1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * net/sched/cls_u32.c Ugly (or Universal) 32bit key Packet Classifier.
4 *
5 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
6 *
7 * The filters are packed to hash tables of key nodes
8 * with a set of 32bit key/mask pairs at every node.
9 * Nodes reference next level hash tables etc.
10 *
11 * This scheme is the best universal classifier I managed to
12 * invent; it is not super-fast, but it is not slow (provided you
13 * program it correctly), and general enough. And its relative
14 * speed grows as the number of rules becomes larger.
15 *
16 * It seems that it represents the best middle point between
17 * speed and manageability both by human and by machine.
18 *
19 * It is especially useful for link sharing combined with QoS;
20 * pure RSVP doesn't need such a general approach and can use
21 * much simpler (and faster) schemes, sort of cls_rsvp.c.
22 *
23 * nfmark match added by Catalin(ux aka Dino) BOIE <catab at umbrella.ro>
24 */
25
26#include <linux/module.h>
27#include <linux/slab.h>
28#include <linux/types.h>
29#include <linux/kernel.h>
30#include <linux/string.h>
31#include <linux/errno.h>
32#include <linux/percpu.h>
33#include <linux/rtnetlink.h>
34#include <linux/skbuff.h>
35#include <linux/bitmap.h>
36#include <linux/netdevice.h>
37#include <linux/hash.h>
38#include <net/netlink.h>
39#include <net/act_api.h>
40#include <net/pkt_cls.h>
41#include <linux/idr.h>
42#include <net/tc_wrapper.h>
43
44struct tc_u_knode {
45 struct tc_u_knode __rcu *next;
46 u32 handle;
47 struct tc_u_hnode __rcu *ht_up;
48 struct tcf_exts exts;
49 int ifindex;
50 u8 fshift;
51 struct tcf_result res;
52 struct tc_u_hnode __rcu *ht_down;
53#ifdef CONFIG_CLS_U32_PERF
54 struct tc_u32_pcnt __percpu *pf;
55#endif
56 u32 flags;
57 unsigned int in_hw_count;
58#ifdef CONFIG_CLS_U32_MARK
59 u32 val;
60 u32 mask;
61 u32 __percpu *pcpu_success;
62#endif
63 struct rcu_work rwork;
64 /* The 'sel' field MUST be the last field in structure to allow for
65 * tc_u32_keys allocated at end of structure.
66 */
67 struct tc_u32_sel sel;
68};
69
70struct tc_u_hnode {
71 struct tc_u_hnode __rcu *next;
72 u32 handle;
73 u32 prio;
74 int refcnt;
75 unsigned int divisor;
76 struct idr handle_idr;
77 bool is_root;
78 struct rcu_head rcu;
79 u32 flags;
80 /* The 'ht' field MUST be the last field in structure to allow for
81 * more entries allocated at end of structure.
82 */
83 struct tc_u_knode __rcu *ht[];
84};
85
86struct tc_u_common {
87 struct tc_u_hnode __rcu *hlist;
88 void *ptr;
89 int refcnt;
90 struct idr handle_idr;
91 struct hlist_node hnode;
92 long knodes;
93};
94
95static inline unsigned int u32_hash_fold(__be32 key,
96 const struct tc_u32_sel *sel,
97 u8 fshift)
98{
99 unsigned int h = ntohl(key & sel->hmask) >> fshift;
100
101 return h;
102}
103
104TC_INDIRECT_SCOPE int u32_classify(struct sk_buff *skb,
105 const struct tcf_proto *tp,
106 struct tcf_result *res)
107{
108 struct {
109 struct tc_u_knode *knode;
110 unsigned int off;
111 } stack[TC_U32_MAXDEPTH];
112
113 struct tc_u_hnode *ht = rcu_dereference_bh(tp->root);
114 unsigned int off = skb_network_offset(skb);
115 struct tc_u_knode *n;
116 int sdepth = 0;
117 int off2 = 0;
118 int sel = 0;
119#ifdef CONFIG_CLS_U32_PERF
120 int j;
121#endif
122 int i, r;
123
124next_ht:
125 n = rcu_dereference_bh(ht->ht[sel]);
126
127next_knode:
128 if (n) {
129 struct tc_u32_key *key = n->sel.keys;
130
131#ifdef CONFIG_CLS_U32_PERF
132 __this_cpu_inc(n->pf->rcnt);
133 j = 0;
134#endif
135
136 if (tc_skip_sw(flags: n->flags)) {
137 n = rcu_dereference_bh(n->next);
138 goto next_knode;
139 }
140
141#ifdef CONFIG_CLS_U32_MARK
142 if ((skb->mark & n->mask) != n->val) {
143 n = rcu_dereference_bh(n->next);
144 goto next_knode;
145 } else {
146 __this_cpu_inc(*n->pcpu_success);
147 }
148#endif
149
150 for (i = n->sel.nkeys; i > 0; i--, key++) {
151 int toff = off + key->off + (off2 & key->offmask);
152 __be32 *data, hdata;
153
154 if (skb_headroom(skb) + toff > INT_MAX)
155 goto out;
156
157 data = skb_header_pointer(skb, offset: toff, len: 4, buffer: &hdata);
158 if (!data)
159 goto out;
160 if ((*data ^ key->val) & key->mask) {
161 n = rcu_dereference_bh(n->next);
162 goto next_knode;
163 }
164#ifdef CONFIG_CLS_U32_PERF
165 __this_cpu_inc(n->pf->kcnts[j]);
166 j++;
167#endif
168 }
169
170 ht = rcu_dereference_bh(n->ht_down);
171 if (!ht) {
172check_terminal:
173 if (n->sel.flags & TC_U32_TERMINAL) {
174
175 *res = n->res;
176 if (!tcf_match_indev(skb, ifindex: n->ifindex)) {
177 n = rcu_dereference_bh(n->next);
178 goto next_knode;
179 }
180#ifdef CONFIG_CLS_U32_PERF
181 __this_cpu_inc(n->pf->rhit);
182#endif
183 r = tcf_exts_exec(skb, exts: &n->exts, res);
184 if (r < 0) {
185 n = rcu_dereference_bh(n->next);
186 goto next_knode;
187 }
188
189 return r;
190 }
191 n = rcu_dereference_bh(n->next);
192 goto next_knode;
193 }
194
195 /* PUSH */
196 if (sdepth >= TC_U32_MAXDEPTH)
197 goto deadloop;
198 stack[sdepth].knode = n;
199 stack[sdepth].off = off;
200 sdepth++;
201
202 ht = rcu_dereference_bh(n->ht_down);
203 sel = 0;
204 if (ht->divisor) {
205 __be32 *data, hdata;
206
207 data = skb_header_pointer(skb, offset: off + n->sel.hoff, len: 4,
208 buffer: &hdata);
209 if (!data)
210 goto out;
211 sel = ht->divisor & u32_hash_fold(key: *data, sel: &n->sel,
212 fshift: n->fshift);
213 }
214 if (!(n->sel.flags & (TC_U32_VAROFFSET | TC_U32_OFFSET | TC_U32_EAT)))
215 goto next_ht;
216
217 if (n->sel.flags & (TC_U32_OFFSET | TC_U32_VAROFFSET)) {
218 off2 = n->sel.off + 3;
219 if (n->sel.flags & TC_U32_VAROFFSET) {
220 __be16 *data, hdata;
221
222 data = skb_header_pointer(skb,
223 offset: off + n->sel.offoff,
224 len: 2, buffer: &hdata);
225 if (!data)
226 goto out;
227 off2 += ntohs(n->sel.offmask & *data) >>
228 n->sel.offshift;
229 }
230 off2 &= ~3;
231 }
232 if (n->sel.flags & TC_U32_EAT) {
233 off += off2;
234 off2 = 0;
235 }
236
237 if (off < skb->len)
238 goto next_ht;
239 }
240
241 /* POP */
242 if (sdepth--) {
243 n = stack[sdepth].knode;
244 ht = rcu_dereference_bh(n->ht_up);
245 off = stack[sdepth].off;
246 goto check_terminal;
247 }
248out:
249 return -1;
250
251deadloop:
252 net_warn_ratelimited("cls_u32: dead loop\n");
253 return -1;
254}
255
256static struct tc_u_hnode *u32_lookup_ht(struct tc_u_common *tp_c, u32 handle)
257{
258 struct tc_u_hnode *ht;
259
260 for (ht = rtnl_dereference(tp_c->hlist);
261 ht;
262 ht = rtnl_dereference(ht->next))
263 if (ht->handle == handle)
264 break;
265
266 return ht;
267}
268
269static struct tc_u_knode *u32_lookup_key(struct tc_u_hnode *ht, u32 handle)
270{
271 unsigned int sel;
272 struct tc_u_knode *n = NULL;
273
274 sel = TC_U32_HASH(handle);
275 if (sel > ht->divisor)
276 goto out;
277
278 for (n = rtnl_dereference(ht->ht[sel]);
279 n;
280 n = rtnl_dereference(n->next))
281 if (n->handle == handle)
282 break;
283out:
284 return n;
285}
286
287
288static void *u32_get(struct tcf_proto *tp, u32 handle)
289{
290 struct tc_u_hnode *ht;
291 struct tc_u_common *tp_c = tp->data;
292
293 if (TC_U32_HTID(handle) == TC_U32_ROOT)
294 ht = rtnl_dereference(tp->root);
295 else
296 ht = u32_lookup_ht(tp_c, TC_U32_HTID(handle));
297
298 if (!ht)
299 return NULL;
300
301 if (TC_U32_KEY(handle) == 0)
302 return ht;
303
304 return u32_lookup_key(ht, handle);
305}
306
307/* Protected by rtnl lock */
308static u32 gen_new_htid(struct tc_u_common *tp_c, struct tc_u_hnode *ptr)
309{
310 int id = idr_alloc_cyclic(&tp_c->handle_idr, ptr, start: 1, end: 0x7FF, GFP_KERNEL);
311 if (id < 0)
312 return 0;
313 return (id | 0x800U) << 20;
314}
315
316static struct hlist_head *tc_u_common_hash;
317
318#define U32_HASH_SHIFT 10
319#define U32_HASH_SIZE (1 << U32_HASH_SHIFT)
320
321static void *tc_u_common_ptr(const struct tcf_proto *tp)
322{
323 struct tcf_block *block = tp->chain->block;
324
325 /* The block sharing is currently supported only
326 * for classless qdiscs. In that case we use block
327 * for tc_u_common identification. In case the
328 * block is not shared, block->q is a valid pointer
329 * and we can use that. That works for classful qdiscs.
330 */
331 if (tcf_block_shared(block))
332 return block;
333 else
334 return block->q;
335}
336
337static struct hlist_head *tc_u_hash(void *key)
338{
339 return tc_u_common_hash + hash_ptr(ptr: key, U32_HASH_SHIFT);
340}
341
342static struct tc_u_common *tc_u_common_find(void *key)
343{
344 struct tc_u_common *tc;
345 hlist_for_each_entry(tc, tc_u_hash(key), hnode) {
346 if (tc->ptr == key)
347 return tc;
348 }
349 return NULL;
350}
351
352static int u32_init(struct tcf_proto *tp)
353{
354 struct tc_u_hnode *root_ht;
355 void *key = tc_u_common_ptr(tp);
356 struct tc_u_common *tp_c = tc_u_common_find(key);
357
358 root_ht = kzalloc(struct_size(root_ht, ht, 1), GFP_KERNEL);
359 if (root_ht == NULL)
360 return -ENOBUFS;
361
362 root_ht->refcnt++;
363 root_ht->handle = tp_c ? gen_new_htid(tp_c, ptr: root_ht) : 0x80000000;
364 root_ht->prio = tp->prio;
365 root_ht->is_root = true;
366 idr_init(idr: &root_ht->handle_idr);
367
368 if (tp_c == NULL) {
369 tp_c = kzalloc(size: sizeof(*tp_c), GFP_KERNEL);
370 if (tp_c == NULL) {
371 kfree(objp: root_ht);
372 return -ENOBUFS;
373 }
374 tp_c->ptr = key;
375 INIT_HLIST_NODE(h: &tp_c->hnode);
376 idr_init(idr: &tp_c->handle_idr);
377
378 hlist_add_head(n: &tp_c->hnode, h: tc_u_hash(key));
379 }
380
381 tp_c->refcnt++;
382 RCU_INIT_POINTER(root_ht->next, tp_c->hlist);
383 rcu_assign_pointer(tp_c->hlist, root_ht);
384
385 root_ht->refcnt++;
386 rcu_assign_pointer(tp->root, root_ht);
387 tp->data = tp_c;
388 return 0;
389}
390
391static void __u32_destroy_key(struct tc_u_knode *n)
392{
393 struct tc_u_hnode *ht = rtnl_dereference(n->ht_down);
394
395 tcf_exts_destroy(exts: &n->exts);
396 if (ht && --ht->refcnt == 0)
397 kfree(objp: ht);
398 kfree(objp: n);
399}
400
401static void u32_destroy_key(struct tc_u_knode *n, bool free_pf)
402{
403 tcf_exts_put_net(exts: &n->exts);
404#ifdef CONFIG_CLS_U32_PERF
405 if (free_pf)
406 free_percpu(pdata: n->pf);
407#endif
408#ifdef CONFIG_CLS_U32_MARK
409 if (free_pf)
410 free_percpu(pdata: n->pcpu_success);
411#endif
412 __u32_destroy_key(n);
413}
414
415/* u32_delete_key_rcu should be called when free'ing a copied
416 * version of a tc_u_knode obtained from u32_init_knode(). When
417 * copies are obtained from u32_init_knode() the statistics are
418 * shared between the old and new copies to allow readers to
419 * continue to update the statistics during the copy. To support
420 * this the u32_delete_key_rcu variant does not free the percpu
421 * statistics.
422 */
423static void u32_delete_key_work(struct work_struct *work)
424{
425 struct tc_u_knode *key = container_of(to_rcu_work(work),
426 struct tc_u_knode,
427 rwork);
428 rtnl_lock();
429 u32_destroy_key(n: key, free_pf: false);
430 rtnl_unlock();
431}
432
433/* u32_delete_key_freepf_rcu is the rcu callback variant
434 * that free's the entire structure including the statistics
435 * percpu variables. Only use this if the key is not a copy
436 * returned by u32_init_knode(). See u32_delete_key_rcu()
437 * for the variant that should be used with keys return from
438 * u32_init_knode()
439 */
440static void u32_delete_key_freepf_work(struct work_struct *work)
441{
442 struct tc_u_knode *key = container_of(to_rcu_work(work),
443 struct tc_u_knode,
444 rwork);
445 rtnl_lock();
446 u32_destroy_key(n: key, free_pf: true);
447 rtnl_unlock();
448}
449
450static int u32_delete_key(struct tcf_proto *tp, struct tc_u_knode *key)
451{
452 struct tc_u_common *tp_c = tp->data;
453 struct tc_u_knode __rcu **kp;
454 struct tc_u_knode *pkp;
455 struct tc_u_hnode *ht = rtnl_dereference(key->ht_up);
456
457 if (ht) {
458 kp = &ht->ht[TC_U32_HASH(key->handle)];
459 for (pkp = rtnl_dereference(*kp); pkp;
460 kp = &pkp->next, pkp = rtnl_dereference(*kp)) {
461 if (pkp == key) {
462 RCU_INIT_POINTER(*kp, key->next);
463 tp_c->knodes--;
464
465 tcf_unbind_filter(tp, r: &key->res);
466 idr_remove(&ht->handle_idr, id: key->handle);
467 tcf_exts_get_net(exts: &key->exts);
468 tcf_queue_work(rwork: &key->rwork, func: u32_delete_key_freepf_work);
469 return 0;
470 }
471 }
472 }
473 WARN_ON(1);
474 return 0;
475}
476
477static void u32_clear_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h,
478 struct netlink_ext_ack *extack)
479{
480 struct tcf_block *block = tp->chain->block;
481 struct tc_cls_u32_offload cls_u32 = {};
482
483 tc_cls_common_offload_init(cls_common: &cls_u32.common, tp, flags: h->flags, extack);
484 cls_u32.command = TC_CLSU32_DELETE_HNODE;
485 cls_u32.hnode.divisor = h->divisor;
486 cls_u32.hnode.handle = h->handle;
487 cls_u32.hnode.prio = h->prio;
488
489 tc_setup_cb_call(block, type: TC_SETUP_CLSU32, type_data: &cls_u32, err_stop: false, rtnl_held: true);
490}
491
492static int u32_replace_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h,
493 u32 flags, struct netlink_ext_ack *extack)
494{
495 struct tcf_block *block = tp->chain->block;
496 struct tc_cls_u32_offload cls_u32 = {};
497 bool skip_sw = tc_skip_sw(flags);
498 bool offloaded = false;
499 int err;
500
501 tc_cls_common_offload_init(cls_common: &cls_u32.common, tp, flags, extack);
502 cls_u32.command = TC_CLSU32_NEW_HNODE;
503 cls_u32.hnode.divisor = h->divisor;
504 cls_u32.hnode.handle = h->handle;
505 cls_u32.hnode.prio = h->prio;
506
507 err = tc_setup_cb_call(block, type: TC_SETUP_CLSU32, type_data: &cls_u32, err_stop: skip_sw, rtnl_held: true);
508 if (err < 0) {
509 u32_clear_hw_hnode(tp, h, NULL);
510 return err;
511 } else if (err > 0) {
512 offloaded = true;
513 }
514
515 if (skip_sw && !offloaded)
516 return -EINVAL;
517
518 return 0;
519}
520
521static void u32_remove_hw_knode(struct tcf_proto *tp, struct tc_u_knode *n,
522 struct netlink_ext_ack *extack)
523{
524 struct tcf_block *block = tp->chain->block;
525 struct tc_cls_u32_offload cls_u32 = {};
526
527 tc_cls_common_offload_init(cls_common: &cls_u32.common, tp, flags: n->flags, extack);
528 cls_u32.command = TC_CLSU32_DELETE_KNODE;
529 cls_u32.knode.handle = n->handle;
530
531 tc_setup_cb_destroy(block, tp, type: TC_SETUP_CLSU32, type_data: &cls_u32, err_stop: false,
532 flags: &n->flags, in_hw_count: &n->in_hw_count, rtnl_held: true);
533}
534
535static int u32_replace_hw_knode(struct tcf_proto *tp, struct tc_u_knode *n,
536 u32 flags, struct netlink_ext_ack *extack)
537{
538 struct tc_u_hnode *ht = rtnl_dereference(n->ht_down);
539 struct tcf_block *block = tp->chain->block;
540 struct tc_cls_u32_offload cls_u32 = {};
541 bool skip_sw = tc_skip_sw(flags);
542 int err;
543
544 tc_cls_common_offload_init(cls_common: &cls_u32.common, tp, flags, extack);
545 cls_u32.command = TC_CLSU32_REPLACE_KNODE;
546 cls_u32.knode.handle = n->handle;
547 cls_u32.knode.fshift = n->fshift;
548#ifdef CONFIG_CLS_U32_MARK
549 cls_u32.knode.val = n->val;
550 cls_u32.knode.mask = n->mask;
551#else
552 cls_u32.knode.val = 0;
553 cls_u32.knode.mask = 0;
554#endif
555 cls_u32.knode.sel = &n->sel;
556 cls_u32.knode.res = &n->res;
557 cls_u32.knode.exts = &n->exts;
558 if (n->ht_down)
559 cls_u32.knode.link_handle = ht->handle;
560
561 err = tc_setup_cb_add(block, tp, type: TC_SETUP_CLSU32, type_data: &cls_u32, err_stop: skip_sw,
562 flags: &n->flags, in_hw_count: &n->in_hw_count, rtnl_held: true);
563 if (err) {
564 u32_remove_hw_knode(tp, n, NULL);
565 return err;
566 }
567
568 if (skip_sw && !(n->flags & TCA_CLS_FLAGS_IN_HW))
569 return -EINVAL;
570
571 return 0;
572}
573
574static void u32_clear_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht,
575 struct netlink_ext_ack *extack)
576{
577 struct tc_u_common *tp_c = tp->data;
578 struct tc_u_knode *n;
579 unsigned int h;
580
581 for (h = 0; h <= ht->divisor; h++) {
582 while ((n = rtnl_dereference(ht->ht[h])) != NULL) {
583 RCU_INIT_POINTER(ht->ht[h],
584 rtnl_dereference(n->next));
585 tp_c->knodes--;
586 tcf_unbind_filter(tp, r: &n->res);
587 u32_remove_hw_knode(tp, n, extack);
588 idr_remove(&ht->handle_idr, id: n->handle);
589 if (tcf_exts_get_net(exts: &n->exts))
590 tcf_queue_work(rwork: &n->rwork, func: u32_delete_key_freepf_work);
591 else
592 u32_destroy_key(n, free_pf: true);
593 }
594 }
595}
596
597static int u32_destroy_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht,
598 struct netlink_ext_ack *extack)
599{
600 struct tc_u_common *tp_c = tp->data;
601 struct tc_u_hnode __rcu **hn;
602 struct tc_u_hnode *phn;
603
604 WARN_ON(--ht->refcnt);
605
606 u32_clear_hnode(tp, ht, extack);
607
608 hn = &tp_c->hlist;
609 for (phn = rtnl_dereference(*hn);
610 phn;
611 hn = &phn->next, phn = rtnl_dereference(*hn)) {
612 if (phn == ht) {
613 u32_clear_hw_hnode(tp, h: ht, extack);
614 idr_destroy(&ht->handle_idr);
615 idr_remove(&tp_c->handle_idr, id: ht->handle);
616 RCU_INIT_POINTER(*hn, ht->next);
617 kfree_rcu(ht, rcu);
618 return 0;
619 }
620 }
621
622 return -ENOENT;
623}
624
625static void u32_destroy(struct tcf_proto *tp, bool rtnl_held,
626 struct netlink_ext_ack *extack)
627{
628 struct tc_u_common *tp_c = tp->data;
629 struct tc_u_hnode *root_ht = rtnl_dereference(tp->root);
630
631 WARN_ON(root_ht == NULL);
632
633 if (root_ht && --root_ht->refcnt == 1)
634 u32_destroy_hnode(tp, ht: root_ht, extack);
635
636 if (--tp_c->refcnt == 0) {
637 struct tc_u_hnode *ht;
638
639 hlist_del(n: &tp_c->hnode);
640
641 while ((ht = rtnl_dereference(tp_c->hlist)) != NULL) {
642 u32_clear_hnode(tp, ht, extack);
643 RCU_INIT_POINTER(tp_c->hlist, ht->next);
644
645 /* u32_destroy_key() will later free ht for us, if it's
646 * still referenced by some knode
647 */
648 if (--ht->refcnt == 0)
649 kfree_rcu(ht, rcu);
650 }
651
652 idr_destroy(&tp_c->handle_idr);
653 kfree(objp: tp_c);
654 }
655
656 tp->data = NULL;
657}
658
659static int u32_delete(struct tcf_proto *tp, void *arg, bool *last,
660 bool rtnl_held, struct netlink_ext_ack *extack)
661{
662 struct tc_u_hnode *ht = arg;
663 struct tc_u_common *tp_c = tp->data;
664 int ret = 0;
665
666 if (TC_U32_KEY(ht->handle)) {
667 u32_remove_hw_knode(tp, n: (struct tc_u_knode *)ht, extack);
668 ret = u32_delete_key(tp, key: (struct tc_u_knode *)ht);
669 goto out;
670 }
671
672 if (ht->is_root) {
673 NL_SET_ERR_MSG_MOD(extack, "Not allowed to delete root node");
674 return -EINVAL;
675 }
676
677 if (ht->refcnt == 1) {
678 u32_destroy_hnode(tp, ht, extack);
679 } else {
680 NL_SET_ERR_MSG_MOD(extack, "Can not delete in-use filter");
681 return -EBUSY;
682 }
683
684out:
685 *last = tp_c->refcnt == 1 && tp_c->knodes == 0;
686 return ret;
687}
688
689static u32 gen_new_kid(struct tc_u_hnode *ht, u32 htid)
690{
691 u32 index = htid | 0x800;
692 u32 max = htid | 0xFFF;
693
694 if (idr_alloc_u32(&ht->handle_idr, NULL, id: &index, max, GFP_KERNEL)) {
695 index = htid + 1;
696 if (idr_alloc_u32(&ht->handle_idr, NULL, id: &index, max,
697 GFP_KERNEL))
698 index = max;
699 }
700
701 return index;
702}
703
704static const struct nla_policy u32_policy[TCA_U32_MAX + 1] = {
705 [TCA_U32_CLASSID] = { .type = NLA_U32 },
706 [TCA_U32_HASH] = { .type = NLA_U32 },
707 [TCA_U32_LINK] = { .type = NLA_U32 },
708 [TCA_U32_DIVISOR] = { .type = NLA_U32 },
709 [TCA_U32_SEL] = { .len = sizeof(struct tc_u32_sel) },
710 [TCA_U32_INDEV] = { .type = NLA_STRING, .len = IFNAMSIZ },
711 [TCA_U32_MARK] = { .len = sizeof(struct tc_u32_mark) },
712 [TCA_U32_FLAGS] = { .type = NLA_U32 },
713};
714
715static void u32_unbind_filter(struct tcf_proto *tp, struct tc_u_knode *n,
716 struct nlattr **tb)
717{
718 if (tb[TCA_U32_CLASSID])
719 tcf_unbind_filter(tp, r: &n->res);
720}
721
722static void u32_bind_filter(struct tcf_proto *tp, struct tc_u_knode *n,
723 unsigned long base, struct nlattr **tb)
724{
725 if (tb[TCA_U32_CLASSID]) {
726 n->res.classid = nla_get_u32(nla: tb[TCA_U32_CLASSID]);
727 tcf_bind_filter(tp, r: &n->res, base);
728 }
729}
730
731static int u32_set_parms(struct net *net, struct tcf_proto *tp,
732 struct tc_u_knode *n, struct nlattr **tb,
733 struct nlattr *est, u32 flags, u32 fl_flags,
734 struct netlink_ext_ack *extack)
735{
736 int err, ifindex = -1;
737
738 err = tcf_exts_validate_ex(net, tp, tb, rate_tlv: est, exts: &n->exts, flags,
739 fl_flags, extack);
740 if (err < 0)
741 return err;
742
743 if (tb[TCA_U32_INDEV]) {
744 ifindex = tcf_change_indev(net, indev_tlv: tb[TCA_U32_INDEV], extack);
745 if (ifindex < 0)
746 return -EINVAL;
747 }
748
749 if (tb[TCA_U32_LINK]) {
750 u32 handle = nla_get_u32(nla: tb[TCA_U32_LINK]);
751 struct tc_u_hnode *ht_down = NULL, *ht_old;
752
753 if (TC_U32_KEY(handle)) {
754 NL_SET_ERR_MSG_MOD(extack, "u32 Link handle must be a hash table");
755 return -EINVAL;
756 }
757
758 if (handle) {
759 ht_down = u32_lookup_ht(tp_c: tp->data, handle);
760
761 if (!ht_down) {
762 NL_SET_ERR_MSG_MOD(extack, "Link hash table not found");
763 return -EINVAL;
764 }
765 if (ht_down->is_root) {
766 NL_SET_ERR_MSG_MOD(extack, "Not linking to root node");
767 return -EINVAL;
768 }
769 ht_down->refcnt++;
770 }
771
772 ht_old = rtnl_dereference(n->ht_down);
773 rcu_assign_pointer(n->ht_down, ht_down);
774
775 if (ht_old)
776 ht_old->refcnt--;
777 }
778
779 if (ifindex >= 0)
780 n->ifindex = ifindex;
781
782 return 0;
783}
784
785static void u32_replace_knode(struct tcf_proto *tp, struct tc_u_common *tp_c,
786 struct tc_u_knode *n)
787{
788 struct tc_u_knode __rcu **ins;
789 struct tc_u_knode *pins;
790 struct tc_u_hnode *ht;
791
792 if (TC_U32_HTID(n->handle) == TC_U32_ROOT)
793 ht = rtnl_dereference(tp->root);
794 else
795 ht = u32_lookup_ht(tp_c, TC_U32_HTID(n->handle));
796
797 ins = &ht->ht[TC_U32_HASH(n->handle)];
798
799 /* The node must always exist for it to be replaced if this is not the
800 * case then something went very wrong elsewhere.
801 */
802 for (pins = rtnl_dereference(*ins); ;
803 ins = &pins->next, pins = rtnl_dereference(*ins))
804 if (pins->handle == n->handle)
805 break;
806
807 idr_replace(&ht->handle_idr, n, id: n->handle);
808 RCU_INIT_POINTER(n->next, pins->next);
809 rcu_assign_pointer(*ins, n);
810}
811
812static struct tc_u_knode *u32_init_knode(struct net *net, struct tcf_proto *tp,
813 struct tc_u_knode *n)
814{
815 struct tc_u_hnode *ht = rtnl_dereference(n->ht_down);
816 struct tc_u32_sel *s = &n->sel;
817 struct tc_u_knode *new;
818
819 new = kzalloc(struct_size(new, sel.keys, s->nkeys), GFP_KERNEL);
820 if (!new)
821 return NULL;
822
823 RCU_INIT_POINTER(new->next, n->next);
824 new->handle = n->handle;
825 RCU_INIT_POINTER(new->ht_up, n->ht_up);
826
827 new->ifindex = n->ifindex;
828 new->fshift = n->fshift;
829 new->flags = n->flags;
830 RCU_INIT_POINTER(new->ht_down, ht);
831
832#ifdef CONFIG_CLS_U32_PERF
833 /* Statistics may be incremented by readers during update
834 * so we must keep them in tact. When the node is later destroyed
835 * a special destroy call must be made to not free the pf memory.
836 */
837 new->pf = n->pf;
838#endif
839
840#ifdef CONFIG_CLS_U32_MARK
841 new->val = n->val;
842 new->mask = n->mask;
843 /* Similarly success statistics must be moved as pointers */
844 new->pcpu_success = n->pcpu_success;
845#endif
846 memcpy(&new->sel, s, struct_size(s, keys, s->nkeys));
847
848 if (tcf_exts_init(exts: &new->exts, net, action: TCA_U32_ACT, police: TCA_U32_POLICE)) {
849 kfree(objp: new);
850 return NULL;
851 }
852
853 /* bump reference count as long as we hold pointer to structure */
854 if (ht)
855 ht->refcnt++;
856
857 return new;
858}
859
860static int u32_change(struct net *net, struct sk_buff *in_skb,
861 struct tcf_proto *tp, unsigned long base, u32 handle,
862 struct nlattr **tca, void **arg, u32 flags,
863 struct netlink_ext_ack *extack)
864{
865 struct tc_u_common *tp_c = tp->data;
866 struct tc_u_hnode *ht;
867 struct tc_u_knode *n;
868 struct tc_u32_sel *s;
869 struct nlattr *opt = tca[TCA_OPTIONS];
870 struct nlattr *tb[TCA_U32_MAX + 1];
871 u32 htid, userflags = 0;
872 size_t sel_size;
873 int err;
874
875 if (!opt) {
876 if (handle) {
877 NL_SET_ERR_MSG_MOD(extack, "Filter handle requires options");
878 return -EINVAL;
879 } else {
880 return 0;
881 }
882 }
883
884 err = nla_parse_nested_deprecated(tb, TCA_U32_MAX, nla: opt, policy: u32_policy,
885 extack);
886 if (err < 0)
887 return err;
888
889 if (tb[TCA_U32_FLAGS]) {
890 userflags = nla_get_u32(nla: tb[TCA_U32_FLAGS]);
891 if (!tc_flags_valid(flags: userflags)) {
892 NL_SET_ERR_MSG_MOD(extack, "Invalid filter flags");
893 return -EINVAL;
894 }
895 }
896
897 n = *arg;
898 if (n) {
899 struct tc_u_knode *new;
900
901 if (TC_U32_KEY(n->handle) == 0) {
902 NL_SET_ERR_MSG_MOD(extack, "Key node id cannot be zero");
903 return -EINVAL;
904 }
905
906 if ((n->flags ^ userflags) &
907 ~(TCA_CLS_FLAGS_IN_HW | TCA_CLS_FLAGS_NOT_IN_HW)) {
908 NL_SET_ERR_MSG_MOD(extack, "Key node flags do not match passed flags");
909 return -EINVAL;
910 }
911
912 new = u32_init_knode(net, tp, n);
913 if (!new)
914 return -ENOMEM;
915
916 err = u32_set_parms(net, tp, n: new, tb, est: tca[TCA_RATE],
917 flags, fl_flags: new->flags, extack);
918
919 if (err) {
920 __u32_destroy_key(n: new);
921 return err;
922 }
923
924 u32_bind_filter(tp, n: new, base, tb);
925
926 err = u32_replace_hw_knode(tp, n: new, flags, extack);
927 if (err) {
928 u32_unbind_filter(tp, n: new, tb);
929
930 if (tb[TCA_U32_LINK]) {
931 struct tc_u_hnode *ht_old;
932
933 ht_old = rtnl_dereference(n->ht_down);
934 if (ht_old)
935 ht_old->refcnt++;
936 }
937 __u32_destroy_key(n: new);
938 return err;
939 }
940
941 if (!tc_in_hw(flags: new->flags))
942 new->flags |= TCA_CLS_FLAGS_NOT_IN_HW;
943
944 u32_replace_knode(tp, tp_c, n: new);
945 tcf_unbind_filter(tp, r: &n->res);
946 tcf_exts_get_net(exts: &n->exts);
947 tcf_queue_work(rwork: &n->rwork, func: u32_delete_key_work);
948 return 0;
949 }
950
951 if (tb[TCA_U32_DIVISOR]) {
952 unsigned int divisor = nla_get_u32(nla: tb[TCA_U32_DIVISOR]);
953
954 if (!is_power_of_2(n: divisor)) {
955 NL_SET_ERR_MSG_MOD(extack, "Divisor is not a power of 2");
956 return -EINVAL;
957 }
958 if (divisor-- > 0x100) {
959 NL_SET_ERR_MSG_MOD(extack, "Exceeded maximum 256 hash buckets");
960 return -EINVAL;
961 }
962 if (TC_U32_KEY(handle)) {
963 NL_SET_ERR_MSG_MOD(extack, "Divisor can only be used on a hash table");
964 return -EINVAL;
965 }
966 ht = kzalloc(struct_size(ht, ht, divisor + 1), GFP_KERNEL);
967 if (ht == NULL)
968 return -ENOBUFS;
969 if (handle == 0) {
970 handle = gen_new_htid(tp_c: tp->data, ptr: ht);
971 if (handle == 0) {
972 kfree(objp: ht);
973 return -ENOMEM;
974 }
975 } else {
976 err = idr_alloc_u32(&tp_c->handle_idr, ptr: ht, id: &handle,
977 max: handle, GFP_KERNEL);
978 if (err) {
979 kfree(objp: ht);
980 return err;
981 }
982 }
983 ht->refcnt = 1;
984 ht->divisor = divisor;
985 ht->handle = handle;
986 ht->prio = tp->prio;
987 idr_init(idr: &ht->handle_idr);
988 ht->flags = userflags;
989
990 err = u32_replace_hw_hnode(tp, h: ht, flags: userflags, extack);
991 if (err) {
992 idr_remove(&tp_c->handle_idr, id: handle);
993 kfree(objp: ht);
994 return err;
995 }
996
997 RCU_INIT_POINTER(ht->next, tp_c->hlist);
998 rcu_assign_pointer(tp_c->hlist, ht);
999 *arg = ht;
1000
1001 return 0;
1002 }
1003
1004 if (tb[TCA_U32_HASH]) {
1005 htid = nla_get_u32(nla: tb[TCA_U32_HASH]);
1006 if (TC_U32_HTID(htid) == TC_U32_ROOT) {
1007 ht = rtnl_dereference(tp->root);
1008 htid = ht->handle;
1009 } else {
1010 ht = u32_lookup_ht(tp_c: tp->data, TC_U32_HTID(htid));
1011 if (!ht) {
1012 NL_SET_ERR_MSG_MOD(extack, "Specified hash table not found");
1013 return -EINVAL;
1014 }
1015 }
1016 } else {
1017 ht = rtnl_dereference(tp->root);
1018 htid = ht->handle;
1019 }
1020
1021 if (ht->divisor < TC_U32_HASH(htid)) {
1022 NL_SET_ERR_MSG_MOD(extack, "Specified hash table buckets exceed configured value");
1023 return -EINVAL;
1024 }
1025
1026 /* At this point, we need to derive the new handle that will be used to
1027 * uniquely map the identity of this table match entry. The
1028 * identity of the entry that we need to construct is 32 bits made of:
1029 * htid(12b):bucketid(8b):node/entryid(12b)
1030 *
1031 * At this point _we have the table(ht)_ in which we will insert this
1032 * entry. We carry the table's id in variable "htid".
1033 * Note that earlier code picked the ht selection either by a) the user
1034 * providing the htid specified via TCA_U32_HASH attribute or b) when
1035 * no such attribute is passed then the root ht, is default to at ID
1036 * 0x[800][00][000]. Rule: the root table has a single bucket with ID 0.
1037 * If OTOH the user passed us the htid, they may also pass a bucketid of
1038 * choice. 0 is fine. For example a user htid is 0x[600][01][000] it is
1039 * indicating hash bucketid of 1. Rule: the entry/node ID _cannot_ be
1040 * passed via the htid, so even if it was non-zero it will be ignored.
1041 *
1042 * We may also have a handle, if the user passed one. The handle also
1043 * carries the same addressing of htid(12b):bucketid(8b):node/entryid(12b).
1044 * Rule: the bucketid on the handle is ignored even if one was passed;
1045 * rather the value on "htid" is always assumed to be the bucketid.
1046 */
1047 if (handle) {
1048 /* Rule: The htid from handle and tableid from htid must match */
1049 if (TC_U32_HTID(handle) && TC_U32_HTID(handle ^ htid)) {
1050 NL_SET_ERR_MSG_MOD(extack, "Handle specified hash table address mismatch");
1051 return -EINVAL;
1052 }
1053 /* Ok, so far we have a valid htid(12b):bucketid(8b) but we
1054 * need to finalize the table entry identification with the last
1055 * part - the node/entryid(12b)). Rule: Nodeid _cannot be 0_ for
1056 * entries. Rule: nodeid of 0 is reserved only for tables(see
1057 * earlier code which processes TC_U32_DIVISOR attribute).
1058 * Rule: The nodeid can only be derived from the handle (and not
1059 * htid).
1060 * Rule: if the handle specified zero for the node id example
1061 * 0x60000000, then pick a new nodeid from the pool of IDs
1062 * this hash table has been allocating from.
1063 * If OTOH it is specified (i.e for example the user passed a
1064 * handle such as 0x60000123), then we use it generate our final
1065 * handle which is used to uniquely identify the match entry.
1066 */
1067 if (!TC_U32_NODE(handle)) {
1068 handle = gen_new_kid(ht, htid);
1069 } else {
1070 handle = htid | TC_U32_NODE(handle);
1071 err = idr_alloc_u32(&ht->handle_idr, NULL, id: &handle,
1072 max: handle, GFP_KERNEL);
1073 if (err)
1074 return err;
1075 }
1076 } else {
1077 /* The user did not give us a handle; lets just generate one
1078 * from the table's pool of nodeids.
1079 */
1080 handle = gen_new_kid(ht, htid);
1081 }
1082
1083 if (tb[TCA_U32_SEL] == NULL) {
1084 NL_SET_ERR_MSG_MOD(extack, "Selector not specified");
1085 err = -EINVAL;
1086 goto erridr;
1087 }
1088
1089 s = nla_data(nla: tb[TCA_U32_SEL]);
1090 sel_size = struct_size(s, keys, s->nkeys);
1091 if (nla_len(nla: tb[TCA_U32_SEL]) < sel_size) {
1092 err = -EINVAL;
1093 goto erridr;
1094 }
1095
1096 n = kzalloc(struct_size(n, sel.keys, s->nkeys), GFP_KERNEL);
1097 if (n == NULL) {
1098 err = -ENOBUFS;
1099 goto erridr;
1100 }
1101
1102#ifdef CONFIG_CLS_U32_PERF
1103 n->pf = __alloc_percpu(struct_size(n->pf, kcnts, s->nkeys),
1104 align: __alignof__(struct tc_u32_pcnt));
1105 if (!n->pf) {
1106 err = -ENOBUFS;
1107 goto errfree;
1108 }
1109#endif
1110
1111 unsafe_memcpy(&n->sel, s, sel_size,
1112 /* A composite flex-array structure destination,
1113 * which was correctly sized with struct_size(),
1114 * bounds-checked against nla_len(), and allocated
1115 * above. */);
1116 RCU_INIT_POINTER(n->ht_up, ht);
1117 n->handle = handle;
1118 n->fshift = s->hmask ? ffs(ntohl(s->hmask)) - 1 : 0;
1119 n->flags = userflags;
1120
1121 err = tcf_exts_init(exts: &n->exts, net, action: TCA_U32_ACT, police: TCA_U32_POLICE);
1122 if (err < 0)
1123 goto errout;
1124
1125#ifdef CONFIG_CLS_U32_MARK
1126 n->pcpu_success = alloc_percpu(u32);
1127 if (!n->pcpu_success) {
1128 err = -ENOMEM;
1129 goto errout;
1130 }
1131
1132 if (tb[TCA_U32_MARK]) {
1133 struct tc_u32_mark *mark;
1134
1135 mark = nla_data(nla: tb[TCA_U32_MARK]);
1136 n->val = mark->val;
1137 n->mask = mark->mask;
1138 }
1139#endif
1140
1141 err = u32_set_parms(net, tp, n, tb, est: tca[TCA_RATE],
1142 flags, fl_flags: n->flags, extack);
1143
1144 u32_bind_filter(tp, n, base, tb);
1145
1146 if (err == 0) {
1147 struct tc_u_knode __rcu **ins;
1148 struct tc_u_knode *pins;
1149
1150 err = u32_replace_hw_knode(tp, n, flags, extack);
1151 if (err)
1152 goto errunbind;
1153
1154 if (!tc_in_hw(flags: n->flags))
1155 n->flags |= TCA_CLS_FLAGS_NOT_IN_HW;
1156
1157 ins = &ht->ht[TC_U32_HASH(handle)];
1158 for (pins = rtnl_dereference(*ins); pins;
1159 ins = &pins->next, pins = rtnl_dereference(*ins))
1160 if (TC_U32_NODE(handle) < TC_U32_NODE(pins->handle))
1161 break;
1162
1163 RCU_INIT_POINTER(n->next, pins);
1164 rcu_assign_pointer(*ins, n);
1165 tp_c->knodes++;
1166 *arg = n;
1167 return 0;
1168 }
1169
1170errunbind:
1171 u32_unbind_filter(tp, n, tb);
1172
1173#ifdef CONFIG_CLS_U32_MARK
1174 free_percpu(pdata: n->pcpu_success);
1175#endif
1176
1177errout:
1178 tcf_exts_destroy(exts: &n->exts);
1179#ifdef CONFIG_CLS_U32_PERF
1180errfree:
1181 free_percpu(pdata: n->pf);
1182#endif
1183 kfree(objp: n);
1184erridr:
1185 idr_remove(&ht->handle_idr, id: handle);
1186 return err;
1187}
1188
1189static void u32_walk(struct tcf_proto *tp, struct tcf_walker *arg,
1190 bool rtnl_held)
1191{
1192 struct tc_u_common *tp_c = tp->data;
1193 struct tc_u_hnode *ht;
1194 struct tc_u_knode *n;
1195 unsigned int h;
1196
1197 if (arg->stop)
1198 return;
1199
1200 for (ht = rtnl_dereference(tp_c->hlist);
1201 ht;
1202 ht = rtnl_dereference(ht->next)) {
1203 if (ht->prio != tp->prio)
1204 continue;
1205
1206 if (!tc_cls_stats_dump(tp, arg, filter: ht))
1207 return;
1208
1209 for (h = 0; h <= ht->divisor; h++) {
1210 for (n = rtnl_dereference(ht->ht[h]);
1211 n;
1212 n = rtnl_dereference(n->next)) {
1213 if (!tc_cls_stats_dump(tp, arg, filter: n))
1214 return;
1215 }
1216 }
1217 }
1218}
1219
1220static int u32_reoffload_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht,
1221 bool add, flow_setup_cb_t *cb, void *cb_priv,
1222 struct netlink_ext_ack *extack)
1223{
1224 struct tc_cls_u32_offload cls_u32 = {};
1225 int err;
1226
1227 tc_cls_common_offload_init(cls_common: &cls_u32.common, tp, flags: ht->flags, extack);
1228 cls_u32.command = add ? TC_CLSU32_NEW_HNODE : TC_CLSU32_DELETE_HNODE;
1229 cls_u32.hnode.divisor = ht->divisor;
1230 cls_u32.hnode.handle = ht->handle;
1231 cls_u32.hnode.prio = ht->prio;
1232
1233 err = cb(TC_SETUP_CLSU32, &cls_u32, cb_priv);
1234 if (err && add && tc_skip_sw(flags: ht->flags))
1235 return err;
1236
1237 return 0;
1238}
1239
1240static int u32_reoffload_knode(struct tcf_proto *tp, struct tc_u_knode *n,
1241 bool add, flow_setup_cb_t *cb, void *cb_priv,
1242 struct netlink_ext_ack *extack)
1243{
1244 struct tc_u_hnode *ht = rtnl_dereference(n->ht_down);
1245 struct tcf_block *block = tp->chain->block;
1246 struct tc_cls_u32_offload cls_u32 = {};
1247
1248 tc_cls_common_offload_init(cls_common: &cls_u32.common, tp, flags: n->flags, extack);
1249 cls_u32.command = add ?
1250 TC_CLSU32_REPLACE_KNODE : TC_CLSU32_DELETE_KNODE;
1251 cls_u32.knode.handle = n->handle;
1252
1253 if (add) {
1254 cls_u32.knode.fshift = n->fshift;
1255#ifdef CONFIG_CLS_U32_MARK
1256 cls_u32.knode.val = n->val;
1257 cls_u32.knode.mask = n->mask;
1258#else
1259 cls_u32.knode.val = 0;
1260 cls_u32.knode.mask = 0;
1261#endif
1262 cls_u32.knode.sel = &n->sel;
1263 cls_u32.knode.res = &n->res;
1264 cls_u32.knode.exts = &n->exts;
1265 if (n->ht_down)
1266 cls_u32.knode.link_handle = ht->handle;
1267 }
1268
1269 return tc_setup_cb_reoffload(block, tp, add, cb, type: TC_SETUP_CLSU32,
1270 type_data: &cls_u32, cb_priv, flags: &n->flags,
1271 in_hw_count: &n->in_hw_count);
1272}
1273
1274static int u32_reoffload(struct tcf_proto *tp, bool add, flow_setup_cb_t *cb,
1275 void *cb_priv, struct netlink_ext_ack *extack)
1276{
1277 struct tc_u_common *tp_c = tp->data;
1278 struct tc_u_hnode *ht;
1279 struct tc_u_knode *n;
1280 unsigned int h;
1281 int err;
1282
1283 for (ht = rtnl_dereference(tp_c->hlist);
1284 ht;
1285 ht = rtnl_dereference(ht->next)) {
1286 if (ht->prio != tp->prio)
1287 continue;
1288
1289 /* When adding filters to a new dev, try to offload the
1290 * hashtable first. When removing, do the filters before the
1291 * hashtable.
1292 */
1293 if (add && !tc_skip_hw(flags: ht->flags)) {
1294 err = u32_reoffload_hnode(tp, ht, add, cb, cb_priv,
1295 extack);
1296 if (err)
1297 return err;
1298 }
1299
1300 for (h = 0; h <= ht->divisor; h++) {
1301 for (n = rtnl_dereference(ht->ht[h]);
1302 n;
1303 n = rtnl_dereference(n->next)) {
1304 if (tc_skip_hw(flags: n->flags))
1305 continue;
1306
1307 err = u32_reoffload_knode(tp, n, add, cb,
1308 cb_priv, extack);
1309 if (err)
1310 return err;
1311 }
1312 }
1313
1314 if (!add && !tc_skip_hw(flags: ht->flags))
1315 u32_reoffload_hnode(tp, ht, add, cb, cb_priv, extack);
1316 }
1317
1318 return 0;
1319}
1320
1321static void u32_bind_class(void *fh, u32 classid, unsigned long cl, void *q,
1322 unsigned long base)
1323{
1324 struct tc_u_knode *n = fh;
1325
1326 tc_cls_bind_class(classid, cl, q, res: &n->res, base);
1327}
1328
1329static int u32_dump(struct net *net, struct tcf_proto *tp, void *fh,
1330 struct sk_buff *skb, struct tcmsg *t, bool rtnl_held)
1331{
1332 struct tc_u_knode *n = fh;
1333 struct tc_u_hnode *ht_up, *ht_down;
1334 struct nlattr *nest;
1335
1336 if (n == NULL)
1337 return skb->len;
1338
1339 t->tcm_handle = n->handle;
1340
1341 nest = nla_nest_start_noflag(skb, attrtype: TCA_OPTIONS);
1342 if (nest == NULL)
1343 goto nla_put_failure;
1344
1345 if (TC_U32_KEY(n->handle) == 0) {
1346 struct tc_u_hnode *ht = fh;
1347 u32 divisor = ht->divisor + 1;
1348
1349 if (nla_put_u32(skb, attrtype: TCA_U32_DIVISOR, value: divisor))
1350 goto nla_put_failure;
1351 } else {
1352#ifdef CONFIG_CLS_U32_PERF
1353 struct tc_u32_pcnt *gpf;
1354 int cpu;
1355#endif
1356
1357 if (nla_put(skb, attrtype: TCA_U32_SEL, struct_size(&n->sel, keys, n->sel.nkeys),
1358 data: &n->sel))
1359 goto nla_put_failure;
1360
1361 ht_up = rtnl_dereference(n->ht_up);
1362 if (ht_up) {
1363 u32 htid = n->handle & 0xFFFFF000;
1364 if (nla_put_u32(skb, attrtype: TCA_U32_HASH, value: htid))
1365 goto nla_put_failure;
1366 }
1367 if (n->res.classid &&
1368 nla_put_u32(skb, attrtype: TCA_U32_CLASSID, value: n->res.classid))
1369 goto nla_put_failure;
1370
1371 ht_down = rtnl_dereference(n->ht_down);
1372 if (ht_down &&
1373 nla_put_u32(skb, attrtype: TCA_U32_LINK, value: ht_down->handle))
1374 goto nla_put_failure;
1375
1376 if (n->flags && nla_put_u32(skb, attrtype: TCA_U32_FLAGS, value: n->flags))
1377 goto nla_put_failure;
1378
1379#ifdef CONFIG_CLS_U32_MARK
1380 if ((n->val || n->mask)) {
1381 struct tc_u32_mark mark = {.val = n->val,
1382 .mask = n->mask,
1383 .success = 0};
1384 int cpum;
1385
1386 for_each_possible_cpu(cpum) {
1387 __u32 cnt = *per_cpu_ptr(n->pcpu_success, cpum);
1388
1389 mark.success += cnt;
1390 }
1391
1392 if (nla_put(skb, attrtype: TCA_U32_MARK, attrlen: sizeof(mark), data: &mark))
1393 goto nla_put_failure;
1394 }
1395#endif
1396
1397 if (tcf_exts_dump(skb, exts: &n->exts) < 0)
1398 goto nla_put_failure;
1399
1400 if (n->ifindex) {
1401 struct net_device *dev;
1402 dev = __dev_get_by_index(net, ifindex: n->ifindex);
1403 if (dev && nla_put_string(skb, attrtype: TCA_U32_INDEV, str: dev->name))
1404 goto nla_put_failure;
1405 }
1406#ifdef CONFIG_CLS_U32_PERF
1407 gpf = kzalloc(struct_size(gpf, kcnts, n->sel.nkeys), GFP_KERNEL);
1408 if (!gpf)
1409 goto nla_put_failure;
1410
1411 for_each_possible_cpu(cpu) {
1412 int i;
1413 struct tc_u32_pcnt *pf = per_cpu_ptr(n->pf, cpu);
1414
1415 gpf->rcnt += pf->rcnt;
1416 gpf->rhit += pf->rhit;
1417 for (i = 0; i < n->sel.nkeys; i++)
1418 gpf->kcnts[i] += pf->kcnts[i];
1419 }
1420
1421 if (nla_put_64bit(skb, attrtype: TCA_U32_PCNT, struct_size(gpf, kcnts, n->sel.nkeys),
1422 data: gpf, padattr: TCA_U32_PAD)) {
1423 kfree(objp: gpf);
1424 goto nla_put_failure;
1425 }
1426 kfree(objp: gpf);
1427#endif
1428 }
1429
1430 nla_nest_end(skb, start: nest);
1431
1432 if (TC_U32_KEY(n->handle))
1433 if (tcf_exts_dump_stats(skb, exts: &n->exts) < 0)
1434 goto nla_put_failure;
1435 return skb->len;
1436
1437nla_put_failure:
1438 nla_nest_cancel(skb, start: nest);
1439 return -1;
1440}
1441
1442static struct tcf_proto_ops cls_u32_ops __read_mostly = {
1443 .kind = "u32",
1444 .classify = u32_classify,
1445 .init = u32_init,
1446 .destroy = u32_destroy,
1447 .get = u32_get,
1448 .change = u32_change,
1449 .delete = u32_delete,
1450 .walk = u32_walk,
1451 .reoffload = u32_reoffload,
1452 .dump = u32_dump,
1453 .bind_class = u32_bind_class,
1454 .owner = THIS_MODULE,
1455};
1456
1457static int __init init_u32(void)
1458{
1459 int i, ret;
1460
1461 pr_info("u32 classifier\n");
1462#ifdef CONFIG_CLS_U32_PERF
1463 pr_info(" Performance counters on\n");
1464#endif
1465 pr_info(" input device check on\n");
1466#ifdef CONFIG_NET_CLS_ACT
1467 pr_info(" Actions configured\n");
1468#endif
1469 tc_u_common_hash = kvmalloc_array(U32_HASH_SIZE,
1470 size: sizeof(struct hlist_head),
1471 GFP_KERNEL);
1472 if (!tc_u_common_hash)
1473 return -ENOMEM;
1474
1475 for (i = 0; i < U32_HASH_SIZE; i++)
1476 INIT_HLIST_HEAD(&tc_u_common_hash[i]);
1477
1478 ret = register_tcf_proto_ops(ops: &cls_u32_ops);
1479 if (ret)
1480 kvfree(addr: tc_u_common_hash);
1481 return ret;
1482}
1483
1484static void __exit exit_u32(void)
1485{
1486 unregister_tcf_proto_ops(ops: &cls_u32_ops);
1487 kvfree(addr: tc_u_common_hash);
1488}
1489
1490module_init(init_u32)
1491module_exit(exit_u32)
1492MODULE_LICENSE("GPL");
1493

source code of linux/net/sched/cls_u32.c