1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Testsuite for eBPF verifier
4 *
5 * Copyright (c) 2014 PLUMgrid, http://plumgrid.com
6 * Copyright (c) 2017 Facebook
7 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
8 */
9
10#include <endian.h>
11#include <asm/types.h>
12#include <linux/types.h>
13#include <stdint.h>
14#include <stdio.h>
15#include <stdlib.h>
16#include <unistd.h>
17#include <errno.h>
18#include <string.h>
19#include <stddef.h>
20#include <stdbool.h>
21#include <sched.h>
22#include <limits.h>
23#include <assert.h>
24
25#include <linux/unistd.h>
26#include <linux/filter.h>
27#include <linux/bpf_perf_event.h>
28#include <linux/bpf.h>
29#include <linux/if_ether.h>
30#include <linux/btf.h>
31
32#include <bpf/btf.h>
33#include <bpf/bpf.h>
34#include <bpf/libbpf.h>
35
36#include "autoconf_helper.h"
37#include "unpriv_helpers.h"
38#include "cap_helpers.h"
39#include "bpf_rand.h"
40#include "bpf_util.h"
41#include "test_btf.h"
42#include "../../../include/linux/filter.h"
43#include "testing_helpers.h"
44
45#ifndef ENOTSUPP
46#define ENOTSUPP 524
47#endif
48
49#define MAX_INSNS BPF_MAXINSNS
50#define MAX_EXPECTED_INSNS 32
51#define MAX_UNEXPECTED_INSNS 32
52#define MAX_TEST_INSNS 1000000
53#define MAX_FIXUPS 8
54#define MAX_NR_MAPS 23
55#define MAX_TEST_RUNS 8
56#define POINTER_VALUE 0xcafe4all
57#define TEST_DATA_LEN 64
58#define MAX_FUNC_INFOS 8
59#define MAX_BTF_STRINGS 256
60#define MAX_BTF_TYPES 256
61
62#define INSN_OFF_MASK ((__s16)0xFFFF)
63#define INSN_IMM_MASK ((__s32)0xFFFFFFFF)
64#define SKIP_INSNS() BPF_RAW_INSN(0xde, 0xa, 0xd, 0xbeef, 0xdeadbeef)
65
66#define DEFAULT_LIBBPF_LOG_LEVEL 4
67
68#define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS (1 << 0)
69#define F_LOAD_WITH_STRICT_ALIGNMENT (1 << 1)
70
71/* need CAP_BPF, CAP_NET_ADMIN, CAP_PERFMON to load progs */
72#define ADMIN_CAPS (1ULL << CAP_NET_ADMIN | \
73 1ULL << CAP_PERFMON | \
74 1ULL << CAP_BPF)
75#define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled"
76static bool unpriv_disabled = false;
77static int skips;
78static bool verbose = false;
79static int verif_log_level = 0;
80
81struct kfunc_btf_id_pair {
82 const char *kfunc;
83 int insn_idx;
84};
85
86struct bpf_test {
87 const char *descr;
88 struct bpf_insn insns[MAX_INSNS];
89 struct bpf_insn *fill_insns;
90 /* If specified, test engine looks for this sequence of
91 * instructions in the BPF program after loading. Allows to
92 * test rewrites applied by verifier. Use values
93 * INSN_OFF_MASK and INSN_IMM_MASK to mask `off` and `imm`
94 * fields if content does not matter. The test case fails if
95 * specified instructions are not found.
96 *
97 * The sequence could be split into sub-sequences by adding
98 * SKIP_INSNS instruction at the end of each sub-sequence. In
99 * such case sub-sequences are searched for one after another.
100 */
101 struct bpf_insn expected_insns[MAX_EXPECTED_INSNS];
102 /* If specified, test engine applies same pattern matching
103 * logic as for `expected_insns`. If the specified pattern is
104 * matched test case is marked as failed.
105 */
106 struct bpf_insn unexpected_insns[MAX_UNEXPECTED_INSNS];
107 int fixup_map_hash_8b[MAX_FIXUPS];
108 int fixup_map_hash_48b[MAX_FIXUPS];
109 int fixup_map_hash_16b[MAX_FIXUPS];
110 int fixup_map_array_48b[MAX_FIXUPS];
111 int fixup_map_sockmap[MAX_FIXUPS];
112 int fixup_map_sockhash[MAX_FIXUPS];
113 int fixup_map_xskmap[MAX_FIXUPS];
114 int fixup_map_stacktrace[MAX_FIXUPS];
115 int fixup_prog1[MAX_FIXUPS];
116 int fixup_prog2[MAX_FIXUPS];
117 int fixup_map_in_map[MAX_FIXUPS];
118 int fixup_cgroup_storage[MAX_FIXUPS];
119 int fixup_percpu_cgroup_storage[MAX_FIXUPS];
120 int fixup_map_spin_lock[MAX_FIXUPS];
121 int fixup_map_array_ro[MAX_FIXUPS];
122 int fixup_map_array_wo[MAX_FIXUPS];
123 int fixup_map_array_small[MAX_FIXUPS];
124 int fixup_sk_storage_map[MAX_FIXUPS];
125 int fixup_map_event_output[MAX_FIXUPS];
126 int fixup_map_reuseport_array[MAX_FIXUPS];
127 int fixup_map_ringbuf[MAX_FIXUPS];
128 int fixup_map_timer[MAX_FIXUPS];
129 int fixup_map_kptr[MAX_FIXUPS];
130 struct kfunc_btf_id_pair fixup_kfunc_btf_id[MAX_FIXUPS];
131 /* Expected verifier log output for result REJECT or VERBOSE_ACCEPT.
132 * Can be a tab-separated sequence of expected strings. An empty string
133 * means no log verification.
134 */
135 const char *errstr;
136 const char *errstr_unpriv;
137 uint32_t insn_processed;
138 int prog_len;
139 enum {
140 UNDEF,
141 ACCEPT,
142 REJECT,
143 VERBOSE_ACCEPT,
144 } result, result_unpriv;
145 enum bpf_prog_type prog_type;
146 uint8_t flags;
147 void (*fill_helper)(struct bpf_test *self);
148 int runs;
149#define bpf_testdata_struct_t \
150 struct { \
151 uint32_t retval, retval_unpriv; \
152 union { \
153 __u8 data[TEST_DATA_LEN]; \
154 __u64 data64[TEST_DATA_LEN / 8]; \
155 }; \
156 }
157 union {
158 bpf_testdata_struct_t;
159 bpf_testdata_struct_t retvals[MAX_TEST_RUNS];
160 };
161 enum bpf_attach_type expected_attach_type;
162 const char *kfunc;
163 struct bpf_func_info func_info[MAX_FUNC_INFOS];
164 int func_info_cnt;
165 char btf_strings[MAX_BTF_STRINGS];
166 /* A set of BTF types to load when specified,
167 * use macro definitions from test_btf.h,
168 * must end with BTF_END_RAW
169 */
170 __u32 btf_types[MAX_BTF_TYPES];
171};
172
173/* Note we want this to be 64 bit aligned so that the end of our array is
174 * actually the end of the structure.
175 */
176#define MAX_ENTRIES 11
177
178struct test_val {
179 unsigned int index;
180 int foo[MAX_ENTRIES];
181};
182
183struct other_val {
184 long long foo;
185 long long bar;
186};
187
188static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self)
189{
190 /* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */
191#define PUSH_CNT 51
192 /* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */
193 unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6;
194 struct bpf_insn *insn = self->fill_insns;
195 int i = 0, j, k = 0;
196
197 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
198loop:
199 for (j = 0; j < PUSH_CNT; j++) {
200 insn[i++] = BPF_LD_ABS(BPF_B, 0);
201 /* jump to error label */
202 insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
203 i++;
204 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
205 insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1);
206 insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2);
207 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
208 BPF_FUNC_skb_vlan_push);
209 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
210 i++;
211 }
212
213 for (j = 0; j < PUSH_CNT; j++) {
214 insn[i++] = BPF_LD_ABS(BPF_B, 0);
215 insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
216 i++;
217 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
218 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
219 BPF_FUNC_skb_vlan_pop);
220 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
221 i++;
222 }
223 if (++k < 5)
224 goto loop;
225
226 for (; i < len - 3; i++)
227 insn[i] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0xbef);
228 insn[len - 3] = BPF_JMP_A(1);
229 /* error label */
230 insn[len - 2] = BPF_MOV32_IMM(BPF_REG_0, 0);
231 insn[len - 1] = BPF_EXIT_INSN();
232 self->prog_len = len;
233}
234
235static void bpf_fill_jump_around_ld_abs(struct bpf_test *self)
236{
237 struct bpf_insn *insn = self->fill_insns;
238 /* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns,
239 * but on arches like arm, ppc etc, there will be one BPF_ZEXT inserted
240 * to extend the error value of the inlined ld_abs sequence which then
241 * contains 7 insns. so, set the dividend to 7 so the testcase could
242 * work on all arches.
243 */
244 unsigned int len = (1 << 15) / 7;
245 int i = 0;
246
247 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
248 insn[i++] = BPF_LD_ABS(BPF_B, 0);
249 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2);
250 i++;
251 while (i < len - 1)
252 insn[i++] = BPF_LD_ABS(BPF_B, 1);
253 insn[i] = BPF_EXIT_INSN();
254 self->prog_len = i + 1;
255}
256
257static void bpf_fill_rand_ld_dw(struct bpf_test *self)
258{
259 struct bpf_insn *insn = self->fill_insns;
260 uint64_t res = 0;
261 int i = 0;
262
263 insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0);
264 while (i < self->retval) {
265 uint64_t val = bpf_semi_rand_get();
266 struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) };
267
268 res ^= val;
269 insn[i++] = tmp[0];
270 insn[i++] = tmp[1];
271 insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
272 }
273 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0);
274 insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32);
275 insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
276 insn[i] = BPF_EXIT_INSN();
277 self->prog_len = i + 1;
278 res ^= (res >> 32);
279 self->retval = (uint32_t)res;
280}
281
282#define MAX_JMP_SEQ 8192
283
284/* test the sequence of 8k jumps */
285static void bpf_fill_scale1(struct bpf_test *self)
286{
287 struct bpf_insn *insn = self->fill_insns;
288 int i = 0, k = 0;
289
290 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
291 /* test to check that the long sequence of jumps is acceptable */
292 while (k++ < MAX_JMP_SEQ) {
293 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
294 BPF_FUNC_get_prandom_u32);
295 insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
296 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
297 insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
298 -8 * (k % 64 + 1));
299 }
300 /* is_state_visited() doesn't allocate state for pruning for every jump.
301 * Hence multiply jmps by 4 to accommodate that heuristic
302 */
303 while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
304 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
305 insn[i] = BPF_EXIT_INSN();
306 self->prog_len = i + 1;
307 self->retval = 42;
308}
309
310/* test the sequence of 8k jumps in inner most function (function depth 8)*/
311static void bpf_fill_scale2(struct bpf_test *self)
312{
313 struct bpf_insn *insn = self->fill_insns;
314 int i = 0, k = 0;
315
316#define FUNC_NEST 7
317 for (k = 0; k < FUNC_NEST; k++) {
318 insn[i++] = BPF_CALL_REL(1);
319 insn[i++] = BPF_EXIT_INSN();
320 }
321 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
322 /* test to check that the long sequence of jumps is acceptable */
323 k = 0;
324 while (k++ < MAX_JMP_SEQ) {
325 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
326 BPF_FUNC_get_prandom_u32);
327 insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
328 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
329 insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
330 -8 * (k % (64 - 4 * FUNC_NEST) + 1));
331 }
332 while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
333 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
334 insn[i] = BPF_EXIT_INSN();
335 self->prog_len = i + 1;
336 self->retval = 42;
337}
338
339static void bpf_fill_scale(struct bpf_test *self)
340{
341 switch (self->retval) {
342 case 1:
343 return bpf_fill_scale1(self);
344 case 2:
345 return bpf_fill_scale2(self);
346 default:
347 self->prog_len = 0;
348 break;
349 }
350}
351
352static int bpf_fill_torturous_jumps_insn_1(struct bpf_insn *insn)
353{
354 unsigned int len = 259, hlen = 128;
355 int i;
356
357 insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32);
358 for (i = 1; i <= hlen; i++) {
359 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, hlen);
360 insn[i + hlen] = BPF_JMP_A(hlen - i);
361 }
362 insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 1);
363 insn[len - 1] = BPF_EXIT_INSN();
364
365 return len;
366}
367
368static int bpf_fill_torturous_jumps_insn_2(struct bpf_insn *insn)
369{
370 unsigned int len = 4100, jmp_off = 2048;
371 int i, j;
372
373 insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32);
374 for (i = 1; i <= jmp_off; i++) {
375 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, jmp_off);
376 }
377 insn[i++] = BPF_JMP_A(jmp_off);
378 for (; i <= jmp_off * 2 + 1; i+=16) {
379 for (j = 0; j < 16; j++) {
380 insn[i + j] = BPF_JMP_A(16 - j - 1);
381 }
382 }
383
384 insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 2);
385 insn[len - 1] = BPF_EXIT_INSN();
386
387 return len;
388}
389
390static void bpf_fill_torturous_jumps(struct bpf_test *self)
391{
392 struct bpf_insn *insn = self->fill_insns;
393 int i = 0;
394
395 switch (self->retval) {
396 case 1:
397 self->prog_len = bpf_fill_torturous_jumps_insn_1(insn);
398 return;
399 case 2:
400 self->prog_len = bpf_fill_torturous_jumps_insn_2(insn);
401 return;
402 case 3:
403 /* main */
404 insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 4);
405 insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 262);
406 insn[i++] = BPF_ST_MEM(BPF_B, BPF_REG_10, -32, 0);
407 insn[i++] = BPF_MOV64_IMM(BPF_REG_0, 3);
408 insn[i++] = BPF_EXIT_INSN();
409
410 /* subprog 1 */
411 i += bpf_fill_torturous_jumps_insn_1(insn: insn + i);
412
413 /* subprog 2 */
414 i += bpf_fill_torturous_jumps_insn_2(insn: insn + i);
415
416 self->prog_len = i;
417 return;
418 default:
419 self->prog_len = 0;
420 break;
421 }
422}
423
424static void bpf_fill_big_prog_with_loop_1(struct bpf_test *self)
425{
426 struct bpf_insn *insn = self->fill_insns;
427 /* This test was added to catch a specific use after free
428 * error, which happened upon BPF program reallocation.
429 * Reallocation is handled by core.c:bpf_prog_realloc, which
430 * reuses old memory if page boundary is not crossed. The
431 * value of `len` is chosen to cross this boundary on bpf_loop
432 * patching.
433 */
434 const int len = getpagesize() - 25;
435 int callback_load_idx;
436 int callback_idx;
437 int i = 0;
438
439 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_1, 1);
440 callback_load_idx = i;
441 insn[i++] = BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW,
442 BPF_REG_2, BPF_PSEUDO_FUNC, 0,
443 777 /* filled below */);
444 insn[i++] = BPF_RAW_INSN(0, 0, 0, 0, 0);
445 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_3, 0);
446 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_4, 0);
447 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_loop);
448
449 while (i < len - 3)
450 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0);
451 insn[i++] = BPF_EXIT_INSN();
452
453 callback_idx = i;
454 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0);
455 insn[i++] = BPF_EXIT_INSN();
456
457 insn[callback_load_idx].imm = callback_idx - callback_load_idx - 1;
458 self->func_info[1].insn_off = callback_idx;
459 self->prog_len = i;
460 assert(i == len);
461}
462
463/* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */
464#define BPF_SK_LOOKUP(func) \
465 /* struct bpf_sock_tuple tuple = {} */ \
466 BPF_MOV64_IMM(BPF_REG_2, 0), \
467 BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8), \
468 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16), \
469 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24), \
470 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32), \
471 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40), \
472 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48), \
473 /* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */ \
474 BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), \
475 BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48), \
476 BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)), \
477 BPF_MOV64_IMM(BPF_REG_4, 0), \
478 BPF_MOV64_IMM(BPF_REG_5, 0), \
479 BPF_EMIT_CALL(BPF_FUNC_ ## func)
480
481/* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return
482 * value into 0 and does necessary preparation for direct packet access
483 * through r2. The allowed access range is 8 bytes.
484 */
485#define BPF_DIRECT_PKT_R2 \
486 BPF_MOV64_IMM(BPF_REG_0, 0), \
487 BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, \
488 offsetof(struct __sk_buff, data)), \
489 BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, \
490 offsetof(struct __sk_buff, data_end)), \
491 BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), \
492 BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8), \
493 BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1), \
494 BPF_EXIT_INSN()
495
496/* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random
497 * positive u32, and zero-extend it into 64-bit.
498 */
499#define BPF_RAND_UEXT_R7 \
500 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \
501 BPF_FUNC_get_prandom_u32), \
502 BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \
503 BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33), \
504 BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33)
505
506/* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random
507 * negative u32, and sign-extend it into 64-bit.
508 */
509#define BPF_RAND_SEXT_R7 \
510 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \
511 BPF_FUNC_get_prandom_u32), \
512 BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \
513 BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000), \
514 BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32), \
515 BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32)
516
517static struct bpf_test tests[] = {
518#define FILL_ARRAY
519#include <verifier/tests.h>
520#undef FILL_ARRAY
521};
522
523static int probe_filter_length(const struct bpf_insn *fp)
524{
525 int len;
526
527 for (len = MAX_INSNS - 1; len > 0; --len)
528 if (fp[len].code != 0 || fp[len].imm != 0)
529 break;
530 return len + 1;
531}
532
533static bool skip_unsupported_map(enum bpf_map_type map_type)
534{
535 if (!libbpf_probe_bpf_map_type(map_type, NULL)) {
536 printf("SKIP (unsupported map type %d)\n", map_type);
537 skips++;
538 return true;
539 }
540 return false;
541}
542
543static int __create_map(uint32_t type, uint32_t size_key,
544 uint32_t size_value, uint32_t max_elem,
545 uint32_t extra_flags)
546{
547 LIBBPF_OPTS(bpf_map_create_opts, opts);
548 int fd;
549
550 opts.map_flags = (type == BPF_MAP_TYPE_HASH ? BPF_F_NO_PREALLOC : 0) | extra_flags;
551 fd = bpf_map_create(type, NULL, size_key, size_value, max_elem, &opts);
552 if (fd < 0) {
553 if (skip_unsupported_map(map_type: type))
554 return -1;
555 printf("Failed to create hash map '%s'!\n", strerror(errno));
556 }
557
558 return fd;
559}
560
561static int create_map(uint32_t type, uint32_t size_key,
562 uint32_t size_value, uint32_t max_elem)
563{
564 return __create_map(type, size_key, size_value, max_elem, extra_flags: 0);
565}
566
567static void update_map(int fd, int index)
568{
569 struct test_val value = {
570 .index = (6 + 1) * sizeof(int),
571 .foo[6] = 0xabcdef12,
572 };
573
574 assert(!bpf_map_update_elem(fd, &index, &value, 0));
575}
576
577static int create_prog_dummy_simple(enum bpf_prog_type prog_type, int ret)
578{
579 struct bpf_insn prog[] = {
580 BPF_MOV64_IMM(BPF_REG_0, ret),
581 BPF_EXIT_INSN(),
582 };
583
584 return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL);
585}
586
587static int create_prog_dummy_loop(enum bpf_prog_type prog_type, int mfd,
588 int idx, int ret)
589{
590 struct bpf_insn prog[] = {
591 BPF_MOV64_IMM(BPF_REG_3, idx),
592 BPF_LD_MAP_FD(BPF_REG_2, mfd),
593 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
594 BPF_FUNC_tail_call),
595 BPF_MOV64_IMM(BPF_REG_0, ret),
596 BPF_EXIT_INSN(),
597 };
598
599 return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL);
600}
601
602static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem,
603 int p1key, int p2key, int p3key)
604{
605 int mfd, p1fd, p2fd, p3fd;
606
607 mfd = bpf_map_create(BPF_MAP_TYPE_PROG_ARRAY, NULL, sizeof(int),
608 sizeof(int), max_elem, NULL);
609 if (mfd < 0) {
610 if (skip_unsupported_map(map_type: BPF_MAP_TYPE_PROG_ARRAY))
611 return -1;
612 printf("Failed to create prog array '%s'!\n", strerror(errno));
613 return -1;
614 }
615
616 p1fd = create_prog_dummy_simple(prog_type, ret: 42);
617 p2fd = create_prog_dummy_loop(prog_type, mfd, idx: p2key, ret: 41);
618 p3fd = create_prog_dummy_simple(prog_type, ret: 24);
619 if (p1fd < 0 || p2fd < 0 || p3fd < 0)
620 goto err;
621 if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0)
622 goto err;
623 if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0)
624 goto err;
625 if (bpf_map_update_elem(mfd, &p3key, &p3fd, BPF_ANY) < 0) {
626err:
627 close(mfd);
628 mfd = -1;
629 }
630 close(p3fd);
631 close(p2fd);
632 close(p1fd);
633 return mfd;
634}
635
636static int create_map_in_map(void)
637{
638 LIBBPF_OPTS(bpf_map_create_opts, opts);
639 int inner_map_fd, outer_map_fd;
640
641 inner_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int),
642 sizeof(int), 1, NULL);
643 if (inner_map_fd < 0) {
644 if (skip_unsupported_map(map_type: BPF_MAP_TYPE_ARRAY))
645 return -1;
646 printf("Failed to create array '%s'!\n", strerror(errno));
647 return inner_map_fd;
648 }
649
650 opts.inner_map_fd = inner_map_fd;
651 outer_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL,
652 sizeof(int), sizeof(int), 1, &opts);
653 if (outer_map_fd < 0) {
654 if (skip_unsupported_map(map_type: BPF_MAP_TYPE_ARRAY_OF_MAPS))
655 return -1;
656 printf("Failed to create array of maps '%s'!\n",
657 strerror(errno));
658 }
659
660 close(inner_map_fd);
661
662 return outer_map_fd;
663}
664
665static int create_cgroup_storage(bool percpu)
666{
667 enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE :
668 BPF_MAP_TYPE_CGROUP_STORAGE;
669 int fd;
670
671 fd = bpf_map_create(type, NULL, sizeof(struct bpf_cgroup_storage_key),
672 TEST_DATA_LEN, 0, NULL);
673 if (fd < 0) {
674 if (skip_unsupported_map(map_type: type))
675 return -1;
676 printf("Failed to create cgroup storage '%s'!\n",
677 strerror(errno));
678 }
679
680 return fd;
681}
682
683/* struct bpf_spin_lock {
684 * int val;
685 * };
686 * struct val {
687 * int cnt;
688 * struct bpf_spin_lock l;
689 * };
690 * struct bpf_timer {
691 * __u64 :64;
692 * __u64 :64;
693 * } __attribute__((aligned(8)));
694 * struct timer {
695 * struct bpf_timer t;
696 * };
697 * struct btf_ptr {
698 * struct prog_test_ref_kfunc __kptr_untrusted *ptr;
699 * struct prog_test_ref_kfunc __kptr *ptr;
700 * struct prog_test_member __kptr *ptr;
701 * }
702 */
703static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l\0bpf_timer\0timer\0t"
704 "\0btf_ptr\0prog_test_ref_kfunc\0ptr\0kptr\0kptr_untrusted"
705 "\0prog_test_member";
706static __u32 btf_raw_types[] = {
707 /* int */
708 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
709 /* struct bpf_spin_lock */ /* [2] */
710 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4),
711 BTF_MEMBER_ENC(15, 1, 0), /* int val; */
712 /* struct val */ /* [3] */
713 BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8),
714 BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */
715 BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */
716 /* struct bpf_timer */ /* [4] */
717 BTF_TYPE_ENC(25, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0), 16),
718 /* struct timer */ /* [5] */
719 BTF_TYPE_ENC(35, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 16),
720 BTF_MEMBER_ENC(41, 4, 0), /* struct bpf_timer t; */
721 /* struct prog_test_ref_kfunc */ /* [6] */
722 BTF_STRUCT_ENC(51, 0, 0),
723 BTF_STRUCT_ENC(95, 0, 0), /* [7] */
724 /* type tag "kptr_untrusted" */
725 BTF_TYPE_TAG_ENC(80, 6), /* [8] */
726 /* type tag "kptr" */
727 BTF_TYPE_TAG_ENC(75, 6), /* [9] */
728 BTF_TYPE_TAG_ENC(75, 7), /* [10] */
729 BTF_PTR_ENC(8), /* [11] */
730 BTF_PTR_ENC(9), /* [12] */
731 BTF_PTR_ENC(10), /* [13] */
732 /* struct btf_ptr */ /* [14] */
733 BTF_STRUCT_ENC(43, 3, 24),
734 BTF_MEMBER_ENC(71, 11, 0), /* struct prog_test_ref_kfunc __kptr_untrusted *ptr; */
735 BTF_MEMBER_ENC(71, 12, 64), /* struct prog_test_ref_kfunc __kptr *ptr; */
736 BTF_MEMBER_ENC(71, 13, 128), /* struct prog_test_member __kptr *ptr; */
737};
738
739static char bpf_vlog[UINT_MAX >> 8];
740
741static int load_btf_spec(__u32 *types, int types_len,
742 const char *strings, int strings_len)
743{
744 struct btf_header hdr = {
745 .magic = BTF_MAGIC,
746 .version = BTF_VERSION,
747 .hdr_len = sizeof(struct btf_header),
748 .type_len = types_len,
749 .str_off = types_len,
750 .str_len = strings_len,
751 };
752 void *ptr, *raw_btf;
753 int btf_fd;
754 LIBBPF_OPTS(bpf_btf_load_opts, opts,
755 .log_buf = bpf_vlog,
756 .log_size = sizeof(bpf_vlog),
757 .log_level = (verbose
758 ? verif_log_level
759 : DEFAULT_LIBBPF_LOG_LEVEL),
760 );
761
762 raw_btf = malloc(sizeof(hdr) + types_len + strings_len);
763
764 ptr = raw_btf;
765 memcpy(ptr, &hdr, sizeof(hdr));
766 ptr += sizeof(hdr);
767 memcpy(ptr, types, hdr.type_len);
768 ptr += hdr.type_len;
769 memcpy(ptr, strings, hdr.str_len);
770 ptr += hdr.str_len;
771
772 btf_fd = bpf_btf_load(raw_btf, ptr - raw_btf, &opts);
773 if (btf_fd < 0)
774 printf("Failed to load BTF spec: '%s'\n", strerror(errno));
775
776 free(raw_btf);
777
778 return btf_fd < 0 ? -1 : btf_fd;
779}
780
781static int load_btf(void)
782{
783 return load_btf_spec(types: btf_raw_types, types_len: sizeof(btf_raw_types),
784 strings: btf_str_sec, strings_len: sizeof(btf_str_sec));
785}
786
787static int load_btf_for_test(struct bpf_test *test)
788{
789 int types_num = 0;
790
791 while (types_num < MAX_BTF_TYPES &&
792 test->btf_types[types_num] != BTF_END_RAW)
793 ++types_num;
794
795 int types_len = types_num * sizeof(test->btf_types[0]);
796
797 return load_btf_spec(types: test->btf_types, types_len,
798 strings: test->btf_strings, strings_len: sizeof(test->btf_strings));
799}
800
801static int create_map_spin_lock(void)
802{
803 LIBBPF_OPTS(bpf_map_create_opts, opts,
804 .btf_key_type_id = 1,
805 .btf_value_type_id = 3,
806 );
807 int fd, btf_fd;
808
809 btf_fd = load_btf();
810 if (btf_fd < 0)
811 return -1;
812 opts.btf_fd = btf_fd;
813 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 8, 1, &opts);
814 if (fd < 0)
815 printf("Failed to create map with spin_lock\n");
816 return fd;
817}
818
819static int create_sk_storage_map(void)
820{
821 LIBBPF_OPTS(bpf_map_create_opts, opts,
822 .map_flags = BPF_F_NO_PREALLOC,
823 .btf_key_type_id = 1,
824 .btf_value_type_id = 3,
825 );
826 int fd, btf_fd;
827
828 btf_fd = load_btf();
829 if (btf_fd < 0)
830 return -1;
831 opts.btf_fd = btf_fd;
832 fd = bpf_map_create(BPF_MAP_TYPE_SK_STORAGE, "test_map", 4, 8, 0, &opts);
833 close(opts.btf_fd);
834 if (fd < 0)
835 printf("Failed to create sk_storage_map\n");
836 return fd;
837}
838
839static int create_map_timer(void)
840{
841 LIBBPF_OPTS(bpf_map_create_opts, opts,
842 .btf_key_type_id = 1,
843 .btf_value_type_id = 5,
844 );
845 int fd, btf_fd;
846
847 btf_fd = load_btf();
848 if (btf_fd < 0)
849 return -1;
850
851 opts.btf_fd = btf_fd;
852 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 16, 1, &opts);
853 if (fd < 0)
854 printf("Failed to create map with timer\n");
855 return fd;
856}
857
858static int create_map_kptr(void)
859{
860 LIBBPF_OPTS(bpf_map_create_opts, opts,
861 .btf_key_type_id = 1,
862 .btf_value_type_id = 14,
863 );
864 int fd, btf_fd;
865
866 btf_fd = load_btf();
867 if (btf_fd < 0)
868 return -1;
869
870 opts.btf_fd = btf_fd;
871 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 24, 1, &opts);
872 if (fd < 0)
873 printf("Failed to create map with btf_id pointer\n");
874 return fd;
875}
876
877static void set_root(bool set)
878{
879 __u64 caps;
880
881 if (set) {
882 if (cap_enable_effective(caps: 1ULL << CAP_SYS_ADMIN, old_caps: &caps))
883 perror("cap_disable_effective(CAP_SYS_ADMIN)");
884 } else {
885 if (cap_disable_effective(caps: 1ULL << CAP_SYS_ADMIN, old_caps: &caps))
886 perror("cap_disable_effective(CAP_SYS_ADMIN)");
887 }
888}
889
890static __u64 ptr_to_u64(const void *ptr)
891{
892 return (uintptr_t) ptr;
893}
894
895static struct btf *btf__load_testmod_btf(struct btf *vmlinux)
896{
897 struct bpf_btf_info info;
898 __u32 len = sizeof(info);
899 struct btf *btf = NULL;
900 char name[64];
901 __u32 id = 0;
902 int err, fd;
903
904 /* Iterate all loaded BTF objects and find bpf_testmod,
905 * we need SYS_ADMIN cap for that.
906 */
907 set_root(true);
908
909 while (true) {
910 err = bpf_btf_get_next_id(id, &id);
911 if (err) {
912 if (errno == ENOENT)
913 break;
914 perror("bpf_btf_get_next_id failed");
915 break;
916 }
917
918 fd = bpf_btf_get_fd_by_id(id);
919 if (fd < 0) {
920 if (errno == ENOENT)
921 continue;
922 perror("bpf_btf_get_fd_by_id failed");
923 break;
924 }
925
926 memset(&info, 0, sizeof(info));
927 info.name_len = sizeof(name);
928 info.name = ptr_to_u64(ptr: name);
929 len = sizeof(info);
930
931 err = bpf_obj_get_info_by_fd(fd, &info, &len);
932 if (err) {
933 close(fd);
934 perror("bpf_obj_get_info_by_fd failed");
935 break;
936 }
937
938 if (strcmp("bpf_testmod", name)) {
939 close(fd);
940 continue;
941 }
942
943 btf = btf__load_from_kernel_by_id_split(id, vmlinux);
944 if (!btf) {
945 close(fd);
946 break;
947 }
948
949 /* We need the fd to stay open so it can be used in fd_array.
950 * The final cleanup call to btf__free will free btf object
951 * and close the file descriptor.
952 */
953 btf__set_fd(btf, fd);
954 break;
955 }
956
957 set_root(false);
958 return btf;
959}
960
961static struct btf *testmod_btf;
962static struct btf *vmlinux_btf;
963
964static void kfuncs_cleanup(void)
965{
966 btf__free(testmod_btf);
967 btf__free(vmlinux_btf);
968}
969
970static void fixup_prog_kfuncs(struct bpf_insn *prog, int *fd_array,
971 struct kfunc_btf_id_pair *fixup_kfunc_btf_id)
972{
973 /* Patch in kfunc BTF IDs */
974 while (fixup_kfunc_btf_id->kfunc) {
975 int btf_id = 0;
976
977 /* try to find kfunc in kernel BTF */
978 vmlinux_btf = vmlinux_btf ?: btf__load_vmlinux_btf();
979 if (vmlinux_btf) {
980 btf_id = btf__find_by_name_kind(vmlinux_btf,
981 fixup_kfunc_btf_id->kfunc,
982 BTF_KIND_FUNC);
983 btf_id = btf_id < 0 ? 0 : btf_id;
984 }
985
986 /* kfunc not found in kernel BTF, try bpf_testmod BTF */
987 if (!btf_id) {
988 testmod_btf = testmod_btf ?: btf__load_testmod_btf(vmlinux: vmlinux_btf);
989 if (testmod_btf) {
990 btf_id = btf__find_by_name_kind(testmod_btf,
991 fixup_kfunc_btf_id->kfunc,
992 BTF_KIND_FUNC);
993 btf_id = btf_id < 0 ? 0 : btf_id;
994 if (btf_id) {
995 /* We put bpf_testmod module fd into fd_array
996 * and its index 1 into instruction 'off'.
997 */
998 *fd_array = btf__fd(testmod_btf);
999 prog[fixup_kfunc_btf_id->insn_idx].off = 1;
1000 }
1001 }
1002 }
1003
1004 prog[fixup_kfunc_btf_id->insn_idx].imm = btf_id;
1005 fixup_kfunc_btf_id++;
1006 }
1007}
1008
1009static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type,
1010 struct bpf_insn *prog, int *map_fds, int *fd_array)
1011{
1012 int *fixup_map_hash_8b = test->fixup_map_hash_8b;
1013 int *fixup_map_hash_48b = test->fixup_map_hash_48b;
1014 int *fixup_map_hash_16b = test->fixup_map_hash_16b;
1015 int *fixup_map_array_48b = test->fixup_map_array_48b;
1016 int *fixup_map_sockmap = test->fixup_map_sockmap;
1017 int *fixup_map_sockhash = test->fixup_map_sockhash;
1018 int *fixup_map_xskmap = test->fixup_map_xskmap;
1019 int *fixup_map_stacktrace = test->fixup_map_stacktrace;
1020 int *fixup_prog1 = test->fixup_prog1;
1021 int *fixup_prog2 = test->fixup_prog2;
1022 int *fixup_map_in_map = test->fixup_map_in_map;
1023 int *fixup_cgroup_storage = test->fixup_cgroup_storage;
1024 int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage;
1025 int *fixup_map_spin_lock = test->fixup_map_spin_lock;
1026 int *fixup_map_array_ro = test->fixup_map_array_ro;
1027 int *fixup_map_array_wo = test->fixup_map_array_wo;
1028 int *fixup_map_array_small = test->fixup_map_array_small;
1029 int *fixup_sk_storage_map = test->fixup_sk_storage_map;
1030 int *fixup_map_event_output = test->fixup_map_event_output;
1031 int *fixup_map_reuseport_array = test->fixup_map_reuseport_array;
1032 int *fixup_map_ringbuf = test->fixup_map_ringbuf;
1033 int *fixup_map_timer = test->fixup_map_timer;
1034 int *fixup_map_kptr = test->fixup_map_kptr;
1035
1036 if (test->fill_helper) {
1037 test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn));
1038 test->fill_helper(test);
1039 }
1040
1041 /* Allocating HTs with 1 elem is fine here, since we only test
1042 * for verifier and not do a runtime lookup, so the only thing
1043 * that really matters is value size in this case.
1044 */
1045 if (*fixup_map_hash_8b) {
1046 map_fds[0] = create_map(type: BPF_MAP_TYPE_HASH, size_key: sizeof(long long),
1047 size_value: sizeof(long long), max_elem: 1);
1048 do {
1049 prog[*fixup_map_hash_8b].imm = map_fds[0];
1050 fixup_map_hash_8b++;
1051 } while (*fixup_map_hash_8b);
1052 }
1053
1054 if (*fixup_map_hash_48b) {
1055 map_fds[1] = create_map(type: BPF_MAP_TYPE_HASH, size_key: sizeof(long long),
1056 size_value: sizeof(struct test_val), max_elem: 1);
1057 do {
1058 prog[*fixup_map_hash_48b].imm = map_fds[1];
1059 fixup_map_hash_48b++;
1060 } while (*fixup_map_hash_48b);
1061 }
1062
1063 if (*fixup_map_hash_16b) {
1064 map_fds[2] = create_map(type: BPF_MAP_TYPE_HASH, size_key: sizeof(long long),
1065 size_value: sizeof(struct other_val), max_elem: 1);
1066 do {
1067 prog[*fixup_map_hash_16b].imm = map_fds[2];
1068 fixup_map_hash_16b++;
1069 } while (*fixup_map_hash_16b);
1070 }
1071
1072 if (*fixup_map_array_48b) {
1073 map_fds[3] = create_map(type: BPF_MAP_TYPE_ARRAY, size_key: sizeof(int),
1074 size_value: sizeof(struct test_val), max_elem: 1);
1075 update_map(fd: map_fds[3], index: 0);
1076 do {
1077 prog[*fixup_map_array_48b].imm = map_fds[3];
1078 fixup_map_array_48b++;
1079 } while (*fixup_map_array_48b);
1080 }
1081
1082 if (*fixup_prog1) {
1083 map_fds[4] = create_prog_array(prog_type, max_elem: 4, p1key: 0, p2key: 1, p3key: 2);
1084 do {
1085 prog[*fixup_prog1].imm = map_fds[4];
1086 fixup_prog1++;
1087 } while (*fixup_prog1);
1088 }
1089
1090 if (*fixup_prog2) {
1091 map_fds[5] = create_prog_array(prog_type, max_elem: 8, p1key: 7, p2key: 1, p3key: 2);
1092 do {
1093 prog[*fixup_prog2].imm = map_fds[5];
1094 fixup_prog2++;
1095 } while (*fixup_prog2);
1096 }
1097
1098 if (*fixup_map_in_map) {
1099 map_fds[6] = create_map_in_map();
1100 do {
1101 prog[*fixup_map_in_map].imm = map_fds[6];
1102 fixup_map_in_map++;
1103 } while (*fixup_map_in_map);
1104 }
1105
1106 if (*fixup_cgroup_storage) {
1107 map_fds[7] = create_cgroup_storage(percpu: false);
1108 do {
1109 prog[*fixup_cgroup_storage].imm = map_fds[7];
1110 fixup_cgroup_storage++;
1111 } while (*fixup_cgroup_storage);
1112 }
1113
1114 if (*fixup_percpu_cgroup_storage) {
1115 map_fds[8] = create_cgroup_storage(percpu: true);
1116 do {
1117 prog[*fixup_percpu_cgroup_storage].imm = map_fds[8];
1118 fixup_percpu_cgroup_storage++;
1119 } while (*fixup_percpu_cgroup_storage);
1120 }
1121 if (*fixup_map_sockmap) {
1122 map_fds[9] = create_map(type: BPF_MAP_TYPE_SOCKMAP, size_key: sizeof(int),
1123 size_value: sizeof(int), max_elem: 1);
1124 do {
1125 prog[*fixup_map_sockmap].imm = map_fds[9];
1126 fixup_map_sockmap++;
1127 } while (*fixup_map_sockmap);
1128 }
1129 if (*fixup_map_sockhash) {
1130 map_fds[10] = create_map(type: BPF_MAP_TYPE_SOCKHASH, size_key: sizeof(int),
1131 size_value: sizeof(int), max_elem: 1);
1132 do {
1133 prog[*fixup_map_sockhash].imm = map_fds[10];
1134 fixup_map_sockhash++;
1135 } while (*fixup_map_sockhash);
1136 }
1137 if (*fixup_map_xskmap) {
1138 map_fds[11] = create_map(type: BPF_MAP_TYPE_XSKMAP, size_key: sizeof(int),
1139 size_value: sizeof(int), max_elem: 1);
1140 do {
1141 prog[*fixup_map_xskmap].imm = map_fds[11];
1142 fixup_map_xskmap++;
1143 } while (*fixup_map_xskmap);
1144 }
1145 if (*fixup_map_stacktrace) {
1146 map_fds[12] = create_map(type: BPF_MAP_TYPE_STACK_TRACE, size_key: sizeof(u32),
1147 size_value: sizeof(u64), max_elem: 1);
1148 do {
1149 prog[*fixup_map_stacktrace].imm = map_fds[12];
1150 fixup_map_stacktrace++;
1151 } while (*fixup_map_stacktrace);
1152 }
1153 if (*fixup_map_spin_lock) {
1154 map_fds[13] = create_map_spin_lock();
1155 do {
1156 prog[*fixup_map_spin_lock].imm = map_fds[13];
1157 fixup_map_spin_lock++;
1158 } while (*fixup_map_spin_lock);
1159 }
1160 if (*fixup_map_array_ro) {
1161 map_fds[14] = __create_map(type: BPF_MAP_TYPE_ARRAY, size_key: sizeof(int),
1162 size_value: sizeof(struct test_val), max_elem: 1,
1163 extra_flags: BPF_F_RDONLY_PROG);
1164 update_map(fd: map_fds[14], index: 0);
1165 do {
1166 prog[*fixup_map_array_ro].imm = map_fds[14];
1167 fixup_map_array_ro++;
1168 } while (*fixup_map_array_ro);
1169 }
1170 if (*fixup_map_array_wo) {
1171 map_fds[15] = __create_map(type: BPF_MAP_TYPE_ARRAY, size_key: sizeof(int),
1172 size_value: sizeof(struct test_val), max_elem: 1,
1173 extra_flags: BPF_F_WRONLY_PROG);
1174 update_map(fd: map_fds[15], index: 0);
1175 do {
1176 prog[*fixup_map_array_wo].imm = map_fds[15];
1177 fixup_map_array_wo++;
1178 } while (*fixup_map_array_wo);
1179 }
1180 if (*fixup_map_array_small) {
1181 map_fds[16] = __create_map(type: BPF_MAP_TYPE_ARRAY, size_key: sizeof(int),
1182 size_value: 1, max_elem: 1, extra_flags: 0);
1183 update_map(fd: map_fds[16], index: 0);
1184 do {
1185 prog[*fixup_map_array_small].imm = map_fds[16];
1186 fixup_map_array_small++;
1187 } while (*fixup_map_array_small);
1188 }
1189 if (*fixup_sk_storage_map) {
1190 map_fds[17] = create_sk_storage_map();
1191 do {
1192 prog[*fixup_sk_storage_map].imm = map_fds[17];
1193 fixup_sk_storage_map++;
1194 } while (*fixup_sk_storage_map);
1195 }
1196 if (*fixup_map_event_output) {
1197 map_fds[18] = __create_map(type: BPF_MAP_TYPE_PERF_EVENT_ARRAY,
1198 size_key: sizeof(int), size_value: sizeof(int), max_elem: 1, extra_flags: 0);
1199 do {
1200 prog[*fixup_map_event_output].imm = map_fds[18];
1201 fixup_map_event_output++;
1202 } while (*fixup_map_event_output);
1203 }
1204 if (*fixup_map_reuseport_array) {
1205 map_fds[19] = __create_map(type: BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
1206 size_key: sizeof(u32), size_value: sizeof(u64), max_elem: 1, extra_flags: 0);
1207 do {
1208 prog[*fixup_map_reuseport_array].imm = map_fds[19];
1209 fixup_map_reuseport_array++;
1210 } while (*fixup_map_reuseport_array);
1211 }
1212 if (*fixup_map_ringbuf) {
1213 map_fds[20] = create_map(type: BPF_MAP_TYPE_RINGBUF, size_key: 0,
1214 size_value: 0, max_elem: getpagesize());
1215 do {
1216 prog[*fixup_map_ringbuf].imm = map_fds[20];
1217 fixup_map_ringbuf++;
1218 } while (*fixup_map_ringbuf);
1219 }
1220 if (*fixup_map_timer) {
1221 map_fds[21] = create_map_timer();
1222 do {
1223 prog[*fixup_map_timer].imm = map_fds[21];
1224 fixup_map_timer++;
1225 } while (*fixup_map_timer);
1226 }
1227 if (*fixup_map_kptr) {
1228 map_fds[22] = create_map_kptr();
1229 do {
1230 prog[*fixup_map_kptr].imm = map_fds[22];
1231 fixup_map_kptr++;
1232 } while (*fixup_map_kptr);
1233 }
1234
1235 fixup_prog_kfuncs(prog, fd_array, fixup_kfunc_btf_id: test->fixup_kfunc_btf_id);
1236}
1237
1238struct libcap {
1239 struct __user_cap_header_struct hdr;
1240 struct __user_cap_data_struct data[2];
1241};
1242
1243static int set_admin(bool admin)
1244{
1245 int err;
1246
1247 if (admin) {
1248 err = cap_enable_effective(ADMIN_CAPS, NULL);
1249 if (err)
1250 perror("cap_enable_effective(ADMIN_CAPS)");
1251 } else {
1252 err = cap_disable_effective(ADMIN_CAPS, NULL);
1253 if (err)
1254 perror("cap_disable_effective(ADMIN_CAPS)");
1255 }
1256
1257 return err;
1258}
1259
1260static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val,
1261 void *data, size_t size_data)
1262{
1263 __u8 tmp[TEST_DATA_LEN << 2];
1264 __u32 size_tmp = sizeof(tmp);
1265 int err, saved_errno;
1266 LIBBPF_OPTS(bpf_test_run_opts, topts,
1267 .data_in = data,
1268 .data_size_in = size_data,
1269 .data_out = tmp,
1270 .data_size_out = size_tmp,
1271 .repeat = 1,
1272 );
1273
1274 if (unpriv)
1275 set_admin(true);
1276 err = bpf_prog_test_run_opts(fd_prog, &topts);
1277 saved_errno = errno;
1278
1279 if (unpriv)
1280 set_admin(false);
1281
1282 if (err) {
1283 switch (saved_errno) {
1284 case ENOTSUPP:
1285 printf("Did not run the program (not supported) ");
1286 return 0;
1287 case EPERM:
1288 if (unpriv) {
1289 printf("Did not run the program (no permission) ");
1290 return 0;
1291 }
1292 /* fallthrough; */
1293 default:
1294 printf("FAIL: Unexpected bpf_prog_test_run error (%s) ",
1295 strerror(saved_errno));
1296 return err;
1297 }
1298 }
1299
1300 if (topts.retval != expected_val && expected_val != POINTER_VALUE) {
1301 printf("FAIL retval %d != %d ", topts.retval, expected_val);
1302 return 1;
1303 }
1304
1305 return 0;
1306}
1307
1308/* Returns true if every part of exp (tab-separated) appears in log, in order.
1309 *
1310 * If exp is an empty string, returns true.
1311 */
1312static bool cmp_str_seq(const char *log, const char *exp)
1313{
1314 char needle[200];
1315 const char *p, *q;
1316 int len;
1317
1318 do {
1319 if (!strlen(exp))
1320 break;
1321 p = strchr(exp, '\t');
1322 if (!p)
1323 p = exp + strlen(exp);
1324
1325 len = p - exp;
1326 if (len >= sizeof(needle) || !len) {
1327 printf("FAIL\nTestcase bug\n");
1328 return false;
1329 }
1330 strncpy(p: needle, q: exp, size: len);
1331 needle[len] = 0;
1332 q = strstr(log, needle);
1333 if (!q) {
1334 printf("FAIL\nUnexpected verifier log!\n"
1335 "EXP: %s\nRES:\n", needle);
1336 return false;
1337 }
1338 log = q + len;
1339 exp = p + 1;
1340 } while (*p);
1341 return true;
1342}
1343
1344static struct bpf_insn *get_xlated_program(int fd_prog, int *cnt)
1345{
1346 __u32 buf_element_size = sizeof(struct bpf_insn);
1347 struct bpf_prog_info info = {};
1348 __u32 info_len = sizeof(info);
1349 __u32 xlated_prog_len;
1350 struct bpf_insn *buf;
1351
1352 if (bpf_prog_get_info_by_fd(fd_prog, &info, &info_len)) {
1353 perror("bpf_prog_get_info_by_fd failed");
1354 return NULL;
1355 }
1356
1357 xlated_prog_len = info.xlated_prog_len;
1358 if (xlated_prog_len % buf_element_size) {
1359 printf("Program length %d is not multiple of %d\n",
1360 xlated_prog_len, buf_element_size);
1361 return NULL;
1362 }
1363
1364 *cnt = xlated_prog_len / buf_element_size;
1365 buf = calloc(*cnt, buf_element_size);
1366 if (!buf) {
1367 perror("can't allocate xlated program buffer");
1368 return NULL;
1369 }
1370
1371 bzero(&info, sizeof(info));
1372 info.xlated_prog_len = xlated_prog_len;
1373 info.xlated_prog_insns = (__u64)(unsigned long)buf;
1374 if (bpf_prog_get_info_by_fd(fd_prog, &info, &info_len)) {
1375 perror("second bpf_prog_get_info_by_fd failed");
1376 goto out_free_buf;
1377 }
1378
1379 return buf;
1380
1381out_free_buf:
1382 free(buf);
1383 return NULL;
1384}
1385
1386static bool is_null_insn(struct bpf_insn *insn)
1387{
1388 struct bpf_insn null_insn = {};
1389
1390 return memcmp(p: insn, q: &null_insn, size: sizeof(null_insn)) == 0;
1391}
1392
1393static bool is_skip_insn(struct bpf_insn *insn)
1394{
1395 struct bpf_insn skip_insn = SKIP_INSNS();
1396
1397 return memcmp(p: insn, q: &skip_insn, size: sizeof(skip_insn)) == 0;
1398}
1399
1400static int null_terminated_insn_len(struct bpf_insn *seq, int max_len)
1401{
1402 int i;
1403
1404 for (i = 0; i < max_len; ++i) {
1405 if (is_null_insn(insn: &seq[i]))
1406 return i;
1407 }
1408 return max_len;
1409}
1410
1411static bool compare_masked_insn(struct bpf_insn *orig, struct bpf_insn *masked)
1412{
1413 struct bpf_insn orig_masked;
1414
1415 memcpy(&orig_masked, orig, sizeof(orig_masked));
1416 if (masked->imm == INSN_IMM_MASK)
1417 orig_masked.imm = INSN_IMM_MASK;
1418 if (masked->off == INSN_OFF_MASK)
1419 orig_masked.off = INSN_OFF_MASK;
1420
1421 return memcmp(p: &orig_masked, q: masked, size: sizeof(orig_masked)) == 0;
1422}
1423
1424static int find_insn_subseq(struct bpf_insn *seq, struct bpf_insn *subseq,
1425 int seq_len, int subseq_len)
1426{
1427 int i, j;
1428
1429 if (subseq_len > seq_len)
1430 return -1;
1431
1432 for (i = 0; i < seq_len - subseq_len + 1; ++i) {
1433 bool found = true;
1434
1435 for (j = 0; j < subseq_len; ++j) {
1436 if (!compare_masked_insn(orig: &seq[i + j], masked: &subseq[j])) {
1437 found = false;
1438 break;
1439 }
1440 }
1441 if (found)
1442 return i;
1443 }
1444
1445 return -1;
1446}
1447
1448static int find_skip_insn_marker(struct bpf_insn *seq, int len)
1449{
1450 int i;
1451
1452 for (i = 0; i < len; ++i)
1453 if (is_skip_insn(insn: &seq[i]))
1454 return i;
1455
1456 return -1;
1457}
1458
1459/* Return true if all sub-sequences in `subseqs` could be found in
1460 * `seq` one after another. Sub-sequences are separated by a single
1461 * nil instruction.
1462 */
1463static bool find_all_insn_subseqs(struct bpf_insn *seq, struct bpf_insn *subseqs,
1464 int seq_len, int max_subseqs_len)
1465{
1466 int subseqs_len = null_terminated_insn_len(seq: subseqs, max_len: max_subseqs_len);
1467
1468 while (subseqs_len > 0) {
1469 int skip_idx = find_skip_insn_marker(seq: subseqs, len: subseqs_len);
1470 int cur_subseq_len = skip_idx < 0 ? subseqs_len : skip_idx;
1471 int subseq_idx = find_insn_subseq(seq, subseq: subseqs,
1472 seq_len, subseq_len: cur_subseq_len);
1473
1474 if (subseq_idx < 0)
1475 return false;
1476 seq += subseq_idx + cur_subseq_len;
1477 seq_len -= subseq_idx + cur_subseq_len;
1478 subseqs += cur_subseq_len + 1;
1479 subseqs_len -= cur_subseq_len + 1;
1480 }
1481
1482 return true;
1483}
1484
1485static void print_insn(struct bpf_insn *buf, int cnt)
1486{
1487 int i;
1488
1489 printf(" addr op d s off imm\n");
1490 for (i = 0; i < cnt; ++i) {
1491 struct bpf_insn *insn = &buf[i];
1492
1493 if (is_null_insn(insn))
1494 break;
1495
1496 if (is_skip_insn(insn))
1497 printf(" ...\n");
1498 else
1499 printf(" %04x: %02x %1x %x %04hx %08x\n",
1500 i, insn->code, insn->dst_reg,
1501 insn->src_reg, insn->off, insn->imm);
1502 }
1503}
1504
1505static bool check_xlated_program(struct bpf_test *test, int fd_prog)
1506{
1507 struct bpf_insn *buf;
1508 int cnt;
1509 bool result = true;
1510 bool check_expected = !is_null_insn(insn: test->expected_insns);
1511 bool check_unexpected = !is_null_insn(insn: test->unexpected_insns);
1512
1513 if (!check_expected && !check_unexpected)
1514 goto out;
1515
1516 buf = get_xlated_program(fd_prog, cnt: &cnt);
1517 if (!buf) {
1518 printf("FAIL: can't get xlated program\n");
1519 result = false;
1520 goto out;
1521 }
1522
1523 if (check_expected &&
1524 !find_all_insn_subseqs(seq: buf, subseqs: test->expected_insns,
1525 seq_len: cnt, MAX_EXPECTED_INSNS)) {
1526 printf("FAIL: can't find expected subsequence of instructions\n");
1527 result = false;
1528 if (verbose) {
1529 printf("Program:\n");
1530 print_insn(buf, cnt);
1531 printf("Expected subsequence:\n");
1532 print_insn(buf: test->expected_insns, MAX_EXPECTED_INSNS);
1533 }
1534 }
1535
1536 if (check_unexpected &&
1537 find_all_insn_subseqs(seq: buf, subseqs: test->unexpected_insns,
1538 seq_len: cnt, MAX_UNEXPECTED_INSNS)) {
1539 printf("FAIL: found unexpected subsequence of instructions\n");
1540 result = false;
1541 if (verbose) {
1542 printf("Program:\n");
1543 print_insn(buf, cnt);
1544 printf("Un-expected subsequence:\n");
1545 print_insn(buf: test->unexpected_insns, MAX_UNEXPECTED_INSNS);
1546 }
1547 }
1548
1549 free(buf);
1550 out:
1551 return result;
1552}
1553
1554static void do_test_single(struct bpf_test *test, bool unpriv,
1555 int *passes, int *errors)
1556{
1557 int fd_prog, btf_fd, expected_ret, alignment_prevented_execution;
1558 int prog_len, prog_type = test->prog_type;
1559 struct bpf_insn *prog = test->insns;
1560 LIBBPF_OPTS(bpf_prog_load_opts, opts);
1561 int run_errs, run_successes;
1562 int map_fds[MAX_NR_MAPS];
1563 const char *expected_err;
1564 int fd_array[2] = { -1, -1 };
1565 int saved_errno;
1566 int fixup_skips;
1567 __u32 pflags;
1568 int i, err;
1569
1570 fd_prog = -1;
1571 for (i = 0; i < MAX_NR_MAPS; i++)
1572 map_fds[i] = -1;
1573 btf_fd = -1;
1574
1575 if (!prog_type)
1576 prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
1577 fixup_skips = skips;
1578 do_test_fixup(test, prog_type, prog, map_fds, fd_array: &fd_array[1]);
1579 if (test->fill_insns) {
1580 prog = test->fill_insns;
1581 prog_len = test->prog_len;
1582 } else {
1583 prog_len = probe_filter_length(fp: prog);
1584 }
1585 /* If there were some map skips during fixup due to missing bpf
1586 * features, skip this test.
1587 */
1588 if (fixup_skips != skips)
1589 return;
1590
1591 pflags = BPF_F_TEST_RND_HI32;
1592 if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT)
1593 pflags |= BPF_F_STRICT_ALIGNMENT;
1594 if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)
1595 pflags |= BPF_F_ANY_ALIGNMENT;
1596 if (test->flags & ~3)
1597 pflags |= test->flags;
1598
1599 expected_ret = unpriv && test->result_unpriv != UNDEF ?
1600 test->result_unpriv : test->result;
1601 expected_err = unpriv && test->errstr_unpriv ?
1602 test->errstr_unpriv : test->errstr;
1603
1604 opts.expected_attach_type = test->expected_attach_type;
1605 if (verbose)
1606 opts.log_level = verif_log_level | 4; /* force stats */
1607 else if (expected_ret == VERBOSE_ACCEPT)
1608 opts.log_level = 2;
1609 else
1610 opts.log_level = DEFAULT_LIBBPF_LOG_LEVEL;
1611 opts.prog_flags = pflags;
1612 if (fd_array[1] != -1)
1613 opts.fd_array = &fd_array[0];
1614
1615 if ((prog_type == BPF_PROG_TYPE_TRACING ||
1616 prog_type == BPF_PROG_TYPE_LSM) && test->kfunc) {
1617 int attach_btf_id;
1618
1619 attach_btf_id = libbpf_find_vmlinux_btf_id(test->kfunc,
1620 opts.expected_attach_type);
1621 if (attach_btf_id < 0) {
1622 printf("FAIL\nFailed to find BTF ID for '%s'!\n",
1623 test->kfunc);
1624 (*errors)++;
1625 return;
1626 }
1627
1628 opts.attach_btf_id = attach_btf_id;
1629 }
1630
1631 if (test->btf_types[0] != 0) {
1632 btf_fd = load_btf_for_test(test);
1633 if (btf_fd < 0)
1634 goto fail_log;
1635 opts.prog_btf_fd = btf_fd;
1636 }
1637
1638 if (test->func_info_cnt != 0) {
1639 opts.func_info = test->func_info;
1640 opts.func_info_cnt = test->func_info_cnt;
1641 opts.func_info_rec_size = sizeof(test->func_info[0]);
1642 }
1643
1644 opts.log_buf = bpf_vlog;
1645 opts.log_size = sizeof(bpf_vlog);
1646 fd_prog = bpf_prog_load(prog_type, NULL, "GPL", prog, prog_len, &opts);
1647 saved_errno = errno;
1648
1649 /* BPF_PROG_TYPE_TRACING requires more setup and
1650 * bpf_probe_prog_type won't give correct answer
1651 */
1652 if (fd_prog < 0 && prog_type != BPF_PROG_TYPE_TRACING &&
1653 !libbpf_probe_bpf_prog_type(prog_type, NULL)) {
1654 printf("SKIP (unsupported program type %d)\n", prog_type);
1655 skips++;
1656 goto close_fds;
1657 }
1658
1659 if (fd_prog < 0 && saved_errno == ENOTSUPP) {
1660 printf("SKIP (program uses an unsupported feature)\n");
1661 skips++;
1662 goto close_fds;
1663 }
1664
1665 alignment_prevented_execution = 0;
1666
1667 if (expected_ret == ACCEPT || expected_ret == VERBOSE_ACCEPT) {
1668 if (fd_prog < 0) {
1669 printf("FAIL\nFailed to load prog '%s'!\n",
1670 strerror(saved_errno));
1671 goto fail_log;
1672 }
1673#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1674 if (fd_prog >= 0 &&
1675 (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS))
1676 alignment_prevented_execution = 1;
1677#endif
1678 if (expected_ret == VERBOSE_ACCEPT && !cmp_str_seq(log: bpf_vlog, exp: expected_err)) {
1679 goto fail_log;
1680 }
1681 } else {
1682 if (fd_prog >= 0) {
1683 printf("FAIL\nUnexpected success to load!\n");
1684 goto fail_log;
1685 }
1686 if (!expected_err || !cmp_str_seq(log: bpf_vlog, exp: expected_err)) {
1687 printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n",
1688 expected_err, bpf_vlog);
1689 goto fail_log;
1690 }
1691 }
1692
1693 if (!unpriv && test->insn_processed) {
1694 uint32_t insn_processed;
1695 char *proc;
1696
1697 proc = strstr(bpf_vlog, "processed ");
1698 insn_processed = atoi(proc + 10);
1699 if (test->insn_processed != insn_processed) {
1700 printf("FAIL\nUnexpected insn_processed %u vs %u\n",
1701 insn_processed, test->insn_processed);
1702 goto fail_log;
1703 }
1704 }
1705
1706 if (verbose)
1707 printf(", verifier log:\n%s", bpf_vlog);
1708
1709 if (!check_xlated_program(test, fd_prog))
1710 goto fail_log;
1711
1712 run_errs = 0;
1713 run_successes = 0;
1714 if (!alignment_prevented_execution && fd_prog >= 0 && test->runs >= 0) {
1715 uint32_t expected_val;
1716 int i;
1717
1718 if (!test->runs)
1719 test->runs = 1;
1720
1721 for (i = 0; i < test->runs; i++) {
1722 if (unpriv && test->retvals[i].retval_unpriv)
1723 expected_val = test->retvals[i].retval_unpriv;
1724 else
1725 expected_val = test->retvals[i].retval;
1726
1727 err = do_prog_test_run(fd_prog, unpriv, expected_val,
1728 data: test->retvals[i].data,
1729 size_data: sizeof(test->retvals[i].data));
1730 if (err) {
1731 printf("(run %d/%d) ", i + 1, test->runs);
1732 run_errs++;
1733 } else {
1734 run_successes++;
1735 }
1736 }
1737 }
1738
1739 if (!run_errs) {
1740 (*passes)++;
1741 if (run_successes > 1)
1742 printf("%d cases ", run_successes);
1743 printf("OK");
1744 if (alignment_prevented_execution)
1745 printf(" (NOTE: not executed due to unknown alignment)");
1746 printf("\n");
1747 } else {
1748 printf("\n");
1749 goto fail_log;
1750 }
1751close_fds:
1752 if (test->fill_insns)
1753 free(test->fill_insns);
1754 close(fd_prog);
1755 close(btf_fd);
1756 for (i = 0; i < MAX_NR_MAPS; i++)
1757 close(map_fds[i]);
1758 sched_yield();
1759 return;
1760fail_log:
1761 (*errors)++;
1762 printf("%s", bpf_vlog);
1763 goto close_fds;
1764}
1765
1766static bool is_admin(void)
1767{
1768 __u64 caps;
1769
1770 /* The test checks for finer cap as CAP_NET_ADMIN,
1771 * CAP_PERFMON, and CAP_BPF instead of CAP_SYS_ADMIN.
1772 * Thus, disable CAP_SYS_ADMIN at the beginning.
1773 */
1774 if (cap_disable_effective(caps: 1ULL << CAP_SYS_ADMIN, old_caps: &caps)) {
1775 perror("cap_disable_effective(CAP_SYS_ADMIN)");
1776 return false;
1777 }
1778
1779 return (caps & ADMIN_CAPS) == ADMIN_CAPS;
1780}
1781
1782static bool test_as_unpriv(struct bpf_test *test)
1783{
1784#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1785 /* Some architectures have strict alignment requirements. In
1786 * that case, the BPF verifier detects if a program has
1787 * unaligned accesses and rejects them. A user can pass
1788 * BPF_F_ANY_ALIGNMENT to a program to override this
1789 * check. That, however, will only work when a privileged user
1790 * loads a program. An unprivileged user loading a program
1791 * with this flag will be rejected prior entering the
1792 * verifier.
1793 */
1794 if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)
1795 return false;
1796#endif
1797 return !test->prog_type ||
1798 test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER ||
1799 test->prog_type == BPF_PROG_TYPE_CGROUP_SKB;
1800}
1801
1802static int do_test(bool unpriv, unsigned int from, unsigned int to)
1803{
1804 int i, passes = 0, errors = 0;
1805
1806 /* ensure previous instance of the module is unloaded */
1807 unload_bpf_testmod(verbose);
1808
1809 if (load_bpf_testmod(verbose))
1810 return EXIT_FAILURE;
1811
1812 for (i = from; i < to; i++) {
1813 struct bpf_test *test = &tests[i];
1814
1815 /* Program types that are not supported by non-root we
1816 * skip right away.
1817 */
1818 if (test_as_unpriv(test) && unpriv_disabled) {
1819 printf("#%d/u %s SKIP\n", i, test->descr);
1820 skips++;
1821 } else if (test_as_unpriv(test)) {
1822 if (!unpriv)
1823 set_admin(false);
1824 printf("#%d/u %s ", i, test->descr);
1825 do_test_single(test, unpriv: true, passes: &passes, errors: &errors);
1826 if (!unpriv)
1827 set_admin(true);
1828 }
1829
1830 if (unpriv) {
1831 printf("#%d/p %s SKIP\n", i, test->descr);
1832 skips++;
1833 } else {
1834 printf("#%d/p %s ", i, test->descr);
1835 do_test_single(test, unpriv: false, passes: &passes, errors: &errors);
1836 }
1837 }
1838
1839 unload_bpf_testmod(verbose);
1840 kfuncs_cleanup();
1841
1842 printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes,
1843 skips, errors);
1844 return errors ? EXIT_FAILURE : EXIT_SUCCESS;
1845}
1846
1847int main(int argc, char **argv)
1848{
1849 unsigned int from = 0, to = ARRAY_SIZE(tests);
1850 bool unpriv = !is_admin();
1851 int arg = 1;
1852
1853 if (argc > 1 && strcmp(argv[1], "-v") == 0) {
1854 arg++;
1855 verbose = true;
1856 verif_log_level = 1;
1857 argc--;
1858 }
1859 if (argc > 1 && strcmp(argv[1], "-vv") == 0) {
1860 arg++;
1861 verbose = true;
1862 verif_log_level = 2;
1863 argc--;
1864 }
1865
1866 if (argc == 3) {
1867 unsigned int l = atoi(argv[arg]);
1868 unsigned int u = atoi(argv[arg + 1]);
1869
1870 if (l < to && u < to) {
1871 from = l;
1872 to = u + 1;
1873 }
1874 } else if (argc == 2) {
1875 unsigned int t = atoi(argv[arg]);
1876
1877 if (t < to) {
1878 from = t;
1879 to = t + 1;
1880 }
1881 }
1882
1883 unpriv_disabled = get_unpriv_disabled();
1884 if (unpriv && unpriv_disabled) {
1885 printf("Cannot run as unprivileged user with sysctl %s.\n",
1886 UNPRIV_SYSCTL);
1887 return EXIT_FAILURE;
1888 }
1889
1890 /* Use libbpf 1.0 API mode */
1891 libbpf_set_strict_mode(LIBBPF_STRICT_ALL);
1892
1893 bpf_semi_rand_init();
1894 return do_test(unpriv, from, to);
1895}
1896

source code of linux/tools/testing/selftests/bpf/test_verifier.c