_flow_key *key, bool log)
1909{
1910 struct sw_flow_key *new_key;
1911
1912 if (ovs_nla_get_ufid(sfid, attr: ufid, log))
1913 return 0;
1914
1915 /* If UFID was not provided, use unmasked key. */
1916 new_key = kmalloc(size: sizeof(*new_key), GFP_KERNEL);
1917 if (!new_key)
1918 return -ENOMEM;
1919 memcpy(new_key, key, sizeof(*key));
1920 sfid->unmasked_key = new_key;
1921
1922 return 0;
1923}
1924
1925u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1926{
1927 return attr ? nla_get_u32(nla: attr) : 0;
1928}
1929
1930/**
1931 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1932 * @net: Network namespace.
1933 * @key: Receives extracted in_port, priority, tun_key, skb_mark and conntrack
1934 * metadata.
1935 * @a: Array of netlink attributes holding parsed %OVS_KEY_ATTR_* Netlink
1936 * attributes.
1937 * @attrs: Bit mask for the netlink attributes included in @a.
1938 * @log: Boolean to allow kernel error logging. Normally true, but when
1939 * probing for feature compatibility this should be passed in as false to
1940 * suppress unnecessary error logging.
1941 *
1942 * This parses a series of Netlink attributes that form a flow key, which must
1943 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1944 * get the metadata, that is, the parts of the flow key that cannot be
1945 * extracted from the packet itself.
1946 *
1947 * This must be called before the packet key fields are filled in 'key'.
1948 */
1949
1950int ovs_nla_get_flow_metadata(struct net *net,
1951 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1],
1952 u64 attrs, struct sw_flow_key *key, bool log)
1953{
1954 struct sw_flow_match match;
1955
1956 memset(&match, 0, sizeof(match));
1957 match.key = key;
1958
1959 key->ct_state = 0;
1960 key->ct_zone = 0;
1961 key->ct_orig_proto = 0;
1962 memset(&key->ct, 0, sizeof(key->ct));
1963 memset(&key->ipv4.ct_orig, 0, sizeof(key->ipv4.ct_orig));
1964 memset(&key->ipv6.ct_orig, 0, sizeof(key->ipv6.ct_orig));
1965
1966 key->phy.in_port = DP_MAX_PORTS;
1967
1968 return metadata_from_nlattrs(net, match: &match, attrs: &attrs, a, is_mask: false, log);
1969}
1970
1971static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
1972 bool is_mask)
1973{
1974 __be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);
1975
1976 if (nla_put_be16(skb, attrtype: OVS_KEY_ATTR_ETHERTYPE, value: eth_type) ||
1977 nla_put_be16(skb, attrtype: OVS_KEY_ATTR_VLAN, value: vh->tci))
1978 return -EMSGSIZE;
1979 return 0;
1980}
1981
1982static int nsh_key_to_nlattr(const struct ovs_key_nsh *nsh, bool is_mask,
1983 struct sk_buff *skb)
1984{
1985 struct nlattr *start;
1986
1987 start = nla_nest_start_noflag(skb, attrtype: OVS_KEY_ATTR_NSH);
1988 if (!start)
1989 return -EMSGSIZE;
1990
1991 if (nla_put(skb, attrtype: OVS_NSH_KEY_ATTR_BASE, attrlen: sizeof(nsh->base), data: &nsh->base))
1992 goto nla_put_failure;
1993
1994 if (is_mask || nsh->base.mdtype == NSH_M_TYPE1) {
1995 if (nla_put(skb, attrtype: OVS_NSH_KEY_ATTR_MD1,
1996 attrlen: sizeof(nsh->context), data: nsh->context))
1997 goto nla_put_failure;
1998 }
1999
2000 /* Don't support MD type 2 yet */
2001
2002 nla_nest_end(skb, start);
2003
2004 return 0;
2005
2006nla_put_failure:
2007 return -EMSGSIZE;
2008}
2009
2010static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
2011 const struct sw_flow_key *output, bool is_mask,
2012 struct sk_buff *skb)
2013{
2014 struct ovs_key_ethernet *eth_key;
2015 struct nlattr *nla;
2016 struct nlattr *encap = NULL;
2017 struct nlattr *in_encap = NULL;
2018
2019 if (nla_put_u32(skb, attrtype: OVS_KEY_ATTR_RECIRC_ID, value: output->recirc_id))
2020 goto nla_put_failure;
2021
2022 if (nla_put_u32(skb, attrtype: OVS_KEY_ATTR_DP_HASH, value: output->ovs_flow_hash))
2023 goto nla_put_failure;
2024
2025 if (nla_put_u32(skb, attrtype: OVS_KEY_ATTR_PRIORITY, value: output->phy.priority))
2026 goto nla_put_failure;
2027
2028 if ((swkey->tun_proto || is_mask)) {
2029 const void *opts = NULL;
2030
2031 if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
2032 opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
2033
2034 if (ip_tun_to_nlattr(skb, output: &output->tun_key, tun_opts: opts,
2035 swkey_tun_opts_len: swkey->tun_opts_len, tun_proto: swkey->tun_proto, mode: 0))
2036 goto nla_put_failure;
2037 }
2038
2039 if (swkey->phy.in_port == DP_MAX_PORTS) {
2040 if (is_mask && (output->phy.in_port == 0xffff))
2041 if (nla_put_u32(skb, attrtype: OVS_KEY_ATTR_IN_PORT, value: 0xffffffff))
2042 goto nla_put_failure;
2043 } else {
2044 u16 upper_u16;
2045 upper_u16 = !is_mask ? 0 : 0xffff;
2046
2047 if (nla_put_u32(skb, attrtype: OVS_KEY_ATTR_IN_PORT,
2048 value: (upper_u16 << 16) | output->phy.in_port))
2049 goto nla_put_failure;
2050 }
2051
2052 if (nla_put_u32(skb, attrtype: OVS_KEY_ATTR_SKB_MARK, value: output->phy.skb_mark))
2053 goto nla_put_failure;
2054
2055 if (ovs_ct_put_key(swkey, output, skb))
2056 goto nla_put_failure;
2057
2058 if (ovs_key_mac_proto(key: swkey) == MAC_PROTO_ETHERNET) {
2059 nla = nla_reserve(skb, attrtype: OVS_KEY_ATTR_ETHERNET, attrlen: sizeof(*eth_key));
2060 if (!nla)
2061 goto nla_put_failure;
2062
2063 eth_key = nla_data(nla);
2064 ether_addr_copy(dst: eth_key->eth_src, src: output->eth.src);
2065 ether_addr_copy(dst: eth_key->eth_dst, src: output->eth.dst);
2066
2067 if (swkey->eth.vlan.tci || eth_type_vlan(ethertype: swkey->eth.type)) {
2068 if (ovs_nla_put_vlan(skb, vh: &output->eth.vlan, is_mask))
2069 goto nla_put_failure;
2070 encap = nla_nest_start_noflag(skb, attrtype: OVS_KEY_ATTR_ENCAP);
2071 if (!swkey->eth.vlan.tci)
2072 goto unencap;
2073
2074 if (swkey->eth.cvlan.tci || eth_type_vlan(ethertype: swkey->eth.type)) {
2075 if (ovs_nla_put_vlan(skb, vh: &output->eth.cvlan, is_mask))
2076 goto nla_put_failure;
2077 in_encap = nla_nest_start_noflag(skb,
2078 attrtype: OVS_KEY_ATTR_ENCAP);
2079 if (!swkey->eth.cvlan.tci)
2080 goto unencap;
2081 }
2082 }
2083
2084 if (swkey->eth.type == htons(ETH_P_802_2)) {
2085 /*
2086 * Ethertype 802.2 is represented in the netlink with omitted
2087 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
2088 * 0xffff in the mask attribute. Ethertype can also
2089 * be wildcarded.
2090 */
2091 if (is_mask && output->eth.type)
2092 if (nla_put_be16(skb, attrtype: OVS_KEY_ATTR_ETHERTYPE,
2093 value: output->eth.type))
2094 goto nla_put_failure;
2095 goto unencap;
2096 }
2097 }
2098
2099 if (nla_put_be16(skb, attrtype: OVS_KEY_ATTR_ETHERTYPE, value: output->eth.type))
2100 goto nla_put_failure;
2101
2102 if (eth_type_vlan(ethertype: swkey->eth.type)) {
2103 /* There are 3 VLAN tags, we don't know anything about the rest
2104 * of the packet, so truncate here.
2105 */
2106 WARN_ON_ONCE(!(encap && in_encap));
2107 goto unencap;
2108 }
2109
2110 if (swkey->eth.type == htons(ETH_P_IP)) {
2111 struct ovs_key_ipv4 *ipv4_key;
2112
2113 nla = nla_reserve(skb, attrtype: OVS_KEY_ATTR_IPV4, attrlen: sizeof(*ipv4_key));
2114 if (!nla)
2115 goto nla_put_failure;
2116 ipv4_key = nla_data(nla);
2117 ipv4_key->ipv4_src = output->ipv4.addr.src;
2118 ipv4_key->ipv4_dst = output->ipv4.addr.dst;
2119 ipv4_key->ipv4_proto = output->ip.proto;
2120 ipv4_key->ipv4_tos = output->ip.tos;
2121 ipv4_key->ipv4_ttl = output->ip.ttl;
2122 ipv4_key->ipv4_frag = output->ip.frag;
2123 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
2124 struct ovs_key_ipv6 *ipv6_key;
2125 struct ovs_key_ipv6_exthdrs *ipv6_exthdrs_key;
2126
2127 nla = nla_reserve(skb, attrtype: OVS_KEY_ATTR_IPV6, attrlen: sizeof(*ipv6_key));
2128 if (!nla)
2129 goto nla_put_failure;
2130 ipv6_key = nla_data(nla);
2131 memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
2132 sizeof(ipv6_key->ipv6_src));
2133 memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
2134 sizeof(ipv6_key->ipv6_dst));
2135 ipv6_key->ipv6_label = output->ipv6.label;
2136 ipv6_key->ipv6_proto = output->ip.proto;
2137 ipv6_key->ipv6_tclass = output->ip.tos;
2138 ipv6_key->ipv6_hlimit = output->ip.ttl;
2139 ipv6_key->ipv6_frag = output->ip.frag;
2140
2141 nla = nla_reserve(skb, attrtype: OVS_KEY_ATTR_IPV6_EXTHDRS,
2142 attrlen: sizeof(*ipv6_exthdrs_key));
2143 if (!nla)
2144 goto nla_put_failure;
2145 ipv6_exthdrs_key = nla_data(nla);
2146 ipv6_exthdrs_key->hdrs = output->ipv6.exthdrs;
2147 } else if (swkey->eth.type == htons(ETH_P_NSH)) {
2148 if (nsh_key_to_nlattr(nsh: &output->nsh, is_mask, skb))
2149 goto nla_put_failure;
2150 } else if (swkey->eth.type == htons(ETH_P_ARP) ||
2151 swkey->eth.type == htons(ETH_P_RARP)) {
2152 struct ovs_key_arp *arp_key;
2153
2154 nla = nla_reserve(skb, attrtype: OVS_KEY_ATTR_ARP, attrlen: sizeof(*arp_key));
2155 if (!nla)
2156 goto nla_put_failure;
2157 arp_key = nla_data(nla);
2158 memset(arp_key, 0, sizeof(struct ovs_key_arp));
2159 arp_key->arp_sip = output->ipv4.addr.src;
2160 arp_key->arp_tip = output->ipv4.addr.dst;
2161 arp_key->arp_op = htons(output->ip.proto);
2162 ether_addr_copy(dst: arp_key->arp_sha, src: output->ipv4.arp.sha);
2163 ether_addr_copy(dst: arp_key->arp_tha, src: output->ipv4.arp.tha);
2164 } else if (eth_p_mpls(eth_type: swkey->eth.type)) {
2165 u8 i, num_labels;
2166 struct ovs_key_mpls *mpls_key;
2167
2168 num_labels = hweight_long(w: output->mpls.num_labels_mask);
2169 nla = nla_reserve(skb, attrtype: OVS_KEY_ATTR_MPLS,
2170 attrlen: num_labels * sizeof(*mpls_key));
2171 if (!nla)
2172 goto nla_put_failure;
2173
2174 mpls_key = nla_data(nla);
2175 for (i = 0; i < num_labels; i++)
2176 mpls_key[i].mpls_lse = output->mpls.lse[i];
2177 }
2178
2179 if ((swkey->eth.type == htons(ETH_P_IP) ||
2180 swkey->eth.type == htons(ETH_P_IPV6)) &&
2181 swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
2182
2183 if (swkey->ip.proto == IPPROTO_TCP) {
2184 struct ovs_key_tcp *tcp_key;
2185
2186 nla = nla_reserve(skb, attrtype: OVS_KEY_ATTR_TCP, attrlen: sizeof(*tcp_key));
2187 if (!nla)
2188 goto nla_put_failure;
2189 tcp_key = nla_data(nla);
2190 tcp_key->tcp_src = output->tp.src;
2191 tcp_key->tcp_dst = output->tp.dst;
2192 if (nla_put_be16(skb, attrtype: OVS_KEY_ATTR_TCP_FLAGS,
2193 value: output->tp.flags))
2194 goto nla_put_failure;
2195 } else if (swkey->ip.proto == IPPROTO_UDP) {
2196 struct ovs_key_udp *udp_key;
2197
2198 nla = nla_reserve(skb, attrtype: OVS_KEY_ATTR_UDP, attrlen: sizeof(*udp_key));
2199 if (!nla)
2200 goto nla_put_failure;
2201 udp_key = nla_data(nla);
2202 udp_key->udp_src = output->tp.src;
2203 udp_key->udp_dst = output->tp.dst;
2204 } else if (swkey->ip.proto == IPPROTO_SCTP) {
2205 struct ovs_key_sctp *sctp_key;
2206
2207 nla = nla_reserve(skb, attrtype: OVS_KEY_ATTR_SCTP, attrlen: sizeof(*sctp_key));
2208 if (!nla)
2209 goto nla_put_failure;
2210 sctp_key = nla_data(nla);
2211 sctp_key->sctp_src = output->tp.src;
2212 sctp_key->sctp_dst = output->tp.dst;
2213 } else if (swkey->eth.type == htons(ETH_P_IP) &&
2214 swkey->ip.proto == IPPROTO_ICMP) {
2215 struct ovs_key_icmp *icmp_key;
2216
2217 nla = nla_reserve(skb, attrtype: OVS_KEY_ATTR_ICMP, attrlen: sizeof(*icmp_key));
2218 if (!nla)
2219 goto nla_put_failure;
2220 icmp_key = nla_data(nla);
2221 icmp_key->icmp_type = ntohs(output->tp.src);
2222 icmp_key->icmp_code = ntohs(output->tp.dst);
2223 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
2224 swkey->ip.proto == IPPROTO_ICMPV6) {
2225 struct ovs_key_icmpv6 *icmpv6_key;
2226
2227 nla = nla_reserve(skb, attrtype: OVS_KEY_ATTR_ICMPV6,
2228 attrlen: sizeof(*icmpv6_key));
2229 if (!nla)
2230 goto nla_put_failure;
2231 icmpv6_key = nla_data(nla);
2232 icmpv6_key->icmpv6_type = ntohs(output->tp.src);
2233 icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
2234
2235 if (swkey->tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) ||
2236 swkey->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
2237 struct ovs_key_nd *nd_key;
2238
2239 nla = nla_reserve(skb, attrtype: OVS_KEY_ATTR_ND, attrlen: sizeof(*nd_key));
2240 if (!nla)
2241 goto nla_put_failure;
2242 nd_key = nla_data(nla);
2243 memcpy(nd_key->nd_target, &output->ipv6.nd.target,
2244 sizeof(nd_key->nd_target));
2245 ether_addr_copy(dst: nd_key->nd_sll, src: output->ipv6.nd.sll);
2246 ether_addr_copy(dst: nd_key->nd_tll, src: output->ipv6.nd.tll);
2247 }
2248 }
2249 }
2250
2251unencap:
2252 if (in_encap)
2253 nla_nest_end(skb, start: in_encap);
2254 if (encap)
2255 nla_nest_end(skb, start: encap);
2256
2257 return 0;
2258
2259nla_put_failure:
2260 return -EMSGSIZE;
2261}
2262
2263int ovs_nla_put_key(const struct sw_flow_key *swkey,
2264 const struct sw_flow_key *output, int attr, bool is_mask,
2265 struct sk_buff *skb)
2266{
2267 int err;
2268 struct nlattr *nla;
2269
2270 nla = nla_nest_start_noflag(skb, attrtype: attr);
2271 if (!nla)
2272 return -EMSGSIZE;
2273 err = __ovs_nla_put_key(swkey, output, is_mask, skb);
2274 if (err)
2275 return err;
2276 nla_nest_end(skb, start: nla);
2277
2278 return 0;
2279}
2280
2281/* Called with ovs_mutex or RCU read lock. */
2282int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
2283{
2284 if (ovs_identifier_is_ufid(sfid: &flow->id))
2285 return nla_put(skb, attrtype: OVS_FLOW_ATTR_UFID, attrlen: flow->id.ufid_len,
2286 data: flow->id.ufid);
2287
2288 return ovs_nla_put_key(swkey: flow->id.unmasked_key, output: flow->id.unmasked_key,
2289 attr: OVS_FLOW_ATTR_KEY, is_mask: false, skb);
2290}
2291
2292/* Called with ovs_mutex or RCU read lock. */
2293int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
2294{
2295 return ovs_nla_put_key(swkey: &flow->key, output: &flow->key,
2296 attr: OVS_FLOW_ATTR_KEY, is_mask: false, skb);
2297}
2298
2299/* Called with ovs_mutex or RCU read lock. */
2300int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
2301{
2302 return ovs_nla_put_key(swkey: &flow->key, output: &flow->mask->key,
2303 attr: OVS_FLOW_ATTR_MASK, is_mask: true, skb);
2304}
2305
2306#define MAX_ACTIONS_BUFSIZE (32 * 1024)
2307
2308static struct sw_flow_actions *nla_alloc_flow_actions(int size)
2309{
2310 struct sw_flow_actions *sfa;
2311
2312 WARN_ON_ONCE(size > MAX_ACTIONS_BUFSIZE);
2313
2314 sfa = kmalloc(size: kmalloc_size_roundup(size: sizeof(*sfa) + size), GFP_KERNEL);
2315 if (!sfa)
2316 return ERR_PTR(error: -ENOMEM);
2317
2318 sfa->actions_len = 0;
2319 return sfa;
2320}
2321
2322static void ovs_nla_free_nested_actions(const struct nlattr *actions, int len);
2323
2324static void ovs_nla_free_check_pkt_len_action(const struct nlattr *action)
2325{
2326 const struct nlattr *a;
2327 int rem;
2328
2329 nla_for_each_nested(a, action, rem) {
2330 switch (nla_type(nla: a)) {
2331 case OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL:
2332 case OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER:
2333 ovs_nla_free_nested_actions(actions: nla_data(nla: a), len: nla_len(nla: a));
2334 break;
2335 }
2336 }
2337}
2338
2339static void ovs_nla_free_clone_action(const struct nlattr *action)
2340{
2341 const struct nlattr *a = nla_data(nla: action);
2342 int rem = nla_len(nla: action);
2343
2344 switch (nla_type(nla: a)) {
2345 case OVS_CLONE_ATTR_EXEC:
2346 /* The real list of actions follows this attribute. */
2347 a = nla_next(nla: a, remaining: &rem);
2348 ovs_nla_free_nested_actions(actions: a, len: rem);
2349 break;
2350 }
2351}
2352
2353static void ovs_nla_free_dec_ttl_action(const struct nlattr *action)
2354{
2355 const struct nlattr *a = nla_data(nla: action);
2356
2357 switch (nla_type(nla: a)) {
2358 case OVS_DEC_TTL_ATTR_ACTION:
2359 ovs_nla_free_nested_actions(actions: nla_data(nla: a), len: nla_len(nla: a));
2360 break;
2361 }
2362}
2363
2364static void ovs_nla_free_sample_action(const struct nlattr *action)
2365{
2366 const struct nlattr *a = nla_data(nla: action);
2367 int rem = nla_len(nla: action);
2368
2369 switch (nla_type(nla: a)) {
2370 case OVS_SAMPLE_ATTR_ARG:
2371 /* The real list of actions follows this attribute. */
2372 a = nla_next(nla: a, remaining: &rem);
2373 ovs_nla_free_nested_actions(actions: a, len: rem);
2374 break;
2375 }
2376}
2377
2378static void ovs_nla_free_set_action(const struct nlattr *a)
2379{
2380 const struct nlattr *ovs_key = nla_data(nla: a);
2381 struct ovs_tunnel_info *ovs_tun;
2382
2383 switch (nla_type(nla: ovs_key)) {
2384 case OVS_KEY_ATTR_TUNNEL_INFO:
2385 ovs_tun = nla_data(nla: ovs_key);
2386 dst_release(dst: (struct dst_entry *)ovs_tun->tun_dst);
2387 break;
2388 }
2389}
2390
2391static void ovs_nla_free_nested_actions(const struct nlattr *actions, int len)
2392{
2393 const struct nlattr *a;
2394 int rem;
2395
2396 /* Whenever new actions are added, the need to update this
2397 * function should be considered.
2398 */
2399 BUILD_BUG_ON(OVS_ACTION_ATTR_MAX != 24);
2400
2401 if (!actions)
2402 return;
2403
2404 nla_for_each_attr(a, actions, len, rem) {
2405 switch (nla_type(nla: a)) {
2406 case OVS_ACTION_ATTR_CHECK_PKT_LEN:
2407 ovs_nla_free_check_pkt_len_action(action: a);
2408 break;
2409
2410 case OVS_ACTION_ATTR_CLONE:
2411 ovs_nla_free_clone_action(action: a);
2412 break;
2413
2414 case OVS_ACTION_ATTR_CT:
2415 ovs_ct_free_action(a);
2416 break;
2417
2418 case OVS_ACTION_ATTR_DEC_TTL:
2419 ovs_nla_free_dec_ttl_action(action: a);
2420 break;
2421
2422 case OVS_ACTION_ATTR_SAMPLE:
2423 ovs_nla_free_sample_action(action: a);
2424 break;
2425
2426 case OVS_ACTION_ATTR_SET:
2427 ovs_nla_free_set_action(a);
2428 break;
2429 }
2430 }
2431}
2432
2433void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
2434{
2435 if (!sf_acts)
2436 return;
2437
2438 ovs_nla_free_nested_actions(actions: sf_acts->actions, len: sf_acts->actions_len);
2439 kfree(objp: sf_acts);
2440}
2441
2442static void __ovs_nla_free_flow_actions(struct rcu_head *head)
2443{
2444 ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
2445}
2446
2447/* Schedules 'sf_acts' to be freed after the next RCU grace period.
2448 * The caller must hold rcu_read_lock for this to be sensible. */
2449void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
2450{
2451 call_rcu(head: &sf_acts->rcu, func: __ovs_nla_free_flow_actions);
2452}
2453
2454static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
2455 int attr_len, bool log)
2456{
2457
2458 struct sw_flow_actions *acts;
2459 int new_acts_size;
2460 size_t req_size = NLA_ALIGN(attr_len);
2461 int next_offset = offsetof(struct sw_flow_actions, actions) +
2462 (*sfa)->actions_len;
2463
2464 if (req_size <= (ksize(objp: *sfa) - next_offset))
2465 goto out;
2466
2467 new_acts_size = max(next_offset + req_size, ksize(*sfa) * 2);
2468
2469 if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
2470 if ((next_offset + req_size) > MAX_ACTIONS_BUFSIZE) {
2471 OVS_NLERR(log, "Flow action size exceeds max %u",
2472 MAX_ACTIONS_BUFSIZE);
2473 return ERR_PTR(error: -EMSGSIZE);
2474 }
2475 new_acts_size = MAX_ACTIONS_BUFSIZE;
2476 }
2477
2478 acts = nla_alloc_flow_actions(size: new_acts_size);
2479 if (IS_ERR(ptr: acts))
2480 return (void *)acts;
2481
2482 memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
2483 acts->actions_len = (*sfa)->actions_len;
2484 acts->orig_len = (*sfa)->orig_len;
2485 kfree(objp: *sfa);
2486 *sfa = acts;
2487
2488out:
2489 (*sfa)->actions_len += req_size;
2490 return (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
2491}
2492
2493static struct nlattr *__add_action(struct sw_flow_actions **sfa,
2494 int attrtype, void *data, int len, bool log)
2495{
2496 struct nlattr *a;
2497
2498 a = reserve_sfa_size(sfa, attr_len: nla_attr_size(payload: len), log);
2499 if (IS_ERR(ptr: a))
2500 return a;
2501
2502 a->nla_type = attrtype;
2503 a->nla_len = nla_attr_size(payload: len);
2504
2505 if (data)
2506 memcpy(nla_data(a), data, len);
2507 memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
2508
2509 return a;
2510}
2511
2512int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
2513 int len, bool log)
2514{
2515 struct nlattr *a;
2516
2517 a = __add_action(sfa, attrtype, data, len, log);
2518
2519 return PTR_ERR_OR_ZERO(ptr: a);
2520}
2521
2522static inline int add_nested_action_start(struct sw_flow_actions **sfa,
2523 int attrtype, bool log)
2524{
2525 int used = (*sfa)->actions_len;
2526 int err;
2527
2528 err = ovs_nla_add_action(sfa, attrtype, NULL, len: 0, log);
2529 if (err)
2530 return err;
2531
2532 return used;
2533}
2534
2535static inline void add_nested_action_end(struct sw_flow_actions *sfa,
2536 int st_offset)
2537{
2538 struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
2539 st_offset);
2540
2541 a->nla_len = sfa->actions_len - st_offset;
2542}
2543
2544static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2545 const struct sw_flow_key *key,
2546 struct sw_flow_actions **sfa,
2547 __be16 eth_type, __be16 vlan_tci,
2548 u32 mpls_label_count, bool log);
2549
2550static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
2551 const struct sw_flow_key *key,
2552 struct sw_flow_actions **sfa,
2553 __be16 eth_type, __be16 vlan_tci,
2554 u32 mpls_label_count, bool log, bool last)
2555{
2556 const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
2557 const struct nlattr *probability, *actions;
2558 const struct nlattr *a;
2559 int rem, start, err;
2560 struct sample_arg arg;
2561
2562 memset(attrs, 0, sizeof(attrs));
2563 nla_for_each_nested(a, attr, rem) {
2564 int type = nla_type(nla: a);
2565 if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
2566 return -EINVAL;
2567 attrs[type] = a;
2568 }
2569 if (rem)
2570 return -EINVAL;
2571
2572 probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
2573 if (!probability || nla_len(nla: probability) != sizeof(u32))
2574 return -EINVAL;
2575
2576 actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
2577 if (!actions || (nla_len(nla: actions) && nla_len(nla: actions) < NLA_HDRLEN))
2578 return -EINVAL;
2579
2580 /* validation done, copy sample action. */
2581 start = add_nested_action_start(sfa, attrtype: OVS_ACTION_ATTR_SAMPLE, log);
2582 if (start < 0)
2583 return start;
2584
2585 /* When both skb and flow may be changed, put the sample
2586 * into a deferred fifo. On the other hand, if only skb
2587 * may be modified, the actions can be executed in place.
2588 *
2589 * Do this analysis at the flow installation time.
2590 * Set 'clone_action->exec' to true if the actions can be
2591 * executed without being deferred.
2592 *
2593 * If the sample is the last action, it can always be excuted
2594 * rather than deferred.
2595 */
2596 arg.exec = last || !actions_may_change_flow(actions);
2597 arg.probability = nla_get_u32(nla: probability);
2598
2599 err = ovs_nla_add_action(sfa, attrtype: OVS_SAMPLE_ATTR_ARG, data: &arg, len: sizeof(arg),
2600 log);
2601 if (err)
2602 return err;
2603
2604 err = __ovs_nla_copy_actions(net, attr: actions, key, sfa,
2605 eth_type, vlan_tci, mpls_label_count, log);
2606
2607 if (err)
2608 return err;
2609
2610 add_nested_action_end(sfa: *sfa, st_offset: start);
2611
2612 return 0;
2613}
2614
2615static int validate_and_copy_dec_ttl(struct net *net,
2616 const struct nlattr *attr,
2617 const struct sw_flow_key *key,
2618 struct sw_flow_actions **sfa,
2619 __be16 eth_type, __be16 vlan_tci,
2620 u32 mpls_label_count, bool log)
2621{
2622 const struct nlattr *attrs[OVS_DEC_TTL_ATTR_MAX + 1];
2623 int start, action_start, err, rem;
2624 const struct nlattr *a, *actions;
2625
2626 memset(attrs, 0, sizeof(attrs));
2627 nla_for_each_nested(a, attr, rem) {
2628 int type = nla_type(nla: a);
2629
2630 /* Ignore unknown attributes to be future proof. */
2631 if (type > OVS_DEC_TTL_ATTR_MAX)
2632 continue;
2633
2634 if (!type || attrs[type]) {
2635 OVS_NLERR(log, "Duplicate or invalid key (type %d).",
2636 type);
2637 return -EINVAL;
2638 }
2639
2640 attrs[type] = a;
2641 }
2642
2643 if (rem) {
2644 OVS_NLERR(log, "Message has %d unknown bytes.", rem);
2645 return -EINVAL;
2646 }
2647
2648 actions = attrs[OVS_DEC_TTL_ATTR_ACTION];
2649 if (!actions || (nla_len(nla: actions) && nla_len(nla: actions) < NLA_HDRLEN)) {
2650 OVS_NLERR(log, "Missing valid actions attribute.");
2651 return -EINVAL;
2652 }
2653
2654 start = add_nested_action_start(sfa, attrtype: OVS_ACTION_ATTR_DEC_TTL, log);
2655 if (start < 0)
2656 return start;
2657
2658 action_start = add_nested_action_start(sfa, attrtype: OVS_DEC_TTL_ATTR_ACTION, log);
2659 if (action_start < 0)
2660 return action_start;
2661
2662 err = __ovs_nla_copy_actions(net, attr: actions, key, sfa, eth_type,
2663 vlan_tci, mpls_label_count, log);
2664 if (err)
2665 return err;
2666
2667 add_nested_action_end(sfa: *sfa, st_offset: action_start);
2668 add_nested_action_end(sfa: *sfa, st_offset: start);
2669 return 0;
2670}
2671
2672static int validate_and_copy_clone(struct net *net,
2673 const struct nlattr *attr,
2674 const struct sw_flow_key *key,
2675 struct sw_flow_actions **sfa,
2676 __be16 eth_type, __be16 vlan_tci,
2677 u32 mpls_label_count, bool log, bool last)
2678{
2679 int start, err;
2680 u32 exec;
2681
2682 if (nla_len(nla: attr) && nla_len(nla: attr) < NLA_HDRLEN)
2683 return -EINVAL;
2684
2685 start = add_nested_action_start(sfa, attrtype: OVS_ACTION_ATTR_CLONE, log);
2686 if (start < 0)
2687 return start;
2688
2689 exec = last || !actions_may_change_flow(actions: attr);
2690
2691 err = ovs_nla_add_action(sfa, OVS_CLONE_ATTR_EXEC, data: &exec,
2692 len: sizeof(exec), log);
2693 if (err)
2694 return err;
2695
2696 err = __ovs_nla_copy_actions(net, attr, key, sfa,
2697 eth_type, vlan_tci, mpls_label_count, log);
2698 if (err)
2699 return err;
2700
2701 add_nested_action_end(sfa: *sfa, st_offset: start);
2702
2703 return 0;
2704}
2705
2706void ovs_match_init(struct sw_flow_match *match,
2707 struct sw_flow_key *key,
2708 bool reset_key,
2709 struct sw_flow_mask *mask)
2710{
2711 memset(match, 0, sizeof(*match));
2712 match->key = key;
2713 match->mask = mask;
2714
2715 if (reset_key)
2716 memset(key, 0, sizeof(*key));
2717
2718 if (mask) {
2719 memset(&mask->key, 0, sizeof(mask->key));
2720 mask->range.start = mask->range.end = 0;
2721 }
2722}
2723
2724static int validate_geneve_opts(struct sw_flow_key *key)
2725{
2726 struct geneve_opt *option;
2727 int opts_len = key->tun_opts_len;
2728 bool crit_opt = false;
2729
2730 option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
2731 while (opts_len > 0) {
2732 int len;
2733
2734 if (opts_len < sizeof(*option))
2735 return -EINVAL;
2736
2737 len = sizeof(*option) + option->length * 4;
2738 if (len > opts_len)
2739 return -EINVAL;
2740
2741 crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
2742
2743 option = (struct geneve_opt *)((u8 *)option + len);
2744 opts_len -= len;
2745 }
2746
2747 key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
2748
2749 return 0;
2750}
2751
2752static int validate_and_copy_set_tun(const struct nlattr *attr,
2753 struct sw_flow_actions **sfa, bool log)
2754{
2755 struct sw_flow_match match;
2756 struct sw_flow_key key;
2757 struct metadata_dst *tun_dst;
2758 struct ip_tunnel_info *tun_info;
2759 struct ovs_tunnel_info *ovs_tun;
2760 struct nlattr *a;
2761 int err = 0, start, opts_type;
2762 __be16 dst_opt_type;
2763
2764 dst_opt_type = 0;
2765 ovs_match_init(match: &match, key: &key, reset_key: true, NULL);
2766 opts_type = ip_tun_from_nlattr(attr: nla_data(nla: attr), match: &match, is_mask: false, log);
2767 if (opts_type < 0)
2768 return opts_type;
2769
2770 if (key.tun_opts_len) {
2771 switch (opts_type) {
2772 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
2773 err = validate_geneve_opts(key: &key);
2774 if (err < 0)
2775 return err;
2776 dst_opt_type = TUNNEL_GENEVE_OPT;
2777 break;
2778 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
2779 dst_opt_type = TUNNEL_VXLAN_OPT;
2780 break;
2781 case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
2782 dst_opt_type = TUNNEL_ERSPAN_OPT;
2783 break;
2784 }
2785 }
2786
2787 start = add_nested_action_start(sfa, attrtype: OVS_ACTION_ATTR_SET, log);
2788 if (start < 0)
2789 return start;
2790
2791 tun_dst = metadata_dst_alloc(optslen: key.tun_opts_len, type: METADATA_IP_TUNNEL,
2792 GFP_KERNEL);
2793
2794 if (!tun_dst)
2795 return -ENOMEM;
2796
2797 err = dst_cache_init(dst_cache: &tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
2798 if (err) {
2799 dst_release(dst: (struct dst_entry *)tun_dst);
2800 return err;
2801 }
2802
2803 a = __add_action(sfa, attrtype: OVS_KEY_ATTR_TUNNEL_INFO, NULL,
2804 len: sizeof(*ovs_tun), log);
2805 if (IS_ERR(ptr: a)) {
2806 dst_release(dst: (struct dst_entry *)tun_dst);
2807 return PTR_ERR(ptr: a);
2808 }
2809
2810 ovs_tun = nla_data(nla: a);
2811 ovs_tun->tun_dst = tun_dst;
2812
2813 tun_info = &tun_dst->u.tun_info;
2814 tun_info->mode = IP_TUNNEL_INFO_TX;
2815 if (key.tun_proto == AF_INET6)
2816 tun_info->mode |= IP_TUNNEL_INFO_IPV6;
2817 else if (key.tun_proto == AF_INET && key.tun_key.u.ipv4.dst == 0)
2818 tun_info->mode |= IP_TUNNEL_INFO_BRIDGE;
2819 tun_info->key = key.tun_key;
2820
2821 /* We need to store the options in the action itself since
2822 * everything else will go away after flow setup. We can append
2823 * it to tun_info and then point there.
2824 */
2825 ip_tunnel_info_opts_set(info: tun_info,
2826 TUN_METADATA_OPTS(&key, key.tun_opts_len),
2827 len: key.tun_opts_len, flags: dst_opt_type);
2828 add_nested_action_end(sfa: *sfa, st_offset: start);
2829
2830 return err;
2831}
2832
2833static bool validate_nsh(const struct nlattr *attr, bool is_mask,
2834 bool is_push_nsh, bool log)
2835{
2836 struct sw_flow_match match;
2837 struct sw_flow_key key;
2838 int ret = 0;
2839
2840 ovs_match_init(match: &match, key: &key, reset_key: true, NULL);
2841 ret = nsh_key_put_from_nlattr(attr, match: &match, is_mask,
2842 is_push_nsh, log);
2843 return !ret;
2844}
2845
2846/* Return false if there are any non-masked bits set.
2847 * Mask follows data immediately, before any netlink padding.
2848 */
2849static bool validate_masked(u8 *data, int len)
2850{
2851 u8 *mask = data + len;
2852
2853 while (len--)
2854 if (*data++ & ~*mask++)
2855 return false;
2856
2857 return true;
2858}
2859
2860static int validate_set(const struct nlattr *a,
2861 const struct sw_flow_key *flow_key,
2862 struct sw_flow_actions **sfa, bool *skip_copy,
2863 u8 mac_proto, __be16 eth_type, bool masked, bool log)
2864{
2865 const struct nlattr *ovs_key = nla_data(nla: a);
2866 int key_type = nla_type(nla: ovs_key);
2867 size_t key_len;
2868
2869 /* There can be only one key in a action */
2870 if (nla_total_size(payload: nla_len(nla: ovs_key)) != nla_len(nla: a))
2871 return -EINVAL;
2872
2873 key_len = nla_len(nla: ovs_key);
2874 if (masked)
2875 key_len /= 2;
2876
2877 if (key_type > OVS_KEY_ATTR_MAX ||
2878 !check_attr_len(attr_len: key_len, expected_len: ovs_key_lens[key_type].len))
2879 return -EINVAL;
2880
2881 if (masked && !validate_masked(data: nla_data(nla: ovs_key), len: key_len))
2882 return -EINVAL;
2883
2884 switch (key_type) {
2885 case OVS_KEY_ATTR_PRIORITY:
2886 case OVS_KEY_ATTR_SKB_MARK:
2887 case OVS_KEY_ATTR_CT_MARK:
2888 case OVS_KEY_ATTR_CT_LABELS:
2889 break;
2890
2891 case OVS_KEY_ATTR_ETHERNET:
2892 if (mac_proto != MAC_PROTO_ETHERNET)
2893 return -EINVAL;
2894 break;
2895
2896 case OVS_KEY_ATTR_TUNNEL: {
2897 int err;
2898
2899 if (masked)
2900 return -EINVAL; /* Masked tunnel set not supported. */
2901
2902 *skip_copy = true;
2903 err = validate_and_copy_set_tun(attr: a, sfa, log);
2904 if (err)
2905 return err;
2906 break;
2907 }
2908 case OVS_KEY_ATTR_IPV4: {
2909 const struct ovs_key_ipv4 *ipv4_key;
2910
2911 if (eth_type != htons(ETH_P_IP))
2912 return -EINVAL;
2913
2914 ipv4_key = nla_data(nla: ovs_key);
2915
2916 if (masked) {
2917 const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2918
2919 /* Non-writeable fields. */
2920 if (mask->ipv4_proto || mask->ipv4_frag)
2921 return -EINVAL;
2922 } else {
2923 if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2924 return -EINVAL;
2925
2926 if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2927 return -EINVAL;
2928 }
2929 break;
2930 }
2931 case OVS_KEY_ATTR_IPV6: {
2932 const struct ovs_key_ipv6 *ipv6_key;
2933
2934 if (eth_type != htons(ETH_P_IPV6))
2935 return -EINVAL;
2936
2937 ipv6_key = nla_data(nla: ovs_key);
2938
2939 if (masked) {
2940 const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2941
2942 /* Non-writeable fields. */
2943 if (mask->ipv6_proto || mask->ipv6_frag)
2944 return -EINVAL;
2945
2946 /* Invalid bits in the flow label mask? */
2947 if (ntohl(mask->ipv6_label) & 0xFFF00000)
2948 return -EINVAL;
2949 } else {
2950 if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2951 return -EINVAL;
2952
2953 if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2954 return -EINVAL;
2955 }
2956 if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2957 return -EINVAL;
2958
2959 break;
2960 }
2961 case OVS_KEY_ATTR_TCP:
2962 if ((eth_type != htons(ETH_P_IP) &&
2963 eth_type != htons(ETH_P_IPV6)) ||
2964 flow_key->ip.proto != IPPROTO_TCP)
2965 return -EINVAL;
2966
2967 break;
2968
2969 case OVS_KEY_ATTR_UDP:
2970 if ((eth_type != htons(ETH_P_IP) &&
2971 eth_type != htons(ETH_P_IPV6)) ||
2972 flow_key->ip.proto != IPPROTO_UDP)
2973 return -EINVAL;
2974
2975 break;
2976
2977 case OVS_KEY_ATTR_MPLS:
2978 if (!eth_p_mpls(eth_type))
2979 return -EINVAL;
2980 break;
2981
2982 case OVS_KEY_ATTR_SCTP:
2983 if ((eth_type != htons(ETH_P_IP) &&
2984 eth_type != htons(ETH_P_IPV6)) ||
2985 flow_key->ip.proto != IPPROTO_SCTP)
2986 return -EINVAL;
2987
2988 break;
2989
2990 case OVS_KEY_ATTR_NSH:
2991 if (eth_type != htons(ETH_P_NSH))
2992 return -EINVAL;
2993 if (!validate_nsh(attr: nla_data(nla: a), is_mask: masked, is_push_nsh: false, log))
2994 return -EINVAL;
2995 break;
2996
2997 default:
2998 return -EINVAL;
2999 }
3000
3001 /* Convert non-masked non-tunnel set actions to masked set actions. */
3002 if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
3003 int start, len = key_len * 2;
3004 struct nlattr *at;
3005
3006 *skip_copy = true;
3007
3008 start = add_nested_action_start(sfa,
3009 attrtype: OVS_ACTION_ATTR_SET_TO_MASKED,
3010 log);
3011 if (start < 0)
3012 return start;
3013
3014 at = __add_action(sfa, attrtype: key_type, NULL, len, log);
3015 if (IS_ERR(ptr: at))
3016 return PTR_ERR(ptr: at);
3017
3018 memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
3019 memset(nla_data(at) + key_len, 0xff, key_len); /* Mask. */
3020 /* Clear non-writeable bits from otherwise writeable fields. */
3021 if (key_type == OVS_KEY_ATTR_IPV6) {
3022 struct ovs_key_ipv6 *mask = nla_data(nla: at) + key_len;
3023
3024 mask->ipv6_label &= htonl(0x000FFFFF);
3025 }
3026 add_nested_action_end(sfa: *sfa, st_offset: start);
3027 }
3028
3029 return 0;
3030}
3031
3032static int validate_userspace(const struct nlattr *attr)
3033{
3034 static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
3035 [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
3036 [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
3037 [OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
3038 };
3039 struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
3040 int error;
3041
3042 error = nla_parse_nested_deprecated(tb: a, OVS_USERSPACE_ATTR_MAX, nla: attr,
3043 policy: userspace_policy, NULL);
3044 if (error)
3045 return error;
3046
3047 if (!a[OVS_USERSPACE_ATTR_PID] ||
3048 !nla_get_u32(nla: a[OVS_USERSPACE_ATTR_PID]))
3049 return -EINVAL;
3050
3051 return 0;
3052}
3053
3054static const struct nla_policy cpl_policy[OVS_CHECK_PKT_LEN_ATTR_MAX + 1] = {
3055 [OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] = {.type = NLA_U16 },
3056 [OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER] = {.type = NLA_NESTED },
3057 [OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL] = {.type = NLA_NESTED },
3058};
3059
3060static int validate_and_copy_check_pkt_len(struct net *net,
3061 const struct nlattr *attr,
3062 const struct sw_flow_key *key,
3063 struct sw_flow_actions **sfa,
3064 __be16 eth_type, __be16 vlan_tci,
3065 u32 mpls_label_count,
3066 bool log, bool last)
3067{
3068 const struct nlattr *acts_if_greater, *acts_if_lesser_eq;
3069 struct nlattr *a[OVS_CHECK_PKT_LEN_ATTR_MAX + 1];
3070 struct check_pkt_len_arg arg;
3071 int nested_acts_start;
3072 int start, err;
3073
3074 err = nla_parse_deprecated_strict(tb: a, OVS_CHECK_PKT_LEN_ATTR_MAX,
3075 head: nla_data(nla: attr), len: nla_len(nla: attr),
3076 policy: cpl_policy, NULL);
3077 if (err)
3078 return err;
3079
3080 if (!a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] ||
3081 !nla_get_u16(nla: a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]))
3082 return -EINVAL;
3083
3084 acts_if_lesser_eq = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL];
3085 acts_if_greater = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER];
3086
3087 /* Both the nested action should be present. */
3088 if (!acts_if_greater || !acts_if_lesser_eq)
3089 return -EINVAL;
3090
3091 /* validation done, copy the nested actions. */
3092 start = add_nested_action_start(sfa, attrtype: OVS_ACTION_ATTR_CHECK_PKT_LEN,
3093 log);
3094 if (start < 0)
3095 return start;
3096
3097 arg.pkt_len = nla_get_u16(nla: a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]);
3098 arg.exec_for_lesser_equal =
3099 last || !actions_may_change_flow(actions: acts_if_lesser_eq);
3100 arg.exec_for_greater =
3101 last || !actions_may_change_flow(actions: acts_if_greater);
3102
3103 err = ovs_nla_add_action(sfa, attrtype: OVS_CHECK_PKT_LEN_ATTR_ARG, data: &arg,
3104 len: sizeof(arg), log);
3105 if (err)
3106 return err;
3107
3108 nested_acts_start = add_nested_action_start(sfa,
3109 attrtype: OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL, log);
3110 if (nested_acts_start < 0)
3111 return nested_acts_start;
3112
3113 err = __ovs_nla_copy_actions(net, attr: acts_if_lesser_eq, key, sfa,
3114 eth_type, vlan_tci, mpls_label_count, log);
3115
3116 if (err)
3117 return err;
3118
3119 add_nested_action_end(sfa: *sfa, st_offset: nested_acts_start);
3120
3121 nested_acts_start = add_nested_action_start(sfa,
3122 attrtype: OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER, log);
3123 if (nested_acts_start < 0)
3124 return nested_acts_start;
3125
3126 err = __ovs_nla_copy_actions(net, attr: acts_if_greater, key, sfa,
3127 eth_type, vlan_tci, mpls_label_count, log);
3128
3129 if (err)
3130 return err;
3131
3132 add_nested_action_end(sfa: *sfa, st_offset: nested_acts_start);
3133 add_nested_action_end(sfa: *sfa, st_offset: start);
3134 return 0;
3135}
3136
3137static int copy_action(const struct nlattr *from,
3138 struct sw_flow_actions **sfa, bool log)
3139{
3140 int totlen = NLA_ALIGN(from->nla_len);
3141 struct nlattr *to;
3142
3143 to = reserve_sfa_size(sfa, attr_len: from->nla_len, log);
3144 if (IS_ERR(ptr: to))
3145 return PTR_ERR(ptr: to);
3146
3147 memcpy(to, from, totlen);
3148 return 0;
3149}
3150
3151static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
3152 const struct sw_flow_key *key,
3153 struct sw_flow_actions **sfa,
3154 __be16 eth_type, __be16 vlan_tci,
3155 u32 mpls_label_count, bool log)
3156{
3157 u8 mac_proto = ovs_key_mac_proto(key);
3158 const struct nlattr *a;
3159 int rem, err;
3160
3161 nla_for_each_nested(a, attr, rem) {
3162 /* Expected argument lengths, (u32)-1 for variable length. */
3163 static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
3164 [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
3165 [OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
3166 [OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
3167 [OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
3168 [OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
3169 [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
3170 [OVS_ACTION_ATTR_POP_VLAN] = 0,
3171 [OVS_ACTION_ATTR_SET] = (u32)-1,
3172 [OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
3173 [OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
3174 [OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
3175 [OVS_ACTION_ATTR_CT] = (u32)-1,
3176 [OVS_ACTION_ATTR_CT_CLEAR] = 0,
3177 [OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
3178 [OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth),
3179 [OVS_ACTION_ATTR_POP_ETH] = 0,
3180 [OVS_ACTION_ATTR_PUSH_NSH] = (u32)-1,
3181 [OVS_ACTION_ATTR_POP_NSH] = 0,
3182 [OVS_ACTION_ATTR_METER] = sizeof(u32),
3183 [OVS_ACTION_ATTR_CLONE] = (u32)-1,
3184 [OVS_ACTION_ATTR_CHECK_PKT_LEN] = (u32)-1,
3185 [OVS_ACTION_ATTR_ADD_MPLS] = sizeof(struct ovs_action_add_mpls),
3186 [OVS_ACTION_ATTR_DEC_TTL] = (u32)-1,
3187 [OVS_ACTION_ATTR_DROP] = sizeof(u32),
3188 };
3189 const struct ovs_action_push_vlan *vlan;
3190 int type = nla_type(nla: a);
3191 bool skip_copy;
3192
3193 if (type > OVS_ACTION_ATTR_MAX ||
3194 (action_lens[type] != nla_len(nla: a) &&
3195 action_lens[type] != (u32)-1))
3196 return -EINVAL;
3197
3198 skip_copy = false;
3199 switch (type) {
3200 case OVS_ACTION_ATTR_UNSPEC:
3201 return -EINVAL;
3202
3203 case OVS_ACTION_ATTR_USERSPACE:
3204 err = validate_userspace(attr: a);
3205 if (err)
3206 return err;
3207 break;
3208
3209 case OVS_ACTION_ATTR_OUTPUT:
3210 if (nla_get_u32(nla: a) >= DP_MAX_PORTS)
3211 return -EINVAL;
3212 break;
3213
3214 case OVS_ACTION_ATTR_TRUNC: {
3215 const struct ovs_action_trunc *trunc = nla_data(nla: a);
3216
3217 if (trunc->max_len < ETH_HLEN)
3218 return -EINVAL;
3219 break;
3220 }
3221
3222 case OVS_ACTION_ATTR_HASH: {
3223 const struct ovs_action_hash *act_hash = nla_data(nla: a);
3224
3225 switch (act_hash->hash_alg) {
3226 case OVS_HASH_ALG_L4:
3227 fallthrough;
3228 case OVS_HASH_ALG_SYM_L4:
3229 break;
3230 default:
3231 return -EINVAL;
3232 }
3233
3234 break;
3235 }
3236
3237 case OVS_ACTION_ATTR_POP_VLAN:
3238 if (mac_proto != MAC_PROTO_ETHERNET)
3239 return -EINVAL;
3240 vlan_tci = htons(0);
3241 break;
3242
3243 case OVS_ACTION_ATTR_PUSH_VLAN:
3244 if (mac_proto != MAC_PROTO_ETHERNET)
3245 return -EINVAL;
3246 vlan = nla_data(nla: a);
3247 if (!eth_type_vlan(ethertype: vlan->vlan_tpid))
3248 return -EINVAL;
3249 if (!(vlan->vlan_tci & htons(VLAN_CFI_MASK)))
3250 return -EINVAL;
3251 vlan_tci = vlan->vlan_tci;
3252 break;
3253
3254 case OVS_ACTION_ATTR_RECIRC:
3255 break;
3256
3257 case OVS_ACTION_ATTR_ADD_MPLS: {
3258 const struct ovs_action_add_mpls *mpls = nla_data(nla: a);
3259
3260 if (!eth_p_mpls(eth_type: mpls->mpls_ethertype))
3261 return -EINVAL;
3262
3263 if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK) {
3264 if (vlan_tci & htons(VLAN_CFI_MASK) ||
3265 (eth_type != htons(ETH_P_IP) &&
3266 eth_type != htons(ETH_P_IPV6) &&
3267 eth_type != htons(ETH_P_ARP) &&
3268 eth_type != htons(ETH_P_RARP) &&
3269 !eth_p_mpls(eth_type)))
3270 return -EINVAL;
3271 mpls_label_count++;
3272 } else {
3273 if (mac_proto == MAC_PROTO_ETHERNET) {
3274 mpls_label_count = 1;
3275 mac_proto = MAC_PROTO_NONE;
3276 } else {
3277 mpls_label_count++;
3278 }
3279 }
3280 eth_type = mpls->mpls_ethertype;
3281 break;
3282 }
3283
3284 case OVS_ACTION_ATTR_PUSH_MPLS: {
3285 const struct ovs_action_push_mpls *mpls = nla_data(nla: a);
3286
3287 if (!eth_p_mpls(eth_type: mpls->mpls_ethertype))
3288 return -EINVAL;
3289 /* Prohibit push MPLS other than to a white list
3290 * for packets that have a known tag order.
3291 */
3292 if (vlan_tci & htons(VLAN_CFI_MASK) ||
3293 (eth_type != htons(ETH_P_IP) &&
3294 eth_type != htons(ETH_P_IPV6) &&
3295 eth_type != htons(ETH_P_ARP) &&
3296 eth_type != htons(ETH_P_RARP) &&
3297 !eth_p_mpls(eth_type)))
3298 return -EINVAL;
3299 eth_type = mpls->mpls_ethertype;
3300 mpls_label_count++;
3301 break;
3302 }
3303
3304 case OVS_ACTION_ATTR_POP_MPLS: {
3305 __be16 proto;
3306 if (vlan_tci & htons(VLAN_CFI_MASK) ||
3307 !eth_p_mpls(eth_type))
3308 return -EINVAL;
3309
3310 /* Disallow subsequent L2.5+ set actions and mpls_pop
3311 * actions once the last MPLS label in the packet is
3312 * popped as there is no check here to ensure that
3313 * the new eth type is valid and thus set actions could
3314 * write off the end of the packet or otherwise corrupt
3315 * it.
3316 *
3317 * Support for these actions is planned using packet
3318 * recirculation.
3319 */
3320 proto = nla_get_be16(nla: a);
3321
3322 if (proto == htons(ETH_P_TEB) &&
3323 mac_proto != MAC_PROTO_NONE)
3324 return -EINVAL;
3325
3326 mpls_label_count--;
3327
3328 if (!eth_p_mpls(eth_type: proto) || !mpls_label_count)
3329 eth_type = htons(0);
3330 else
3331 eth_type = proto;
3332
3333 break;
3334 }
3335
3336 case OVS_ACTION_ATTR_SET:
3337 err = validate_set(a, flow_key: key, sfa,
3338 skip_copy: &skip_copy, mac_proto, eth_type,
3339 masked: false, log);
3340 if (err)
3341 return err;
3342 break;
3343
3344 case OVS_ACTION_ATTR_SET_MASKED:
3345 err = validate_set(a, flow_key: key, sfa,
3346 skip_copy: &skip_copy, mac_proto, eth_type,
3347 masked: true, log);
3348 if (err)
3349 return err;
3350 break;
3351
3352 case OVS_ACTION_ATTR_SAMPLE: {
3353 bool last = nla_is_last(nla: a, rem);
3354
3355 err = validate_and_copy_sample(net, attr: a, key, sfa,
3356 eth_type, vlan_tci,
3357 mpls_label_count,
3358 log, last);
3359 if (err)
3360 return err;
3361 skip_copy = true;
3362 break;
3363 }
3364
3365 case OVS_ACTION_ATTR_CT:
3366 err = ovs_ct_copy_action(net, a, key, sfa, log);
3367 if (err)
3368 return err;
3369 skip_copy = true;
3370 break;
3371
3372 case OVS_ACTION_ATTR_CT_CLEAR:
3373 break;
3374
3375 case OVS_ACTION_ATTR_PUSH_ETH:
3376 /* Disallow pushing an Ethernet header if one
3377 * is already present */
3378 if (mac_proto != MAC_PROTO_NONE)
3379 return -EINVAL;
3380 mac_proto = MAC_PROTO_ETHERNET;
3381 break;
3382
3383 case OVS_ACTION_ATTR_POP_ETH:
3384 if (mac_proto != MAC_PROTO_ETHERNET)
3385 return -EINVAL;
3386 if (vlan_tci & htons(VLAN_CFI_MASK))
3387 return -EINVAL;
3388 mac_proto = MAC_PROTO_NONE;
3389 break;
3390
3391 case OVS_ACTION_ATTR_PUSH_NSH:
3392 if (mac_proto != MAC_PROTO_ETHERNET) {
3393 u8 next_proto;
3394
3395 next_proto = tun_p_from_eth_p(proto: eth_type);
3396 if (!next_proto)
3397 return -EINVAL;
3398 }
3399 mac_proto = MAC_PROTO_NONE;
3400 if (!validate_nsh(attr: nla_data(nla: a), is_mask: false, is_push_nsh: true, log: true))
3401 return -EINVAL;
3402 break;
3403
3404 case OVS_ACTION_ATTR_POP_NSH: {
3405 __be16 inner_proto;
3406
3407 if (eth_type != htons(ETH_P_NSH))
3408 return -EINVAL;
3409 inner_proto = tun_p_to_eth_p(proto: key->nsh.base.np);
3410 if (!inner_proto)
3411 return -EINVAL;
3412 if (key->nsh.base.np == TUN_P_ETHERNET)
3413 mac_proto = MAC_PROTO_ETHERNET;
3414 else
3415 mac_proto = MAC_PROTO_NONE;
3416 break;
3417 }
3418
3419 case OVS_ACTION_ATTR_METER:
3420 /* Non-existent meters are simply ignored. */
3421 break;
3422
3423 case OVS_ACTION_ATTR_CLONE: {
3424 bool last = nla_is_last(nla: a, rem);
3425
3426 err = validate_and_copy_clone(net, attr: a, key, sfa,
3427 eth_type, vlan_tci,
3428 mpls_label_count,
3429 log, last);
3430 if (err)
3431 return err;
3432 skip_copy = true;
3433 break;
3434 }
3435
3436 case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
3437 bool last = nla_is_last(nla: a, rem);
3438
3439 err = validate_and_copy_check_pkt_len(net, attr: a, key, sfa,
3440 eth_type,
3441 vlan_tci,
3442 mpls_label_count,
3443 log, last);
3444 if (err)
3445 return err;
3446 skip_copy = true;
3447 break;
3448 }
3449
3450 case OVS_ACTION_ATTR_DEC_TTL:
3451 err = validate_and_copy_dec_ttl(net, attr: a, key, sfa,
3452 eth_type, vlan_tci,
3453 mpls_label_count, log);
3454 if (err)
3455 return err;
3456 skip_copy = true;
3457 break;
3458
3459 case OVS_ACTION_ATTR_DROP:
3460 if (!nla_is_last(nla: a, rem))
3461 return -EINVAL;
3462 break;
3463
3464 default:
3465 OVS_NLERR(log, "Unknown Action type %d", type);
3466 return -EINVAL;
3467 }
3468 if (!skip_copy) {
3469 err = copy_action(from: a, sfa, log);
3470 if (err)
3471 return err;
3472 }
3473 }
3474
3475 if (rem > 0)
3476 return -EINVAL;
3477
3478 return 0;
3479}
3480
3481/* 'key' must be the masked key. */
3482int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
3483 const struct sw_flow_key *key,
3484 struct sw_flow_actions **sfa, bool log)
3485{
3486 int err;
3487 u32 mpls_label_count = 0;
3488
3489 *sfa = nla_alloc_flow_actions(min(nla_len(attr), MAX_ACTIONS_BUFSIZE));
3490 if (IS_ERR(ptr: *sfa))
3491 return PTR_ERR(ptr: *sfa);
3492
3493 if (eth_p_mpls(eth_type: key->eth.type))
3494 mpls_label_count = hweight_long(w: key->mpls.num_labels_mask);
3495
3496 (*sfa)->orig_len = nla_len(nla: attr);
3497 err = __ovs_nla_copy_actions(net, attr, key, sfa, eth_type: key->eth.type,
3498 vlan_tci: key->eth.vlan.tci, mpls_label_count, log);
3499 if (err)
3500 ovs_nla_free_flow_actions(sf_acts: *sfa);
3501
3502 return err;
3503}
3504
3505static int sample_action_to_attr(const struct nlattr *attr,
3506 struct sk_buff *skb)
3507{
3508 struct nlattr *start, *ac_start = NULL, *sample_arg;
3509 int err = 0, rem = nla_len(nla: attr);
3510 const struct sample_arg *arg;
3511 struct nlattr *actions;
3512
3513 start = nla_nest_start_noflag(skb, attrtype: OVS_ACTION_ATTR_SAMPLE);
3514 if (!start)
3515 return -EMSGSIZE;
3516
3517 sample_arg = nla_data(nla: attr);
3518 arg = nla_data(nla: sample_arg);
3519 actions = nla_next(nla: sample_arg, remaining: &rem);
3520
3521 if (nla_put_u32(skb, attrtype: OVS_SAMPLE_ATTR_PROBABILITY, value: arg->probability)) {
3522 err = -EMSGSIZE;
3523 goto out;
3524 }
3525
3526 ac_start = nla_nest_start_noflag(skb, attrtype: OVS_SAMPLE_ATTR_ACTIONS);
3527 if (!ac_start) {
3528 err = -EMSGSIZE;
3529 goto out;
3530 }
3531
3532 err = ovs_nla_put_actions(attr: actions, len: rem, skb);
3533
3534out:
3535 if (err) {
3536 nla_nest_cancel(skb, start: ac_start);
3537 nla_nest_cancel(skb, start);
3538 } else {
3539 nla_nest_end(skb, start: ac_start);
3540 nla_nest_end(skb, start);
3541 }
3542
3543 return err;
3544}
3545
3546static int clone_action_to_attr(const struct nlattr *attr,
3547 struct sk_buff *skb)
3548{
3549 struct nlattr *start;
3550 int err = 0, rem = nla_len(nla: attr);
3551
3552 start = nla_nest_start_noflag(skb, attrtype: OVS_ACTION_ATTR_CLONE);
3553 if (!start)
3554 return -EMSGSIZE;
3555
3556 /* Skipping the OVS_CLONE_ATTR_EXEC that is always the first attribute. */
3557 attr = nla_next(nla: nla_data(nla: attr), remaining: &rem);
3558 err = ovs_nla_put_actions(attr, len: rem, skb);
3559
3560 if (err)
3561 nla_nest_cancel(skb, start);
3562 else
3563 nla_nest_end(skb, start);
3564
3565 return err;
3566}
3567
3568static int check_pkt_len_action_to_attr(const struct nlattr *attr,
3569 struct sk_buff *skb)
3570{
3571 struct nlattr *start, *ac_start = NULL;
3572 const struct check_pkt_len_arg *arg;
3573 const struct nlattr *a, *cpl_arg;
3574 int err = 0, rem = nla_len(nla: attr);
3575
3576 start = nla_nest_start_noflag(skb, attrtype: OVS_ACTION_ATTR_CHECK_PKT_LEN);
3577 if (!start)
3578 return -EMSGSIZE;
3579
3580 /* The first nested attribute in 'attr' is always
3581 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
3582 */
3583 cpl_arg = nla_data(nla: attr);
3584 arg = nla_data(nla: cpl_arg);
3585
3586 if (nla_put_u16(skb, attrtype: OVS_CHECK_PKT_LEN_ATTR_PKT_LEN, value: arg->pkt_len)) {
3587 err = -EMSGSIZE;
3588 goto out;
3589 }
3590
3591 /* Second nested attribute in 'attr' is always
3592 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
3593 */
3594 a = nla_next(nla: cpl_arg, remaining: &rem);
3595 ac_start = nla_nest_start_noflag(skb,
3596 attrtype: OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL);
3597 if (!ac_start) {
3598 err = -EMSGSIZE;
3599 goto out;
3600 }
3601
3602 err = ovs_nla_put_actions(attr: nla_data(nla: a), len: nla_len(nla: a), skb);
3603 if (err) {
3604 nla_nest_cancel(skb, start: ac_start);
3605 goto out;
3606 } else {
3607 nla_nest_end(skb, start: ac_start);
3608 }
3609
3610 /* Third nested attribute in 'attr' is always
3611 * OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER.
3612 */
3613 a = nla_next(nla: a, remaining: &rem);
3614 ac_start = nla_nest_start_noflag(skb,
3615 attrtype: OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER);
3616 if (!ac_start) {
3617 err = -EMSGSIZE;
3618 goto out;
3619 }
3620
3621 err = ovs_nla_put_actions(attr: nla_data(nla: a), len: nla_len(nla: a), skb);
3622 if (err) {
3623 nla_nest_cancel(skb, start: ac_start);
3624 goto out;
3625 } else {
3626 nla_nest_end(skb, start: ac_start);
3627 }
3628
3629 nla_nest_end(skb, start);
3630 return 0;
3631
3632out:
3633 nla_nest_cancel(skb, start);
3634 return err;
3635}
3636
3637static int dec_ttl_action_to_attr(const struct nlattr *attr,
3638 struct sk_buff *skb)
3639{
3640 struct nlattr *start, *action_start;
3641 const struct nlattr *a;
3642 int err = 0, rem;
3643
3644 start = nla_nest_start_noflag(skb, attrtype: OVS_ACTION_ATTR_DEC_TTL);
3645 if (!start)
3646 return -EMSGSIZE;
3647
3648 nla_for_each_attr(a, nla_data(attr), nla_len(attr), rem) {
3649 switch (nla_type(nla: a)) {
3650 case OVS_DEC_TTL_ATTR_ACTION:
3651
3652 action_start = nla_nest_start_noflag(skb, attrtype: OVS_DEC_TTL_ATTR_ACTION);
3653 if (!action_start) {
3654 err = -EMSGSIZE;
3655 goto out;
3656 }
3657
3658 err = ovs_nla_put_actions(attr: nla_data(nla: a), len: nla_len(nla: a), skb);
3659 if (err)
3660 goto out;
3661
3662 nla_nest_end(skb, start: action_start);
3663 break;
3664
3665 default:
3666 /* Ignore all other option to be future compatible */
3667 break;
3668 }
3669 }
3670
3671 nla_nest_end(skb, start);
3672 return 0;
3673
3674out:
3675 nla_nest_cancel(skb, start);
3676 return err;
3677}
3678
3679static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
3680{
3681 const struct nlattr *ovs_key = nla_data(nla: a);
3682 int key_type = nla_type(nla: ovs_key);
3683 struct nlattr *start;
3684 int err;
3685
3686 switch (key_type) {
3687 case OVS_KEY_ATTR_TUNNEL_INFO: {
3688 struct ovs_tunnel_info *ovs_tun = nla_data(nla: ovs_key);
3689 struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
3690
3691 start = nla_nest_start_noflag(skb, attrtype: OVS_ACTION_ATTR_SET);
3692 if (!start)
3693 return -EMSGSIZE;
3694
3695 err = ip_tun_to_nlattr(skb, output: &tun_info->key,
3696 ip_tunnel_info_opts(tun_info),
3697 swkey_tun_opts_len: tun_info->options_len,
3698 tun_proto: ip_tunnel_info_af(tun_info), mode: tun_info->mode);
3699 if (err)
3700 return err;
3701 nla_nest_end(skb, start);
3702 break;
3703 }
3704 default:
3705 if (nla_put(skb, attrtype: OVS_ACTION_ATTR_SET, attrlen: nla_len(nla: a), data: ovs_key))
3706 return -EMSGSIZE;
3707 break;
3708 }
3709
3710 return 0;
3711}
3712
3713static int masked_set_action_to_set_action_attr(const struct nlattr *a,
3714 struct sk_buff *skb)
3715{
3716 const struct nlattr *ovs_key = nla_data(nla: a);
3717 struct nlattr *nla;
3718 size_t key_len = nla_len(nla: ovs_key) / 2;
3719
3720 /* Revert the conversion we did from a non-masked set action to
3721 * masked set action.
3722 */
3723 nla = nla_nest_start_noflag(skb, attrtype: OVS_ACTION_ATTR_SET);
3724 if (!nla)
3725 return -EMSGSIZE;
3726
3727 if (nla_put(skb, attrtype: nla_type(nla: ovs_key), attrlen: key_len, data: nla_data(nla: ovs_key)))
3728 return -EMSGSIZE;
3729
3730 nla_nest_end(skb, start: nla);
3731 return 0;
3732}
3733
3734int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
3735{
3736 const struct nlattr *a;
3737 int rem, err;
3738
3739 nla_for_each_attr(a, attr, len, rem) {
3740 int type = nla_type(nla: a);
3741
3742 switch (type) {
3743 case OVS_ACTION_ATTR_SET:
3744 err = set_action_to_attr(a, skb);
3745 if (err)
3746 return err;
3747 break;
3748
3749 case OVS_ACTION_ATTR_SET_TO_MASKED:
3750 err = masked_set_action_to_set_action_attr(a, skb);
3751 if (err)
3752 return err;
3753 break;
3754
3755 case OVS_ACTION_ATTR_SAMPLE:
3756 err = sample_action_to_attr(attr: a, skb);
3757 if (err)
3758 return err;
3759 break;
3760
3761 case OVS_ACTION_ATTR_CT:
3762 err = ovs_ct_action_to_attr(nla_data(nla: a), skb);
3763 if (err)
3764 return err;
3765 break;
3766
3767 case OVS_ACTION_ATTR_CLONE:
3768 err = clone_action_to_attr(attr: a, skb);
3769 if (err)
3770 return err;
3771 break;
3772
3773 case OVS_ACTION_ATTR_CHECK_PKT_LEN:
3774 err = check_pkt_len_action_to_attr(attr: a, skb);
3775 if (err)
3776 return err;
3777 break;
3778
3779 case OVS_ACTION_ATTR_DEC_TTL:
3780 err = dec_ttl_action_to_attr(attr: a, skb);
3781 if (err)
3782 return err;
3783 break;
3784
3785 default:
3786 if (nla_put(skb, attrtype: type, attrlen: nla_len(nla: a), data: nla_data(nla: a)))
3787 return -EMSGSIZE;
3788 break;
3789 }
3790 }
3791
3792 return 0;
3793}
3794

source code of linux/net/openvswitch/flow_netlink.c