1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * VMware vSockets Driver
4 *
5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6 */
7
8/* Implementation notes:
9 *
10 * - There are two kinds of sockets: those created by user action (such as
11 * calling socket(2)) and those created by incoming connection request packets.
12 *
13 * - There are two "global" tables, one for bound sockets (sockets that have
14 * specified an address that they are responsible for) and one for connected
15 * sockets (sockets that have established a connection with another socket).
16 * These tables are "global" in that all sockets on the system are placed
17 * within them. - Note, though, that the bound table contains an extra entry
18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19 * that list. The bound table is used solely for lookup of sockets when packets
20 * are received and that's not necessary for SOCK_DGRAM sockets since we create
21 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
22 * sockets out of the bound hash buckets will reduce the chance of collisions
23 * when looking for SOCK_STREAM sockets and prevents us from having to check the
24 * socket type in the hash table lookups.
25 *
26 * - Sockets created by user action will either be "client" sockets that
27 * initiate a connection or "server" sockets that listen for connections; we do
28 * not support simultaneous connects (two "client" sockets connecting).
29 *
30 * - "Server" sockets are referred to as listener sockets throughout this
31 * implementation because they are in the TCP_LISTEN state. When a
32 * connection request is received (the second kind of socket mentioned above),
33 * we create a new socket and refer to it as a pending socket. These pending
34 * sockets are placed on the pending connection list of the listener socket.
35 * When future packets are received for the address the listener socket is
36 * bound to, we check if the source of the packet is from one that has an
37 * existing pending connection. If it does, we process the packet for the
38 * pending socket. When that socket reaches the connected state, it is removed
39 * from the listener socket's pending list and enqueued in the listener
40 * socket's accept queue. Callers of accept(2) will accept connected sockets
41 * from the listener socket's accept queue. If the socket cannot be accepted
42 * for some reason then it is marked rejected. Once the connection is
43 * accepted, it is owned by the user process and the responsibility for cleanup
44 * falls with that user process.
45 *
46 * - It is possible that these pending sockets will never reach the connected
47 * state; in fact, we may never receive another packet after the connection
48 * request. Because of this, we must schedule a cleanup function to run in the
49 * future, after some amount of time passes where a connection should have been
50 * established. This function ensures that the socket is off all lists so it
51 * cannot be retrieved, then drops all references to the socket so it is cleaned
52 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
53 * function will also cleanup rejected sockets, those that reach the connected
54 * state but leave it before they have been accepted.
55 *
56 * - Lock ordering for pending or accept queue sockets is:
57 *
58 * lock_sock(listener);
59 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60 *
61 * Using explicit nested locking keeps lockdep happy since normally only one
62 * lock of a given class may be taken at a time.
63 *
64 * - Sockets created by user action will be cleaned up when the user process
65 * calls close(2), causing our release implementation to be called. Our release
66 * implementation will perform some cleanup then drop the last reference so our
67 * sk_destruct implementation is invoked. Our sk_destruct implementation will
68 * perform additional cleanup that's common for both types of sockets.
69 *
70 * - A socket's reference count is what ensures that the structure won't be
71 * freed. Each entry in a list (such as the "global" bound and connected tables
72 * and the listener socket's pending list and connected queue) ensures a
73 * reference. When we defer work until process context and pass a socket as our
74 * argument, we must ensure the reference count is increased to ensure the
75 * socket isn't freed before the function is run; the deferred function will
76 * then drop the reference.
77 *
78 * - sk->sk_state uses the TCP state constants because they are widely used by
79 * other address families and exposed to userspace tools like ss(8):
80 *
81 * TCP_CLOSE - unconnected
82 * TCP_SYN_SENT - connecting
83 * TCP_ESTABLISHED - connected
84 * TCP_CLOSING - disconnecting
85 * TCP_LISTEN - listening
86 */
87
88#include <linux/compat.h>
89#include <linux/types.h>
90#include <linux/bitops.h>
91#include <linux/cred.h>
92#include <linux/errqueue.h>
93#include <linux/init.h>
94#include <linux/io.h>
95#include <linux/kernel.h>
96#include <linux/sched/signal.h>
97#include <linux/kmod.h>
98#include <linux/list.h>
99#include <linux/miscdevice.h>
100#include <linux/module.h>
101#include <linux/mutex.h>
102#include <linux/net.h>
103#include <linux/poll.h>
104#include <linux/random.h>
105#include <linux/skbuff.h>
106#include <linux/smp.h>
107#include <linux/socket.h>
108#include <linux/stddef.h>
109#include <linux/unistd.h>
110#include <linux/wait.h>
111#include <linux/workqueue.h>
112#include <net/sock.h>
113#include <net/af_vsock.h>
114#include <uapi/linux/vm_sockets.h>
115
116static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
117static void vsock_sk_destruct(struct sock *sk);
118static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
119
120/* Protocol family. */
121struct proto vsock_proto = {
122 .name = "AF_VSOCK",
123 .owner = THIS_MODULE,
124 .obj_size = sizeof(struct vsock_sock),
125#ifdef CONFIG_BPF_SYSCALL
126 .psock_update_sk_prot = vsock_bpf_update_proto,
127#endif
128};
129
130/* The default peer timeout indicates how long we will wait for a peer response
131 * to a control message.
132 */
133#define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
134
135#define VSOCK_DEFAULT_BUFFER_SIZE (1024 * 256)
136#define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
137#define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
138
139/* Transport used for host->guest communication */
140static const struct vsock_transport *transport_h2g;
141/* Transport used for guest->host communication */
142static const struct vsock_transport *transport_g2h;
143/* Transport used for DGRAM communication */
144static const struct vsock_transport *transport_dgram;
145/* Transport used for local communication */
146static const struct vsock_transport *transport_local;
147static DEFINE_MUTEX(vsock_register_mutex);
148
149/**** UTILS ****/
150
151/* Each bound VSocket is stored in the bind hash table and each connected
152 * VSocket is stored in the connected hash table.
153 *
154 * Unbound sockets are all put on the same list attached to the end of the hash
155 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
156 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
157 * represents the list that addr hashes to).
158 *
159 * Specifically, we initialize the vsock_bind_table array to a size of
160 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
161 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
162 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
163 * mods with VSOCK_HASH_SIZE to ensure this.
164 */
165#define MAX_PORT_RETRIES 24
166
167#define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
168#define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
169#define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
170
171/* XXX This can probably be implemented in a better way. */
172#define VSOCK_CONN_HASH(src, dst) \
173 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
174#define vsock_connected_sockets(src, dst) \
175 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
176#define vsock_connected_sockets_vsk(vsk) \
177 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
178
179struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
180EXPORT_SYMBOL_GPL(vsock_bind_table);
181struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
182EXPORT_SYMBOL_GPL(vsock_connected_table);
183DEFINE_SPINLOCK(vsock_table_lock);
184EXPORT_SYMBOL_GPL(vsock_table_lock);
185
186/* Autobind this socket to the local address if necessary. */
187static int vsock_auto_bind(struct vsock_sock *vsk)
188{
189 struct sock *sk = sk_vsock(vsk);
190 struct sockaddr_vm local_addr;
191
192 if (vsock_addr_bound(addr: &vsk->local_addr))
193 return 0;
194 vsock_addr_init(addr: &local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
195 return __vsock_bind(sk, addr: &local_addr);
196}
197
198static void vsock_init_tables(void)
199{
200 int i;
201
202 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
203 INIT_LIST_HEAD(list: &vsock_bind_table[i]);
204
205 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
206 INIT_LIST_HEAD(list: &vsock_connected_table[i]);
207}
208
209static void __vsock_insert_bound(struct list_head *list,
210 struct vsock_sock *vsk)
211{
212 sock_hold(sk: &vsk->sk);
213 list_add(new: &vsk->bound_table, head: list);
214}
215
216static void __vsock_insert_connected(struct list_head *list,
217 struct vsock_sock *vsk)
218{
219 sock_hold(sk: &vsk->sk);
220 list_add(new: &vsk->connected_table, head: list);
221}
222
223static void __vsock_remove_bound(struct vsock_sock *vsk)
224{
225 list_del_init(entry: &vsk->bound_table);
226 sock_put(sk: &vsk->sk);
227}
228
229static void __vsock_remove_connected(struct vsock_sock *vsk)
230{
231 list_del_init(entry: &vsk->connected_table);
232 sock_put(sk: &vsk->sk);
233}
234
235static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
236{
237 struct vsock_sock *vsk;
238
239 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
240 if (vsock_addr_equals_addr(addr, other: &vsk->local_addr))
241 return sk_vsock(vsk);
242
243 if (addr->svm_port == vsk->local_addr.svm_port &&
244 (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
245 addr->svm_cid == VMADDR_CID_ANY))
246 return sk_vsock(vsk);
247 }
248
249 return NULL;
250}
251
252static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
253 struct sockaddr_vm *dst)
254{
255 struct vsock_sock *vsk;
256
257 list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
258 connected_table) {
259 if (vsock_addr_equals_addr(addr: src, other: &vsk->remote_addr) &&
260 dst->svm_port == vsk->local_addr.svm_port) {
261 return sk_vsock(vsk);
262 }
263 }
264
265 return NULL;
266}
267
268static void vsock_insert_unbound(struct vsock_sock *vsk)
269{
270 spin_lock_bh(lock: &vsock_table_lock);
271 __vsock_insert_bound(vsock_unbound_sockets, vsk);
272 spin_unlock_bh(lock: &vsock_table_lock);
273}
274
275void vsock_insert_connected(struct vsock_sock *vsk)
276{
277 struct list_head *list = vsock_connected_sockets(
278 &vsk->remote_addr, &vsk->local_addr);
279
280 spin_lock_bh(lock: &vsock_table_lock);
281 __vsock_insert_connected(list, vsk);
282 spin_unlock_bh(lock: &vsock_table_lock);
283}
284EXPORT_SYMBOL_GPL(vsock_insert_connected);
285
286void vsock_remove_bound(struct vsock_sock *vsk)
287{
288 spin_lock_bh(lock: &vsock_table_lock);
289 if (__vsock_in_bound_table(vsk))
290 __vsock_remove_bound(vsk);
291 spin_unlock_bh(lock: &vsock_table_lock);
292}
293EXPORT_SYMBOL_GPL(vsock_remove_bound);
294
295void vsock_remove_connected(struct vsock_sock *vsk)
296{
297 spin_lock_bh(lock: &vsock_table_lock);
298 if (__vsock_in_connected_table(vsk))
299 __vsock_remove_connected(vsk);
300 spin_unlock_bh(lock: &vsock_table_lock);
301}
302EXPORT_SYMBOL_GPL(vsock_remove_connected);
303
304struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
305{
306 struct sock *sk;
307
308 spin_lock_bh(lock: &vsock_table_lock);
309 sk = __vsock_find_bound_socket(addr);
310 if (sk)
311 sock_hold(sk);
312
313 spin_unlock_bh(lock: &vsock_table_lock);
314
315 return sk;
316}
317EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
318
319struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
320 struct sockaddr_vm *dst)
321{
322 struct sock *sk;
323
324 spin_lock_bh(lock: &vsock_table_lock);
325 sk = __vsock_find_connected_socket(src, dst);
326 if (sk)
327 sock_hold(sk);
328
329 spin_unlock_bh(lock: &vsock_table_lock);
330
331 return sk;
332}
333EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
334
335void vsock_remove_sock(struct vsock_sock *vsk)
336{
337 vsock_remove_bound(vsk);
338 vsock_remove_connected(vsk);
339}
340EXPORT_SYMBOL_GPL(vsock_remove_sock);
341
342void vsock_for_each_connected_socket(struct vsock_transport *transport,
343 void (*fn)(struct sock *sk))
344{
345 int i;
346
347 spin_lock_bh(lock: &vsock_table_lock);
348
349 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
350 struct vsock_sock *vsk;
351 list_for_each_entry(vsk, &vsock_connected_table[i],
352 connected_table) {
353 if (vsk->transport != transport)
354 continue;
355
356 fn(sk_vsock(vsk));
357 }
358 }
359
360 spin_unlock_bh(lock: &vsock_table_lock);
361}
362EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
363
364void vsock_add_pending(struct sock *listener, struct sock *pending)
365{
366 struct vsock_sock *vlistener;
367 struct vsock_sock *vpending;
368
369 vlistener = vsock_sk(listener);
370 vpending = vsock_sk(pending);
371
372 sock_hold(sk: pending);
373 sock_hold(sk: listener);
374 list_add_tail(new: &vpending->pending_links, head: &vlistener->pending_links);
375}
376EXPORT_SYMBOL_GPL(vsock_add_pending);
377
378void vsock_remove_pending(struct sock *listener, struct sock *pending)
379{
380 struct vsock_sock *vpending = vsock_sk(pending);
381
382 list_del_init(entry: &vpending->pending_links);
383 sock_put(sk: listener);
384 sock_put(sk: pending);
385}
386EXPORT_SYMBOL_GPL(vsock_remove_pending);
387
388void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
389{
390 struct vsock_sock *vlistener;
391 struct vsock_sock *vconnected;
392
393 vlistener = vsock_sk(listener);
394 vconnected = vsock_sk(connected);
395
396 sock_hold(sk: connected);
397 sock_hold(sk: listener);
398 list_add_tail(new: &vconnected->accept_queue, head: &vlistener->accept_queue);
399}
400EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
401
402static bool vsock_use_local_transport(unsigned int remote_cid)
403{
404 if (!transport_local)
405 return false;
406
407 if (remote_cid == VMADDR_CID_LOCAL)
408 return true;
409
410 if (transport_g2h) {
411 return remote_cid == transport_g2h->get_local_cid();
412 } else {
413 return remote_cid == VMADDR_CID_HOST;
414 }
415}
416
417static void vsock_deassign_transport(struct vsock_sock *vsk)
418{
419 if (!vsk->transport)
420 return;
421
422 vsk->transport->destruct(vsk);
423 module_put(module: vsk->transport->module);
424 vsk->transport = NULL;
425}
426
427/* Assign a transport to a socket and call the .init transport callback.
428 *
429 * Note: for connection oriented socket this must be called when vsk->remote_addr
430 * is set (e.g. during the connect() or when a connection request on a listener
431 * socket is received).
432 * The vsk->remote_addr is used to decide which transport to use:
433 * - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
434 * g2h is not loaded, will use local transport;
435 * - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
436 * includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
437 * - remote CID > VMADDR_CID_HOST will use host->guest transport;
438 */
439int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
440{
441 const struct vsock_transport *new_transport;
442 struct sock *sk = sk_vsock(vsk);
443 unsigned int remote_cid = vsk->remote_addr.svm_cid;
444 __u8 remote_flags;
445 int ret;
446
447 /* If the packet is coming with the source and destination CIDs higher
448 * than VMADDR_CID_HOST, then a vsock channel where all the packets are
449 * forwarded to the host should be established. Then the host will
450 * need to forward the packets to the guest.
451 *
452 * The flag is set on the (listen) receive path (psk is not NULL). On
453 * the connect path the flag can be set by the user space application.
454 */
455 if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
456 vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
457 vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
458
459 remote_flags = vsk->remote_addr.svm_flags;
460
461 switch (sk->sk_type) {
462 case SOCK_DGRAM:
463 new_transport = transport_dgram;
464 break;
465 case SOCK_STREAM:
466 case SOCK_SEQPACKET:
467 if (vsock_use_local_transport(remote_cid))
468 new_transport = transport_local;
469 else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
470 (remote_flags & VMADDR_FLAG_TO_HOST))
471 new_transport = transport_g2h;
472 else
473 new_transport = transport_h2g;
474 break;
475 default:
476 return -ESOCKTNOSUPPORT;
477 }
478
479 if (vsk->transport) {
480 if (vsk->transport == new_transport)
481 return 0;
482
483 /* transport->release() must be called with sock lock acquired.
484 * This path can only be taken during vsock_connect(), where we
485 * have already held the sock lock. In the other cases, this
486 * function is called on a new socket which is not assigned to
487 * any transport.
488 */
489 vsk->transport->release(vsk);
490 vsock_deassign_transport(vsk);
491 }
492
493 /* We increase the module refcnt to prevent the transport unloading
494 * while there are open sockets assigned to it.
495 */
496 if (!new_transport || !try_module_get(module: new_transport->module))
497 return -ENODEV;
498
499 if (sk->sk_type == SOCK_SEQPACKET) {
500 if (!new_transport->seqpacket_allow ||
501 !new_transport->seqpacket_allow(remote_cid)) {
502 module_put(module: new_transport->module);
503 return -ESOCKTNOSUPPORT;
504 }
505 }
506
507 ret = new_transport->init(vsk, psk);
508 if (ret) {
509 module_put(module: new_transport->module);
510 return ret;
511 }
512
513 vsk->transport = new_transport;
514
515 return 0;
516}
517EXPORT_SYMBOL_GPL(vsock_assign_transport);
518
519bool vsock_find_cid(unsigned int cid)
520{
521 if (transport_g2h && cid == transport_g2h->get_local_cid())
522 return true;
523
524 if (transport_h2g && cid == VMADDR_CID_HOST)
525 return true;
526
527 if (transport_local && cid == VMADDR_CID_LOCAL)
528 return true;
529
530 return false;
531}
532EXPORT_SYMBOL_GPL(vsock_find_cid);
533
534static struct sock *vsock_dequeue_accept(struct sock *listener)
535{
536 struct vsock_sock *vlistener;
537 struct vsock_sock *vconnected;
538
539 vlistener = vsock_sk(listener);
540
541 if (list_empty(head: &vlistener->accept_queue))
542 return NULL;
543
544 vconnected = list_entry(vlistener->accept_queue.next,
545 struct vsock_sock, accept_queue);
546
547 list_del_init(entry: &vconnected->accept_queue);
548 sock_put(sk: listener);
549 /* The caller will need a reference on the connected socket so we let
550 * it call sock_put().
551 */
552
553 return sk_vsock(vconnected);
554}
555
556static bool vsock_is_accept_queue_empty(struct sock *sk)
557{
558 struct vsock_sock *vsk = vsock_sk(sk);
559 return list_empty(head: &vsk->accept_queue);
560}
561
562static bool vsock_is_pending(struct sock *sk)
563{
564 struct vsock_sock *vsk = vsock_sk(sk);
565 return !list_empty(head: &vsk->pending_links);
566}
567
568static int vsock_send_shutdown(struct sock *sk, int mode)
569{
570 struct vsock_sock *vsk = vsock_sk(sk);
571
572 if (!vsk->transport)
573 return -ENODEV;
574
575 return vsk->transport->shutdown(vsk, mode);
576}
577
578static void vsock_pending_work(struct work_struct *work)
579{
580 struct sock *sk;
581 struct sock *listener;
582 struct vsock_sock *vsk;
583 bool cleanup;
584
585 vsk = container_of(work, struct vsock_sock, pending_work.work);
586 sk = sk_vsock(vsk);
587 listener = vsk->listener;
588 cleanup = true;
589
590 lock_sock(sk: listener);
591 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
592
593 if (vsock_is_pending(sk)) {
594 vsock_remove_pending(listener, sk);
595
596 sk_acceptq_removed(sk: listener);
597 } else if (!vsk->rejected) {
598 /* We are not on the pending list and accept() did not reject
599 * us, so we must have been accepted by our user process. We
600 * just need to drop our references to the sockets and be on
601 * our way.
602 */
603 cleanup = false;
604 goto out;
605 }
606
607 /* We need to remove ourself from the global connected sockets list so
608 * incoming packets can't find this socket, and to reduce the reference
609 * count.
610 */
611 vsock_remove_connected(vsk);
612
613 sk->sk_state = TCP_CLOSE;
614
615out:
616 release_sock(sk);
617 release_sock(sk: listener);
618 if (cleanup)
619 sock_put(sk);
620
621 sock_put(sk);
622 sock_put(sk: listener);
623}
624
625/**** SOCKET OPERATIONS ****/
626
627static int __vsock_bind_connectible(struct vsock_sock *vsk,
628 struct sockaddr_vm *addr)
629{
630 static u32 port;
631 struct sockaddr_vm new_addr;
632
633 if (!port)
634 port = get_random_u32_above(LAST_RESERVED_PORT);
635
636 vsock_addr_init(addr: &new_addr, cid: addr->svm_cid, port: addr->svm_port);
637
638 if (addr->svm_port == VMADDR_PORT_ANY) {
639 bool found = false;
640 unsigned int i;
641
642 for (i = 0; i < MAX_PORT_RETRIES; i++) {
643 if (port <= LAST_RESERVED_PORT)
644 port = LAST_RESERVED_PORT + 1;
645
646 new_addr.svm_port = port++;
647
648 if (!__vsock_find_bound_socket(addr: &new_addr)) {
649 found = true;
650 break;
651 }
652 }
653
654 if (!found)
655 return -EADDRNOTAVAIL;
656 } else {
657 /* If port is in reserved range, ensure caller
658 * has necessary privileges.
659 */
660 if (addr->svm_port <= LAST_RESERVED_PORT &&
661 !capable(CAP_NET_BIND_SERVICE)) {
662 return -EACCES;
663 }
664
665 if (__vsock_find_bound_socket(addr: &new_addr))
666 return -EADDRINUSE;
667 }
668
669 vsock_addr_init(addr: &vsk->local_addr, cid: new_addr.svm_cid, port: new_addr.svm_port);
670
671 /* Remove connection oriented sockets from the unbound list and add them
672 * to the hash table for easy lookup by its address. The unbound list
673 * is simply an extra entry at the end of the hash table, a trick used
674 * by AF_UNIX.
675 */
676 __vsock_remove_bound(vsk);
677 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
678
679 return 0;
680}
681
682static int __vsock_bind_dgram(struct vsock_sock *vsk,
683 struct sockaddr_vm *addr)
684{
685 return vsk->transport->dgram_bind(vsk, addr);
686}
687
688static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
689{
690 struct vsock_sock *vsk = vsock_sk(sk);
691 int retval;
692
693 /* First ensure this socket isn't already bound. */
694 if (vsock_addr_bound(addr: &vsk->local_addr))
695 return -EINVAL;
696
697 /* Now bind to the provided address or select appropriate values if
698 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
699 * like AF_INET prevents binding to a non-local IP address (in most
700 * cases), we only allow binding to a local CID.
701 */
702 if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
703 return -EADDRNOTAVAIL;
704
705 switch (sk->sk_socket->type) {
706 case SOCK_STREAM:
707 case SOCK_SEQPACKET:
708 spin_lock_bh(lock: &vsock_table_lock);
709 retval = __vsock_bind_connectible(vsk, addr);
710 spin_unlock_bh(lock: &vsock_table_lock);
711 break;
712
713 case SOCK_DGRAM:
714 retval = __vsock_bind_dgram(vsk, addr);
715 break;
716
717 default:
718 retval = -EINVAL;
719 break;
720 }
721
722 return retval;
723}
724
725static void vsock_connect_timeout(struct work_struct *work);
726
727static struct sock *__vsock_create(struct net *net,
728 struct socket *sock,
729 struct sock *parent,
730 gfp_t priority,
731 unsigned short type,
732 int kern)
733{
734 struct sock *sk;
735 struct vsock_sock *psk;
736 struct vsock_sock *vsk;
737
738 sk = sk_alloc(net, AF_VSOCK, priority, prot: &vsock_proto, kern);
739 if (!sk)
740 return NULL;
741
742 sock_init_data(sock, sk);
743
744 /* sk->sk_type is normally set in sock_init_data, but only if sock is
745 * non-NULL. We make sure that our sockets always have a type by
746 * setting it here if needed.
747 */
748 if (!sock)
749 sk->sk_type = type;
750
751 vsk = vsock_sk(sk);
752 vsock_addr_init(addr: &vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
753 vsock_addr_init(addr: &vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
754
755 sk->sk_destruct = vsock_sk_destruct;
756 sk->sk_backlog_rcv = vsock_queue_rcv_skb;
757 sock_reset_flag(sk, flag: SOCK_DONE);
758
759 INIT_LIST_HEAD(list: &vsk->bound_table);
760 INIT_LIST_HEAD(list: &vsk->connected_table);
761 vsk->listener = NULL;
762 INIT_LIST_HEAD(list: &vsk->pending_links);
763 INIT_LIST_HEAD(list: &vsk->accept_queue);
764 vsk->rejected = false;
765 vsk->sent_request = false;
766 vsk->ignore_connecting_rst = false;
767 vsk->peer_shutdown = 0;
768 INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
769 INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
770
771 psk = parent ? vsock_sk(parent) : NULL;
772 if (parent) {
773 vsk->trusted = psk->trusted;
774 vsk->owner = get_cred(cred: psk->owner);
775 vsk->connect_timeout = psk->connect_timeout;
776 vsk->buffer_size = psk->buffer_size;
777 vsk->buffer_min_size = psk->buffer_min_size;
778 vsk->buffer_max_size = psk->buffer_max_size;
779 security_sk_clone(sk: parent, newsk: sk);
780 } else {
781 vsk->trusted = ns_capable_noaudit(ns: &init_user_ns, CAP_NET_ADMIN);
782 vsk->owner = get_current_cred();
783 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
784 vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
785 vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
786 vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
787 }
788
789 return sk;
790}
791
792static bool sock_type_connectible(u16 type)
793{
794 return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET);
795}
796
797static void __vsock_release(struct sock *sk, int level)
798{
799 if (sk) {
800 struct sock *pending;
801 struct vsock_sock *vsk;
802
803 vsk = vsock_sk(sk);
804 pending = NULL; /* Compiler warning. */
805
806 /* When "level" is SINGLE_DEPTH_NESTING, use the nested
807 * version to avoid the warning "possible recursive locking
808 * detected". When "level" is 0, lock_sock_nested(sk, level)
809 * is the same as lock_sock(sk).
810 */
811 lock_sock_nested(sk, subclass: level);
812
813 if (vsk->transport)
814 vsk->transport->release(vsk);
815 else if (sock_type_connectible(type: sk->sk_type))
816 vsock_remove_sock(vsk);
817
818 sock_orphan(sk);
819 sk->sk_shutdown = SHUTDOWN_MASK;
820
821 skb_queue_purge(list: &sk->sk_receive_queue);
822
823 /* Clean up any sockets that never were accepted. */
824 while ((pending = vsock_dequeue_accept(listener: sk)) != NULL) {
825 __vsock_release(sk: pending, SINGLE_DEPTH_NESTING);
826 sock_put(sk: pending);
827 }
828
829 release_sock(sk);
830 sock_put(sk);
831 }
832}
833
834static void vsock_sk_destruct(struct sock *sk)
835{
836 struct vsock_sock *vsk = vsock_sk(sk);
837
838 vsock_deassign_transport(vsk);
839
840 /* When clearing these addresses, there's no need to set the family and
841 * possibly register the address family with the kernel.
842 */
843 vsock_addr_init(addr: &vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
844 vsock_addr_init(addr: &vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
845
846 put_cred(cred: vsk->owner);
847}
848
849static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
850{
851 int err;
852
853 err = sock_queue_rcv_skb(sk, skb);
854 if (err)
855 kfree_skb(skb);
856
857 return err;
858}
859
860struct sock *vsock_create_connected(struct sock *parent)
861{
862 return __vsock_create(net: sock_net(sk: parent), NULL, parent, GFP_KERNEL,
863 type: parent->sk_type, kern: 0);
864}
865EXPORT_SYMBOL_GPL(vsock_create_connected);
866
867s64 vsock_stream_has_data(struct vsock_sock *vsk)
868{
869 return vsk->transport->stream_has_data(vsk);
870}
871EXPORT_SYMBOL_GPL(vsock_stream_has_data);
872
873s64 vsock_connectible_has_data(struct vsock_sock *vsk)
874{
875 struct sock *sk = sk_vsock(vsk);
876
877 if (sk->sk_type == SOCK_SEQPACKET)
878 return vsk->transport->seqpacket_has_data(vsk);
879 else
880 return vsock_stream_has_data(vsk);
881}
882EXPORT_SYMBOL_GPL(vsock_connectible_has_data);
883
884s64 vsock_stream_has_space(struct vsock_sock *vsk)
885{
886 return vsk->transport->stream_has_space(vsk);
887}
888EXPORT_SYMBOL_GPL(vsock_stream_has_space);
889
890void vsock_data_ready(struct sock *sk)
891{
892 struct vsock_sock *vsk = vsock_sk(sk);
893
894 if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat ||
895 sock_flag(sk, flag: SOCK_DONE))
896 sk->sk_data_ready(sk);
897}
898EXPORT_SYMBOL_GPL(vsock_data_ready);
899
900static int vsock_release(struct socket *sock)
901{
902 __vsock_release(sk: sock->sk, level: 0);
903 sock->sk = NULL;
904 sock->state = SS_FREE;
905
906 return 0;
907}
908
909static int
910vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
911{
912 int err;
913 struct sock *sk;
914 struct sockaddr_vm *vm_addr;
915
916 sk = sock->sk;
917
918 if (vsock_addr_cast(addr, len: addr_len, out_addr: &vm_addr) != 0)
919 return -EINVAL;
920
921 lock_sock(sk);
922 err = __vsock_bind(sk, addr: vm_addr);
923 release_sock(sk);
924
925 return err;
926}
927
928static int vsock_getname(struct socket *sock,
929 struct sockaddr *addr, int peer)
930{
931 int err;
932 struct sock *sk;
933 struct vsock_sock *vsk;
934 struct sockaddr_vm *vm_addr;
935
936 sk = sock->sk;
937 vsk = vsock_sk(sk);
938 err = 0;
939
940 lock_sock(sk);
941
942 if (peer) {
943 if (sock->state != SS_CONNECTED) {
944 err = -ENOTCONN;
945 goto out;
946 }
947 vm_addr = &vsk->remote_addr;
948 } else {
949 vm_addr = &vsk->local_addr;
950 }
951
952 if (!vm_addr) {
953 err = -EINVAL;
954 goto out;
955 }
956
957 /* sys_getsockname() and sys_getpeername() pass us a
958 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
959 * that macro is defined in socket.c instead of .h, so we hardcode its
960 * value here.
961 */
962 BUILD_BUG_ON(sizeof(*vm_addr) > 128);
963 memcpy(addr, vm_addr, sizeof(*vm_addr));
964 err = sizeof(*vm_addr);
965
966out:
967 release_sock(sk);
968 return err;
969}
970
971static int vsock_shutdown(struct socket *sock, int mode)
972{
973 int err;
974 struct sock *sk;
975
976 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
977 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
978 * here like the other address families do. Note also that the
979 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
980 * which is what we want.
981 */
982 mode++;
983
984 if ((mode & ~SHUTDOWN_MASK) || !mode)
985 return -EINVAL;
986
987 /* If this is a connection oriented socket and it is not connected then
988 * bail out immediately. If it is a DGRAM socket then we must first
989 * kick the socket so that it wakes up from any sleeping calls, for
990 * example recv(), and then afterwards return the error.
991 */
992
993 sk = sock->sk;
994
995 lock_sock(sk);
996 if (sock->state == SS_UNCONNECTED) {
997 err = -ENOTCONN;
998 if (sock_type_connectible(type: sk->sk_type))
999 goto out;
1000 } else {
1001 sock->state = SS_DISCONNECTING;
1002 err = 0;
1003 }
1004
1005 /* Receive and send shutdowns are treated alike. */
1006 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
1007 if (mode) {
1008 sk->sk_shutdown |= mode;
1009 sk->sk_state_change(sk);
1010
1011 if (sock_type_connectible(type: sk->sk_type)) {
1012 sock_reset_flag(sk, flag: SOCK_DONE);
1013 vsock_send_shutdown(sk, mode);
1014 }
1015 }
1016
1017out:
1018 release_sock(sk);
1019 return err;
1020}
1021
1022static __poll_t vsock_poll(struct file *file, struct socket *sock,
1023 poll_table *wait)
1024{
1025 struct sock *sk;
1026 __poll_t mask;
1027 struct vsock_sock *vsk;
1028
1029 sk = sock->sk;
1030 vsk = vsock_sk(sk);
1031
1032 poll_wait(filp: file, wait_address: sk_sleep(sk), p: wait);
1033 mask = 0;
1034
1035 if (sk->sk_err || !skb_queue_empty_lockless(list: &sk->sk_error_queue))
1036 /* Signify that there has been an error on this socket. */
1037 mask |= EPOLLERR;
1038
1039 /* INET sockets treat local write shutdown and peer write shutdown as a
1040 * case of EPOLLHUP set.
1041 */
1042 if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
1043 ((sk->sk_shutdown & SEND_SHUTDOWN) &&
1044 (vsk->peer_shutdown & SEND_SHUTDOWN))) {
1045 mask |= EPOLLHUP;
1046 }
1047
1048 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1049 vsk->peer_shutdown & SEND_SHUTDOWN) {
1050 mask |= EPOLLRDHUP;
1051 }
1052
1053 if (sock->type == SOCK_DGRAM) {
1054 /* For datagram sockets we can read if there is something in
1055 * the queue and write as long as the socket isn't shutdown for
1056 * sending.
1057 */
1058 if (!skb_queue_empty_lockless(list: &sk->sk_receive_queue) ||
1059 (sk->sk_shutdown & RCV_SHUTDOWN)) {
1060 mask |= EPOLLIN | EPOLLRDNORM;
1061 }
1062
1063 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1064 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1065
1066 } else if (sock_type_connectible(type: sk->sk_type)) {
1067 const struct vsock_transport *transport;
1068
1069 lock_sock(sk);
1070
1071 transport = vsk->transport;
1072
1073 /* Listening sockets that have connections in their accept
1074 * queue can be read.
1075 */
1076 if (sk->sk_state == TCP_LISTEN
1077 && !vsock_is_accept_queue_empty(sk))
1078 mask |= EPOLLIN | EPOLLRDNORM;
1079
1080 /* If there is something in the queue then we can read. */
1081 if (transport && transport->stream_is_active(vsk) &&
1082 !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1083 bool data_ready_now = false;
1084 int target = sock_rcvlowat(sk, waitall: 0, INT_MAX);
1085 int ret = transport->notify_poll_in(
1086 vsk, target, &data_ready_now);
1087 if (ret < 0) {
1088 mask |= EPOLLERR;
1089 } else {
1090 if (data_ready_now)
1091 mask |= EPOLLIN | EPOLLRDNORM;
1092
1093 }
1094 }
1095
1096 /* Sockets whose connections have been closed, reset, or
1097 * terminated should also be considered read, and we check the
1098 * shutdown flag for that.
1099 */
1100 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1101 vsk->peer_shutdown & SEND_SHUTDOWN) {
1102 mask |= EPOLLIN | EPOLLRDNORM;
1103 }
1104
1105 /* Connected sockets that can produce data can be written. */
1106 if (transport && sk->sk_state == TCP_ESTABLISHED) {
1107 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1108 bool space_avail_now = false;
1109 int ret = transport->notify_poll_out(
1110 vsk, 1, &space_avail_now);
1111 if (ret < 0) {
1112 mask |= EPOLLERR;
1113 } else {
1114 if (space_avail_now)
1115 /* Remove EPOLLWRBAND since INET
1116 * sockets are not setting it.
1117 */
1118 mask |= EPOLLOUT | EPOLLWRNORM;
1119
1120 }
1121 }
1122 }
1123
1124 /* Simulate INET socket poll behaviors, which sets
1125 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1126 * but local send is not shutdown.
1127 */
1128 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1129 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1130 mask |= EPOLLOUT | EPOLLWRNORM;
1131
1132 }
1133
1134 release_sock(sk);
1135 }
1136
1137 return mask;
1138}
1139
1140static int vsock_read_skb(struct sock *sk, skb_read_actor_t read_actor)
1141{
1142 struct vsock_sock *vsk = vsock_sk(sk);
1143
1144 return vsk->transport->read_skb(vsk, read_actor);
1145}
1146
1147static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1148 size_t len)
1149{
1150 int err;
1151 struct sock *sk;
1152 struct vsock_sock *vsk;
1153 struct sockaddr_vm *remote_addr;
1154 const struct vsock_transport *transport;
1155
1156 if (msg->msg_flags & MSG_OOB)
1157 return -EOPNOTSUPP;
1158
1159 /* For now, MSG_DONTWAIT is always assumed... */
1160 err = 0;
1161 sk = sock->sk;
1162 vsk = vsock_sk(sk);
1163
1164 lock_sock(sk);
1165
1166 transport = vsk->transport;
1167
1168 err = vsock_auto_bind(vsk);
1169 if (err)
1170 goto out;
1171
1172
1173 /* If the provided message contains an address, use that. Otherwise
1174 * fall back on the socket's remote handle (if it has been connected).
1175 */
1176 if (msg->msg_name &&
1177 vsock_addr_cast(addr: msg->msg_name, len: msg->msg_namelen,
1178 out_addr: &remote_addr) == 0) {
1179 /* Ensure this address is of the right type and is a valid
1180 * destination.
1181 */
1182
1183 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1184 remote_addr->svm_cid = transport->get_local_cid();
1185
1186 if (!vsock_addr_bound(addr: remote_addr)) {
1187 err = -EINVAL;
1188 goto out;
1189 }
1190 } else if (sock->state == SS_CONNECTED) {
1191 remote_addr = &vsk->remote_addr;
1192
1193 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1194 remote_addr->svm_cid = transport->get_local_cid();
1195
1196 /* XXX Should connect() or this function ensure remote_addr is
1197 * bound?
1198 */
1199 if (!vsock_addr_bound(addr: &vsk->remote_addr)) {
1200 err = -EINVAL;
1201 goto out;
1202 }
1203 } else {
1204 err = -EINVAL;
1205 goto out;
1206 }
1207
1208 if (!transport->dgram_allow(remote_addr->svm_cid,
1209 remote_addr->svm_port)) {
1210 err = -EINVAL;
1211 goto out;
1212 }
1213
1214 err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1215
1216out:
1217 release_sock(sk);
1218 return err;
1219}
1220
1221static int vsock_dgram_connect(struct socket *sock,
1222 struct sockaddr *addr, int addr_len, int flags)
1223{
1224 int err;
1225 struct sock *sk;
1226 struct vsock_sock *vsk;
1227 struct sockaddr_vm *remote_addr;
1228
1229 sk = sock->sk;
1230 vsk = vsock_sk(sk);
1231
1232 err = vsock_addr_cast(addr, len: addr_len, out_addr: &remote_addr);
1233 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1234 lock_sock(sk);
1235 vsock_addr_init(addr: &vsk->remote_addr, VMADDR_CID_ANY,
1236 VMADDR_PORT_ANY);
1237 sock->state = SS_UNCONNECTED;
1238 release_sock(sk);
1239 return 0;
1240 } else if (err != 0)
1241 return -EINVAL;
1242
1243 lock_sock(sk);
1244
1245 err = vsock_auto_bind(vsk);
1246 if (err)
1247 goto out;
1248
1249 if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1250 remote_addr->svm_port)) {
1251 err = -EINVAL;
1252 goto out;
1253 }
1254
1255 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1256 sock->state = SS_CONNECTED;
1257
1258 /* sock map disallows redirection of non-TCP sockets with sk_state !=
1259 * TCP_ESTABLISHED (see sock_map_redirect_allowed()), so we set
1260 * TCP_ESTABLISHED here to allow redirection of connected vsock dgrams.
1261 *
1262 * This doesn't seem to be abnormal state for datagram sockets, as the
1263 * same approach can be see in other datagram socket types as well
1264 * (such as unix sockets).
1265 */
1266 sk->sk_state = TCP_ESTABLISHED;
1267
1268out:
1269 release_sock(sk);
1270 return err;
1271}
1272
1273int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1274 size_t len, int flags)
1275{
1276#ifdef CONFIG_BPF_SYSCALL
1277 const struct proto *prot;
1278#endif
1279 struct vsock_sock *vsk;
1280 struct sock *sk;
1281
1282 sk = sock->sk;
1283 vsk = vsock_sk(sk);
1284
1285#ifdef CONFIG_BPF_SYSCALL
1286 prot = READ_ONCE(sk->sk_prot);
1287 if (prot != &vsock_proto)
1288 return prot->recvmsg(sk, msg, len, flags, NULL);
1289#endif
1290
1291 return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1292}
1293EXPORT_SYMBOL_GPL(vsock_dgram_recvmsg);
1294
1295static const struct proto_ops vsock_dgram_ops = {
1296 .family = PF_VSOCK,
1297 .owner = THIS_MODULE,
1298 .release = vsock_release,
1299 .bind = vsock_bind,
1300 .connect = vsock_dgram_connect,
1301 .socketpair = sock_no_socketpair,
1302 .accept = sock_no_accept,
1303 .getname = vsock_getname,
1304 .poll = vsock_poll,
1305 .ioctl = sock_no_ioctl,
1306 .listen = sock_no_listen,
1307 .shutdown = vsock_shutdown,
1308 .sendmsg = vsock_dgram_sendmsg,
1309 .recvmsg = vsock_dgram_recvmsg,
1310 .mmap = sock_no_mmap,
1311 .read_skb = vsock_read_skb,
1312};
1313
1314static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1315{
1316 const struct vsock_transport *transport = vsk->transport;
1317
1318 if (!transport || !transport->cancel_pkt)
1319 return -EOPNOTSUPP;
1320
1321 return transport->cancel_pkt(vsk);
1322}
1323
1324static void vsock_connect_timeout(struct work_struct *work)
1325{
1326 struct sock *sk;
1327 struct vsock_sock *vsk;
1328
1329 vsk = container_of(work, struct vsock_sock, connect_work.work);
1330 sk = sk_vsock(vsk);
1331
1332 lock_sock(sk);
1333 if (sk->sk_state == TCP_SYN_SENT &&
1334 (sk->sk_shutdown != SHUTDOWN_MASK)) {
1335 sk->sk_state = TCP_CLOSE;
1336 sk->sk_socket->state = SS_UNCONNECTED;
1337 sk->sk_err = ETIMEDOUT;
1338 sk_error_report(sk);
1339 vsock_transport_cancel_pkt(vsk);
1340 }
1341 release_sock(sk);
1342
1343 sock_put(sk);
1344}
1345
1346static int vsock_connect(struct socket *sock, struct sockaddr *addr,
1347 int addr_len, int flags)
1348{
1349 int err;
1350 struct sock *sk;
1351 struct vsock_sock *vsk;
1352 const struct vsock_transport *transport;
1353 struct sockaddr_vm *remote_addr;
1354 long timeout;
1355 DEFINE_WAIT(wait);
1356
1357 err = 0;
1358 sk = sock->sk;
1359 vsk = vsock_sk(sk);
1360
1361 lock_sock(sk);
1362
1363 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1364 switch (sock->state) {
1365 case SS_CONNECTED:
1366 err = -EISCONN;
1367 goto out;
1368 case SS_DISCONNECTING:
1369 err = -EINVAL;
1370 goto out;
1371 case SS_CONNECTING:
1372 /* This continues on so we can move sock into the SS_CONNECTED
1373 * state once the connection has completed (at which point err
1374 * will be set to zero also). Otherwise, we will either wait
1375 * for the connection or return -EALREADY should this be a
1376 * non-blocking call.
1377 */
1378 err = -EALREADY;
1379 if (flags & O_NONBLOCK)
1380 goto out;
1381 break;
1382 default:
1383 if ((sk->sk_state == TCP_LISTEN) ||
1384 vsock_addr_cast(addr, len: addr_len, out_addr: &remote_addr) != 0) {
1385 err = -EINVAL;
1386 goto out;
1387 }
1388
1389 /* Set the remote address that we are connecting to. */
1390 memcpy(&vsk->remote_addr, remote_addr,
1391 sizeof(vsk->remote_addr));
1392
1393 err = vsock_assign_transport(vsk, NULL);
1394 if (err)
1395 goto out;
1396
1397 transport = vsk->transport;
1398
1399 /* The hypervisor and well-known contexts do not have socket
1400 * endpoints.
1401 */
1402 if (!transport ||
1403 !transport->stream_allow(remote_addr->svm_cid,
1404 remote_addr->svm_port)) {
1405 err = -ENETUNREACH;
1406 goto out;
1407 }
1408
1409 if (vsock_msgzerocopy_allow(t: transport)) {
1410 set_bit(SOCK_SUPPORT_ZC, addr: &sk->sk_socket->flags);
1411 } else if (sock_flag(sk, flag: SOCK_ZEROCOPY)) {
1412 /* If this option was set before 'connect()',
1413 * when transport was unknown, check that this
1414 * feature is supported here.
1415 */
1416 err = -EOPNOTSUPP;
1417 goto out;
1418 }
1419
1420 err = vsock_auto_bind(vsk);
1421 if (err)
1422 goto out;
1423
1424 sk->sk_state = TCP_SYN_SENT;
1425
1426 err = transport->connect(vsk);
1427 if (err < 0)
1428 goto out;
1429
1430 /* Mark sock as connecting and set the error code to in
1431 * progress in case this is a non-blocking connect.
1432 */
1433 sock->state = SS_CONNECTING;
1434 err = -EINPROGRESS;
1435 }
1436
1437 /* The receive path will handle all communication until we are able to
1438 * enter the connected state. Here we wait for the connection to be
1439 * completed or a notification of an error.
1440 */
1441 timeout = vsk->connect_timeout;
1442 prepare_to_wait(wq_head: sk_sleep(sk), wq_entry: &wait, TASK_INTERRUPTIBLE);
1443
1444 while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1445 if (flags & O_NONBLOCK) {
1446 /* If we're not going to block, we schedule a timeout
1447 * function to generate a timeout on the connection
1448 * attempt, in case the peer doesn't respond in a
1449 * timely manner. We hold on to the socket until the
1450 * timeout fires.
1451 */
1452 sock_hold(sk);
1453
1454 /* If the timeout function is already scheduled,
1455 * reschedule it, then ungrab the socket refcount to
1456 * keep it balanced.
1457 */
1458 if (mod_delayed_work(wq: system_wq, dwork: &vsk->connect_work,
1459 delay: timeout))
1460 sock_put(sk);
1461
1462 /* Skip ahead to preserve error code set above. */
1463 goto out_wait;
1464 }
1465
1466 release_sock(sk);
1467 timeout = schedule_timeout(timeout);
1468 lock_sock(sk);
1469
1470 if (signal_pending(current)) {
1471 err = sock_intr_errno(timeo: timeout);
1472 sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1473 sock->state = SS_UNCONNECTED;
1474 vsock_transport_cancel_pkt(vsk);
1475 vsock_remove_connected(vsk);
1476 goto out_wait;
1477 } else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) {
1478 err = -ETIMEDOUT;
1479 sk->sk_state = TCP_CLOSE;
1480 sock->state = SS_UNCONNECTED;
1481 vsock_transport_cancel_pkt(vsk);
1482 goto out_wait;
1483 }
1484
1485 prepare_to_wait(wq_head: sk_sleep(sk), wq_entry: &wait, TASK_INTERRUPTIBLE);
1486 }
1487
1488 if (sk->sk_err) {
1489 err = -sk->sk_err;
1490 sk->sk_state = TCP_CLOSE;
1491 sock->state = SS_UNCONNECTED;
1492 } else {
1493 err = 0;
1494 }
1495
1496out_wait:
1497 finish_wait(wq_head: sk_sleep(sk), wq_entry: &wait);
1498out:
1499 release_sock(sk);
1500 return err;
1501}
1502
1503static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1504 bool kern)
1505{
1506 struct sock *listener;
1507 int err;
1508 struct sock *connected;
1509 struct vsock_sock *vconnected;
1510 long timeout;
1511 DEFINE_WAIT(wait);
1512
1513 err = 0;
1514 listener = sock->sk;
1515
1516 lock_sock(sk: listener);
1517
1518 if (!sock_type_connectible(type: sock->type)) {
1519 err = -EOPNOTSUPP;
1520 goto out;
1521 }
1522
1523 if (listener->sk_state != TCP_LISTEN) {
1524 err = -EINVAL;
1525 goto out;
1526 }
1527
1528 /* Wait for children sockets to appear; these are the new sockets
1529 * created upon connection establishment.
1530 */
1531 timeout = sock_rcvtimeo(sk: listener, noblock: flags & O_NONBLOCK);
1532 prepare_to_wait(wq_head: sk_sleep(sk: listener), wq_entry: &wait, TASK_INTERRUPTIBLE);
1533
1534 while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1535 listener->sk_err == 0) {
1536 release_sock(sk: listener);
1537 timeout = schedule_timeout(timeout);
1538 finish_wait(wq_head: sk_sleep(sk: listener), wq_entry: &wait);
1539 lock_sock(sk: listener);
1540
1541 if (signal_pending(current)) {
1542 err = sock_intr_errno(timeo: timeout);
1543 goto out;
1544 } else if (timeout == 0) {
1545 err = -EAGAIN;
1546 goto out;
1547 }
1548
1549 prepare_to_wait(wq_head: sk_sleep(sk: listener), wq_entry: &wait, TASK_INTERRUPTIBLE);
1550 }
1551 finish_wait(wq_head: sk_sleep(sk: listener), wq_entry: &wait);
1552
1553 if (listener->sk_err)
1554 err = -listener->sk_err;
1555
1556 if (connected) {
1557 sk_acceptq_removed(sk: listener);
1558
1559 lock_sock_nested(sk: connected, SINGLE_DEPTH_NESTING);
1560 vconnected = vsock_sk(connected);
1561
1562 /* If the listener socket has received an error, then we should
1563 * reject this socket and return. Note that we simply mark the
1564 * socket rejected, drop our reference, and let the cleanup
1565 * function handle the cleanup; the fact that we found it in
1566 * the listener's accept queue guarantees that the cleanup
1567 * function hasn't run yet.
1568 */
1569 if (err) {
1570 vconnected->rejected = true;
1571 } else {
1572 newsock->state = SS_CONNECTED;
1573 sock_graft(sk: connected, parent: newsock);
1574 if (vsock_msgzerocopy_allow(t: vconnected->transport))
1575 set_bit(SOCK_SUPPORT_ZC,
1576 addr: &connected->sk_socket->flags);
1577 }
1578
1579 release_sock(sk: connected);
1580 sock_put(sk: connected);
1581 }
1582
1583out:
1584 release_sock(sk: listener);
1585 return err;
1586}
1587
1588static int vsock_listen(struct socket *sock, int backlog)
1589{
1590 int err;
1591 struct sock *sk;
1592 struct vsock_sock *vsk;
1593
1594 sk = sock->sk;
1595
1596 lock_sock(sk);
1597
1598 if (!sock_type_connectible(type: sk->sk_type)) {
1599 err = -EOPNOTSUPP;
1600 goto out;
1601 }
1602
1603 if (sock->state != SS_UNCONNECTED) {
1604 err = -EINVAL;
1605 goto out;
1606 }
1607
1608 vsk = vsock_sk(sk);
1609
1610 if (!vsock_addr_bound(addr: &vsk->local_addr)) {
1611 err = -EINVAL;
1612 goto out;
1613 }
1614
1615 sk->sk_max_ack_backlog = backlog;
1616 sk->sk_state = TCP_LISTEN;
1617
1618 err = 0;
1619
1620out:
1621 release_sock(sk);
1622 return err;
1623}
1624
1625static void vsock_update_buffer_size(struct vsock_sock *vsk,
1626 const struct vsock_transport *transport,
1627 u64 val)
1628{
1629 if (val > vsk->buffer_max_size)
1630 val = vsk->buffer_max_size;
1631
1632 if (val < vsk->buffer_min_size)
1633 val = vsk->buffer_min_size;
1634
1635 if (val != vsk->buffer_size &&
1636 transport && transport->notify_buffer_size)
1637 transport->notify_buffer_size(vsk, &val);
1638
1639 vsk->buffer_size = val;
1640}
1641
1642static int vsock_connectible_setsockopt(struct socket *sock,
1643 int level,
1644 int optname,
1645 sockptr_t optval,
1646 unsigned int optlen)
1647{
1648 int err;
1649 struct sock *sk;
1650 struct vsock_sock *vsk;
1651 const struct vsock_transport *transport;
1652 u64 val;
1653
1654 if (level != AF_VSOCK && level != SOL_SOCKET)
1655 return -ENOPROTOOPT;
1656
1657#define COPY_IN(_v) \
1658 do { \
1659 if (optlen < sizeof(_v)) { \
1660 err = -EINVAL; \
1661 goto exit; \
1662 } \
1663 if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) { \
1664 err = -EFAULT; \
1665 goto exit; \
1666 } \
1667 } while (0)
1668
1669 err = 0;
1670 sk = sock->sk;
1671 vsk = vsock_sk(sk);
1672
1673 lock_sock(sk);
1674
1675 transport = vsk->transport;
1676
1677 if (level == SOL_SOCKET) {
1678 int zerocopy;
1679
1680 if (optname != SO_ZEROCOPY) {
1681 release_sock(sk);
1682 return sock_setsockopt(sock, level, op: optname, optval, optlen);
1683 }
1684
1685 /* Use 'int' type here, because variable to
1686 * set this option usually has this type.
1687 */
1688 COPY_IN(zerocopy);
1689
1690 if (zerocopy < 0 || zerocopy > 1) {
1691 err = -EINVAL;
1692 goto exit;
1693 }
1694
1695 if (transport && !vsock_msgzerocopy_allow(t: transport)) {
1696 err = -EOPNOTSUPP;
1697 goto exit;
1698 }
1699
1700 sock_valbool_flag(sk, bit: SOCK_ZEROCOPY, valbool: zerocopy);
1701 goto exit;
1702 }
1703
1704 switch (optname) {
1705 case SO_VM_SOCKETS_BUFFER_SIZE:
1706 COPY_IN(val);
1707 vsock_update_buffer_size(vsk, transport, val);
1708 break;
1709
1710 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1711 COPY_IN(val);
1712 vsk->buffer_max_size = val;
1713 vsock_update_buffer_size(vsk, transport, val: vsk->buffer_size);
1714 break;
1715
1716 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1717 COPY_IN(val);
1718 vsk->buffer_min_size = val;
1719 vsock_update_buffer_size(vsk, transport, val: vsk->buffer_size);
1720 break;
1721
1722 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1723 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: {
1724 struct __kernel_sock_timeval tv;
1725
1726 err = sock_copy_user_timeval(tv: &tv, optval, optlen,
1727 old_timeval: optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1728 if (err)
1729 break;
1730 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1731 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1732 vsk->connect_timeout = tv.tv_sec * HZ +
1733 DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ));
1734 if (vsk->connect_timeout == 0)
1735 vsk->connect_timeout =
1736 VSOCK_DEFAULT_CONNECT_TIMEOUT;
1737
1738 } else {
1739 err = -ERANGE;
1740 }
1741 break;
1742 }
1743
1744 default:
1745 err = -ENOPROTOOPT;
1746 break;
1747 }
1748
1749#undef COPY_IN
1750
1751exit:
1752 release_sock(sk);
1753 return err;
1754}
1755
1756static int vsock_connectible_getsockopt(struct socket *sock,
1757 int level, int optname,
1758 char __user *optval,
1759 int __user *optlen)
1760{
1761 struct sock *sk = sock->sk;
1762 struct vsock_sock *vsk = vsock_sk(sk);
1763
1764 union {
1765 u64 val64;
1766 struct old_timeval32 tm32;
1767 struct __kernel_old_timeval tm;
1768 struct __kernel_sock_timeval stm;
1769 } v;
1770
1771 int lv = sizeof(v.val64);
1772 int len;
1773
1774 if (level != AF_VSOCK)
1775 return -ENOPROTOOPT;
1776
1777 if (get_user(len, optlen))
1778 return -EFAULT;
1779
1780 memset(&v, 0, sizeof(v));
1781
1782 switch (optname) {
1783 case SO_VM_SOCKETS_BUFFER_SIZE:
1784 v.val64 = vsk->buffer_size;
1785 break;
1786
1787 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1788 v.val64 = vsk->buffer_max_size;
1789 break;
1790
1791 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1792 v.val64 = vsk->buffer_min_size;
1793 break;
1794
1795 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1796 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD:
1797 lv = sock_get_timeout(timeo: vsk->connect_timeout, optval: &v,
1798 old_timeval: optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1799 break;
1800
1801 default:
1802 return -ENOPROTOOPT;
1803 }
1804
1805 if (len < lv)
1806 return -EINVAL;
1807 if (len > lv)
1808 len = lv;
1809 if (copy_to_user(to: optval, from: &v, n: len))
1810 return -EFAULT;
1811
1812 if (put_user(len, optlen))
1813 return -EFAULT;
1814
1815 return 0;
1816}
1817
1818static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
1819 size_t len)
1820{
1821 struct sock *sk;
1822 struct vsock_sock *vsk;
1823 const struct vsock_transport *transport;
1824 ssize_t total_written;
1825 long timeout;
1826 int err;
1827 struct vsock_transport_send_notify_data send_data;
1828 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1829
1830 sk = sock->sk;
1831 vsk = vsock_sk(sk);
1832 total_written = 0;
1833 err = 0;
1834
1835 if (msg->msg_flags & MSG_OOB)
1836 return -EOPNOTSUPP;
1837
1838 lock_sock(sk);
1839
1840 transport = vsk->transport;
1841
1842 /* Callers should not provide a destination with connection oriented
1843 * sockets.
1844 */
1845 if (msg->msg_namelen) {
1846 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1847 goto out;
1848 }
1849
1850 /* Send data only if both sides are not shutdown in the direction. */
1851 if (sk->sk_shutdown & SEND_SHUTDOWN ||
1852 vsk->peer_shutdown & RCV_SHUTDOWN) {
1853 err = -EPIPE;
1854 goto out;
1855 }
1856
1857 if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1858 !vsock_addr_bound(addr: &vsk->local_addr)) {
1859 err = -ENOTCONN;
1860 goto out;
1861 }
1862
1863 if (!vsock_addr_bound(addr: &vsk->remote_addr)) {
1864 err = -EDESTADDRREQ;
1865 goto out;
1866 }
1867
1868 if (msg->msg_flags & MSG_ZEROCOPY &&
1869 !vsock_msgzerocopy_allow(t: transport)) {
1870 err = -EOPNOTSUPP;
1871 goto out;
1872 }
1873
1874 /* Wait for room in the produce queue to enqueue our user's data. */
1875 timeout = sock_sndtimeo(sk, noblock: msg->msg_flags & MSG_DONTWAIT);
1876
1877 err = transport->notify_send_init(vsk, &send_data);
1878 if (err < 0)
1879 goto out;
1880
1881 while (total_written < len) {
1882 ssize_t written;
1883
1884 add_wait_queue(wq_head: sk_sleep(sk), wq_entry: &wait);
1885 while (vsock_stream_has_space(vsk) == 0 &&
1886 sk->sk_err == 0 &&
1887 !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1888 !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1889
1890 /* Don't wait for non-blocking sockets. */
1891 if (timeout == 0) {
1892 err = -EAGAIN;
1893 remove_wait_queue(wq_head: sk_sleep(sk), wq_entry: &wait);
1894 goto out_err;
1895 }
1896
1897 err = transport->notify_send_pre_block(vsk, &send_data);
1898 if (err < 0) {
1899 remove_wait_queue(wq_head: sk_sleep(sk), wq_entry: &wait);
1900 goto out_err;
1901 }
1902
1903 release_sock(sk);
1904 timeout = wait_woken(wq_entry: &wait, TASK_INTERRUPTIBLE, timeout);
1905 lock_sock(sk);
1906 if (signal_pending(current)) {
1907 err = sock_intr_errno(timeo: timeout);
1908 remove_wait_queue(wq_head: sk_sleep(sk), wq_entry: &wait);
1909 goto out_err;
1910 } else if (timeout == 0) {
1911 err = -EAGAIN;
1912 remove_wait_queue(wq_head: sk_sleep(sk), wq_entry: &wait);
1913 goto out_err;
1914 }
1915 }
1916 remove_wait_queue(wq_head: sk_sleep(sk), wq_entry: &wait);
1917
1918 /* These checks occur both as part of and after the loop
1919 * conditional since we need to check before and after
1920 * sleeping.
1921 */
1922 if (sk->sk_err) {
1923 err = -sk->sk_err;
1924 goto out_err;
1925 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1926 (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1927 err = -EPIPE;
1928 goto out_err;
1929 }
1930
1931 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1932 if (err < 0)
1933 goto out_err;
1934
1935 /* Note that enqueue will only write as many bytes as are free
1936 * in the produce queue, so we don't need to ensure len is
1937 * smaller than the queue size. It is the caller's
1938 * responsibility to check how many bytes we were able to send.
1939 */
1940
1941 if (sk->sk_type == SOCK_SEQPACKET) {
1942 written = transport->seqpacket_enqueue(vsk,
1943 msg, len - total_written);
1944 } else {
1945 written = transport->stream_enqueue(vsk,
1946 msg, len - total_written);
1947 }
1948
1949 if (written < 0) {
1950 err = written;
1951 goto out_err;
1952 }
1953
1954 total_written += written;
1955
1956 err = transport->notify_send_post_enqueue(
1957 vsk, written, &send_data);
1958 if (err < 0)
1959 goto out_err;
1960
1961 }
1962
1963out_err:
1964 if (total_written > 0) {
1965 /* Return number of written bytes only if:
1966 * 1) SOCK_STREAM socket.
1967 * 2) SOCK_SEQPACKET socket when whole buffer is sent.
1968 */
1969 if (sk->sk_type == SOCK_STREAM || total_written == len)
1970 err = total_written;
1971 }
1972out:
1973 if (sk->sk_type == SOCK_STREAM)
1974 err = sk_stream_error(sk, flags: msg->msg_flags, err);
1975
1976 release_sock(sk);
1977 return err;
1978}
1979
1980static int vsock_connectible_wait_data(struct sock *sk,
1981 struct wait_queue_entry *wait,
1982 long timeout,
1983 struct vsock_transport_recv_notify_data *recv_data,
1984 size_t target)
1985{
1986 const struct vsock_transport *transport;
1987 struct vsock_sock *vsk;
1988 s64 data;
1989 int err;
1990
1991 vsk = vsock_sk(sk);
1992 err = 0;
1993 transport = vsk->transport;
1994
1995 while (1) {
1996 prepare_to_wait(wq_head: sk_sleep(sk), wq_entry: wait, TASK_INTERRUPTIBLE);
1997 data = vsock_connectible_has_data(vsk);
1998 if (data != 0)
1999 break;
2000
2001 if (sk->sk_err != 0 ||
2002 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2003 (vsk->peer_shutdown & SEND_SHUTDOWN)) {
2004 break;
2005 }
2006
2007 /* Don't wait for non-blocking sockets. */
2008 if (timeout == 0) {
2009 err = -EAGAIN;
2010 break;
2011 }
2012
2013 if (recv_data) {
2014 err = transport->notify_recv_pre_block(vsk, target, recv_data);
2015 if (err < 0)
2016 break;
2017 }
2018
2019 release_sock(sk);
2020 timeout = schedule_timeout(timeout);
2021 lock_sock(sk);
2022
2023 if (signal_pending(current)) {
2024 err = sock_intr_errno(timeo: timeout);
2025 break;
2026 } else if (timeout == 0) {
2027 err = -EAGAIN;
2028 break;
2029 }
2030 }
2031
2032 finish_wait(wq_head: sk_sleep(sk), wq_entry: wait);
2033
2034 if (err)
2035 return err;
2036
2037 /* Internal transport error when checking for available
2038 * data. XXX This should be changed to a connection
2039 * reset in a later change.
2040 */
2041 if (data < 0)
2042 return -ENOMEM;
2043
2044 return data;
2045}
2046
2047static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
2048 size_t len, int flags)
2049{
2050 struct vsock_transport_recv_notify_data recv_data;
2051 const struct vsock_transport *transport;
2052 struct vsock_sock *vsk;
2053 ssize_t copied;
2054 size_t target;
2055 long timeout;
2056 int err;
2057
2058 DEFINE_WAIT(wait);
2059
2060 vsk = vsock_sk(sk);
2061 transport = vsk->transport;
2062
2063 /* We must not copy less than target bytes into the user's buffer
2064 * before returning successfully, so we wait for the consume queue to
2065 * have that much data to consume before dequeueing. Note that this
2066 * makes it impossible to handle cases where target is greater than the
2067 * queue size.
2068 */
2069 target = sock_rcvlowat(sk, waitall: flags & MSG_WAITALL, len);
2070 if (target >= transport->stream_rcvhiwat(vsk)) {
2071 err = -ENOMEM;
2072 goto out;
2073 }
2074 timeout = sock_rcvtimeo(sk, noblock: flags & MSG_DONTWAIT);
2075 copied = 0;
2076
2077 err = transport->notify_recv_init(vsk, target, &recv_data);
2078 if (err < 0)
2079 goto out;
2080
2081
2082 while (1) {
2083 ssize_t read;
2084
2085 err = vsock_connectible_wait_data(sk, wait: &wait, timeout,
2086 recv_data: &recv_data, target);
2087 if (err <= 0)
2088 break;
2089
2090 err = transport->notify_recv_pre_dequeue(vsk, target,
2091 &recv_data);
2092 if (err < 0)
2093 break;
2094
2095 read = transport->stream_dequeue(vsk, msg, len - copied, flags);
2096 if (read < 0) {
2097 err = read;
2098 break;
2099 }
2100
2101 copied += read;
2102
2103 err = transport->notify_recv_post_dequeue(vsk, target, read,
2104 !(flags & MSG_PEEK), &recv_data);
2105 if (err < 0)
2106 goto out;
2107
2108 if (read >= target || flags & MSG_PEEK)
2109 break;
2110
2111 target -= read;
2112 }
2113
2114 if (sk->sk_err)
2115 err = -sk->sk_err;
2116 else if (sk->sk_shutdown & RCV_SHUTDOWN)
2117 err = 0;
2118
2119 if (copied > 0)
2120 err = copied;
2121
2122out:
2123 return err;
2124}
2125
2126static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
2127 size_t len, int flags)
2128{
2129 const struct vsock_transport *transport;
2130 struct vsock_sock *vsk;
2131 ssize_t msg_len;
2132 long timeout;
2133 int err = 0;
2134 DEFINE_WAIT(wait);
2135
2136 vsk = vsock_sk(sk);
2137 transport = vsk->transport;
2138
2139 timeout = sock_rcvtimeo(sk, noblock: flags & MSG_DONTWAIT);
2140
2141 err = vsock_connectible_wait_data(sk, wait: &wait, timeout, NULL, target: 0);
2142 if (err <= 0)
2143 goto out;
2144
2145 msg_len = transport->seqpacket_dequeue(vsk, msg, flags);
2146
2147 if (msg_len < 0) {
2148 err = msg_len;
2149 goto out;
2150 }
2151
2152 if (sk->sk_err) {
2153 err = -sk->sk_err;
2154 } else if (sk->sk_shutdown & RCV_SHUTDOWN) {
2155 err = 0;
2156 } else {
2157 /* User sets MSG_TRUNC, so return real length of
2158 * packet.
2159 */
2160 if (flags & MSG_TRUNC)
2161 err = msg_len;
2162 else
2163 err = len - msg_data_left(msg);
2164
2165 /* Always set MSG_TRUNC if real length of packet is
2166 * bigger than user's buffer.
2167 */
2168 if (msg_len > len)
2169 msg->msg_flags |= MSG_TRUNC;
2170 }
2171
2172out:
2173 return err;
2174}
2175
2176int
2177vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2178 int flags)
2179{
2180 struct sock *sk;
2181 struct vsock_sock *vsk;
2182 const struct vsock_transport *transport;
2183#ifdef CONFIG_BPF_SYSCALL
2184 const struct proto *prot;
2185#endif
2186 int err;
2187
2188 sk = sock->sk;
2189
2190 if (unlikely(flags & MSG_ERRQUEUE))
2191 return sock_recv_errqueue(sk, msg, len, SOL_VSOCK, VSOCK_RECVERR);
2192
2193 vsk = vsock_sk(sk);
2194 err = 0;
2195
2196 lock_sock(sk);
2197
2198 transport = vsk->transport;
2199
2200 if (!transport || sk->sk_state != TCP_ESTABLISHED) {
2201 /* Recvmsg is supposed to return 0 if a peer performs an
2202 * orderly shutdown. Differentiate between that case and when a
2203 * peer has not connected or a local shutdown occurred with the
2204 * SOCK_DONE flag.
2205 */
2206 if (sock_flag(sk, flag: SOCK_DONE))
2207 err = 0;
2208 else
2209 err = -ENOTCONN;
2210
2211 goto out;
2212 }
2213
2214 if (flags & MSG_OOB) {
2215 err = -EOPNOTSUPP;
2216 goto out;
2217 }
2218
2219 /* We don't check peer_shutdown flag here since peer may actually shut
2220 * down, but there can be data in the queue that a local socket can
2221 * receive.
2222 */
2223 if (sk->sk_shutdown & RCV_SHUTDOWN) {
2224 err = 0;
2225 goto out;
2226 }
2227
2228 /* It is valid on Linux to pass in a zero-length receive buffer. This
2229 * is not an error. We may as well bail out now.
2230 */
2231 if (!len) {
2232 err = 0;
2233 goto out;
2234 }
2235
2236#ifdef CONFIG_BPF_SYSCALL
2237 prot = READ_ONCE(sk->sk_prot);
2238 if (prot != &vsock_proto) {
2239 release_sock(sk);
2240 return prot->recvmsg(sk, msg, len, flags, NULL);
2241 }
2242#endif
2243
2244 if (sk->sk_type == SOCK_STREAM)
2245 err = __vsock_stream_recvmsg(sk, msg, len, flags);
2246 else
2247 err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
2248
2249out:
2250 release_sock(sk);
2251 return err;
2252}
2253EXPORT_SYMBOL_GPL(vsock_connectible_recvmsg);
2254
2255static int vsock_set_rcvlowat(struct sock *sk, int val)
2256{
2257 const struct vsock_transport *transport;
2258 struct vsock_sock *vsk;
2259
2260 vsk = vsock_sk(sk);
2261
2262 if (val > vsk->buffer_size)
2263 return -EINVAL;
2264
2265 transport = vsk->transport;
2266
2267 if (transport && transport->set_rcvlowat)
2268 return transport->set_rcvlowat(vsk, val);
2269
2270 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
2271 return 0;
2272}
2273
2274static const struct proto_ops vsock_stream_ops = {
2275 .family = PF_VSOCK,
2276 .owner = THIS_MODULE,
2277 .release = vsock_release,
2278 .bind = vsock_bind,
2279 .connect = vsock_connect,
2280 .socketpair = sock_no_socketpair,
2281 .accept = vsock_accept,
2282 .getname = vsock_getname,
2283 .poll = vsock_poll,
2284 .ioctl = sock_no_ioctl,
2285 .listen = vsock_listen,
2286 .shutdown = vsock_shutdown,
2287 .setsockopt = vsock_connectible_setsockopt,
2288 .getsockopt = vsock_connectible_getsockopt,
2289 .sendmsg = vsock_connectible_sendmsg,
2290 .recvmsg = vsock_connectible_recvmsg,
2291 .mmap = sock_no_mmap,
2292 .set_rcvlowat = vsock_set_rcvlowat,
2293 .read_skb = vsock_read_skb,
2294};
2295
2296static const struct proto_ops vsock_seqpacket_ops = {
2297 .family = PF_VSOCK,
2298 .owner = THIS_MODULE,
2299 .release = vsock_release,
2300 .bind = vsock_bind,
2301 .connect = vsock_connect,
2302 .socketpair = sock_no_socketpair,
2303 .accept = vsock_accept,
2304 .getname = vsock_getname,
2305 .poll = vsock_poll,
2306 .ioctl = sock_no_ioctl,
2307 .listen = vsock_listen,
2308 .shutdown = vsock_shutdown,
2309 .setsockopt = vsock_connectible_setsockopt,
2310 .getsockopt = vsock_connectible_getsockopt,
2311 .sendmsg = vsock_connectible_sendmsg,
2312 .recvmsg = vsock_connectible_recvmsg,
2313 .mmap = sock_no_mmap,
2314 .read_skb = vsock_read_skb,
2315};
2316
2317static int vsock_create(struct net *net, struct socket *sock,
2318 int protocol, int kern)
2319{
2320 struct vsock_sock *vsk;
2321 struct sock *sk;
2322 int ret;
2323
2324 if (!sock)
2325 return -EINVAL;
2326
2327 if (protocol && protocol != PF_VSOCK)
2328 return -EPROTONOSUPPORT;
2329
2330 switch (sock->type) {
2331 case SOCK_DGRAM:
2332 sock->ops = &vsock_dgram_ops;
2333 break;
2334 case SOCK_STREAM:
2335 sock->ops = &vsock_stream_ops;
2336 break;
2337 case SOCK_SEQPACKET:
2338 sock->ops = &vsock_seqpacket_ops;
2339 break;
2340 default:
2341 return -ESOCKTNOSUPPORT;
2342 }
2343
2344 sock->state = SS_UNCONNECTED;
2345
2346 sk = __vsock_create(net, sock, NULL, GFP_KERNEL, type: 0, kern);
2347 if (!sk)
2348 return -ENOMEM;
2349
2350 vsk = vsock_sk(sk);
2351
2352 if (sock->type == SOCK_DGRAM) {
2353 ret = vsock_assign_transport(vsk, NULL);
2354 if (ret < 0) {
2355 sock_put(sk);
2356 return ret;
2357 }
2358 }
2359
2360 /* SOCK_DGRAM doesn't have 'setsockopt' callback set in its
2361 * proto_ops, so there is no handler for custom logic.
2362 */
2363 if (sock_type_connectible(type: sock->type))
2364 set_bit(SOCK_CUSTOM_SOCKOPT, addr: &sk->sk_socket->flags);
2365
2366 vsock_insert_unbound(vsk);
2367
2368 return 0;
2369}
2370
2371static const struct net_proto_family vsock_family_ops = {
2372 .family = AF_VSOCK,
2373 .create = vsock_create,
2374 .owner = THIS_MODULE,
2375};
2376
2377static long vsock_dev_do_ioctl(struct file *filp,
2378 unsigned int cmd, void __user *ptr)
2379{
2380 u32 __user *p = ptr;
2381 u32 cid = VMADDR_CID_ANY;
2382 int retval = 0;
2383
2384 switch (cmd) {
2385 case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2386 /* To be compatible with the VMCI behavior, we prioritize the
2387 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2388 */
2389 if (transport_g2h)
2390 cid = transport_g2h->get_local_cid();
2391 else if (transport_h2g)
2392 cid = transport_h2g->get_local_cid();
2393
2394 if (put_user(cid, p) != 0)
2395 retval = -EFAULT;
2396 break;
2397
2398 default:
2399 retval = -ENOIOCTLCMD;
2400 }
2401
2402 return retval;
2403}
2404
2405static long vsock_dev_ioctl(struct file *filp,
2406 unsigned int cmd, unsigned long arg)
2407{
2408 return vsock_dev_do_ioctl(filp, cmd, ptr: (void __user *)arg);
2409}
2410
2411#ifdef CONFIG_COMPAT
2412static long vsock_dev_compat_ioctl(struct file *filp,
2413 unsigned int cmd, unsigned long arg)
2414{
2415 return vsock_dev_do_ioctl(filp, cmd, ptr: compat_ptr(uptr: arg));
2416}
2417#endif
2418
2419static const struct file_operations vsock_device_ops = {
2420 .owner = THIS_MODULE,
2421 .unlocked_ioctl = vsock_dev_ioctl,
2422#ifdef CONFIG_COMPAT
2423 .compat_ioctl = vsock_dev_compat_ioctl,
2424#endif
2425 .open = nonseekable_open,
2426};
2427
2428static struct miscdevice vsock_device = {
2429 .name = "vsock",
2430 .fops = &vsock_device_ops,
2431};
2432
2433static int __init vsock_init(void)
2434{
2435 int err = 0;
2436
2437 vsock_init_tables();
2438
2439 vsock_proto.owner = THIS_MODULE;
2440 vsock_device.minor = MISC_DYNAMIC_MINOR;
2441 err = misc_register(misc: &vsock_device);
2442 if (err) {
2443 pr_err("Failed to register misc device\n");
2444 goto err_reset_transport;
2445 }
2446
2447 err = proto_register(prot: &vsock_proto, alloc_slab: 1); /* we want our slab */
2448 if (err) {
2449 pr_err("Cannot register vsock protocol\n");
2450 goto err_deregister_misc;
2451 }
2452
2453 err = sock_register(fam: &vsock_family_ops);
2454 if (err) {
2455 pr_err("could not register af_vsock (%d) address family: %d\n",
2456 AF_VSOCK, err);
2457 goto err_unregister_proto;
2458 }
2459
2460 vsock_bpf_build_proto();
2461
2462 return 0;
2463
2464err_unregister_proto:
2465 proto_unregister(prot: &vsock_proto);
2466err_deregister_misc:
2467 misc_deregister(misc: &vsock_device);
2468err_reset_transport:
2469 return err;
2470}
2471
2472static void __exit vsock_exit(void)
2473{
2474 misc_deregister(misc: &vsock_device);
2475 sock_unregister(AF_VSOCK);
2476 proto_unregister(prot: &vsock_proto);
2477}
2478
2479const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2480{
2481 return vsk->transport;
2482}
2483EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2484
2485int vsock_core_register(const struct vsock_transport *t, int features)
2486{
2487 const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2488 int err = mutex_lock_interruptible(&vsock_register_mutex);
2489
2490 if (err)
2491 return err;
2492
2493 t_h2g = transport_h2g;
2494 t_g2h = transport_g2h;
2495 t_dgram = transport_dgram;
2496 t_local = transport_local;
2497
2498 if (features & VSOCK_TRANSPORT_F_H2G) {
2499 if (t_h2g) {
2500 err = -EBUSY;
2501 goto err_busy;
2502 }
2503 t_h2g = t;
2504 }
2505
2506 if (features & VSOCK_TRANSPORT_F_G2H) {
2507 if (t_g2h) {
2508 err = -EBUSY;
2509 goto err_busy;
2510 }
2511 t_g2h = t;
2512 }
2513
2514 if (features & VSOCK_TRANSPORT_F_DGRAM) {
2515 if (t_dgram) {
2516 err = -EBUSY;
2517 goto err_busy;
2518 }
2519 t_dgram = t;
2520 }
2521
2522 if (features & VSOCK_TRANSPORT_F_LOCAL) {
2523 if (t_local) {
2524 err = -EBUSY;
2525 goto err_busy;
2526 }
2527 t_local = t;
2528 }
2529
2530 transport_h2g = t_h2g;
2531 transport_g2h = t_g2h;
2532 transport_dgram = t_dgram;
2533 transport_local = t_local;
2534
2535err_busy:
2536 mutex_unlock(lock: &vsock_register_mutex);
2537 return err;
2538}
2539EXPORT_SYMBOL_GPL(vsock_core_register);
2540
2541void vsock_core_unregister(const struct vsock_transport *t)
2542{
2543 mutex_lock(&vsock_register_mutex);
2544
2545 if (transport_h2g == t)
2546 transport_h2g = NULL;
2547
2548 if (transport_g2h == t)
2549 transport_g2h = NULL;
2550
2551 if (transport_dgram == t)
2552 transport_dgram = NULL;
2553
2554 if (transport_local == t)
2555 transport_local = NULL;
2556
2557 mutex_unlock(lock: &vsock_register_mutex);
2558}
2559EXPORT_SYMBOL_GPL(vsock_core_unregister);
2560
2561module_init(vsock_init);
2562module_exit(vsock_exit);
2563
2564MODULE_AUTHOR("VMware, Inc.");
2565MODULE_DESCRIPTION("VMware Virtual Socket Family");
2566MODULE_VERSION("1.0.2.0-k");
2567MODULE_LICENSE("GPL v2");
2568

source code of linux/net/vmw_vsock/af_vsock.c