1/*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 - 2023 Intel Corporation
9 *
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22
23
24/**
25 * DOC: Wireless regulatory infrastructure
26 *
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
31 *
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
35 *
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
41 *
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
45 *
46 */
47
48#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50#include <linux/kernel.h>
51#include <linux/export.h>
52#include <linux/slab.h>
53#include <linux/list.h>
54#include <linux/ctype.h>
55#include <linux/nl80211.h>
56#include <linux/platform_device.h>
57#include <linux/verification.h>
58#include <linux/moduleparam.h>
59#include <linux/firmware.h>
60#include <net/cfg80211.h>
61#include "core.h"
62#include "reg.h"
63#include "rdev-ops.h"
64#include "nl80211.h"
65
66/*
67 * Grace period we give before making sure all current interfaces reside on
68 * channels allowed by the current regulatory domain.
69 */
70#define REG_ENFORCE_GRACE_MS 60000
71
72/**
73 * enum reg_request_treatment - regulatory request treatment
74 *
75 * @REG_REQ_OK: continue processing the regulatory request
76 * @REG_REQ_IGNORE: ignore the regulatory request
77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78 * be intersected with the current one.
79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80 * regulatory settings, and no further processing is required.
81 */
82enum reg_request_treatment {
83 REG_REQ_OK,
84 REG_REQ_IGNORE,
85 REG_REQ_INTERSECT,
86 REG_REQ_ALREADY_SET,
87};
88
89static struct regulatory_request core_request_world = {
90 .initiator = NL80211_REGDOM_SET_BY_CORE,
91 .alpha2[0] = '0',
92 .alpha2[1] = '0',
93 .intersect = false,
94 .processed = true,
95 .country_ie_env = ENVIRON_ANY,
96};
97
98/*
99 * Receipt of information from last regulatory request,
100 * protected by RTNL (and can be accessed with RCU protection)
101 */
102static struct regulatory_request __rcu *last_request =
103 (void __force __rcu *)&core_request_world;
104
105/* To trigger userspace events and load firmware */
106static struct platform_device *reg_pdev;
107
108/*
109 * Central wireless core regulatory domains, we only need two,
110 * the current one and a world regulatory domain in case we have no
111 * information to give us an alpha2.
112 * (protected by RTNL, can be read under RCU)
113 */
114const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116/*
117 * Number of devices that registered to the core
118 * that support cellular base station regulatory hints
119 * (protected by RTNL)
120 */
121static int reg_num_devs_support_basehint;
122
123/*
124 * State variable indicating if the platform on which the devices
125 * are attached is operating in an indoor environment. The state variable
126 * is relevant for all registered devices.
127 */
128static bool reg_is_indoor;
129static DEFINE_SPINLOCK(reg_indoor_lock);
130
131/* Used to track the userspace process controlling the indoor setting */
132static u32 reg_is_indoor_portid;
133
134static void restore_regulatory_settings(bool reset_user, bool cached);
135static void print_regdomain(const struct ieee80211_regdomain *rd);
136static void reg_process_hint(struct regulatory_request *reg_request);
137
138static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
139{
140 return rcu_dereference_rtnl(cfg80211_regdomain);
141}
142
143/*
144 * Returns the regulatory domain associated with the wiphy.
145 *
146 * Requires any of RTNL, wiphy mutex or RCU protection.
147 */
148const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149{
150 return rcu_dereference_check(wiphy->regd,
151 lockdep_is_held(&wiphy->mtx) ||
152 lockdep_rtnl_is_held());
153}
154EXPORT_SYMBOL(get_wiphy_regdom);
155
156static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
157{
158 switch (dfs_region) {
159 case NL80211_DFS_UNSET:
160 return "unset";
161 case NL80211_DFS_FCC:
162 return "FCC";
163 case NL80211_DFS_ETSI:
164 return "ETSI";
165 case NL80211_DFS_JP:
166 return "JP";
167 }
168 return "Unknown";
169}
170
171enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
172{
173 const struct ieee80211_regdomain *regd = NULL;
174 const struct ieee80211_regdomain *wiphy_regd = NULL;
175 enum nl80211_dfs_regions dfs_region;
176
177 rcu_read_lock();
178 regd = get_cfg80211_regdom();
179 dfs_region = regd->dfs_region;
180
181 if (!wiphy)
182 goto out;
183
184 wiphy_regd = get_wiphy_regdom(wiphy);
185 if (!wiphy_regd)
186 goto out;
187
188 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
189 dfs_region = wiphy_regd->dfs_region;
190 goto out;
191 }
192
193 if (wiphy_regd->dfs_region == regd->dfs_region)
194 goto out;
195
196 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
197 dev_name(&wiphy->dev),
198 reg_dfs_region_str(wiphy_regd->dfs_region),
199 reg_dfs_region_str(regd->dfs_region));
200
201out:
202 rcu_read_unlock();
203
204 return dfs_region;
205}
206
207static void rcu_free_regdom(const struct ieee80211_regdomain *r)
208{
209 if (!r)
210 return;
211 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
212}
213
214static struct regulatory_request *get_last_request(void)
215{
216 return rcu_dereference_rtnl(last_request);
217}
218
219/* Used to queue up regulatory hints */
220static LIST_HEAD(reg_requests_list);
221static DEFINE_SPINLOCK(reg_requests_lock);
222
223/* Used to queue up beacon hints for review */
224static LIST_HEAD(reg_pending_beacons);
225static DEFINE_SPINLOCK(reg_pending_beacons_lock);
226
227/* Used to keep track of processed beacon hints */
228static LIST_HEAD(reg_beacon_list);
229
230struct reg_beacon {
231 struct list_head list;
232 struct ieee80211_channel chan;
233};
234
235static void reg_check_chans_work(struct work_struct *work);
236static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
237
238static void reg_todo(struct work_struct *work);
239static DECLARE_WORK(reg_work, reg_todo);
240
241/* We keep a static world regulatory domain in case of the absence of CRDA */
242static const struct ieee80211_regdomain world_regdom = {
243 .n_reg_rules = 8,
244 .alpha2 = "00",
245 .reg_rules = {
246 /* IEEE 802.11b/g, channels 1..11 */
247 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
248 /* IEEE 802.11b/g, channels 12..13. */
249 REG_RULE(2467-10, 2472+10, 20, 6, 20,
250 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
251 /* IEEE 802.11 channel 14 - Only JP enables
252 * this and for 802.11b only */
253 REG_RULE(2484-10, 2484+10, 20, 6, 20,
254 NL80211_RRF_NO_IR |
255 NL80211_RRF_NO_OFDM),
256 /* IEEE 802.11a, channel 36..48 */
257 REG_RULE(5180-10, 5240+10, 80, 6, 20,
258 NL80211_RRF_NO_IR |
259 NL80211_RRF_AUTO_BW),
260
261 /* IEEE 802.11a, channel 52..64 - DFS required */
262 REG_RULE(5260-10, 5320+10, 80, 6, 20,
263 NL80211_RRF_NO_IR |
264 NL80211_RRF_AUTO_BW |
265 NL80211_RRF_DFS),
266
267 /* IEEE 802.11a, channel 100..144 - DFS required */
268 REG_RULE(5500-10, 5720+10, 160, 6, 20,
269 NL80211_RRF_NO_IR |
270 NL80211_RRF_DFS),
271
272 /* IEEE 802.11a, channel 149..165 */
273 REG_RULE(5745-10, 5825+10, 80, 6, 20,
274 NL80211_RRF_NO_IR),
275
276 /* IEEE 802.11ad (60GHz), channels 1..3 */
277 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
278 }
279};
280
281/* protected by RTNL */
282static const struct ieee80211_regdomain *cfg80211_world_regdom =
283 &world_regdom;
284
285static char *ieee80211_regdom = "00";
286static char user_alpha2[2];
287static const struct ieee80211_regdomain *cfg80211_user_regdom;
288
289module_param(ieee80211_regdom, charp, 0444);
290MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
291
292static void reg_free_request(struct regulatory_request *request)
293{
294 if (request == &core_request_world)
295 return;
296
297 if (request != get_last_request())
298 kfree(objp: request);
299}
300
301static void reg_free_last_request(void)
302{
303 struct regulatory_request *lr = get_last_request();
304
305 if (lr != &core_request_world && lr)
306 kfree_rcu(lr, rcu_head);
307}
308
309static void reg_update_last_request(struct regulatory_request *request)
310{
311 struct regulatory_request *lr;
312
313 lr = get_last_request();
314 if (lr == request)
315 return;
316
317 reg_free_last_request();
318 rcu_assign_pointer(last_request, request);
319}
320
321static void reset_regdomains(bool full_reset,
322 const struct ieee80211_regdomain *new_regdom)
323{
324 const struct ieee80211_regdomain *r;
325
326 ASSERT_RTNL();
327
328 r = get_cfg80211_regdom();
329
330 /* avoid freeing static information or freeing something twice */
331 if (r == cfg80211_world_regdom)
332 r = NULL;
333 if (cfg80211_world_regdom == &world_regdom)
334 cfg80211_world_regdom = NULL;
335 if (r == &world_regdom)
336 r = NULL;
337
338 rcu_free_regdom(r);
339 rcu_free_regdom(r: cfg80211_world_regdom);
340
341 cfg80211_world_regdom = &world_regdom;
342 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
343
344 if (!full_reset)
345 return;
346
347 reg_update_last_request(request: &core_request_world);
348}
349
350/*
351 * Dynamic world regulatory domain requested by the wireless
352 * core upon initialization
353 */
354static void update_world_regdomain(const struct ieee80211_regdomain *rd)
355{
356 struct regulatory_request *lr;
357
358 lr = get_last_request();
359
360 WARN_ON(!lr);
361
362 reset_regdomains(full_reset: false, new_regdom: rd);
363
364 cfg80211_world_regdom = rd;
365}
366
367bool is_world_regdom(const char *alpha2)
368{
369 if (!alpha2)
370 return false;
371 return alpha2[0] == '0' && alpha2[1] == '0';
372}
373
374static bool is_alpha2_set(const char *alpha2)
375{
376 if (!alpha2)
377 return false;
378 return alpha2[0] && alpha2[1];
379}
380
381static bool is_unknown_alpha2(const char *alpha2)
382{
383 if (!alpha2)
384 return false;
385 /*
386 * Special case where regulatory domain was built by driver
387 * but a specific alpha2 cannot be determined
388 */
389 return alpha2[0] == '9' && alpha2[1] == '9';
390}
391
392static bool is_intersected_alpha2(const char *alpha2)
393{
394 if (!alpha2)
395 return false;
396 /*
397 * Special case where regulatory domain is the
398 * result of an intersection between two regulatory domain
399 * structures
400 */
401 return alpha2[0] == '9' && alpha2[1] == '8';
402}
403
404static bool is_an_alpha2(const char *alpha2)
405{
406 if (!alpha2)
407 return false;
408 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
409}
410
411static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
412{
413 if (!alpha2_x || !alpha2_y)
414 return false;
415 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
416}
417
418static bool regdom_changes(const char *alpha2)
419{
420 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
421
422 if (!r)
423 return true;
424 return !alpha2_equal(alpha2_x: r->alpha2, alpha2_y: alpha2);
425}
426
427/*
428 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
429 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
430 * has ever been issued.
431 */
432static bool is_user_regdom_saved(void)
433{
434 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
435 return false;
436
437 /* This would indicate a mistake on the design */
438 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
439 "Unexpected user alpha2: %c%c\n",
440 user_alpha2[0], user_alpha2[1]))
441 return false;
442
443 return true;
444}
445
446static const struct ieee80211_regdomain *
447reg_copy_regd(const struct ieee80211_regdomain *src_regd)
448{
449 struct ieee80211_regdomain *regd;
450 unsigned int i;
451
452 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
453 GFP_KERNEL);
454 if (!regd)
455 return ERR_PTR(error: -ENOMEM);
456
457 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
458
459 for (i = 0; i < src_regd->n_reg_rules; i++)
460 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
461 sizeof(struct ieee80211_reg_rule));
462
463 return regd;
464}
465
466static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
467{
468 ASSERT_RTNL();
469
470 if (!IS_ERR(ptr: cfg80211_user_regdom))
471 kfree(objp: cfg80211_user_regdom);
472 cfg80211_user_regdom = reg_copy_regd(src_regd: rd);
473}
474
475struct reg_regdb_apply_request {
476 struct list_head list;
477 const struct ieee80211_regdomain *regdom;
478};
479
480static LIST_HEAD(reg_regdb_apply_list);
481static DEFINE_MUTEX(reg_regdb_apply_mutex);
482
483static void reg_regdb_apply(struct work_struct *work)
484{
485 struct reg_regdb_apply_request *request;
486
487 rtnl_lock();
488
489 mutex_lock(&reg_regdb_apply_mutex);
490 while (!list_empty(head: &reg_regdb_apply_list)) {
491 request = list_first_entry(&reg_regdb_apply_list,
492 struct reg_regdb_apply_request,
493 list);
494 list_del(entry: &request->list);
495
496 set_regdom(rd: request->regdom, regd_src: REGD_SOURCE_INTERNAL_DB);
497 kfree(objp: request);
498 }
499 mutex_unlock(lock: &reg_regdb_apply_mutex);
500
501 rtnl_unlock();
502}
503
504static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
505
506static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
507{
508 struct reg_regdb_apply_request *request;
509
510 request = kzalloc(size: sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
511 if (!request) {
512 kfree(objp: regdom);
513 return -ENOMEM;
514 }
515
516 request->regdom = regdom;
517
518 mutex_lock(&reg_regdb_apply_mutex);
519 list_add_tail(new: &request->list, head: &reg_regdb_apply_list);
520 mutex_unlock(lock: &reg_regdb_apply_mutex);
521
522 schedule_work(work: &reg_regdb_work);
523 return 0;
524}
525
526#ifdef CONFIG_CFG80211_CRDA_SUPPORT
527/* Max number of consecutive attempts to communicate with CRDA */
528#define REG_MAX_CRDA_TIMEOUTS 10
529
530static u32 reg_crda_timeouts;
531
532static void crda_timeout_work(struct work_struct *work);
533static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534
535static void crda_timeout_work(struct work_struct *work)
536{
537 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538 rtnl_lock();
539 reg_crda_timeouts++;
540 restore_regulatory_settings(reset_user: true, cached: false);
541 rtnl_unlock();
542}
543
544static void cancel_crda_timeout(void)
545{
546 cancel_delayed_work(dwork: &crda_timeout);
547}
548
549static void cancel_crda_timeout_sync(void)
550{
551 cancel_delayed_work_sync(dwork: &crda_timeout);
552}
553
554static void reset_crda_timeouts(void)
555{
556 reg_crda_timeouts = 0;
557}
558
559/*
560 * This lets us keep regulatory code which is updated on a regulatory
561 * basis in userspace.
562 */
563static int call_crda(const char *alpha2)
564{
565 char country[12];
566 char *env[] = { country, NULL };
567 int ret;
568
569 snprintf(buf: country, size: sizeof(country), fmt: "COUNTRY=%c%c",
570 alpha2[0], alpha2[1]);
571
572 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574 return -EINVAL;
575 }
576
577 if (!is_world_regdom(alpha2: (char *) alpha2))
578 pr_debug("Calling CRDA for country: %c%c\n",
579 alpha2[0], alpha2[1]);
580 else
581 pr_debug("Calling CRDA to update world regulatory domain\n");
582
583 ret = kobject_uevent_env(kobj: &reg_pdev->dev.kobj, action: KOBJ_CHANGE, envp: env);
584 if (ret)
585 return ret;
586
587 queue_delayed_work(wq: system_power_efficient_wq,
588 dwork: &crda_timeout, delay: msecs_to_jiffies(m: 3142));
589 return 0;
590}
591#else
592static inline void cancel_crda_timeout(void) {}
593static inline void cancel_crda_timeout_sync(void) {}
594static inline void reset_crda_timeouts(void) {}
595static inline int call_crda(const char *alpha2)
596{
597 return -ENODATA;
598}
599#endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600
601/* code to directly load a firmware database through request_firmware */
602static const struct fwdb_header *regdb;
603
604struct fwdb_country {
605 u8 alpha2[2];
606 __be16 coll_ptr;
607 /* this struct cannot be extended */
608} __packed __aligned(4);
609
610struct fwdb_collection {
611 u8 len;
612 u8 n_rules;
613 u8 dfs_region;
614 /* no optional data yet */
615 /* aligned to 2, then followed by __be16 array of rule pointers */
616} __packed __aligned(4);
617
618enum fwdb_flags {
619 FWDB_FLAG_NO_OFDM = BIT(0),
620 FWDB_FLAG_NO_OUTDOOR = BIT(1),
621 FWDB_FLAG_DFS = BIT(2),
622 FWDB_FLAG_NO_IR = BIT(3),
623 FWDB_FLAG_AUTO_BW = BIT(4),
624};
625
626struct fwdb_wmm_ac {
627 u8 ecw;
628 u8 aifsn;
629 __be16 cot;
630} __packed;
631
632struct fwdb_wmm_rule {
633 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
634 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
635} __packed;
636
637struct fwdb_rule {
638 u8 len;
639 u8 flags;
640 __be16 max_eirp;
641 __be32 start, end, max_bw;
642 /* start of optional data */
643 __be16 cac_timeout;
644 __be16 wmm_ptr;
645} __packed __aligned(4);
646
647#define FWDB_MAGIC 0x52474442
648#define FWDB_VERSION 20
649
650struct fwdb_header {
651 __be32 magic;
652 __be32 version;
653 struct fwdb_country country[];
654} __packed __aligned(4);
655
656static int ecw2cw(int ecw)
657{
658 return (1 << ecw) - 1;
659}
660
661static bool valid_wmm(struct fwdb_wmm_rule *rule)
662{
663 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
664 int i;
665
666 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
667 u16 cw_min = ecw2cw(ecw: (ac[i].ecw & 0xf0) >> 4);
668 u16 cw_max = ecw2cw(ecw: ac[i].ecw & 0x0f);
669 u8 aifsn = ac[i].aifsn;
670
671 if (cw_min >= cw_max)
672 return false;
673
674 if (aifsn < 1)
675 return false;
676 }
677
678 return true;
679}
680
681static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
682{
683 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
684
685 if ((u8 *)rule + sizeof(rule->len) > data + size)
686 return false;
687
688 /* mandatory fields */
689 if (rule->len < offsetofend(struct fwdb_rule, max_bw))
690 return false;
691 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
692 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
693 struct fwdb_wmm_rule *wmm;
694
695 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
696 return false;
697
698 wmm = (void *)(data + wmm_ptr);
699
700 if (!valid_wmm(rule: wmm))
701 return false;
702 }
703 return true;
704}
705
706static bool valid_country(const u8 *data, unsigned int size,
707 const struct fwdb_country *country)
708{
709 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
710 struct fwdb_collection *coll = (void *)(data + ptr);
711 __be16 *rules_ptr;
712 unsigned int i;
713
714 /* make sure we can read len/n_rules */
715 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
716 return false;
717
718 /* make sure base struct and all rules fit */
719 if ((u8 *)coll + ALIGN(coll->len, 2) +
720 (coll->n_rules * 2) > data + size)
721 return false;
722
723 /* mandatory fields must exist */
724 if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
725 return false;
726
727 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
728
729 for (i = 0; i < coll->n_rules; i++) {
730 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
731
732 if (!valid_rule(data, size, rule_ptr))
733 return false;
734 }
735
736 return true;
737}
738
739#ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
740#include <keys/asymmetric-type.h>
741
742static struct key *builtin_regdb_keys;
743
744static int __init load_builtin_regdb_keys(void)
745{
746 builtin_regdb_keys =
747 keyring_alloc(description: ".builtin_regdb_keys",
748 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
749 perm: ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
750 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
751 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
752 if (IS_ERR(builtin_regdb_keys))
753 return PTR_ERR(builtin_regdb_keys);
754
755 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
756
757#ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
758 x509_load_certificate_list(shipped_regdb_certs,
759 shipped_regdb_certs_len,
760 builtin_regdb_keys);
761#endif
762#ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
763 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
764 x509_load_certificate_list(extra_regdb_certs,
765 extra_regdb_certs_len,
766 builtin_regdb_keys);
767#endif
768
769 return 0;
770}
771
772MODULE_FIRMWARE("regulatory.db.p7s");
773
774static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
775{
776 const struct firmware *sig;
777 bool result;
778
779 if (request_firmware(fw: &sig, name: "regulatory.db.p7s", device: &reg_pdev->dev))
780 return false;
781
782 result = verify_pkcs7_signature(data, len: size, raw_pkcs7: sig->data, pkcs7_len: sig->size,
783 trusted_keys: builtin_regdb_keys,
784 usage: VERIFYING_UNSPECIFIED_SIGNATURE,
785 NULL, NULL) == 0;
786
787 release_firmware(fw: sig);
788
789 return result;
790}
791
792static void free_regdb_keyring(void)
793{
794 key_put(key: builtin_regdb_keys);
795}
796#else
797static int load_builtin_regdb_keys(void)
798{
799 return 0;
800}
801
802static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
803{
804 return true;
805}
806
807static void free_regdb_keyring(void)
808{
809}
810#endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
811
812static bool valid_regdb(const u8 *data, unsigned int size)
813{
814 const struct fwdb_header *hdr = (void *)data;
815 const struct fwdb_country *country;
816
817 if (size < sizeof(*hdr))
818 return false;
819
820 if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
821 return false;
822
823 if (hdr->version != cpu_to_be32(FWDB_VERSION))
824 return false;
825
826 if (!regdb_has_valid_signature(data, size))
827 return false;
828
829 country = &hdr->country[0];
830 while ((u8 *)(country + 1) <= data + size) {
831 if (!country->coll_ptr)
832 break;
833 if (!valid_country(data, size, country))
834 return false;
835 country++;
836 }
837
838 return true;
839}
840
841static void set_wmm_rule(const struct fwdb_header *db,
842 const struct fwdb_country *country,
843 const struct fwdb_rule *rule,
844 struct ieee80211_reg_rule *rrule)
845{
846 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
847 struct fwdb_wmm_rule *wmm;
848 unsigned int i, wmm_ptr;
849
850 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
851 wmm = (void *)((u8 *)db + wmm_ptr);
852
853 if (!valid_wmm(rule: wmm)) {
854 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
855 be32_to_cpu(rule->start), be32_to_cpu(rule->end),
856 country->alpha2[0], country->alpha2[1]);
857 return;
858 }
859
860 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
861 wmm_rule->client[i].cw_min =
862 ecw2cw(ecw: (wmm->client[i].ecw & 0xf0) >> 4);
863 wmm_rule->client[i].cw_max = ecw2cw(ecw: wmm->client[i].ecw & 0x0f);
864 wmm_rule->client[i].aifsn = wmm->client[i].aifsn;
865 wmm_rule->client[i].cot =
866 1000 * be16_to_cpu(wmm->client[i].cot);
867 wmm_rule->ap[i].cw_min = ecw2cw(ecw: (wmm->ap[i].ecw & 0xf0) >> 4);
868 wmm_rule->ap[i].cw_max = ecw2cw(ecw: wmm->ap[i].ecw & 0x0f);
869 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
870 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
871 }
872
873 rrule->has_wmm = true;
874}
875
876static int __regdb_query_wmm(const struct fwdb_header *db,
877 const struct fwdb_country *country, int freq,
878 struct ieee80211_reg_rule *rrule)
879{
880 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
881 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
882 int i;
883
884 for (i = 0; i < coll->n_rules; i++) {
885 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
886 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
887 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
888
889 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
890 continue;
891
892 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
893 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
894 set_wmm_rule(db, country, rule, rrule);
895 return 0;
896 }
897 }
898
899 return -ENODATA;
900}
901
902int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
903{
904 const struct fwdb_header *hdr = regdb;
905 const struct fwdb_country *country;
906
907 if (!regdb)
908 return -ENODATA;
909
910 if (IS_ERR(ptr: regdb))
911 return PTR_ERR(ptr: regdb);
912
913 country = &hdr->country[0];
914 while (country->coll_ptr) {
915 if (alpha2_equal(alpha2_x: alpha2, alpha2_y: country->alpha2))
916 return __regdb_query_wmm(db: regdb, country, freq, rrule: rule);
917
918 country++;
919 }
920
921 return -ENODATA;
922}
923EXPORT_SYMBOL(reg_query_regdb_wmm);
924
925static int regdb_query_country(const struct fwdb_header *db,
926 const struct fwdb_country *country)
927{
928 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
929 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
930 struct ieee80211_regdomain *regdom;
931 unsigned int i;
932
933 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
934 GFP_KERNEL);
935 if (!regdom)
936 return -ENOMEM;
937
938 regdom->n_reg_rules = coll->n_rules;
939 regdom->alpha2[0] = country->alpha2[0];
940 regdom->alpha2[1] = country->alpha2[1];
941 regdom->dfs_region = coll->dfs_region;
942
943 for (i = 0; i < regdom->n_reg_rules; i++) {
944 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
945 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
946 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
947 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
948
949 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
950 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
951 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
952
953 rrule->power_rule.max_antenna_gain = 0;
954 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
955
956 rrule->flags = 0;
957 if (rule->flags & FWDB_FLAG_NO_OFDM)
958 rrule->flags |= NL80211_RRF_NO_OFDM;
959 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
960 rrule->flags |= NL80211_RRF_NO_OUTDOOR;
961 if (rule->flags & FWDB_FLAG_DFS)
962 rrule->flags |= NL80211_RRF_DFS;
963 if (rule->flags & FWDB_FLAG_NO_IR)
964 rrule->flags |= NL80211_RRF_NO_IR;
965 if (rule->flags & FWDB_FLAG_AUTO_BW)
966 rrule->flags |= NL80211_RRF_AUTO_BW;
967
968 rrule->dfs_cac_ms = 0;
969
970 /* handle optional data */
971 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
972 rrule->dfs_cac_ms =
973 1000 * be16_to_cpu(rule->cac_timeout);
974 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
975 set_wmm_rule(db, country, rule, rrule);
976 }
977
978 return reg_schedule_apply(regdom);
979}
980
981static int query_regdb(const char *alpha2)
982{
983 const struct fwdb_header *hdr = regdb;
984 const struct fwdb_country *country;
985
986 ASSERT_RTNL();
987
988 if (IS_ERR(ptr: regdb))
989 return PTR_ERR(ptr: regdb);
990
991 country = &hdr->country[0];
992 while (country->coll_ptr) {
993 if (alpha2_equal(alpha2_x: alpha2, alpha2_y: country->alpha2))
994 return regdb_query_country(db: regdb, country);
995 country++;
996 }
997
998 return -ENODATA;
999}
1000
1001static void regdb_fw_cb(const struct firmware *fw, void *context)
1002{
1003 int set_error = 0;
1004 bool restore = true;
1005 void *db;
1006
1007 if (!fw) {
1008 pr_info("failed to load regulatory.db\n");
1009 set_error = -ENODATA;
1010 } else if (!valid_regdb(data: fw->data, size: fw->size)) {
1011 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1012 set_error = -EINVAL;
1013 }
1014
1015 rtnl_lock();
1016 if (regdb && !IS_ERR(ptr: regdb)) {
1017 /* negative case - a bug
1018 * positive case - can happen due to race in case of multiple cb's in
1019 * queue, due to usage of asynchronous callback
1020 *
1021 * Either case, just restore and free new db.
1022 */
1023 } else if (set_error) {
1024 regdb = ERR_PTR(error: set_error);
1025 } else if (fw) {
1026 db = kmemdup(p: fw->data, size: fw->size, GFP_KERNEL);
1027 if (db) {
1028 regdb = db;
1029 restore = context && query_regdb(alpha2: context);
1030 } else {
1031 restore = true;
1032 }
1033 }
1034
1035 if (restore)
1036 restore_regulatory_settings(reset_user: true, cached: false);
1037
1038 rtnl_unlock();
1039
1040 kfree(objp: context);
1041
1042 release_firmware(fw);
1043}
1044
1045MODULE_FIRMWARE("regulatory.db");
1046
1047static int query_regdb_file(const char *alpha2)
1048{
1049 int err;
1050
1051 ASSERT_RTNL();
1052
1053 if (regdb)
1054 return query_regdb(alpha2);
1055
1056 alpha2 = kmemdup(p: alpha2, size: 2, GFP_KERNEL);
1057 if (!alpha2)
1058 return -ENOMEM;
1059
1060 err = request_firmware_nowait(THIS_MODULE, uevent: true, name: "regulatory.db",
1061 device: &reg_pdev->dev, GFP_KERNEL,
1062 context: (void *)alpha2, cont: regdb_fw_cb);
1063 if (err)
1064 kfree(objp: alpha2);
1065
1066 return err;
1067}
1068
1069int reg_reload_regdb(void)
1070{
1071 const struct firmware *fw;
1072 void *db;
1073 int err;
1074 const struct ieee80211_regdomain *current_regdomain;
1075 struct regulatory_request *request;
1076
1077 err = request_firmware(fw: &fw, name: "regulatory.db", device: &reg_pdev->dev);
1078 if (err)
1079 return err;
1080
1081 if (!valid_regdb(data: fw->data, size: fw->size)) {
1082 err = -ENODATA;
1083 goto out;
1084 }
1085
1086 db = kmemdup(p: fw->data, size: fw->size, GFP_KERNEL);
1087 if (!db) {
1088 err = -ENOMEM;
1089 goto out;
1090 }
1091
1092 rtnl_lock();
1093 if (!IS_ERR_OR_NULL(ptr: regdb))
1094 kfree(objp: regdb);
1095 regdb = db;
1096
1097 /* reset regulatory domain */
1098 current_regdomain = get_cfg80211_regdom();
1099
1100 request = kzalloc(size: sizeof(*request), GFP_KERNEL);
1101 if (!request) {
1102 err = -ENOMEM;
1103 goto out_unlock;
1104 }
1105
1106 request->wiphy_idx = WIPHY_IDX_INVALID;
1107 request->alpha2[0] = current_regdomain->alpha2[0];
1108 request->alpha2[1] = current_regdomain->alpha2[1];
1109 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1110 request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1111
1112 reg_process_hint(reg_request: request);
1113
1114out_unlock:
1115 rtnl_unlock();
1116 out:
1117 release_firmware(fw);
1118 return err;
1119}
1120
1121static bool reg_query_database(struct regulatory_request *request)
1122{
1123 if (query_regdb_file(alpha2: request->alpha2) == 0)
1124 return true;
1125
1126 if (call_crda(alpha2: request->alpha2) == 0)
1127 return true;
1128
1129 return false;
1130}
1131
1132bool reg_is_valid_request(const char *alpha2)
1133{
1134 struct regulatory_request *lr = get_last_request();
1135
1136 if (!lr || lr->processed)
1137 return false;
1138
1139 return alpha2_equal(alpha2_x: lr->alpha2, alpha2_y: alpha2);
1140}
1141
1142static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1143{
1144 struct regulatory_request *lr = get_last_request();
1145
1146 /*
1147 * Follow the driver's regulatory domain, if present, unless a country
1148 * IE has been processed or a user wants to help complaince further
1149 */
1150 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1151 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1152 wiphy->regd)
1153 return get_wiphy_regdom(wiphy);
1154
1155 return get_cfg80211_regdom();
1156}
1157
1158static unsigned int
1159reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1160 const struct ieee80211_reg_rule *rule)
1161{
1162 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1163 const struct ieee80211_freq_range *freq_range_tmp;
1164 const struct ieee80211_reg_rule *tmp;
1165 u32 start_freq, end_freq, idx, no;
1166
1167 for (idx = 0; idx < rd->n_reg_rules; idx++)
1168 if (rule == &rd->reg_rules[idx])
1169 break;
1170
1171 if (idx == rd->n_reg_rules)
1172 return 0;
1173
1174 /* get start_freq */
1175 no = idx;
1176
1177 while (no) {
1178 tmp = &rd->reg_rules[--no];
1179 freq_range_tmp = &tmp->freq_range;
1180
1181 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1182 break;
1183
1184 freq_range = freq_range_tmp;
1185 }
1186
1187 start_freq = freq_range->start_freq_khz;
1188
1189 /* get end_freq */
1190 freq_range = &rule->freq_range;
1191 no = idx;
1192
1193 while (no < rd->n_reg_rules - 1) {
1194 tmp = &rd->reg_rules[++no];
1195 freq_range_tmp = &tmp->freq_range;
1196
1197 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1198 break;
1199
1200 freq_range = freq_range_tmp;
1201 }
1202
1203 end_freq = freq_range->end_freq_khz;
1204
1205 return end_freq - start_freq;
1206}
1207
1208unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1209 const struct ieee80211_reg_rule *rule)
1210{
1211 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1212
1213 if (rule->flags & NL80211_RRF_NO_320MHZ)
1214 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1215 if (rule->flags & NL80211_RRF_NO_160MHZ)
1216 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1217 if (rule->flags & NL80211_RRF_NO_80MHZ)
1218 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1219
1220 /*
1221 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1222 * are not allowed.
1223 */
1224 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1225 rule->flags & NL80211_RRF_NO_HT40PLUS)
1226 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1227
1228 return bw;
1229}
1230
1231/* Sanity check on a regulatory rule */
1232static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1233{
1234 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1235 u32 freq_diff;
1236
1237 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1238 return false;
1239
1240 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1241 return false;
1242
1243 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1244
1245 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1246 freq_range->max_bandwidth_khz > freq_diff)
1247 return false;
1248
1249 return true;
1250}
1251
1252static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1253{
1254 const struct ieee80211_reg_rule *reg_rule = NULL;
1255 unsigned int i;
1256
1257 if (!rd->n_reg_rules)
1258 return false;
1259
1260 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1261 return false;
1262
1263 for (i = 0; i < rd->n_reg_rules; i++) {
1264 reg_rule = &rd->reg_rules[i];
1265 if (!is_valid_reg_rule(rule: reg_rule))
1266 return false;
1267 }
1268
1269 return true;
1270}
1271
1272/**
1273 * freq_in_rule_band - tells us if a frequency is in a frequency band
1274 * @freq_range: frequency rule we want to query
1275 * @freq_khz: frequency we are inquiring about
1276 *
1277 * This lets us know if a specific frequency rule is or is not relevant to
1278 * a specific frequency's band. Bands are device specific and artificial
1279 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1280 * however it is safe for now to assume that a frequency rule should not be
1281 * part of a frequency's band if the start freq or end freq are off by more
1282 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1283 * 60 GHz band.
1284 * This resolution can be lowered and should be considered as we add
1285 * regulatory rule support for other "bands".
1286 *
1287 * Returns: whether or not the frequency is in the range
1288 */
1289static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1290 u32 freq_khz)
1291{
1292#define ONE_GHZ_IN_KHZ 1000000
1293 /*
1294 * From 802.11ad: directional multi-gigabit (DMG):
1295 * Pertaining to operation in a frequency band containing a channel
1296 * with the Channel starting frequency above 45 GHz.
1297 */
1298 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1299 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1300 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1301 return true;
1302 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1303 return true;
1304 return false;
1305#undef ONE_GHZ_IN_KHZ
1306}
1307
1308/*
1309 * Later on we can perhaps use the more restrictive DFS
1310 * region but we don't have information for that yet so
1311 * for now simply disallow conflicts.
1312 */
1313static enum nl80211_dfs_regions
1314reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1315 const enum nl80211_dfs_regions dfs_region2)
1316{
1317 if (dfs_region1 != dfs_region2)
1318 return NL80211_DFS_UNSET;
1319 return dfs_region1;
1320}
1321
1322static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1323 const struct ieee80211_wmm_ac *wmm_ac2,
1324 struct ieee80211_wmm_ac *intersect)
1325{
1326 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1327 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1328 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1329 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1330}
1331
1332/*
1333 * Helper for regdom_intersect(), this does the real
1334 * mathematical intersection fun
1335 */
1336static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1337 const struct ieee80211_regdomain *rd2,
1338 const struct ieee80211_reg_rule *rule1,
1339 const struct ieee80211_reg_rule *rule2,
1340 struct ieee80211_reg_rule *intersected_rule)
1341{
1342 const struct ieee80211_freq_range *freq_range1, *freq_range2;
1343 struct ieee80211_freq_range *freq_range;
1344 const struct ieee80211_power_rule *power_rule1, *power_rule2;
1345 struct ieee80211_power_rule *power_rule;
1346 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1347 struct ieee80211_wmm_rule *wmm_rule;
1348 u32 freq_diff, max_bandwidth1, max_bandwidth2;
1349
1350 freq_range1 = &rule1->freq_range;
1351 freq_range2 = &rule2->freq_range;
1352 freq_range = &intersected_rule->freq_range;
1353
1354 power_rule1 = &rule1->power_rule;
1355 power_rule2 = &rule2->power_rule;
1356 power_rule = &intersected_rule->power_rule;
1357
1358 wmm_rule1 = &rule1->wmm_rule;
1359 wmm_rule2 = &rule2->wmm_rule;
1360 wmm_rule = &intersected_rule->wmm_rule;
1361
1362 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1363 freq_range2->start_freq_khz);
1364 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1365 freq_range2->end_freq_khz);
1366
1367 max_bandwidth1 = freq_range1->max_bandwidth_khz;
1368 max_bandwidth2 = freq_range2->max_bandwidth_khz;
1369
1370 if (rule1->flags & NL80211_RRF_AUTO_BW)
1371 max_bandwidth1 = reg_get_max_bandwidth(rd: rd1, rule: rule1);
1372 if (rule2->flags & NL80211_RRF_AUTO_BW)
1373 max_bandwidth2 = reg_get_max_bandwidth(rd: rd2, rule: rule2);
1374
1375 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1376
1377 intersected_rule->flags = rule1->flags | rule2->flags;
1378
1379 /*
1380 * In case NL80211_RRF_AUTO_BW requested for both rules
1381 * set AUTO_BW in intersected rule also. Next we will
1382 * calculate BW correctly in handle_channel function.
1383 * In other case remove AUTO_BW flag while we calculate
1384 * maximum bandwidth correctly and auto calculation is
1385 * not required.
1386 */
1387 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1388 (rule2->flags & NL80211_RRF_AUTO_BW))
1389 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1390 else
1391 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1392
1393 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1394 if (freq_range->max_bandwidth_khz > freq_diff)
1395 freq_range->max_bandwidth_khz = freq_diff;
1396
1397 power_rule->max_eirp = min(power_rule1->max_eirp,
1398 power_rule2->max_eirp);
1399 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1400 power_rule2->max_antenna_gain);
1401
1402 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1403 rule2->dfs_cac_ms);
1404
1405 if (rule1->has_wmm && rule2->has_wmm) {
1406 u8 ac;
1407
1408 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1409 reg_wmm_rules_intersect(wmm_ac1: &wmm_rule1->client[ac],
1410 wmm_ac2: &wmm_rule2->client[ac],
1411 intersect: &wmm_rule->client[ac]);
1412 reg_wmm_rules_intersect(wmm_ac1: &wmm_rule1->ap[ac],
1413 wmm_ac2: &wmm_rule2->ap[ac],
1414 intersect: &wmm_rule->ap[ac]);
1415 }
1416
1417 intersected_rule->has_wmm = true;
1418 } else if (rule1->has_wmm) {
1419 *wmm_rule = *wmm_rule1;
1420 intersected_rule->has_wmm = true;
1421 } else if (rule2->has_wmm) {
1422 *wmm_rule = *wmm_rule2;
1423 intersected_rule->has_wmm = true;
1424 } else {
1425 intersected_rule->has_wmm = false;
1426 }
1427
1428 if (!is_valid_reg_rule(rule: intersected_rule))
1429 return -EINVAL;
1430
1431 return 0;
1432}
1433
1434/* check whether old rule contains new rule */
1435static bool rule_contains(struct ieee80211_reg_rule *r1,
1436 struct ieee80211_reg_rule *r2)
1437{
1438 /* for simplicity, currently consider only same flags */
1439 if (r1->flags != r2->flags)
1440 return false;
1441
1442 /* verify r1 is more restrictive */
1443 if ((r1->power_rule.max_antenna_gain >
1444 r2->power_rule.max_antenna_gain) ||
1445 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1446 return false;
1447
1448 /* make sure r2's range is contained within r1 */
1449 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1450 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1451 return false;
1452
1453 /* and finally verify that r1.max_bw >= r2.max_bw */
1454 if (r1->freq_range.max_bandwidth_khz <
1455 r2->freq_range.max_bandwidth_khz)
1456 return false;
1457
1458 return true;
1459}
1460
1461/* add or extend current rules. do nothing if rule is already contained */
1462static void add_rule(struct ieee80211_reg_rule *rule,
1463 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1464{
1465 struct ieee80211_reg_rule *tmp_rule;
1466 int i;
1467
1468 for (i = 0; i < *n_rules; i++) {
1469 tmp_rule = &reg_rules[i];
1470 /* rule is already contained - do nothing */
1471 if (rule_contains(r1: tmp_rule, r2: rule))
1472 return;
1473
1474 /* extend rule if possible */
1475 if (rule_contains(r1: rule, r2: tmp_rule)) {
1476 memcpy(tmp_rule, rule, sizeof(*rule));
1477 return;
1478 }
1479 }
1480
1481 memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1482 (*n_rules)++;
1483}
1484
1485/**
1486 * regdom_intersect - do the intersection between two regulatory domains
1487 * @rd1: first regulatory domain
1488 * @rd2: second regulatory domain
1489 *
1490 * Use this function to get the intersection between two regulatory domains.
1491 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1492 * as no one single alpha2 can represent this regulatory domain.
1493 *
1494 * Returns a pointer to the regulatory domain structure which will hold the
1495 * resulting intersection of rules between rd1 and rd2. We will
1496 * kzalloc() this structure for you.
1497 *
1498 * Returns: the intersected regdomain
1499 */
1500static struct ieee80211_regdomain *
1501regdom_intersect(const struct ieee80211_regdomain *rd1,
1502 const struct ieee80211_regdomain *rd2)
1503{
1504 int r;
1505 unsigned int x, y;
1506 unsigned int num_rules = 0;
1507 const struct ieee80211_reg_rule *rule1, *rule2;
1508 struct ieee80211_reg_rule intersected_rule;
1509 struct ieee80211_regdomain *rd;
1510
1511 if (!rd1 || !rd2)
1512 return NULL;
1513
1514 /*
1515 * First we get a count of the rules we'll need, then we actually
1516 * build them. This is to so we can malloc() and free() a
1517 * regdomain once. The reason we use reg_rules_intersect() here
1518 * is it will return -EINVAL if the rule computed makes no sense.
1519 * All rules that do check out OK are valid.
1520 */
1521
1522 for (x = 0; x < rd1->n_reg_rules; x++) {
1523 rule1 = &rd1->reg_rules[x];
1524 for (y = 0; y < rd2->n_reg_rules; y++) {
1525 rule2 = &rd2->reg_rules[y];
1526 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1527 intersected_rule: &intersected_rule))
1528 num_rules++;
1529 }
1530 }
1531
1532 if (!num_rules)
1533 return NULL;
1534
1535 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1536 if (!rd)
1537 return NULL;
1538
1539 for (x = 0; x < rd1->n_reg_rules; x++) {
1540 rule1 = &rd1->reg_rules[x];
1541 for (y = 0; y < rd2->n_reg_rules; y++) {
1542 rule2 = &rd2->reg_rules[y];
1543 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1544 intersected_rule: &intersected_rule);
1545 /*
1546 * No need to memset here the intersected rule here as
1547 * we're not using the stack anymore
1548 */
1549 if (r)
1550 continue;
1551
1552 add_rule(rule: &intersected_rule, reg_rules: rd->reg_rules,
1553 n_rules: &rd->n_reg_rules);
1554 }
1555 }
1556
1557 rd->alpha2[0] = '9';
1558 rd->alpha2[1] = '8';
1559 rd->dfs_region = reg_intersect_dfs_region(dfs_region1: rd1->dfs_region,
1560 dfs_region2: rd2->dfs_region);
1561
1562 return rd;
1563}
1564
1565/*
1566 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1567 * want to just have the channel structure use these
1568 */
1569static u32 map_regdom_flags(u32 rd_flags)
1570{
1571 u32 channel_flags = 0;
1572 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1573 channel_flags |= IEEE80211_CHAN_NO_IR;
1574 if (rd_flags & NL80211_RRF_DFS)
1575 channel_flags |= IEEE80211_CHAN_RADAR;
1576 if (rd_flags & NL80211_RRF_NO_OFDM)
1577 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1578 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1579 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1580 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1581 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1582 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1583 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1584 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1585 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1586 if (rd_flags & NL80211_RRF_NO_80MHZ)
1587 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1588 if (rd_flags & NL80211_RRF_NO_160MHZ)
1589 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1590 if (rd_flags & NL80211_RRF_NO_HE)
1591 channel_flags |= IEEE80211_CHAN_NO_HE;
1592 if (rd_flags & NL80211_RRF_NO_320MHZ)
1593 channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1594 if (rd_flags & NL80211_RRF_NO_EHT)
1595 channel_flags |= IEEE80211_CHAN_NO_EHT;
1596 if (rd_flags & NL80211_RRF_PSD)
1597 channel_flags |= IEEE80211_CHAN_PSD;
1598 return channel_flags;
1599}
1600
1601static const struct ieee80211_reg_rule *
1602freq_reg_info_regd(u32 center_freq,
1603 const struct ieee80211_regdomain *regd, u32 bw)
1604{
1605 int i;
1606 bool band_rule_found = false;
1607 bool bw_fits = false;
1608
1609 if (!regd)
1610 return ERR_PTR(error: -EINVAL);
1611
1612 for (i = 0; i < regd->n_reg_rules; i++) {
1613 const struct ieee80211_reg_rule *rr;
1614 const struct ieee80211_freq_range *fr = NULL;
1615
1616 rr = &regd->reg_rules[i];
1617 fr = &rr->freq_range;
1618
1619 /*
1620 * We only need to know if one frequency rule was
1621 * in center_freq's band, that's enough, so let's
1622 * not overwrite it once found
1623 */
1624 if (!band_rule_found)
1625 band_rule_found = freq_in_rule_band(freq_range: fr, freq_khz: center_freq);
1626
1627 bw_fits = cfg80211_does_bw_fit_range(freq_range: fr, center_freq_khz: center_freq, bw_khz: bw);
1628
1629 if (band_rule_found && bw_fits)
1630 return rr;
1631 }
1632
1633 if (!band_rule_found)
1634 return ERR_PTR(error: -ERANGE);
1635
1636 return ERR_PTR(error: -EINVAL);
1637}
1638
1639static const struct ieee80211_reg_rule *
1640__freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1641{
1642 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1643 static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1644 const struct ieee80211_reg_rule *reg_rule = ERR_PTR(error: -ERANGE);
1645 int i = ARRAY_SIZE(bws) - 1;
1646 u32 bw;
1647
1648 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1649 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1650 if (!IS_ERR(ptr: reg_rule))
1651 return reg_rule;
1652 }
1653
1654 return reg_rule;
1655}
1656
1657const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1658 u32 center_freq)
1659{
1660 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1661
1662 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1663}
1664EXPORT_SYMBOL(freq_reg_info);
1665
1666const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1667{
1668 switch (initiator) {
1669 case NL80211_REGDOM_SET_BY_CORE:
1670 return "core";
1671 case NL80211_REGDOM_SET_BY_USER:
1672 return "user";
1673 case NL80211_REGDOM_SET_BY_DRIVER:
1674 return "driver";
1675 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1676 return "country element";
1677 default:
1678 WARN_ON(1);
1679 return "bug";
1680 }
1681}
1682EXPORT_SYMBOL(reg_initiator_name);
1683
1684static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1685 const struct ieee80211_reg_rule *reg_rule,
1686 const struct ieee80211_channel *chan)
1687{
1688 const struct ieee80211_freq_range *freq_range = NULL;
1689 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1690 bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1691
1692 freq_range = &reg_rule->freq_range;
1693
1694 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1695 center_freq_khz = ieee80211_channel_to_khz(chan);
1696 /* Check if auto calculation requested */
1697 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1698 max_bandwidth_khz = reg_get_max_bandwidth(rd: regd, rule: reg_rule);
1699
1700 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1701 if (!cfg80211_does_bw_fit_range(freq_range,
1702 center_freq_khz,
1703 MHZ_TO_KHZ(10)))
1704 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1705 if (!cfg80211_does_bw_fit_range(freq_range,
1706 center_freq_khz,
1707 MHZ_TO_KHZ(20)))
1708 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1709
1710 if (is_s1g) {
1711 /* S1G is strict about non overlapping channels. We can
1712 * calculate which bandwidth is allowed per channel by finding
1713 * the largest bandwidth which cleanly divides the freq_range.
1714 */
1715 int edge_offset;
1716 int ch_bw = max_bandwidth_khz;
1717
1718 while (ch_bw) {
1719 edge_offset = (center_freq_khz - ch_bw / 2) -
1720 freq_range->start_freq_khz;
1721 if (edge_offset % ch_bw == 0) {
1722 switch (KHZ_TO_MHZ(ch_bw)) {
1723 case 1:
1724 bw_flags |= IEEE80211_CHAN_1MHZ;
1725 break;
1726 case 2:
1727 bw_flags |= IEEE80211_CHAN_2MHZ;
1728 break;
1729 case 4:
1730 bw_flags |= IEEE80211_CHAN_4MHZ;
1731 break;
1732 case 8:
1733 bw_flags |= IEEE80211_CHAN_8MHZ;
1734 break;
1735 case 16:
1736 bw_flags |= IEEE80211_CHAN_16MHZ;
1737 break;
1738 default:
1739 /* If we got here, no bandwidths fit on
1740 * this frequency, ie. band edge.
1741 */
1742 bw_flags |= IEEE80211_CHAN_DISABLED;
1743 break;
1744 }
1745 break;
1746 }
1747 ch_bw /= 2;
1748 }
1749 } else {
1750 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1751 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1752 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1753 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1754 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1755 bw_flags |= IEEE80211_CHAN_NO_HT40;
1756 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1757 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1758 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1759 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1760 if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1761 bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1762 }
1763 return bw_flags;
1764}
1765
1766static void handle_channel_single_rule(struct wiphy *wiphy,
1767 enum nl80211_reg_initiator initiator,
1768 struct ieee80211_channel *chan,
1769 u32 flags,
1770 struct regulatory_request *lr,
1771 struct wiphy *request_wiphy,
1772 const struct ieee80211_reg_rule *reg_rule)
1773{
1774 u32 bw_flags = 0;
1775 const struct ieee80211_power_rule *power_rule = NULL;
1776 const struct ieee80211_regdomain *regd;
1777
1778 regd = reg_get_regdomain(wiphy);
1779
1780 power_rule = &reg_rule->power_rule;
1781 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1782
1783 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1784 request_wiphy && request_wiphy == wiphy &&
1785 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1786 /*
1787 * This guarantees the driver's requested regulatory domain
1788 * will always be used as a base for further regulatory
1789 * settings
1790 */
1791 chan->flags = chan->orig_flags =
1792 map_regdom_flags(rd_flags: reg_rule->flags) | bw_flags;
1793 chan->max_antenna_gain = chan->orig_mag =
1794 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1795 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1796 (int) MBM_TO_DBM(power_rule->max_eirp);
1797
1798 if (chan->flags & IEEE80211_CHAN_RADAR) {
1799 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1800 if (reg_rule->dfs_cac_ms)
1801 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1802 }
1803
1804 if (chan->flags & IEEE80211_CHAN_PSD)
1805 chan->psd = reg_rule->psd;
1806
1807 return;
1808 }
1809
1810 chan->dfs_state = NL80211_DFS_USABLE;
1811 chan->dfs_state_entered = jiffies;
1812
1813 chan->beacon_found = false;
1814 chan->flags = flags | bw_flags | map_regdom_flags(rd_flags: reg_rule->flags);
1815 chan->max_antenna_gain =
1816 min_t(int, chan->orig_mag,
1817 MBI_TO_DBI(power_rule->max_antenna_gain));
1818 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1819
1820 if (chan->flags & IEEE80211_CHAN_RADAR) {
1821 if (reg_rule->dfs_cac_ms)
1822 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1823 else
1824 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1825 }
1826
1827 if (chan->flags & IEEE80211_CHAN_PSD)
1828 chan->psd = reg_rule->psd;
1829
1830 if (chan->orig_mpwr) {
1831 /*
1832 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1833 * will always follow the passed country IE power settings.
1834 */
1835 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1836 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1837 chan->max_power = chan->max_reg_power;
1838 else
1839 chan->max_power = min(chan->orig_mpwr,
1840 chan->max_reg_power);
1841 } else
1842 chan->max_power = chan->max_reg_power;
1843}
1844
1845static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1846 enum nl80211_reg_initiator initiator,
1847 struct ieee80211_channel *chan,
1848 u32 flags,
1849 struct regulatory_request *lr,
1850 struct wiphy *request_wiphy,
1851 const struct ieee80211_reg_rule *rrule1,
1852 const struct ieee80211_reg_rule *rrule2,
1853 struct ieee80211_freq_range *comb_range)
1854{
1855 u32 bw_flags1 = 0;
1856 u32 bw_flags2 = 0;
1857 const struct ieee80211_power_rule *power_rule1 = NULL;
1858 const struct ieee80211_power_rule *power_rule2 = NULL;
1859 const struct ieee80211_regdomain *regd;
1860
1861 regd = reg_get_regdomain(wiphy);
1862
1863 power_rule1 = &rrule1->power_rule;
1864 power_rule2 = &rrule2->power_rule;
1865 bw_flags1 = reg_rule_to_chan_bw_flags(regd, reg_rule: rrule1, chan);
1866 bw_flags2 = reg_rule_to_chan_bw_flags(regd, reg_rule: rrule2, chan);
1867
1868 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1869 request_wiphy && request_wiphy == wiphy &&
1870 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1871 /* This guarantees the driver's requested regulatory domain
1872 * will always be used as a base for further regulatory
1873 * settings
1874 */
1875 chan->flags =
1876 map_regdom_flags(rd_flags: rrule1->flags) |
1877 map_regdom_flags(rd_flags: rrule2->flags) |
1878 bw_flags1 |
1879 bw_flags2;
1880 chan->orig_flags = chan->flags;
1881 chan->max_antenna_gain =
1882 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1883 MBI_TO_DBI(power_rule2->max_antenna_gain));
1884 chan->orig_mag = chan->max_antenna_gain;
1885 chan->max_reg_power =
1886 min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1887 MBM_TO_DBM(power_rule2->max_eirp));
1888 chan->max_power = chan->max_reg_power;
1889 chan->orig_mpwr = chan->max_reg_power;
1890
1891 if (chan->flags & IEEE80211_CHAN_RADAR) {
1892 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1893 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1894 chan->dfs_cac_ms = max_t(unsigned int,
1895 rrule1->dfs_cac_ms,
1896 rrule2->dfs_cac_ms);
1897 }
1898
1899 if ((rrule1->flags & NL80211_RRF_PSD) &&
1900 (rrule2->flags & NL80211_RRF_PSD))
1901 chan->psd = min_t(s8, rrule1->psd, rrule2->psd);
1902 else
1903 chan->flags &= ~NL80211_RRF_PSD;
1904
1905 return;
1906 }
1907
1908 chan->dfs_state = NL80211_DFS_USABLE;
1909 chan->dfs_state_entered = jiffies;
1910
1911 chan->beacon_found = false;
1912 chan->flags = flags | bw_flags1 | bw_flags2 |
1913 map_regdom_flags(rd_flags: rrule1->flags) |
1914 map_regdom_flags(rd_flags: rrule2->flags);
1915
1916 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1917 * (otherwise no adj. rule case), recheck therefore
1918 */
1919 if (cfg80211_does_bw_fit_range(freq_range: comb_range,
1920 center_freq_khz: ieee80211_channel_to_khz(chan),
1921 MHZ_TO_KHZ(10)))
1922 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1923 if (cfg80211_does_bw_fit_range(freq_range: comb_range,
1924 center_freq_khz: ieee80211_channel_to_khz(chan),
1925 MHZ_TO_KHZ(20)))
1926 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1927
1928 chan->max_antenna_gain =
1929 min_t(int, chan->orig_mag,
1930 min_t(int,
1931 MBI_TO_DBI(power_rule1->max_antenna_gain),
1932 MBI_TO_DBI(power_rule2->max_antenna_gain)));
1933 chan->max_reg_power = min_t(int,
1934 MBM_TO_DBM(power_rule1->max_eirp),
1935 MBM_TO_DBM(power_rule2->max_eirp));
1936
1937 if (chan->flags & IEEE80211_CHAN_RADAR) {
1938 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1939 chan->dfs_cac_ms = max_t(unsigned int,
1940 rrule1->dfs_cac_ms,
1941 rrule2->dfs_cac_ms);
1942 else
1943 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1944 }
1945
1946 if (chan->orig_mpwr) {
1947 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1948 * will always follow the passed country IE power settings.
1949 */
1950 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1951 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1952 chan->max_power = chan->max_reg_power;
1953 else
1954 chan->max_power = min(chan->orig_mpwr,
1955 chan->max_reg_power);
1956 } else {
1957 chan->max_power = chan->max_reg_power;
1958 }
1959}
1960
1961/* Note that right now we assume the desired channel bandwidth
1962 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1963 * per channel, the primary and the extension channel).
1964 */
1965static void handle_channel(struct wiphy *wiphy,
1966 enum nl80211_reg_initiator initiator,
1967 struct ieee80211_channel *chan)
1968{
1969 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1970 struct regulatory_request *lr = get_last_request();
1971 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(wiphy_idx: lr->wiphy_idx);
1972 const struct ieee80211_reg_rule *rrule = NULL;
1973 const struct ieee80211_reg_rule *rrule1 = NULL;
1974 const struct ieee80211_reg_rule *rrule2 = NULL;
1975
1976 u32 flags = chan->orig_flags;
1977
1978 rrule = freq_reg_info(wiphy, orig_chan_freq);
1979 if (IS_ERR(ptr: rrule)) {
1980 /* check for adjacent match, therefore get rules for
1981 * chan - 20 MHz and chan + 20 MHz and test
1982 * if reg rules are adjacent
1983 */
1984 rrule1 = freq_reg_info(wiphy,
1985 orig_chan_freq - MHZ_TO_KHZ(20));
1986 rrule2 = freq_reg_info(wiphy,
1987 orig_chan_freq + MHZ_TO_KHZ(20));
1988 if (!IS_ERR(ptr: rrule1) && !IS_ERR(ptr: rrule2)) {
1989 struct ieee80211_freq_range comb_range;
1990
1991 if (rrule1->freq_range.end_freq_khz !=
1992 rrule2->freq_range.start_freq_khz)
1993 goto disable_chan;
1994
1995 comb_range.start_freq_khz =
1996 rrule1->freq_range.start_freq_khz;
1997 comb_range.end_freq_khz =
1998 rrule2->freq_range.end_freq_khz;
1999 comb_range.max_bandwidth_khz =
2000 min_t(u32,
2001 rrule1->freq_range.max_bandwidth_khz,
2002 rrule2->freq_range.max_bandwidth_khz);
2003
2004 if (!cfg80211_does_bw_fit_range(freq_range: &comb_range,
2005 center_freq_khz: orig_chan_freq,
2006 MHZ_TO_KHZ(20)))
2007 goto disable_chan;
2008
2009 handle_channel_adjacent_rules(wiphy, initiator, chan,
2010 flags, lr, request_wiphy,
2011 rrule1, rrule2,
2012 comb_range: &comb_range);
2013 return;
2014 }
2015
2016disable_chan:
2017 /* We will disable all channels that do not match our
2018 * received regulatory rule unless the hint is coming
2019 * from a Country IE and the Country IE had no information
2020 * about a band. The IEEE 802.11 spec allows for an AP
2021 * to send only a subset of the regulatory rules allowed,
2022 * so an AP in the US that only supports 2.4 GHz may only send
2023 * a country IE with information for the 2.4 GHz band
2024 * while 5 GHz is still supported.
2025 */
2026 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2027 PTR_ERR(ptr: rrule) == -ERANGE)
2028 return;
2029
2030 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2031 request_wiphy && request_wiphy == wiphy &&
2032 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2033 pr_debug("Disabling freq %d.%03d MHz for good\n",
2034 chan->center_freq, chan->freq_offset);
2035 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2036 chan->flags = chan->orig_flags;
2037 } else {
2038 pr_debug("Disabling freq %d.%03d MHz\n",
2039 chan->center_freq, chan->freq_offset);
2040 chan->flags |= IEEE80211_CHAN_DISABLED;
2041 }
2042 return;
2043 }
2044
2045 handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2046 request_wiphy, reg_rule: rrule);
2047}
2048
2049static void handle_band(struct wiphy *wiphy,
2050 enum nl80211_reg_initiator initiator,
2051 struct ieee80211_supported_band *sband)
2052{
2053 unsigned int i;
2054
2055 if (!sband)
2056 return;
2057
2058 for (i = 0; i < sband->n_channels; i++)
2059 handle_channel(wiphy, initiator, chan: &sband->channels[i]);
2060}
2061
2062static bool reg_request_cell_base(struct regulatory_request *request)
2063{
2064 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2065 return false;
2066 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2067}
2068
2069bool reg_last_request_cell_base(void)
2070{
2071 return reg_request_cell_base(request: get_last_request());
2072}
2073
2074#ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2075/* Core specific check */
2076static enum reg_request_treatment
2077reg_ignore_cell_hint(struct regulatory_request *pending_request)
2078{
2079 struct regulatory_request *lr = get_last_request();
2080
2081 if (!reg_num_devs_support_basehint)
2082 return REG_REQ_IGNORE;
2083
2084 if (reg_request_cell_base(request: lr) &&
2085 !regdom_changes(alpha2: pending_request->alpha2))
2086 return REG_REQ_ALREADY_SET;
2087
2088 return REG_REQ_OK;
2089}
2090
2091/* Device specific check */
2092static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2093{
2094 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2095}
2096#else
2097static enum reg_request_treatment
2098reg_ignore_cell_hint(struct regulatory_request *pending_request)
2099{
2100 return REG_REQ_IGNORE;
2101}
2102
2103static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2104{
2105 return true;
2106}
2107#endif
2108
2109static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2110{
2111 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2112 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2113 return true;
2114 return false;
2115}
2116
2117static bool ignore_reg_update(struct wiphy *wiphy,
2118 enum nl80211_reg_initiator initiator)
2119{
2120 struct regulatory_request *lr = get_last_request();
2121
2122 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2123 return true;
2124
2125 if (!lr) {
2126 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2127 reg_initiator_name(initiator));
2128 return true;
2129 }
2130
2131 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2132 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2133 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2134 reg_initiator_name(initiator));
2135 return true;
2136 }
2137
2138 /*
2139 * wiphy->regd will be set once the device has its own
2140 * desired regulatory domain set
2141 */
2142 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2143 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2144 !is_world_regdom(alpha2: lr->alpha2)) {
2145 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2146 reg_initiator_name(initiator));
2147 return true;
2148 }
2149
2150 if (reg_request_cell_base(request: lr))
2151 return reg_dev_ignore_cell_hint(wiphy);
2152
2153 return false;
2154}
2155
2156static bool reg_is_world_roaming(struct wiphy *wiphy)
2157{
2158 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2159 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2160 struct regulatory_request *lr = get_last_request();
2161
2162 if (is_world_regdom(alpha2: cr->alpha2) || (wr && is_world_regdom(alpha2: wr->alpha2)))
2163 return true;
2164
2165 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2166 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2167 return true;
2168
2169 return false;
2170}
2171
2172static void reg_call_notifier(struct wiphy *wiphy,
2173 struct regulatory_request *request)
2174{
2175 if (wiphy->reg_notifier)
2176 wiphy->reg_notifier(wiphy, request);
2177}
2178
2179static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2180 struct reg_beacon *reg_beacon)
2181{
2182 struct ieee80211_supported_band *sband;
2183 struct ieee80211_channel *chan;
2184 bool channel_changed = false;
2185 struct ieee80211_channel chan_before;
2186 struct regulatory_request *lr = get_last_request();
2187
2188 sband = wiphy->bands[reg_beacon->chan.band];
2189 chan = &sband->channels[chan_idx];
2190
2191 if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2192 return;
2193
2194 if (chan->beacon_found)
2195 return;
2196
2197 chan->beacon_found = true;
2198
2199 if (!reg_is_world_roaming(wiphy))
2200 return;
2201
2202 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2203 return;
2204
2205 chan_before = *chan;
2206
2207 if (chan->flags & IEEE80211_CHAN_NO_IR) {
2208 chan->flags &= ~IEEE80211_CHAN_NO_IR;
2209 channel_changed = true;
2210 }
2211
2212 if (channel_changed) {
2213 nl80211_send_beacon_hint_event(wiphy, channel_before: &chan_before, channel_after: chan);
2214 if (wiphy->flags & WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON)
2215 reg_call_notifier(wiphy, request: lr);
2216 }
2217}
2218
2219/*
2220 * Called when a scan on a wiphy finds a beacon on
2221 * new channel
2222 */
2223static void wiphy_update_new_beacon(struct wiphy *wiphy,
2224 struct reg_beacon *reg_beacon)
2225{
2226 unsigned int i;
2227 struct ieee80211_supported_band *sband;
2228
2229 if (!wiphy->bands[reg_beacon->chan.band])
2230 return;
2231
2232 sband = wiphy->bands[reg_beacon->chan.band];
2233
2234 for (i = 0; i < sband->n_channels; i++)
2235 handle_reg_beacon(wiphy, chan_idx: i, reg_beacon);
2236}
2237
2238/*
2239 * Called upon reg changes or a new wiphy is added
2240 */
2241static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2242{
2243 unsigned int i;
2244 struct ieee80211_supported_band *sband;
2245 struct reg_beacon *reg_beacon;
2246
2247 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2248 if (!wiphy->bands[reg_beacon->chan.band])
2249 continue;
2250 sband = wiphy->bands[reg_beacon->chan.band];
2251 for (i = 0; i < sband->n_channels; i++)
2252 handle_reg_beacon(wiphy, chan_idx: i, reg_beacon);
2253 }
2254}
2255
2256/* Reap the advantages of previously found beacons */
2257static void reg_process_beacons(struct wiphy *wiphy)
2258{
2259 /*
2260 * Means we are just firing up cfg80211, so no beacons would
2261 * have been processed yet.
2262 */
2263 if (!last_request)
2264 return;
2265 wiphy_update_beacon_reg(wiphy);
2266}
2267
2268static bool is_ht40_allowed(struct ieee80211_channel *chan)
2269{
2270 if (!chan)
2271 return false;
2272 if (chan->flags & IEEE80211_CHAN_DISABLED)
2273 return false;
2274 /* This would happen when regulatory rules disallow HT40 completely */
2275 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2276 return false;
2277 return true;
2278}
2279
2280static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2281 struct ieee80211_channel *channel)
2282{
2283 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2284 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2285 const struct ieee80211_regdomain *regd;
2286 unsigned int i;
2287 u32 flags;
2288
2289 if (!is_ht40_allowed(chan: channel)) {
2290 channel->flags |= IEEE80211_CHAN_NO_HT40;
2291 return;
2292 }
2293
2294 /*
2295 * We need to ensure the extension channels exist to
2296 * be able to use HT40- or HT40+, this finds them (or not)
2297 */
2298 for (i = 0; i < sband->n_channels; i++) {
2299 struct ieee80211_channel *c = &sband->channels[i];
2300
2301 if (c->center_freq == (channel->center_freq - 20))
2302 channel_before = c;
2303 if (c->center_freq == (channel->center_freq + 20))
2304 channel_after = c;
2305 }
2306
2307 flags = 0;
2308 regd = get_wiphy_regdom(wiphy);
2309 if (regd) {
2310 const struct ieee80211_reg_rule *reg_rule =
2311 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2312 regd, MHZ_TO_KHZ(20));
2313
2314 if (!IS_ERR(ptr: reg_rule))
2315 flags = reg_rule->flags;
2316 }
2317
2318 /*
2319 * Please note that this assumes target bandwidth is 20 MHz,
2320 * if that ever changes we also need to change the below logic
2321 * to include that as well.
2322 */
2323 if (!is_ht40_allowed(chan: channel_before) ||
2324 flags & NL80211_RRF_NO_HT40MINUS)
2325 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2326 else
2327 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2328
2329 if (!is_ht40_allowed(chan: channel_after) ||
2330 flags & NL80211_RRF_NO_HT40PLUS)
2331 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2332 else
2333 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2334}
2335
2336static void reg_process_ht_flags_band(struct wiphy *wiphy,
2337 struct ieee80211_supported_band *sband)
2338{
2339 unsigned int i;
2340
2341 if (!sband)
2342 return;
2343
2344 for (i = 0; i < sband->n_channels; i++)
2345 reg_process_ht_flags_channel(wiphy, channel: &sband->channels[i]);
2346}
2347
2348static void reg_process_ht_flags(struct wiphy *wiphy)
2349{
2350 enum nl80211_band band;
2351
2352 if (!wiphy)
2353 return;
2354
2355 for (band = 0; band < NUM_NL80211_BANDS; band++)
2356 reg_process_ht_flags_band(wiphy, sband: wiphy->bands[band]);
2357}
2358
2359static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2360{
2361 struct cfg80211_chan_def chandef = {};
2362 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2363 enum nl80211_iftype iftype;
2364 bool ret;
2365 int link;
2366
2367 iftype = wdev->iftype;
2368
2369 /* make sure the interface is active */
2370 if (!wdev->netdev || !netif_running(dev: wdev->netdev))
2371 return true;
2372
2373 for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2374 struct ieee80211_channel *chan;
2375
2376 if (!wdev->valid_links && link > 0)
2377 break;
2378 if (wdev->valid_links && !(wdev->valid_links & BIT(link)))
2379 continue;
2380 switch (iftype) {
2381 case NL80211_IFTYPE_AP:
2382 case NL80211_IFTYPE_P2P_GO:
2383 if (!wdev->links[link].ap.beacon_interval)
2384 continue;
2385 chandef = wdev->links[link].ap.chandef;
2386 break;
2387 case NL80211_IFTYPE_MESH_POINT:
2388 if (!wdev->u.mesh.beacon_interval)
2389 continue;
2390 chandef = wdev->u.mesh.chandef;
2391 break;
2392 case NL80211_IFTYPE_ADHOC:
2393 if (!wdev->u.ibss.ssid_len)
2394 continue;
2395 chandef = wdev->u.ibss.chandef;
2396 break;
2397 case NL80211_IFTYPE_STATION:
2398 case NL80211_IFTYPE_P2P_CLIENT:
2399 /* Maybe we could consider disabling that link only? */
2400 if (!wdev->links[link].client.current_bss)
2401 continue;
2402
2403 chan = wdev->links[link].client.current_bss->pub.channel;
2404 if (!chan)
2405 continue;
2406
2407 if (!rdev->ops->get_channel ||
2408 rdev_get_channel(rdev, wdev, link_id: link, chandef: &chandef))
2409 cfg80211_chandef_create(chandef: &chandef, channel: chan,
2410 chantype: NL80211_CHAN_NO_HT);
2411 break;
2412 case NL80211_IFTYPE_MONITOR:
2413 case NL80211_IFTYPE_AP_VLAN:
2414 case NL80211_IFTYPE_P2P_DEVICE:
2415 /* no enforcement required */
2416 break;
2417 case NL80211_IFTYPE_OCB:
2418 if (!wdev->u.ocb.chandef.chan)
2419 continue;
2420 chandef = wdev->u.ocb.chandef;
2421 break;
2422 case NL80211_IFTYPE_NAN:
2423 /* we have no info, but NAN is also pretty universal */
2424 continue;
2425 default:
2426 /* others not implemented for now */
2427 WARN_ON_ONCE(1);
2428 break;
2429 }
2430
2431 switch (iftype) {
2432 case NL80211_IFTYPE_AP:
2433 case NL80211_IFTYPE_P2P_GO:
2434 case NL80211_IFTYPE_ADHOC:
2435 case NL80211_IFTYPE_MESH_POINT:
2436 ret = cfg80211_reg_can_beacon_relax(wiphy, chandef: &chandef,
2437 iftype);
2438 if (!ret)
2439 return ret;
2440 break;
2441 case NL80211_IFTYPE_STATION:
2442 case NL80211_IFTYPE_P2P_CLIENT:
2443 ret = cfg80211_chandef_usable(wiphy, chandef: &chandef,
2444 prohibited_flags: IEEE80211_CHAN_DISABLED);
2445 if (!ret)
2446 return ret;
2447 break;
2448 default:
2449 break;
2450 }
2451 }
2452
2453 return true;
2454}
2455
2456static void reg_leave_invalid_chans(struct wiphy *wiphy)
2457{
2458 struct wireless_dev *wdev;
2459 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2460
2461 wiphy_lock(wiphy);
2462 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2463 if (!reg_wdev_chan_valid(wiphy, wdev))
2464 cfg80211_leave(rdev, wdev);
2465 wiphy_unlock(wiphy);
2466}
2467
2468static void reg_check_chans_work(struct work_struct *work)
2469{
2470 struct cfg80211_registered_device *rdev;
2471
2472 pr_debug("Verifying active interfaces after reg change\n");
2473 rtnl_lock();
2474
2475 for_each_rdev(rdev)
2476 reg_leave_invalid_chans(wiphy: &rdev->wiphy);
2477
2478 rtnl_unlock();
2479}
2480
2481static void reg_check_channels(void)
2482{
2483 /*
2484 * Give usermode a chance to do something nicer (move to another
2485 * channel, orderly disconnection), before forcing a disconnection.
2486 */
2487 mod_delayed_work(wq: system_power_efficient_wq,
2488 dwork: &reg_check_chans,
2489 delay: msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2490}
2491
2492static void wiphy_update_regulatory(struct wiphy *wiphy,
2493 enum nl80211_reg_initiator initiator)
2494{
2495 enum nl80211_band band;
2496 struct regulatory_request *lr = get_last_request();
2497
2498 if (ignore_reg_update(wiphy, initiator)) {
2499 /*
2500 * Regulatory updates set by CORE are ignored for custom
2501 * regulatory cards. Let us notify the changes to the driver,
2502 * as some drivers used this to restore its orig_* reg domain.
2503 */
2504 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2505 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2506 !(wiphy->regulatory_flags &
2507 REGULATORY_WIPHY_SELF_MANAGED))
2508 reg_call_notifier(wiphy, request: lr);
2509 return;
2510 }
2511
2512 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2513
2514 for (band = 0; band < NUM_NL80211_BANDS; band++)
2515 handle_band(wiphy, initiator, sband: wiphy->bands[band]);
2516
2517 reg_process_beacons(wiphy);
2518 reg_process_ht_flags(wiphy);
2519 reg_call_notifier(wiphy, request: lr);
2520}
2521
2522static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2523{
2524 struct cfg80211_registered_device *rdev;
2525 struct wiphy *wiphy;
2526
2527 ASSERT_RTNL();
2528
2529 for_each_rdev(rdev) {
2530 wiphy = &rdev->wiphy;
2531 wiphy_update_regulatory(wiphy, initiator);
2532 }
2533
2534 reg_check_channels();
2535}
2536
2537static void handle_channel_custom(struct wiphy *wiphy,
2538 struct ieee80211_channel *chan,
2539 const struct ieee80211_regdomain *regd,
2540 u32 min_bw)
2541{
2542 u32 bw_flags = 0;
2543 const struct ieee80211_reg_rule *reg_rule = NULL;
2544 const struct ieee80211_power_rule *power_rule = NULL;
2545 u32 bw, center_freq_khz;
2546
2547 center_freq_khz = ieee80211_channel_to_khz(chan);
2548 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2549 reg_rule = freq_reg_info_regd(center_freq: center_freq_khz, regd, bw);
2550 if (!IS_ERR(ptr: reg_rule))
2551 break;
2552 }
2553
2554 if (IS_ERR_OR_NULL(ptr: reg_rule)) {
2555 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2556 chan->center_freq, chan->freq_offset);
2557 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2558 chan->flags |= IEEE80211_CHAN_DISABLED;
2559 } else {
2560 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2561 chan->flags = chan->orig_flags;
2562 }
2563 return;
2564 }
2565
2566 power_rule = &reg_rule->power_rule;
2567 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2568
2569 chan->dfs_state_entered = jiffies;
2570 chan->dfs_state = NL80211_DFS_USABLE;
2571
2572 chan->beacon_found = false;
2573
2574 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2575 chan->flags = chan->orig_flags | bw_flags |
2576 map_regdom_flags(rd_flags: reg_rule->flags);
2577 else
2578 chan->flags |= map_regdom_flags(rd_flags: reg_rule->flags) | bw_flags;
2579
2580 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2581 chan->max_reg_power = chan->max_power =
2582 (int) MBM_TO_DBM(power_rule->max_eirp);
2583
2584 if (chan->flags & IEEE80211_CHAN_RADAR) {
2585 if (reg_rule->dfs_cac_ms)
2586 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2587 else
2588 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2589 }
2590
2591 if (chan->flags & IEEE80211_CHAN_PSD)
2592 chan->psd = reg_rule->psd;
2593
2594 chan->max_power = chan->max_reg_power;
2595}
2596
2597static void handle_band_custom(struct wiphy *wiphy,
2598 struct ieee80211_supported_band *sband,
2599 const struct ieee80211_regdomain *regd)
2600{
2601 unsigned int i;
2602
2603 if (!sband)
2604 return;
2605
2606 /*
2607 * We currently assume that you always want at least 20 MHz,
2608 * otherwise channel 12 might get enabled if this rule is
2609 * compatible to US, which permits 2402 - 2472 MHz.
2610 */
2611 for (i = 0; i < sband->n_channels; i++)
2612 handle_channel_custom(wiphy, chan: &sband->channels[i], regd,
2613 MHZ_TO_KHZ(20));
2614}
2615
2616/* Used by drivers prior to wiphy registration */
2617void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2618 const struct ieee80211_regdomain *regd)
2619{
2620 const struct ieee80211_regdomain *new_regd, *tmp;
2621 enum nl80211_band band;
2622 unsigned int bands_set = 0;
2623
2624 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2625 "wiphy should have REGULATORY_CUSTOM_REG\n");
2626 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2627
2628 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2629 if (!wiphy->bands[band])
2630 continue;
2631 handle_band_custom(wiphy, sband: wiphy->bands[band], regd);
2632 bands_set++;
2633 }
2634
2635 /*
2636 * no point in calling this if it won't have any effect
2637 * on your device's supported bands.
2638 */
2639 WARN_ON(!bands_set);
2640 new_regd = reg_copy_regd(src_regd: regd);
2641 if (IS_ERR(ptr: new_regd))
2642 return;
2643
2644 rtnl_lock();
2645 wiphy_lock(wiphy);
2646
2647 tmp = get_wiphy_regdom(wiphy);
2648 rcu_assign_pointer(wiphy->regd, new_regd);
2649 rcu_free_regdom(r: tmp);
2650
2651 wiphy_unlock(wiphy);
2652 rtnl_unlock();
2653}
2654EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2655
2656static void reg_set_request_processed(void)
2657{
2658 bool need_more_processing = false;
2659 struct regulatory_request *lr = get_last_request();
2660
2661 lr->processed = true;
2662
2663 spin_lock(lock: &reg_requests_lock);
2664 if (!list_empty(head: &reg_requests_list))
2665 need_more_processing = true;
2666 spin_unlock(lock: &reg_requests_lock);
2667
2668 cancel_crda_timeout();
2669
2670 if (need_more_processing)
2671 schedule_work(work: &reg_work);
2672}
2673
2674/**
2675 * reg_process_hint_core - process core regulatory requests
2676 * @core_request: a pending core regulatory request
2677 *
2678 * The wireless subsystem can use this function to process
2679 * a regulatory request issued by the regulatory core.
2680 *
2681 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2682 * hint was processed or ignored
2683 */
2684static enum reg_request_treatment
2685reg_process_hint_core(struct regulatory_request *core_request)
2686{
2687 if (reg_query_database(request: core_request)) {
2688 core_request->intersect = false;
2689 core_request->processed = false;
2690 reg_update_last_request(request: core_request);
2691 return REG_REQ_OK;
2692 }
2693
2694 return REG_REQ_IGNORE;
2695}
2696
2697static enum reg_request_treatment
2698__reg_process_hint_user(struct regulatory_request *user_request)
2699{
2700 struct regulatory_request *lr = get_last_request();
2701
2702 if (reg_request_cell_base(request: user_request))
2703 return reg_ignore_cell_hint(pending_request: user_request);
2704
2705 if (reg_request_cell_base(request: lr))
2706 return REG_REQ_IGNORE;
2707
2708 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2709 return REG_REQ_INTERSECT;
2710 /*
2711 * If the user knows better the user should set the regdom
2712 * to their country before the IE is picked up
2713 */
2714 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2715 lr->intersect)
2716 return REG_REQ_IGNORE;
2717 /*
2718 * Process user requests only after previous user/driver/core
2719 * requests have been processed
2720 */
2721 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2722 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2723 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2724 regdom_changes(alpha2: lr->alpha2))
2725 return REG_REQ_IGNORE;
2726
2727 if (!regdom_changes(alpha2: user_request->alpha2))
2728 return REG_REQ_ALREADY_SET;
2729
2730 return REG_REQ_OK;
2731}
2732
2733/**
2734 * reg_process_hint_user - process user regulatory requests
2735 * @user_request: a pending user regulatory request
2736 *
2737 * The wireless subsystem can use this function to process
2738 * a regulatory request initiated by userspace.
2739 *
2740 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2741 * hint was processed or ignored
2742 */
2743static enum reg_request_treatment
2744reg_process_hint_user(struct regulatory_request *user_request)
2745{
2746 enum reg_request_treatment treatment;
2747
2748 treatment = __reg_process_hint_user(user_request);
2749 if (treatment == REG_REQ_IGNORE ||
2750 treatment == REG_REQ_ALREADY_SET)
2751 return REG_REQ_IGNORE;
2752
2753 user_request->intersect = treatment == REG_REQ_INTERSECT;
2754 user_request->processed = false;
2755
2756 if (reg_query_database(request: user_request)) {
2757 reg_update_last_request(request: user_request);
2758 user_alpha2[0] = user_request->alpha2[0];
2759 user_alpha2[1] = user_request->alpha2[1];
2760 return REG_REQ_OK;
2761 }
2762
2763 return REG_REQ_IGNORE;
2764}
2765
2766static enum reg_request_treatment
2767__reg_process_hint_driver(struct regulatory_request *driver_request)
2768{
2769 struct regulatory_request *lr = get_last_request();
2770
2771 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2772 if (regdom_changes(alpha2: driver_request->alpha2))
2773 return REG_REQ_OK;
2774 return REG_REQ_ALREADY_SET;
2775 }
2776
2777 /*
2778 * This would happen if you unplug and plug your card
2779 * back in or if you add a new device for which the previously
2780 * loaded card also agrees on the regulatory domain.
2781 */
2782 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2783 !regdom_changes(alpha2: driver_request->alpha2))
2784 return REG_REQ_ALREADY_SET;
2785
2786 return REG_REQ_INTERSECT;
2787}
2788
2789/**
2790 * reg_process_hint_driver - process driver regulatory requests
2791 * @wiphy: the wireless device for the regulatory request
2792 * @driver_request: a pending driver regulatory request
2793 *
2794 * The wireless subsystem can use this function to process
2795 * a regulatory request issued by an 802.11 driver.
2796 *
2797 * Returns: one of the different reg request treatment values.
2798 */
2799static enum reg_request_treatment
2800reg_process_hint_driver(struct wiphy *wiphy,
2801 struct regulatory_request *driver_request)
2802{
2803 const struct ieee80211_regdomain *regd, *tmp;
2804 enum reg_request_treatment treatment;
2805
2806 treatment = __reg_process_hint_driver(driver_request);
2807
2808 switch (treatment) {
2809 case REG_REQ_OK:
2810 break;
2811 case REG_REQ_IGNORE:
2812 return REG_REQ_IGNORE;
2813 case REG_REQ_INTERSECT:
2814 case REG_REQ_ALREADY_SET:
2815 regd = reg_copy_regd(src_regd: get_cfg80211_regdom());
2816 if (IS_ERR(ptr: regd))
2817 return REG_REQ_IGNORE;
2818
2819 tmp = get_wiphy_regdom(wiphy);
2820 ASSERT_RTNL();
2821 wiphy_lock(wiphy);
2822 rcu_assign_pointer(wiphy->regd, regd);
2823 wiphy_unlock(wiphy);
2824 rcu_free_regdom(r: tmp);
2825 }
2826
2827
2828 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2829 driver_request->processed = false;
2830
2831 /*
2832 * Since CRDA will not be called in this case as we already
2833 * have applied the requested regulatory domain before we just
2834 * inform userspace we have processed the request
2835 */
2836 if (treatment == REG_REQ_ALREADY_SET) {
2837 nl80211_send_reg_change_event(request: driver_request);
2838 reg_update_last_request(request: driver_request);
2839 reg_set_request_processed();
2840 return REG_REQ_ALREADY_SET;
2841 }
2842
2843 if (reg_query_database(request: driver_request)) {
2844 reg_update_last_request(request: driver_request);
2845 return REG_REQ_OK;
2846 }
2847
2848 return REG_REQ_IGNORE;
2849}
2850
2851static enum reg_request_treatment
2852__reg_process_hint_country_ie(struct wiphy *wiphy,
2853 struct regulatory_request *country_ie_request)
2854{
2855 struct wiphy *last_wiphy = NULL;
2856 struct regulatory_request *lr = get_last_request();
2857
2858 if (reg_request_cell_base(request: lr)) {
2859 /* Trust a Cell base station over the AP's country IE */
2860 if (regdom_changes(alpha2: country_ie_request->alpha2))
2861 return REG_REQ_IGNORE;
2862 return REG_REQ_ALREADY_SET;
2863 } else {
2864 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2865 return REG_REQ_IGNORE;
2866 }
2867
2868 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2869 return -EINVAL;
2870
2871 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2872 return REG_REQ_OK;
2873
2874 last_wiphy = wiphy_idx_to_wiphy(wiphy_idx: lr->wiphy_idx);
2875
2876 if (last_wiphy != wiphy) {
2877 /*
2878 * Two cards with two APs claiming different
2879 * Country IE alpha2s. We could
2880 * intersect them, but that seems unlikely
2881 * to be correct. Reject second one for now.
2882 */
2883 if (regdom_changes(alpha2: country_ie_request->alpha2))
2884 return REG_REQ_IGNORE;
2885 return REG_REQ_ALREADY_SET;
2886 }
2887
2888 if (regdom_changes(alpha2: country_ie_request->alpha2))
2889 return REG_REQ_OK;
2890 return REG_REQ_ALREADY_SET;
2891}
2892
2893/**
2894 * reg_process_hint_country_ie - process regulatory requests from country IEs
2895 * @wiphy: the wireless device for the regulatory request
2896 * @country_ie_request: a regulatory request from a country IE
2897 *
2898 * The wireless subsystem can use this function to process
2899 * a regulatory request issued by a country Information Element.
2900 *
2901 * Returns: one of the different reg request treatment values.
2902 */
2903static enum reg_request_treatment
2904reg_process_hint_country_ie(struct wiphy *wiphy,
2905 struct regulatory_request *country_ie_request)
2906{
2907 enum reg_request_treatment treatment;
2908
2909 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2910
2911 switch (treatment) {
2912 case REG_REQ_OK:
2913 break;
2914 case REG_REQ_IGNORE:
2915 return REG_REQ_IGNORE;
2916 case REG_REQ_ALREADY_SET:
2917 reg_free_request(request: country_ie_request);
2918 return REG_REQ_ALREADY_SET;
2919 case REG_REQ_INTERSECT:
2920 /*
2921 * This doesn't happen yet, not sure we
2922 * ever want to support it for this case.
2923 */
2924 WARN_ONCE(1, "Unexpected intersection for country elements");
2925 return REG_REQ_IGNORE;
2926 }
2927
2928 country_ie_request->intersect = false;
2929 country_ie_request->processed = false;
2930
2931 if (reg_query_database(request: country_ie_request)) {
2932 reg_update_last_request(request: country_ie_request);
2933 return REG_REQ_OK;
2934 }
2935
2936 return REG_REQ_IGNORE;
2937}
2938
2939bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2940{
2941 const struct ieee80211_regdomain *wiphy1_regd = NULL;
2942 const struct ieee80211_regdomain *wiphy2_regd = NULL;
2943 const struct ieee80211_regdomain *cfg80211_regd = NULL;
2944 bool dfs_domain_same;
2945
2946 rcu_read_lock();
2947
2948 cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2949 wiphy1_regd = rcu_dereference(wiphy1->regd);
2950 if (!wiphy1_regd)
2951 wiphy1_regd = cfg80211_regd;
2952
2953 wiphy2_regd = rcu_dereference(wiphy2->regd);
2954 if (!wiphy2_regd)
2955 wiphy2_regd = cfg80211_regd;
2956
2957 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2958
2959 rcu_read_unlock();
2960
2961 return dfs_domain_same;
2962}
2963
2964static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2965 struct ieee80211_channel *src_chan)
2966{
2967 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2968 !(src_chan->flags & IEEE80211_CHAN_RADAR))
2969 return;
2970
2971 if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2972 src_chan->flags & IEEE80211_CHAN_DISABLED)
2973 return;
2974
2975 if (src_chan->center_freq == dst_chan->center_freq &&
2976 dst_chan->dfs_state == NL80211_DFS_USABLE) {
2977 dst_chan->dfs_state = src_chan->dfs_state;
2978 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2979 }
2980}
2981
2982static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2983 struct wiphy *src_wiphy)
2984{
2985 struct ieee80211_supported_band *src_sband, *dst_sband;
2986 struct ieee80211_channel *src_chan, *dst_chan;
2987 int i, j, band;
2988
2989 if (!reg_dfs_domain_same(wiphy1: dst_wiphy, wiphy2: src_wiphy))
2990 return;
2991
2992 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2993 dst_sband = dst_wiphy->bands[band];
2994 src_sband = src_wiphy->bands[band];
2995 if (!dst_sband || !src_sband)
2996 continue;
2997
2998 for (i = 0; i < dst_sband->n_channels; i++) {
2999 dst_chan = &dst_sband->channels[i];
3000 for (j = 0; j < src_sband->n_channels; j++) {
3001 src_chan = &src_sband->channels[j];
3002 reg_copy_dfs_chan_state(dst_chan, src_chan);
3003 }
3004 }
3005 }
3006}
3007
3008static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
3009{
3010 struct cfg80211_registered_device *rdev;
3011
3012 ASSERT_RTNL();
3013
3014 for_each_rdev(rdev) {
3015 if (wiphy == &rdev->wiphy)
3016 continue;
3017 wiphy_share_dfs_chan_state(dst_wiphy: wiphy, src_wiphy: &rdev->wiphy);
3018 }
3019}
3020
3021/* This processes *all* regulatory hints */
3022static void reg_process_hint(struct regulatory_request *reg_request)
3023{
3024 struct wiphy *wiphy = NULL;
3025 enum reg_request_treatment treatment;
3026 enum nl80211_reg_initiator initiator = reg_request->initiator;
3027
3028 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3029 wiphy = wiphy_idx_to_wiphy(wiphy_idx: reg_request->wiphy_idx);
3030
3031 switch (initiator) {
3032 case NL80211_REGDOM_SET_BY_CORE:
3033 treatment = reg_process_hint_core(core_request: reg_request);
3034 break;
3035 case NL80211_REGDOM_SET_BY_USER:
3036 treatment = reg_process_hint_user(user_request: reg_request);
3037 break;
3038 case NL80211_REGDOM_SET_BY_DRIVER:
3039 if (!wiphy)
3040 goto out_free;
3041 treatment = reg_process_hint_driver(wiphy, driver_request: reg_request);
3042 break;
3043 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3044 if (!wiphy)
3045 goto out_free;
3046 treatment = reg_process_hint_country_ie(wiphy, country_ie_request: reg_request);
3047 break;
3048 default:
3049 WARN(1, "invalid initiator %d\n", initiator);
3050 goto out_free;
3051 }
3052
3053 if (treatment == REG_REQ_IGNORE)
3054 goto out_free;
3055
3056 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3057 "unexpected treatment value %d\n", treatment);
3058
3059 /* This is required so that the orig_* parameters are saved.
3060 * NOTE: treatment must be set for any case that reaches here!
3061 */
3062 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3063 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3064 wiphy_update_regulatory(wiphy, initiator);
3065 wiphy_all_share_dfs_chan_state(wiphy);
3066 reg_check_channels();
3067 }
3068
3069 return;
3070
3071out_free:
3072 reg_free_request(request: reg_request);
3073}
3074
3075static void notify_self_managed_wiphys(struct regulatory_request *request)
3076{
3077 struct cfg80211_registered_device *rdev;
3078 struct wiphy *wiphy;
3079
3080 for_each_rdev(rdev) {
3081 wiphy = &rdev->wiphy;
3082 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3083 request->initiator == NL80211_REGDOM_SET_BY_USER)
3084 reg_call_notifier(wiphy, request);
3085 }
3086}
3087
3088/*
3089 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3090 * Regulatory hints come on a first come first serve basis and we
3091 * must process each one atomically.
3092 */
3093static void reg_process_pending_hints(void)
3094{
3095 struct regulatory_request *reg_request, *lr;
3096
3097 lr = get_last_request();
3098
3099 /* When last_request->processed becomes true this will be rescheduled */
3100 if (lr && !lr->processed) {
3101 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3102 return;
3103 }
3104
3105 spin_lock(lock: &reg_requests_lock);
3106
3107 if (list_empty(head: &reg_requests_list)) {
3108 spin_unlock(lock: &reg_requests_lock);
3109 return;
3110 }
3111
3112 reg_request = list_first_entry(&reg_requests_list,
3113 struct regulatory_request,
3114 list);
3115 list_del_init(entry: &reg_request->list);
3116
3117 spin_unlock(lock: &reg_requests_lock);
3118
3119 notify_self_managed_wiphys(request: reg_request);
3120
3121 reg_process_hint(reg_request);
3122
3123 lr = get_last_request();
3124
3125 spin_lock(lock: &reg_requests_lock);
3126 if (!list_empty(head: &reg_requests_list) && lr && lr->processed)
3127 schedule_work(work: &reg_work);
3128 spin_unlock(lock: &reg_requests_lock);
3129}
3130
3131/* Processes beacon hints -- this has nothing to do with country IEs */
3132static void reg_process_pending_beacon_hints(void)
3133{
3134 struct cfg80211_registered_device *rdev;
3135 struct reg_beacon *pending_beacon, *tmp;
3136
3137 /* This goes through the _pending_ beacon list */
3138 spin_lock_bh(lock: &reg_pending_beacons_lock);
3139
3140 list_for_each_entry_safe(pending_beacon, tmp,
3141 &reg_pending_beacons, list) {
3142 list_del_init(entry: &pending_beacon->list);
3143
3144 /* Applies the beacon hint to current wiphys */
3145 for_each_rdev(rdev)
3146 wiphy_update_new_beacon(wiphy: &rdev->wiphy, reg_beacon: pending_beacon);
3147
3148 /* Remembers the beacon hint for new wiphys or reg changes */
3149 list_add_tail(new: &pending_beacon->list, head: &reg_beacon_list);
3150 }
3151
3152 spin_unlock_bh(lock: &reg_pending_beacons_lock);
3153}
3154
3155static void reg_process_self_managed_hint(struct wiphy *wiphy)
3156{
3157 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3158 const struct ieee80211_regdomain *tmp;
3159 const struct ieee80211_regdomain *regd;
3160 enum nl80211_band band;
3161 struct regulatory_request request = {};
3162
3163 ASSERT_RTNL();
3164 lockdep_assert_wiphy(wiphy);
3165
3166 spin_lock(lock: &reg_requests_lock);
3167 regd = rdev->requested_regd;
3168 rdev->requested_regd = NULL;
3169 spin_unlock(lock: &reg_requests_lock);
3170
3171 if (!regd)
3172 return;
3173
3174 tmp = get_wiphy_regdom(wiphy);
3175 rcu_assign_pointer(wiphy->regd, regd);
3176 rcu_free_regdom(r: tmp);
3177
3178 for (band = 0; band < NUM_NL80211_BANDS; band++)
3179 handle_band_custom(wiphy, sband: wiphy->bands[band], regd);
3180
3181 reg_process_ht_flags(wiphy);
3182
3183 request.wiphy_idx = get_wiphy_idx(wiphy);
3184 request.alpha2[0] = regd->alpha2[0];
3185 request.alpha2[1] = regd->alpha2[1];
3186 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3187
3188 if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER)
3189 reg_call_notifier(wiphy, request: &request);
3190
3191 nl80211_send_wiphy_reg_change_event(request: &request);
3192}
3193
3194static void reg_process_self_managed_hints(void)
3195{
3196 struct cfg80211_registered_device *rdev;
3197
3198 ASSERT_RTNL();
3199
3200 for_each_rdev(rdev) {
3201 wiphy_lock(wiphy: &rdev->wiphy);
3202 reg_process_self_managed_hint(wiphy: &rdev->wiphy);
3203 wiphy_unlock(wiphy: &rdev->wiphy);
3204 }
3205
3206 reg_check_channels();
3207}
3208
3209static void reg_todo(struct work_struct *work)
3210{
3211 rtnl_lock();
3212 reg_process_pending_hints();
3213 reg_process_pending_beacon_hints();
3214 reg_process_self_managed_hints();
3215 rtnl_unlock();
3216}
3217
3218static void queue_regulatory_request(struct regulatory_request *request)
3219{
3220 request->alpha2[0] = toupper(request->alpha2[0]);
3221 request->alpha2[1] = toupper(request->alpha2[1]);
3222
3223 spin_lock(lock: &reg_requests_lock);
3224 list_add_tail(new: &request->list, head: &reg_requests_list);
3225 spin_unlock(lock: &reg_requests_lock);
3226
3227 schedule_work(work: &reg_work);
3228}
3229
3230/*
3231 * Core regulatory hint -- happens during cfg80211_init()
3232 * and when we restore regulatory settings.
3233 */
3234static int regulatory_hint_core(const char *alpha2)
3235{
3236 struct regulatory_request *request;
3237
3238 request = kzalloc(size: sizeof(struct regulatory_request), GFP_KERNEL);
3239 if (!request)
3240 return -ENOMEM;
3241
3242 request->alpha2[0] = alpha2[0];
3243 request->alpha2[1] = alpha2[1];
3244 request->initiator = NL80211_REGDOM_SET_BY_CORE;
3245 request->wiphy_idx = WIPHY_IDX_INVALID;
3246
3247 queue_regulatory_request(request);
3248
3249 return 0;
3250}
3251
3252/* User hints */
3253int regulatory_hint_user(const char *alpha2,
3254 enum nl80211_user_reg_hint_type user_reg_hint_type)
3255{
3256 struct regulatory_request *request;
3257
3258 if (WARN_ON(!alpha2))
3259 return -EINVAL;
3260
3261 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3262 return -EINVAL;
3263
3264 request = kzalloc(size: sizeof(struct regulatory_request), GFP_KERNEL);
3265 if (!request)
3266 return -ENOMEM;
3267
3268 request->wiphy_idx = WIPHY_IDX_INVALID;
3269 request->alpha2[0] = alpha2[0];
3270 request->alpha2[1] = alpha2[1];
3271 request->initiator = NL80211_REGDOM_SET_BY_USER;
3272 request->user_reg_hint_type = user_reg_hint_type;
3273
3274 /* Allow calling CRDA again */
3275 reset_crda_timeouts();
3276
3277 queue_regulatory_request(request);
3278
3279 return 0;
3280}
3281
3282int regulatory_hint_indoor(bool is_indoor, u32 portid)
3283{
3284 spin_lock(lock: &reg_indoor_lock);
3285
3286 /* It is possible that more than one user space process is trying to
3287 * configure the indoor setting. To handle such cases, clear the indoor
3288 * setting in case that some process does not think that the device
3289 * is operating in an indoor environment. In addition, if a user space
3290 * process indicates that it is controlling the indoor setting, save its
3291 * portid, i.e., make it the owner.
3292 */
3293 reg_is_indoor = is_indoor;
3294 if (reg_is_indoor) {
3295 if (!reg_is_indoor_portid)
3296 reg_is_indoor_portid = portid;
3297 } else {
3298 reg_is_indoor_portid = 0;
3299 }
3300
3301 spin_unlock(lock: &reg_indoor_lock);
3302
3303 if (!is_indoor)
3304 reg_check_channels();
3305
3306 return 0;
3307}
3308
3309void regulatory_netlink_notify(u32 portid)
3310{
3311 spin_lock(lock: &reg_indoor_lock);
3312
3313 if (reg_is_indoor_portid != portid) {
3314 spin_unlock(lock: &reg_indoor_lock);
3315 return;
3316 }
3317
3318 reg_is_indoor = false;
3319 reg_is_indoor_portid = 0;
3320
3321 spin_unlock(lock: &reg_indoor_lock);
3322
3323 reg_check_channels();
3324}
3325
3326/* Driver hints */
3327int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3328{
3329 struct regulatory_request *request;
3330
3331 if (WARN_ON(!alpha2 || !wiphy))
3332 return -EINVAL;
3333
3334 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3335
3336 request = kzalloc(size: sizeof(struct regulatory_request), GFP_KERNEL);
3337 if (!request)
3338 return -ENOMEM;
3339
3340 request->wiphy_idx = get_wiphy_idx(wiphy);
3341
3342 request->alpha2[0] = alpha2[0];
3343 request->alpha2[1] = alpha2[1];
3344 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3345
3346 /* Allow calling CRDA again */
3347 reset_crda_timeouts();
3348
3349 queue_regulatory_request(request);
3350
3351 return 0;
3352}
3353EXPORT_SYMBOL(regulatory_hint);
3354
3355void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3356 const u8 *country_ie, u8 country_ie_len)
3357{
3358 char alpha2[2];
3359 enum environment_cap env = ENVIRON_ANY;
3360 struct regulatory_request *request = NULL, *lr;
3361
3362 /* IE len must be evenly divisible by 2 */
3363 if (country_ie_len & 0x01)
3364 return;
3365
3366 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3367 return;
3368
3369 request = kzalloc(size: sizeof(*request), GFP_KERNEL);
3370 if (!request)
3371 return;
3372
3373 alpha2[0] = country_ie[0];
3374 alpha2[1] = country_ie[1];
3375
3376 if (country_ie[2] == 'I')
3377 env = ENVIRON_INDOOR;
3378 else if (country_ie[2] == 'O')
3379 env = ENVIRON_OUTDOOR;
3380
3381 rcu_read_lock();
3382 lr = get_last_request();
3383
3384 if (unlikely(!lr))
3385 goto out;
3386
3387 /*
3388 * We will run this only upon a successful connection on cfg80211.
3389 * We leave conflict resolution to the workqueue, where can hold
3390 * the RTNL.
3391 */
3392 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3393 lr->wiphy_idx != WIPHY_IDX_INVALID)
3394 goto out;
3395
3396 request->wiphy_idx = get_wiphy_idx(wiphy);
3397 request->alpha2[0] = alpha2[0];
3398 request->alpha2[1] = alpha2[1];
3399 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3400 request->country_ie_env = env;
3401
3402 /* Allow calling CRDA again */
3403 reset_crda_timeouts();
3404
3405 queue_regulatory_request(request);
3406 request = NULL;
3407out:
3408 kfree(objp: request);
3409 rcu_read_unlock();
3410}
3411
3412static void restore_alpha2(char *alpha2, bool reset_user)
3413{
3414 /* indicates there is no alpha2 to consider for restoration */
3415 alpha2[0] = '9';
3416 alpha2[1] = '7';
3417
3418 /* The user setting has precedence over the module parameter */
3419 if (is_user_regdom_saved()) {
3420 /* Unless we're asked to ignore it and reset it */
3421 if (reset_user) {
3422 pr_debug("Restoring regulatory settings including user preference\n");
3423 user_alpha2[0] = '9';
3424 user_alpha2[1] = '7';
3425
3426 /*
3427 * If we're ignoring user settings, we still need to
3428 * check the module parameter to ensure we put things
3429 * back as they were for a full restore.
3430 */
3431 if (!is_world_regdom(alpha2: ieee80211_regdom)) {
3432 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3433 ieee80211_regdom[0], ieee80211_regdom[1]);
3434 alpha2[0] = ieee80211_regdom[0];
3435 alpha2[1] = ieee80211_regdom[1];
3436 }
3437 } else {
3438 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3439 user_alpha2[0], user_alpha2[1]);
3440 alpha2[0] = user_alpha2[0];
3441 alpha2[1] = user_alpha2[1];
3442 }
3443 } else if (!is_world_regdom(alpha2: ieee80211_regdom)) {
3444 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3445 ieee80211_regdom[0], ieee80211_regdom[1]);
3446 alpha2[0] = ieee80211_regdom[0];
3447 alpha2[1] = ieee80211_regdom[1];
3448 } else
3449 pr_debug("Restoring regulatory settings\n");
3450}
3451
3452static void restore_custom_reg_settings(struct wiphy *wiphy)
3453{
3454 struct ieee80211_supported_band *sband;
3455 enum nl80211_band band;
3456 struct ieee80211_channel *chan;
3457 int i;
3458
3459 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3460 sband = wiphy->bands[band];
3461 if (!sband)
3462 continue;
3463 for (i = 0; i < sband->n_channels; i++) {
3464 chan = &sband->channels[i];
3465 chan->flags = chan->orig_flags;
3466 chan->max_antenna_gain = chan->orig_mag;
3467 chan->max_power = chan->orig_mpwr;
3468 chan->beacon_found = false;
3469 }
3470 }
3471}
3472
3473/*
3474 * Restoring regulatory settings involves ignoring any
3475 * possibly stale country IE information and user regulatory
3476 * settings if so desired, this includes any beacon hints
3477 * learned as we could have traveled outside to another country
3478 * after disconnection. To restore regulatory settings we do
3479 * exactly what we did at bootup:
3480 *
3481 * - send a core regulatory hint
3482 * - send a user regulatory hint if applicable
3483 *
3484 * Device drivers that send a regulatory hint for a specific country
3485 * keep their own regulatory domain on wiphy->regd so that does
3486 * not need to be remembered.
3487 */
3488static void restore_regulatory_settings(bool reset_user, bool cached)
3489{
3490 char alpha2[2];
3491 char world_alpha2[2];
3492 struct reg_beacon *reg_beacon, *btmp;
3493 LIST_HEAD(tmp_reg_req_list);
3494 struct cfg80211_registered_device *rdev;
3495
3496 ASSERT_RTNL();
3497
3498 /*
3499 * Clear the indoor setting in case that it is not controlled by user
3500 * space, as otherwise there is no guarantee that the device is still
3501 * operating in an indoor environment.
3502 */
3503 spin_lock(lock: &reg_indoor_lock);
3504 if (reg_is_indoor && !reg_is_indoor_portid) {
3505 reg_is_indoor = false;
3506 reg_check_channels();
3507 }
3508 spin_unlock(lock: &reg_indoor_lock);
3509
3510 reset_regdomains(full_reset: true, new_regdom: &world_regdom);
3511 restore_alpha2(alpha2, reset_user);
3512
3513 /*
3514 * If there's any pending requests we simply
3515 * stash them to a temporary pending queue and
3516 * add then after we've restored regulatory
3517 * settings.
3518 */
3519 spin_lock(lock: &reg_requests_lock);
3520 list_splice_tail_init(list: &reg_requests_list, head: &tmp_reg_req_list);
3521 spin_unlock(lock: &reg_requests_lock);
3522
3523 /* Clear beacon hints */
3524 spin_lock_bh(lock: &reg_pending_beacons_lock);
3525 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3526 list_del(entry: &reg_beacon->list);
3527 kfree(objp: reg_beacon);
3528 }
3529 spin_unlock_bh(lock: &reg_pending_beacons_lock);
3530
3531 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3532 list_del(entry: &reg_beacon->list);
3533 kfree(objp: reg_beacon);
3534 }
3535
3536 /* First restore to the basic regulatory settings */
3537 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3538 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3539
3540 for_each_rdev(rdev) {
3541 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3542 continue;
3543 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3544 restore_custom_reg_settings(wiphy: &rdev->wiphy);
3545 }
3546
3547 if (cached && (!is_an_alpha2(alpha2) ||
3548 !IS_ERR_OR_NULL(ptr: cfg80211_user_regdom))) {
3549 reset_regdomains(full_reset: false, new_regdom: cfg80211_world_regdom);
3550 update_all_wiphy_regulatory(initiator: NL80211_REGDOM_SET_BY_CORE);
3551 print_regdomain(rd: get_cfg80211_regdom());
3552 nl80211_send_reg_change_event(request: &core_request_world);
3553 reg_set_request_processed();
3554
3555 if (is_an_alpha2(alpha2) &&
3556 !regulatory_hint_user(alpha2, user_reg_hint_type: NL80211_USER_REG_HINT_USER)) {
3557 struct regulatory_request *ureq;
3558
3559 spin_lock(lock: &reg_requests_lock);
3560 ureq = list_last_entry(&reg_requests_list,
3561 struct regulatory_request,
3562 list);
3563 list_del(entry: &ureq->list);
3564 spin_unlock(lock: &reg_requests_lock);
3565
3566 notify_self_managed_wiphys(request: ureq);
3567 reg_update_last_request(request: ureq);
3568 set_regdom(rd: reg_copy_regd(src_regd: cfg80211_user_regdom),
3569 regd_src: REGD_SOURCE_CACHED);
3570 }
3571 } else {
3572 regulatory_hint_core(alpha2: world_alpha2);
3573
3574 /*
3575 * This restores the ieee80211_regdom module parameter
3576 * preference or the last user requested regulatory
3577 * settings, user regulatory settings takes precedence.
3578 */
3579 if (is_an_alpha2(alpha2))
3580 regulatory_hint_user(alpha2, user_reg_hint_type: NL80211_USER_REG_HINT_USER);
3581 }
3582
3583 spin_lock(lock: &reg_requests_lock);
3584 list_splice_tail_init(list: &tmp_reg_req_list, head: &reg_requests_list);
3585 spin_unlock(lock: &reg_requests_lock);
3586
3587 pr_debug("Kicking the queue\n");
3588
3589 schedule_work(work: &reg_work);
3590}
3591
3592static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3593{
3594 struct cfg80211_registered_device *rdev;
3595 struct wireless_dev *wdev;
3596
3597 for_each_rdev(rdev) {
3598 wiphy_lock(wiphy: &rdev->wiphy);
3599 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3600 if (!(wdev->wiphy->regulatory_flags & flag)) {
3601 wiphy_unlock(wiphy: &rdev->wiphy);
3602 return false;
3603 }
3604 }
3605 wiphy_unlock(wiphy: &rdev->wiphy);
3606 }
3607
3608 return true;
3609}
3610
3611void regulatory_hint_disconnect(void)
3612{
3613 /* Restore of regulatory settings is not required when wiphy(s)
3614 * ignore IE from connected access point but clearance of beacon hints
3615 * is required when wiphy(s) supports beacon hints.
3616 */
3617 if (is_wiphy_all_set_reg_flag(flag: REGULATORY_COUNTRY_IE_IGNORE)) {
3618 struct reg_beacon *reg_beacon, *btmp;
3619
3620 if (is_wiphy_all_set_reg_flag(flag: REGULATORY_DISABLE_BEACON_HINTS))
3621 return;
3622
3623 spin_lock_bh(lock: &reg_pending_beacons_lock);
3624 list_for_each_entry_safe(reg_beacon, btmp,
3625 &reg_pending_beacons, list) {
3626 list_del(entry: &reg_beacon->list);
3627 kfree(objp: reg_beacon);
3628 }
3629 spin_unlock_bh(lock: &reg_pending_beacons_lock);
3630
3631 list_for_each_entry_safe(reg_beacon, btmp,
3632 &reg_beacon_list, list) {
3633 list_del(entry: &reg_beacon->list);
3634 kfree(objp: reg_beacon);
3635 }
3636
3637 return;
3638 }
3639
3640 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3641 restore_regulatory_settings(reset_user: false, cached: true);
3642}
3643
3644static bool freq_is_chan_12_13_14(u32 freq)
3645{
3646 if (freq == ieee80211_channel_to_frequency(chan: 12, band: NL80211_BAND_2GHZ) ||
3647 freq == ieee80211_channel_to_frequency(chan: 13, band: NL80211_BAND_2GHZ) ||
3648 freq == ieee80211_channel_to_frequency(chan: 14, band: NL80211_BAND_2GHZ))
3649 return true;
3650 return false;
3651}
3652
3653static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3654{
3655 struct reg_beacon *pending_beacon;
3656
3657 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3658 if (ieee80211_channel_equal(a: beacon_chan,
3659 b: &pending_beacon->chan))
3660 return true;
3661 return false;
3662}
3663
3664int regulatory_hint_found_beacon(struct wiphy *wiphy,
3665 struct ieee80211_channel *beacon_chan,
3666 gfp_t gfp)
3667{
3668 struct reg_beacon *reg_beacon;
3669 bool processing;
3670
3671 if (beacon_chan->beacon_found ||
3672 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3673 (beacon_chan->band == NL80211_BAND_2GHZ &&
3674 !freq_is_chan_12_13_14(freq: beacon_chan->center_freq)))
3675 return 0;
3676
3677 spin_lock_bh(lock: &reg_pending_beacons_lock);
3678 processing = pending_reg_beacon(beacon_chan);
3679 spin_unlock_bh(lock: &reg_pending_beacons_lock);
3680
3681 if (processing)
3682 return 0;
3683
3684 reg_beacon = kzalloc(size: sizeof(struct reg_beacon), flags: gfp);
3685 if (!reg_beacon)
3686 return -ENOMEM;
3687
3688 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3689 beacon_chan->center_freq, beacon_chan->freq_offset,
3690 ieee80211_freq_khz_to_channel(
3691 ieee80211_channel_to_khz(beacon_chan)),
3692 wiphy_name(wiphy));
3693
3694 memcpy(&reg_beacon->chan, beacon_chan,
3695 sizeof(struct ieee80211_channel));
3696
3697 /*
3698 * Since we can be called from BH or and non-BH context
3699 * we must use spin_lock_bh()
3700 */
3701 spin_lock_bh(lock: &reg_pending_beacons_lock);
3702 list_add_tail(new: &reg_beacon->list, head: &reg_pending_beacons);
3703 spin_unlock_bh(lock: &reg_pending_beacons_lock);
3704
3705 schedule_work(work: &reg_work);
3706
3707 return 0;
3708}
3709
3710static void print_rd_rules(const struct ieee80211_regdomain *rd)
3711{
3712 unsigned int i;
3713 const struct ieee80211_reg_rule *reg_rule = NULL;
3714 const struct ieee80211_freq_range *freq_range = NULL;
3715 const struct ieee80211_power_rule *power_rule = NULL;
3716 char bw[32], cac_time[32];
3717
3718 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3719
3720 for (i = 0; i < rd->n_reg_rules; i++) {
3721 reg_rule = &rd->reg_rules[i];
3722 freq_range = &reg_rule->freq_range;
3723 power_rule = &reg_rule->power_rule;
3724
3725 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3726 snprintf(buf: bw, size: sizeof(bw), fmt: "%d KHz, %u KHz AUTO",
3727 freq_range->max_bandwidth_khz,
3728 reg_get_max_bandwidth(rd, rule: reg_rule));
3729 else
3730 snprintf(buf: bw, size: sizeof(bw), fmt: "%d KHz",
3731 freq_range->max_bandwidth_khz);
3732
3733 if (reg_rule->flags & NL80211_RRF_DFS)
3734 scnprintf(buf: cac_time, size: sizeof(cac_time), fmt: "%u s",
3735 reg_rule->dfs_cac_ms/1000);
3736 else
3737 scnprintf(buf: cac_time, size: sizeof(cac_time), fmt: "N/A");
3738
3739
3740 /*
3741 * There may not be documentation for max antenna gain
3742 * in certain regions
3743 */
3744 if (power_rule->max_antenna_gain)
3745 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3746 freq_range->start_freq_khz,
3747 freq_range->end_freq_khz,
3748 bw,
3749 power_rule->max_antenna_gain,
3750 power_rule->max_eirp,
3751 cac_time);
3752 else
3753 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3754 freq_range->start_freq_khz,
3755 freq_range->end_freq_khz,
3756 bw,
3757 power_rule->max_eirp,
3758 cac_time);
3759 }
3760}
3761
3762bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3763{
3764 switch (dfs_region) {
3765 case NL80211_DFS_UNSET:
3766 case NL80211_DFS_FCC:
3767 case NL80211_DFS_ETSI:
3768 case NL80211_DFS_JP:
3769 return true;
3770 default:
3771 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3772 return false;
3773 }
3774}
3775
3776static void print_regdomain(const struct ieee80211_regdomain *rd)
3777{
3778 struct regulatory_request *lr = get_last_request();
3779
3780 if (is_intersected_alpha2(alpha2: rd->alpha2)) {
3781 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3782 struct cfg80211_registered_device *rdev;
3783 rdev = cfg80211_rdev_by_wiphy_idx(wiphy_idx: lr->wiphy_idx);
3784 if (rdev) {
3785 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3786 rdev->country_ie_alpha2[0],
3787 rdev->country_ie_alpha2[1]);
3788 } else
3789 pr_debug("Current regulatory domain intersected:\n");
3790 } else
3791 pr_debug("Current regulatory domain intersected:\n");
3792 } else if (is_world_regdom(alpha2: rd->alpha2)) {
3793 pr_debug("World regulatory domain updated:\n");
3794 } else {
3795 if (is_unknown_alpha2(alpha2: rd->alpha2))
3796 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3797 else {
3798 if (reg_request_cell_base(request: lr))
3799 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3800 rd->alpha2[0], rd->alpha2[1]);
3801 else
3802 pr_debug("Regulatory domain changed to country: %c%c\n",
3803 rd->alpha2[0], rd->alpha2[1]);
3804 }
3805 }
3806
3807 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3808 print_rd_rules(rd);
3809}
3810
3811static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3812{
3813 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3814 print_rd_rules(rd);
3815}
3816
3817static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3818{
3819 if (!is_world_regdom(alpha2: rd->alpha2))
3820 return -EINVAL;
3821 update_world_regdomain(rd);
3822 return 0;
3823}
3824
3825static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3826 struct regulatory_request *user_request)
3827{
3828 const struct ieee80211_regdomain *intersected_rd = NULL;
3829
3830 if (!regdom_changes(alpha2: rd->alpha2))
3831 return -EALREADY;
3832
3833 if (!is_valid_rd(rd)) {
3834 pr_err("Invalid regulatory domain detected: %c%c\n",
3835 rd->alpha2[0], rd->alpha2[1]);
3836 print_regdomain_info(rd);
3837 return -EINVAL;
3838 }
3839
3840 if (!user_request->intersect) {
3841 reset_regdomains(full_reset: false, new_regdom: rd);
3842 return 0;
3843 }
3844
3845 intersected_rd = regdom_intersect(rd1: rd, rd2: get_cfg80211_regdom());
3846 if (!intersected_rd)
3847 return -EINVAL;
3848
3849 kfree(objp: rd);
3850 rd = NULL;
3851 reset_regdomains(full_reset: false, new_regdom: intersected_rd);
3852
3853 return 0;
3854}
3855
3856static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3857 struct regulatory_request *driver_request)
3858{
3859 const struct ieee80211_regdomain *regd;
3860 const struct ieee80211_regdomain *intersected_rd = NULL;
3861 const struct ieee80211_regdomain *tmp = NULL;
3862 struct wiphy *request_wiphy;
3863
3864 if (is_world_regdom(alpha2: rd->alpha2))
3865 return -EINVAL;
3866
3867 if (!regdom_changes(alpha2: rd->alpha2))
3868 return -EALREADY;
3869
3870 if (!is_valid_rd(rd)) {
3871 pr_err("Invalid regulatory domain detected: %c%c\n",
3872 rd->alpha2[0], rd->alpha2[1]);
3873 print_regdomain_info(rd);
3874 return -EINVAL;
3875 }
3876
3877 request_wiphy = wiphy_idx_to_wiphy(wiphy_idx: driver_request->wiphy_idx);
3878 if (!request_wiphy)
3879 return -ENODEV;
3880
3881 if (!driver_request->intersect) {
3882 ASSERT_RTNL();
3883 wiphy_lock(wiphy: request_wiphy);
3884 if (request_wiphy->regd)
3885 tmp = get_wiphy_regdom(request_wiphy);
3886
3887 regd = reg_copy_regd(src_regd: rd);
3888 if (IS_ERR(ptr: regd)) {
3889 wiphy_unlock(wiphy: request_wiphy);
3890 return PTR_ERR(ptr: regd);
3891 }
3892
3893 rcu_assign_pointer(request_wiphy->regd, regd);
3894 rcu_free_regdom(r: tmp);
3895 wiphy_unlock(wiphy: request_wiphy);
3896 reset_regdomains(full_reset: false, new_regdom: rd);
3897 return 0;
3898 }
3899
3900 intersected_rd = regdom_intersect(rd1: rd, rd2: get_cfg80211_regdom());
3901 if (!intersected_rd)
3902 return -EINVAL;
3903
3904 /*
3905 * We can trash what CRDA provided now.
3906 * However if a driver requested this specific regulatory
3907 * domain we keep it for its private use
3908 */
3909 tmp = get_wiphy_regdom(request_wiphy);
3910 rcu_assign_pointer(request_wiphy->regd, rd);
3911 rcu_free_regdom(r: tmp);
3912
3913 rd = NULL;
3914
3915 reset_regdomains(full_reset: false, new_regdom: intersected_rd);
3916
3917 return 0;
3918}
3919
3920static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3921 struct regulatory_request *country_ie_request)
3922{
3923 struct wiphy *request_wiphy;
3924
3925 if (!is_alpha2_set(alpha2: rd->alpha2) && !is_an_alpha2(alpha2: rd->alpha2) &&
3926 !is_unknown_alpha2(alpha2: rd->alpha2))
3927 return -EINVAL;
3928
3929 /*
3930 * Lets only bother proceeding on the same alpha2 if the current
3931 * rd is non static (it means CRDA was present and was used last)
3932 * and the pending request came in from a country IE
3933 */
3934
3935 if (!is_valid_rd(rd)) {
3936 pr_err("Invalid regulatory domain detected: %c%c\n",
3937 rd->alpha2[0], rd->alpha2[1]);
3938 print_regdomain_info(rd);
3939 return -EINVAL;
3940 }
3941
3942 request_wiphy = wiphy_idx_to_wiphy(wiphy_idx: country_ie_request->wiphy_idx);
3943 if (!request_wiphy)
3944 return -ENODEV;
3945
3946 if (country_ie_request->intersect)
3947 return -EINVAL;
3948
3949 reset_regdomains(full_reset: false, new_regdom: rd);
3950 return 0;
3951}
3952
3953/*
3954 * Use this call to set the current regulatory domain. Conflicts with
3955 * multiple drivers can be ironed out later. Caller must've already
3956 * kmalloc'd the rd structure.
3957 */
3958int set_regdom(const struct ieee80211_regdomain *rd,
3959 enum ieee80211_regd_source regd_src)
3960{
3961 struct regulatory_request *lr;
3962 bool user_reset = false;
3963 int r;
3964
3965 if (IS_ERR_OR_NULL(ptr: rd))
3966 return -ENODATA;
3967
3968 if (!reg_is_valid_request(alpha2: rd->alpha2)) {
3969 kfree(objp: rd);
3970 return -EINVAL;
3971 }
3972
3973 if (regd_src == REGD_SOURCE_CRDA)
3974 reset_crda_timeouts();
3975
3976 lr = get_last_request();
3977
3978 /* Note that this doesn't update the wiphys, this is done below */
3979 switch (lr->initiator) {
3980 case NL80211_REGDOM_SET_BY_CORE:
3981 r = reg_set_rd_core(rd);
3982 break;
3983 case NL80211_REGDOM_SET_BY_USER:
3984 cfg80211_save_user_regdom(rd);
3985 r = reg_set_rd_user(rd, user_request: lr);
3986 user_reset = true;
3987 break;
3988 case NL80211_REGDOM_SET_BY_DRIVER:
3989 r = reg_set_rd_driver(rd, driver_request: lr);
3990 break;
3991 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3992 r = reg_set_rd_country_ie(rd, country_ie_request: lr);
3993 break;
3994 default:
3995 WARN(1, "invalid initiator %d\n", lr->initiator);
3996 kfree(objp: rd);
3997 return -EINVAL;
3998 }
3999
4000 if (r) {
4001 switch (r) {
4002 case -EALREADY:
4003 reg_set_request_processed();
4004 break;
4005 default:
4006 /* Back to world regulatory in case of errors */
4007 restore_regulatory_settings(reset_user: user_reset, cached: false);
4008 }
4009
4010 kfree(objp: rd);
4011 return r;
4012 }
4013
4014 /* This would make this whole thing pointless */
4015 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
4016 return -EINVAL;
4017
4018 /* update all wiphys now with the new established regulatory domain */
4019 update_all_wiphy_regulatory(initiator: lr->initiator);
4020
4021 print_regdomain(rd: get_cfg80211_regdom());
4022
4023 nl80211_send_reg_change_event(request: lr);
4024
4025 reg_set_request_processed();
4026
4027 return 0;
4028}
4029
4030static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4031 struct ieee80211_regdomain *rd)
4032{
4033 const struct ieee80211_regdomain *regd;
4034 const struct ieee80211_regdomain *prev_regd;
4035 struct cfg80211_registered_device *rdev;
4036
4037 if (WARN_ON(!wiphy || !rd))
4038 return -EINVAL;
4039
4040 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4041 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4042 return -EPERM;
4043
4044 if (WARN(!is_valid_rd(rd),
4045 "Invalid regulatory domain detected: %c%c\n",
4046 rd->alpha2[0], rd->alpha2[1])) {
4047 print_regdomain_info(rd);
4048 return -EINVAL;
4049 }
4050
4051 regd = reg_copy_regd(src_regd: rd);
4052 if (IS_ERR(ptr: regd))
4053 return PTR_ERR(ptr: regd);
4054
4055 rdev = wiphy_to_rdev(wiphy);
4056
4057 spin_lock(lock: &reg_requests_lock);
4058 prev_regd = rdev->requested_regd;
4059 rdev->requested_regd = regd;
4060 spin_unlock(lock: &reg_requests_lock);
4061
4062 kfree(objp: prev_regd);
4063 return 0;
4064}
4065
4066int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4067 struct ieee80211_regdomain *rd)
4068{
4069 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4070
4071 if (ret)
4072 return ret;
4073
4074 schedule_work(work: &reg_work);
4075 return 0;
4076}
4077EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4078
4079int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4080 struct ieee80211_regdomain *rd)
4081{
4082 int ret;
4083
4084 ASSERT_RTNL();
4085
4086 ret = __regulatory_set_wiphy_regd(wiphy, rd);
4087 if (ret)
4088 return ret;
4089
4090 /* process the request immediately */
4091 reg_process_self_managed_hint(wiphy);
4092 reg_check_channels();
4093 return 0;
4094}
4095EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4096
4097void wiphy_regulatory_register(struct wiphy *wiphy)
4098{
4099 struct regulatory_request *lr = get_last_request();
4100
4101 /* self-managed devices ignore beacon hints and country IE */
4102 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4103 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4104 REGULATORY_COUNTRY_IE_IGNORE;
4105
4106 /*
4107 * The last request may have been received before this
4108 * registration call. Call the driver notifier if
4109 * initiator is USER.
4110 */
4111 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4112 reg_call_notifier(wiphy, request: lr);
4113 }
4114
4115 if (!reg_dev_ignore_cell_hint(wiphy))
4116 reg_num_devs_support_basehint++;
4117
4118 wiphy_update_regulatory(wiphy, initiator: lr->initiator);
4119 wiphy_all_share_dfs_chan_state(wiphy);
4120 reg_process_self_managed_hints();
4121}
4122
4123void wiphy_regulatory_deregister(struct wiphy *wiphy)
4124{
4125 struct wiphy *request_wiphy = NULL;
4126 struct regulatory_request *lr;
4127
4128 lr = get_last_request();
4129
4130 if (!reg_dev_ignore_cell_hint(wiphy))
4131 reg_num_devs_support_basehint--;
4132
4133 rcu_free_regdom(r: get_wiphy_regdom(wiphy));
4134 RCU_INIT_POINTER(wiphy->regd, NULL);
4135
4136 if (lr)
4137 request_wiphy = wiphy_idx_to_wiphy(wiphy_idx: lr->wiphy_idx);
4138
4139 if (!request_wiphy || request_wiphy != wiphy)
4140 return;
4141
4142 lr->wiphy_idx = WIPHY_IDX_INVALID;
4143 lr->country_ie_env = ENVIRON_ANY;
4144}
4145
4146/*
4147 * See FCC notices for UNII band definitions
4148 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4149 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4150 */
4151int cfg80211_get_unii(int freq)
4152{
4153 /* UNII-1 */
4154 if (freq >= 5150 && freq <= 5250)
4155 return 0;
4156
4157 /* UNII-2A */
4158 if (freq > 5250 && freq <= 5350)
4159 return 1;
4160
4161 /* UNII-2B */
4162 if (freq > 5350 && freq <= 5470)
4163 return 2;
4164
4165 /* UNII-2C */
4166 if (freq > 5470 && freq <= 5725)
4167 return 3;
4168
4169 /* UNII-3 */
4170 if (freq > 5725 && freq <= 5825)
4171 return 4;
4172
4173 /* UNII-5 */
4174 if (freq > 5925 && freq <= 6425)
4175 return 5;
4176
4177 /* UNII-6 */
4178 if (freq > 6425 && freq <= 6525)
4179 return 6;
4180
4181 /* UNII-7 */
4182 if (freq > 6525 && freq <= 6875)
4183 return 7;
4184
4185 /* UNII-8 */
4186 if (freq > 6875 && freq <= 7125)
4187 return 8;
4188
4189 return -EINVAL;
4190}
4191
4192bool regulatory_indoor_allowed(void)
4193{
4194 return reg_is_indoor;
4195}
4196
4197bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4198{
4199 const struct ieee80211_regdomain *regd = NULL;
4200 const struct ieee80211_regdomain *wiphy_regd = NULL;
4201 bool pre_cac_allowed = false;
4202
4203 rcu_read_lock();
4204
4205 regd = rcu_dereference(cfg80211_regdomain);
4206 wiphy_regd = rcu_dereference(wiphy->regd);
4207 if (!wiphy_regd) {
4208 if (regd->dfs_region == NL80211_DFS_ETSI)
4209 pre_cac_allowed = true;
4210
4211 rcu_read_unlock();
4212
4213 return pre_cac_allowed;
4214 }
4215
4216 if (regd->dfs_region == wiphy_regd->dfs_region &&
4217 wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4218 pre_cac_allowed = true;
4219
4220 rcu_read_unlock();
4221
4222 return pre_cac_allowed;
4223}
4224EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4225
4226static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4227{
4228 struct wireless_dev *wdev;
4229 /* If we finished CAC or received radar, we should end any
4230 * CAC running on the same channels.
4231 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4232 * either all channels are available - those the CAC_FINISHED
4233 * event has effected another wdev state, or there is a channel
4234 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4235 * event has effected another wdev state.
4236 * In both cases we should end the CAC on the wdev.
4237 */
4238 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4239 struct cfg80211_chan_def *chandef;
4240
4241 if (!wdev->cac_started)
4242 continue;
4243
4244 /* FIXME: radar detection is tied to link 0 for now */
4245 chandef = wdev_chandef(wdev, link_id: 0);
4246 if (!chandef)
4247 continue;
4248
4249 if (!cfg80211_chandef_dfs_usable(wiphy: &rdev->wiphy, chandef))
4250 rdev_end_cac(rdev, dev: wdev->netdev);
4251 }
4252}
4253
4254void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4255 struct cfg80211_chan_def *chandef,
4256 enum nl80211_dfs_state dfs_state,
4257 enum nl80211_radar_event event)
4258{
4259 struct cfg80211_registered_device *rdev;
4260
4261 ASSERT_RTNL();
4262
4263 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4264 return;
4265
4266 for_each_rdev(rdev) {
4267 if (wiphy == &rdev->wiphy)
4268 continue;
4269
4270 if (!reg_dfs_domain_same(wiphy1: wiphy, wiphy2: &rdev->wiphy))
4271 continue;
4272
4273 if (!ieee80211_get_channel(wiphy: &rdev->wiphy,
4274 freq: chandef->chan->center_freq))
4275 continue;
4276
4277 cfg80211_set_dfs_state(wiphy: &rdev->wiphy, chandef, dfs_state);
4278
4279 if (event == NL80211_RADAR_DETECTED ||
4280 event == NL80211_RADAR_CAC_FINISHED) {
4281 cfg80211_sched_dfs_chan_update(rdev);
4282 cfg80211_check_and_end_cac(rdev);
4283 }
4284
4285 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4286 }
4287}
4288
4289static int __init regulatory_init_db(void)
4290{
4291 int err;
4292
4293 /*
4294 * It's possible that - due to other bugs/issues - cfg80211
4295 * never called regulatory_init() below, or that it failed;
4296 * in that case, don't try to do any further work here as
4297 * it's doomed to lead to crashes.
4298 */
4299 if (IS_ERR_OR_NULL(ptr: reg_pdev))
4300 return -EINVAL;
4301
4302 err = load_builtin_regdb_keys();
4303 if (err) {
4304 platform_device_unregister(reg_pdev);
4305 return err;
4306 }
4307
4308 /* We always try to get an update for the static regdomain */
4309 err = regulatory_hint_core(alpha2: cfg80211_world_regdom->alpha2);
4310 if (err) {
4311 if (err == -ENOMEM) {
4312 platform_device_unregister(reg_pdev);
4313 return err;
4314 }
4315 /*
4316 * N.B. kobject_uevent_env() can fail mainly for when we're out
4317 * memory which is handled and propagated appropriately above
4318 * but it can also fail during a netlink_broadcast() or during
4319 * early boot for call_usermodehelper(). For now treat these
4320 * errors as non-fatal.
4321 */
4322 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4323 }
4324
4325 /*
4326 * Finally, if the user set the module parameter treat it
4327 * as a user hint.
4328 */
4329 if (!is_world_regdom(alpha2: ieee80211_regdom))
4330 regulatory_hint_user(alpha2: ieee80211_regdom,
4331 user_reg_hint_type: NL80211_USER_REG_HINT_USER);
4332
4333 return 0;
4334}
4335#ifndef MODULE
4336late_initcall(regulatory_init_db);
4337#endif
4338
4339int __init regulatory_init(void)
4340{
4341 reg_pdev = platform_device_register_simple(name: "regulatory", id: 0, NULL, num: 0);
4342 if (IS_ERR(ptr: reg_pdev))
4343 return PTR_ERR(ptr: reg_pdev);
4344
4345 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4346
4347 user_alpha2[0] = '9';
4348 user_alpha2[1] = '7';
4349
4350#ifdef MODULE
4351 return regulatory_init_db();
4352#else
4353 return 0;
4354#endif
4355}
4356
4357void regulatory_exit(void)
4358{
4359 struct regulatory_request *reg_request, *tmp;
4360 struct reg_beacon *reg_beacon, *btmp;
4361
4362 cancel_work_sync(work: &reg_work);
4363 cancel_crda_timeout_sync();
4364 cancel_delayed_work_sync(dwork: &reg_check_chans);
4365
4366 /* Lock to suppress warnings */
4367 rtnl_lock();
4368 reset_regdomains(full_reset: true, NULL);
4369 rtnl_unlock();
4370
4371 dev_set_uevent_suppress(dev: &reg_pdev->dev, val: true);
4372
4373 platform_device_unregister(reg_pdev);
4374
4375 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4376 list_del(entry: &reg_beacon->list);
4377 kfree(objp: reg_beacon);
4378 }
4379
4380 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4381 list_del(entry: &reg_beacon->list);
4382 kfree(objp: reg_beacon);
4383 }
4384
4385 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4386 list_del(entry: &reg_request->list);
4387 kfree(objp: reg_request);
4388 }
4389
4390 if (!IS_ERR_OR_NULL(ptr: regdb))
4391 kfree(objp: regdb);
4392 if (!IS_ERR_OR_NULL(ptr: cfg80211_user_regdom))
4393 kfree(objp: cfg80211_user_regdom);
4394
4395 free_regdb_keyring();
4396}
4397

source code of linux/net/wireless/reg.c