1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Digital Audio (PCM) abstract layer
4 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
5 * Abramo Bagnara <abramo@alsa-project.org>
6 */
7
8#include <linux/slab.h>
9#include <linux/sched/signal.h>
10#include <linux/time.h>
11#include <linux/math64.h>
12#include <linux/export.h>
13#include <sound/core.h>
14#include <sound/control.h>
15#include <sound/tlv.h>
16#include <sound/info.h>
17#include <sound/pcm.h>
18#include <sound/pcm_params.h>
19#include <sound/timer.h>
20
21#include "pcm_local.h"
22
23#ifdef CONFIG_SND_PCM_XRUN_DEBUG
24#define CREATE_TRACE_POINTS
25#include "pcm_trace.h"
26#else
27#define trace_hwptr(substream, pos, in_interrupt)
28#define trace_xrun(substream)
29#define trace_hw_ptr_error(substream, reason)
30#define trace_applptr(substream, prev, curr)
31#endif
32
33static int fill_silence_frames(struct snd_pcm_substream *substream,
34 snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
35
36
37static inline void update_silence_vars(struct snd_pcm_runtime *runtime,
38 snd_pcm_uframes_t ptr,
39 snd_pcm_uframes_t new_ptr)
40{
41 snd_pcm_sframes_t delta;
42
43 delta = new_ptr - ptr;
44 if (delta == 0)
45 return;
46 if (delta < 0)
47 delta += runtime->boundary;
48 if ((snd_pcm_uframes_t)delta < runtime->silence_filled)
49 runtime->silence_filled -= delta;
50 else
51 runtime->silence_filled = 0;
52 runtime->silence_start = new_ptr;
53}
54
55/*
56 * fill ring buffer with silence
57 * runtime->silence_start: starting pointer to silence area
58 * runtime->silence_filled: size filled with silence
59 * runtime->silence_threshold: threshold from application
60 * runtime->silence_size: maximal size from application
61 *
62 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
63 */
64void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
65{
66 struct snd_pcm_runtime *runtime = substream->runtime;
67 snd_pcm_uframes_t frames, ofs, transfer;
68 int err;
69
70 if (runtime->silence_size < runtime->boundary) {
71 snd_pcm_sframes_t noise_dist;
72 snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
73 update_silence_vars(runtime, ptr: runtime->silence_start, new_ptr: appl_ptr);
74 /* initialization outside pointer updates */
75 if (new_hw_ptr == ULONG_MAX)
76 new_hw_ptr = runtime->status->hw_ptr;
77 /* get hw_avail with the boundary crossing */
78 noise_dist = appl_ptr - new_hw_ptr;
79 if (noise_dist < 0)
80 noise_dist += runtime->boundary;
81 /* total noise distance */
82 noise_dist += runtime->silence_filled;
83 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
84 return;
85 frames = runtime->silence_threshold - noise_dist;
86 if (frames > runtime->silence_size)
87 frames = runtime->silence_size;
88 } else {
89 /*
90 * This filling mode aims at free-running mode (used for example by dmix),
91 * which doesn't update the application pointer.
92 */
93 snd_pcm_uframes_t hw_ptr = runtime->status->hw_ptr;
94 if (new_hw_ptr == ULONG_MAX) {
95 /*
96 * Initialization, fill the whole unused buffer with silence.
97 *
98 * Usually, this is entered while stopped, before data is queued,
99 * so both pointers are expected to be zero.
100 */
101 snd_pcm_sframes_t avail = runtime->control->appl_ptr - hw_ptr;
102 if (avail < 0)
103 avail += runtime->boundary;
104 /*
105 * In free-running mode, appl_ptr will be zero even while running,
106 * so we end up with a huge number. There is no useful way to
107 * handle this, so we just clear the whole buffer.
108 */
109 runtime->silence_filled = avail > runtime->buffer_size ? 0 : avail;
110 runtime->silence_start = hw_ptr;
111 } else {
112 /* Silence the just played area immediately */
113 update_silence_vars(runtime, ptr: hw_ptr, new_ptr: new_hw_ptr);
114 }
115 /*
116 * In this mode, silence_filled actually includes the valid
117 * sample data from the user.
118 */
119 frames = runtime->buffer_size - runtime->silence_filled;
120 }
121 if (snd_BUG_ON(frames > runtime->buffer_size))
122 return;
123 if (frames == 0)
124 return;
125 ofs = (runtime->silence_start + runtime->silence_filled) % runtime->buffer_size;
126 do {
127 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
128 err = fill_silence_frames(substream, off: ofs, frames: transfer);
129 snd_BUG_ON(err < 0);
130 runtime->silence_filled += transfer;
131 frames -= transfer;
132 ofs = 0;
133 } while (frames > 0);
134 snd_pcm_dma_buffer_sync(substream, mode: SNDRV_DMA_SYNC_DEVICE);
135}
136
137#ifdef CONFIG_SND_DEBUG
138void snd_pcm_debug_name(struct snd_pcm_substream *substream,
139 char *name, size_t len)
140{
141 snprintf(buf: name, size: len, fmt: "pcmC%dD%d%c:%d",
142 substream->pcm->card->number,
143 substream->pcm->device,
144 substream->stream ? 'c' : 'p',
145 substream->number);
146}
147EXPORT_SYMBOL(snd_pcm_debug_name);
148#endif
149
150#define XRUN_DEBUG_BASIC (1<<0)
151#define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
152#define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
153
154#ifdef CONFIG_SND_PCM_XRUN_DEBUG
155
156#define xrun_debug(substream, mask) \
157 ((substream)->pstr->xrun_debug & (mask))
158#else
159#define xrun_debug(substream, mask) 0
160#endif
161
162#define dump_stack_on_xrun(substream) do { \
163 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
164 dump_stack(); \
165 } while (0)
166
167/* call with stream lock held */
168void __snd_pcm_xrun(struct snd_pcm_substream *substream)
169{
170 struct snd_pcm_runtime *runtime = substream->runtime;
171
172 trace_xrun(substream);
173 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
174 struct timespec64 tstamp;
175
176 snd_pcm_gettime(runtime, tv: &tstamp);
177 runtime->status->tstamp.tv_sec = tstamp.tv_sec;
178 runtime->status->tstamp.tv_nsec = tstamp.tv_nsec;
179 }
180 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
181 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
182 char name[16];
183 snd_pcm_debug_name(substream, name, sizeof(name));
184 pcm_warn(substream->pcm, "XRUN: %s\n", name);
185 dump_stack_on_xrun(substream);
186 }
187}
188
189#ifdef CONFIG_SND_PCM_XRUN_DEBUG
190#define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \
191 do { \
192 trace_hw_ptr_error(substream, reason); \
193 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
194 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
195 (in_interrupt) ? 'Q' : 'P', ##args); \
196 dump_stack_on_xrun(substream); \
197 } \
198 } while (0)
199
200#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
201
202#define hw_ptr_error(substream, fmt, args...) do { } while (0)
203
204#endif
205
206int snd_pcm_update_state(struct snd_pcm_substream *substream,
207 struct snd_pcm_runtime *runtime)
208{
209 snd_pcm_uframes_t avail;
210
211 avail = snd_pcm_avail(substream);
212 if (avail > runtime->avail_max)
213 runtime->avail_max = avail;
214 if (runtime->state == SNDRV_PCM_STATE_DRAINING) {
215 if (avail >= runtime->buffer_size) {
216 snd_pcm_drain_done(substream);
217 return -EPIPE;
218 }
219 } else {
220 if (avail >= runtime->stop_threshold) {
221 __snd_pcm_xrun(substream);
222 return -EPIPE;
223 }
224 }
225 if (runtime->twake) {
226 if (avail >= runtime->twake)
227 wake_up(&runtime->tsleep);
228 } else if (avail >= runtime->control->avail_min)
229 wake_up(&runtime->sleep);
230 return 0;
231}
232
233static void update_audio_tstamp(struct snd_pcm_substream *substream,
234 struct timespec64 *curr_tstamp,
235 struct timespec64 *audio_tstamp)
236{
237 struct snd_pcm_runtime *runtime = substream->runtime;
238 u64 audio_frames, audio_nsecs;
239 struct timespec64 driver_tstamp;
240
241 if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
242 return;
243
244 if (!(substream->ops->get_time_info) ||
245 (runtime->audio_tstamp_report.actual_type ==
246 SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
247
248 /*
249 * provide audio timestamp derived from pointer position
250 * add delay only if requested
251 */
252
253 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
254
255 if (runtime->audio_tstamp_config.report_delay) {
256 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
257 audio_frames -= runtime->delay;
258 else
259 audio_frames += runtime->delay;
260 }
261 audio_nsecs = div_u64(dividend: audio_frames * 1000000000LL,
262 divisor: runtime->rate);
263 *audio_tstamp = ns_to_timespec64(nsec: audio_nsecs);
264 }
265
266 if (runtime->status->audio_tstamp.tv_sec != audio_tstamp->tv_sec ||
267 runtime->status->audio_tstamp.tv_nsec != audio_tstamp->tv_nsec) {
268 runtime->status->audio_tstamp.tv_sec = audio_tstamp->tv_sec;
269 runtime->status->audio_tstamp.tv_nsec = audio_tstamp->tv_nsec;
270 runtime->status->tstamp.tv_sec = curr_tstamp->tv_sec;
271 runtime->status->tstamp.tv_nsec = curr_tstamp->tv_nsec;
272 }
273
274
275 /*
276 * re-take a driver timestamp to let apps detect if the reference tstamp
277 * read by low-level hardware was provided with a delay
278 */
279 snd_pcm_gettime(runtime: substream->runtime, tv: &driver_tstamp);
280 runtime->driver_tstamp = driver_tstamp;
281}
282
283static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
284 unsigned int in_interrupt)
285{
286 struct snd_pcm_runtime *runtime = substream->runtime;
287 snd_pcm_uframes_t pos;
288 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
289 snd_pcm_sframes_t hdelta, delta;
290 unsigned long jdelta;
291 unsigned long curr_jiffies;
292 struct timespec64 curr_tstamp;
293 struct timespec64 audio_tstamp;
294 int crossed_boundary = 0;
295
296 old_hw_ptr = runtime->status->hw_ptr;
297
298 /*
299 * group pointer, time and jiffies reads to allow for more
300 * accurate correlations/corrections.
301 * The values are stored at the end of this routine after
302 * corrections for hw_ptr position
303 */
304 pos = substream->ops->pointer(substream);
305 curr_jiffies = jiffies;
306 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
307 if ((substream->ops->get_time_info) &&
308 (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
309 substream->ops->get_time_info(substream, &curr_tstamp,
310 &audio_tstamp,
311 &runtime->audio_tstamp_config,
312 &runtime->audio_tstamp_report);
313
314 /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
315 if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
316 snd_pcm_gettime(runtime, tv: &curr_tstamp);
317 } else
318 snd_pcm_gettime(runtime, tv: &curr_tstamp);
319 }
320
321 if (pos == SNDRV_PCM_POS_XRUN) {
322 __snd_pcm_xrun(substream);
323 return -EPIPE;
324 }
325 if (pos >= runtime->buffer_size) {
326 if (printk_ratelimit()) {
327 char name[16];
328 snd_pcm_debug_name(substream, name, sizeof(name));
329 pcm_err(substream->pcm,
330 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
331 name, pos, runtime->buffer_size,
332 runtime->period_size);
333 }
334 pos = 0;
335 }
336 pos -= pos % runtime->min_align;
337 trace_hwptr(substream, pos, irq: in_interrupt);
338 hw_base = runtime->hw_ptr_base;
339 new_hw_ptr = hw_base + pos;
340 if (in_interrupt) {
341 /* we know that one period was processed */
342 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
343 delta = runtime->hw_ptr_interrupt + runtime->period_size;
344 if (delta > new_hw_ptr) {
345 /* check for double acknowledged interrupts */
346 hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
347 if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
348 hw_base += runtime->buffer_size;
349 if (hw_base >= runtime->boundary) {
350 hw_base = 0;
351 crossed_boundary++;
352 }
353 new_hw_ptr = hw_base + pos;
354 goto __delta;
355 }
356 }
357 }
358 /* new_hw_ptr might be lower than old_hw_ptr in case when */
359 /* pointer crosses the end of the ring buffer */
360 if (new_hw_ptr < old_hw_ptr) {
361 hw_base += runtime->buffer_size;
362 if (hw_base >= runtime->boundary) {
363 hw_base = 0;
364 crossed_boundary++;
365 }
366 new_hw_ptr = hw_base + pos;
367 }
368 __delta:
369 delta = new_hw_ptr - old_hw_ptr;
370 if (delta < 0)
371 delta += runtime->boundary;
372
373 if (runtime->no_period_wakeup) {
374 snd_pcm_sframes_t xrun_threshold;
375 /*
376 * Without regular period interrupts, we have to check
377 * the elapsed time to detect xruns.
378 */
379 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
380 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
381 goto no_delta_check;
382 hdelta = jdelta - delta * HZ / runtime->rate;
383 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
384 while (hdelta > xrun_threshold) {
385 delta += runtime->buffer_size;
386 hw_base += runtime->buffer_size;
387 if (hw_base >= runtime->boundary) {
388 hw_base = 0;
389 crossed_boundary++;
390 }
391 new_hw_ptr = hw_base + pos;
392 hdelta -= runtime->hw_ptr_buffer_jiffies;
393 }
394 goto no_delta_check;
395 }
396
397 /* something must be really wrong */
398 if (delta >= runtime->buffer_size + runtime->period_size) {
399 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
400 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
401 substream->stream, (long)pos,
402 (long)new_hw_ptr, (long)old_hw_ptr);
403 return 0;
404 }
405
406 /* Do jiffies check only in xrun_debug mode */
407 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
408 goto no_jiffies_check;
409
410 /* Skip the jiffies check for hardwares with BATCH flag.
411 * Such hardware usually just increases the position at each IRQ,
412 * thus it can't give any strange position.
413 */
414 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
415 goto no_jiffies_check;
416 hdelta = delta;
417 if (hdelta < runtime->delay)
418 goto no_jiffies_check;
419 hdelta -= runtime->delay;
420 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
421 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
422 delta = jdelta /
423 (((runtime->period_size * HZ) / runtime->rate)
424 + HZ/100);
425 /* move new_hw_ptr according jiffies not pos variable */
426 new_hw_ptr = old_hw_ptr;
427 hw_base = delta;
428 /* use loop to avoid checks for delta overflows */
429 /* the delta value is small or zero in most cases */
430 while (delta > 0) {
431 new_hw_ptr += runtime->period_size;
432 if (new_hw_ptr >= runtime->boundary) {
433 new_hw_ptr -= runtime->boundary;
434 crossed_boundary--;
435 }
436 delta--;
437 }
438 /* align hw_base to buffer_size */
439 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
440 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
441 (long)pos, (long)hdelta,
442 (long)runtime->period_size, jdelta,
443 ((hdelta * HZ) / runtime->rate), hw_base,
444 (unsigned long)old_hw_ptr,
445 (unsigned long)new_hw_ptr);
446 /* reset values to proper state */
447 delta = 0;
448 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
449 }
450 no_jiffies_check:
451 if (delta > runtime->period_size + runtime->period_size / 2) {
452 hw_ptr_error(substream, in_interrupt,
453 "Lost interrupts?",
454 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
455 substream->stream, (long)delta,
456 (long)new_hw_ptr,
457 (long)old_hw_ptr);
458 }
459
460 no_delta_check:
461 if (runtime->status->hw_ptr == new_hw_ptr) {
462 runtime->hw_ptr_jiffies = curr_jiffies;
463 update_audio_tstamp(substream, curr_tstamp: &curr_tstamp, audio_tstamp: &audio_tstamp);
464 return 0;
465 }
466
467 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
468 runtime->silence_size > 0)
469 snd_pcm_playback_silence(substream, new_hw_ptr);
470
471 if (in_interrupt) {
472 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
473 if (delta < 0)
474 delta += runtime->boundary;
475 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
476 runtime->hw_ptr_interrupt += delta;
477 if (runtime->hw_ptr_interrupt >= runtime->boundary)
478 runtime->hw_ptr_interrupt -= runtime->boundary;
479 }
480 runtime->hw_ptr_base = hw_base;
481 runtime->status->hw_ptr = new_hw_ptr;
482 runtime->hw_ptr_jiffies = curr_jiffies;
483 if (crossed_boundary) {
484 snd_BUG_ON(crossed_boundary != 1);
485 runtime->hw_ptr_wrap += runtime->boundary;
486 }
487
488 update_audio_tstamp(substream, curr_tstamp: &curr_tstamp, audio_tstamp: &audio_tstamp);
489
490 return snd_pcm_update_state(substream, runtime);
491}
492
493/* CAUTION: call it with irq disabled */
494int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
495{
496 return snd_pcm_update_hw_ptr0(substream, in_interrupt: 0);
497}
498
499/**
500 * snd_pcm_set_ops - set the PCM operators
501 * @pcm: the pcm instance
502 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
503 * @ops: the operator table
504 *
505 * Sets the given PCM operators to the pcm instance.
506 */
507void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
508 const struct snd_pcm_ops *ops)
509{
510 struct snd_pcm_str *stream = &pcm->streams[direction];
511 struct snd_pcm_substream *substream;
512
513 for (substream = stream->substream; substream != NULL; substream = substream->next)
514 substream->ops = ops;
515}
516EXPORT_SYMBOL(snd_pcm_set_ops);
517
518/**
519 * snd_pcm_set_sync - set the PCM sync id
520 * @substream: the pcm substream
521 *
522 * Sets the PCM sync identifier for the card.
523 */
524void snd_pcm_set_sync(struct snd_pcm_substream *substream)
525{
526 struct snd_pcm_runtime *runtime = substream->runtime;
527
528 runtime->sync.id32[0] = substream->pcm->card->number;
529 runtime->sync.id32[1] = -1;
530 runtime->sync.id32[2] = -1;
531 runtime->sync.id32[3] = -1;
532}
533EXPORT_SYMBOL(snd_pcm_set_sync);
534
535/*
536 * Standard ioctl routine
537 */
538
539static inline unsigned int div32(unsigned int a, unsigned int b,
540 unsigned int *r)
541{
542 if (b == 0) {
543 *r = 0;
544 return UINT_MAX;
545 }
546 *r = a % b;
547 return a / b;
548}
549
550static inline unsigned int div_down(unsigned int a, unsigned int b)
551{
552 if (b == 0)
553 return UINT_MAX;
554 return a / b;
555}
556
557static inline unsigned int div_up(unsigned int a, unsigned int b)
558{
559 unsigned int r;
560 unsigned int q;
561 if (b == 0)
562 return UINT_MAX;
563 q = div32(a, b, r: &r);
564 if (r)
565 ++q;
566 return q;
567}
568
569static inline unsigned int mul(unsigned int a, unsigned int b)
570{
571 if (a == 0)
572 return 0;
573 if (div_down(UINT_MAX, b: a) < b)
574 return UINT_MAX;
575 return a * b;
576}
577
578static inline unsigned int muldiv32(unsigned int a, unsigned int b,
579 unsigned int c, unsigned int *r)
580{
581 u_int64_t n = (u_int64_t) a * b;
582 if (c == 0) {
583 *r = 0;
584 return UINT_MAX;
585 }
586 n = div_u64_rem(dividend: n, divisor: c, remainder: r);
587 if (n >= UINT_MAX) {
588 *r = 0;
589 return UINT_MAX;
590 }
591 return n;
592}
593
594/**
595 * snd_interval_refine - refine the interval value of configurator
596 * @i: the interval value to refine
597 * @v: the interval value to refer to
598 *
599 * Refines the interval value with the reference value.
600 * The interval is changed to the range satisfying both intervals.
601 * The interval status (min, max, integer, etc.) are evaluated.
602 *
603 * Return: Positive if the value is changed, zero if it's not changed, or a
604 * negative error code.
605 */
606int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
607{
608 int changed = 0;
609 if (snd_BUG_ON(snd_interval_empty(i)))
610 return -EINVAL;
611 if (i->min < v->min) {
612 i->min = v->min;
613 i->openmin = v->openmin;
614 changed = 1;
615 } else if (i->min == v->min && !i->openmin && v->openmin) {
616 i->openmin = 1;
617 changed = 1;
618 }
619 if (i->max > v->max) {
620 i->max = v->max;
621 i->openmax = v->openmax;
622 changed = 1;
623 } else if (i->max == v->max && !i->openmax && v->openmax) {
624 i->openmax = 1;
625 changed = 1;
626 }
627 if (!i->integer && v->integer) {
628 i->integer = 1;
629 changed = 1;
630 }
631 if (i->integer) {
632 if (i->openmin) {
633 i->min++;
634 i->openmin = 0;
635 }
636 if (i->openmax) {
637 i->max--;
638 i->openmax = 0;
639 }
640 } else if (!i->openmin && !i->openmax && i->min == i->max)
641 i->integer = 1;
642 if (snd_interval_checkempty(i)) {
643 snd_interval_none(i);
644 return -EINVAL;
645 }
646 return changed;
647}
648EXPORT_SYMBOL(snd_interval_refine);
649
650static int snd_interval_refine_first(struct snd_interval *i)
651{
652 const unsigned int last_max = i->max;
653
654 if (snd_BUG_ON(snd_interval_empty(i)))
655 return -EINVAL;
656 if (snd_interval_single(i))
657 return 0;
658 i->max = i->min;
659 if (i->openmin)
660 i->max++;
661 /* only exclude max value if also excluded before refine */
662 i->openmax = (i->openmax && i->max >= last_max);
663 return 1;
664}
665
666static int snd_interval_refine_last(struct snd_interval *i)
667{
668 const unsigned int last_min = i->min;
669
670 if (snd_BUG_ON(snd_interval_empty(i)))
671 return -EINVAL;
672 if (snd_interval_single(i))
673 return 0;
674 i->min = i->max;
675 if (i->openmax)
676 i->min--;
677 /* only exclude min value if also excluded before refine */
678 i->openmin = (i->openmin && i->min <= last_min);
679 return 1;
680}
681
682void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
683{
684 if (a->empty || b->empty) {
685 snd_interval_none(i: c);
686 return;
687 }
688 c->empty = 0;
689 c->min = mul(a: a->min, b: b->min);
690 c->openmin = (a->openmin || b->openmin);
691 c->max = mul(a: a->max, b: b->max);
692 c->openmax = (a->openmax || b->openmax);
693 c->integer = (a->integer && b->integer);
694}
695
696/**
697 * snd_interval_div - refine the interval value with division
698 * @a: dividend
699 * @b: divisor
700 * @c: quotient
701 *
702 * c = a / b
703 *
704 * Returns non-zero if the value is changed, zero if not changed.
705 */
706void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
707{
708 unsigned int r;
709 if (a->empty || b->empty) {
710 snd_interval_none(i: c);
711 return;
712 }
713 c->empty = 0;
714 c->min = div32(a: a->min, b: b->max, r: &r);
715 c->openmin = (r || a->openmin || b->openmax);
716 if (b->min > 0) {
717 c->max = div32(a: a->max, b: b->min, r: &r);
718 if (r) {
719 c->max++;
720 c->openmax = 1;
721 } else
722 c->openmax = (a->openmax || b->openmin);
723 } else {
724 c->max = UINT_MAX;
725 c->openmax = 0;
726 }
727 c->integer = 0;
728}
729
730/**
731 * snd_interval_muldivk - refine the interval value
732 * @a: dividend 1
733 * @b: dividend 2
734 * @k: divisor (as integer)
735 * @c: result
736 *
737 * c = a * b / k
738 *
739 * Returns non-zero if the value is changed, zero if not changed.
740 */
741void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
742 unsigned int k, struct snd_interval *c)
743{
744 unsigned int r;
745 if (a->empty || b->empty) {
746 snd_interval_none(i: c);
747 return;
748 }
749 c->empty = 0;
750 c->min = muldiv32(a: a->min, b: b->min, c: k, r: &r);
751 c->openmin = (r || a->openmin || b->openmin);
752 c->max = muldiv32(a: a->max, b: b->max, c: k, r: &r);
753 if (r) {
754 c->max++;
755 c->openmax = 1;
756 } else
757 c->openmax = (a->openmax || b->openmax);
758 c->integer = 0;
759}
760
761/**
762 * snd_interval_mulkdiv - refine the interval value
763 * @a: dividend 1
764 * @k: dividend 2 (as integer)
765 * @b: divisor
766 * @c: result
767 *
768 * c = a * k / b
769 *
770 * Returns non-zero if the value is changed, zero if not changed.
771 */
772void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
773 const struct snd_interval *b, struct snd_interval *c)
774{
775 unsigned int r;
776 if (a->empty || b->empty) {
777 snd_interval_none(i: c);
778 return;
779 }
780 c->empty = 0;
781 c->min = muldiv32(a: a->min, b: k, c: b->max, r: &r);
782 c->openmin = (r || a->openmin || b->openmax);
783 if (b->min > 0) {
784 c->max = muldiv32(a: a->max, b: k, c: b->min, r: &r);
785 if (r) {
786 c->max++;
787 c->openmax = 1;
788 } else
789 c->openmax = (a->openmax || b->openmin);
790 } else {
791 c->max = UINT_MAX;
792 c->openmax = 0;
793 }
794 c->integer = 0;
795}
796
797/* ---- */
798
799
800/**
801 * snd_interval_ratnum - refine the interval value
802 * @i: interval to refine
803 * @rats_count: number of ratnum_t
804 * @rats: ratnum_t array
805 * @nump: pointer to store the resultant numerator
806 * @denp: pointer to store the resultant denominator
807 *
808 * Return: Positive if the value is changed, zero if it's not changed, or a
809 * negative error code.
810 */
811int snd_interval_ratnum(struct snd_interval *i,
812 unsigned int rats_count, const struct snd_ratnum *rats,
813 unsigned int *nump, unsigned int *denp)
814{
815 unsigned int best_num, best_den;
816 int best_diff;
817 unsigned int k;
818 struct snd_interval t;
819 int err;
820 unsigned int result_num, result_den;
821 int result_diff;
822
823 best_num = best_den = best_diff = 0;
824 for (k = 0; k < rats_count; ++k) {
825 unsigned int num = rats[k].num;
826 unsigned int den;
827 unsigned int q = i->min;
828 int diff;
829 if (q == 0)
830 q = 1;
831 den = div_up(a: num, b: q);
832 if (den < rats[k].den_min)
833 continue;
834 if (den > rats[k].den_max)
835 den = rats[k].den_max;
836 else {
837 unsigned int r;
838 r = (den - rats[k].den_min) % rats[k].den_step;
839 if (r != 0)
840 den -= r;
841 }
842 diff = num - q * den;
843 if (diff < 0)
844 diff = -diff;
845 if (best_num == 0 ||
846 diff * best_den < best_diff * den) {
847 best_diff = diff;
848 best_den = den;
849 best_num = num;
850 }
851 }
852 if (best_den == 0) {
853 i->empty = 1;
854 return -EINVAL;
855 }
856 t.min = div_down(a: best_num, b: best_den);
857 t.openmin = !!(best_num % best_den);
858
859 result_num = best_num;
860 result_diff = best_diff;
861 result_den = best_den;
862 best_num = best_den = best_diff = 0;
863 for (k = 0; k < rats_count; ++k) {
864 unsigned int num = rats[k].num;
865 unsigned int den;
866 unsigned int q = i->max;
867 int diff;
868 if (q == 0) {
869 i->empty = 1;
870 return -EINVAL;
871 }
872 den = div_down(a: num, b: q);
873 if (den > rats[k].den_max)
874 continue;
875 if (den < rats[k].den_min)
876 den = rats[k].den_min;
877 else {
878 unsigned int r;
879 r = (den - rats[k].den_min) % rats[k].den_step;
880 if (r != 0)
881 den += rats[k].den_step - r;
882 }
883 diff = q * den - num;
884 if (diff < 0)
885 diff = -diff;
886 if (best_num == 0 ||
887 diff * best_den < best_diff * den) {
888 best_diff = diff;
889 best_den = den;
890 best_num = num;
891 }
892 }
893 if (best_den == 0) {
894 i->empty = 1;
895 return -EINVAL;
896 }
897 t.max = div_up(a: best_num, b: best_den);
898 t.openmax = !!(best_num % best_den);
899 t.integer = 0;
900 err = snd_interval_refine(i, &t);
901 if (err < 0)
902 return err;
903
904 if (snd_interval_single(i)) {
905 if (best_diff * result_den < result_diff * best_den) {
906 result_num = best_num;
907 result_den = best_den;
908 }
909 if (nump)
910 *nump = result_num;
911 if (denp)
912 *denp = result_den;
913 }
914 return err;
915}
916EXPORT_SYMBOL(snd_interval_ratnum);
917
918/**
919 * snd_interval_ratden - refine the interval value
920 * @i: interval to refine
921 * @rats_count: number of struct ratden
922 * @rats: struct ratden array
923 * @nump: pointer to store the resultant numerator
924 * @denp: pointer to store the resultant denominator
925 *
926 * Return: Positive if the value is changed, zero if it's not changed, or a
927 * negative error code.
928 */
929static int snd_interval_ratden(struct snd_interval *i,
930 unsigned int rats_count,
931 const struct snd_ratden *rats,
932 unsigned int *nump, unsigned int *denp)
933{
934 unsigned int best_num, best_diff, best_den;
935 unsigned int k;
936 struct snd_interval t;
937 int err;
938
939 best_num = best_den = best_diff = 0;
940 for (k = 0; k < rats_count; ++k) {
941 unsigned int num;
942 unsigned int den = rats[k].den;
943 unsigned int q = i->min;
944 int diff;
945 num = mul(a: q, b: den);
946 if (num > rats[k].num_max)
947 continue;
948 if (num < rats[k].num_min)
949 num = rats[k].num_max;
950 else {
951 unsigned int r;
952 r = (num - rats[k].num_min) % rats[k].num_step;
953 if (r != 0)
954 num += rats[k].num_step - r;
955 }
956 diff = num - q * den;
957 if (best_num == 0 ||
958 diff * best_den < best_diff * den) {
959 best_diff = diff;
960 best_den = den;
961 best_num = num;
962 }
963 }
964 if (best_den == 0) {
965 i->empty = 1;
966 return -EINVAL;
967 }
968 t.min = div_down(a: best_num, b: best_den);
969 t.openmin = !!(best_num % best_den);
970
971 best_num = best_den = best_diff = 0;
972 for (k = 0; k < rats_count; ++k) {
973 unsigned int num;
974 unsigned int den = rats[k].den;
975 unsigned int q = i->max;
976 int diff;
977 num = mul(a: q, b: den);
978 if (num < rats[k].num_min)
979 continue;
980 if (num > rats[k].num_max)
981 num = rats[k].num_max;
982 else {
983 unsigned int r;
984 r = (num - rats[k].num_min) % rats[k].num_step;
985 if (r != 0)
986 num -= r;
987 }
988 diff = q * den - num;
989 if (best_num == 0 ||
990 diff * best_den < best_diff * den) {
991 best_diff = diff;
992 best_den = den;
993 best_num = num;
994 }
995 }
996 if (best_den == 0) {
997 i->empty = 1;
998 return -EINVAL;
999 }
1000 t.max = div_up(a: best_num, b: best_den);
1001 t.openmax = !!(best_num % best_den);
1002 t.integer = 0;
1003 err = snd_interval_refine(i, &t);
1004 if (err < 0)
1005 return err;
1006
1007 if (snd_interval_single(i)) {
1008 if (nump)
1009 *nump = best_num;
1010 if (denp)
1011 *denp = best_den;
1012 }
1013 return err;
1014}
1015
1016/**
1017 * snd_interval_list - refine the interval value from the list
1018 * @i: the interval value to refine
1019 * @count: the number of elements in the list
1020 * @list: the value list
1021 * @mask: the bit-mask to evaluate
1022 *
1023 * Refines the interval value from the list.
1024 * When mask is non-zero, only the elements corresponding to bit 1 are
1025 * evaluated.
1026 *
1027 * Return: Positive if the value is changed, zero if it's not changed, or a
1028 * negative error code.
1029 */
1030int snd_interval_list(struct snd_interval *i, unsigned int count,
1031 const unsigned int *list, unsigned int mask)
1032{
1033 unsigned int k;
1034 struct snd_interval list_range;
1035
1036 if (!count) {
1037 i->empty = 1;
1038 return -EINVAL;
1039 }
1040 snd_interval_any(i: &list_range);
1041 list_range.min = UINT_MAX;
1042 list_range.max = 0;
1043 for (k = 0; k < count; k++) {
1044 if (mask && !(mask & (1 << k)))
1045 continue;
1046 if (!snd_interval_test(i, val: list[k]))
1047 continue;
1048 list_range.min = min(list_range.min, list[k]);
1049 list_range.max = max(list_range.max, list[k]);
1050 }
1051 return snd_interval_refine(i, &list_range);
1052}
1053EXPORT_SYMBOL(snd_interval_list);
1054
1055/**
1056 * snd_interval_ranges - refine the interval value from the list of ranges
1057 * @i: the interval value to refine
1058 * @count: the number of elements in the list of ranges
1059 * @ranges: the ranges list
1060 * @mask: the bit-mask to evaluate
1061 *
1062 * Refines the interval value from the list of ranges.
1063 * When mask is non-zero, only the elements corresponding to bit 1 are
1064 * evaluated.
1065 *
1066 * Return: Positive if the value is changed, zero if it's not changed, or a
1067 * negative error code.
1068 */
1069int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1070 const struct snd_interval *ranges, unsigned int mask)
1071{
1072 unsigned int k;
1073 struct snd_interval range_union;
1074 struct snd_interval range;
1075
1076 if (!count) {
1077 snd_interval_none(i);
1078 return -EINVAL;
1079 }
1080 snd_interval_any(i: &range_union);
1081 range_union.min = UINT_MAX;
1082 range_union.max = 0;
1083 for (k = 0; k < count; k++) {
1084 if (mask && !(mask & (1 << k)))
1085 continue;
1086 snd_interval_copy(d: &range, s: &ranges[k]);
1087 if (snd_interval_refine(&range, i) < 0)
1088 continue;
1089 if (snd_interval_empty(i: &range))
1090 continue;
1091
1092 if (range.min < range_union.min) {
1093 range_union.min = range.min;
1094 range_union.openmin = 1;
1095 }
1096 if (range.min == range_union.min && !range.openmin)
1097 range_union.openmin = 0;
1098 if (range.max > range_union.max) {
1099 range_union.max = range.max;
1100 range_union.openmax = 1;
1101 }
1102 if (range.max == range_union.max && !range.openmax)
1103 range_union.openmax = 0;
1104 }
1105 return snd_interval_refine(i, &range_union);
1106}
1107EXPORT_SYMBOL(snd_interval_ranges);
1108
1109static int snd_interval_step(struct snd_interval *i, unsigned int step)
1110{
1111 unsigned int n;
1112 int changed = 0;
1113 n = i->min % step;
1114 if (n != 0 || i->openmin) {
1115 i->min += step - n;
1116 i->openmin = 0;
1117 changed = 1;
1118 }
1119 n = i->max % step;
1120 if (n != 0 || i->openmax) {
1121 i->max -= n;
1122 i->openmax = 0;
1123 changed = 1;
1124 }
1125 if (snd_interval_checkempty(i)) {
1126 i->empty = 1;
1127 return -EINVAL;
1128 }
1129 return changed;
1130}
1131
1132/* Info constraints helpers */
1133
1134/**
1135 * snd_pcm_hw_rule_add - add the hw-constraint rule
1136 * @runtime: the pcm runtime instance
1137 * @cond: condition bits
1138 * @var: the variable to evaluate
1139 * @func: the evaluation function
1140 * @private: the private data pointer passed to function
1141 * @dep: the dependent variables
1142 *
1143 * Return: Zero if successful, or a negative error code on failure.
1144 */
1145int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1146 int var,
1147 snd_pcm_hw_rule_func_t func, void *private,
1148 int dep, ...)
1149{
1150 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1151 struct snd_pcm_hw_rule *c;
1152 unsigned int k;
1153 va_list args;
1154 va_start(args, dep);
1155 if (constrs->rules_num >= constrs->rules_all) {
1156 struct snd_pcm_hw_rule *new;
1157 unsigned int new_rules = constrs->rules_all + 16;
1158 new = krealloc_array(p: constrs->rules, new_n: new_rules,
1159 new_size: sizeof(*c), GFP_KERNEL);
1160 if (!new) {
1161 va_end(args);
1162 return -ENOMEM;
1163 }
1164 constrs->rules = new;
1165 constrs->rules_all = new_rules;
1166 }
1167 c = &constrs->rules[constrs->rules_num];
1168 c->cond = cond;
1169 c->func = func;
1170 c->var = var;
1171 c->private = private;
1172 k = 0;
1173 while (1) {
1174 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1175 va_end(args);
1176 return -EINVAL;
1177 }
1178 c->deps[k++] = dep;
1179 if (dep < 0)
1180 break;
1181 dep = va_arg(args, int);
1182 }
1183 constrs->rules_num++;
1184 va_end(args);
1185 return 0;
1186}
1187EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1188
1189/**
1190 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1191 * @runtime: PCM runtime instance
1192 * @var: hw_params variable to apply the mask
1193 * @mask: the bitmap mask
1194 *
1195 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1196 *
1197 * Return: Zero if successful, or a negative error code on failure.
1198 */
1199int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1200 u_int32_t mask)
1201{
1202 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1203 struct snd_mask *maskp = constrs_mask(constrs, var);
1204 *maskp->bits &= mask;
1205 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1206 if (*maskp->bits == 0)
1207 return -EINVAL;
1208 return 0;
1209}
1210
1211/**
1212 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1213 * @runtime: PCM runtime instance
1214 * @var: hw_params variable to apply the mask
1215 * @mask: the 64bit bitmap mask
1216 *
1217 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1218 *
1219 * Return: Zero if successful, or a negative error code on failure.
1220 */
1221int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1222 u_int64_t mask)
1223{
1224 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1225 struct snd_mask *maskp = constrs_mask(constrs, var);
1226 maskp->bits[0] &= (u_int32_t)mask;
1227 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1228 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1229 if (! maskp->bits[0] && ! maskp->bits[1])
1230 return -EINVAL;
1231 return 0;
1232}
1233EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1234
1235/**
1236 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1237 * @runtime: PCM runtime instance
1238 * @var: hw_params variable to apply the integer constraint
1239 *
1240 * Apply the constraint of integer to an interval parameter.
1241 *
1242 * Return: Positive if the value is changed, zero if it's not changed, or a
1243 * negative error code.
1244 */
1245int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1246{
1247 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1248 return snd_interval_setinteger(i: constrs_interval(constrs, var));
1249}
1250EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1251
1252/**
1253 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1254 * @runtime: PCM runtime instance
1255 * @var: hw_params variable to apply the range
1256 * @min: the minimal value
1257 * @max: the maximal value
1258 *
1259 * Apply the min/max range constraint to an interval parameter.
1260 *
1261 * Return: Positive if the value is changed, zero if it's not changed, or a
1262 * negative error code.
1263 */
1264int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1265 unsigned int min, unsigned int max)
1266{
1267 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1268 struct snd_interval t;
1269 t.min = min;
1270 t.max = max;
1271 t.openmin = t.openmax = 0;
1272 t.integer = 0;
1273 return snd_interval_refine(constrs_interval(constrs, var), &t);
1274}
1275EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1276
1277static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1278 struct snd_pcm_hw_rule *rule)
1279{
1280 struct snd_pcm_hw_constraint_list *list = rule->private;
1281 return snd_interval_list(hw_param_interval(params, var: rule->var), list->count, list->list, list->mask);
1282}
1283
1284
1285/**
1286 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1287 * @runtime: PCM runtime instance
1288 * @cond: condition bits
1289 * @var: hw_params variable to apply the list constraint
1290 * @l: list
1291 *
1292 * Apply the list of constraints to an interval parameter.
1293 *
1294 * Return: Zero if successful, or a negative error code on failure.
1295 */
1296int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1297 unsigned int cond,
1298 snd_pcm_hw_param_t var,
1299 const struct snd_pcm_hw_constraint_list *l)
1300{
1301 return snd_pcm_hw_rule_add(runtime, cond, var,
1302 snd_pcm_hw_rule_list, (void *)l,
1303 var, -1);
1304}
1305EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1306
1307static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1308 struct snd_pcm_hw_rule *rule)
1309{
1310 struct snd_pcm_hw_constraint_ranges *r = rule->private;
1311 return snd_interval_ranges(hw_param_interval(params, var: rule->var),
1312 r->count, r->ranges, r->mask);
1313}
1314
1315
1316/**
1317 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1318 * @runtime: PCM runtime instance
1319 * @cond: condition bits
1320 * @var: hw_params variable to apply the list of range constraints
1321 * @r: ranges
1322 *
1323 * Apply the list of range constraints to an interval parameter.
1324 *
1325 * Return: Zero if successful, or a negative error code on failure.
1326 */
1327int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1328 unsigned int cond,
1329 snd_pcm_hw_param_t var,
1330 const struct snd_pcm_hw_constraint_ranges *r)
1331{
1332 return snd_pcm_hw_rule_add(runtime, cond, var,
1333 snd_pcm_hw_rule_ranges, (void *)r,
1334 var, -1);
1335}
1336EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1337
1338static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1339 struct snd_pcm_hw_rule *rule)
1340{
1341 const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1342 unsigned int num = 0, den = 0;
1343 int err;
1344 err = snd_interval_ratnum(hw_param_interval(params, var: rule->var),
1345 r->nrats, r->rats, &num, &den);
1346 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1347 params->rate_num = num;
1348 params->rate_den = den;
1349 }
1350 return err;
1351}
1352
1353/**
1354 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1355 * @runtime: PCM runtime instance
1356 * @cond: condition bits
1357 * @var: hw_params variable to apply the ratnums constraint
1358 * @r: struct snd_ratnums constriants
1359 *
1360 * Return: Zero if successful, or a negative error code on failure.
1361 */
1362int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1363 unsigned int cond,
1364 snd_pcm_hw_param_t var,
1365 const struct snd_pcm_hw_constraint_ratnums *r)
1366{
1367 return snd_pcm_hw_rule_add(runtime, cond, var,
1368 snd_pcm_hw_rule_ratnums, (void *)r,
1369 var, -1);
1370}
1371EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1372
1373static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1374 struct snd_pcm_hw_rule *rule)
1375{
1376 const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1377 unsigned int num = 0, den = 0;
1378 int err = snd_interval_ratden(i: hw_param_interval(params, var: rule->var),
1379 rats_count: r->nrats, rats: r->rats, nump: &num, denp: &den);
1380 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1381 params->rate_num = num;
1382 params->rate_den = den;
1383 }
1384 return err;
1385}
1386
1387/**
1388 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1389 * @runtime: PCM runtime instance
1390 * @cond: condition bits
1391 * @var: hw_params variable to apply the ratdens constraint
1392 * @r: struct snd_ratdens constriants
1393 *
1394 * Return: Zero if successful, or a negative error code on failure.
1395 */
1396int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1397 unsigned int cond,
1398 snd_pcm_hw_param_t var,
1399 const struct snd_pcm_hw_constraint_ratdens *r)
1400{
1401 return snd_pcm_hw_rule_add(runtime, cond, var,
1402 snd_pcm_hw_rule_ratdens, (void *)r,
1403 var, -1);
1404}
1405EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1406
1407static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1408 struct snd_pcm_hw_rule *rule)
1409{
1410 unsigned int l = (unsigned long) rule->private;
1411 int width = l & 0xffff;
1412 unsigned int msbits = l >> 16;
1413 const struct snd_interval *i =
1414 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1415
1416 if (!snd_interval_single(i))
1417 return 0;
1418
1419 if ((snd_interval_value(i) == width) ||
1420 (width == 0 && snd_interval_value(i) > msbits))
1421 params->msbits = min_not_zero(params->msbits, msbits);
1422
1423 return 0;
1424}
1425
1426/**
1427 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1428 * @runtime: PCM runtime instance
1429 * @cond: condition bits
1430 * @width: sample bits width
1431 * @msbits: msbits width
1432 *
1433 * This constraint will set the number of most significant bits (msbits) if a
1434 * sample format with the specified width has been select. If width is set to 0
1435 * the msbits will be set for any sample format with a width larger than the
1436 * specified msbits.
1437 *
1438 * Return: Zero if successful, or a negative error code on failure.
1439 */
1440int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1441 unsigned int cond,
1442 unsigned int width,
1443 unsigned int msbits)
1444{
1445 unsigned long l = (msbits << 16) | width;
1446 return snd_pcm_hw_rule_add(runtime, cond, -1,
1447 snd_pcm_hw_rule_msbits,
1448 (void*) l,
1449 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1450}
1451EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1452
1453static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1454 struct snd_pcm_hw_rule *rule)
1455{
1456 unsigned long step = (unsigned long) rule->private;
1457 return snd_interval_step(i: hw_param_interval(params, var: rule->var), step);
1458}
1459
1460/**
1461 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1462 * @runtime: PCM runtime instance
1463 * @cond: condition bits
1464 * @var: hw_params variable to apply the step constraint
1465 * @step: step size
1466 *
1467 * Return: Zero if successful, or a negative error code on failure.
1468 */
1469int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1470 unsigned int cond,
1471 snd_pcm_hw_param_t var,
1472 unsigned long step)
1473{
1474 return snd_pcm_hw_rule_add(runtime, cond, var,
1475 snd_pcm_hw_rule_step, (void *) step,
1476 var, -1);
1477}
1478EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1479
1480static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1481{
1482 static const unsigned int pow2_sizes[] = {
1483 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1484 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1485 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1486 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1487 };
1488 return snd_interval_list(hw_param_interval(params, var: rule->var),
1489 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1490}
1491
1492/**
1493 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1494 * @runtime: PCM runtime instance
1495 * @cond: condition bits
1496 * @var: hw_params variable to apply the power-of-2 constraint
1497 *
1498 * Return: Zero if successful, or a negative error code on failure.
1499 */
1500int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1501 unsigned int cond,
1502 snd_pcm_hw_param_t var)
1503{
1504 return snd_pcm_hw_rule_add(runtime, cond, var,
1505 snd_pcm_hw_rule_pow2, NULL,
1506 var, -1);
1507}
1508EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1509
1510static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1511 struct snd_pcm_hw_rule *rule)
1512{
1513 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1514 struct snd_interval *rate;
1515
1516 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1517 return snd_interval_list(rate, 1, &base_rate, 0);
1518}
1519
1520/**
1521 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1522 * @runtime: PCM runtime instance
1523 * @base_rate: the rate at which the hardware does not resample
1524 *
1525 * Return: Zero if successful, or a negative error code on failure.
1526 */
1527int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1528 unsigned int base_rate)
1529{
1530 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1531 SNDRV_PCM_HW_PARAM_RATE,
1532 snd_pcm_hw_rule_noresample_func,
1533 (void *)(uintptr_t)base_rate,
1534 SNDRV_PCM_HW_PARAM_RATE, -1);
1535}
1536EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1537
1538static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1539 snd_pcm_hw_param_t var)
1540{
1541 if (hw_is_mask(var)) {
1542 snd_mask_any(mask: hw_param_mask(params, var));
1543 params->cmask |= 1 << var;
1544 params->rmask |= 1 << var;
1545 return;
1546 }
1547 if (hw_is_interval(var)) {
1548 snd_interval_any(i: hw_param_interval(params, var));
1549 params->cmask |= 1 << var;
1550 params->rmask |= 1 << var;
1551 return;
1552 }
1553 snd_BUG();
1554}
1555
1556void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1557{
1558 unsigned int k;
1559 memset(params, 0, sizeof(*params));
1560 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1561 _snd_pcm_hw_param_any(params, var: k);
1562 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1563 _snd_pcm_hw_param_any(params, var: k);
1564 params->info = ~0U;
1565}
1566EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1567
1568/**
1569 * snd_pcm_hw_param_value - return @params field @var value
1570 * @params: the hw_params instance
1571 * @var: parameter to retrieve
1572 * @dir: pointer to the direction (-1,0,1) or %NULL
1573 *
1574 * Return: The value for field @var if it's fixed in configuration space
1575 * defined by @params. -%EINVAL otherwise.
1576 */
1577int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1578 snd_pcm_hw_param_t var, int *dir)
1579{
1580 if (hw_is_mask(var)) {
1581 const struct snd_mask *mask = hw_param_mask_c(params, var);
1582 if (!snd_mask_single(mask))
1583 return -EINVAL;
1584 if (dir)
1585 *dir = 0;
1586 return snd_mask_value(mask);
1587 }
1588 if (hw_is_interval(var)) {
1589 const struct snd_interval *i = hw_param_interval_c(params, var);
1590 if (!snd_interval_single(i))
1591 return -EINVAL;
1592 if (dir)
1593 *dir = i->openmin;
1594 return snd_interval_value(i);
1595 }
1596 return -EINVAL;
1597}
1598EXPORT_SYMBOL(snd_pcm_hw_param_value);
1599
1600void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1601 snd_pcm_hw_param_t var)
1602{
1603 if (hw_is_mask(var)) {
1604 snd_mask_none(mask: hw_param_mask(params, var));
1605 params->cmask |= 1 << var;
1606 params->rmask |= 1 << var;
1607 } else if (hw_is_interval(var)) {
1608 snd_interval_none(i: hw_param_interval(params, var));
1609 params->cmask |= 1 << var;
1610 params->rmask |= 1 << var;
1611 } else {
1612 snd_BUG();
1613 }
1614}
1615EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1616
1617static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1618 snd_pcm_hw_param_t var)
1619{
1620 int changed;
1621 if (hw_is_mask(var))
1622 changed = snd_mask_refine_first(mask: hw_param_mask(params, var));
1623 else if (hw_is_interval(var))
1624 changed = snd_interval_refine_first(i: hw_param_interval(params, var));
1625 else
1626 return -EINVAL;
1627 if (changed > 0) {
1628 params->cmask |= 1 << var;
1629 params->rmask |= 1 << var;
1630 }
1631 return changed;
1632}
1633
1634
1635/**
1636 * snd_pcm_hw_param_first - refine config space and return minimum value
1637 * @pcm: PCM instance
1638 * @params: the hw_params instance
1639 * @var: parameter to retrieve
1640 * @dir: pointer to the direction (-1,0,1) or %NULL
1641 *
1642 * Inside configuration space defined by @params remove from @var all
1643 * values > minimum. Reduce configuration space accordingly.
1644 *
1645 * Return: The minimum, or a negative error code on failure.
1646 */
1647int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1648 struct snd_pcm_hw_params *params,
1649 snd_pcm_hw_param_t var, int *dir)
1650{
1651 int changed = _snd_pcm_hw_param_first(params, var);
1652 if (changed < 0)
1653 return changed;
1654 if (params->rmask) {
1655 int err = snd_pcm_hw_refine(substream: pcm, params);
1656 if (err < 0)
1657 return err;
1658 }
1659 return snd_pcm_hw_param_value(params, var, dir);
1660}
1661EXPORT_SYMBOL(snd_pcm_hw_param_first);
1662
1663static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1664 snd_pcm_hw_param_t var)
1665{
1666 int changed;
1667 if (hw_is_mask(var))
1668 changed = snd_mask_refine_last(mask: hw_param_mask(params, var));
1669 else if (hw_is_interval(var))
1670 changed = snd_interval_refine_last(i: hw_param_interval(params, var));
1671 else
1672 return -EINVAL;
1673 if (changed > 0) {
1674 params->cmask |= 1 << var;
1675 params->rmask |= 1 << var;
1676 }
1677 return changed;
1678}
1679
1680
1681/**
1682 * snd_pcm_hw_param_last - refine config space and return maximum value
1683 * @pcm: PCM instance
1684 * @params: the hw_params instance
1685 * @var: parameter to retrieve
1686 * @dir: pointer to the direction (-1,0,1) or %NULL
1687 *
1688 * Inside configuration space defined by @params remove from @var all
1689 * values < maximum. Reduce configuration space accordingly.
1690 *
1691 * Return: The maximum, or a negative error code on failure.
1692 */
1693int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1694 struct snd_pcm_hw_params *params,
1695 snd_pcm_hw_param_t var, int *dir)
1696{
1697 int changed = _snd_pcm_hw_param_last(params, var);
1698 if (changed < 0)
1699 return changed;
1700 if (params->rmask) {
1701 int err = snd_pcm_hw_refine(substream: pcm, params);
1702 if (err < 0)
1703 return err;
1704 }
1705 return snd_pcm_hw_param_value(params, var, dir);
1706}
1707EXPORT_SYMBOL(snd_pcm_hw_param_last);
1708
1709static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1710 void *arg)
1711{
1712 struct snd_pcm_runtime *runtime = substream->runtime;
1713 unsigned long flags;
1714 snd_pcm_stream_lock_irqsave(substream, flags);
1715 if (snd_pcm_running(substream) &&
1716 snd_pcm_update_hw_ptr(substream) >= 0)
1717 runtime->status->hw_ptr %= runtime->buffer_size;
1718 else {
1719 runtime->status->hw_ptr = 0;
1720 runtime->hw_ptr_wrap = 0;
1721 }
1722 snd_pcm_stream_unlock_irqrestore(substream, flags);
1723 return 0;
1724}
1725
1726static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1727 void *arg)
1728{
1729 struct snd_pcm_channel_info *info = arg;
1730 struct snd_pcm_runtime *runtime = substream->runtime;
1731 int width;
1732 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1733 info->offset = -1;
1734 return 0;
1735 }
1736 width = snd_pcm_format_physical_width(format: runtime->format);
1737 if (width < 0)
1738 return width;
1739 info->offset = 0;
1740 switch (runtime->access) {
1741 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1742 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1743 info->first = info->channel * width;
1744 info->step = runtime->channels * width;
1745 break;
1746 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1747 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1748 {
1749 size_t size = runtime->dma_bytes / runtime->channels;
1750 info->first = info->channel * size * 8;
1751 info->step = width;
1752 break;
1753 }
1754 default:
1755 snd_BUG();
1756 break;
1757 }
1758 return 0;
1759}
1760
1761static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1762 void *arg)
1763{
1764 struct snd_pcm_hw_params *params = arg;
1765 snd_pcm_format_t format;
1766 int channels;
1767 ssize_t frame_size;
1768
1769 params->fifo_size = substream->runtime->hw.fifo_size;
1770 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1771 format = params_format(p: params);
1772 channels = params_channels(p: params);
1773 frame_size = snd_pcm_format_size(format, samples: channels);
1774 if (frame_size > 0)
1775 params->fifo_size /= frame_size;
1776 }
1777 return 0;
1778}
1779
1780/**
1781 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1782 * @substream: the pcm substream instance
1783 * @cmd: ioctl command
1784 * @arg: ioctl argument
1785 *
1786 * Processes the generic ioctl commands for PCM.
1787 * Can be passed as the ioctl callback for PCM ops.
1788 *
1789 * Return: Zero if successful, or a negative error code on failure.
1790 */
1791int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1792 unsigned int cmd, void *arg)
1793{
1794 switch (cmd) {
1795 case SNDRV_PCM_IOCTL1_RESET:
1796 return snd_pcm_lib_ioctl_reset(substream, arg);
1797 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1798 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1799 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1800 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1801 }
1802 return -ENXIO;
1803}
1804EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1805
1806/**
1807 * snd_pcm_period_elapsed_under_stream_lock() - update the status of runtime for the next period
1808 * under acquired lock of PCM substream.
1809 * @substream: the instance of pcm substream.
1810 *
1811 * This function is called when the batch of audio data frames as the same size as the period of
1812 * buffer is already processed in audio data transmission.
1813 *
1814 * The call of function updates the status of runtime with the latest position of audio data
1815 * transmission, checks overrun and underrun over buffer, awaken user processes from waiting for
1816 * available audio data frames, sampling audio timestamp, and performs stop or drain the PCM
1817 * substream according to configured threshold.
1818 *
1819 * The function is intended to use for the case that PCM driver operates audio data frames under
1820 * acquired lock of PCM substream; e.g. in callback of any operation of &snd_pcm_ops in process
1821 * context. In any interrupt context, it's preferrable to use ``snd_pcm_period_elapsed()`` instead
1822 * since lock of PCM substream should be acquired in advance.
1823 *
1824 * Developer should pay enough attention that some callbacks in &snd_pcm_ops are done by the call of
1825 * function:
1826 *
1827 * - .pointer - to retrieve current position of audio data transmission by frame count or XRUN state.
1828 * - .trigger - with SNDRV_PCM_TRIGGER_STOP at XRUN or DRAINING state.
1829 * - .get_time_info - to retrieve audio time stamp if needed.
1830 *
1831 * Even if more than one periods have elapsed since the last call, you have to call this only once.
1832 */
1833void snd_pcm_period_elapsed_under_stream_lock(struct snd_pcm_substream *substream)
1834{
1835 struct snd_pcm_runtime *runtime;
1836
1837 if (PCM_RUNTIME_CHECK(substream))
1838 return;
1839 runtime = substream->runtime;
1840
1841 if (!snd_pcm_running(substream) ||
1842 snd_pcm_update_hw_ptr0(substream, in_interrupt: 1) < 0)
1843 goto _end;
1844
1845#ifdef CONFIG_SND_PCM_TIMER
1846 if (substream->timer_running)
1847 snd_timer_interrupt(timer: substream->timer, ticks_left: 1);
1848#endif
1849 _end:
1850 snd_kill_fasync(fasync: runtime->fasync, SIGIO, POLL_IN);
1851}
1852EXPORT_SYMBOL(snd_pcm_period_elapsed_under_stream_lock);
1853
1854/**
1855 * snd_pcm_period_elapsed() - update the status of runtime for the next period by acquiring lock of
1856 * PCM substream.
1857 * @substream: the instance of PCM substream.
1858 *
1859 * This function is mostly similar to ``snd_pcm_period_elapsed_under_stream_lock()`` except for
1860 * acquiring lock of PCM substream voluntarily.
1861 *
1862 * It's typically called by any type of IRQ handler when hardware IRQ occurs to notify event that
1863 * the batch of audio data frames as the same size as the period of buffer is already processed in
1864 * audio data transmission.
1865 */
1866void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1867{
1868 unsigned long flags;
1869
1870 if (snd_BUG_ON(!substream))
1871 return;
1872
1873 snd_pcm_stream_lock_irqsave(substream, flags);
1874 snd_pcm_period_elapsed_under_stream_lock(substream);
1875 snd_pcm_stream_unlock_irqrestore(substream, flags);
1876}
1877EXPORT_SYMBOL(snd_pcm_period_elapsed);
1878
1879/*
1880 * Wait until avail_min data becomes available
1881 * Returns a negative error code if any error occurs during operation.
1882 * The available space is stored on availp. When err = 0 and avail = 0
1883 * on the capture stream, it indicates the stream is in DRAINING state.
1884 */
1885static int wait_for_avail(struct snd_pcm_substream *substream,
1886 snd_pcm_uframes_t *availp)
1887{
1888 struct snd_pcm_runtime *runtime = substream->runtime;
1889 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1890 wait_queue_entry_t wait;
1891 int err = 0;
1892 snd_pcm_uframes_t avail = 0;
1893 long wait_time, tout;
1894
1895 init_waitqueue_entry(wq_entry: &wait, current);
1896 set_current_state(TASK_INTERRUPTIBLE);
1897 add_wait_queue(wq_head: &runtime->tsleep, wq_entry: &wait);
1898
1899 if (runtime->no_period_wakeup)
1900 wait_time = MAX_SCHEDULE_TIMEOUT;
1901 else {
1902 /* use wait time from substream if available */
1903 if (substream->wait_time) {
1904 wait_time = substream->wait_time;
1905 } else {
1906 wait_time = 100;
1907
1908 if (runtime->rate) {
1909 long t = runtime->buffer_size * 1100 / runtime->rate;
1910 wait_time = max(t, wait_time);
1911 }
1912 }
1913 wait_time = msecs_to_jiffies(m: wait_time);
1914 }
1915
1916 for (;;) {
1917 if (signal_pending(current)) {
1918 err = -ERESTARTSYS;
1919 break;
1920 }
1921
1922 /*
1923 * We need to check if space became available already
1924 * (and thus the wakeup happened already) first to close
1925 * the race of space already having become available.
1926 * This check must happen after been added to the waitqueue
1927 * and having current state be INTERRUPTIBLE.
1928 */
1929 avail = snd_pcm_avail(substream);
1930 if (avail >= runtime->twake)
1931 break;
1932 snd_pcm_stream_unlock_irq(substream);
1933
1934 tout = schedule_timeout(timeout: wait_time);
1935
1936 snd_pcm_stream_lock_irq(substream);
1937 set_current_state(TASK_INTERRUPTIBLE);
1938 switch (runtime->state) {
1939 case SNDRV_PCM_STATE_SUSPENDED:
1940 err = -ESTRPIPE;
1941 goto _endloop;
1942 case SNDRV_PCM_STATE_XRUN:
1943 err = -EPIPE;
1944 goto _endloop;
1945 case SNDRV_PCM_STATE_DRAINING:
1946 if (is_playback)
1947 err = -EPIPE;
1948 else
1949 avail = 0; /* indicate draining */
1950 goto _endloop;
1951 case SNDRV_PCM_STATE_OPEN:
1952 case SNDRV_PCM_STATE_SETUP:
1953 case SNDRV_PCM_STATE_DISCONNECTED:
1954 err = -EBADFD;
1955 goto _endloop;
1956 case SNDRV_PCM_STATE_PAUSED:
1957 continue;
1958 }
1959 if (!tout) {
1960 pcm_dbg(substream->pcm,
1961 "%s timeout (DMA or IRQ trouble?)\n",
1962 is_playback ? "playback write" : "capture read");
1963 err = -EIO;
1964 break;
1965 }
1966 }
1967 _endloop:
1968 set_current_state(TASK_RUNNING);
1969 remove_wait_queue(wq_head: &runtime->tsleep, wq_entry: &wait);
1970 *availp = avail;
1971 return err;
1972}
1973
1974typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
1975 int channel, unsigned long hwoff,
1976 struct iov_iter *iter, unsigned long bytes);
1977
1978typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
1979 snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f,
1980 bool);
1981
1982/* calculate the target DMA-buffer position to be written/read */
1983static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
1984 int channel, unsigned long hwoff)
1985{
1986 return runtime->dma_area + hwoff +
1987 channel * (runtime->dma_bytes / runtime->channels);
1988}
1989
1990/* default copy ops for write; used for both interleaved and non- modes */
1991static int default_write_copy(struct snd_pcm_substream *substream,
1992 int channel, unsigned long hwoff,
1993 struct iov_iter *iter, unsigned long bytes)
1994{
1995 if (copy_from_iter(addr: get_dma_ptr(runtime: substream->runtime, channel, hwoff),
1996 bytes, i: iter) != bytes)
1997 return -EFAULT;
1998 return 0;
1999}
2000
2001/* fill silence instead of copy data; called as a transfer helper
2002 * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
2003 * a NULL buffer is passed
2004 */
2005static int fill_silence(struct snd_pcm_substream *substream, int channel,
2006 unsigned long hwoff, struct iov_iter *iter,
2007 unsigned long bytes)
2008{
2009 struct snd_pcm_runtime *runtime = substream->runtime;
2010
2011 if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
2012 return 0;
2013 if (substream->ops->fill_silence)
2014 return substream->ops->fill_silence(substream, channel,
2015 hwoff, bytes);
2016
2017 snd_pcm_format_set_silence(format: runtime->format,
2018 buf: get_dma_ptr(runtime, channel, hwoff),
2019 frames: bytes_to_samples(runtime, size: bytes));
2020 return 0;
2021}
2022
2023/* default copy ops for read; used for both interleaved and non- modes */
2024static int default_read_copy(struct snd_pcm_substream *substream,
2025 int channel, unsigned long hwoff,
2026 struct iov_iter *iter, unsigned long bytes)
2027{
2028 if (copy_to_iter(addr: get_dma_ptr(runtime: substream->runtime, channel, hwoff),
2029 bytes, i: iter) != bytes)
2030 return -EFAULT;
2031 return 0;
2032}
2033
2034/* call transfer with the filled iov_iter */
2035static int do_transfer(struct snd_pcm_substream *substream, int c,
2036 unsigned long hwoff, void *data, unsigned long bytes,
2037 pcm_transfer_f transfer, bool in_kernel)
2038{
2039 struct iov_iter iter;
2040 int err, type;
2041
2042 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
2043 type = ITER_SOURCE;
2044 else
2045 type = ITER_DEST;
2046
2047 if (in_kernel) {
2048 struct kvec kvec = { data, bytes };
2049
2050 iov_iter_kvec(i: &iter, direction: type, kvec: &kvec, nr_segs: 1, count: bytes);
2051 return transfer(substream, c, hwoff, &iter, bytes);
2052 }
2053
2054 err = import_ubuf(type, buf: (__force void __user *)data, len: bytes, i: &iter);
2055 if (err)
2056 return err;
2057 return transfer(substream, c, hwoff, &iter, bytes);
2058}
2059
2060/* call transfer function with the converted pointers and sizes;
2061 * for interleaved mode, it's one shot for all samples
2062 */
2063static int interleaved_copy(struct snd_pcm_substream *substream,
2064 snd_pcm_uframes_t hwoff, void *data,
2065 snd_pcm_uframes_t off,
2066 snd_pcm_uframes_t frames,
2067 pcm_transfer_f transfer,
2068 bool in_kernel)
2069{
2070 struct snd_pcm_runtime *runtime = substream->runtime;
2071
2072 /* convert to bytes */
2073 hwoff = frames_to_bytes(runtime, size: hwoff);
2074 off = frames_to_bytes(runtime, size: off);
2075 frames = frames_to_bytes(runtime, size: frames);
2076
2077 return do_transfer(substream, c: 0, hwoff, data: data + off, bytes: frames, transfer,
2078 in_kernel);
2079}
2080
2081/* call transfer function with the converted pointers and sizes for each
2082 * non-interleaved channel; when buffer is NULL, silencing instead of copying
2083 */
2084static int noninterleaved_copy(struct snd_pcm_substream *substream,
2085 snd_pcm_uframes_t hwoff, void *data,
2086 snd_pcm_uframes_t off,
2087 snd_pcm_uframes_t frames,
2088 pcm_transfer_f transfer,
2089 bool in_kernel)
2090{
2091 struct snd_pcm_runtime *runtime = substream->runtime;
2092 int channels = runtime->channels;
2093 void **bufs = data;
2094 int c, err;
2095
2096 /* convert to bytes; note that it's not frames_to_bytes() here.
2097 * in non-interleaved mode, we copy for each channel, thus
2098 * each copy is n_samples bytes x channels = whole frames.
2099 */
2100 off = samples_to_bytes(runtime, size: off);
2101 frames = samples_to_bytes(runtime, size: frames);
2102 hwoff = samples_to_bytes(runtime, size: hwoff);
2103 for (c = 0; c < channels; ++c, ++bufs) {
2104 if (!data || !*bufs)
2105 err = fill_silence(substream, channel: c, hwoff, NULL, bytes: frames);
2106 else
2107 err = do_transfer(substream, c, hwoff, data: *bufs + off,
2108 bytes: frames, transfer, in_kernel);
2109 if (err < 0)
2110 return err;
2111 }
2112 return 0;
2113}
2114
2115/* fill silence on the given buffer position;
2116 * called from snd_pcm_playback_silence()
2117 */
2118static int fill_silence_frames(struct snd_pcm_substream *substream,
2119 snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2120{
2121 if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2122 substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2123 return interleaved_copy(substream, hwoff: off, NULL, off: 0, frames,
2124 transfer: fill_silence, in_kernel: true);
2125 else
2126 return noninterleaved_copy(substream, hwoff: off, NULL, off: 0, frames,
2127 transfer: fill_silence, in_kernel: true);
2128}
2129
2130/* sanity-check for read/write methods */
2131static int pcm_sanity_check(struct snd_pcm_substream *substream)
2132{
2133 struct snd_pcm_runtime *runtime;
2134 if (PCM_RUNTIME_CHECK(substream))
2135 return -ENXIO;
2136 runtime = substream->runtime;
2137 if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2138 return -EINVAL;
2139 if (runtime->state == SNDRV_PCM_STATE_OPEN)
2140 return -EBADFD;
2141 return 0;
2142}
2143
2144static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2145{
2146 switch (runtime->state) {
2147 case SNDRV_PCM_STATE_PREPARED:
2148 case SNDRV_PCM_STATE_RUNNING:
2149 case SNDRV_PCM_STATE_PAUSED:
2150 return 0;
2151 case SNDRV_PCM_STATE_XRUN:
2152 return -EPIPE;
2153 case SNDRV_PCM_STATE_SUSPENDED:
2154 return -ESTRPIPE;
2155 default:
2156 return -EBADFD;
2157 }
2158}
2159
2160/* update to the given appl_ptr and call ack callback if needed;
2161 * when an error is returned, take back to the original value
2162 */
2163int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2164 snd_pcm_uframes_t appl_ptr)
2165{
2166 struct snd_pcm_runtime *runtime = substream->runtime;
2167 snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2168 snd_pcm_sframes_t diff;
2169 int ret;
2170
2171 if (old_appl_ptr == appl_ptr)
2172 return 0;
2173
2174 if (appl_ptr >= runtime->boundary)
2175 return -EINVAL;
2176 /*
2177 * check if a rewind is requested by the application
2178 */
2179 if (substream->runtime->info & SNDRV_PCM_INFO_NO_REWINDS) {
2180 diff = appl_ptr - old_appl_ptr;
2181 if (diff >= 0) {
2182 if (diff > runtime->buffer_size)
2183 return -EINVAL;
2184 } else {
2185 if (runtime->boundary + diff > runtime->buffer_size)
2186 return -EINVAL;
2187 }
2188 }
2189
2190 runtime->control->appl_ptr = appl_ptr;
2191 if (substream->ops->ack) {
2192 ret = substream->ops->ack(substream);
2193 if (ret < 0) {
2194 runtime->control->appl_ptr = old_appl_ptr;
2195 if (ret == -EPIPE)
2196 __snd_pcm_xrun(substream);
2197 return ret;
2198 }
2199 }
2200
2201 trace_applptr(substream, prev: old_appl_ptr, curr: appl_ptr);
2202
2203 return 0;
2204}
2205
2206/* the common loop for read/write data */
2207snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2208 void *data, bool interleaved,
2209 snd_pcm_uframes_t size, bool in_kernel)
2210{
2211 struct snd_pcm_runtime *runtime = substream->runtime;
2212 snd_pcm_uframes_t xfer = 0;
2213 snd_pcm_uframes_t offset = 0;
2214 snd_pcm_uframes_t avail;
2215 pcm_copy_f writer;
2216 pcm_transfer_f transfer;
2217 bool nonblock;
2218 bool is_playback;
2219 int err;
2220
2221 err = pcm_sanity_check(substream);
2222 if (err < 0)
2223 return err;
2224
2225 is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2226 if (interleaved) {
2227 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2228 runtime->channels > 1)
2229 return -EINVAL;
2230 writer = interleaved_copy;
2231 } else {
2232 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2233 return -EINVAL;
2234 writer = noninterleaved_copy;
2235 }
2236
2237 if (!data) {
2238 if (is_playback)
2239 transfer = fill_silence;
2240 else
2241 return -EINVAL;
2242 } else {
2243 if (substream->ops->copy)
2244 transfer = substream->ops->copy;
2245 else
2246 transfer = is_playback ?
2247 default_write_copy : default_read_copy;
2248 }
2249
2250 if (size == 0)
2251 return 0;
2252
2253 nonblock = !!(substream->f_flags & O_NONBLOCK);
2254
2255 snd_pcm_stream_lock_irq(substream);
2256 err = pcm_accessible_state(runtime);
2257 if (err < 0)
2258 goto _end_unlock;
2259
2260 runtime->twake = runtime->control->avail_min ? : 1;
2261 if (runtime->state == SNDRV_PCM_STATE_RUNNING)
2262 snd_pcm_update_hw_ptr(substream);
2263
2264 /*
2265 * If size < start_threshold, wait indefinitely. Another
2266 * thread may start capture
2267 */
2268 if (!is_playback &&
2269 runtime->state == SNDRV_PCM_STATE_PREPARED &&
2270 size >= runtime->start_threshold) {
2271 err = snd_pcm_start(substream);
2272 if (err < 0)
2273 goto _end_unlock;
2274 }
2275
2276 avail = snd_pcm_avail(substream);
2277
2278 while (size > 0) {
2279 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2280 snd_pcm_uframes_t cont;
2281 if (!avail) {
2282 if (!is_playback &&
2283 runtime->state == SNDRV_PCM_STATE_DRAINING) {
2284 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2285 goto _end_unlock;
2286 }
2287 if (nonblock) {
2288 err = -EAGAIN;
2289 goto _end_unlock;
2290 }
2291 runtime->twake = min_t(snd_pcm_uframes_t, size,
2292 runtime->control->avail_min ? : 1);
2293 err = wait_for_avail(substream, availp: &avail);
2294 if (err < 0)
2295 goto _end_unlock;
2296 if (!avail)
2297 continue; /* draining */
2298 }
2299 frames = size > avail ? avail : size;
2300 appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2301 appl_ofs = appl_ptr % runtime->buffer_size;
2302 cont = runtime->buffer_size - appl_ofs;
2303 if (frames > cont)
2304 frames = cont;
2305 if (snd_BUG_ON(!frames)) {
2306 err = -EINVAL;
2307 goto _end_unlock;
2308 }
2309 if (!atomic_inc_unless_negative(v: &runtime->buffer_accessing)) {
2310 err = -EBUSY;
2311 goto _end_unlock;
2312 }
2313 snd_pcm_stream_unlock_irq(substream);
2314 if (!is_playback)
2315 snd_pcm_dma_buffer_sync(substream, mode: SNDRV_DMA_SYNC_CPU);
2316 err = writer(substream, appl_ofs, data, offset, frames,
2317 transfer, in_kernel);
2318 if (is_playback)
2319 snd_pcm_dma_buffer_sync(substream, mode: SNDRV_DMA_SYNC_DEVICE);
2320 snd_pcm_stream_lock_irq(substream);
2321 atomic_dec(v: &runtime->buffer_accessing);
2322 if (err < 0)
2323 goto _end_unlock;
2324 err = pcm_accessible_state(runtime);
2325 if (err < 0)
2326 goto _end_unlock;
2327 appl_ptr += frames;
2328 if (appl_ptr >= runtime->boundary)
2329 appl_ptr -= runtime->boundary;
2330 err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2331 if (err < 0)
2332 goto _end_unlock;
2333
2334 offset += frames;
2335 size -= frames;
2336 xfer += frames;
2337 avail -= frames;
2338 if (is_playback &&
2339 runtime->state == SNDRV_PCM_STATE_PREPARED &&
2340 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2341 err = snd_pcm_start(substream);
2342 if (err < 0)
2343 goto _end_unlock;
2344 }
2345 }
2346 _end_unlock:
2347 runtime->twake = 0;
2348 if (xfer > 0 && err >= 0)
2349 snd_pcm_update_state(substream, runtime);
2350 snd_pcm_stream_unlock_irq(substream);
2351 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2352}
2353EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2354
2355/*
2356 * standard channel mapping helpers
2357 */
2358
2359/* default channel maps for multi-channel playbacks, up to 8 channels */
2360const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2361 { .channels = 1,
2362 .map = { SNDRV_CHMAP_MONO } },
2363 { .channels = 2,
2364 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2365 { .channels = 4,
2366 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2367 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2368 { .channels = 6,
2369 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2370 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2371 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2372 { .channels = 8,
2373 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2374 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2375 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2376 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2377 { }
2378};
2379EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2380
2381/* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2382const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2383 { .channels = 1,
2384 .map = { SNDRV_CHMAP_MONO } },
2385 { .channels = 2,
2386 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2387 { .channels = 4,
2388 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2389 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2390 { .channels = 6,
2391 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2392 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2393 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2394 { .channels = 8,
2395 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2396 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2397 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2398 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2399 { }
2400};
2401EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2402
2403static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2404{
2405 if (ch > info->max_channels)
2406 return false;
2407 return !info->channel_mask || (info->channel_mask & (1U << ch));
2408}
2409
2410static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2411 struct snd_ctl_elem_info *uinfo)
2412{
2413 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2414
2415 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2416 uinfo->count = info->max_channels;
2417 uinfo->value.integer.min = 0;
2418 uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2419 return 0;
2420}
2421
2422/* get callback for channel map ctl element
2423 * stores the channel position firstly matching with the current channels
2424 */
2425static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2426 struct snd_ctl_elem_value *ucontrol)
2427{
2428 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2429 unsigned int idx = snd_ctl_get_ioffidx(kctl: kcontrol, id: &ucontrol->id);
2430 struct snd_pcm_substream *substream;
2431 const struct snd_pcm_chmap_elem *map;
2432
2433 if (!info->chmap)
2434 return -EINVAL;
2435 substream = snd_pcm_chmap_substream(info, idx);
2436 if (!substream)
2437 return -ENODEV;
2438 memset(ucontrol->value.integer.value, 0,
2439 sizeof(long) * info->max_channels);
2440 if (!substream->runtime)
2441 return 0; /* no channels set */
2442 for (map = info->chmap; map->channels; map++) {
2443 int i;
2444 if (map->channels == substream->runtime->channels &&
2445 valid_chmap_channels(info, ch: map->channels)) {
2446 for (i = 0; i < map->channels; i++)
2447 ucontrol->value.integer.value[i] = map->map[i];
2448 return 0;
2449 }
2450 }
2451 return -EINVAL;
2452}
2453
2454/* tlv callback for channel map ctl element
2455 * expands the pre-defined channel maps in a form of TLV
2456 */
2457static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2458 unsigned int size, unsigned int __user *tlv)
2459{
2460 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2461 const struct snd_pcm_chmap_elem *map;
2462 unsigned int __user *dst;
2463 int c, count = 0;
2464
2465 if (!info->chmap)
2466 return -EINVAL;
2467 if (size < 8)
2468 return -ENOMEM;
2469 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2470 return -EFAULT;
2471 size -= 8;
2472 dst = tlv + 2;
2473 for (map = info->chmap; map->channels; map++) {
2474 int chs_bytes = map->channels * 4;
2475 if (!valid_chmap_channels(info, ch: map->channels))
2476 continue;
2477 if (size < 8)
2478 return -ENOMEM;
2479 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2480 put_user(chs_bytes, dst + 1))
2481 return -EFAULT;
2482 dst += 2;
2483 size -= 8;
2484 count += 8;
2485 if (size < chs_bytes)
2486 return -ENOMEM;
2487 size -= chs_bytes;
2488 count += chs_bytes;
2489 for (c = 0; c < map->channels; c++) {
2490 if (put_user(map->map[c], dst))
2491 return -EFAULT;
2492 dst++;
2493 }
2494 }
2495 if (put_user(count, tlv + 1))
2496 return -EFAULT;
2497 return 0;
2498}
2499
2500static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2501{
2502 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2503 info->pcm->streams[info->stream].chmap_kctl = NULL;
2504 kfree(objp: info);
2505}
2506
2507/**
2508 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2509 * @pcm: the assigned PCM instance
2510 * @stream: stream direction
2511 * @chmap: channel map elements (for query)
2512 * @max_channels: the max number of channels for the stream
2513 * @private_value: the value passed to each kcontrol's private_value field
2514 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2515 *
2516 * Create channel-mapping control elements assigned to the given PCM stream(s).
2517 * Return: Zero if successful, or a negative error value.
2518 */
2519int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2520 const struct snd_pcm_chmap_elem *chmap,
2521 int max_channels,
2522 unsigned long private_value,
2523 struct snd_pcm_chmap **info_ret)
2524{
2525 struct snd_pcm_chmap *info;
2526 struct snd_kcontrol_new knew = {
2527 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2528 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2529 SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2530 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2531 .info = pcm_chmap_ctl_info,
2532 .get = pcm_chmap_ctl_get,
2533 .tlv.c = pcm_chmap_ctl_tlv,
2534 };
2535 int err;
2536
2537 if (WARN_ON(pcm->streams[stream].chmap_kctl))
2538 return -EBUSY;
2539 info = kzalloc(size: sizeof(*info), GFP_KERNEL);
2540 if (!info)
2541 return -ENOMEM;
2542 info->pcm = pcm;
2543 info->stream = stream;
2544 info->chmap = chmap;
2545 info->max_channels = max_channels;
2546 if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2547 knew.name = "Playback Channel Map";
2548 else
2549 knew.name = "Capture Channel Map";
2550 knew.device = pcm->device;
2551 knew.count = pcm->streams[stream].substream_count;
2552 knew.private_value = private_value;
2553 info->kctl = snd_ctl_new1(kcontrolnew: &knew, private_data: info);
2554 if (!info->kctl) {
2555 kfree(objp: info);
2556 return -ENOMEM;
2557 }
2558 info->kctl->private_free = pcm_chmap_ctl_private_free;
2559 err = snd_ctl_add(card: pcm->card, kcontrol: info->kctl);
2560 if (err < 0)
2561 return err;
2562 pcm->streams[stream].chmap_kctl = info->kctl;
2563 if (info_ret)
2564 *info_ret = info;
2565 return 0;
2566}
2567EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
2568

source code of linux/sound/core/pcm_lib.c