1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15
16#include <kvm/iodev.h>
17
18#include <linux/kvm_host.h>
19#include <linux/kvm.h>
20#include <linux/module.h>
21#include <linux/errno.h>
22#include <linux/percpu.h>
23#include <linux/mm.h>
24#include <linux/miscdevice.h>
25#include <linux/vmalloc.h>
26#include <linux/reboot.h>
27#include <linux/debugfs.h>
28#include <linux/highmem.h>
29#include <linux/file.h>
30#include <linux/syscore_ops.h>
31#include <linux/cpu.h>
32#include <linux/sched/signal.h>
33#include <linux/sched/mm.h>
34#include <linux/sched/stat.h>
35#include <linux/cpumask.h>
36#include <linux/smp.h>
37#include <linux/anon_inodes.h>
38#include <linux/profile.h>
39#include <linux/kvm_para.h>
40#include <linux/pagemap.h>
41#include <linux/mman.h>
42#include <linux/swap.h>
43#include <linux/bitops.h>
44#include <linux/spinlock.h>
45#include <linux/compat.h>
46#include <linux/srcu.h>
47#include <linux/hugetlb.h>
48#include <linux/slab.h>
49#include <linux/sort.h>
50#include <linux/bsearch.h>
51#include <linux/io.h>
52#include <linux/lockdep.h>
53#include <linux/kthread.h>
54#include <linux/suspend.h>
55
56#include <asm/processor.h>
57#include <asm/ioctl.h>
58#include <linux/uaccess.h>
59
60#include "coalesced_mmio.h"
61#include "async_pf.h"
62#include "kvm_mm.h"
63#include "vfio.h"
64
65#include <trace/events/ipi.h>
66
67#define CREATE_TRACE_POINTS
68#include <trace/events/kvm.h>
69
70#include <linux/kvm_dirty_ring.h>
71
72
73/* Worst case buffer size needed for holding an integer. */
74#define ITOA_MAX_LEN 12
75
76MODULE_AUTHOR("Qumranet");
77MODULE_LICENSE("GPL");
78
79/* Architectures should define their poll value according to the halt latency */
80unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
81module_param(halt_poll_ns, uint, 0644);
82EXPORT_SYMBOL_GPL(halt_poll_ns);
83
84/* Default doubles per-vcpu halt_poll_ns. */
85unsigned int halt_poll_ns_grow = 2;
86module_param(halt_poll_ns_grow, uint, 0644);
87EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
88
89/* The start value to grow halt_poll_ns from */
90unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
91module_param(halt_poll_ns_grow_start, uint, 0644);
92EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
93
94/* Default resets per-vcpu halt_poll_ns . */
95unsigned int halt_poll_ns_shrink;
96module_param(halt_poll_ns_shrink, uint, 0644);
97EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
98
99/*
100 * Ordering of locks:
101 *
102 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
103 */
104
105DEFINE_MUTEX(kvm_lock);
106LIST_HEAD(vm_list);
107
108static struct kmem_cache *kvm_vcpu_cache;
109
110static __read_mostly struct preempt_ops kvm_preempt_ops;
111static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
112
113struct dentry *kvm_debugfs_dir;
114EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
115
116static const struct file_operations stat_fops_per_vm;
117
118static struct file_operations kvm_chardev_ops;
119
120static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121 unsigned long arg);
122#ifdef CONFIG_KVM_COMPAT
123static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124 unsigned long arg);
125#define KVM_COMPAT(c) .compat_ioctl = (c)
126#else
127/*
128 * For architectures that don't implement a compat infrastructure,
129 * adopt a double line of defense:
130 * - Prevent a compat task from opening /dev/kvm
131 * - If the open has been done by a 64bit task, and the KVM fd
132 * passed to a compat task, let the ioctls fail.
133 */
134static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135 unsigned long arg) { return -EINVAL; }
136
137static int kvm_no_compat_open(struct inode *inode, struct file *file)
138{
139 return is_compat_task() ? -ENODEV : 0;
140}
141#define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
142 .open = kvm_no_compat_open
143#endif
144static int hardware_enable_all(void);
145static void hardware_disable_all(void);
146
147static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148
149#define KVM_EVENT_CREATE_VM 0
150#define KVM_EVENT_DESTROY_VM 1
151static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
152static unsigned long long kvm_createvm_count;
153static unsigned long long kvm_active_vms;
154
155static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
156
157__weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
158{
159}
160
161bool kvm_is_zone_device_page(struct page *page)
162{
163 /*
164 * The metadata used by is_zone_device_page() to determine whether or
165 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
166 * the device has been pinned, e.g. by get_user_pages(). WARN if the
167 * page_count() is zero to help detect bad usage of this helper.
168 */
169 if (WARN_ON_ONCE(!page_count(page)))
170 return false;
171
172 return is_zone_device_page(page);
173}
174
175/*
176 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
177 * page, NULL otherwise. Note, the list of refcounted PG_reserved page types
178 * is likely incomplete, it has been compiled purely through people wanting to
179 * back guest with a certain type of memory and encountering issues.
180 */
181struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
182{
183 struct page *page;
184
185 if (!pfn_valid(pfn))
186 return NULL;
187
188 page = pfn_to_page(pfn);
189 if (!PageReserved(page))
190 return page;
191
192 /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
193 if (is_zero_pfn(pfn))
194 return page;
195
196 /*
197 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
198 * perspective they are "normal" pages, albeit with slightly different
199 * usage rules.
200 */
201 if (kvm_is_zone_device_page(page))
202 return page;
203
204 return NULL;
205}
206
207/*
208 * Switches to specified vcpu, until a matching vcpu_put()
209 */
210void vcpu_load(struct kvm_vcpu *vcpu)
211{
212 int cpu = get_cpu();
213
214 __this_cpu_write(kvm_running_vcpu, vcpu);
215 preempt_notifier_register(notifier: &vcpu->preempt_notifier);
216 kvm_arch_vcpu_load(vcpu, cpu);
217 put_cpu();
218}
219EXPORT_SYMBOL_GPL(vcpu_load);
220
221void vcpu_put(struct kvm_vcpu *vcpu)
222{
223 preempt_disable();
224 kvm_arch_vcpu_put(vcpu);
225 preempt_notifier_unregister(notifier: &vcpu->preempt_notifier);
226 __this_cpu_write(kvm_running_vcpu, NULL);
227 preempt_enable();
228}
229EXPORT_SYMBOL_GPL(vcpu_put);
230
231/* TODO: merge with kvm_arch_vcpu_should_kick */
232static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
233{
234 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
235
236 /*
237 * We need to wait for the VCPU to reenable interrupts and get out of
238 * READING_SHADOW_PAGE_TABLES mode.
239 */
240 if (req & KVM_REQUEST_WAIT)
241 return mode != OUTSIDE_GUEST_MODE;
242
243 /*
244 * Need to kick a running VCPU, but otherwise there is nothing to do.
245 */
246 return mode == IN_GUEST_MODE;
247}
248
249static void ack_kick(void *_completed)
250{
251}
252
253static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
254{
255 if (cpumask_empty(srcp: cpus))
256 return false;
257
258 smp_call_function_many(mask: cpus, func: ack_kick, NULL, wait);
259 return true;
260}
261
262static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
263 struct cpumask *tmp, int current_cpu)
264{
265 int cpu;
266
267 if (likely(!(req & KVM_REQUEST_NO_ACTION)))
268 __kvm_make_request(req, vcpu);
269
270 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
271 return;
272
273 /*
274 * Note, the vCPU could get migrated to a different pCPU at any point
275 * after kvm_request_needs_ipi(), which could result in sending an IPI
276 * to the previous pCPU. But, that's OK because the purpose of the IPI
277 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
278 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
279 * after this point is also OK, as the requirement is only that KVM wait
280 * for vCPUs that were reading SPTEs _before_ any changes were
281 * finalized. See kvm_vcpu_kick() for more details on handling requests.
282 */
283 if (kvm_request_needs_ipi(vcpu, req)) {
284 cpu = READ_ONCE(vcpu->cpu);
285 if (cpu != -1 && cpu != current_cpu)
286 __cpumask_set_cpu(cpu, dstp: tmp);
287 }
288}
289
290bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
291 unsigned long *vcpu_bitmap)
292{
293 struct kvm_vcpu *vcpu;
294 struct cpumask *cpus;
295 int i, me;
296 bool called;
297
298 me = get_cpu();
299
300 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
301 cpumask_clear(dstp: cpus);
302
303 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
304 vcpu = kvm_get_vcpu(kvm, i);
305 if (!vcpu)
306 continue;
307 kvm_make_vcpu_request(vcpu, req, tmp: cpus, current_cpu: me);
308 }
309
310 called = kvm_kick_many_cpus(cpus, wait: !!(req & KVM_REQUEST_WAIT));
311 put_cpu();
312
313 return called;
314}
315
316bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
317 struct kvm_vcpu *except)
318{
319 struct kvm_vcpu *vcpu;
320 struct cpumask *cpus;
321 unsigned long i;
322 bool called;
323 int me;
324
325 me = get_cpu();
326
327 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
328 cpumask_clear(dstp: cpus);
329
330 kvm_for_each_vcpu(i, vcpu, kvm) {
331 if (vcpu == except)
332 continue;
333 kvm_make_vcpu_request(vcpu, req, tmp: cpus, current_cpu: me);
334 }
335
336 called = kvm_kick_many_cpus(cpus, wait: !!(req & KVM_REQUEST_WAIT));
337 put_cpu();
338
339 return called;
340}
341
342bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
343{
344 return kvm_make_all_cpus_request_except(kvm, req, NULL);
345}
346EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
347
348void kvm_flush_remote_tlbs(struct kvm *kvm)
349{
350 ++kvm->stat.generic.remote_tlb_flush_requests;
351
352 /*
353 * We want to publish modifications to the page tables before reading
354 * mode. Pairs with a memory barrier in arch-specific code.
355 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
356 * and smp_mb in walk_shadow_page_lockless_begin/end.
357 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
358 *
359 * There is already an smp_mb__after_atomic() before
360 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
361 * barrier here.
362 */
363 if (!kvm_arch_flush_remote_tlbs(kvm)
364 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
365 ++kvm->stat.generic.remote_tlb_flush;
366}
367EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
368
369void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
370{
371 if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
372 return;
373
374 /*
375 * Fall back to a flushing entire TLBs if the architecture range-based
376 * TLB invalidation is unsupported or can't be performed for whatever
377 * reason.
378 */
379 kvm_flush_remote_tlbs(kvm);
380}
381
382void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
383 const struct kvm_memory_slot *memslot)
384{
385 /*
386 * All current use cases for flushing the TLBs for a specific memslot
387 * are related to dirty logging, and many do the TLB flush out of
388 * mmu_lock. The interaction between the various operations on memslot
389 * must be serialized by slots_locks to ensure the TLB flush from one
390 * operation is observed by any other operation on the same memslot.
391 */
392 lockdep_assert_held(&kvm->slots_lock);
393 kvm_flush_remote_tlbs_range(kvm, gfn: memslot->base_gfn, nr_pages: memslot->npages);
394}
395
396static void kvm_flush_shadow_all(struct kvm *kvm)
397{
398 kvm_arch_flush_shadow_all(kvm);
399 kvm_arch_guest_memory_reclaimed(kvm);
400}
401
402#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
403static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
404 gfp_t gfp_flags)
405{
406 gfp_flags |= mc->gfp_zero;
407
408 if (mc->kmem_cache)
409 return kmem_cache_alloc(cachep: mc->kmem_cache, flags: gfp_flags);
410 else
411 return (void *)__get_free_page(gfp_flags);
412}
413
414int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
415{
416 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
417 void *obj;
418
419 if (mc->nobjs >= min)
420 return 0;
421
422 if (unlikely(!mc->objects)) {
423 if (WARN_ON_ONCE(!capacity))
424 return -EIO;
425
426 mc->objects = kvmalloc_array(n: sizeof(void *), size: capacity, flags: gfp);
427 if (!mc->objects)
428 return -ENOMEM;
429
430 mc->capacity = capacity;
431 }
432
433 /* It is illegal to request a different capacity across topups. */
434 if (WARN_ON_ONCE(mc->capacity != capacity))
435 return -EIO;
436
437 while (mc->nobjs < mc->capacity) {
438 obj = mmu_memory_cache_alloc_obj(mc, gfp_flags: gfp);
439 if (!obj)
440 return mc->nobjs >= min ? 0 : -ENOMEM;
441 mc->objects[mc->nobjs++] = obj;
442 }
443 return 0;
444}
445
446int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
447{
448 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
449}
450
451int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
452{
453 return mc->nobjs;
454}
455
456void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
457{
458 while (mc->nobjs) {
459 if (mc->kmem_cache)
460 kmem_cache_free(s: mc->kmem_cache, objp: mc->objects[--mc->nobjs]);
461 else
462 free_page((unsigned long)mc->objects[--mc->nobjs]);
463 }
464
465 kvfree(addr: mc->objects);
466
467 mc->objects = NULL;
468 mc->capacity = 0;
469}
470
471void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
472{
473 void *p;
474
475 if (WARN_ON(!mc->nobjs))
476 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
477 else
478 p = mc->objects[--mc->nobjs];
479 BUG_ON(!p);
480 return p;
481}
482#endif
483
484static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
485{
486 mutex_init(&vcpu->mutex);
487 vcpu->cpu = -1;
488 vcpu->kvm = kvm;
489 vcpu->vcpu_id = id;
490 vcpu->pid = NULL;
491#ifndef __KVM_HAVE_ARCH_WQP
492 rcuwait_init(w: &vcpu->wait);
493#endif
494 kvm_async_pf_vcpu_init(vcpu);
495
496 kvm_vcpu_set_in_spin_loop(vcpu, val: false);
497 kvm_vcpu_set_dy_eligible(vcpu, val: false);
498 vcpu->preempted = false;
499 vcpu->ready = false;
500 preempt_notifier_init(notifier: &vcpu->preempt_notifier, ops: &kvm_preempt_ops);
501 vcpu->last_used_slot = NULL;
502
503 /* Fill the stats id string for the vcpu */
504 snprintf(buf: vcpu->stats_id, size: sizeof(vcpu->stats_id), fmt: "kvm-%d/vcpu-%d",
505 task_pid_nr(current), id);
506}
507
508static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
509{
510 kvm_arch_vcpu_destroy(vcpu);
511 kvm_dirty_ring_free(ring: &vcpu->dirty_ring);
512
513 /*
514 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
515 * the vcpu->pid pointer, and at destruction time all file descriptors
516 * are already gone.
517 */
518 put_pid(rcu_dereference_protected(vcpu->pid, 1));
519
520 free_page((unsigned long)vcpu->run);
521 kmem_cache_free(s: kvm_vcpu_cache, objp: vcpu);
522}
523
524void kvm_destroy_vcpus(struct kvm *kvm)
525{
526 unsigned long i;
527 struct kvm_vcpu *vcpu;
528
529 kvm_for_each_vcpu(i, vcpu, kvm) {
530 kvm_vcpu_destroy(vcpu);
531 xa_erase(&kvm->vcpu_array, index: i);
532 }
533
534 atomic_set(v: &kvm->online_vcpus, i: 0);
535}
536EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
537
538#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
539static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
540{
541 return container_of(mn, struct kvm, mmu_notifier);
542}
543
544typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
545
546typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
547 unsigned long end);
548
549typedef void (*on_unlock_fn_t)(struct kvm *kvm);
550
551struct kvm_hva_range {
552 unsigned long start;
553 unsigned long end;
554 union kvm_mmu_notifier_arg arg;
555 hva_handler_t handler;
556 on_lock_fn_t on_lock;
557 on_unlock_fn_t on_unlock;
558 bool flush_on_ret;
559 bool may_block;
560};
561
562/*
563 * Use a dedicated stub instead of NULL to indicate that there is no callback
564 * function/handler. The compiler technically can't guarantee that a real
565 * function will have a non-zero address, and so it will generate code to
566 * check for !NULL, whereas comparing against a stub will be elided at compile
567 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
568 */
569static void kvm_null_fn(void)
570{
571
572}
573#define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
574
575static const union kvm_mmu_notifier_arg KVM_MMU_NOTIFIER_NO_ARG;
576
577/* Iterate over each memslot intersecting [start, last] (inclusive) range */
578#define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \
579 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
580 node; \
581 node = interval_tree_iter_next(node, start, last)) \
582
583static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
584 const struct kvm_hva_range *range)
585{
586 bool ret = false, locked = false;
587 struct kvm_gfn_range gfn_range;
588 struct kvm_memory_slot *slot;
589 struct kvm_memslots *slots;
590 int i, idx;
591
592 if (WARN_ON_ONCE(range->end <= range->start))
593 return 0;
594
595 /* A null handler is allowed if and only if on_lock() is provided. */
596 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
597 IS_KVM_NULL_FN(range->handler)))
598 return 0;
599
600 idx = srcu_read_lock(ssp: &kvm->srcu);
601
602 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
603 struct interval_tree_node *node;
604
605 slots = __kvm_memslots(kvm, as_id: i);
606 kvm_for_each_memslot_in_hva_range(node, slots,
607 range->start, range->end - 1) {
608 unsigned long hva_start, hva_end;
609
610 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
611 hva_start = max(range->start, slot->userspace_addr);
612 hva_end = min(range->end, slot->userspace_addr +
613 (slot->npages << PAGE_SHIFT));
614
615 /*
616 * To optimize for the likely case where the address
617 * range is covered by zero or one memslots, don't
618 * bother making these conditional (to avoid writes on
619 * the second or later invocation of the handler).
620 */
621 gfn_range.arg = range->arg;
622 gfn_range.may_block = range->may_block;
623
624 /*
625 * {gfn(page) | page intersects with [hva_start, hva_end)} =
626 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
627 */
628 gfn_range.start = hva_to_gfn_memslot(hva: hva_start, slot);
629 gfn_range.end = hva_to_gfn_memslot(hva: hva_end + PAGE_SIZE - 1, slot);
630 gfn_range.slot = slot;
631
632 if (!locked) {
633 locked = true;
634 KVM_MMU_LOCK(kvm);
635 if (!IS_KVM_NULL_FN(range->on_lock))
636 range->on_lock(kvm, range->start, range->end);
637 if (IS_KVM_NULL_FN(range->handler))
638 break;
639 }
640 ret |= range->handler(kvm, &gfn_range);
641 }
642 }
643
644 if (range->flush_on_ret && ret)
645 kvm_flush_remote_tlbs(kvm);
646
647 if (locked) {
648 KVM_MMU_UNLOCK(kvm);
649 if (!IS_KVM_NULL_FN(range->on_unlock))
650 range->on_unlock(kvm);
651 }
652
653 srcu_read_unlock(ssp: &kvm->srcu, idx);
654
655 /* The notifiers are averse to booleans. :-( */
656 return (int)ret;
657}
658
659static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
660 unsigned long start,
661 unsigned long end,
662 union kvm_mmu_notifier_arg arg,
663 hva_handler_t handler)
664{
665 struct kvm *kvm = mmu_notifier_to_kvm(mn);
666 const struct kvm_hva_range range = {
667 .start = start,
668 .end = end,
669 .arg = arg,
670 .handler = handler,
671 .on_lock = (void *)kvm_null_fn,
672 .on_unlock = (void *)kvm_null_fn,
673 .flush_on_ret = true,
674 .may_block = false,
675 };
676
677 return __kvm_handle_hva_range(kvm, range: &range);
678}
679
680static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
681 unsigned long start,
682 unsigned long end,
683 hva_handler_t handler)
684{
685 struct kvm *kvm = mmu_notifier_to_kvm(mn);
686 const struct kvm_hva_range range = {
687 .start = start,
688 .end = end,
689 .handler = handler,
690 .on_lock = (void *)kvm_null_fn,
691 .on_unlock = (void *)kvm_null_fn,
692 .flush_on_ret = false,
693 .may_block = false,
694 };
695
696 return __kvm_handle_hva_range(kvm, range: &range);
697}
698
699static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
700{
701 /*
702 * Skipping invalid memslots is correct if and only change_pte() is
703 * surrounded by invalidate_range_{start,end}(), which is currently
704 * guaranteed by the primary MMU. If that ever changes, KVM needs to
705 * unmap the memslot instead of skipping the memslot to ensure that KVM
706 * doesn't hold references to the old PFN.
707 */
708 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
709
710 if (range->slot->flags & KVM_MEMSLOT_INVALID)
711 return false;
712
713 return kvm_set_spte_gfn(kvm, range);
714}
715
716static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
717 struct mm_struct *mm,
718 unsigned long address,
719 pte_t pte)
720{
721 struct kvm *kvm = mmu_notifier_to_kvm(mn);
722 const union kvm_mmu_notifier_arg arg = { .pte = pte };
723
724 trace_kvm_set_spte_hva(hva: address);
725
726 /*
727 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
728 * If mmu_invalidate_in_progress is zero, then no in-progress
729 * invalidations, including this one, found a relevant memslot at
730 * start(); rechecking memslots here is unnecessary. Note, a false
731 * positive (count elevated by a different invalidation) is sub-optimal
732 * but functionally ok.
733 */
734 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
735 if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
736 return;
737
738 kvm_handle_hva_range(mn, start: address, end: address + 1, arg, handler: kvm_change_spte_gfn);
739}
740
741void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
742 unsigned long end)
743{
744 /*
745 * The count increase must become visible at unlock time as no
746 * spte can be established without taking the mmu_lock and
747 * count is also read inside the mmu_lock critical section.
748 */
749 kvm->mmu_invalidate_in_progress++;
750 if (likely(kvm->mmu_invalidate_in_progress == 1)) {
751 kvm->mmu_invalidate_range_start = start;
752 kvm->mmu_invalidate_range_end = end;
753 } else {
754 /*
755 * Fully tracking multiple concurrent ranges has diminishing
756 * returns. Keep things simple and just find the minimal range
757 * which includes the current and new ranges. As there won't be
758 * enough information to subtract a range after its invalidate
759 * completes, any ranges invalidated concurrently will
760 * accumulate and persist until all outstanding invalidates
761 * complete.
762 */
763 kvm->mmu_invalidate_range_start =
764 min(kvm->mmu_invalidate_range_start, start);
765 kvm->mmu_invalidate_range_end =
766 max(kvm->mmu_invalidate_range_end, end);
767 }
768}
769
770static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
771 const struct mmu_notifier_range *range)
772{
773 struct kvm *kvm = mmu_notifier_to_kvm(mn);
774 const struct kvm_hva_range hva_range = {
775 .start = range->start,
776 .end = range->end,
777 .handler = kvm_unmap_gfn_range,
778 .on_lock = kvm_mmu_invalidate_begin,
779 .on_unlock = kvm_arch_guest_memory_reclaimed,
780 .flush_on_ret = true,
781 .may_block = mmu_notifier_range_blockable(range),
782 };
783
784 trace_kvm_unmap_hva_range(start: range->start, end: range->end);
785
786 /*
787 * Prevent memslot modification between range_start() and range_end()
788 * so that conditionally locking provides the same result in both
789 * functions. Without that guarantee, the mmu_invalidate_in_progress
790 * adjustments will be imbalanced.
791 *
792 * Pairs with the decrement in range_end().
793 */
794 spin_lock(lock: &kvm->mn_invalidate_lock);
795 kvm->mn_active_invalidate_count++;
796 spin_unlock(lock: &kvm->mn_invalidate_lock);
797
798 /*
799 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
800 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
801 * each cache's lock. There are relatively few caches in existence at
802 * any given time, and the caches themselves can check for hva overlap,
803 * i.e. don't need to rely on memslot overlap checks for performance.
804 * Because this runs without holding mmu_lock, the pfn caches must use
805 * mn_active_invalidate_count (see above) instead of
806 * mmu_invalidate_in_progress.
807 */
808 gfn_to_pfn_cache_invalidate_start(kvm, start: range->start, end: range->end,
809 may_block: hva_range.may_block);
810
811 __kvm_handle_hva_range(kvm, range: &hva_range);
812
813 return 0;
814}
815
816void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
817 unsigned long end)
818{
819 /*
820 * This sequence increase will notify the kvm page fault that
821 * the page that is going to be mapped in the spte could have
822 * been freed.
823 */
824 kvm->mmu_invalidate_seq++;
825 smp_wmb();
826 /*
827 * The above sequence increase must be visible before the
828 * below count decrease, which is ensured by the smp_wmb above
829 * in conjunction with the smp_rmb in mmu_invalidate_retry().
830 */
831 kvm->mmu_invalidate_in_progress--;
832}
833
834static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
835 const struct mmu_notifier_range *range)
836{
837 struct kvm *kvm = mmu_notifier_to_kvm(mn);
838 const struct kvm_hva_range hva_range = {
839 .start = range->start,
840 .end = range->end,
841 .handler = (void *)kvm_null_fn,
842 .on_lock = kvm_mmu_invalidate_end,
843 .on_unlock = (void *)kvm_null_fn,
844 .flush_on_ret = false,
845 .may_block = mmu_notifier_range_blockable(range),
846 };
847 bool wake;
848
849 __kvm_handle_hva_range(kvm, range: &hva_range);
850
851 /* Pairs with the increment in range_start(). */
852 spin_lock(lock: &kvm->mn_invalidate_lock);
853 wake = (--kvm->mn_active_invalidate_count == 0);
854 spin_unlock(lock: &kvm->mn_invalidate_lock);
855
856 /*
857 * There can only be one waiter, since the wait happens under
858 * slots_lock.
859 */
860 if (wake)
861 rcuwait_wake_up(w: &kvm->mn_memslots_update_rcuwait);
862
863 BUG_ON(kvm->mmu_invalidate_in_progress < 0);
864}
865
866static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
867 struct mm_struct *mm,
868 unsigned long start,
869 unsigned long end)
870{
871 trace_kvm_age_hva(start, end);
872
873 return kvm_handle_hva_range(mn, start, end, arg: KVM_MMU_NOTIFIER_NO_ARG,
874 handler: kvm_age_gfn);
875}
876
877static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
878 struct mm_struct *mm,
879 unsigned long start,
880 unsigned long end)
881{
882 trace_kvm_age_hva(start, end);
883
884 /*
885 * Even though we do not flush TLB, this will still adversely
886 * affect performance on pre-Haswell Intel EPT, where there is
887 * no EPT Access Bit to clear so that we have to tear down EPT
888 * tables instead. If we find this unacceptable, we can always
889 * add a parameter to kvm_age_hva so that it effectively doesn't
890 * do anything on clear_young.
891 *
892 * Also note that currently we never issue secondary TLB flushes
893 * from clear_young, leaving this job up to the regular system
894 * cadence. If we find this inaccurate, we might come up with a
895 * more sophisticated heuristic later.
896 */
897 return kvm_handle_hva_range_no_flush(mn, start, end, handler: kvm_age_gfn);
898}
899
900static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
901 struct mm_struct *mm,
902 unsigned long address)
903{
904 trace_kvm_test_age_hva(hva: address);
905
906 return kvm_handle_hva_range_no_flush(mn, start: address, end: address + 1,
907 handler: kvm_test_age_gfn);
908}
909
910static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
911 struct mm_struct *mm)
912{
913 struct kvm *kvm = mmu_notifier_to_kvm(mn);
914 int idx;
915
916 idx = srcu_read_lock(ssp: &kvm->srcu);
917 kvm_flush_shadow_all(kvm);
918 srcu_read_unlock(ssp: &kvm->srcu, idx);
919}
920
921static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
922 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
923 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
924 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
925 .clear_young = kvm_mmu_notifier_clear_young,
926 .test_young = kvm_mmu_notifier_test_young,
927 .change_pte = kvm_mmu_notifier_change_pte,
928 .release = kvm_mmu_notifier_release,
929};
930
931static int kvm_init_mmu_notifier(struct kvm *kvm)
932{
933 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
934 return mmu_notifier_register(subscription: &kvm->mmu_notifier, current->mm);
935}
936
937#else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
938
939static int kvm_init_mmu_notifier(struct kvm *kvm)
940{
941 return 0;
942}
943
944#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
945
946#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
947static int kvm_pm_notifier_call(struct notifier_block *bl,
948 unsigned long state,
949 void *unused)
950{
951 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
952
953 return kvm_arch_pm_notifier(kvm, state);
954}
955
956static void kvm_init_pm_notifier(struct kvm *kvm)
957{
958 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
959 /* Suspend KVM before we suspend ftrace, RCU, etc. */
960 kvm->pm_notifier.priority = INT_MAX;
961 register_pm_notifier(nb: &kvm->pm_notifier);
962}
963
964static void kvm_destroy_pm_notifier(struct kvm *kvm)
965{
966 unregister_pm_notifier(nb: &kvm->pm_notifier);
967}
968#else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
969static void kvm_init_pm_notifier(struct kvm *kvm)
970{
971}
972
973static void kvm_destroy_pm_notifier(struct kvm *kvm)
974{
975}
976#endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
977
978static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
979{
980 if (!memslot->dirty_bitmap)
981 return;
982
983 kvfree(addr: memslot->dirty_bitmap);
984 memslot->dirty_bitmap = NULL;
985}
986
987/* This does not remove the slot from struct kvm_memslots data structures */
988static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
989{
990 kvm_destroy_dirty_bitmap(memslot: slot);
991
992 kvm_arch_free_memslot(kvm, slot);
993
994 kfree(objp: slot);
995}
996
997static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
998{
999 struct hlist_node *idnode;
1000 struct kvm_memory_slot *memslot;
1001 int bkt;
1002
1003 /*
1004 * The same memslot objects live in both active and inactive sets,
1005 * arbitrarily free using index '1' so the second invocation of this
1006 * function isn't operating over a structure with dangling pointers
1007 * (even though this function isn't actually touching them).
1008 */
1009 if (!slots->node_idx)
1010 return;
1011
1012 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
1013 kvm_free_memslot(kvm, slot: memslot);
1014}
1015
1016static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
1017{
1018 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
1019 case KVM_STATS_TYPE_INSTANT:
1020 return 0444;
1021 case KVM_STATS_TYPE_CUMULATIVE:
1022 case KVM_STATS_TYPE_PEAK:
1023 default:
1024 return 0644;
1025 }
1026}
1027
1028
1029static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1030{
1031 int i;
1032 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1033 kvm_vcpu_stats_header.num_desc;
1034
1035 if (IS_ERR(ptr: kvm->debugfs_dentry))
1036 return;
1037
1038 debugfs_remove_recursive(dentry: kvm->debugfs_dentry);
1039
1040 if (kvm->debugfs_stat_data) {
1041 for (i = 0; i < kvm_debugfs_num_entries; i++)
1042 kfree(objp: kvm->debugfs_stat_data[i]);
1043 kfree(objp: kvm->debugfs_stat_data);
1044 }
1045}
1046
1047static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1048{
1049 static DEFINE_MUTEX(kvm_debugfs_lock);
1050 struct dentry *dent;
1051 char dir_name[ITOA_MAX_LEN * 2];
1052 struct kvm_stat_data *stat_data;
1053 const struct _kvm_stats_desc *pdesc;
1054 int i, ret = -ENOMEM;
1055 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1056 kvm_vcpu_stats_header.num_desc;
1057
1058 if (!debugfs_initialized())
1059 return 0;
1060
1061 snprintf(buf: dir_name, size: sizeof(dir_name), fmt: "%d-%s", task_pid_nr(current), fdname);
1062 mutex_lock(&kvm_debugfs_lock);
1063 dent = debugfs_lookup(name: dir_name, parent: kvm_debugfs_dir);
1064 if (dent) {
1065 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1066 dput(dent);
1067 mutex_unlock(lock: &kvm_debugfs_lock);
1068 return 0;
1069 }
1070 dent = debugfs_create_dir(name: dir_name, parent: kvm_debugfs_dir);
1071 mutex_unlock(lock: &kvm_debugfs_lock);
1072 if (IS_ERR(ptr: dent))
1073 return 0;
1074
1075 kvm->debugfs_dentry = dent;
1076 kvm->debugfs_stat_data = kcalloc(n: kvm_debugfs_num_entries,
1077 size: sizeof(*kvm->debugfs_stat_data),
1078 GFP_KERNEL_ACCOUNT);
1079 if (!kvm->debugfs_stat_data)
1080 goto out_err;
1081
1082 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1083 pdesc = &kvm_vm_stats_desc[i];
1084 stat_data = kzalloc(size: sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1085 if (!stat_data)
1086 goto out_err;
1087
1088 stat_data->kvm = kvm;
1089 stat_data->desc = pdesc;
1090 stat_data->kind = KVM_STAT_VM;
1091 kvm->debugfs_stat_data[i] = stat_data;
1092 debugfs_create_file(name: pdesc->name, mode: kvm_stats_debugfs_mode(pdesc),
1093 parent: kvm->debugfs_dentry, data: stat_data,
1094 fops: &stat_fops_per_vm);
1095 }
1096
1097 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1098 pdesc = &kvm_vcpu_stats_desc[i];
1099 stat_data = kzalloc(size: sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1100 if (!stat_data)
1101 goto out_err;
1102
1103 stat_data->kvm = kvm;
1104 stat_data->desc = pdesc;
1105 stat_data->kind = KVM_STAT_VCPU;
1106 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1107 debugfs_create_file(name: pdesc->name, mode: kvm_stats_debugfs_mode(pdesc),
1108 parent: kvm->debugfs_dentry, data: stat_data,
1109 fops: &stat_fops_per_vm);
1110 }
1111
1112 ret = kvm_arch_create_vm_debugfs(kvm);
1113 if (ret)
1114 goto out_err;
1115
1116 return 0;
1117out_err:
1118 kvm_destroy_vm_debugfs(kvm);
1119 return ret;
1120}
1121
1122/*
1123 * Called after the VM is otherwise initialized, but just before adding it to
1124 * the vm_list.
1125 */
1126int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1127{
1128 return 0;
1129}
1130
1131/*
1132 * Called just after removing the VM from the vm_list, but before doing any
1133 * other destruction.
1134 */
1135void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1136{
1137}
1138
1139/*
1140 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should
1141 * be setup already, so we can create arch-specific debugfs entries under it.
1142 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1143 * a per-arch destroy interface is not needed.
1144 */
1145int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1146{
1147 return 0;
1148}
1149
1150static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1151{
1152 struct kvm *kvm = kvm_arch_alloc_vm();
1153 struct kvm_memslots *slots;
1154 int r = -ENOMEM;
1155 int i, j;
1156
1157 if (!kvm)
1158 return ERR_PTR(error: -ENOMEM);
1159
1160 /* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */
1161 __module_get(module: kvm_chardev_ops.owner);
1162
1163 KVM_MMU_LOCK_INIT(kvm);
1164 mmgrab(current->mm);
1165 kvm->mm = current->mm;
1166 kvm_eventfd_init(kvm);
1167 mutex_init(&kvm->lock);
1168 mutex_init(&kvm->irq_lock);
1169 mutex_init(&kvm->slots_lock);
1170 mutex_init(&kvm->slots_arch_lock);
1171 spin_lock_init(&kvm->mn_invalidate_lock);
1172 rcuwait_init(w: &kvm->mn_memslots_update_rcuwait);
1173 xa_init(xa: &kvm->vcpu_array);
1174
1175 INIT_LIST_HEAD(list: &kvm->gpc_list);
1176 spin_lock_init(&kvm->gpc_lock);
1177
1178 INIT_LIST_HEAD(list: &kvm->devices);
1179 kvm->max_vcpus = KVM_MAX_VCPUS;
1180
1181 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1182
1183 /*
1184 * Force subsequent debugfs file creations to fail if the VM directory
1185 * is not created (by kvm_create_vm_debugfs()).
1186 */
1187 kvm->debugfs_dentry = ERR_PTR(error: -ENOENT);
1188
1189 snprintf(buf: kvm->stats_id, size: sizeof(kvm->stats_id), fmt: "kvm-%d",
1190 task_pid_nr(current));
1191
1192 if (init_srcu_struct(&kvm->srcu))
1193 goto out_err_no_srcu;
1194 if (init_srcu_struct(&kvm->irq_srcu))
1195 goto out_err_no_irq_srcu;
1196
1197 refcount_set(r: &kvm->users_count, n: 1);
1198 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1199 for (j = 0; j < 2; j++) {
1200 slots = &kvm->__memslots[i][j];
1201
1202 atomic_long_set(v: &slots->last_used_slot, i: (unsigned long)NULL);
1203 slots->hva_tree = RB_ROOT_CACHED;
1204 slots->gfn_tree = RB_ROOT;
1205 hash_init(slots->id_hash);
1206 slots->node_idx = j;
1207
1208 /* Generations must be different for each address space. */
1209 slots->generation = i;
1210 }
1211
1212 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1213 }
1214
1215 for (i = 0; i < KVM_NR_BUSES; i++) {
1216 rcu_assign_pointer(kvm->buses[i],
1217 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1218 if (!kvm->buses[i])
1219 goto out_err_no_arch_destroy_vm;
1220 }
1221
1222 r = kvm_arch_init_vm(kvm, type);
1223 if (r)
1224 goto out_err_no_arch_destroy_vm;
1225
1226 r = hardware_enable_all();
1227 if (r)
1228 goto out_err_no_disable;
1229
1230#ifdef CONFIG_HAVE_KVM_IRQFD
1231 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1232#endif
1233
1234 r = kvm_init_mmu_notifier(kvm);
1235 if (r)
1236 goto out_err_no_mmu_notifier;
1237
1238 r = kvm_coalesced_mmio_init(kvm);
1239 if (r < 0)
1240 goto out_no_coalesced_mmio;
1241
1242 r = kvm_create_vm_debugfs(kvm, fdname);
1243 if (r)
1244 goto out_err_no_debugfs;
1245
1246 r = kvm_arch_post_init_vm(kvm);
1247 if (r)
1248 goto out_err;
1249
1250 mutex_lock(&kvm_lock);
1251 list_add(new: &kvm->vm_list, head: &vm_list);
1252 mutex_unlock(lock: &kvm_lock);
1253
1254 preempt_notifier_inc();
1255 kvm_init_pm_notifier(kvm);
1256
1257 return kvm;
1258
1259out_err:
1260 kvm_destroy_vm_debugfs(kvm);
1261out_err_no_debugfs:
1262 kvm_coalesced_mmio_free(kvm);
1263out_no_coalesced_mmio:
1264#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1265 if (kvm->mmu_notifier.ops)
1266 mmu_notifier_unregister(subscription: &kvm->mmu_notifier, current->mm);
1267#endif
1268out_err_no_mmu_notifier:
1269 hardware_disable_all();
1270out_err_no_disable:
1271 kvm_arch_destroy_vm(kvm);
1272out_err_no_arch_destroy_vm:
1273 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1274 for (i = 0; i < KVM_NR_BUSES; i++)
1275 kfree(objp: kvm_get_bus(kvm, idx: i));
1276 cleanup_srcu_struct(ssp: &kvm->irq_srcu);
1277out_err_no_irq_srcu:
1278 cleanup_srcu_struct(ssp: &kvm->srcu);
1279out_err_no_srcu:
1280 kvm_arch_free_vm(kvm);
1281 mmdrop(current->mm);
1282 module_put(module: kvm_chardev_ops.owner);
1283 return ERR_PTR(error: r);
1284}
1285
1286static void kvm_destroy_devices(struct kvm *kvm)
1287{
1288 struct kvm_device *dev, *tmp;
1289
1290 /*
1291 * We do not need to take the kvm->lock here, because nobody else
1292 * has a reference to the struct kvm at this point and therefore
1293 * cannot access the devices list anyhow.
1294 */
1295 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1296 list_del(entry: &dev->vm_node);
1297 dev->ops->destroy(dev);
1298 }
1299}
1300
1301static void kvm_destroy_vm(struct kvm *kvm)
1302{
1303 int i;
1304 struct mm_struct *mm = kvm->mm;
1305
1306 kvm_destroy_pm_notifier(kvm);
1307 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1308 kvm_destroy_vm_debugfs(kvm);
1309 kvm_arch_sync_events(kvm);
1310 mutex_lock(&kvm_lock);
1311 list_del(entry: &kvm->vm_list);
1312 mutex_unlock(lock: &kvm_lock);
1313 kvm_arch_pre_destroy_vm(kvm);
1314
1315 kvm_free_irq_routing(kvm);
1316 for (i = 0; i < KVM_NR_BUSES; i++) {
1317 struct kvm_io_bus *bus = kvm_get_bus(kvm, idx: i);
1318
1319 if (bus)
1320 kvm_io_bus_destroy(bus);
1321 kvm->buses[i] = NULL;
1322 }
1323 kvm_coalesced_mmio_free(kvm);
1324#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1325 mmu_notifier_unregister(subscription: &kvm->mmu_notifier, mm: kvm->mm);
1326 /*
1327 * At this point, pending calls to invalidate_range_start()
1328 * have completed but no more MMU notifiers will run, so
1329 * mn_active_invalidate_count may remain unbalanced.
1330 * No threads can be waiting in kvm_swap_active_memslots() as the
1331 * last reference on KVM has been dropped, but freeing
1332 * memslots would deadlock without this manual intervention.
1333 */
1334 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1335 kvm->mn_active_invalidate_count = 0;
1336#else
1337 kvm_flush_shadow_all(kvm);
1338#endif
1339 kvm_arch_destroy_vm(kvm);
1340 kvm_destroy_devices(kvm);
1341 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1342 kvm_free_memslots(kvm, slots: &kvm->__memslots[i][0]);
1343 kvm_free_memslots(kvm, slots: &kvm->__memslots[i][1]);
1344 }
1345 cleanup_srcu_struct(ssp: &kvm->irq_srcu);
1346 cleanup_srcu_struct(ssp: &kvm->srcu);
1347 kvm_arch_free_vm(kvm);
1348 preempt_notifier_dec();
1349 hardware_disable_all();
1350 mmdrop(mm);
1351 module_put(module: kvm_chardev_ops.owner);
1352}
1353
1354void kvm_get_kvm(struct kvm *kvm)
1355{
1356 refcount_inc(r: &kvm->users_count);
1357}
1358EXPORT_SYMBOL_GPL(kvm_get_kvm);
1359
1360/*
1361 * Make sure the vm is not during destruction, which is a safe version of
1362 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise.
1363 */
1364bool kvm_get_kvm_safe(struct kvm *kvm)
1365{
1366 return refcount_inc_not_zero(r: &kvm->users_count);
1367}
1368EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1369
1370void kvm_put_kvm(struct kvm *kvm)
1371{
1372 if (refcount_dec_and_test(r: &kvm->users_count))
1373 kvm_destroy_vm(kvm);
1374}
1375EXPORT_SYMBOL_GPL(kvm_put_kvm);
1376
1377/*
1378 * Used to put a reference that was taken on behalf of an object associated
1379 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1380 * of the new file descriptor fails and the reference cannot be transferred to
1381 * its final owner. In such cases, the caller is still actively using @kvm and
1382 * will fail miserably if the refcount unexpectedly hits zero.
1383 */
1384void kvm_put_kvm_no_destroy(struct kvm *kvm)
1385{
1386 WARN_ON(refcount_dec_and_test(&kvm->users_count));
1387}
1388EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1389
1390static int kvm_vm_release(struct inode *inode, struct file *filp)
1391{
1392 struct kvm *kvm = filp->private_data;
1393
1394 kvm_irqfd_release(kvm);
1395
1396 kvm_put_kvm(kvm);
1397 return 0;
1398}
1399
1400/*
1401 * Allocation size is twice as large as the actual dirty bitmap size.
1402 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1403 */
1404static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1405{
1406 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1407
1408 memslot->dirty_bitmap = __vcalloc(n: 2, size: dirty_bytes, GFP_KERNEL_ACCOUNT);
1409 if (!memslot->dirty_bitmap)
1410 return -ENOMEM;
1411
1412 return 0;
1413}
1414
1415static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1416{
1417 struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1418 int node_idx_inactive = active->node_idx ^ 1;
1419
1420 return &kvm->__memslots[as_id][node_idx_inactive];
1421}
1422
1423/*
1424 * Helper to get the address space ID when one of memslot pointers may be NULL.
1425 * This also serves as a sanity that at least one of the pointers is non-NULL,
1426 * and that their address space IDs don't diverge.
1427 */
1428static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1429 struct kvm_memory_slot *b)
1430{
1431 if (WARN_ON_ONCE(!a && !b))
1432 return 0;
1433
1434 if (!a)
1435 return b->as_id;
1436 if (!b)
1437 return a->as_id;
1438
1439 WARN_ON_ONCE(a->as_id != b->as_id);
1440 return a->as_id;
1441}
1442
1443static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1444 struct kvm_memory_slot *slot)
1445{
1446 struct rb_root *gfn_tree = &slots->gfn_tree;
1447 struct rb_node **node, *parent;
1448 int idx = slots->node_idx;
1449
1450 parent = NULL;
1451 for (node = &gfn_tree->rb_node; *node; ) {
1452 struct kvm_memory_slot *tmp;
1453
1454 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1455 parent = *node;
1456 if (slot->base_gfn < tmp->base_gfn)
1457 node = &(*node)->rb_left;
1458 else if (slot->base_gfn > tmp->base_gfn)
1459 node = &(*node)->rb_right;
1460 else
1461 BUG();
1462 }
1463
1464 rb_link_node(node: &slot->gfn_node[idx], parent, rb_link: node);
1465 rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1466}
1467
1468static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1469 struct kvm_memory_slot *slot)
1470{
1471 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1472}
1473
1474static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1475 struct kvm_memory_slot *old,
1476 struct kvm_memory_slot *new)
1477{
1478 int idx = slots->node_idx;
1479
1480 WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1481
1482 rb_replace_node(victim: &old->gfn_node[idx], new: &new->gfn_node[idx],
1483 root: &slots->gfn_tree);
1484}
1485
1486/*
1487 * Replace @old with @new in the inactive memslots.
1488 *
1489 * With NULL @old this simply adds @new.
1490 * With NULL @new this simply removes @old.
1491 *
1492 * If @new is non-NULL its hva_node[slots_idx] range has to be set
1493 * appropriately.
1494 */
1495static void kvm_replace_memslot(struct kvm *kvm,
1496 struct kvm_memory_slot *old,
1497 struct kvm_memory_slot *new)
1498{
1499 int as_id = kvm_memslots_get_as_id(a: old, b: new);
1500 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1501 int idx = slots->node_idx;
1502
1503 if (old) {
1504 hash_del(node: &old->id_node[idx]);
1505 interval_tree_remove(node: &old->hva_node[idx], root: &slots->hva_tree);
1506
1507 if ((long)old == atomic_long_read(v: &slots->last_used_slot))
1508 atomic_long_set(v: &slots->last_used_slot, i: (long)new);
1509
1510 if (!new) {
1511 kvm_erase_gfn_node(slots, slot: old);
1512 return;
1513 }
1514 }
1515
1516 /*
1517 * Initialize @new's hva range. Do this even when replacing an @old
1518 * slot, kvm_copy_memslot() deliberately does not touch node data.
1519 */
1520 new->hva_node[idx].start = new->userspace_addr;
1521 new->hva_node[idx].last = new->userspace_addr +
1522 (new->npages << PAGE_SHIFT) - 1;
1523
1524 /*
1525 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(),
1526 * hva_node needs to be swapped with remove+insert even though hva can't
1527 * change when replacing an existing slot.
1528 */
1529 hash_add(slots->id_hash, &new->id_node[idx], new->id);
1530 interval_tree_insert(node: &new->hva_node[idx], root: &slots->hva_tree);
1531
1532 /*
1533 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1534 * switch the node in the gfn tree instead of removing the old and
1535 * inserting the new as two separate operations. Replacement is a
1536 * single O(1) operation versus two O(log(n)) operations for
1537 * remove+insert.
1538 */
1539 if (old && old->base_gfn == new->base_gfn) {
1540 kvm_replace_gfn_node(slots, old, new);
1541 } else {
1542 if (old)
1543 kvm_erase_gfn_node(slots, slot: old);
1544 kvm_insert_gfn_node(slots, slot: new);
1545 }
1546}
1547
1548static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1549{
1550 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1551
1552#ifdef __KVM_HAVE_READONLY_MEM
1553 valid_flags |= KVM_MEM_READONLY;
1554#endif
1555
1556 if (mem->flags & ~valid_flags)
1557 return -EINVAL;
1558
1559 return 0;
1560}
1561
1562static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1563{
1564 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1565
1566 /* Grab the generation from the activate memslots. */
1567 u64 gen = __kvm_memslots(kvm, as_id)->generation;
1568
1569 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1570 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1571
1572 /*
1573 * Do not store the new memslots while there are invalidations in
1574 * progress, otherwise the locking in invalidate_range_start and
1575 * invalidate_range_end will be unbalanced.
1576 */
1577 spin_lock(lock: &kvm->mn_invalidate_lock);
1578 prepare_to_rcuwait(w: &kvm->mn_memslots_update_rcuwait);
1579 while (kvm->mn_active_invalidate_count) {
1580 set_current_state(TASK_UNINTERRUPTIBLE);
1581 spin_unlock(lock: &kvm->mn_invalidate_lock);
1582 schedule();
1583 spin_lock(lock: &kvm->mn_invalidate_lock);
1584 }
1585 finish_rcuwait(w: &kvm->mn_memslots_update_rcuwait);
1586 rcu_assign_pointer(kvm->memslots[as_id], slots);
1587 spin_unlock(lock: &kvm->mn_invalidate_lock);
1588
1589 /*
1590 * Acquired in kvm_set_memslot. Must be released before synchronize
1591 * SRCU below in order to avoid deadlock with another thread
1592 * acquiring the slots_arch_lock in an srcu critical section.
1593 */
1594 mutex_unlock(lock: &kvm->slots_arch_lock);
1595
1596 synchronize_srcu_expedited(ssp: &kvm->srcu);
1597
1598 /*
1599 * Increment the new memslot generation a second time, dropping the
1600 * update in-progress flag and incrementing the generation based on
1601 * the number of address spaces. This provides a unique and easily
1602 * identifiable generation number while the memslots are in flux.
1603 */
1604 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1605
1606 /*
1607 * Generations must be unique even across address spaces. We do not need
1608 * a global counter for that, instead the generation space is evenly split
1609 * across address spaces. For example, with two address spaces, address
1610 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1611 * use generations 1, 3, 5, ...
1612 */
1613 gen += KVM_ADDRESS_SPACE_NUM;
1614
1615 kvm_arch_memslots_updated(kvm, gen);
1616
1617 slots->generation = gen;
1618}
1619
1620static int kvm_prepare_memory_region(struct kvm *kvm,
1621 const struct kvm_memory_slot *old,
1622 struct kvm_memory_slot *new,
1623 enum kvm_mr_change change)
1624{
1625 int r;
1626
1627 /*
1628 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1629 * will be freed on "commit". If logging is enabled in both old and
1630 * new, reuse the existing bitmap. If logging is enabled only in the
1631 * new and KVM isn't using a ring buffer, allocate and initialize a
1632 * new bitmap.
1633 */
1634 if (change != KVM_MR_DELETE) {
1635 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1636 new->dirty_bitmap = NULL;
1637 else if (old && old->dirty_bitmap)
1638 new->dirty_bitmap = old->dirty_bitmap;
1639 else if (kvm_use_dirty_bitmap(kvm)) {
1640 r = kvm_alloc_dirty_bitmap(memslot: new);
1641 if (r)
1642 return r;
1643
1644 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1645 bitmap_set(map: new->dirty_bitmap, start: 0, nbits: new->npages);
1646 }
1647 }
1648
1649 r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1650
1651 /* Free the bitmap on failure if it was allocated above. */
1652 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1653 kvm_destroy_dirty_bitmap(memslot: new);
1654
1655 return r;
1656}
1657
1658static void kvm_commit_memory_region(struct kvm *kvm,
1659 struct kvm_memory_slot *old,
1660 const struct kvm_memory_slot *new,
1661 enum kvm_mr_change change)
1662{
1663 int old_flags = old ? old->flags : 0;
1664 int new_flags = new ? new->flags : 0;
1665 /*
1666 * Update the total number of memslot pages before calling the arch
1667 * hook so that architectures can consume the result directly.
1668 */
1669 if (change == KVM_MR_DELETE)
1670 kvm->nr_memslot_pages -= old->npages;
1671 else if (change == KVM_MR_CREATE)
1672 kvm->nr_memslot_pages += new->npages;
1673
1674 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1675 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1676 atomic_set(v: &kvm->nr_memslots_dirty_logging,
1677 i: atomic_read(v: &kvm->nr_memslots_dirty_logging) + change);
1678 }
1679
1680 kvm_arch_commit_memory_region(kvm, old, new, change);
1681
1682 switch (change) {
1683 case KVM_MR_CREATE:
1684 /* Nothing more to do. */
1685 break;
1686 case KVM_MR_DELETE:
1687 /* Free the old memslot and all its metadata. */
1688 kvm_free_memslot(kvm, slot: old);
1689 break;
1690 case KVM_MR_MOVE:
1691 case KVM_MR_FLAGS_ONLY:
1692 /*
1693 * Free the dirty bitmap as needed; the below check encompasses
1694 * both the flags and whether a ring buffer is being used)
1695 */
1696 if (old->dirty_bitmap && !new->dirty_bitmap)
1697 kvm_destroy_dirty_bitmap(memslot: old);
1698
1699 /*
1700 * The final quirk. Free the detached, old slot, but only its
1701 * memory, not any metadata. Metadata, including arch specific
1702 * data, may be reused by @new.
1703 */
1704 kfree(objp: old);
1705 break;
1706 default:
1707 BUG();
1708 }
1709}
1710
1711/*
1712 * Activate @new, which must be installed in the inactive slots by the caller,
1713 * by swapping the active slots and then propagating @new to @old once @old is
1714 * unreachable and can be safely modified.
1715 *
1716 * With NULL @old this simply adds @new to @active (while swapping the sets).
1717 * With NULL @new this simply removes @old from @active and frees it
1718 * (while also swapping the sets).
1719 */
1720static void kvm_activate_memslot(struct kvm *kvm,
1721 struct kvm_memory_slot *old,
1722 struct kvm_memory_slot *new)
1723{
1724 int as_id = kvm_memslots_get_as_id(a: old, b: new);
1725
1726 kvm_swap_active_memslots(kvm, as_id);
1727
1728 /* Propagate the new memslot to the now inactive memslots. */
1729 kvm_replace_memslot(kvm, old, new);
1730}
1731
1732static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1733 const struct kvm_memory_slot *src)
1734{
1735 dest->base_gfn = src->base_gfn;
1736 dest->npages = src->npages;
1737 dest->dirty_bitmap = src->dirty_bitmap;
1738 dest->arch = src->arch;
1739 dest->userspace_addr = src->userspace_addr;
1740 dest->flags = src->flags;
1741 dest->id = src->id;
1742 dest->as_id = src->as_id;
1743}
1744
1745static void kvm_invalidate_memslot(struct kvm *kvm,
1746 struct kvm_memory_slot *old,
1747 struct kvm_memory_slot *invalid_slot)
1748{
1749 /*
1750 * Mark the current slot INVALID. As with all memslot modifications,
1751 * this must be done on an unreachable slot to avoid modifying the
1752 * current slot in the active tree.
1753 */
1754 kvm_copy_memslot(dest: invalid_slot, src: old);
1755 invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1756 kvm_replace_memslot(kvm, old, new: invalid_slot);
1757
1758 /*
1759 * Activate the slot that is now marked INVALID, but don't propagate
1760 * the slot to the now inactive slots. The slot is either going to be
1761 * deleted or recreated as a new slot.
1762 */
1763 kvm_swap_active_memslots(kvm, as_id: old->as_id);
1764
1765 /*
1766 * From this point no new shadow pages pointing to a deleted, or moved,
1767 * memslot will be created. Validation of sp->gfn happens in:
1768 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1769 * - kvm_is_visible_gfn (mmu_check_root)
1770 */
1771 kvm_arch_flush_shadow_memslot(kvm, slot: old);
1772 kvm_arch_guest_memory_reclaimed(kvm);
1773
1774 /* Was released by kvm_swap_active_memslots(), reacquire. */
1775 mutex_lock(&kvm->slots_arch_lock);
1776
1777 /*
1778 * Copy the arch-specific field of the newly-installed slot back to the
1779 * old slot as the arch data could have changed between releasing
1780 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1781 * above. Writers are required to retrieve memslots *after* acquiring
1782 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1783 */
1784 old->arch = invalid_slot->arch;
1785}
1786
1787static void kvm_create_memslot(struct kvm *kvm,
1788 struct kvm_memory_slot *new)
1789{
1790 /* Add the new memslot to the inactive set and activate. */
1791 kvm_replace_memslot(kvm, NULL, new);
1792 kvm_activate_memslot(kvm, NULL, new);
1793}
1794
1795static void kvm_delete_memslot(struct kvm *kvm,
1796 struct kvm_memory_slot *old,
1797 struct kvm_memory_slot *invalid_slot)
1798{
1799 /*
1800 * Remove the old memslot (in the inactive memslots) by passing NULL as
1801 * the "new" slot, and for the invalid version in the active slots.
1802 */
1803 kvm_replace_memslot(kvm, old, NULL);
1804 kvm_activate_memslot(kvm, old: invalid_slot, NULL);
1805}
1806
1807static void kvm_move_memslot(struct kvm *kvm,
1808 struct kvm_memory_slot *old,
1809 struct kvm_memory_slot *new,
1810 struct kvm_memory_slot *invalid_slot)
1811{
1812 /*
1813 * Replace the old memslot in the inactive slots, and then swap slots
1814 * and replace the current INVALID with the new as well.
1815 */
1816 kvm_replace_memslot(kvm, old, new);
1817 kvm_activate_memslot(kvm, old: invalid_slot, new);
1818}
1819
1820static void kvm_update_flags_memslot(struct kvm *kvm,
1821 struct kvm_memory_slot *old,
1822 struct kvm_memory_slot *new)
1823{
1824 /*
1825 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1826 * an intermediate step. Instead, the old memslot is simply replaced
1827 * with a new, updated copy in both memslot sets.
1828 */
1829 kvm_replace_memslot(kvm, old, new);
1830 kvm_activate_memslot(kvm, old, new);
1831}
1832
1833static int kvm_set_memslot(struct kvm *kvm,
1834 struct kvm_memory_slot *old,
1835 struct kvm_memory_slot *new,
1836 enum kvm_mr_change change)
1837{
1838 struct kvm_memory_slot *invalid_slot;
1839 int r;
1840
1841 /*
1842 * Released in kvm_swap_active_memslots().
1843 *
1844 * Must be held from before the current memslots are copied until after
1845 * the new memslots are installed with rcu_assign_pointer, then
1846 * released before the synchronize srcu in kvm_swap_active_memslots().
1847 *
1848 * When modifying memslots outside of the slots_lock, must be held
1849 * before reading the pointer to the current memslots until after all
1850 * changes to those memslots are complete.
1851 *
1852 * These rules ensure that installing new memslots does not lose
1853 * changes made to the previous memslots.
1854 */
1855 mutex_lock(&kvm->slots_arch_lock);
1856
1857 /*
1858 * Invalidate the old slot if it's being deleted or moved. This is
1859 * done prior to actually deleting/moving the memslot to allow vCPUs to
1860 * continue running by ensuring there are no mappings or shadow pages
1861 * for the memslot when it is deleted/moved. Without pre-invalidation
1862 * (and without a lock), a window would exist between effecting the
1863 * delete/move and committing the changes in arch code where KVM or a
1864 * guest could access a non-existent memslot.
1865 *
1866 * Modifications are done on a temporary, unreachable slot. The old
1867 * slot needs to be preserved in case a later step fails and the
1868 * invalidation needs to be reverted.
1869 */
1870 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1871 invalid_slot = kzalloc(size: sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1872 if (!invalid_slot) {
1873 mutex_unlock(lock: &kvm->slots_arch_lock);
1874 return -ENOMEM;
1875 }
1876 kvm_invalidate_memslot(kvm, old, invalid_slot);
1877 }
1878
1879 r = kvm_prepare_memory_region(kvm, old, new, change);
1880 if (r) {
1881 /*
1882 * For DELETE/MOVE, revert the above INVALID change. No
1883 * modifications required since the original slot was preserved
1884 * in the inactive slots. Changing the active memslots also
1885 * release slots_arch_lock.
1886 */
1887 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1888 kvm_activate_memslot(kvm, old: invalid_slot, new: old);
1889 kfree(objp: invalid_slot);
1890 } else {
1891 mutex_unlock(lock: &kvm->slots_arch_lock);
1892 }
1893 return r;
1894 }
1895
1896 /*
1897 * For DELETE and MOVE, the working slot is now active as the INVALID
1898 * version of the old slot. MOVE is particularly special as it reuses
1899 * the old slot and returns a copy of the old slot (in working_slot).
1900 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the
1901 * old slot is detached but otherwise preserved.
1902 */
1903 if (change == KVM_MR_CREATE)
1904 kvm_create_memslot(kvm, new);
1905 else if (change == KVM_MR_DELETE)
1906 kvm_delete_memslot(kvm, old, invalid_slot);
1907 else if (change == KVM_MR_MOVE)
1908 kvm_move_memslot(kvm, old, new, invalid_slot);
1909 else if (change == KVM_MR_FLAGS_ONLY)
1910 kvm_update_flags_memslot(kvm, old, new);
1911 else
1912 BUG();
1913
1914 /* Free the temporary INVALID slot used for DELETE and MOVE. */
1915 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1916 kfree(objp: invalid_slot);
1917
1918 /*
1919 * No need to refresh new->arch, changes after dropping slots_arch_lock
1920 * will directly hit the final, active memslot. Architectures are
1921 * responsible for knowing that new->arch may be stale.
1922 */
1923 kvm_commit_memory_region(kvm, old, new, change);
1924
1925 return 0;
1926}
1927
1928static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1929 gfn_t start, gfn_t end)
1930{
1931 struct kvm_memslot_iter iter;
1932
1933 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1934 if (iter.slot->id != id)
1935 return true;
1936 }
1937
1938 return false;
1939}
1940
1941/*
1942 * Allocate some memory and give it an address in the guest physical address
1943 * space.
1944 *
1945 * Discontiguous memory is allowed, mostly for framebuffers.
1946 *
1947 * Must be called holding kvm->slots_lock for write.
1948 */
1949int __kvm_set_memory_region(struct kvm *kvm,
1950 const struct kvm_userspace_memory_region *mem)
1951{
1952 struct kvm_memory_slot *old, *new;
1953 struct kvm_memslots *slots;
1954 enum kvm_mr_change change;
1955 unsigned long npages;
1956 gfn_t base_gfn;
1957 int as_id, id;
1958 int r;
1959
1960 r = check_memory_region_flags(mem);
1961 if (r)
1962 return r;
1963
1964 as_id = mem->slot >> 16;
1965 id = (u16)mem->slot;
1966
1967 /* General sanity checks */
1968 if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1969 (mem->memory_size != (unsigned long)mem->memory_size))
1970 return -EINVAL;
1971 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1972 return -EINVAL;
1973 /* We can read the guest memory with __xxx_user() later on. */
1974 if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1975 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1976 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1977 mem->memory_size))
1978 return -EINVAL;
1979 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1980 return -EINVAL;
1981 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1982 return -EINVAL;
1983 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1984 return -EINVAL;
1985
1986 slots = __kvm_memslots(kvm, as_id);
1987
1988 /*
1989 * Note, the old memslot (and the pointer itself!) may be invalidated
1990 * and/or destroyed by kvm_set_memslot().
1991 */
1992 old = id_to_memslot(slots, id);
1993
1994 if (!mem->memory_size) {
1995 if (!old || !old->npages)
1996 return -EINVAL;
1997
1998 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1999 return -EIO;
2000
2001 return kvm_set_memslot(kvm, old, NULL, change: KVM_MR_DELETE);
2002 }
2003
2004 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
2005 npages = (mem->memory_size >> PAGE_SHIFT);
2006
2007 if (!old || !old->npages) {
2008 change = KVM_MR_CREATE;
2009
2010 /*
2011 * To simplify KVM internals, the total number of pages across
2012 * all memslots must fit in an unsigned long.
2013 */
2014 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2015 return -EINVAL;
2016 } else { /* Modify an existing slot. */
2017 if ((mem->userspace_addr != old->userspace_addr) ||
2018 (npages != old->npages) ||
2019 ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2020 return -EINVAL;
2021
2022 if (base_gfn != old->base_gfn)
2023 change = KVM_MR_MOVE;
2024 else if (mem->flags != old->flags)
2025 change = KVM_MR_FLAGS_ONLY;
2026 else /* Nothing to change. */
2027 return 0;
2028 }
2029
2030 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2031 kvm_check_memslot_overlap(slots, id, start: base_gfn, end: base_gfn + npages))
2032 return -EEXIST;
2033
2034 /* Allocate a slot that will persist in the memslot. */
2035 new = kzalloc(size: sizeof(*new), GFP_KERNEL_ACCOUNT);
2036 if (!new)
2037 return -ENOMEM;
2038
2039 new->as_id = as_id;
2040 new->id = id;
2041 new->base_gfn = base_gfn;
2042 new->npages = npages;
2043 new->flags = mem->flags;
2044 new->userspace_addr = mem->userspace_addr;
2045
2046 r = kvm_set_memslot(kvm, old, new, change);
2047 if (r)
2048 kfree(objp: new);
2049 return r;
2050}
2051EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2052
2053int kvm_set_memory_region(struct kvm *kvm,
2054 const struct kvm_userspace_memory_region *mem)
2055{
2056 int r;
2057
2058 mutex_lock(&kvm->slots_lock);
2059 r = __kvm_set_memory_region(kvm, mem);
2060 mutex_unlock(lock: &kvm->slots_lock);
2061 return r;
2062}
2063EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2064
2065static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2066 struct kvm_userspace_memory_region *mem)
2067{
2068 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2069 return -EINVAL;
2070
2071 return kvm_set_memory_region(kvm, mem);
2072}
2073
2074#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2075/**
2076 * kvm_get_dirty_log - get a snapshot of dirty pages
2077 * @kvm: pointer to kvm instance
2078 * @log: slot id and address to which we copy the log
2079 * @is_dirty: set to '1' if any dirty pages were found
2080 * @memslot: set to the associated memslot, always valid on success
2081 */
2082int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2083 int *is_dirty, struct kvm_memory_slot **memslot)
2084{
2085 struct kvm_memslots *slots;
2086 int i, as_id, id;
2087 unsigned long n;
2088 unsigned long any = 0;
2089
2090 /* Dirty ring tracking may be exclusive to dirty log tracking */
2091 if (!kvm_use_dirty_bitmap(kvm))
2092 return -ENXIO;
2093
2094 *memslot = NULL;
2095 *is_dirty = 0;
2096
2097 as_id = log->slot >> 16;
2098 id = (u16)log->slot;
2099 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2100 return -EINVAL;
2101
2102 slots = __kvm_memslots(kvm, as_id);
2103 *memslot = id_to_memslot(slots, id);
2104 if (!(*memslot) || !(*memslot)->dirty_bitmap)
2105 return -ENOENT;
2106
2107 kvm_arch_sync_dirty_log(kvm, *memslot);
2108
2109 n = kvm_dirty_bitmap_bytes(*memslot);
2110
2111 for (i = 0; !any && i < n/sizeof(long); ++i)
2112 any = (*memslot)->dirty_bitmap[i];
2113
2114 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2115 return -EFAULT;
2116
2117 if (any)
2118 *is_dirty = 1;
2119 return 0;
2120}
2121EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2122
2123#else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2124/**
2125 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2126 * and reenable dirty page tracking for the corresponding pages.
2127 * @kvm: pointer to kvm instance
2128 * @log: slot id and address to which we copy the log
2129 *
2130 * We need to keep it in mind that VCPU threads can write to the bitmap
2131 * concurrently. So, to avoid losing track of dirty pages we keep the
2132 * following order:
2133 *
2134 * 1. Take a snapshot of the bit and clear it if needed.
2135 * 2. Write protect the corresponding page.
2136 * 3. Copy the snapshot to the userspace.
2137 * 4. Upon return caller flushes TLB's if needed.
2138 *
2139 * Between 2 and 4, the guest may write to the page using the remaining TLB
2140 * entry. This is not a problem because the page is reported dirty using
2141 * the snapshot taken before and step 4 ensures that writes done after
2142 * exiting to userspace will be logged for the next call.
2143 *
2144 */
2145static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2146{
2147 struct kvm_memslots *slots;
2148 struct kvm_memory_slot *memslot;
2149 int i, as_id, id;
2150 unsigned long n;
2151 unsigned long *dirty_bitmap;
2152 unsigned long *dirty_bitmap_buffer;
2153 bool flush;
2154
2155 /* Dirty ring tracking may be exclusive to dirty log tracking */
2156 if (!kvm_use_dirty_bitmap(kvm))
2157 return -ENXIO;
2158
2159 as_id = log->slot >> 16;
2160 id = (u16)log->slot;
2161 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2162 return -EINVAL;
2163
2164 slots = __kvm_memslots(kvm, as_id);
2165 memslot = id_to_memslot(slots, id);
2166 if (!memslot || !memslot->dirty_bitmap)
2167 return -ENOENT;
2168
2169 dirty_bitmap = memslot->dirty_bitmap;
2170
2171 kvm_arch_sync_dirty_log(kvm, memslot);
2172
2173 n = kvm_dirty_bitmap_bytes(memslot);
2174 flush = false;
2175 if (kvm->manual_dirty_log_protect) {
2176 /*
2177 * Unlike kvm_get_dirty_log, we always return false in *flush,
2178 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
2179 * is some code duplication between this function and
2180 * kvm_get_dirty_log, but hopefully all architecture
2181 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2182 * can be eliminated.
2183 */
2184 dirty_bitmap_buffer = dirty_bitmap;
2185 } else {
2186 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2187 memset(dirty_bitmap_buffer, 0, n);
2188
2189 KVM_MMU_LOCK(kvm);
2190 for (i = 0; i < n / sizeof(long); i++) {
2191 unsigned long mask;
2192 gfn_t offset;
2193
2194 if (!dirty_bitmap[i])
2195 continue;
2196
2197 flush = true;
2198 mask = xchg(&dirty_bitmap[i], 0);
2199 dirty_bitmap_buffer[i] = mask;
2200
2201 offset = i * BITS_PER_LONG;
2202 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, slot: memslot,
2203 gfn_offset: offset, mask);
2204 }
2205 KVM_MMU_UNLOCK(kvm);
2206 }
2207
2208 if (flush)
2209 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2210
2211 if (copy_to_user(to: log->dirty_bitmap, from: dirty_bitmap_buffer, n))
2212 return -EFAULT;
2213 return 0;
2214}
2215
2216
2217/**
2218 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2219 * @kvm: kvm instance
2220 * @log: slot id and address to which we copy the log
2221 *
2222 * Steps 1-4 below provide general overview of dirty page logging. See
2223 * kvm_get_dirty_log_protect() function description for additional details.
2224 *
2225 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2226 * always flush the TLB (step 4) even if previous step failed and the dirty
2227 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2228 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2229 * writes will be marked dirty for next log read.
2230 *
2231 * 1. Take a snapshot of the bit and clear it if needed.
2232 * 2. Write protect the corresponding page.
2233 * 3. Copy the snapshot to the userspace.
2234 * 4. Flush TLB's if needed.
2235 */
2236static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2237 struct kvm_dirty_log *log)
2238{
2239 int r;
2240
2241 mutex_lock(&kvm->slots_lock);
2242
2243 r = kvm_get_dirty_log_protect(kvm, log);
2244
2245 mutex_unlock(lock: &kvm->slots_lock);
2246 return r;
2247}
2248
2249/**
2250 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2251 * and reenable dirty page tracking for the corresponding pages.
2252 * @kvm: pointer to kvm instance
2253 * @log: slot id and address from which to fetch the bitmap of dirty pages
2254 */
2255static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2256 struct kvm_clear_dirty_log *log)
2257{
2258 struct kvm_memslots *slots;
2259 struct kvm_memory_slot *memslot;
2260 int as_id, id;
2261 gfn_t offset;
2262 unsigned long i, n;
2263 unsigned long *dirty_bitmap;
2264 unsigned long *dirty_bitmap_buffer;
2265 bool flush;
2266
2267 /* Dirty ring tracking may be exclusive to dirty log tracking */
2268 if (!kvm_use_dirty_bitmap(kvm))
2269 return -ENXIO;
2270
2271 as_id = log->slot >> 16;
2272 id = (u16)log->slot;
2273 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2274 return -EINVAL;
2275
2276 if (log->first_page & 63)
2277 return -EINVAL;
2278
2279 slots = __kvm_memslots(kvm, as_id);
2280 memslot = id_to_memslot(slots, id);
2281 if (!memslot || !memslot->dirty_bitmap)
2282 return -ENOENT;
2283
2284 dirty_bitmap = memslot->dirty_bitmap;
2285
2286 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2287
2288 if (log->first_page > memslot->npages ||
2289 log->num_pages > memslot->npages - log->first_page ||
2290 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2291 return -EINVAL;
2292
2293 kvm_arch_sync_dirty_log(kvm, memslot);
2294
2295 flush = false;
2296 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2297 if (copy_from_user(to: dirty_bitmap_buffer, from: log->dirty_bitmap, n))
2298 return -EFAULT;
2299
2300 KVM_MMU_LOCK(kvm);
2301 for (offset = log->first_page, i = offset / BITS_PER_LONG,
2302 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2303 i++, offset += BITS_PER_LONG) {
2304 unsigned long mask = *dirty_bitmap_buffer++;
2305 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2306 if (!mask)
2307 continue;
2308
2309 mask &= atomic_long_fetch_andnot(i: mask, v: p);
2310
2311 /*
2312 * mask contains the bits that really have been cleared. This
2313 * never includes any bits beyond the length of the memslot (if
2314 * the length is not aligned to 64 pages), therefore it is not
2315 * a problem if userspace sets them in log->dirty_bitmap.
2316 */
2317 if (mask) {
2318 flush = true;
2319 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, slot: memslot,
2320 gfn_offset: offset, mask);
2321 }
2322 }
2323 KVM_MMU_UNLOCK(kvm);
2324
2325 if (flush)
2326 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2327
2328 return 0;
2329}
2330
2331static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2332 struct kvm_clear_dirty_log *log)
2333{
2334 int r;
2335
2336 mutex_lock(&kvm->slots_lock);
2337
2338 r = kvm_clear_dirty_log_protect(kvm, log);
2339
2340 mutex_unlock(lock: &kvm->slots_lock);
2341 return r;
2342}
2343#endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2344
2345struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2346{
2347 return __gfn_to_memslot(slots: kvm_memslots(kvm), gfn);
2348}
2349EXPORT_SYMBOL_GPL(gfn_to_memslot);
2350
2351struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2352{
2353 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2354 u64 gen = slots->generation;
2355 struct kvm_memory_slot *slot;
2356
2357 /*
2358 * This also protects against using a memslot from a different address space,
2359 * since different address spaces have different generation numbers.
2360 */
2361 if (unlikely(gen != vcpu->last_used_slot_gen)) {
2362 vcpu->last_used_slot = NULL;
2363 vcpu->last_used_slot_gen = gen;
2364 }
2365
2366 slot = try_get_memslot(slot: vcpu->last_used_slot, gfn);
2367 if (slot)
2368 return slot;
2369
2370 /*
2371 * Fall back to searching all memslots. We purposely use
2372 * search_memslots() instead of __gfn_to_memslot() to avoid
2373 * thrashing the VM-wide last_used_slot in kvm_memslots.
2374 */
2375 slot = search_memslots(slots, gfn, approx: false);
2376 if (slot) {
2377 vcpu->last_used_slot = slot;
2378 return slot;
2379 }
2380
2381 return NULL;
2382}
2383
2384bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2385{
2386 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2387
2388 return kvm_is_visible_memslot(memslot);
2389}
2390EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2391
2392bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2393{
2394 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2395
2396 return kvm_is_visible_memslot(memslot);
2397}
2398EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2399
2400unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2401{
2402 struct vm_area_struct *vma;
2403 unsigned long addr, size;
2404
2405 size = PAGE_SIZE;
2406
2407 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2408 if (kvm_is_error_hva(addr))
2409 return PAGE_SIZE;
2410
2411 mmap_read_lock(current->mm);
2412 vma = find_vma(current->mm, addr);
2413 if (!vma)
2414 goto out;
2415
2416 size = vma_kernel_pagesize(vma);
2417
2418out:
2419 mmap_read_unlock(current->mm);
2420
2421 return size;
2422}
2423
2424static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2425{
2426 return slot->flags & KVM_MEM_READONLY;
2427}
2428
2429static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2430 gfn_t *nr_pages, bool write)
2431{
2432 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2433 return KVM_HVA_ERR_BAD;
2434
2435 if (memslot_is_readonly(slot) && write)
2436 return KVM_HVA_ERR_RO_BAD;
2437
2438 if (nr_pages)
2439 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2440
2441 return __gfn_to_hva_memslot(slot, gfn);
2442}
2443
2444static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2445 gfn_t *nr_pages)
2446{
2447 return __gfn_to_hva_many(slot, gfn, nr_pages, write: true);
2448}
2449
2450unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2451 gfn_t gfn)
2452{
2453 return gfn_to_hva_many(slot, gfn, NULL);
2454}
2455EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2456
2457unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2458{
2459 return gfn_to_hva_many(slot: gfn_to_memslot(kvm, gfn), gfn, NULL);
2460}
2461EXPORT_SYMBOL_GPL(gfn_to_hva);
2462
2463unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2464{
2465 return gfn_to_hva_many(slot: kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2466}
2467EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2468
2469/*
2470 * Return the hva of a @gfn and the R/W attribute if possible.
2471 *
2472 * @slot: the kvm_memory_slot which contains @gfn
2473 * @gfn: the gfn to be translated
2474 * @writable: used to return the read/write attribute of the @slot if the hva
2475 * is valid and @writable is not NULL
2476 */
2477unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2478 gfn_t gfn, bool *writable)
2479{
2480 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, write: false);
2481
2482 if (!kvm_is_error_hva(addr: hva) && writable)
2483 *writable = !memslot_is_readonly(slot);
2484
2485 return hva;
2486}
2487
2488unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2489{
2490 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2491
2492 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2493}
2494
2495unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2496{
2497 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2498
2499 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2500}
2501
2502static inline int check_user_page_hwpoison(unsigned long addr)
2503{
2504 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2505
2506 rc = get_user_pages(start: addr, nr_pages: 1, gup_flags: flags, NULL);
2507 return rc == -EHWPOISON;
2508}
2509
2510/*
2511 * The fast path to get the writable pfn which will be stored in @pfn,
2512 * true indicates success, otherwise false is returned. It's also the
2513 * only part that runs if we can in atomic context.
2514 */
2515static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2516 bool *writable, kvm_pfn_t *pfn)
2517{
2518 struct page *page[1];
2519
2520 /*
2521 * Fast pin a writable pfn only if it is a write fault request
2522 * or the caller allows to map a writable pfn for a read fault
2523 * request.
2524 */
2525 if (!(write_fault || writable))
2526 return false;
2527
2528 if (get_user_page_fast_only(addr, gup_flags: FOLL_WRITE, pagep: page)) {
2529 *pfn = page_to_pfn(page[0]);
2530
2531 if (writable)
2532 *writable = true;
2533 return true;
2534 }
2535
2536 return false;
2537}
2538
2539/*
2540 * The slow path to get the pfn of the specified host virtual address,
2541 * 1 indicates success, -errno is returned if error is detected.
2542 */
2543static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2544 bool interruptible, bool *writable, kvm_pfn_t *pfn)
2545{
2546 /*
2547 * When a VCPU accesses a page that is not mapped into the secondary
2548 * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2549 * make progress. We always want to honor NUMA hinting faults in that
2550 * case, because GUP usage corresponds to memory accesses from the VCPU.
2551 * Otherwise, we'd not trigger NUMA hinting faults once a page is
2552 * mapped into the secondary MMU and gets accessed by a VCPU.
2553 *
2554 * Note that get_user_page_fast_only() and FOLL_WRITE for now
2555 * implicitly honor NUMA hinting faults and don't need this flag.
2556 */
2557 unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT;
2558 struct page *page;
2559 int npages;
2560
2561 might_sleep();
2562
2563 if (writable)
2564 *writable = write_fault;
2565
2566 if (write_fault)
2567 flags |= FOLL_WRITE;
2568 if (async)
2569 flags |= FOLL_NOWAIT;
2570 if (interruptible)
2571 flags |= FOLL_INTERRUPTIBLE;
2572
2573 npages = get_user_pages_unlocked(start: addr, nr_pages: 1, pages: &page, gup_flags: flags);
2574 if (npages != 1)
2575 return npages;
2576
2577 /* map read fault as writable if possible */
2578 if (unlikely(!write_fault) && writable) {
2579 struct page *wpage;
2580
2581 if (get_user_page_fast_only(addr, gup_flags: FOLL_WRITE, pagep: &wpage)) {
2582 *writable = true;
2583 put_page(page);
2584 page = wpage;
2585 }
2586 }
2587 *pfn = page_to_pfn(page);
2588 return npages;
2589}
2590
2591static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2592{
2593 if (unlikely(!(vma->vm_flags & VM_READ)))
2594 return false;
2595
2596 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2597 return false;
2598
2599 return true;
2600}
2601
2602static int kvm_try_get_pfn(kvm_pfn_t pfn)
2603{
2604 struct page *page = kvm_pfn_to_refcounted_page(pfn);
2605
2606 if (!page)
2607 return 1;
2608
2609 return get_page_unless_zero(page);
2610}
2611
2612static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2613 unsigned long addr, bool write_fault,
2614 bool *writable, kvm_pfn_t *p_pfn)
2615{
2616 kvm_pfn_t pfn;
2617 pte_t *ptep;
2618 pte_t pte;
2619 spinlock_t *ptl;
2620 int r;
2621
2622 r = follow_pte(mm: vma->vm_mm, address: addr, ptepp: &ptep, ptlp: &ptl);
2623 if (r) {
2624 /*
2625 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2626 * not call the fault handler, so do it here.
2627 */
2628 bool unlocked = false;
2629 r = fixup_user_fault(current->mm, address: addr,
2630 fault_flags: (write_fault ? FAULT_FLAG_WRITE : 0),
2631 unlocked: &unlocked);
2632 if (unlocked)
2633 return -EAGAIN;
2634 if (r)
2635 return r;
2636
2637 r = follow_pte(mm: vma->vm_mm, address: addr, ptepp: &ptep, ptlp: &ptl);
2638 if (r)
2639 return r;
2640 }
2641
2642 pte = ptep_get(ptep);
2643
2644 if (write_fault && !pte_write(pte)) {
2645 pfn = KVM_PFN_ERR_RO_FAULT;
2646 goto out;
2647 }
2648
2649 if (writable)
2650 *writable = pte_write(pte);
2651 pfn = pte_pfn(pte);
2652
2653 /*
2654 * Get a reference here because callers of *hva_to_pfn* and
2655 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2656 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
2657 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2658 * simply do nothing for reserved pfns.
2659 *
2660 * Whoever called remap_pfn_range is also going to call e.g.
2661 * unmap_mapping_range before the underlying pages are freed,
2662 * causing a call to our MMU notifier.
2663 *
2664 * Certain IO or PFNMAP mappings can be backed with valid
2665 * struct pages, but be allocated without refcounting e.g.,
2666 * tail pages of non-compound higher order allocations, which
2667 * would then underflow the refcount when the caller does the
2668 * required put_page. Don't allow those pages here.
2669 */
2670 if (!kvm_try_get_pfn(pfn))
2671 r = -EFAULT;
2672
2673out:
2674 pte_unmap_unlock(ptep, ptl);
2675 *p_pfn = pfn;
2676
2677 return r;
2678}
2679
2680/*
2681 * Pin guest page in memory and return its pfn.
2682 * @addr: host virtual address which maps memory to the guest
2683 * @atomic: whether this function can sleep
2684 * @interruptible: whether the process can be interrupted by non-fatal signals
2685 * @async: whether this function need to wait IO complete if the
2686 * host page is not in the memory
2687 * @write_fault: whether we should get a writable host page
2688 * @writable: whether it allows to map a writable host page for !@write_fault
2689 *
2690 * The function will map a writable host page for these two cases:
2691 * 1): @write_fault = true
2692 * 2): @write_fault = false && @writable, @writable will tell the caller
2693 * whether the mapping is writable.
2694 */
2695kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2696 bool *async, bool write_fault, bool *writable)
2697{
2698 struct vm_area_struct *vma;
2699 kvm_pfn_t pfn;
2700 int npages, r;
2701
2702 /* we can do it either atomically or asynchronously, not both */
2703 BUG_ON(atomic && async);
2704
2705 if (hva_to_pfn_fast(addr, write_fault, writable, pfn: &pfn))
2706 return pfn;
2707
2708 if (atomic)
2709 return KVM_PFN_ERR_FAULT;
2710
2711 npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2712 writable, pfn: &pfn);
2713 if (npages == 1)
2714 return pfn;
2715 if (npages == -EINTR)
2716 return KVM_PFN_ERR_SIGPENDING;
2717
2718 mmap_read_lock(current->mm);
2719 if (npages == -EHWPOISON ||
2720 (!async && check_user_page_hwpoison(addr))) {
2721 pfn = KVM_PFN_ERR_HWPOISON;
2722 goto exit;
2723 }
2724
2725retry:
2726 vma = vma_lookup(current->mm, addr);
2727
2728 if (vma == NULL)
2729 pfn = KVM_PFN_ERR_FAULT;
2730 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2731 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, p_pfn: &pfn);
2732 if (r == -EAGAIN)
2733 goto retry;
2734 if (r < 0)
2735 pfn = KVM_PFN_ERR_FAULT;
2736 } else {
2737 if (async && vma_is_valid(vma, write_fault))
2738 *async = true;
2739 pfn = KVM_PFN_ERR_FAULT;
2740 }
2741exit:
2742 mmap_read_unlock(current->mm);
2743 return pfn;
2744}
2745
2746kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2747 bool atomic, bool interruptible, bool *async,
2748 bool write_fault, bool *writable, hva_t *hva)
2749{
2750 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write: write_fault);
2751
2752 if (hva)
2753 *hva = addr;
2754
2755 if (addr == KVM_HVA_ERR_RO_BAD) {
2756 if (writable)
2757 *writable = false;
2758 return KVM_PFN_ERR_RO_FAULT;
2759 }
2760
2761 if (kvm_is_error_hva(addr)) {
2762 if (writable)
2763 *writable = false;
2764 return KVM_PFN_NOSLOT;
2765 }
2766
2767 /* Do not map writable pfn in the readonly memslot. */
2768 if (writable && memslot_is_readonly(slot)) {
2769 *writable = false;
2770 writable = NULL;
2771 }
2772
2773 return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
2774 writable);
2775}
2776EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2777
2778kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2779 bool *writable)
2780{
2781 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
2782 NULL, write_fault, writable, NULL);
2783}
2784EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2785
2786kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2787{
2788 return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
2789 NULL, NULL);
2790}
2791EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2792
2793kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2794{
2795 return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
2796 NULL, NULL);
2797}
2798EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2799
2800kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2801{
2802 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2803}
2804EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2805
2806kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2807{
2808 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2809}
2810EXPORT_SYMBOL_GPL(gfn_to_pfn);
2811
2812kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2813{
2814 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2815}
2816EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2817
2818int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2819 struct page **pages, int nr_pages)
2820{
2821 unsigned long addr;
2822 gfn_t entry = 0;
2823
2824 addr = gfn_to_hva_many(slot, gfn, nr_pages: &entry);
2825 if (kvm_is_error_hva(addr))
2826 return -1;
2827
2828 if (entry < nr_pages)
2829 return 0;
2830
2831 return get_user_pages_fast_only(start: addr, nr_pages, gup_flags: FOLL_WRITE, pages);
2832}
2833EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2834
2835/*
2836 * Do not use this helper unless you are absolutely certain the gfn _must_ be
2837 * backed by 'struct page'. A valid example is if the backing memslot is
2838 * controlled by KVM. Note, if the returned page is valid, it's refcount has
2839 * been elevated by gfn_to_pfn().
2840 */
2841struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2842{
2843 struct page *page;
2844 kvm_pfn_t pfn;
2845
2846 pfn = gfn_to_pfn(kvm, gfn);
2847
2848 if (is_error_noslot_pfn(pfn))
2849 return KVM_ERR_PTR_BAD_PAGE;
2850
2851 page = kvm_pfn_to_refcounted_page(pfn);
2852 if (!page)
2853 return KVM_ERR_PTR_BAD_PAGE;
2854
2855 return page;
2856}
2857EXPORT_SYMBOL_GPL(gfn_to_page);
2858
2859void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2860{
2861 if (dirty)
2862 kvm_release_pfn_dirty(pfn);
2863 else
2864 kvm_release_pfn_clean(pfn);
2865}
2866
2867int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2868{
2869 kvm_pfn_t pfn;
2870 void *hva = NULL;
2871 struct page *page = KVM_UNMAPPED_PAGE;
2872
2873 if (!map)
2874 return -EINVAL;
2875
2876 pfn = gfn_to_pfn(vcpu->kvm, gfn);
2877 if (is_error_noslot_pfn(pfn))
2878 return -EINVAL;
2879
2880 if (pfn_valid(pfn)) {
2881 page = pfn_to_page(pfn);
2882 hva = kmap(page);
2883#ifdef CONFIG_HAS_IOMEM
2884 } else {
2885 hva = memremap(offset: pfn_to_hpa(pfn), PAGE_SIZE, flags: MEMREMAP_WB);
2886#endif
2887 }
2888
2889 if (!hva)
2890 return -EFAULT;
2891
2892 map->page = page;
2893 map->hva = hva;
2894 map->pfn = pfn;
2895 map->gfn = gfn;
2896
2897 return 0;
2898}
2899EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2900
2901void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2902{
2903 if (!map)
2904 return;
2905
2906 if (!map->hva)
2907 return;
2908
2909 if (map->page != KVM_UNMAPPED_PAGE)
2910 kunmap(page: map->page);
2911#ifdef CONFIG_HAS_IOMEM
2912 else
2913 memunmap(addr: map->hva);
2914#endif
2915
2916 if (dirty)
2917 kvm_vcpu_mark_page_dirty(vcpu, gfn: map->gfn);
2918
2919 kvm_release_pfn(pfn: map->pfn, dirty);
2920
2921 map->hva = NULL;
2922 map->page = NULL;
2923}
2924EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2925
2926static bool kvm_is_ad_tracked_page(struct page *page)
2927{
2928 /*
2929 * Per page-flags.h, pages tagged PG_reserved "should in general not be
2930 * touched (e.g. set dirty) except by its owner".
2931 */
2932 return !PageReserved(page);
2933}
2934
2935static void kvm_set_page_dirty(struct page *page)
2936{
2937 if (kvm_is_ad_tracked_page(page))
2938 SetPageDirty(page);
2939}
2940
2941static void kvm_set_page_accessed(struct page *page)
2942{
2943 if (kvm_is_ad_tracked_page(page))
2944 mark_page_accessed(page);
2945}
2946
2947void kvm_release_page_clean(struct page *page)
2948{
2949 WARN_ON(is_error_page(page));
2950
2951 kvm_set_page_accessed(page);
2952 put_page(page);
2953}
2954EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2955
2956void kvm_release_pfn_clean(kvm_pfn_t pfn)
2957{
2958 struct page *page;
2959
2960 if (is_error_noslot_pfn(pfn))
2961 return;
2962
2963 page = kvm_pfn_to_refcounted_page(pfn);
2964 if (!page)
2965 return;
2966
2967 kvm_release_page_clean(page);
2968}
2969EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2970
2971void kvm_release_page_dirty(struct page *page)
2972{
2973 WARN_ON(is_error_page(page));
2974
2975 kvm_set_page_dirty(page);
2976 kvm_release_page_clean(page);
2977}
2978EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2979
2980void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2981{
2982 struct page *page;
2983
2984 if (is_error_noslot_pfn(pfn))
2985 return;
2986
2987 page = kvm_pfn_to_refcounted_page(pfn);
2988 if (!page)
2989 return;
2990
2991 kvm_release_page_dirty(page);
2992}
2993EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2994
2995/*
2996 * Note, checking for an error/noslot pfn is the caller's responsibility when
2997 * directly marking a page dirty/accessed. Unlike the "release" helpers, the
2998 * "set" helpers are not to be used when the pfn might point at garbage.
2999 */
3000void kvm_set_pfn_dirty(kvm_pfn_t pfn)
3001{
3002 if (WARN_ON(is_error_noslot_pfn(pfn)))
3003 return;
3004
3005 if (pfn_valid(pfn))
3006 kvm_set_page_dirty(pfn_to_page(pfn));
3007}
3008EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
3009
3010void kvm_set_pfn_accessed(kvm_pfn_t pfn)
3011{
3012 if (WARN_ON(is_error_noslot_pfn(pfn)))
3013 return;
3014
3015 if (pfn_valid(pfn))
3016 kvm_set_page_accessed(pfn_to_page(pfn));
3017}
3018EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
3019
3020static int next_segment(unsigned long len, int offset)
3021{
3022 if (len > PAGE_SIZE - offset)
3023 return PAGE_SIZE - offset;
3024 else
3025 return len;
3026}
3027
3028static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3029 void *data, int offset, int len)
3030{
3031 int r;
3032 unsigned long addr;
3033
3034 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3035 if (kvm_is_error_hva(addr))
3036 return -EFAULT;
3037 r = __copy_from_user(to: data, from: (void __user *)addr + offset, n: len);
3038 if (r)
3039 return -EFAULT;
3040 return 0;
3041}
3042
3043int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3044 int len)
3045{
3046 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3047
3048 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3049}
3050EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3051
3052int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3053 int offset, int len)
3054{
3055 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3056
3057 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3058}
3059EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3060
3061int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3062{
3063 gfn_t gfn = gpa >> PAGE_SHIFT;
3064 int seg;
3065 int offset = offset_in_page(gpa);
3066 int ret;
3067
3068 while ((seg = next_segment(len, offset)) != 0) {
3069 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3070 if (ret < 0)
3071 return ret;
3072 offset = 0;
3073 len -= seg;
3074 data += seg;
3075 ++gfn;
3076 }
3077 return 0;
3078}
3079EXPORT_SYMBOL_GPL(kvm_read_guest);
3080
3081int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3082{
3083 gfn_t gfn = gpa >> PAGE_SHIFT;
3084 int seg;
3085 int offset = offset_in_page(gpa);
3086 int ret;
3087
3088 while ((seg = next_segment(len, offset)) != 0) {
3089 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3090 if (ret < 0)
3091 return ret;
3092 offset = 0;
3093 len -= seg;
3094 data += seg;
3095 ++gfn;
3096 }
3097 return 0;
3098}
3099EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3100
3101static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3102 void *data, int offset, unsigned long len)
3103{
3104 int r;
3105 unsigned long addr;
3106
3107 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3108 if (kvm_is_error_hva(addr))
3109 return -EFAULT;
3110 pagefault_disable();
3111 r = __copy_from_user_inatomic(to: data, from: (void __user *)addr + offset, n: len);
3112 pagefault_enable();
3113 if (r)
3114 return -EFAULT;
3115 return 0;
3116}
3117
3118int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3119 void *data, unsigned long len)
3120{
3121 gfn_t gfn = gpa >> PAGE_SHIFT;
3122 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3123 int offset = offset_in_page(gpa);
3124
3125 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3126}
3127EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3128
3129static int __kvm_write_guest_page(struct kvm *kvm,
3130 struct kvm_memory_slot *memslot, gfn_t gfn,
3131 const void *data, int offset, int len)
3132{
3133 int r;
3134 unsigned long addr;
3135
3136 addr = gfn_to_hva_memslot(memslot, gfn);
3137 if (kvm_is_error_hva(addr))
3138 return -EFAULT;
3139 r = __copy_to_user(to: (void __user *)addr + offset, from: data, n: len);
3140 if (r)
3141 return -EFAULT;
3142 mark_page_dirty_in_slot(kvm, memslot, gfn);
3143 return 0;
3144}
3145
3146int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3147 const void *data, int offset, int len)
3148{
3149 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3150
3151 return __kvm_write_guest_page(kvm, memslot: slot, gfn, data, offset, len);
3152}
3153EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3154
3155int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3156 const void *data, int offset, int len)
3157{
3158 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3159
3160 return __kvm_write_guest_page(kvm: vcpu->kvm, memslot: slot, gfn, data, offset, len);
3161}
3162EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3163
3164int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3165 unsigned long len)
3166{
3167 gfn_t gfn = gpa >> PAGE_SHIFT;
3168 int seg;
3169 int offset = offset_in_page(gpa);
3170 int ret;
3171
3172 while ((seg = next_segment(len, offset)) != 0) {
3173 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3174 if (ret < 0)
3175 return ret;
3176 offset = 0;
3177 len -= seg;
3178 data += seg;
3179 ++gfn;
3180 }
3181 return 0;
3182}
3183EXPORT_SYMBOL_GPL(kvm_write_guest);
3184
3185int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3186 unsigned long len)
3187{
3188 gfn_t gfn = gpa >> PAGE_SHIFT;
3189 int seg;
3190 int offset = offset_in_page(gpa);
3191 int ret;
3192
3193 while ((seg = next_segment(len, offset)) != 0) {
3194 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3195 if (ret < 0)
3196 return ret;
3197 offset = 0;
3198 len -= seg;
3199 data += seg;
3200 ++gfn;
3201 }
3202 return 0;
3203}
3204EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3205
3206static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3207 struct gfn_to_hva_cache *ghc,
3208 gpa_t gpa, unsigned long len)
3209{
3210 int offset = offset_in_page(gpa);
3211 gfn_t start_gfn = gpa >> PAGE_SHIFT;
3212 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3213 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3214 gfn_t nr_pages_avail;
3215
3216 /* Update ghc->generation before performing any error checks. */
3217 ghc->generation = slots->generation;
3218
3219 if (start_gfn > end_gfn) {
3220 ghc->hva = KVM_HVA_ERR_BAD;
3221 return -EINVAL;
3222 }
3223
3224 /*
3225 * If the requested region crosses two memslots, we still
3226 * verify that the entire region is valid here.
3227 */
3228 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3229 ghc->memslot = __gfn_to_memslot(slots, gfn: start_gfn);
3230 ghc->hva = gfn_to_hva_many(slot: ghc->memslot, gfn: start_gfn,
3231 nr_pages: &nr_pages_avail);
3232 if (kvm_is_error_hva(addr: ghc->hva))
3233 return -EFAULT;
3234 }
3235
3236 /* Use the slow path for cross page reads and writes. */
3237 if (nr_pages_needed == 1)
3238 ghc->hva += offset;
3239 else
3240 ghc->memslot = NULL;
3241
3242 ghc->gpa = gpa;
3243 ghc->len = len;
3244 return 0;
3245}
3246
3247int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3248 gpa_t gpa, unsigned long len)
3249{
3250 struct kvm_memslots *slots = kvm_memslots(kvm);
3251 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3252}
3253EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3254
3255int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3256 void *data, unsigned int offset,
3257 unsigned long len)
3258{
3259 struct kvm_memslots *slots = kvm_memslots(kvm);
3260 int r;
3261 gpa_t gpa = ghc->gpa + offset;
3262
3263 if (WARN_ON_ONCE(len + offset > ghc->len))
3264 return -EINVAL;
3265
3266 if (slots->generation != ghc->generation) {
3267 if (__kvm_gfn_to_hva_cache_init(slots, ghc, gpa: ghc->gpa, len: ghc->len))
3268 return -EFAULT;
3269 }
3270
3271 if (kvm_is_error_hva(addr: ghc->hva))
3272 return -EFAULT;
3273
3274 if (unlikely(!ghc->memslot))
3275 return kvm_write_guest(kvm, gpa, data, len);
3276
3277 r = __copy_to_user(to: (void __user *)ghc->hva + offset, from: data, n: len);
3278 if (r)
3279 return -EFAULT;
3280 mark_page_dirty_in_slot(kvm, memslot: ghc->memslot, gfn: gpa >> PAGE_SHIFT);
3281
3282 return 0;
3283}
3284EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3285
3286int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3287 void *data, unsigned long len)
3288{
3289 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3290}
3291EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3292
3293int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3294 void *data, unsigned int offset,
3295 unsigned long len)
3296{
3297 struct kvm_memslots *slots = kvm_memslots(kvm);
3298 int r;
3299 gpa_t gpa = ghc->gpa + offset;
3300
3301 if (WARN_ON_ONCE(len + offset > ghc->len))
3302 return -EINVAL;
3303
3304 if (slots->generation != ghc->generation) {
3305 if (__kvm_gfn_to_hva_cache_init(slots, ghc, gpa: ghc->gpa, len: ghc->len))
3306 return -EFAULT;
3307 }
3308
3309 if (kvm_is_error_hva(addr: ghc->hva))
3310 return -EFAULT;
3311
3312 if (unlikely(!ghc->memslot))
3313 return kvm_read_guest(kvm, gpa, data, len);
3314
3315 r = __copy_from_user(to: data, from: (void __user *)ghc->hva + offset, n: len);
3316 if (r)
3317 return -EFAULT;
3318
3319 return 0;
3320}
3321EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3322
3323int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3324 void *data, unsigned long len)
3325{
3326 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3327}
3328EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3329
3330int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3331{
3332 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3333 gfn_t gfn = gpa >> PAGE_SHIFT;
3334 int seg;
3335 int offset = offset_in_page(gpa);
3336 int ret;
3337
3338 while ((seg = next_segment(len, offset)) != 0) {
3339 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3340 if (ret < 0)
3341 return ret;
3342 offset = 0;
3343 len -= seg;
3344 ++gfn;
3345 }
3346 return 0;
3347}
3348EXPORT_SYMBOL_GPL(kvm_clear_guest);
3349
3350void mark_page_dirty_in_slot(struct kvm *kvm,
3351 const struct kvm_memory_slot *memslot,
3352 gfn_t gfn)
3353{
3354 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3355
3356#ifdef CONFIG_HAVE_KVM_DIRTY_RING
3357 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3358 return;
3359
3360 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3361#endif
3362
3363 if (memslot && kvm_slot_dirty_track_enabled(slot: memslot)) {
3364 unsigned long rel_gfn = gfn - memslot->base_gfn;
3365 u32 slot = (memslot->as_id << 16) | memslot->id;
3366
3367 if (kvm->dirty_ring_size && vcpu)
3368 kvm_dirty_ring_push(vcpu, slot, offset: rel_gfn);
3369 else if (memslot->dirty_bitmap)
3370 set_bit_le(nr: rel_gfn, addr: memslot->dirty_bitmap);
3371 }
3372}
3373EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3374
3375void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3376{
3377 struct kvm_memory_slot *memslot;
3378
3379 memslot = gfn_to_memslot(kvm, gfn);
3380 mark_page_dirty_in_slot(kvm, memslot, gfn);
3381}
3382EXPORT_SYMBOL_GPL(mark_page_dirty);
3383
3384void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3385{
3386 struct kvm_memory_slot *memslot;
3387
3388 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3389 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3390}
3391EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3392
3393void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3394{
3395 if (!vcpu->sigset_active)
3396 return;
3397
3398 /*
3399 * This does a lockless modification of ->real_blocked, which is fine
3400 * because, only current can change ->real_blocked and all readers of
3401 * ->real_blocked don't care as long ->real_blocked is always a subset
3402 * of ->blocked.
3403 */
3404 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3405}
3406
3407void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3408{
3409 if (!vcpu->sigset_active)
3410 return;
3411
3412 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3413 sigemptyset(set: &current->real_blocked);
3414}
3415
3416static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3417{
3418 unsigned int old, val, grow, grow_start;
3419
3420 old = val = vcpu->halt_poll_ns;
3421 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3422 grow = READ_ONCE(halt_poll_ns_grow);
3423 if (!grow)
3424 goto out;
3425
3426 val *= grow;
3427 if (val < grow_start)
3428 val = grow_start;
3429
3430 vcpu->halt_poll_ns = val;
3431out:
3432 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3433}
3434
3435static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3436{
3437 unsigned int old, val, shrink, grow_start;
3438
3439 old = val = vcpu->halt_poll_ns;
3440 shrink = READ_ONCE(halt_poll_ns_shrink);
3441 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3442 if (shrink == 0)
3443 val = 0;
3444 else
3445 val /= shrink;
3446
3447 if (val < grow_start)
3448 val = 0;
3449
3450 vcpu->halt_poll_ns = val;
3451 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3452}
3453
3454static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3455{
3456 int ret = -EINTR;
3457 int idx = srcu_read_lock(ssp: &vcpu->kvm->srcu);
3458
3459 if (kvm_arch_vcpu_runnable(vcpu))
3460 goto out;
3461 if (kvm_cpu_has_pending_timer(vcpu))
3462 goto out;
3463 if (signal_pending(current))
3464 goto out;
3465 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3466 goto out;
3467
3468 ret = 0;
3469out:
3470 srcu_read_unlock(ssp: &vcpu->kvm->srcu, idx);
3471 return ret;
3472}
3473
3474/*
3475 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3476 * pending. This is mostly used when halting a vCPU, but may also be used
3477 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3478 */
3479bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3480{
3481 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3482 bool waited = false;
3483
3484 vcpu->stat.generic.blocking = 1;
3485
3486 preempt_disable();
3487 kvm_arch_vcpu_blocking(vcpu);
3488 prepare_to_rcuwait(w: wait);
3489 preempt_enable();
3490
3491 for (;;) {
3492 set_current_state(TASK_INTERRUPTIBLE);
3493
3494 if (kvm_vcpu_check_block(vcpu) < 0)
3495 break;
3496
3497 waited = true;
3498 schedule();
3499 }
3500
3501 preempt_disable();
3502 finish_rcuwait(w: wait);
3503 kvm_arch_vcpu_unblocking(vcpu);
3504 preempt_enable();
3505
3506 vcpu->stat.generic.blocking = 0;
3507
3508 return waited;
3509}
3510
3511static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3512 ktime_t end, bool success)
3513{
3514 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3515 u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3516
3517 ++vcpu->stat.generic.halt_attempted_poll;
3518
3519 if (success) {
3520 ++vcpu->stat.generic.halt_successful_poll;
3521
3522 if (!vcpu_valid_wakeup(vcpu))
3523 ++vcpu->stat.generic.halt_poll_invalid;
3524
3525 stats->halt_poll_success_ns += poll_ns;
3526 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3527 } else {
3528 stats->halt_poll_fail_ns += poll_ns;
3529 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3530 }
3531}
3532
3533static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3534{
3535 struct kvm *kvm = vcpu->kvm;
3536
3537 if (kvm->override_halt_poll_ns) {
3538 /*
3539 * Ensure kvm->max_halt_poll_ns is not read before
3540 * kvm->override_halt_poll_ns.
3541 *
3542 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3543 */
3544 smp_rmb();
3545 return READ_ONCE(kvm->max_halt_poll_ns);
3546 }
3547
3548 return READ_ONCE(halt_poll_ns);
3549}
3550
3551/*
3552 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt
3553 * polling is enabled, busy wait for a short time before blocking to avoid the
3554 * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3555 * is halted.
3556 */
3557void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3558{
3559 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3560 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3561 ktime_t start, cur, poll_end;
3562 bool waited = false;
3563 bool do_halt_poll;
3564 u64 halt_ns;
3565
3566 if (vcpu->halt_poll_ns > max_halt_poll_ns)
3567 vcpu->halt_poll_ns = max_halt_poll_ns;
3568
3569 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3570
3571 start = cur = poll_end = ktime_get();
3572 if (do_halt_poll) {
3573 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3574
3575 do {
3576 if (kvm_vcpu_check_block(vcpu) < 0)
3577 goto out;
3578 cpu_relax();
3579 poll_end = cur = ktime_get();
3580 } while (kvm_vcpu_can_poll(cur, stop));
3581 }
3582
3583 waited = kvm_vcpu_block(vcpu);
3584
3585 cur = ktime_get();
3586 if (waited) {
3587 vcpu->stat.generic.halt_wait_ns +=
3588 ktime_to_ns(kt: cur) - ktime_to_ns(kt: poll_end);
3589 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3590 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3591 }
3592out:
3593 /* The total time the vCPU was "halted", including polling time. */
3594 halt_ns = ktime_to_ns(kt: cur) - ktime_to_ns(kt: start);
3595
3596 /*
3597 * Note, halt-polling is considered successful so long as the vCPU was
3598 * never actually scheduled out, i.e. even if the wake event arrived
3599 * after of the halt-polling loop itself, but before the full wait.
3600 */
3601 if (do_halt_poll)
3602 update_halt_poll_stats(vcpu, start, end: poll_end, success: !waited);
3603
3604 if (halt_poll_allowed) {
3605 /* Recompute the max halt poll time in case it changed. */
3606 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3607
3608 if (!vcpu_valid_wakeup(vcpu)) {
3609 shrink_halt_poll_ns(vcpu);
3610 } else if (max_halt_poll_ns) {
3611 if (halt_ns <= vcpu->halt_poll_ns)
3612 ;
3613 /* we had a long block, shrink polling */
3614 else if (vcpu->halt_poll_ns &&
3615 halt_ns > max_halt_poll_ns)
3616 shrink_halt_poll_ns(vcpu);
3617 /* we had a short halt and our poll time is too small */
3618 else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3619 halt_ns < max_halt_poll_ns)
3620 grow_halt_poll_ns(vcpu);
3621 } else {
3622 vcpu->halt_poll_ns = 0;
3623 }
3624 }
3625
3626 trace_kvm_vcpu_wakeup(ns: halt_ns, waited, valid: vcpu_valid_wakeup(vcpu));
3627}
3628EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3629
3630bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3631{
3632 if (__kvm_vcpu_wake_up(vcpu)) {
3633 WRITE_ONCE(vcpu->ready, true);
3634 ++vcpu->stat.generic.halt_wakeup;
3635 return true;
3636 }
3637
3638 return false;
3639}
3640EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3641
3642#ifndef CONFIG_S390
3643/*
3644 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3645 */
3646void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3647{
3648 int me, cpu;
3649
3650 if (kvm_vcpu_wake_up(vcpu))
3651 return;
3652
3653 me = get_cpu();
3654 /*
3655 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3656 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should
3657 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3658 * within the vCPU thread itself.
3659 */
3660 if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3661 if (vcpu->mode == IN_GUEST_MODE)
3662 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3663 goto out;
3664 }
3665
3666 /*
3667 * Note, the vCPU could get migrated to a different pCPU at any point
3668 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3669 * IPI to the previous pCPU. But, that's ok because the purpose of the
3670 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3671 * vCPU also requires it to leave IN_GUEST_MODE.
3672 */
3673 if (kvm_arch_vcpu_should_kick(vcpu)) {
3674 cpu = READ_ONCE(vcpu->cpu);
3675 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3676 smp_send_reschedule(cpu);
3677 }
3678out:
3679 put_cpu();
3680}
3681EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3682#endif /* !CONFIG_S390 */
3683
3684int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3685{
3686 struct pid *pid;
3687 struct task_struct *task = NULL;
3688 int ret = 0;
3689
3690 rcu_read_lock();
3691 pid = rcu_dereference(target->pid);
3692 if (pid)
3693 task = get_pid_task(pid, PIDTYPE_PID);
3694 rcu_read_unlock();
3695 if (!task)
3696 return ret;
3697 ret = yield_to(p: task, preempt: 1);
3698 put_task_struct(t: task);
3699
3700 return ret;
3701}
3702EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3703
3704/*
3705 * Helper that checks whether a VCPU is eligible for directed yield.
3706 * Most eligible candidate to yield is decided by following heuristics:
3707 *
3708 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3709 * (preempted lock holder), indicated by @in_spin_loop.
3710 * Set at the beginning and cleared at the end of interception/PLE handler.
3711 *
3712 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3713 * chance last time (mostly it has become eligible now since we have probably
3714 * yielded to lockholder in last iteration. This is done by toggling
3715 * @dy_eligible each time a VCPU checked for eligibility.)
3716 *
3717 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3718 * to preempted lock-holder could result in wrong VCPU selection and CPU
3719 * burning. Giving priority for a potential lock-holder increases lock
3720 * progress.
3721 *
3722 * Since algorithm is based on heuristics, accessing another VCPU data without
3723 * locking does not harm. It may result in trying to yield to same VCPU, fail
3724 * and continue with next VCPU and so on.
3725 */
3726static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3727{
3728#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3729 bool eligible;
3730
3731 eligible = !vcpu->spin_loop.in_spin_loop ||
3732 vcpu->spin_loop.dy_eligible;
3733
3734 if (vcpu->spin_loop.in_spin_loop)
3735 kvm_vcpu_set_dy_eligible(vcpu, val: !vcpu->spin_loop.dy_eligible);
3736
3737 return eligible;
3738#else
3739 return true;
3740#endif
3741}
3742
3743/*
3744 * Unlike kvm_arch_vcpu_runnable, this function is called outside
3745 * a vcpu_load/vcpu_put pair. However, for most architectures
3746 * kvm_arch_vcpu_runnable does not require vcpu_load.
3747 */
3748bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3749{
3750 return kvm_arch_vcpu_runnable(vcpu);
3751}
3752
3753static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3754{
3755 if (kvm_arch_dy_runnable(vcpu))
3756 return true;
3757
3758#ifdef CONFIG_KVM_ASYNC_PF
3759 if (!list_empty_careful(head: &vcpu->async_pf.done))
3760 return true;
3761#endif
3762
3763 return false;
3764}
3765
3766bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3767{
3768 return false;
3769}
3770
3771void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3772{
3773 struct kvm *kvm = me->kvm;
3774 struct kvm_vcpu *vcpu;
3775 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3776 unsigned long i;
3777 int yielded = 0;
3778 int try = 3;
3779 int pass;
3780
3781 kvm_vcpu_set_in_spin_loop(vcpu: me, val: true);
3782 /*
3783 * We boost the priority of a VCPU that is runnable but not
3784 * currently running, because it got preempted by something
3785 * else and called schedule in __vcpu_run. Hopefully that
3786 * VCPU is holding the lock that we need and will release it.
3787 * We approximate round-robin by starting at the last boosted VCPU.
3788 */
3789 for (pass = 0; pass < 2 && !yielded && try; pass++) {
3790 kvm_for_each_vcpu(i, vcpu, kvm) {
3791 if (!pass && i <= last_boosted_vcpu) {
3792 i = last_boosted_vcpu;
3793 continue;
3794 } else if (pass && i > last_boosted_vcpu)
3795 break;
3796 if (!READ_ONCE(vcpu->ready))
3797 continue;
3798 if (vcpu == me)
3799 continue;
3800 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3801 continue;
3802 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3803 !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3804 !kvm_arch_vcpu_in_kernel(vcpu))
3805 continue;
3806 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3807 continue;
3808
3809 yielded = kvm_vcpu_yield_to(vcpu);
3810 if (yielded > 0) {
3811 kvm->last_boosted_vcpu = i;
3812 break;
3813 } else if (yielded < 0) {
3814 try--;
3815 if (!try)
3816 break;
3817 }
3818 }
3819 }
3820 kvm_vcpu_set_in_spin_loop(vcpu: me, val: false);
3821
3822 /* Ensure vcpu is not eligible during next spinloop */
3823 kvm_vcpu_set_dy_eligible(vcpu: me, val: false);
3824}
3825EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3826
3827static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3828{
3829#ifdef CONFIG_HAVE_KVM_DIRTY_RING
3830 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3831 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3832 kvm->dirty_ring_size / PAGE_SIZE);
3833#else
3834 return false;
3835#endif
3836}
3837
3838static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3839{
3840 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3841 struct page *page;
3842
3843 if (vmf->pgoff == 0)
3844 page = virt_to_page(vcpu->run);
3845#ifdef CONFIG_X86
3846 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3847 page = virt_to_page(vcpu->arch.pio_data);
3848#endif
3849#ifdef CONFIG_KVM_MMIO
3850 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3851 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3852#endif
3853 else if (kvm_page_in_dirty_ring(kvm: vcpu->kvm, pgoff: vmf->pgoff))
3854 page = kvm_dirty_ring_get_page(
3855 ring: &vcpu->dirty_ring,
3856 offset: vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3857 else
3858 return kvm_arch_vcpu_fault(vcpu, vmf);
3859 get_page(page);
3860 vmf->page = page;
3861 return 0;
3862}
3863
3864static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3865 .fault = kvm_vcpu_fault,
3866};
3867
3868static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3869{
3870 struct kvm_vcpu *vcpu = file->private_data;
3871 unsigned long pages = vma_pages(vma);
3872
3873 if ((kvm_page_in_dirty_ring(kvm: vcpu->kvm, pgoff: vma->vm_pgoff) ||
3874 kvm_page_in_dirty_ring(kvm: vcpu->kvm, pgoff: vma->vm_pgoff + pages - 1)) &&
3875 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3876 return -EINVAL;
3877
3878 vma->vm_ops = &kvm_vcpu_vm_ops;
3879 return 0;
3880}
3881
3882static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3883{
3884 struct kvm_vcpu *vcpu = filp->private_data;
3885
3886 kvm_put_kvm(vcpu->kvm);
3887 return 0;
3888}
3889
3890static const struct file_operations kvm_vcpu_fops = {
3891 .release = kvm_vcpu_release,
3892 .unlocked_ioctl = kvm_vcpu_ioctl,
3893 .mmap = kvm_vcpu_mmap,
3894 .llseek = noop_llseek,
3895 KVM_COMPAT(kvm_vcpu_compat_ioctl),
3896};
3897
3898/*
3899 * Allocates an inode for the vcpu.
3900 */
3901static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3902{
3903 char name[8 + 1 + ITOA_MAX_LEN + 1];
3904
3905 snprintf(buf: name, size: sizeof(name), fmt: "kvm-vcpu:%d", vcpu->vcpu_id);
3906 return anon_inode_getfd(name, fops: &kvm_vcpu_fops, priv: vcpu, O_RDWR | O_CLOEXEC);
3907}
3908
3909#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3910static int vcpu_get_pid(void *data, u64 *val)
3911{
3912 struct kvm_vcpu *vcpu = data;
3913
3914 rcu_read_lock();
3915 *val = pid_nr(rcu_dereference(vcpu->pid));
3916 rcu_read_unlock();
3917 return 0;
3918}
3919
3920DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
3921
3922static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3923{
3924 struct dentry *debugfs_dentry;
3925 char dir_name[ITOA_MAX_LEN * 2];
3926
3927 if (!debugfs_initialized())
3928 return;
3929
3930 snprintf(buf: dir_name, size: sizeof(dir_name), fmt: "vcpu%d", vcpu->vcpu_id);
3931 debugfs_dentry = debugfs_create_dir(name: dir_name,
3932 parent: vcpu->kvm->debugfs_dentry);
3933 debugfs_create_file(name: "pid", mode: 0444, parent: debugfs_dentry, data: vcpu,
3934 fops: &vcpu_get_pid_fops);
3935
3936 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3937}
3938#endif
3939
3940/*
3941 * Creates some virtual cpus. Good luck creating more than one.
3942 */
3943static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3944{
3945 int r;
3946 struct kvm_vcpu *vcpu;
3947 struct page *page;
3948
3949 if (id >= KVM_MAX_VCPU_IDS)
3950 return -EINVAL;
3951
3952 mutex_lock(&kvm->lock);
3953 if (kvm->created_vcpus >= kvm->max_vcpus) {
3954 mutex_unlock(lock: &kvm->lock);
3955 return -EINVAL;
3956 }
3957
3958 r = kvm_arch_vcpu_precreate(kvm, id);
3959 if (r) {
3960 mutex_unlock(lock: &kvm->lock);
3961 return r;
3962 }
3963
3964 kvm->created_vcpus++;
3965 mutex_unlock(lock: &kvm->lock);
3966
3967 vcpu = kmem_cache_zalloc(k: kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3968 if (!vcpu) {
3969 r = -ENOMEM;
3970 goto vcpu_decrement;
3971 }
3972
3973 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3974 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3975 if (!page) {
3976 r = -ENOMEM;
3977 goto vcpu_free;
3978 }
3979 vcpu->run = page_address(page);
3980
3981 kvm_vcpu_init(vcpu, kvm, id);
3982
3983 r = kvm_arch_vcpu_create(vcpu);
3984 if (r)
3985 goto vcpu_free_run_page;
3986
3987 if (kvm->dirty_ring_size) {
3988 r = kvm_dirty_ring_alloc(ring: &vcpu->dirty_ring,
3989 index: id, size: kvm->dirty_ring_size);
3990 if (r)
3991 goto arch_vcpu_destroy;
3992 }
3993
3994 mutex_lock(&kvm->lock);
3995
3996#ifdef CONFIG_LOCKDEP
3997 /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
3998 mutex_lock(&vcpu->mutex);
3999 mutex_unlock(lock: &vcpu->mutex);
4000#endif
4001
4002 if (kvm_get_vcpu_by_id(kvm, id)) {
4003 r = -EEXIST;
4004 goto unlock_vcpu_destroy;
4005 }
4006
4007 vcpu->vcpu_idx = atomic_read(v: &kvm->online_vcpus);
4008 r = xa_reserve(xa: &kvm->vcpu_array, index: vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
4009 if (r)
4010 goto unlock_vcpu_destroy;
4011
4012 /* Now it's all set up, let userspace reach it */
4013 kvm_get_kvm(kvm);
4014 r = create_vcpu_fd(vcpu);
4015 if (r < 0)
4016 goto kvm_put_xa_release;
4017
4018 if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
4019 r = -EINVAL;
4020 goto kvm_put_xa_release;
4021 }
4022
4023 /*
4024 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu
4025 * pointer before kvm->online_vcpu's incremented value.
4026 */
4027 smp_wmb();
4028 atomic_inc(v: &kvm->online_vcpus);
4029
4030 mutex_unlock(lock: &kvm->lock);
4031 kvm_arch_vcpu_postcreate(vcpu);
4032 kvm_create_vcpu_debugfs(vcpu);
4033 return r;
4034
4035kvm_put_xa_release:
4036 kvm_put_kvm_no_destroy(kvm);
4037 xa_release(xa: &kvm->vcpu_array, index: vcpu->vcpu_idx);
4038unlock_vcpu_destroy:
4039 mutex_unlock(lock: &kvm->lock);
4040 kvm_dirty_ring_free(ring: &vcpu->dirty_ring);
4041arch_vcpu_destroy:
4042 kvm_arch_vcpu_destroy(vcpu);
4043vcpu_free_run_page:
4044 free_page((unsigned long)vcpu->run);
4045vcpu_free:
4046 kmem_cache_free(s: kvm_vcpu_cache, objp: vcpu);
4047vcpu_decrement:
4048 mutex_lock(&kvm->lock);
4049 kvm->created_vcpus--;
4050 mutex_unlock(lock: &kvm->lock);
4051 return r;
4052}
4053
4054static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4055{
4056 if (sigset) {
4057 sigdelsetmask(set: sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4058 vcpu->sigset_active = 1;
4059 vcpu->sigset = *sigset;
4060 } else
4061 vcpu->sigset_active = 0;
4062 return 0;
4063}
4064
4065static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4066 size_t size, loff_t *offset)
4067{
4068 struct kvm_vcpu *vcpu = file->private_data;
4069
4070 return kvm_stats_read(id: vcpu->stats_id, header: &kvm_vcpu_stats_header,
4071 desc: &kvm_vcpu_stats_desc[0], stats: &vcpu->stat,
4072 size_stats: sizeof(vcpu->stat), user_buffer, size, offset);
4073}
4074
4075static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4076{
4077 struct kvm_vcpu *vcpu = file->private_data;
4078
4079 kvm_put_kvm(vcpu->kvm);
4080 return 0;
4081}
4082
4083static const struct file_operations kvm_vcpu_stats_fops = {
4084 .read = kvm_vcpu_stats_read,
4085 .release = kvm_vcpu_stats_release,
4086 .llseek = noop_llseek,
4087};
4088
4089static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4090{
4091 int fd;
4092 struct file *file;
4093 char name[15 + ITOA_MAX_LEN + 1];
4094
4095 snprintf(buf: name, size: sizeof(name), fmt: "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4096
4097 fd = get_unused_fd_flags(O_CLOEXEC);
4098 if (fd < 0)
4099 return fd;
4100
4101 file = anon_inode_getfile(name, fops: &kvm_vcpu_stats_fops, priv: vcpu, O_RDONLY);
4102 if (IS_ERR(ptr: file)) {
4103 put_unused_fd(fd);
4104 return PTR_ERR(ptr: file);
4105 }
4106
4107 kvm_get_kvm(vcpu->kvm);
4108
4109 file->f_mode |= FMODE_PREAD;
4110 fd_install(fd, file);
4111
4112 return fd;
4113}
4114
4115static long kvm_vcpu_ioctl(struct file *filp,
4116 unsigned int ioctl, unsigned long arg)
4117{
4118 struct kvm_vcpu *vcpu = filp->private_data;
4119 void __user *argp = (void __user *)arg;
4120 int r;
4121 struct kvm_fpu *fpu = NULL;
4122 struct kvm_sregs *kvm_sregs = NULL;
4123
4124 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4125 return -EIO;
4126
4127 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4128 return -EINVAL;
4129
4130 /*
4131 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4132 * execution; mutex_lock() would break them.
4133 */
4134 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4135 if (r != -ENOIOCTLCMD)
4136 return r;
4137
4138 if (mutex_lock_killable(&vcpu->mutex))
4139 return -EINTR;
4140 switch (ioctl) {
4141 case KVM_RUN: {
4142 struct pid *oldpid;
4143 r = -EINVAL;
4144 if (arg)
4145 goto out;
4146 oldpid = rcu_access_pointer(vcpu->pid);
4147 if (unlikely(oldpid != task_pid(current))) {
4148 /* The thread running this VCPU changed. */
4149 struct pid *newpid;
4150
4151 r = kvm_arch_vcpu_run_pid_change(vcpu);
4152 if (r)
4153 break;
4154
4155 newpid = get_task_pid(current, type: PIDTYPE_PID);
4156 rcu_assign_pointer(vcpu->pid, newpid);
4157 if (oldpid)
4158 synchronize_rcu();
4159 put_pid(pid: oldpid);
4160 }
4161 r = kvm_arch_vcpu_ioctl_run(vcpu);
4162 trace_kvm_userspace_exit(reason: vcpu->run->exit_reason, errno: r);
4163 break;
4164 }
4165 case KVM_GET_REGS: {
4166 struct kvm_regs *kvm_regs;
4167
4168 r = -ENOMEM;
4169 kvm_regs = kzalloc(size: sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4170 if (!kvm_regs)
4171 goto out;
4172 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, regs: kvm_regs);
4173 if (r)
4174 goto out_free1;
4175 r = -EFAULT;
4176 if (copy_to_user(to: argp, from: kvm_regs, n: sizeof(struct kvm_regs)))
4177 goto out_free1;
4178 r = 0;
4179out_free1:
4180 kfree(objp: kvm_regs);
4181 break;
4182 }
4183 case KVM_SET_REGS: {
4184 struct kvm_regs *kvm_regs;
4185
4186 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4187 if (IS_ERR(ptr: kvm_regs)) {
4188 r = PTR_ERR(ptr: kvm_regs);
4189 goto out;
4190 }
4191 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, regs: kvm_regs);
4192 kfree(objp: kvm_regs);
4193 break;
4194 }
4195 case KVM_GET_SREGS: {
4196 kvm_sregs = kzalloc(size: sizeof(struct kvm_sregs),
4197 GFP_KERNEL_ACCOUNT);
4198 r = -ENOMEM;
4199 if (!kvm_sregs)
4200 goto out;
4201 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, sregs: kvm_sregs);
4202 if (r)
4203 goto out;
4204 r = -EFAULT;
4205 if (copy_to_user(to: argp, from: kvm_sregs, n: sizeof(struct kvm_sregs)))
4206 goto out;
4207 r = 0;
4208 break;
4209 }
4210 case KVM_SET_SREGS: {
4211 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4212 if (IS_ERR(ptr: kvm_sregs)) {
4213 r = PTR_ERR(ptr: kvm_sregs);
4214 kvm_sregs = NULL;
4215 goto out;
4216 }
4217 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, sregs: kvm_sregs);
4218 break;
4219 }
4220 case KVM_GET_MP_STATE: {
4221 struct kvm_mp_state mp_state;
4222
4223 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, mp_state: &mp_state);
4224 if (r)
4225 goto out;
4226 r = -EFAULT;
4227 if (copy_to_user(to: argp, from: &mp_state, n: sizeof(mp_state)))
4228 goto out;
4229 r = 0;
4230 break;
4231 }
4232 case KVM_SET_MP_STATE: {
4233 struct kvm_mp_state mp_state;
4234
4235 r = -EFAULT;
4236 if (copy_from_user(to: &mp_state, from: argp, n: sizeof(mp_state)))
4237 goto out;
4238 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, mp_state: &mp_state);
4239 break;
4240 }
4241 case KVM_TRANSLATE: {
4242 struct kvm_translation tr;
4243
4244 r = -EFAULT;
4245 if (copy_from_user(to: &tr, from: argp, n: sizeof(tr)))
4246 goto out;
4247 r = kvm_arch_vcpu_ioctl_translate(vcpu, tr: &tr);
4248 if (r)
4249 goto out;
4250 r = -EFAULT;
4251 if (copy_to_user(to: argp, from: &tr, n: sizeof(tr)))
4252 goto out;
4253 r = 0;
4254 break;
4255 }
4256 case KVM_SET_GUEST_DEBUG: {
4257 struct kvm_guest_debug dbg;
4258
4259 r = -EFAULT;
4260 if (copy_from_user(to: &dbg, from: argp, n: sizeof(dbg)))
4261 goto out;
4262 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, dbg: &dbg);
4263 break;
4264 }
4265 case KVM_SET_SIGNAL_MASK: {
4266 struct kvm_signal_mask __user *sigmask_arg = argp;
4267 struct kvm_signal_mask kvm_sigmask;
4268 sigset_t sigset, *p;
4269
4270 p = NULL;
4271 if (argp) {
4272 r = -EFAULT;
4273 if (copy_from_user(to: &kvm_sigmask, from: argp,
4274 n: sizeof(kvm_sigmask)))
4275 goto out;
4276 r = -EINVAL;
4277 if (kvm_sigmask.len != sizeof(sigset))
4278 goto out;
4279 r = -EFAULT;
4280 if (copy_from_user(to: &sigset, from: sigmask_arg->sigset,
4281 n: sizeof(sigset)))
4282 goto out;
4283 p = &sigset;
4284 }
4285 r = kvm_vcpu_ioctl_set_sigmask(vcpu, sigset: p);
4286 break;
4287 }
4288 case KVM_GET_FPU: {
4289 fpu = kzalloc(size: sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4290 r = -ENOMEM;
4291 if (!fpu)
4292 goto out;
4293 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4294 if (r)
4295 goto out;
4296 r = -EFAULT;
4297 if (copy_to_user(to: argp, from: fpu, n: sizeof(struct kvm_fpu)))
4298 goto out;
4299 r = 0;
4300 break;
4301 }
4302 case KVM_SET_FPU: {
4303 fpu = memdup_user(argp, sizeof(*fpu));
4304 if (IS_ERR(ptr: fpu)) {
4305 r = PTR_ERR(ptr: fpu);
4306 fpu = NULL;
4307 goto out;
4308 }
4309 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4310 break;
4311 }
4312 case KVM_GET_STATS_FD: {
4313 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4314 break;
4315 }
4316 default:
4317 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4318 }
4319out:
4320 mutex_unlock(lock: &vcpu->mutex);
4321 kfree(objp: fpu);
4322 kfree(objp: kvm_sregs);
4323 return r;
4324}
4325
4326#ifdef CONFIG_KVM_COMPAT
4327static long kvm_vcpu_compat_ioctl(struct file *filp,
4328 unsigned int ioctl, unsigned long arg)
4329{
4330 struct kvm_vcpu *vcpu = filp->private_data;
4331 void __user *argp = compat_ptr(uptr: arg);
4332 int r;
4333
4334 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4335 return -EIO;
4336
4337 switch (ioctl) {
4338 case KVM_SET_SIGNAL_MASK: {
4339 struct kvm_signal_mask __user *sigmask_arg = argp;
4340 struct kvm_signal_mask kvm_sigmask;
4341 sigset_t sigset;
4342
4343 if (argp) {
4344 r = -EFAULT;
4345 if (copy_from_user(to: &kvm_sigmask, from: argp,
4346 n: sizeof(kvm_sigmask)))
4347 goto out;
4348 r = -EINVAL;
4349 if (kvm_sigmask.len != sizeof(compat_sigset_t))
4350 goto out;
4351 r = -EFAULT;
4352 if (get_compat_sigset(set: &sigset,
4353 compat: (compat_sigset_t __user *)sigmask_arg->sigset))
4354 goto out;
4355 r = kvm_vcpu_ioctl_set_sigmask(vcpu, sigset: &sigset);
4356 } else
4357 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4358 break;
4359 }
4360 default:
4361 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4362 }
4363
4364out:
4365 return r;
4366}
4367#endif
4368
4369static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4370{
4371 struct kvm_device *dev = filp->private_data;
4372
4373 if (dev->ops->mmap)
4374 return dev->ops->mmap(dev, vma);
4375
4376 return -ENODEV;
4377}
4378
4379static int kvm_device_ioctl_attr(struct kvm_device *dev,
4380 int (*accessor)(struct kvm_device *dev,
4381 struct kvm_device_attr *attr),
4382 unsigned long arg)
4383{
4384 struct kvm_device_attr attr;
4385
4386 if (!accessor)
4387 return -EPERM;
4388
4389 if (copy_from_user(to: &attr, from: (void __user *)arg, n: sizeof(attr)))
4390 return -EFAULT;
4391
4392 return accessor(dev, &attr);
4393}
4394
4395static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4396 unsigned long arg)
4397{
4398 struct kvm_device *dev = filp->private_data;
4399
4400 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4401 return -EIO;
4402
4403 switch (ioctl) {
4404 case KVM_SET_DEVICE_ATTR:
4405 return kvm_device_ioctl_attr(dev, accessor: dev->ops->set_attr, arg);
4406 case KVM_GET_DEVICE_ATTR:
4407 return kvm_device_ioctl_attr(dev, accessor: dev->ops->get_attr, arg);
4408 case KVM_HAS_DEVICE_ATTR:
4409 return kvm_device_ioctl_attr(dev, accessor: dev->ops->has_attr, arg);
4410 default:
4411 if (dev->ops->ioctl)
4412 return dev->ops->ioctl(dev, ioctl, arg);
4413
4414 return -ENOTTY;
4415 }
4416}
4417
4418static int kvm_device_release(struct inode *inode, struct file *filp)
4419{
4420 struct kvm_device *dev = filp->private_data;
4421 struct kvm *kvm = dev->kvm;
4422
4423 if (dev->ops->release) {
4424 mutex_lock(&kvm->lock);
4425 list_del(entry: &dev->vm_node);
4426 dev->ops->release(dev);
4427 mutex_unlock(lock: &kvm->lock);
4428 }
4429
4430 kvm_put_kvm(kvm);
4431 return 0;
4432}
4433
4434static const struct file_operations kvm_device_fops = {
4435 .unlocked_ioctl = kvm_device_ioctl,
4436 .release = kvm_device_release,
4437 KVM_COMPAT(kvm_device_ioctl),
4438 .mmap = kvm_device_mmap,
4439};
4440
4441struct kvm_device *kvm_device_from_filp(struct file *filp)
4442{
4443 if (filp->f_op != &kvm_device_fops)
4444 return NULL;
4445
4446 return filp->private_data;
4447}
4448
4449static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4450#ifdef CONFIG_KVM_MPIC
4451 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
4452 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
4453#endif
4454};
4455
4456int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4457{
4458 if (type >= ARRAY_SIZE(kvm_device_ops_table))
4459 return -ENOSPC;
4460
4461 if (kvm_device_ops_table[type] != NULL)
4462 return -EEXIST;
4463
4464 kvm_device_ops_table[type] = ops;
4465 return 0;
4466}
4467
4468void kvm_unregister_device_ops(u32 type)
4469{
4470 if (kvm_device_ops_table[type] != NULL)
4471 kvm_device_ops_table[type] = NULL;
4472}
4473
4474static int kvm_ioctl_create_device(struct kvm *kvm,
4475 struct kvm_create_device *cd)
4476{
4477 const struct kvm_device_ops *ops;
4478 struct kvm_device *dev;
4479 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4480 int type;
4481 int ret;
4482
4483 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4484 return -ENODEV;
4485
4486 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4487 ops = kvm_device_ops_table[type];
4488 if (ops == NULL)
4489 return -ENODEV;
4490
4491 if (test)
4492 return 0;
4493
4494 dev = kzalloc(size: sizeof(*dev), GFP_KERNEL_ACCOUNT);
4495 if (!dev)
4496 return -ENOMEM;
4497
4498 dev->ops = ops;
4499 dev->kvm = kvm;
4500
4501 mutex_lock(&kvm->lock);
4502 ret = ops->create(dev, type);
4503 if (ret < 0) {
4504 mutex_unlock(lock: &kvm->lock);
4505 kfree(objp: dev);
4506 return ret;
4507 }
4508 list_add(new: &dev->vm_node, head: &kvm->devices);
4509 mutex_unlock(lock: &kvm->lock);
4510
4511 if (ops->init)
4512 ops->init(dev);
4513
4514 kvm_get_kvm(kvm);
4515 ret = anon_inode_getfd(name: ops->name, fops: &kvm_device_fops, priv: dev, O_RDWR | O_CLOEXEC);
4516 if (ret < 0) {
4517 kvm_put_kvm_no_destroy(kvm);
4518 mutex_lock(&kvm->lock);
4519 list_del(entry: &dev->vm_node);
4520 if (ops->release)
4521 ops->release(dev);
4522 mutex_unlock(lock: &kvm->lock);
4523 if (ops->destroy)
4524 ops->destroy(dev);
4525 return ret;
4526 }
4527
4528 cd->fd = ret;
4529 return 0;
4530}
4531
4532static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4533{
4534 switch (arg) {
4535 case KVM_CAP_USER_MEMORY:
4536 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4537 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4538 case KVM_CAP_INTERNAL_ERROR_DATA:
4539#ifdef CONFIG_HAVE_KVM_MSI
4540 case KVM_CAP_SIGNAL_MSI:
4541#endif
4542#ifdef CONFIG_HAVE_KVM_IRQFD
4543 case KVM_CAP_IRQFD:
4544#endif
4545 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4546 case KVM_CAP_CHECK_EXTENSION_VM:
4547 case KVM_CAP_ENABLE_CAP_VM:
4548 case KVM_CAP_HALT_POLL:
4549 return 1;
4550#ifdef CONFIG_KVM_MMIO
4551 case KVM_CAP_COALESCED_MMIO:
4552 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4553 case KVM_CAP_COALESCED_PIO:
4554 return 1;
4555#endif
4556#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4557 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4558 return KVM_DIRTY_LOG_MANUAL_CAPS;
4559#endif
4560#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4561 case KVM_CAP_IRQ_ROUTING:
4562 return KVM_MAX_IRQ_ROUTES;
4563#endif
4564#if KVM_ADDRESS_SPACE_NUM > 1
4565 case KVM_CAP_MULTI_ADDRESS_SPACE:
4566 return KVM_ADDRESS_SPACE_NUM;
4567#endif
4568 case KVM_CAP_NR_MEMSLOTS:
4569 return KVM_USER_MEM_SLOTS;
4570 case KVM_CAP_DIRTY_LOG_RING:
4571#ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4572 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4573#else
4574 return 0;
4575#endif
4576 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4577#ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4578 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4579#else
4580 return 0;
4581#endif
4582#ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4583 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4584#endif
4585 case KVM_CAP_BINARY_STATS_FD:
4586 case KVM_CAP_SYSTEM_EVENT_DATA:
4587 return 1;
4588 default:
4589 break;
4590 }
4591 return kvm_vm_ioctl_check_extension(kvm, ext: arg);
4592}
4593
4594static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4595{
4596 int r;
4597
4598 if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4599 return -EINVAL;
4600
4601 /* the size should be power of 2 */
4602 if (!size || (size & (size - 1)))
4603 return -EINVAL;
4604
4605 /* Should be bigger to keep the reserved entries, or a page */
4606 if (size < kvm_dirty_ring_get_rsvd_entries() *
4607 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4608 return -EINVAL;
4609
4610 if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4611 sizeof(struct kvm_dirty_gfn))
4612 return -E2BIG;
4613
4614 /* We only allow it to set once */
4615 if (kvm->dirty_ring_size)
4616 return -EINVAL;
4617
4618 mutex_lock(&kvm->lock);
4619
4620 if (kvm->created_vcpus) {
4621 /* We don't allow to change this value after vcpu created */
4622 r = -EINVAL;
4623 } else {
4624 kvm->dirty_ring_size = size;
4625 r = 0;
4626 }
4627
4628 mutex_unlock(lock: &kvm->lock);
4629 return r;
4630}
4631
4632static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4633{
4634 unsigned long i;
4635 struct kvm_vcpu *vcpu;
4636 int cleared = 0;
4637
4638 if (!kvm->dirty_ring_size)
4639 return -EINVAL;
4640
4641 mutex_lock(&kvm->slots_lock);
4642
4643 kvm_for_each_vcpu(i, vcpu, kvm)
4644 cleared += kvm_dirty_ring_reset(kvm: vcpu->kvm, ring: &vcpu->dirty_ring);
4645
4646 mutex_unlock(lock: &kvm->slots_lock);
4647
4648 if (cleared)
4649 kvm_flush_remote_tlbs(kvm);
4650
4651 return cleared;
4652}
4653
4654int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4655 struct kvm_enable_cap *cap)
4656{
4657 return -EINVAL;
4658}
4659
4660bool kvm_are_all_memslots_empty(struct kvm *kvm)
4661{
4662 int i;
4663
4664 lockdep_assert_held(&kvm->slots_lock);
4665
4666 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4667 if (!kvm_memslots_empty(slots: __kvm_memslots(kvm, as_id: i)))
4668 return false;
4669 }
4670
4671 return true;
4672}
4673EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
4674
4675static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4676 struct kvm_enable_cap *cap)
4677{
4678 switch (cap->cap) {
4679#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4680 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4681 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4682
4683 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4684 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4685
4686 if (cap->flags || (cap->args[0] & ~allowed_options))
4687 return -EINVAL;
4688 kvm->manual_dirty_log_protect = cap->args[0];
4689 return 0;
4690 }
4691#endif
4692 case KVM_CAP_HALT_POLL: {
4693 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4694 return -EINVAL;
4695
4696 kvm->max_halt_poll_ns = cap->args[0];
4697
4698 /*
4699 * Ensure kvm->override_halt_poll_ns does not become visible
4700 * before kvm->max_halt_poll_ns.
4701 *
4702 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
4703 */
4704 smp_wmb();
4705 kvm->override_halt_poll_ns = true;
4706
4707 return 0;
4708 }
4709 case KVM_CAP_DIRTY_LOG_RING:
4710 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4711 if (!kvm_vm_ioctl_check_extension_generic(kvm, arg: cap->cap))
4712 return -EINVAL;
4713
4714 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, size: cap->args[0]);
4715 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
4716 int r = -EINVAL;
4717
4718 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
4719 !kvm->dirty_ring_size || cap->flags)
4720 return r;
4721
4722 mutex_lock(&kvm->slots_lock);
4723
4724 /*
4725 * For simplicity, allow enabling ring+bitmap if and only if
4726 * there are no memslots, e.g. to ensure all memslots allocate
4727 * a bitmap after the capability is enabled.
4728 */
4729 if (kvm_are_all_memslots_empty(kvm)) {
4730 kvm->dirty_ring_with_bitmap = true;
4731 r = 0;
4732 }
4733
4734 mutex_unlock(lock: &kvm->slots_lock);
4735
4736 return r;
4737 }
4738 default:
4739 return kvm_vm_ioctl_enable_cap(kvm, cap);
4740 }
4741}
4742
4743static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4744 size_t size, loff_t *offset)
4745{
4746 struct kvm *kvm = file->private_data;
4747
4748 return kvm_stats_read(id: kvm->stats_id, header: &kvm_vm_stats_header,
4749 desc: &kvm_vm_stats_desc[0], stats: &kvm->stat,
4750 size_stats: sizeof(kvm->stat), user_buffer, size, offset);
4751}
4752
4753static int kvm_vm_stats_release(struct inode *inode, struct file *file)
4754{
4755 struct kvm *kvm = file->private_data;
4756
4757 kvm_put_kvm(kvm);
4758 return 0;
4759}
4760
4761static const struct file_operations kvm_vm_stats_fops = {
4762 .read = kvm_vm_stats_read,
4763 .release = kvm_vm_stats_release,
4764 .llseek = noop_llseek,
4765};
4766
4767static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4768{
4769 int fd;
4770 struct file *file;
4771
4772 fd = get_unused_fd_flags(O_CLOEXEC);
4773 if (fd < 0)
4774 return fd;
4775
4776 file = anon_inode_getfile(name: "kvm-vm-stats",
4777 fops: &kvm_vm_stats_fops, priv: kvm, O_RDONLY);
4778 if (IS_ERR(ptr: file)) {
4779 put_unused_fd(fd);
4780 return PTR_ERR(ptr: file);
4781 }
4782
4783 kvm_get_kvm(kvm);
4784
4785 file->f_mode |= FMODE_PREAD;
4786 fd_install(fd, file);
4787
4788 return fd;
4789}
4790
4791static long kvm_vm_ioctl(struct file *filp,
4792 unsigned int ioctl, unsigned long arg)
4793{
4794 struct kvm *kvm = filp->private_data;
4795 void __user *argp = (void __user *)arg;
4796 int r;
4797
4798 if (kvm->mm != current->mm || kvm->vm_dead)
4799 return -EIO;
4800 switch (ioctl) {
4801 case KVM_CREATE_VCPU:
4802 r = kvm_vm_ioctl_create_vcpu(kvm, id: arg);
4803 break;
4804 case KVM_ENABLE_CAP: {
4805 struct kvm_enable_cap cap;
4806
4807 r = -EFAULT;
4808 if (copy_from_user(to: &cap, from: argp, n: sizeof(cap)))
4809 goto out;
4810 r = kvm_vm_ioctl_enable_cap_generic(kvm, cap: &cap);
4811 break;
4812 }
4813 case KVM_SET_USER_MEMORY_REGION: {
4814 struct kvm_userspace_memory_region kvm_userspace_mem;
4815
4816 r = -EFAULT;
4817 if (copy_from_user(to: &kvm_userspace_mem, from: argp,
4818 n: sizeof(kvm_userspace_mem)))
4819 goto out;
4820
4821 r = kvm_vm_ioctl_set_memory_region(kvm, mem: &kvm_userspace_mem);
4822 break;
4823 }
4824 case KVM_GET_DIRTY_LOG: {
4825 struct kvm_dirty_log log;
4826
4827 r = -EFAULT;
4828 if (copy_from_user(to: &log, from: argp, n: sizeof(log)))
4829 goto out;
4830 r = kvm_vm_ioctl_get_dirty_log(kvm, log: &log);
4831 break;
4832 }
4833#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4834 case KVM_CLEAR_DIRTY_LOG: {
4835 struct kvm_clear_dirty_log log;
4836
4837 r = -EFAULT;
4838 if (copy_from_user(to: &log, from: argp, n: sizeof(log)))
4839 goto out;
4840 r = kvm_vm_ioctl_clear_dirty_log(kvm, log: &log);
4841 break;
4842 }
4843#endif
4844#ifdef CONFIG_KVM_MMIO
4845 case KVM_REGISTER_COALESCED_MMIO: {
4846 struct kvm_coalesced_mmio_zone zone;
4847
4848 r = -EFAULT;
4849 if (copy_from_user(to: &zone, from: argp, n: sizeof(zone)))
4850 goto out;
4851 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, zone: &zone);
4852 break;
4853 }
4854 case KVM_UNREGISTER_COALESCED_MMIO: {
4855 struct kvm_coalesced_mmio_zone zone;
4856
4857 r = -EFAULT;
4858 if (copy_from_user(to: &zone, from: argp, n: sizeof(zone)))
4859 goto out;
4860 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, zone: &zone);
4861 break;
4862 }
4863#endif
4864 case KVM_IRQFD: {
4865 struct kvm_irqfd data;
4866
4867 r = -EFAULT;
4868 if (copy_from_user(to: &data, from: argp, n: sizeof(data)))
4869 goto out;
4870 r = kvm_irqfd(kvm, args: &data);
4871 break;
4872 }
4873 case KVM_IOEVENTFD: {
4874 struct kvm_ioeventfd data;
4875
4876 r = -EFAULT;
4877 if (copy_from_user(to: &data, from: argp, n: sizeof(data)))
4878 goto out;
4879 r = kvm_ioeventfd(kvm, args: &data);
4880 break;
4881 }
4882#ifdef CONFIG_HAVE_KVM_MSI
4883 case KVM_SIGNAL_MSI: {
4884 struct kvm_msi msi;
4885
4886 r = -EFAULT;
4887 if (copy_from_user(to: &msi, from: argp, n: sizeof(msi)))
4888 goto out;
4889 r = kvm_send_userspace_msi(kvm, msi: &msi);
4890 break;
4891 }
4892#endif
4893#ifdef __KVM_HAVE_IRQ_LINE
4894 case KVM_IRQ_LINE_STATUS:
4895 case KVM_IRQ_LINE: {
4896 struct kvm_irq_level irq_event;
4897
4898 r = -EFAULT;
4899 if (copy_from_user(to: &irq_event, from: argp, n: sizeof(irq_event)))
4900 goto out;
4901
4902 r = kvm_vm_ioctl_irq_line(kvm, irq_level: &irq_event,
4903 line_status: ioctl == KVM_IRQ_LINE_STATUS);
4904 if (r)
4905 goto out;
4906
4907 r = -EFAULT;
4908 if (ioctl == KVM_IRQ_LINE_STATUS) {
4909 if (copy_to_user(to: argp, from: &irq_event, n: sizeof(irq_event)))
4910 goto out;
4911 }
4912
4913 r = 0;
4914 break;
4915 }
4916#endif
4917#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4918 case KVM_SET_GSI_ROUTING: {
4919 struct kvm_irq_routing routing;
4920 struct kvm_irq_routing __user *urouting;
4921 struct kvm_irq_routing_entry *entries = NULL;
4922
4923 r = -EFAULT;
4924 if (copy_from_user(to: &routing, from: argp, n: sizeof(routing)))
4925 goto out;
4926 r = -EINVAL;
4927 if (!kvm_arch_can_set_irq_routing(kvm))
4928 goto out;
4929 if (routing.nr > KVM_MAX_IRQ_ROUTES)
4930 goto out;
4931 if (routing.flags)
4932 goto out;
4933 if (routing.nr) {
4934 urouting = argp;
4935 entries = vmemdup_user(urouting->entries,
4936 array_size(sizeof(*entries),
4937 routing.nr));
4938 if (IS_ERR(ptr: entries)) {
4939 r = PTR_ERR(ptr: entries);
4940 goto out;
4941 }
4942 }
4943 r = kvm_set_irq_routing(kvm, entries, nr: routing.nr,
4944 flags: routing.flags);
4945 kvfree(addr: entries);
4946 break;
4947 }
4948#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4949 case KVM_CREATE_DEVICE: {
4950 struct kvm_create_device cd;
4951
4952 r = -EFAULT;
4953 if (copy_from_user(to: &cd, from: argp, n: sizeof(cd)))
4954 goto out;
4955
4956 r = kvm_ioctl_create_device(kvm, cd: &cd);
4957 if (r)
4958 goto out;
4959
4960 r = -EFAULT;
4961 if (copy_to_user(to: argp, from: &cd, n: sizeof(cd)))
4962 goto out;
4963
4964 r = 0;
4965 break;
4966 }
4967 case KVM_CHECK_EXTENSION:
4968 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4969 break;
4970 case KVM_RESET_DIRTY_RINGS:
4971 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4972 break;
4973 case KVM_GET_STATS_FD:
4974 r = kvm_vm_ioctl_get_stats_fd(kvm);
4975 break;
4976 default:
4977 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4978 }
4979out:
4980 return r;
4981}
4982
4983#ifdef CONFIG_KVM_COMPAT
4984struct compat_kvm_dirty_log {
4985 __u32 slot;
4986 __u32 padding1;
4987 union {
4988 compat_uptr_t dirty_bitmap; /* one bit per page */
4989 __u64 padding2;
4990 };
4991};
4992
4993struct compat_kvm_clear_dirty_log {
4994 __u32 slot;
4995 __u32 num_pages;
4996 __u64 first_page;
4997 union {
4998 compat_uptr_t dirty_bitmap; /* one bit per page */
4999 __u64 padding2;
5000 };
5001};
5002
5003long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5004 unsigned long arg)
5005{
5006 return -ENOTTY;
5007}
5008
5009static long kvm_vm_compat_ioctl(struct file *filp,
5010 unsigned int ioctl, unsigned long arg)
5011{
5012 struct kvm *kvm = filp->private_data;
5013 int r;
5014
5015 if (kvm->mm != current->mm || kvm->vm_dead)
5016 return -EIO;
5017
5018 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5019 if (r != -ENOTTY)
5020 return r;
5021
5022 switch (ioctl) {
5023#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5024 case KVM_CLEAR_DIRTY_LOG: {
5025 struct compat_kvm_clear_dirty_log compat_log;
5026 struct kvm_clear_dirty_log log;
5027
5028 if (copy_from_user(to: &compat_log, from: (void __user *)arg,
5029 n: sizeof(compat_log)))
5030 return -EFAULT;
5031 log.slot = compat_log.slot;
5032 log.num_pages = compat_log.num_pages;
5033 log.first_page = compat_log.first_page;
5034 log.padding2 = compat_log.padding2;
5035 log.dirty_bitmap = compat_ptr(uptr: compat_log.dirty_bitmap);
5036
5037 r = kvm_vm_ioctl_clear_dirty_log(kvm, log: &log);
5038 break;
5039 }
5040#endif
5041 case KVM_GET_DIRTY_LOG: {
5042 struct compat_kvm_dirty_log compat_log;
5043 struct kvm_dirty_log log;
5044
5045 if (copy_from_user(to: &compat_log, from: (void __user *)arg,
5046 n: sizeof(compat_log)))
5047 return -EFAULT;
5048 log.slot = compat_log.slot;
5049 log.padding1 = compat_log.padding1;
5050 log.padding2 = compat_log.padding2;
5051 log.dirty_bitmap = compat_ptr(uptr: compat_log.dirty_bitmap);
5052
5053 r = kvm_vm_ioctl_get_dirty_log(kvm, log: &log);
5054 break;
5055 }
5056 default:
5057 r = kvm_vm_ioctl(filp, ioctl, arg);
5058 }
5059 return r;
5060}
5061#endif
5062
5063static const struct file_operations kvm_vm_fops = {
5064 .release = kvm_vm_release,
5065 .unlocked_ioctl = kvm_vm_ioctl,
5066 .llseek = noop_llseek,
5067 KVM_COMPAT(kvm_vm_compat_ioctl),
5068};
5069
5070bool file_is_kvm(struct file *file)
5071{
5072 return file && file->f_op == &kvm_vm_fops;
5073}
5074EXPORT_SYMBOL_GPL(file_is_kvm);
5075
5076static int kvm_dev_ioctl_create_vm(unsigned long type)
5077{
5078 char fdname[ITOA_MAX_LEN + 1];
5079 int r, fd;
5080 struct kvm *kvm;
5081 struct file *file;
5082
5083 fd = get_unused_fd_flags(O_CLOEXEC);
5084 if (fd < 0)
5085 return fd;
5086
5087 snprintf(buf: fdname, size: sizeof(fdname), fmt: "%d", fd);
5088
5089 kvm = kvm_create_vm(type, fdname);
5090 if (IS_ERR(ptr: kvm)) {
5091 r = PTR_ERR(ptr: kvm);
5092 goto put_fd;
5093 }
5094
5095 file = anon_inode_getfile(name: "kvm-vm", fops: &kvm_vm_fops, priv: kvm, O_RDWR);
5096 if (IS_ERR(ptr: file)) {
5097 r = PTR_ERR(ptr: file);
5098 goto put_kvm;
5099 }
5100
5101 /*
5102 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5103 * already set, with ->release() being kvm_vm_release(). In error
5104 * cases it will be called by the final fput(file) and will take
5105 * care of doing kvm_put_kvm(kvm).
5106 */
5107 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5108
5109 fd_install(fd, file);
5110 return fd;
5111
5112put_kvm:
5113 kvm_put_kvm(kvm);
5114put_fd:
5115 put_unused_fd(fd);
5116 return r;
5117}
5118
5119static long kvm_dev_ioctl(struct file *filp,
5120 unsigned int ioctl, unsigned long arg)
5121{
5122 int r = -EINVAL;
5123
5124 switch (ioctl) {
5125 case KVM_GET_API_VERSION:
5126 if (arg)
5127 goto out;
5128 r = KVM_API_VERSION;
5129 break;
5130 case KVM_CREATE_VM:
5131 r = kvm_dev_ioctl_create_vm(type: arg);
5132 break;
5133 case KVM_CHECK_EXTENSION:
5134 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5135 break;
5136 case KVM_GET_VCPU_MMAP_SIZE:
5137 if (arg)
5138 goto out;
5139 r = PAGE_SIZE; /* struct kvm_run */
5140#ifdef CONFIG_X86
5141 r += PAGE_SIZE; /* pio data page */
5142#endif
5143#ifdef CONFIG_KVM_MMIO
5144 r += PAGE_SIZE; /* coalesced mmio ring page */
5145#endif
5146 break;
5147 case KVM_TRACE_ENABLE:
5148 case KVM_TRACE_PAUSE:
5149 case KVM_TRACE_DISABLE:
5150 r = -EOPNOTSUPP;
5151 break;
5152 default:
5153 return kvm_arch_dev_ioctl(filp, ioctl, arg);
5154 }
5155out:
5156 return r;
5157}
5158
5159static struct file_operations kvm_chardev_ops = {
5160 .unlocked_ioctl = kvm_dev_ioctl,
5161 .llseek = noop_llseek,
5162 KVM_COMPAT(kvm_dev_ioctl),
5163};
5164
5165static struct miscdevice kvm_dev = {
5166 KVM_MINOR,
5167 "kvm",
5168 &kvm_chardev_ops,
5169};
5170
5171#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5172__visible bool kvm_rebooting;
5173EXPORT_SYMBOL_GPL(kvm_rebooting);
5174
5175static DEFINE_PER_CPU(bool, hardware_enabled);
5176static int kvm_usage_count;
5177
5178static int __hardware_enable_nolock(void)
5179{
5180 if (__this_cpu_read(hardware_enabled))
5181 return 0;
5182
5183 if (kvm_arch_hardware_enable()) {
5184 pr_info("kvm: enabling virtualization on CPU%d failed\n",
5185 raw_smp_processor_id());
5186 return -EIO;
5187 }
5188
5189 __this_cpu_write(hardware_enabled, true);
5190 return 0;
5191}
5192
5193static void hardware_enable_nolock(void *failed)
5194{
5195 if (__hardware_enable_nolock())
5196 atomic_inc(v: failed);
5197}
5198
5199static int kvm_online_cpu(unsigned int cpu)
5200{
5201 int ret = 0;
5202
5203 /*
5204 * Abort the CPU online process if hardware virtualization cannot
5205 * be enabled. Otherwise running VMs would encounter unrecoverable
5206 * errors when scheduled to this CPU.
5207 */
5208 mutex_lock(&kvm_lock);
5209 if (kvm_usage_count)
5210 ret = __hardware_enable_nolock();
5211 mutex_unlock(lock: &kvm_lock);
5212 return ret;
5213}
5214
5215static void hardware_disable_nolock(void *junk)
5216{
5217 /*
5218 * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5219 * hardware, not just CPUs that successfully enabled hardware!
5220 */
5221 if (!__this_cpu_read(hardware_enabled))
5222 return;
5223
5224 kvm_arch_hardware_disable();
5225
5226 __this_cpu_write(hardware_enabled, false);
5227}
5228
5229static int kvm_offline_cpu(unsigned int cpu)
5230{
5231 mutex_lock(&kvm_lock);
5232 if (kvm_usage_count)
5233 hardware_disable_nolock(NULL);
5234 mutex_unlock(lock: &kvm_lock);
5235 return 0;
5236}
5237
5238static void hardware_disable_all_nolock(void)
5239{
5240 BUG_ON(!kvm_usage_count);
5241
5242 kvm_usage_count--;
5243 if (!kvm_usage_count)
5244 on_each_cpu(func: hardware_disable_nolock, NULL, wait: 1);
5245}
5246
5247static void hardware_disable_all(void)
5248{
5249 cpus_read_lock();
5250 mutex_lock(&kvm_lock);
5251 hardware_disable_all_nolock();
5252 mutex_unlock(lock: &kvm_lock);
5253 cpus_read_unlock();
5254}
5255
5256static int hardware_enable_all(void)
5257{
5258 atomic_t failed = ATOMIC_INIT(0);
5259 int r;
5260
5261 /*
5262 * Do not enable hardware virtualization if the system is going down.
5263 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5264 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling
5265 * after kvm_reboot() is called. Note, this relies on system_state
5266 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops
5267 * hook instead of registering a dedicated reboot notifier (the latter
5268 * runs before system_state is updated).
5269 */
5270 if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5271 system_state == SYSTEM_RESTART)
5272 return -EBUSY;
5273
5274 /*
5275 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5276 * is called, and so on_each_cpu() between them includes the CPU that
5277 * is being onlined. As a result, hardware_enable_nolock() may get
5278 * invoked before kvm_online_cpu(), which also enables hardware if the
5279 * usage count is non-zero. Disable CPU hotplug to avoid attempting to
5280 * enable hardware multiple times.
5281 */
5282 cpus_read_lock();
5283 mutex_lock(&kvm_lock);
5284
5285 r = 0;
5286
5287 kvm_usage_count++;
5288 if (kvm_usage_count == 1) {
5289 on_each_cpu(func: hardware_enable_nolock, info: &failed, wait: 1);
5290
5291 if (atomic_read(v: &failed)) {
5292 hardware_disable_all_nolock();
5293 r = -EBUSY;
5294 }
5295 }
5296
5297 mutex_unlock(lock: &kvm_lock);
5298 cpus_read_unlock();
5299
5300 return r;
5301}
5302
5303static void kvm_shutdown(void)
5304{
5305 /*
5306 * Disable hardware virtualization and set kvm_rebooting to indicate
5307 * that KVM has asynchronously disabled hardware virtualization, i.e.
5308 * that relevant errors and exceptions aren't entirely unexpected.
5309 * Some flavors of hardware virtualization need to be disabled before
5310 * transferring control to firmware (to perform shutdown/reboot), e.g.
5311 * on x86, virtualization can block INIT interrupts, which are used by
5312 * firmware to pull APs back under firmware control. Note, this path
5313 * is used for both shutdown and reboot scenarios, i.e. neither name is
5314 * 100% comprehensive.
5315 */
5316 pr_info("kvm: exiting hardware virtualization\n");
5317 kvm_rebooting = true;
5318 on_each_cpu(func: hardware_disable_nolock, NULL, wait: 1);
5319}
5320
5321static int kvm_suspend(void)
5322{
5323 /*
5324 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5325 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count
5326 * is stable. Assert that kvm_lock is not held to ensure the system
5327 * isn't suspended while KVM is enabling hardware. Hardware enabling
5328 * can be preempted, but the task cannot be frozen until it has dropped
5329 * all locks (userspace tasks are frozen via a fake signal).
5330 */
5331 lockdep_assert_not_held(&kvm_lock);
5332 lockdep_assert_irqs_disabled();
5333
5334 if (kvm_usage_count)
5335 hardware_disable_nolock(NULL);
5336 return 0;
5337}
5338
5339static void kvm_resume(void)
5340{
5341 lockdep_assert_not_held(&kvm_lock);
5342 lockdep_assert_irqs_disabled();
5343
5344 if (kvm_usage_count)
5345 WARN_ON_ONCE(__hardware_enable_nolock());
5346}
5347
5348static struct syscore_ops kvm_syscore_ops = {
5349 .suspend = kvm_suspend,
5350 .resume = kvm_resume,
5351 .shutdown = kvm_shutdown,
5352};
5353#else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5354static int hardware_enable_all(void)
5355{
5356 return 0;
5357}
5358
5359static void hardware_disable_all(void)
5360{
5361
5362}
5363#endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5364
5365static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5366{
5367 if (dev->ops->destructor)
5368 dev->ops->destructor(dev);
5369}
5370
5371static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5372{
5373 int i;
5374
5375 for (i = 0; i < bus->dev_count; i++) {
5376 struct kvm_io_device *pos = bus->range[i].dev;
5377
5378 kvm_iodevice_destructor(dev: pos);
5379 }
5380 kfree(objp: bus);
5381}
5382
5383static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5384 const struct kvm_io_range *r2)
5385{
5386 gpa_t addr1 = r1->addr;
5387 gpa_t addr2 = r2->addr;
5388
5389 if (addr1 < addr2)
5390 return -1;
5391
5392 /* If r2->len == 0, match the exact address. If r2->len != 0,
5393 * accept any overlapping write. Any order is acceptable for
5394 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5395 * we process all of them.
5396 */
5397 if (r2->len) {
5398 addr1 += r1->len;
5399 addr2 += r2->len;
5400 }
5401
5402 if (addr1 > addr2)
5403 return 1;
5404
5405 return 0;
5406}
5407
5408static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5409{
5410 return kvm_io_bus_cmp(r1: p1, r2: p2);
5411}
5412
5413static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5414 gpa_t addr, int len)
5415{
5416 struct kvm_io_range *range, key;
5417 int off;
5418
5419 key = (struct kvm_io_range) {
5420 .addr = addr,
5421 .len = len,
5422 };
5423
5424 range = bsearch(key: &key, base: bus->range, num: bus->dev_count,
5425 size: sizeof(struct kvm_io_range), cmp: kvm_io_bus_sort_cmp);
5426 if (range == NULL)
5427 return -ENOENT;
5428
5429 off = range - bus->range;
5430
5431 while (off > 0 && kvm_io_bus_cmp(r1: &key, r2: &bus->range[off-1]) == 0)
5432 off--;
5433
5434 return off;
5435}
5436
5437static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5438 struct kvm_io_range *range, const void *val)
5439{
5440 int idx;
5441
5442 idx = kvm_io_bus_get_first_dev(bus, addr: range->addr, len: range->len);
5443 if (idx < 0)
5444 return -EOPNOTSUPP;
5445
5446 while (idx < bus->dev_count &&
5447 kvm_io_bus_cmp(r1: range, r2: &bus->range[idx]) == 0) {
5448 if (!kvm_iodevice_write(vcpu, dev: bus->range[idx].dev, addr: range->addr,
5449 l: range->len, v: val))
5450 return idx;
5451 idx++;
5452 }
5453
5454 return -EOPNOTSUPP;
5455}
5456
5457/* kvm_io_bus_write - called under kvm->slots_lock */
5458int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5459 int len, const void *val)
5460{
5461 struct kvm_io_bus *bus;
5462 struct kvm_io_range range;
5463 int r;
5464
5465 range = (struct kvm_io_range) {
5466 .addr = addr,
5467 .len = len,
5468 };
5469
5470 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5471 if (!bus)
5472 return -ENOMEM;
5473 r = __kvm_io_bus_write(vcpu, bus, range: &range, val);
5474 return r < 0 ? r : 0;
5475}
5476EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5477
5478/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5479int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5480 gpa_t addr, int len, const void *val, long cookie)
5481{
5482 struct kvm_io_bus *bus;
5483 struct kvm_io_range range;
5484
5485 range = (struct kvm_io_range) {
5486 .addr = addr,
5487 .len = len,
5488 };
5489
5490 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5491 if (!bus)
5492 return -ENOMEM;
5493
5494 /* First try the device referenced by cookie. */
5495 if ((cookie >= 0) && (cookie < bus->dev_count) &&
5496 (kvm_io_bus_cmp(r1: &range, r2: &bus->range[cookie]) == 0))
5497 if (!kvm_iodevice_write(vcpu, dev: bus->range[cookie].dev, addr, l: len,
5498 v: val))
5499 return cookie;
5500
5501 /*
5502 * cookie contained garbage; fall back to search and return the
5503 * correct cookie value.
5504 */
5505 return __kvm_io_bus_write(vcpu, bus, range: &range, val);
5506}
5507
5508static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5509 struct kvm_io_range *range, void *val)
5510{
5511 int idx;
5512
5513 idx = kvm_io_bus_get_first_dev(bus, addr: range->addr, len: range->len);
5514 if (idx < 0)
5515 return -EOPNOTSUPP;
5516
5517 while (idx < bus->dev_count &&
5518 kvm_io_bus_cmp(r1: range, r2: &bus->range[idx]) == 0) {
5519 if (!kvm_iodevice_read(vcpu, dev: bus->range[idx].dev, addr: range->addr,
5520 l: range->len, v: val))
5521 return idx;
5522 idx++;
5523 }
5524
5525 return -EOPNOTSUPP;
5526}
5527
5528/* kvm_io_bus_read - called under kvm->slots_lock */
5529int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5530 int len, void *val)
5531{
5532 struct kvm_io_bus *bus;
5533 struct kvm_io_range range;
5534 int r;
5535
5536 range = (struct kvm_io_range) {
5537 .addr = addr,
5538 .len = len,
5539 };
5540
5541 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5542 if (!bus)
5543 return -ENOMEM;
5544 r = __kvm_io_bus_read(vcpu, bus, range: &range, val);
5545 return r < 0 ? r : 0;
5546}
5547
5548/* Caller must hold slots_lock. */
5549int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5550 int len, struct kvm_io_device *dev)
5551{
5552 int i;
5553 struct kvm_io_bus *new_bus, *bus;
5554 struct kvm_io_range range;
5555
5556 bus = kvm_get_bus(kvm, idx: bus_idx);
5557 if (!bus)
5558 return -ENOMEM;
5559
5560 /* exclude ioeventfd which is limited by maximum fd */
5561 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5562 return -ENOSPC;
5563
5564 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5565 GFP_KERNEL_ACCOUNT);
5566 if (!new_bus)
5567 return -ENOMEM;
5568
5569 range = (struct kvm_io_range) {
5570 .addr = addr,
5571 .len = len,
5572 .dev = dev,
5573 };
5574
5575 for (i = 0; i < bus->dev_count; i++)
5576 if (kvm_io_bus_cmp(r1: &bus->range[i], r2: &range) > 0)
5577 break;
5578
5579 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5580 new_bus->dev_count++;
5581 new_bus->range[i] = range;
5582 memcpy(new_bus->range + i + 1, bus->range + i,
5583 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5584 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5585 synchronize_srcu_expedited(ssp: &kvm->srcu);
5586 kfree(objp: bus);
5587
5588 return 0;
5589}
5590
5591int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5592 struct kvm_io_device *dev)
5593{
5594 int i;
5595 struct kvm_io_bus *new_bus, *bus;
5596
5597 lockdep_assert_held(&kvm->slots_lock);
5598
5599 bus = kvm_get_bus(kvm, idx: bus_idx);
5600 if (!bus)
5601 return 0;
5602
5603 for (i = 0; i < bus->dev_count; i++) {
5604 if (bus->range[i].dev == dev) {
5605 break;
5606 }
5607 }
5608
5609 if (i == bus->dev_count)
5610 return 0;
5611
5612 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5613 GFP_KERNEL_ACCOUNT);
5614 if (new_bus) {
5615 memcpy(new_bus, bus, struct_size(bus, range, i));
5616 new_bus->dev_count--;
5617 memcpy(new_bus->range + i, bus->range + i + 1,
5618 flex_array_size(new_bus, range, new_bus->dev_count - i));
5619 }
5620
5621 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5622 synchronize_srcu_expedited(ssp: &kvm->srcu);
5623
5624 /*
5625 * If NULL bus is installed, destroy the old bus, including all the
5626 * attached devices. Otherwise, destroy the caller's device only.
5627 */
5628 if (!new_bus) {
5629 pr_err("kvm: failed to shrink bus, removing it completely\n");
5630 kvm_io_bus_destroy(bus);
5631 return -ENOMEM;
5632 }
5633
5634 kvm_iodevice_destructor(dev);
5635 kfree(objp: bus);
5636 return 0;
5637}
5638
5639struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5640 gpa_t addr)
5641{
5642 struct kvm_io_bus *bus;
5643 int dev_idx, srcu_idx;
5644 struct kvm_io_device *iodev = NULL;
5645
5646 srcu_idx = srcu_read_lock(ssp: &kvm->srcu);
5647
5648 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5649 if (!bus)
5650 goto out_unlock;
5651
5652 dev_idx = kvm_io_bus_get_first_dev(bus, addr, len: 1);
5653 if (dev_idx < 0)
5654 goto out_unlock;
5655
5656 iodev = bus->range[dev_idx].dev;
5657
5658out_unlock:
5659 srcu_read_unlock(ssp: &kvm->srcu, idx: srcu_idx);
5660
5661 return iodev;
5662}
5663EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5664
5665static int kvm_debugfs_open(struct inode *inode, struct file *file,
5666 int (*get)(void *, u64 *), int (*set)(void *, u64),
5667 const char *fmt)
5668{
5669 int ret;
5670 struct kvm_stat_data *stat_data = inode->i_private;
5671
5672 /*
5673 * The debugfs files are a reference to the kvm struct which
5674 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe
5675 * avoids the race between open and the removal of the debugfs directory.
5676 */
5677 if (!kvm_get_kvm_safe(stat_data->kvm))
5678 return -ENOENT;
5679
5680 ret = simple_attr_open(inode, file, get,
5681 set: kvm_stats_debugfs_mode(pdesc: stat_data->desc) & 0222
5682 ? set : NULL, fmt);
5683 if (ret)
5684 kvm_put_kvm(stat_data->kvm);
5685
5686 return ret;
5687}
5688
5689static int kvm_debugfs_release(struct inode *inode, struct file *file)
5690{
5691 struct kvm_stat_data *stat_data = inode->i_private;
5692
5693 simple_attr_release(inode, file);
5694 kvm_put_kvm(stat_data->kvm);
5695
5696 return 0;
5697}
5698
5699static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5700{
5701 *val = *(u64 *)((void *)(&kvm->stat) + offset);
5702
5703 return 0;
5704}
5705
5706static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5707{
5708 *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5709
5710 return 0;
5711}
5712
5713static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5714{
5715 unsigned long i;
5716 struct kvm_vcpu *vcpu;
5717
5718 *val = 0;
5719
5720 kvm_for_each_vcpu(i, vcpu, kvm)
5721 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5722
5723 return 0;
5724}
5725
5726static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5727{
5728 unsigned long i;
5729 struct kvm_vcpu *vcpu;
5730
5731 kvm_for_each_vcpu(i, vcpu, kvm)
5732 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5733
5734 return 0;
5735}
5736
5737static int kvm_stat_data_get(void *data, u64 *val)
5738{
5739 int r = -EFAULT;
5740 struct kvm_stat_data *stat_data = data;
5741
5742 switch (stat_data->kind) {
5743 case KVM_STAT_VM:
5744 r = kvm_get_stat_per_vm(kvm: stat_data->kvm,
5745 offset: stat_data->desc->desc.offset, val);
5746 break;
5747 case KVM_STAT_VCPU:
5748 r = kvm_get_stat_per_vcpu(kvm: stat_data->kvm,
5749 offset: stat_data->desc->desc.offset, val);
5750 break;
5751 }
5752
5753 return r;
5754}
5755
5756static int kvm_stat_data_clear(void *data, u64 val)
5757{
5758 int r = -EFAULT;
5759 struct kvm_stat_data *stat_data = data;
5760
5761 if (val)
5762 return -EINVAL;
5763
5764 switch (stat_data->kind) {
5765 case KVM_STAT_VM:
5766 r = kvm_clear_stat_per_vm(kvm: stat_data->kvm,
5767 offset: stat_data->desc->desc.offset);
5768 break;
5769 case KVM_STAT_VCPU:
5770 r = kvm_clear_stat_per_vcpu(kvm: stat_data->kvm,
5771 offset: stat_data->desc->desc.offset);
5772 break;
5773 }
5774
5775 return r;
5776}
5777
5778static int kvm_stat_data_open(struct inode *inode, struct file *file)
5779{
5780 __simple_attr_check_format(fmt: "%llu\n", 0ull);
5781 return kvm_debugfs_open(inode, file, get: kvm_stat_data_get,
5782 set: kvm_stat_data_clear, fmt: "%llu\n");
5783}
5784
5785static const struct file_operations stat_fops_per_vm = {
5786 .owner = THIS_MODULE,
5787 .open = kvm_stat_data_open,
5788 .release = kvm_debugfs_release,
5789 .read = simple_attr_read,
5790 .write = simple_attr_write,
5791 .llseek = no_llseek,
5792};
5793
5794static int vm_stat_get(void *_offset, u64 *val)
5795{
5796 unsigned offset = (long)_offset;
5797 struct kvm *kvm;
5798 u64 tmp_val;
5799
5800 *val = 0;
5801 mutex_lock(&kvm_lock);
5802 list_for_each_entry(kvm, &vm_list, vm_list) {
5803 kvm_get_stat_per_vm(kvm, offset, val: &tmp_val);
5804 *val += tmp_val;
5805 }
5806 mutex_unlock(lock: &kvm_lock);
5807 return 0;
5808}
5809
5810static int vm_stat_clear(void *_offset, u64 val)
5811{
5812 unsigned offset = (long)_offset;
5813 struct kvm *kvm;
5814
5815 if (val)
5816 return -EINVAL;
5817
5818 mutex_lock(&kvm_lock);
5819 list_for_each_entry(kvm, &vm_list, vm_list) {
5820 kvm_clear_stat_per_vm(kvm, offset);
5821 }
5822 mutex_unlock(lock: &kvm_lock);
5823
5824 return 0;
5825}
5826
5827DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5828DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5829
5830static int vcpu_stat_get(void *_offset, u64 *val)
5831{
5832 unsigned offset = (long)_offset;
5833 struct kvm *kvm;
5834 u64 tmp_val;
5835
5836 *val = 0;
5837 mutex_lock(&kvm_lock);
5838 list_for_each_entry(kvm, &vm_list, vm_list) {
5839 kvm_get_stat_per_vcpu(kvm, offset, val: &tmp_val);
5840 *val += tmp_val;
5841 }
5842 mutex_unlock(lock: &kvm_lock);
5843 return 0;
5844}
5845
5846static int vcpu_stat_clear(void *_offset, u64 val)
5847{
5848 unsigned offset = (long)_offset;
5849 struct kvm *kvm;
5850
5851 if (val)
5852 return -EINVAL;
5853
5854 mutex_lock(&kvm_lock);
5855 list_for_each_entry(kvm, &vm_list, vm_list) {
5856 kvm_clear_stat_per_vcpu(kvm, offset);
5857 }
5858 mutex_unlock(lock: &kvm_lock);
5859
5860 return 0;
5861}
5862
5863DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5864 "%llu\n");
5865DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5866
5867static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5868{
5869 struct kobj_uevent_env *env;
5870 unsigned long long created, active;
5871
5872 if (!kvm_dev.this_device || !kvm)
5873 return;
5874
5875 mutex_lock(&kvm_lock);
5876 if (type == KVM_EVENT_CREATE_VM) {
5877 kvm_createvm_count++;
5878 kvm_active_vms++;
5879 } else if (type == KVM_EVENT_DESTROY_VM) {
5880 kvm_active_vms--;
5881 }
5882 created = kvm_createvm_count;
5883 active = kvm_active_vms;
5884 mutex_unlock(lock: &kvm_lock);
5885
5886 env = kzalloc(size: sizeof(*env), GFP_KERNEL_ACCOUNT);
5887 if (!env)
5888 return;
5889
5890 add_uevent_var(env, format: "CREATED=%llu", created);
5891 add_uevent_var(env, format: "COUNT=%llu", active);
5892
5893 if (type == KVM_EVENT_CREATE_VM) {
5894 add_uevent_var(env, format: "EVENT=create");
5895 kvm->userspace_pid = task_pid_nr(current);
5896 } else if (type == KVM_EVENT_DESTROY_VM) {
5897 add_uevent_var(env, format: "EVENT=destroy");
5898 }
5899 add_uevent_var(env, format: "PID=%d", kvm->userspace_pid);
5900
5901 if (!IS_ERR(ptr: kvm->debugfs_dentry)) {
5902 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5903
5904 if (p) {
5905 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5906 if (!IS_ERR(ptr: tmp))
5907 add_uevent_var(env, format: "STATS_PATH=%s", tmp);
5908 kfree(objp: p);
5909 }
5910 }
5911 /* no need for checks, since we are adding at most only 5 keys */
5912 env->envp[env->envp_idx++] = NULL;
5913 kobject_uevent_env(kobj: &kvm_dev.this_device->kobj, action: KOBJ_CHANGE, envp: env->envp);
5914 kfree(objp: env);
5915}
5916
5917static void kvm_init_debug(void)
5918{
5919 const struct file_operations *fops;
5920 const struct _kvm_stats_desc *pdesc;
5921 int i;
5922
5923 kvm_debugfs_dir = debugfs_create_dir(name: "kvm", NULL);
5924
5925 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5926 pdesc = &kvm_vm_stats_desc[i];
5927 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5928 fops = &vm_stat_fops;
5929 else
5930 fops = &vm_stat_readonly_fops;
5931 debugfs_create_file(name: pdesc->name, mode: kvm_stats_debugfs_mode(pdesc),
5932 parent: kvm_debugfs_dir,
5933 data: (void *)(long)pdesc->desc.offset, fops);
5934 }
5935
5936 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5937 pdesc = &kvm_vcpu_stats_desc[i];
5938 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5939 fops = &vcpu_stat_fops;
5940 else
5941 fops = &vcpu_stat_readonly_fops;
5942 debugfs_create_file(name: pdesc->name, mode: kvm_stats_debugfs_mode(pdesc),
5943 parent: kvm_debugfs_dir,
5944 data: (void *)(long)pdesc->desc.offset, fops);
5945 }
5946}
5947
5948static inline
5949struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5950{
5951 return container_of(pn, struct kvm_vcpu, preempt_notifier);
5952}
5953
5954static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5955{
5956 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5957
5958 WRITE_ONCE(vcpu->preempted, false);
5959 WRITE_ONCE(vcpu->ready, false);
5960
5961 __this_cpu_write(kvm_running_vcpu, vcpu);
5962 kvm_arch_sched_in(vcpu, cpu);
5963 kvm_arch_vcpu_load(vcpu, cpu);
5964}
5965
5966static void kvm_sched_out(struct preempt_notifier *pn,
5967 struct task_struct *next)
5968{
5969 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5970
5971 if (current->on_rq) {
5972 WRITE_ONCE(vcpu->preempted, true);
5973 WRITE_ONCE(vcpu->ready, true);
5974 }
5975 kvm_arch_vcpu_put(vcpu);
5976 __this_cpu_write(kvm_running_vcpu, NULL);
5977}
5978
5979/**
5980 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5981 *
5982 * We can disable preemption locally around accessing the per-CPU variable,
5983 * and use the resolved vcpu pointer after enabling preemption again,
5984 * because even if the current thread is migrated to another CPU, reading
5985 * the per-CPU value later will give us the same value as we update the
5986 * per-CPU variable in the preempt notifier handlers.
5987 */
5988struct kvm_vcpu *kvm_get_running_vcpu(void)
5989{
5990 struct kvm_vcpu *vcpu;
5991
5992 preempt_disable();
5993 vcpu = __this_cpu_read(kvm_running_vcpu);
5994 preempt_enable();
5995
5996 return vcpu;
5997}
5998EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5999
6000/**
6001 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
6002 */
6003struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6004{
6005 return &kvm_running_vcpu;
6006}
6007
6008#ifdef CONFIG_GUEST_PERF_EVENTS
6009static unsigned int kvm_guest_state(void)
6010{
6011 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6012 unsigned int state;
6013
6014 if (!kvm_arch_pmi_in_guest(vcpu))
6015 return 0;
6016
6017 state = PERF_GUEST_ACTIVE;
6018 if (!kvm_arch_vcpu_in_kernel(vcpu))
6019 state |= PERF_GUEST_USER;
6020
6021 return state;
6022}
6023
6024static unsigned long kvm_guest_get_ip(void)
6025{
6026 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6027
6028 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6029 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6030 return 0;
6031
6032 return kvm_arch_vcpu_get_ip(vcpu);
6033}
6034
6035static struct perf_guest_info_callbacks kvm_guest_cbs = {
6036 .state = kvm_guest_state,
6037 .get_ip = kvm_guest_get_ip,
6038 .handle_intel_pt_intr = NULL,
6039};
6040
6041void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6042{
6043 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6044 perf_register_guest_info_callbacks(cbs: &kvm_guest_cbs);
6045}
6046void kvm_unregister_perf_callbacks(void)
6047{
6048 perf_unregister_guest_info_callbacks(cbs: &kvm_guest_cbs);
6049}
6050#endif
6051
6052int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6053{
6054 int r;
6055 int cpu;
6056
6057#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6058 r = cpuhp_setup_state_nocalls(state: CPUHP_AP_KVM_ONLINE, name: "kvm/cpu:online",
6059 startup: kvm_online_cpu, teardown: kvm_offline_cpu);
6060 if (r)
6061 return r;
6062
6063 register_syscore_ops(ops: &kvm_syscore_ops);
6064#endif
6065
6066 /* A kmem cache lets us meet the alignment requirements of fx_save. */
6067 if (!vcpu_align)
6068 vcpu_align = __alignof__(struct kvm_vcpu);
6069 kvm_vcpu_cache =
6070 kmem_cache_create_usercopy(name: "kvm_vcpu", size: vcpu_size, align: vcpu_align,
6071 SLAB_ACCOUNT,
6072 offsetof(struct kvm_vcpu, arch),
6073 offsetofend(struct kvm_vcpu, stats_id)
6074 - offsetof(struct kvm_vcpu, arch),
6075 NULL);
6076 if (!kvm_vcpu_cache) {
6077 r = -ENOMEM;
6078 goto err_vcpu_cache;
6079 }
6080
6081 for_each_possible_cpu(cpu) {
6082 if (!alloc_cpumask_var_node(mask: &per_cpu(cpu_kick_mask, cpu),
6083 GFP_KERNEL, cpu_to_node(cpu))) {
6084 r = -ENOMEM;
6085 goto err_cpu_kick_mask;
6086 }
6087 }
6088
6089 r = kvm_irqfd_init();
6090 if (r)
6091 goto err_irqfd;
6092
6093 r = kvm_async_pf_init();
6094 if (r)
6095 goto err_async_pf;
6096
6097 kvm_chardev_ops.owner = module;
6098
6099 kvm_preempt_ops.sched_in = kvm_sched_in;
6100 kvm_preempt_ops.sched_out = kvm_sched_out;
6101
6102 kvm_init_debug();
6103
6104 r = kvm_vfio_ops_init();
6105 if (WARN_ON_ONCE(r))
6106 goto err_vfio;
6107
6108 /*
6109 * Registration _must_ be the very last thing done, as this exposes
6110 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6111 */
6112 r = misc_register(misc: &kvm_dev);
6113 if (r) {
6114 pr_err("kvm: misc device register failed\n");
6115 goto err_register;
6116 }
6117
6118 return 0;
6119
6120err_register:
6121 kvm_vfio_ops_exit();
6122err_vfio:
6123 kvm_async_pf_deinit();
6124err_async_pf:
6125 kvm_irqfd_exit();
6126err_irqfd:
6127err_cpu_kick_mask:
6128 for_each_possible_cpu(cpu)
6129 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6130 kmem_cache_destroy(s: kvm_vcpu_cache);
6131err_vcpu_cache:
6132#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6133 unregister_syscore_ops(ops: &kvm_syscore_ops);
6134 cpuhp_remove_state_nocalls(state: CPUHP_AP_KVM_ONLINE);
6135#endif
6136 return r;
6137}
6138EXPORT_SYMBOL_GPL(kvm_init);
6139
6140void kvm_exit(void)
6141{
6142 int cpu;
6143
6144 /*
6145 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6146 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6147 * to KVM while the module is being stopped.
6148 */
6149 misc_deregister(misc: &kvm_dev);
6150
6151 debugfs_remove_recursive(dentry: kvm_debugfs_dir);
6152 for_each_possible_cpu(cpu)
6153 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6154 kmem_cache_destroy(s: kvm_vcpu_cache);
6155 kvm_vfio_ops_exit();
6156 kvm_async_pf_deinit();
6157#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6158 unregister_syscore_ops(ops: &kvm_syscore_ops);
6159 cpuhp_remove_state_nocalls(state: CPUHP_AP_KVM_ONLINE);
6160#endif
6161 kvm_irqfd_exit();
6162}
6163EXPORT_SYMBOL_GPL(kvm_exit);
6164
6165struct kvm_vm_worker_thread_context {
6166 struct kvm *kvm;
6167 struct task_struct *parent;
6168 struct completion init_done;
6169 kvm_vm_thread_fn_t thread_fn;
6170 uintptr_t data;
6171 int err;
6172};
6173
6174static int kvm_vm_worker_thread(void *context)
6175{
6176 /*
6177 * The init_context is allocated on the stack of the parent thread, so
6178 * we have to locally copy anything that is needed beyond initialization
6179 */
6180 struct kvm_vm_worker_thread_context *init_context = context;
6181 struct task_struct *parent;
6182 struct kvm *kvm = init_context->kvm;
6183 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6184 uintptr_t data = init_context->data;
6185 int err;
6186
6187 err = kthread_park(current);
6188 /* kthread_park(current) is never supposed to return an error */
6189 WARN_ON(err != 0);
6190 if (err)
6191 goto init_complete;
6192
6193 err = cgroup_attach_task_all(from: init_context->parent, current);
6194 if (err) {
6195 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6196 __func__, err);
6197 goto init_complete;
6198 }
6199
6200 set_user_nice(current, nice: task_nice(p: init_context->parent));
6201
6202init_complete:
6203 init_context->err = err;
6204 complete(&init_context->init_done);
6205 init_context = NULL;
6206
6207 if (err)
6208 goto out;
6209
6210 /* Wait to be woken up by the spawner before proceeding. */
6211 kthread_parkme();
6212
6213 if (!kthread_should_stop())
6214 err = thread_fn(kvm, data);
6215
6216out:
6217 /*
6218 * Move kthread back to its original cgroup to prevent it lingering in
6219 * the cgroup of the VM process, after the latter finishes its
6220 * execution.
6221 *
6222 * kthread_stop() waits on the 'exited' completion condition which is
6223 * set in exit_mm(), via mm_release(), in do_exit(). However, the
6224 * kthread is removed from the cgroup in the cgroup_exit() which is
6225 * called after the exit_mm(). This causes the kthread_stop() to return
6226 * before the kthread actually quits the cgroup.
6227 */
6228 rcu_read_lock();
6229 parent = rcu_dereference(current->real_parent);
6230 get_task_struct(t: parent);
6231 rcu_read_unlock();
6232 cgroup_attach_task_all(from: parent, current);
6233 put_task_struct(t: parent);
6234
6235 return err;
6236}
6237
6238int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6239 uintptr_t data, const char *name,
6240 struct task_struct **thread_ptr)
6241{
6242 struct kvm_vm_worker_thread_context init_context = {};
6243 struct task_struct *thread;
6244
6245 *thread_ptr = NULL;
6246 init_context.kvm = kvm;
6247 init_context.parent = current;
6248 init_context.thread_fn = thread_fn;
6249 init_context.data = data;
6250 init_completion(x: &init_context.init_done);
6251
6252 thread = kthread_run(kvm_vm_worker_thread, &init_context,
6253 "%s-%d", name, task_pid_nr(current));
6254 if (IS_ERR(ptr: thread))
6255 return PTR_ERR(ptr: thread);
6256
6257 /* kthread_run is never supposed to return NULL */
6258 WARN_ON(thread == NULL);
6259
6260 wait_for_completion(&init_context.init_done);
6261
6262 if (!init_context.err)
6263 *thread_ptr = thread;
6264
6265 return init_context.err;
6266}
6267

source code of linux/virt/kvm/kvm_main.c