1//===- ASTContext.h - Context to hold long-lived AST nodes ------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// Defines the clang::ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15#define LLVM_CLANG_AST_ASTCONTEXT_H
16
17#include "clang/AST/ASTContextAllocate.h"
18#include "clang/AST/ASTFwd.h"
19#include "clang/AST/CanonicalType.h"
20#include "clang/AST/CommentCommandTraits.h"
21#include "clang/AST/ComparisonCategories.h"
22#include "clang/AST/Decl.h"
23#include "clang/AST/DeclBase.h"
24#include "clang/AST/DeclarationName.h"
25#include "clang/AST/ExternalASTSource.h"
26#include "clang/AST/NestedNameSpecifier.h"
27#include "clang/AST/PrettyPrinter.h"
28#include "clang/AST/RawCommentList.h"
29#include "clang/AST/TemplateName.h"
30#include "clang/AST/Type.h"
31#include "clang/Basic/AddressSpaces.h"
32#include "clang/Basic/AttrKinds.h"
33#include "clang/Basic/IdentifierTable.h"
34#include "clang/Basic/LLVM.h"
35#include "clang/Basic/LangOptions.h"
36#include "clang/Basic/Linkage.h"
37#include "clang/Basic/NoSanitizeList.h"
38#include "clang/Basic/OperatorKinds.h"
39#include "clang/Basic/PartialDiagnostic.h"
40#include "clang/Basic/ProfileList.h"
41#include "clang/Basic/SourceLocation.h"
42#include "clang/Basic/Specifiers.h"
43#include "clang/Basic/TargetCXXABI.h"
44#include "clang/Basic/XRayLists.h"
45#include "llvm/ADT/APSInt.h"
46#include "llvm/ADT/ArrayRef.h"
47#include "llvm/ADT/DenseMap.h"
48#include "llvm/ADT/DenseSet.h"
49#include "llvm/ADT/FoldingSet.h"
50#include "llvm/ADT/IntrusiveRefCntPtr.h"
51#include "llvm/ADT/MapVector.h"
52#include "llvm/ADT/None.h"
53#include "llvm/ADT/Optional.h"
54#include "llvm/ADT/PointerIntPair.h"
55#include "llvm/ADT/PointerUnion.h"
56#include "llvm/ADT/SmallVector.h"
57#include "llvm/ADT/StringMap.h"
58#include "llvm/ADT/StringRef.h"
59#include "llvm/ADT/TinyPtrVector.h"
60#include "llvm/ADT/Triple.h"
61#include "llvm/ADT/iterator_range.h"
62#include "llvm/Support/AlignOf.h"
63#include "llvm/Support/Allocator.h"
64#include "llvm/Support/Casting.h"
65#include "llvm/Support/Compiler.h"
66#include "llvm/Support/TypeSize.h"
67#include <cassert>
68#include <cstddef>
69#include <cstdint>
70#include <iterator>
71#include <memory>
72#include <string>
73#include <type_traits>
74#include <utility>
75#include <vector>
76
77namespace llvm {
78
79class APFixedPoint;
80class FixedPointSemantics;
81struct fltSemantics;
82template <typename T, unsigned N> class SmallPtrSet;
83
84} // namespace llvm
85
86namespace clang {
87
88class APValue;
89class ASTMutationListener;
90class ASTRecordLayout;
91class AtomicExpr;
92class BlockExpr;
93class BuiltinTemplateDecl;
94class CharUnits;
95class ConceptDecl;
96class CXXABI;
97class CXXConstructorDecl;
98class CXXMethodDecl;
99class CXXRecordDecl;
100class DiagnosticsEngine;
101class ParentMapContext;
102class DynTypedNode;
103class DynTypedNodeList;
104class Expr;
105class GlobalDecl;
106class MangleContext;
107class MangleNumberingContext;
108class MaterializeTemporaryExpr;
109class MemberSpecializationInfo;
110class Module;
111struct MSGuidDeclParts;
112class ObjCCategoryDecl;
113class ObjCCategoryImplDecl;
114class ObjCContainerDecl;
115class ObjCImplDecl;
116class ObjCImplementationDecl;
117class ObjCInterfaceDecl;
118class ObjCIvarDecl;
119class ObjCMethodDecl;
120class ObjCPropertyDecl;
121class ObjCPropertyImplDecl;
122class ObjCProtocolDecl;
123class ObjCTypeParamDecl;
124class OMPTraitInfo;
125struct ParsedTargetAttr;
126class Preprocessor;
127class Stmt;
128class StoredDeclsMap;
129class TargetAttr;
130class TargetInfo;
131class TemplateDecl;
132class TemplateParameterList;
133class TemplateTemplateParmDecl;
134class TemplateTypeParmDecl;
135class UnresolvedSetIterator;
136class UsingShadowDecl;
137class VarTemplateDecl;
138class VTableContextBase;
139struct BlockVarCopyInit;
140
141namespace Builtin {
142
143class Context;
144
145} // namespace Builtin
146
147enum BuiltinTemplateKind : int;
148enum OpenCLTypeKind : uint8_t;
149
150namespace comments {
151
152class FullComment;
153
154} // namespace comments
155
156namespace interp {
157
158class Context;
159
160} // namespace interp
161
162namespace serialization {
163template <class> class AbstractTypeReader;
164} // namespace serialization
165
166struct TypeInfo {
167 uint64_t Width = 0;
168 unsigned Align = 0;
169 bool AlignIsRequired : 1;
170
171 TypeInfo() : AlignIsRequired(false) {}
172 TypeInfo(uint64_t Width, unsigned Align, bool AlignIsRequired)
173 : Width(Width), Align(Align), AlignIsRequired(AlignIsRequired) {}
174};
175
176struct TypeInfoChars {
177 CharUnits Width;
178 CharUnits Align;
179 bool AlignIsRequired : 1;
180
181 TypeInfoChars() : AlignIsRequired(false) {}
182 TypeInfoChars(CharUnits Width, CharUnits Align, bool AlignIsRequired)
183 : Width(Width), Align(Align), AlignIsRequired(AlignIsRequired) {}
184};
185
186/// Holds long-lived AST nodes (such as types and decls) that can be
187/// referred to throughout the semantic analysis of a file.
188class ASTContext : public RefCountedBase<ASTContext> {
189 friend class NestedNameSpecifier;
190
191 mutable SmallVector<Type *, 0> Types;
192 mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
193 mutable llvm::FoldingSet<ComplexType> ComplexTypes;
194 mutable llvm::FoldingSet<PointerType> PointerTypes;
195 mutable llvm::FoldingSet<AdjustedType> AdjustedTypes;
196 mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
197 mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
198 mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
199 mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
200 mutable llvm::ContextualFoldingSet<ConstantArrayType, ASTContext &>
201 ConstantArrayTypes;
202 mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
203 mutable std::vector<VariableArrayType*> VariableArrayTypes;
204 mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
205 mutable llvm::FoldingSet<DependentSizedExtVectorType>
206 DependentSizedExtVectorTypes;
207 mutable llvm::FoldingSet<DependentAddressSpaceType>
208 DependentAddressSpaceTypes;
209 mutable llvm::FoldingSet<VectorType> VectorTypes;
210 mutable llvm::FoldingSet<DependentVectorType> DependentVectorTypes;
211 mutable llvm::FoldingSet<ConstantMatrixType> MatrixTypes;
212 mutable llvm::FoldingSet<DependentSizedMatrixType> DependentSizedMatrixTypes;
213 mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
214 mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
215 FunctionProtoTypes;
216 mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
217 mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
218 mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
219 mutable llvm::FoldingSet<ObjCTypeParamType> ObjCTypeParamTypes;
220 mutable llvm::FoldingSet<SubstTemplateTypeParmType>
221 SubstTemplateTypeParmTypes;
222 mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
223 SubstTemplateTypeParmPackTypes;
224 mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
225 TemplateSpecializationTypes;
226 mutable llvm::FoldingSet<ParenType> ParenTypes;
227 mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
228 mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
229 mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
230 ASTContext&>
231 DependentTemplateSpecializationTypes;
232 llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
233 mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
234 mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
235 mutable llvm::FoldingSet<DependentUnaryTransformType>
236 DependentUnaryTransformTypes;
237 mutable llvm::ContextualFoldingSet<AutoType, ASTContext&> AutoTypes;
238 mutable llvm::FoldingSet<DeducedTemplateSpecializationType>
239 DeducedTemplateSpecializationTypes;
240 mutable llvm::FoldingSet<AtomicType> AtomicTypes;
241 llvm::FoldingSet<AttributedType> AttributedTypes;
242 mutable llvm::FoldingSet<PipeType> PipeTypes;
243 mutable llvm::FoldingSet<ExtIntType> ExtIntTypes;
244 mutable llvm::FoldingSet<DependentExtIntType> DependentExtIntTypes;
245
246 mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
247 mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
248 mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage>
249 SubstTemplateTemplateParms;
250 mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
251 ASTContext&>
252 SubstTemplateTemplateParmPacks;
253
254 /// The set of nested name specifiers.
255 ///
256 /// This set is managed by the NestedNameSpecifier class.
257 mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
258 mutable NestedNameSpecifier *GlobalNestedNameSpecifier = nullptr;
259
260 /// A cache mapping from RecordDecls to ASTRecordLayouts.
261 ///
262 /// This is lazily created. This is intentionally not serialized.
263 mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
264 ASTRecordLayouts;
265 mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
266 ObjCLayouts;
267
268 /// A cache from types to size and alignment information.
269 using TypeInfoMap = llvm::DenseMap<const Type *, struct TypeInfo>;
270 mutable TypeInfoMap MemoizedTypeInfo;
271
272 /// A cache from types to unadjusted alignment information. Only ARM and
273 /// AArch64 targets need this information, keeping it separate prevents
274 /// imposing overhead on TypeInfo size.
275 using UnadjustedAlignMap = llvm::DenseMap<const Type *, unsigned>;
276 mutable UnadjustedAlignMap MemoizedUnadjustedAlign;
277
278 /// A cache mapping from CXXRecordDecls to key functions.
279 llvm::DenseMap<const CXXRecordDecl*, LazyDeclPtr> KeyFunctions;
280
281 /// Mapping from ObjCContainers to their ObjCImplementations.
282 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
283
284 /// Mapping from ObjCMethod to its duplicate declaration in the same
285 /// interface.
286 llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
287
288 /// Mapping from __block VarDecls to BlockVarCopyInit.
289 llvm::DenseMap<const VarDecl *, BlockVarCopyInit> BlockVarCopyInits;
290
291 /// Mapping from GUIDs to the corresponding MSGuidDecl.
292 mutable llvm::FoldingSet<MSGuidDecl> MSGuidDecls;
293
294 /// Mapping from APValues to the corresponding TemplateParamObjects.
295 mutable llvm::FoldingSet<TemplateParamObjectDecl> TemplateParamObjectDecls;
296
297 /// A cache mapping a string value to a StringLiteral object with the same
298 /// value.
299 ///
300 /// This is lazily created. This is intentionally not serialized.
301 mutable llvm::StringMap<StringLiteral *> StringLiteralCache;
302
303 /// MD5 hash of CUID. It is calculated when first used and cached by this
304 /// data member.
305 mutable std::string CUIDHash;
306
307 /// Representation of a "canonical" template template parameter that
308 /// is used in canonical template names.
309 class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
310 TemplateTemplateParmDecl *Parm;
311
312 public:
313 CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
314 : Parm(Parm) {}
315
316 TemplateTemplateParmDecl *getParam() const { return Parm; }
317
318 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &C) {
319 Profile(ID, C, Parm);
320 }
321
322 static void Profile(llvm::FoldingSetNodeID &ID,
323 const ASTContext &C,
324 TemplateTemplateParmDecl *Parm);
325 };
326 mutable llvm::ContextualFoldingSet<CanonicalTemplateTemplateParm,
327 const ASTContext&>
328 CanonTemplateTemplateParms;
329
330 TemplateTemplateParmDecl *
331 getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
332
333 /// The typedef for the __int128_t type.
334 mutable TypedefDecl *Int128Decl = nullptr;
335
336 /// The typedef for the __uint128_t type.
337 mutable TypedefDecl *UInt128Decl = nullptr;
338
339 /// The typedef for the target specific predefined
340 /// __builtin_va_list type.
341 mutable TypedefDecl *BuiltinVaListDecl = nullptr;
342
343 /// The typedef for the predefined \c __builtin_ms_va_list type.
344 mutable TypedefDecl *BuiltinMSVaListDecl = nullptr;
345
346 /// The typedef for the predefined \c id type.
347 mutable TypedefDecl *ObjCIdDecl = nullptr;
348
349 /// The typedef for the predefined \c SEL type.
350 mutable TypedefDecl *ObjCSelDecl = nullptr;
351
352 /// The typedef for the predefined \c Class type.
353 mutable TypedefDecl *ObjCClassDecl = nullptr;
354
355 /// The typedef for the predefined \c Protocol class in Objective-C.
356 mutable ObjCInterfaceDecl *ObjCProtocolClassDecl = nullptr;
357
358 /// The typedef for the predefined 'BOOL' type.
359 mutable TypedefDecl *BOOLDecl = nullptr;
360
361 // Typedefs which may be provided defining the structure of Objective-C
362 // pseudo-builtins
363 QualType ObjCIdRedefinitionType;
364 QualType ObjCClassRedefinitionType;
365 QualType ObjCSelRedefinitionType;
366
367 /// The identifier 'bool'.
368 mutable IdentifierInfo *BoolName = nullptr;
369
370 /// The identifier 'NSObject'.
371 mutable IdentifierInfo *NSObjectName = nullptr;
372
373 /// The identifier 'NSCopying'.
374 IdentifierInfo *NSCopyingName = nullptr;
375
376 /// The identifier '__make_integer_seq'.
377 mutable IdentifierInfo *MakeIntegerSeqName = nullptr;
378
379 /// The identifier '__type_pack_element'.
380 mutable IdentifierInfo *TypePackElementName = nullptr;
381
382 QualType ObjCConstantStringType;
383 mutable RecordDecl *CFConstantStringTagDecl = nullptr;
384 mutable TypedefDecl *CFConstantStringTypeDecl = nullptr;
385
386 mutable QualType ObjCSuperType;
387
388 QualType ObjCNSStringType;
389
390 /// The typedef declaration for the Objective-C "instancetype" type.
391 TypedefDecl *ObjCInstanceTypeDecl = nullptr;
392
393 /// The type for the C FILE type.
394 TypeDecl *FILEDecl = nullptr;
395
396 /// The type for the C jmp_buf type.
397 TypeDecl *jmp_bufDecl = nullptr;
398
399 /// The type for the C sigjmp_buf type.
400 TypeDecl *sigjmp_bufDecl = nullptr;
401
402 /// The type for the C ucontext_t type.
403 TypeDecl *ucontext_tDecl = nullptr;
404
405 /// Type for the Block descriptor for Blocks CodeGen.
406 ///
407 /// Since this is only used for generation of debug info, it is not
408 /// serialized.
409 mutable RecordDecl *BlockDescriptorType = nullptr;
410
411 /// Type for the Block descriptor for Blocks CodeGen.
412 ///
413 /// Since this is only used for generation of debug info, it is not
414 /// serialized.
415 mutable RecordDecl *BlockDescriptorExtendedType = nullptr;
416
417 /// Declaration for the CUDA cudaConfigureCall function.
418 FunctionDecl *cudaConfigureCallDecl = nullptr;
419
420 /// Keeps track of all declaration attributes.
421 ///
422 /// Since so few decls have attrs, we keep them in a hash map instead of
423 /// wasting space in the Decl class.
424 llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
425
426 /// A mapping from non-redeclarable declarations in modules that were
427 /// merged with other declarations to the canonical declaration that they were
428 /// merged into.
429 llvm::DenseMap<Decl*, Decl*> MergedDecls;
430
431 /// A mapping from a defining declaration to a list of modules (other
432 /// than the owning module of the declaration) that contain merged
433 /// definitions of that entity.
434 llvm::DenseMap<NamedDecl*, llvm::TinyPtrVector<Module*>> MergedDefModules;
435
436 /// Initializers for a module, in order. Each Decl will be either
437 /// something that has a semantic effect on startup (such as a variable with
438 /// a non-constant initializer), or an ImportDecl (which recursively triggers
439 /// initialization of another module).
440 struct PerModuleInitializers {
441 llvm::SmallVector<Decl*, 4> Initializers;
442 llvm::SmallVector<uint32_t, 4> LazyInitializers;
443
444 void resolve(ASTContext &Ctx);
445 };
446 llvm::DenseMap<Module*, PerModuleInitializers*> ModuleInitializers;
447
448 ASTContext &this_() { return *this; }
449
450public:
451 /// A type synonym for the TemplateOrInstantiation mapping.
452 using TemplateOrSpecializationInfo =
453 llvm::PointerUnion<VarTemplateDecl *, MemberSpecializationInfo *>;
454
455private:
456 friend class ASTDeclReader;
457 friend class ASTReader;
458 friend class ASTWriter;
459 template <class> friend class serialization::AbstractTypeReader;
460 friend class CXXRecordDecl;
461
462 /// A mapping to contain the template or declaration that
463 /// a variable declaration describes or was instantiated from,
464 /// respectively.
465 ///
466 /// For non-templates, this value will be NULL. For variable
467 /// declarations that describe a variable template, this will be a
468 /// pointer to a VarTemplateDecl. For static data members
469 /// of class template specializations, this will be the
470 /// MemberSpecializationInfo referring to the member variable that was
471 /// instantiated or specialized. Thus, the mapping will keep track of
472 /// the static data member templates from which static data members of
473 /// class template specializations were instantiated.
474 ///
475 /// Given the following example:
476 ///
477 /// \code
478 /// template<typename T>
479 /// struct X {
480 /// static T value;
481 /// };
482 ///
483 /// template<typename T>
484 /// T X<T>::value = T(17);
485 ///
486 /// int *x = &X<int>::value;
487 /// \endcode
488 ///
489 /// This mapping will contain an entry that maps from the VarDecl for
490 /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
491 /// class template X) and will be marked TSK_ImplicitInstantiation.
492 llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>
493 TemplateOrInstantiation;
494
495 /// Keeps track of the declaration from which a using declaration was
496 /// created during instantiation.
497 ///
498 /// The source and target declarations are always a UsingDecl, an
499 /// UnresolvedUsingValueDecl, or an UnresolvedUsingTypenameDecl.
500 ///
501 /// For example:
502 /// \code
503 /// template<typename T>
504 /// struct A {
505 /// void f();
506 /// };
507 ///
508 /// template<typename T>
509 /// struct B : A<T> {
510 /// using A<T>::f;
511 /// };
512 ///
513 /// template struct B<int>;
514 /// \endcode
515 ///
516 /// This mapping will contain an entry that maps from the UsingDecl in
517 /// B<int> to the UnresolvedUsingDecl in B<T>.
518 llvm::DenseMap<NamedDecl *, NamedDecl *> InstantiatedFromUsingDecl;
519
520 llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
521 InstantiatedFromUsingShadowDecl;
522
523 llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
524
525 /// Mapping that stores the methods overridden by a given C++
526 /// member function.
527 ///
528 /// Since most C++ member functions aren't virtual and therefore
529 /// don't override anything, we store the overridden functions in
530 /// this map on the side rather than within the CXXMethodDecl structure.
531 using CXXMethodVector = llvm::TinyPtrVector<const CXXMethodDecl *>;
532 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
533
534 /// Mapping from each declaration context to its corresponding
535 /// mangling numbering context (used for constructs like lambdas which
536 /// need to be consistently numbered for the mangler).
537 llvm::DenseMap<const DeclContext *, std::unique_ptr<MangleNumberingContext>>
538 MangleNumberingContexts;
539 llvm::DenseMap<const Decl *, std::unique_ptr<MangleNumberingContext>>
540 ExtraMangleNumberingContexts;
541
542 /// Side-table of mangling numbers for declarations which rarely
543 /// need them (like static local vars).
544 llvm::MapVector<const NamedDecl *, unsigned> MangleNumbers;
545 llvm::MapVector<const VarDecl *, unsigned> StaticLocalNumbers;
546 /// Mapping the associated device lambda mangling number if present.
547 mutable llvm::DenseMap<const CXXRecordDecl *, unsigned>
548 DeviceLambdaManglingNumbers;
549
550 /// Mapping that stores parameterIndex values for ParmVarDecls when
551 /// that value exceeds the bitfield size of ParmVarDeclBits.ParameterIndex.
552 using ParameterIndexTable = llvm::DenseMap<const VarDecl *, unsigned>;
553 ParameterIndexTable ParamIndices;
554
555 ImportDecl *FirstLocalImport = nullptr;
556 ImportDecl *LastLocalImport = nullptr;
557
558 TranslationUnitDecl *TUDecl;
559 mutable ExternCContextDecl *ExternCContext = nullptr;
560 mutable BuiltinTemplateDecl *MakeIntegerSeqDecl = nullptr;
561 mutable BuiltinTemplateDecl *TypePackElementDecl = nullptr;
562
563 /// The associated SourceManager object.
564 SourceManager &SourceMgr;
565
566 /// The language options used to create the AST associated with
567 /// this ASTContext object.
568 LangOptions &LangOpts;
569
570 /// NoSanitizeList object that is used by sanitizers to decide which
571 /// entities should not be instrumented.
572 std::unique_ptr<NoSanitizeList> NoSanitizeL;
573
574 /// Function filtering mechanism to determine whether a given function
575 /// should be imbued with the XRay "always" or "never" attributes.
576 std::unique_ptr<XRayFunctionFilter> XRayFilter;
577
578 /// ProfileList object that is used by the profile instrumentation
579 /// to decide which entities should be instrumented.
580 std::unique_ptr<ProfileList> ProfList;
581
582 /// The allocator used to create AST objects.
583 ///
584 /// AST objects are never destructed; rather, all memory associated with the
585 /// AST objects will be released when the ASTContext itself is destroyed.
586 mutable llvm::BumpPtrAllocator BumpAlloc;
587
588 /// Allocator for partial diagnostics.
589 PartialDiagnostic::DiagStorageAllocator DiagAllocator;
590
591 /// The current C++ ABI.
592 std::unique_ptr<CXXABI> ABI;
593 CXXABI *createCXXABI(const TargetInfo &T);
594
595 /// The logical -> physical address space map.
596 const LangASMap *AddrSpaceMap = nullptr;
597
598 /// Address space map mangling must be used with language specific
599 /// address spaces (e.g. OpenCL/CUDA)
600 bool AddrSpaceMapMangling;
601
602 const TargetInfo *Target = nullptr;
603 const TargetInfo *AuxTarget = nullptr;
604 clang::PrintingPolicy PrintingPolicy;
605 std::unique_ptr<interp::Context> InterpContext;
606 std::unique_ptr<ParentMapContext> ParentMapCtx;
607
608 /// Keeps track of the deallocated DeclListNodes for future reuse.
609 DeclListNode *ListNodeFreeList = nullptr;
610
611public:
612 IdentifierTable &Idents;
613 SelectorTable &Selectors;
614 Builtin::Context &BuiltinInfo;
615 mutable DeclarationNameTable DeclarationNames;
616 IntrusiveRefCntPtr<ExternalASTSource> ExternalSource;
617 ASTMutationListener *Listener = nullptr;
618
619 /// Returns the clang bytecode interpreter context.
620 interp::Context &getInterpContext();
621
622 /// Returns the dynamic AST node parent map context.
623 ParentMapContext &getParentMapContext();
624
625 // A traversal scope limits the parts of the AST visible to certain analyses.
626 // RecursiveASTVisitor::TraverseAST will only visit reachable nodes, and
627 // getParents() will only observe reachable parent edges.
628 //
629 // The scope is defined by a set of "top-level" declarations.
630 // Initially, it is the entire TU: {getTranslationUnitDecl()}.
631 // Changing the scope clears the parent cache, which is expensive to rebuild.
632 std::vector<Decl *> getTraversalScope() const { return TraversalScope; }
633 void setTraversalScope(const std::vector<Decl *> &);
634
635 /// Forwards to get node parents from the ParentMapContext. New callers should
636 /// use ParentMapContext::getParents() directly.
637 template <typename NodeT> DynTypedNodeList getParents(const NodeT &Node);
638
639 const clang::PrintingPolicy &getPrintingPolicy() const {
640 return PrintingPolicy;
641 }
642
643 void setPrintingPolicy(const clang::PrintingPolicy &Policy) {
644 PrintingPolicy = Policy;
645 }
646
647 SourceManager& getSourceManager() { return SourceMgr; }
648 const SourceManager& getSourceManager() const { return SourceMgr; }
649
650 llvm::BumpPtrAllocator &getAllocator() const {
651 return BumpAlloc;
652 }
653
654 void *Allocate(size_t Size, unsigned Align = 8) const {
655 return BumpAlloc.Allocate(Size, Align);
656 }
657 template <typename T> T *Allocate(size_t Num = 1) const {
658 return static_cast<T *>(Allocate(Num * sizeof(T), alignof(T)));
659 }
660 void Deallocate(void *Ptr) const {}
661
662 /// Allocates a \c DeclListNode or returns one from the \c ListNodeFreeList
663 /// pool.
664 DeclListNode *AllocateDeclListNode(clang::NamedDecl *ND) {
665 if (DeclListNode *Alloc = ListNodeFreeList) {
666 ListNodeFreeList = Alloc->Rest.dyn_cast<DeclListNode*>();
667 Alloc->D = ND;
668 Alloc->Rest = nullptr;
669 return Alloc;
670 }
671 return new (*this) DeclListNode(ND);
672 }
673 /// Deallcates a \c DeclListNode by returning it to the \c ListNodeFreeList
674 /// pool.
675 void DeallocateDeclListNode(DeclListNode *N) {
676 N->Rest = ListNodeFreeList;
677 ListNodeFreeList = N;
678 }
679
680 /// Return the total amount of physical memory allocated for representing
681 /// AST nodes and type information.
682 size_t getASTAllocatedMemory() const {
683 return BumpAlloc.getTotalMemory();
684 }
685
686 /// Return the total memory used for various side tables.
687 size_t getSideTableAllocatedMemory() const;
688
689 PartialDiagnostic::DiagStorageAllocator &getDiagAllocator() {
690 return DiagAllocator;
691 }
692
693 const TargetInfo &getTargetInfo() const { return *Target; }
694 const TargetInfo *getAuxTargetInfo() const { return AuxTarget; }
695
696 /// getIntTypeForBitwidth -
697 /// sets integer QualTy according to specified details:
698 /// bitwidth, signed/unsigned.
699 /// Returns empty type if there is no appropriate target types.
700 QualType getIntTypeForBitwidth(unsigned DestWidth,
701 unsigned Signed) const;
702
703 /// getRealTypeForBitwidth -
704 /// sets floating point QualTy according to specified bitwidth.
705 /// Returns empty type if there is no appropriate target types.
706 QualType getRealTypeForBitwidth(unsigned DestWidth, bool ExplicitIEEE) const;
707
708 bool AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const;
709
710 const LangOptions& getLangOpts() const { return LangOpts; }
711
712 // If this condition is false, typo correction must be performed eagerly
713 // rather than delayed in many places, as it makes use of dependent types.
714 // the condition is false for clang's C-only codepath, as it doesn't support
715 // dependent types yet.
716 bool isDependenceAllowed() const {
717 return LangOpts.CPlusPlus || LangOpts.RecoveryAST;
718 }
719
720 const NoSanitizeList &getNoSanitizeList() const { return *NoSanitizeL; }
721
722 const XRayFunctionFilter &getXRayFilter() const {
723 return *XRayFilter;
724 }
725
726 const ProfileList &getProfileList() const { return *ProfList; }
727
728 DiagnosticsEngine &getDiagnostics() const;
729
730 FullSourceLoc getFullLoc(SourceLocation Loc) const {
731 return FullSourceLoc(Loc,SourceMgr);
732 }
733
734 /// Return the C++ ABI kind that should be used. The C++ ABI can be overriden
735 /// at compile time with `-fc++-abi=`. If this is not provided, we instead use
736 /// the default ABI set by the target.
737 TargetCXXABI::Kind getCXXABIKind() const;
738
739 /// All comments in this translation unit.
740 RawCommentList Comments;
741
742 /// True if comments are already loaded from ExternalASTSource.
743 mutable bool CommentsLoaded = false;
744
745 /// Mapping from declaration to directly attached comment.
746 ///
747 /// Raw comments are owned by Comments list. This mapping is populated
748 /// lazily.
749 mutable llvm::DenseMap<const Decl *, const RawComment *> DeclRawComments;
750
751 /// Mapping from canonical declaration to the first redeclaration in chain
752 /// that has a comment attached.
753 ///
754 /// Raw comments are owned by Comments list. This mapping is populated
755 /// lazily.
756 mutable llvm::DenseMap<const Decl *, const Decl *> RedeclChainComments;
757
758 /// Keeps track of redeclaration chains that don't have any comment attached.
759 /// Mapping from canonical declaration to redeclaration chain that has no
760 /// comments attached to any redeclaration. Specifically it's mapping to
761 /// the last redeclaration we've checked.
762 ///
763 /// Shall not contain declarations that have comments attached to any
764 /// redeclaration in their chain.
765 mutable llvm::DenseMap<const Decl *, const Decl *> CommentlessRedeclChains;
766
767 /// Mapping from declarations to parsed comments attached to any
768 /// redeclaration.
769 mutable llvm::DenseMap<const Decl *, comments::FullComment *> ParsedComments;
770
771 /// Attaches \p Comment to \p OriginalD and to its redeclaration chain
772 /// and removes the redeclaration chain from the set of commentless chains.
773 ///
774 /// Don't do anything if a comment has already been attached to \p OriginalD
775 /// or its redeclaration chain.
776 void cacheRawCommentForDecl(const Decl &OriginalD,
777 const RawComment &Comment) const;
778
779 /// \returns searches \p CommentsInFile for doc comment for \p D.
780 ///
781 /// \p RepresentativeLocForDecl is used as a location for searching doc
782 /// comments. \p CommentsInFile is a mapping offset -> comment of files in the
783 /// same file where \p RepresentativeLocForDecl is.
784 RawComment *getRawCommentForDeclNoCacheImpl(
785 const Decl *D, const SourceLocation RepresentativeLocForDecl,
786 const std::map<unsigned, RawComment *> &CommentsInFile) const;
787
788 /// Return the documentation comment attached to a given declaration,
789 /// without looking into cache.
790 RawComment *getRawCommentForDeclNoCache(const Decl *D) const;
791
792public:
793 void addComment(const RawComment &RC);
794
795 /// Return the documentation comment attached to a given declaration.
796 /// Returns nullptr if no comment is attached.
797 ///
798 /// \param OriginalDecl if not nullptr, is set to declaration AST node that
799 /// had the comment, if the comment we found comes from a redeclaration.
800 const RawComment *
801 getRawCommentForAnyRedecl(const Decl *D,
802 const Decl **OriginalDecl = nullptr) const;
803
804 /// Searches existing comments for doc comments that should be attached to \p
805 /// Decls. If any doc comment is found, it is parsed.
806 ///
807 /// Requirement: All \p Decls are in the same file.
808 ///
809 /// If the last comment in the file is already attached we assume
810 /// there are not comments left to be attached to \p Decls.
811 void attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls,
812 const Preprocessor *PP);
813
814 /// Return parsed documentation comment attached to a given declaration.
815 /// Returns nullptr if no comment is attached.
816 ///
817 /// \param PP the Preprocessor used with this TU. Could be nullptr if
818 /// preprocessor is not available.
819 comments::FullComment *getCommentForDecl(const Decl *D,
820 const Preprocessor *PP) const;
821
822 /// Return parsed documentation comment attached to a given declaration.
823 /// Returns nullptr if no comment is attached. Does not look at any
824 /// redeclarations of the declaration.
825 comments::FullComment *getLocalCommentForDeclUncached(const Decl *D) const;
826
827 comments::FullComment *cloneFullComment(comments::FullComment *FC,
828 const Decl *D) const;
829
830private:
831 mutable comments::CommandTraits CommentCommandTraits;
832
833 /// Iterator that visits import declarations.
834 class import_iterator {
835 ImportDecl *Import = nullptr;
836
837 public:
838 using value_type = ImportDecl *;
839 using reference = ImportDecl *;
840 using pointer = ImportDecl *;
841 using difference_type = int;
842 using iterator_category = std::forward_iterator_tag;
843
844 import_iterator() = default;
845 explicit import_iterator(ImportDecl *Import) : Import(Import) {}
846
847 reference operator*() const { return Import; }
848 pointer operator->() const { return Import; }
849
850 import_iterator &operator++() {
851 Import = ASTContext::getNextLocalImport(Import);
852 return *this;
853 }
854
855 import_iterator operator++(int) {
856 import_iterator Other(*this);
857 ++(*this);
858 return Other;
859 }
860
861 friend bool operator==(import_iterator X, import_iterator Y) {
862 return X.Import == Y.Import;
863 }
864
865 friend bool operator!=(import_iterator X, import_iterator Y) {
866 return X.Import != Y.Import;
867 }
868 };
869
870public:
871 comments::CommandTraits &getCommentCommandTraits() const {
872 return CommentCommandTraits;
873 }
874
875 /// Retrieve the attributes for the given declaration.
876 AttrVec& getDeclAttrs(const Decl *D);
877
878 /// Erase the attributes corresponding to the given declaration.
879 void eraseDeclAttrs(const Decl *D);
880
881 /// If this variable is an instantiated static data member of a
882 /// class template specialization, returns the templated static data member
883 /// from which it was instantiated.
884 // FIXME: Remove ?
885 MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
886 const VarDecl *Var);
887
888 TemplateOrSpecializationInfo
889 getTemplateOrSpecializationInfo(const VarDecl *Var);
890
891 /// Note that the static data member \p Inst is an instantiation of
892 /// the static data member template \p Tmpl of a class template.
893 void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
894 TemplateSpecializationKind TSK,
895 SourceLocation PointOfInstantiation = SourceLocation());
896
897 void setTemplateOrSpecializationInfo(VarDecl *Inst,
898 TemplateOrSpecializationInfo TSI);
899
900 /// If the given using decl \p Inst is an instantiation of a
901 /// (possibly unresolved) using decl from a template instantiation,
902 /// return it.
903 NamedDecl *getInstantiatedFromUsingDecl(NamedDecl *Inst);
904
905 /// Remember that the using decl \p Inst is an instantiation
906 /// of the using decl \p Pattern of a class template.
907 void setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern);
908
909 void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
910 UsingShadowDecl *Pattern);
911 UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
912
913 FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
914
915 void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
916
917 // Access to the set of methods overridden by the given C++ method.
918 using overridden_cxx_method_iterator = CXXMethodVector::const_iterator;
919 overridden_cxx_method_iterator
920 overridden_methods_begin(const CXXMethodDecl *Method) const;
921
922 overridden_cxx_method_iterator
923 overridden_methods_end(const CXXMethodDecl *Method) const;
924
925 unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
926
927 using overridden_method_range =
928 llvm::iterator_range<overridden_cxx_method_iterator>;
929
930 overridden_method_range overridden_methods(const CXXMethodDecl *Method) const;
931
932 /// Note that the given C++ \p Method overrides the given \p
933 /// Overridden method.
934 void addOverriddenMethod(const CXXMethodDecl *Method,
935 const CXXMethodDecl *Overridden);
936
937 /// Return C++ or ObjC overridden methods for the given \p Method.
938 ///
939 /// An ObjC method is considered to override any method in the class's
940 /// base classes, its protocols, or its categories' protocols, that has
941 /// the same selector and is of the same kind (class or instance).
942 /// A method in an implementation is not considered as overriding the same
943 /// method in the interface or its categories.
944 void getOverriddenMethods(
945 const NamedDecl *Method,
946 SmallVectorImpl<const NamedDecl *> &Overridden) const;
947
948 /// Notify the AST context that a new import declaration has been
949 /// parsed or implicitly created within this translation unit.
950 void addedLocalImportDecl(ImportDecl *Import);
951
952 static ImportDecl *getNextLocalImport(ImportDecl *Import) {
953 return Import->getNextLocalImport();
954 }
955
956 using import_range = llvm::iterator_range<import_iterator>;
957
958 import_range local_imports() const {
959 return import_range(import_iterator(FirstLocalImport), import_iterator());
960 }
961
962 Decl *getPrimaryMergedDecl(Decl *D) {
963 Decl *Result = MergedDecls.lookup(D);
964 return Result ? Result : D;
965 }
966 void setPrimaryMergedDecl(Decl *D, Decl *Primary) {
967 MergedDecls[D] = Primary;
968 }
969
970 /// Note that the definition \p ND has been merged into module \p M,
971 /// and should be visible whenever \p M is visible.
972 void mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
973 bool NotifyListeners = true);
974
975 /// Clean up the merged definition list. Call this if you might have
976 /// added duplicates into the list.
977 void deduplicateMergedDefinitonsFor(NamedDecl *ND);
978
979 /// Get the additional modules in which the definition \p Def has
980 /// been merged.
981 ArrayRef<Module*> getModulesWithMergedDefinition(const NamedDecl *Def);
982
983 /// Add a declaration to the list of declarations that are initialized
984 /// for a module. This will typically be a global variable (with internal
985 /// linkage) that runs module initializers, such as the iostream initializer,
986 /// or an ImportDecl nominating another module that has initializers.
987 void addModuleInitializer(Module *M, Decl *Init);
988
989 void addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs);
990
991 /// Get the initializations to perform when importing a module, if any.
992 ArrayRef<Decl*> getModuleInitializers(Module *M);
993
994 TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
995
996 ExternCContextDecl *getExternCContextDecl() const;
997 BuiltinTemplateDecl *getMakeIntegerSeqDecl() const;
998 BuiltinTemplateDecl *getTypePackElementDecl() const;
999
1000 // Builtin Types.
1001 CanQualType VoidTy;
1002 CanQualType BoolTy;
1003 CanQualType CharTy;
1004 CanQualType WCharTy; // [C++ 3.9.1p5].
1005 CanQualType WideCharTy; // Same as WCharTy in C++, integer type in C99.
1006 CanQualType WIntTy; // [C99 7.24.1], integer type unchanged by default promotions.
1007 CanQualType Char8Ty; // [C++20 proposal]
1008 CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
1009 CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
1010 CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
1011 CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
1012 CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
1013 CanQualType FloatTy, DoubleTy, LongDoubleTy, Float128Ty;
1014 CanQualType ShortAccumTy, AccumTy,
1015 LongAccumTy; // ISO/IEC JTC1 SC22 WG14 N1169 Extension
1016 CanQualType UnsignedShortAccumTy, UnsignedAccumTy, UnsignedLongAccumTy;
1017 CanQualType ShortFractTy, FractTy, LongFractTy;
1018 CanQualType UnsignedShortFractTy, UnsignedFractTy, UnsignedLongFractTy;
1019 CanQualType SatShortAccumTy, SatAccumTy, SatLongAccumTy;
1020 CanQualType SatUnsignedShortAccumTy, SatUnsignedAccumTy,
1021 SatUnsignedLongAccumTy;
1022 CanQualType SatShortFractTy, SatFractTy, SatLongFractTy;
1023 CanQualType SatUnsignedShortFractTy, SatUnsignedFractTy,
1024 SatUnsignedLongFractTy;
1025 CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
1026 CanQualType BFloat16Ty;
1027 CanQualType Float16Ty; // C11 extension ISO/IEC TS 18661-3
1028 CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
1029 CanQualType Float128ComplexTy;
1030 CanQualType VoidPtrTy, NullPtrTy;
1031 CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
1032 CanQualType BuiltinFnTy;
1033 CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
1034 CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
1035 CanQualType ObjCBuiltinBoolTy;
1036#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1037 CanQualType SingletonId;
1038#include "clang/Basic/OpenCLImageTypes.def"
1039 CanQualType OCLSamplerTy, OCLEventTy, OCLClkEventTy;
1040 CanQualType OCLQueueTy, OCLReserveIDTy;
1041 CanQualType IncompleteMatrixIdxTy;
1042 CanQualType OMPArraySectionTy, OMPArrayShapingTy, OMPIteratorTy;
1043#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
1044 CanQualType Id##Ty;
1045#include "clang/Basic/OpenCLExtensionTypes.def"
1046#define SVE_TYPE(Name, Id, SingletonId) \
1047 CanQualType SingletonId;
1048#include "clang/Basic/AArch64SVEACLETypes.def"
1049#define PPC_VECTOR_TYPE(Name, Id, Size) \
1050 CanQualType Id##Ty;
1051#include "clang/Basic/PPCTypes.def"
1052#define RVV_TYPE(Name, Id, SingletonId) \
1053 CanQualType SingletonId;
1054#include "clang/Basic/RISCVVTypes.def"
1055
1056 // Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
1057 mutable QualType AutoDeductTy; // Deduction against 'auto'.
1058 mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
1059
1060 // Decl used to help define __builtin_va_list for some targets.
1061 // The decl is built when constructing 'BuiltinVaListDecl'.
1062 mutable Decl *VaListTagDecl = nullptr;
1063
1064 // Implicitly-declared type 'struct _GUID'.
1065 mutable TagDecl *MSGuidTagDecl = nullptr;
1066
1067 /// Keep track of CUDA/HIP static device variables referenced by host code.
1068 llvm::DenseSet<const VarDecl *> CUDAStaticDeviceVarReferencedByHost;
1069
1070 ASTContext(LangOptions &LOpts, SourceManager &SM, IdentifierTable &idents,
1071 SelectorTable &sels, Builtin::Context &builtins);
1072 ASTContext(const ASTContext &) = delete;
1073 ASTContext &operator=(const ASTContext &) = delete;
1074 ~ASTContext();
1075
1076 /// Attach an external AST source to the AST context.
1077 ///
1078 /// The external AST source provides the ability to load parts of
1079 /// the abstract syntax tree as needed from some external storage,
1080 /// e.g., a precompiled header.
1081 void setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source);
1082
1083 /// Retrieve a pointer to the external AST source associated
1084 /// with this AST context, if any.
1085 ExternalASTSource *getExternalSource() const {
1086 return ExternalSource.get();
1087 }
1088
1089 /// Attach an AST mutation listener to the AST context.
1090 ///
1091 /// The AST mutation listener provides the ability to track modifications to
1092 /// the abstract syntax tree entities committed after they were initially
1093 /// created.
1094 void setASTMutationListener(ASTMutationListener *Listener) {
1095 this->Listener = Listener;
1096 }
1097
1098 /// Retrieve a pointer to the AST mutation listener associated
1099 /// with this AST context, if any.
1100 ASTMutationListener *getASTMutationListener() const { return Listener; }
1101
1102 void PrintStats() const;
1103 const SmallVectorImpl<Type *>& getTypes() const { return Types; }
1104
1105 BuiltinTemplateDecl *buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
1106 const IdentifierInfo *II) const;
1107
1108 /// Create a new implicit TU-level CXXRecordDecl or RecordDecl
1109 /// declaration.
1110 RecordDecl *buildImplicitRecord(StringRef Name,
1111 RecordDecl::TagKind TK = TTK_Struct) const;
1112
1113 /// Create a new implicit TU-level typedef declaration.
1114 TypedefDecl *buildImplicitTypedef(QualType T, StringRef Name) const;
1115
1116 /// Retrieve the declaration for the 128-bit signed integer type.
1117 TypedefDecl *getInt128Decl() const;
1118
1119 /// Retrieve the declaration for the 128-bit unsigned integer type.
1120 TypedefDecl *getUInt128Decl() const;
1121
1122 //===--------------------------------------------------------------------===//
1123 // Type Constructors
1124 //===--------------------------------------------------------------------===//
1125
1126private:
1127 /// Return a type with extended qualifiers.
1128 QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
1129
1130 QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
1131
1132 QualType getPipeType(QualType T, bool ReadOnly) const;
1133
1134public:
1135 /// Return the uniqued reference to the type for an address space
1136 /// qualified type with the specified type and address space.
1137 ///
1138 /// The resulting type has a union of the qualifiers from T and the address
1139 /// space. If T already has an address space specifier, it is silently
1140 /// replaced.
1141 QualType getAddrSpaceQualType(QualType T, LangAS AddressSpace) const;
1142
1143 /// Remove any existing address space on the type and returns the type
1144 /// with qualifiers intact (or that's the idea anyway)
1145 ///
1146 /// The return type should be T with all prior qualifiers minus the address
1147 /// space.
1148 QualType removeAddrSpaceQualType(QualType T) const;
1149
1150 /// Apply Objective-C protocol qualifiers to the given type.
1151 /// \param allowOnPointerType specifies if we can apply protocol
1152 /// qualifiers on ObjCObjectPointerType. It can be set to true when
1153 /// constructing the canonical type of a Objective-C type parameter.
1154 QualType applyObjCProtocolQualifiers(QualType type,
1155 ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
1156 bool allowOnPointerType = false) const;
1157
1158 /// Return the uniqued reference to the type for an Objective-C
1159 /// gc-qualified type.
1160 ///
1161 /// The resulting type has a union of the qualifiers from T and the gc
1162 /// attribute.
1163 QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
1164
1165 /// Remove the existing address space on the type if it is a pointer size
1166 /// address space and return the type with qualifiers intact.
1167 QualType removePtrSizeAddrSpace(QualType T) const;
1168
1169 /// Return the uniqued reference to the type for a \c restrict
1170 /// qualified type.
1171 ///
1172 /// The resulting type has a union of the qualifiers from \p T and
1173 /// \c restrict.
1174 QualType getRestrictType(QualType T) const {
1175 return T.withFastQualifiers(Qualifiers::Restrict);
1176 }
1177
1178 /// Return the uniqued reference to the type for a \c volatile
1179 /// qualified type.
1180 ///
1181 /// The resulting type has a union of the qualifiers from \p T and
1182 /// \c volatile.
1183 QualType getVolatileType(QualType T) const {
1184 return T.withFastQualifiers(Qualifiers::Volatile);
1185 }
1186
1187 /// Return the uniqued reference to the type for a \c const
1188 /// qualified type.
1189 ///
1190 /// The resulting type has a union of the qualifiers from \p T and \c const.
1191 ///
1192 /// It can be reasonably expected that this will always be equivalent to
1193 /// calling T.withConst().
1194 QualType getConstType(QualType T) const { return T.withConst(); }
1195
1196 /// Change the ExtInfo on a function type.
1197 const FunctionType *adjustFunctionType(const FunctionType *Fn,
1198 FunctionType::ExtInfo EInfo);
1199
1200 /// Adjust the given function result type.
1201 CanQualType getCanonicalFunctionResultType(QualType ResultType) const;
1202
1203 /// Change the result type of a function type once it is deduced.
1204 void adjustDeducedFunctionResultType(FunctionDecl *FD, QualType ResultType);
1205
1206 /// Get a function type and produce the equivalent function type with the
1207 /// specified exception specification. Type sugar that can be present on a
1208 /// declaration of a function with an exception specification is permitted
1209 /// and preserved. Other type sugar (for instance, typedefs) is not.
1210 QualType getFunctionTypeWithExceptionSpec(
1211 QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI);
1212
1213 /// Determine whether two function types are the same, ignoring
1214 /// exception specifications in cases where they're part of the type.
1215 bool hasSameFunctionTypeIgnoringExceptionSpec(QualType T, QualType U);
1216
1217 /// Change the exception specification on a function once it is
1218 /// delay-parsed, instantiated, or computed.
1219 void adjustExceptionSpec(FunctionDecl *FD,
1220 const FunctionProtoType::ExceptionSpecInfo &ESI,
1221 bool AsWritten = false);
1222
1223 /// Get a function type and produce the equivalent function type where
1224 /// pointer size address spaces in the return type and parameter tyeps are
1225 /// replaced with the default address space.
1226 QualType getFunctionTypeWithoutPtrSizes(QualType T);
1227
1228 /// Determine whether two function types are the same, ignoring pointer sizes
1229 /// in the return type and parameter types.
1230 bool hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U);
1231
1232 /// Return the uniqued reference to the type for a complex
1233 /// number with the specified element type.
1234 QualType getComplexType(QualType T) const;
1235 CanQualType getComplexType(CanQualType T) const {
1236 return CanQualType::CreateUnsafe(getComplexType((QualType) T));
1237 }
1238
1239 /// Return the uniqued reference to the type for a pointer to
1240 /// the specified type.
1241 QualType getPointerType(QualType T) const;
1242 CanQualType getPointerType(CanQualType T) const {
1243 return CanQualType::CreateUnsafe(getPointerType((QualType) T));
1244 }
1245
1246 /// Return the uniqued reference to a type adjusted from the original
1247 /// type to a new type.
1248 QualType getAdjustedType(QualType Orig, QualType New) const;
1249 CanQualType getAdjustedType(CanQualType Orig, CanQualType New) const {
1250 return CanQualType::CreateUnsafe(
1251 getAdjustedType((QualType)Orig, (QualType)New));
1252 }
1253
1254 /// Return the uniqued reference to the decayed version of the given
1255 /// type. Can only be called on array and function types which decay to
1256 /// pointer types.
1257 QualType getDecayedType(QualType T) const;
1258 CanQualType getDecayedType(CanQualType T) const {
1259 return CanQualType::CreateUnsafe(getDecayedType((QualType) T));
1260 }
1261
1262 /// Return the uniqued reference to the atomic type for the specified
1263 /// type.
1264 QualType getAtomicType(QualType T) const;
1265
1266 /// Return the uniqued reference to the type for a block of the
1267 /// specified type.
1268 QualType getBlockPointerType(QualType T) const;
1269
1270 /// Gets the struct used to keep track of the descriptor for pointer to
1271 /// blocks.
1272 QualType getBlockDescriptorType() const;
1273
1274 /// Return a read_only pipe type for the specified type.
1275 QualType getReadPipeType(QualType T) const;
1276
1277 /// Return a write_only pipe type for the specified type.
1278 QualType getWritePipeType(QualType T) const;
1279
1280 /// Return an extended integer type with the specified signedness and bit
1281 /// count.
1282 QualType getExtIntType(bool Unsigned, unsigned NumBits) const;
1283
1284 /// Return a dependent extended integer type with the specified signedness and
1285 /// bit count.
1286 QualType getDependentExtIntType(bool Unsigned, Expr *BitsExpr) const;
1287
1288 /// Gets the struct used to keep track of the extended descriptor for
1289 /// pointer to blocks.
1290 QualType getBlockDescriptorExtendedType() const;
1291
1292 /// Map an AST Type to an OpenCLTypeKind enum value.
1293 OpenCLTypeKind getOpenCLTypeKind(const Type *T) const;
1294
1295 /// Get address space for OpenCL type.
1296 LangAS getOpenCLTypeAddrSpace(const Type *T) const;
1297
1298 void setcudaConfigureCallDecl(FunctionDecl *FD) {
1299 cudaConfigureCallDecl = FD;
1300 }
1301
1302 FunctionDecl *getcudaConfigureCallDecl() {
1303 return cudaConfigureCallDecl;
1304 }
1305
1306 /// Returns true iff we need copy/dispose helpers for the given type.
1307 bool BlockRequiresCopying(QualType Ty, const VarDecl *D);
1308
1309 /// Returns true, if given type has a known lifetime. HasByrefExtendedLayout
1310 /// is set to false in this case. If HasByrefExtendedLayout returns true,
1311 /// byref variable has extended lifetime.
1312 bool getByrefLifetime(QualType Ty,
1313 Qualifiers::ObjCLifetime &Lifetime,
1314 bool &HasByrefExtendedLayout) const;
1315
1316 /// Return the uniqued reference to the type for an lvalue reference
1317 /// to the specified type.
1318 QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
1319 const;
1320
1321 /// Return the uniqued reference to the type for an rvalue reference
1322 /// to the specified type.
1323 QualType getRValueReferenceType(QualType T) const;
1324
1325 /// Return the uniqued reference to the type for a member pointer to
1326 /// the specified type in the specified class.
1327 ///
1328 /// The class \p Cls is a \c Type because it could be a dependent name.
1329 QualType getMemberPointerType(QualType T, const Type *Cls) const;
1330
1331 /// Return a non-unique reference to the type for a variable array of
1332 /// the specified element type.
1333 QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
1334 ArrayType::ArraySizeModifier ASM,
1335 unsigned IndexTypeQuals,
1336 SourceRange Brackets) const;
1337
1338 /// Return a non-unique reference to the type for a dependently-sized
1339 /// array of the specified element type.
1340 ///
1341 /// FIXME: We will need these to be uniqued, or at least comparable, at some
1342 /// point.
1343 QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
1344 ArrayType::ArraySizeModifier ASM,
1345 unsigned IndexTypeQuals,
1346 SourceRange Brackets) const;
1347
1348 /// Return a unique reference to the type for an incomplete array of
1349 /// the specified element type.
1350 QualType getIncompleteArrayType(QualType EltTy,
1351 ArrayType::ArraySizeModifier ASM,
1352 unsigned IndexTypeQuals) const;
1353
1354 /// Return the unique reference to the type for a constant array of
1355 /// the specified element type.
1356 QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
1357 const Expr *SizeExpr,
1358 ArrayType::ArraySizeModifier ASM,
1359 unsigned IndexTypeQuals) const;
1360
1361 /// Return a type for a constant array for a string literal of the
1362 /// specified element type and length.
1363 QualType getStringLiteralArrayType(QualType EltTy, unsigned Length) const;
1364
1365 /// Returns a vla type where known sizes are replaced with [*].
1366 QualType getVariableArrayDecayedType(QualType Ty) const;
1367
1368 // Convenience struct to return information about a builtin vector type.
1369 struct BuiltinVectorTypeInfo {
1370 QualType ElementType;
1371 llvm::ElementCount EC;
1372 unsigned NumVectors;
1373 BuiltinVectorTypeInfo(QualType ElementType, llvm::ElementCount EC,
1374 unsigned NumVectors)
1375 : ElementType(ElementType), EC(EC), NumVectors(NumVectors) {}
1376 };
1377
1378 /// Returns the element type, element count and number of vectors
1379 /// (in case of tuple) for a builtin vector type.
1380 BuiltinVectorTypeInfo
1381 getBuiltinVectorTypeInfo(const BuiltinType *VecTy) const;
1382
1383 /// Return the unique reference to a scalable vector type of the specified
1384 /// element type and scalable number of elements.
1385 ///
1386 /// \pre \p EltTy must be a built-in type.
1387 QualType getScalableVectorType(QualType EltTy, unsigned NumElts) const;
1388
1389 /// Return the unique reference to a vector type of the specified
1390 /// element type and size.
1391 ///
1392 /// \pre \p VectorType must be a built-in type.
1393 QualType getVectorType(QualType VectorType, unsigned NumElts,
1394 VectorType::VectorKind VecKind) const;
1395 /// Return the unique reference to the type for a dependently sized vector of
1396 /// the specified element type.
1397 QualType getDependentVectorType(QualType VectorType, Expr *SizeExpr,
1398 SourceLocation AttrLoc,
1399 VectorType::VectorKind VecKind) const;
1400
1401 /// Return the unique reference to an extended vector type
1402 /// of the specified element type and size.
1403 ///
1404 /// \pre \p VectorType must be a built-in type.
1405 QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
1406
1407 /// \pre Return a non-unique reference to the type for a dependently-sized
1408 /// vector of the specified element type.
1409 ///
1410 /// FIXME: We will need these to be uniqued, or at least comparable, at some
1411 /// point.
1412 QualType getDependentSizedExtVectorType(QualType VectorType,
1413 Expr *SizeExpr,
1414 SourceLocation AttrLoc) const;
1415
1416 /// Return the unique reference to the matrix type of the specified element
1417 /// type and size
1418 ///
1419 /// \pre \p ElementType must be a valid matrix element type (see
1420 /// MatrixType::isValidElementType).
1421 QualType getConstantMatrixType(QualType ElementType, unsigned NumRows,
1422 unsigned NumColumns) const;
1423
1424 /// Return the unique reference to the matrix type of the specified element
1425 /// type and size
1426 QualType getDependentSizedMatrixType(QualType ElementType, Expr *RowExpr,
1427 Expr *ColumnExpr,
1428 SourceLocation AttrLoc) const;
1429
1430 QualType getDependentAddressSpaceType(QualType PointeeType,
1431 Expr *AddrSpaceExpr,
1432 SourceLocation AttrLoc) const;
1433
1434 /// Return a K&R style C function type like 'int()'.
1435 QualType getFunctionNoProtoType(QualType ResultTy,
1436 const FunctionType::ExtInfo &Info) const;
1437
1438 QualType getFunctionNoProtoType(QualType ResultTy) const {
1439 return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
1440 }
1441
1442 /// Return a normal function type with a typed argument list.
1443 QualType getFunctionType(QualType ResultTy, ArrayRef<QualType> Args,
1444 const FunctionProtoType::ExtProtoInfo &EPI) const {
1445 return getFunctionTypeInternal(ResultTy, Args, EPI, false);
1446 }
1447
1448 QualType adjustStringLiteralBaseType(QualType StrLTy) const;
1449
1450private:
1451 /// Return a normal function type with a typed argument list.
1452 QualType getFunctionTypeInternal(QualType ResultTy, ArrayRef<QualType> Args,
1453 const FunctionProtoType::ExtProtoInfo &EPI,
1454 bool OnlyWantCanonical) const;
1455
1456public:
1457 /// Return the unique reference to the type for the specified type
1458 /// declaration.
1459 QualType getTypeDeclType(const TypeDecl *Decl,
1460 const TypeDecl *PrevDecl = nullptr) const {
1461 assert(Decl && "Passed null for Decl param");
1462 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1463
1464 if (PrevDecl) {
1465 assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
1466 Decl->TypeForDecl = PrevDecl->TypeForDecl;
1467 return QualType(PrevDecl->TypeForDecl, 0);
1468 }
1469
1470 return getTypeDeclTypeSlow(Decl);
1471 }
1472
1473 /// Return the unique reference to the type for the specified
1474 /// typedef-name decl.
1475 QualType getTypedefType(const TypedefNameDecl *Decl,
1476 QualType Underlying = QualType()) const;
1477
1478 QualType getRecordType(const RecordDecl *Decl) const;
1479
1480 QualType getEnumType(const EnumDecl *Decl) const;
1481
1482 QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
1483
1484 QualType getAttributedType(attr::Kind attrKind,
1485 QualType modifiedType,
1486 QualType equivalentType);
1487
1488 QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
1489 QualType Replacement) const;
1490 QualType getSubstTemplateTypeParmPackType(
1491 const TemplateTypeParmType *Replaced,
1492 const TemplateArgument &ArgPack);
1493
1494 QualType
1495 getTemplateTypeParmType(unsigned Depth, unsigned Index,
1496 bool ParameterPack,
1497 TemplateTypeParmDecl *ParmDecl = nullptr) const;
1498
1499 QualType getTemplateSpecializationType(TemplateName T,
1500 ArrayRef<TemplateArgument> Args,
1501 QualType Canon = QualType()) const;
1502
1503 QualType
1504 getCanonicalTemplateSpecializationType(TemplateName T,
1505 ArrayRef<TemplateArgument> Args) const;
1506
1507 QualType getTemplateSpecializationType(TemplateName T,
1508 const TemplateArgumentListInfo &Args,
1509 QualType Canon = QualType()) const;
1510
1511 TypeSourceInfo *
1512 getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
1513 const TemplateArgumentListInfo &Args,
1514 QualType Canon = QualType()) const;
1515
1516 QualType getParenType(QualType NamedType) const;
1517
1518 QualType getMacroQualifiedType(QualType UnderlyingTy,
1519 const IdentifierInfo *MacroII) const;
1520
1521 QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
1522 NestedNameSpecifier *NNS, QualType NamedType,
1523 TagDecl *OwnedTagDecl = nullptr) const;
1524 QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
1525 NestedNameSpecifier *NNS,
1526 const IdentifierInfo *Name,
1527 QualType Canon = QualType()) const;
1528
1529 QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
1530 NestedNameSpecifier *NNS,
1531 const IdentifierInfo *Name,
1532 const TemplateArgumentListInfo &Args) const;
1533 QualType getDependentTemplateSpecializationType(
1534 ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
1535 const IdentifierInfo *Name, ArrayRef<TemplateArgument> Args) const;
1536
1537 TemplateArgument getInjectedTemplateArg(NamedDecl *ParamDecl);
1538
1539 /// Get a template argument list with one argument per template parameter
1540 /// in a template parameter list, such as for the injected class name of
1541 /// a class template.
1542 void getInjectedTemplateArgs(const TemplateParameterList *Params,
1543 SmallVectorImpl<TemplateArgument> &Args);
1544
1545 /// Form a pack expansion type with the given pattern.
1546 /// \param NumExpansions The number of expansions for the pack, if known.
1547 /// \param ExpectPackInType If \c false, we should not expect \p Pattern to
1548 /// contain an unexpanded pack. This only makes sense if the pack
1549 /// expansion is used in a context where the arity is inferred from
1550 /// elsewhere, such as if the pattern contains a placeholder type or
1551 /// if this is the canonical type of another pack expansion type.
1552 QualType getPackExpansionType(QualType Pattern,
1553 Optional<unsigned> NumExpansions,
1554 bool ExpectPackInType = true);
1555
1556 QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1557 ObjCInterfaceDecl *PrevDecl = nullptr) const;
1558
1559 /// Legacy interface: cannot provide type arguments or __kindof.
1560 QualType getObjCObjectType(QualType Base,
1561 ObjCProtocolDecl * const *Protocols,
1562 unsigned NumProtocols) const;
1563
1564 QualType getObjCObjectType(QualType Base,
1565 ArrayRef<QualType> typeArgs,
1566 ArrayRef<ObjCProtocolDecl *> protocols,
1567 bool isKindOf) const;
1568
1569 QualType getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
1570 ArrayRef<ObjCProtocolDecl *> protocols) const;
1571 void adjustObjCTypeParamBoundType(const ObjCTypeParamDecl *Orig,
1572 ObjCTypeParamDecl *New) const;
1573
1574 bool ObjCObjectAdoptsQTypeProtocols(QualType QT, ObjCInterfaceDecl *Decl);
1575
1576 /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
1577 /// QT's qualified-id protocol list adopt all protocols in IDecl's list
1578 /// of protocols.
1579 bool QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
1580 ObjCInterfaceDecl *IDecl);
1581
1582 /// Return a ObjCObjectPointerType type for the given ObjCObjectType.
1583 QualType getObjCObjectPointerType(QualType OIT) const;
1584
1585 /// GCC extension.
1586 QualType getTypeOfExprType(Expr *e) const;
1587 QualType getTypeOfType(QualType t) const;
1588
1589 /// C++11 decltype.
1590 QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
1591
1592 /// Unary type transforms
1593 QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
1594 UnaryTransformType::UTTKind UKind) const;
1595
1596 /// C++11 deduced auto type.
1597 QualType getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
1598 bool IsDependent, bool IsPack = false,
1599 ConceptDecl *TypeConstraintConcept = nullptr,
1600 ArrayRef<TemplateArgument> TypeConstraintArgs ={}) const;
1601
1602 /// C++11 deduction pattern for 'auto' type.
1603 QualType getAutoDeductType() const;
1604
1605 /// C++11 deduction pattern for 'auto &&' type.
1606 QualType getAutoRRefDeductType() const;
1607
1608 /// C++17 deduced class template specialization type.
1609 QualType getDeducedTemplateSpecializationType(TemplateName Template,
1610 QualType DeducedType,
1611 bool IsDependent) const;
1612
1613 /// Return the unique reference to the type for the specified TagDecl
1614 /// (struct/union/class/enum) decl.
1615 QualType getTagDeclType(const TagDecl *Decl) const;
1616
1617 /// Return the unique type for "size_t" (C99 7.17), defined in
1618 /// <stddef.h>.
1619 ///
1620 /// The sizeof operator requires this (C99 6.5.3.4p4).
1621 CanQualType getSizeType() const;
1622
1623 /// Return the unique signed counterpart of
1624 /// the integer type corresponding to size_t.
1625 CanQualType getSignedSizeType() const;
1626
1627 /// Return the unique type for "intmax_t" (C99 7.18.1.5), defined in
1628 /// <stdint.h>.
1629 CanQualType getIntMaxType() const;
1630
1631 /// Return the unique type for "uintmax_t" (C99 7.18.1.5), defined in
1632 /// <stdint.h>.
1633 CanQualType getUIntMaxType() const;
1634
1635 /// Return the unique wchar_t type available in C++ (and available as
1636 /// __wchar_t as a Microsoft extension).
1637 QualType getWCharType() const { return WCharTy; }
1638
1639 /// Return the type of wide characters. In C++, this returns the
1640 /// unique wchar_t type. In C99, this returns a type compatible with the type
1641 /// defined in <stddef.h> as defined by the target.
1642 QualType getWideCharType() const { return WideCharTy; }
1643
1644 /// Return the type of "signed wchar_t".
1645 ///
1646 /// Used when in C++, as a GCC extension.
1647 QualType getSignedWCharType() const;
1648
1649 /// Return the type of "unsigned wchar_t".
1650 ///
1651 /// Used when in C++, as a GCC extension.
1652 QualType getUnsignedWCharType() const;
1653
1654 /// In C99, this returns a type compatible with the type
1655 /// defined in <stddef.h> as defined by the target.
1656 QualType getWIntType() const { return WIntTy; }
1657
1658 /// Return a type compatible with "intptr_t" (C99 7.18.1.4),
1659 /// as defined by the target.
1660 QualType getIntPtrType() const;
1661
1662 /// Return a type compatible with "uintptr_t" (C99 7.18.1.4),
1663 /// as defined by the target.
1664 QualType getUIntPtrType() const;
1665
1666 /// Return the unique type for "ptrdiff_t" (C99 7.17) defined in
1667 /// <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1668 QualType getPointerDiffType() const;
1669
1670 /// Return the unique unsigned counterpart of "ptrdiff_t"
1671 /// integer type. The standard (C11 7.21.6.1p7) refers to this type
1672 /// in the definition of %tu format specifier.
1673 QualType getUnsignedPointerDiffType() const;
1674
1675 /// Return the unique type for "pid_t" defined in
1676 /// <sys/types.h>. We need this to compute the correct type for vfork().
1677 QualType getProcessIDType() const;
1678
1679 /// Return the C structure type used to represent constant CFStrings.
1680 QualType getCFConstantStringType() const;
1681
1682 /// Returns the C struct type for objc_super
1683 QualType getObjCSuperType() const;
1684 void setObjCSuperType(QualType ST) { ObjCSuperType = ST; }
1685
1686 /// Get the structure type used to representation CFStrings, or NULL
1687 /// if it hasn't yet been built.
1688 QualType getRawCFConstantStringType() const {
1689 if (CFConstantStringTypeDecl)
1690 return getTypedefType(CFConstantStringTypeDecl);
1691 return QualType();
1692 }
1693 void setCFConstantStringType(QualType T);
1694 TypedefDecl *getCFConstantStringDecl() const;
1695 RecordDecl *getCFConstantStringTagDecl() const;
1696
1697 // This setter/getter represents the ObjC type for an NSConstantString.
1698 void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
1699 QualType getObjCConstantStringInterface() const {
1700 return ObjCConstantStringType;
1701 }
1702
1703 QualType getObjCNSStringType() const {
1704 return ObjCNSStringType;
1705 }
1706
1707 void setObjCNSStringType(QualType T) {
1708 ObjCNSStringType = T;
1709 }
1710
1711 /// Retrieve the type that \c id has been defined to, which may be
1712 /// different from the built-in \c id if \c id has been typedef'd.
1713 QualType getObjCIdRedefinitionType() const {
1714 if (ObjCIdRedefinitionType.isNull())
1715 return getObjCIdType();
1716 return ObjCIdRedefinitionType;
1717 }
1718
1719 /// Set the user-written type that redefines \c id.
1720 void setObjCIdRedefinitionType(QualType RedefType) {
1721 ObjCIdRedefinitionType = RedefType;
1722 }
1723
1724 /// Retrieve the type that \c Class has been defined to, which may be
1725 /// different from the built-in \c Class if \c Class has been typedef'd.
1726 QualType getObjCClassRedefinitionType() const {
1727 if (ObjCClassRedefinitionType.isNull())
1728 return getObjCClassType();
1729 return ObjCClassRedefinitionType;
1730 }
1731
1732 /// Set the user-written type that redefines 'SEL'.
1733 void setObjCClassRedefinitionType(QualType RedefType) {
1734 ObjCClassRedefinitionType = RedefType;
1735 }
1736
1737 /// Retrieve the type that 'SEL' has been defined to, which may be
1738 /// different from the built-in 'SEL' if 'SEL' has been typedef'd.
1739 QualType getObjCSelRedefinitionType() const {
1740 if (ObjCSelRedefinitionType.isNull())
1741 return getObjCSelType();
1742 return ObjCSelRedefinitionType;
1743 }
1744
1745 /// Set the user-written type that redefines 'SEL'.
1746 void setObjCSelRedefinitionType(QualType RedefType) {
1747 ObjCSelRedefinitionType = RedefType;
1748 }
1749
1750 /// Retrieve the identifier 'NSObject'.
1751 IdentifierInfo *getNSObjectName() const {
1752 if (!NSObjectName) {
1753 NSObjectName = &Idents.get("NSObject");
1754 }
1755
1756 return NSObjectName;
1757 }
1758
1759 /// Retrieve the identifier 'NSCopying'.
1760 IdentifierInfo *getNSCopyingName() {
1761 if (!NSCopyingName) {
1762 NSCopyingName = &Idents.get("NSCopying");
1763 }
1764
1765 return NSCopyingName;
1766 }
1767
1768 CanQualType getNSUIntegerType() const;
1769
1770 CanQualType getNSIntegerType() const;
1771
1772 /// Retrieve the identifier 'bool'.
1773 IdentifierInfo *getBoolName() const {
1774 if (!BoolName)
1775 BoolName = &Idents.get("bool");
1776 return BoolName;
1777 }
1778
1779 IdentifierInfo *getMakeIntegerSeqName() const {
1780 if (!MakeIntegerSeqName)
1781 MakeIntegerSeqName = &Idents.get("__make_integer_seq");
1782 return MakeIntegerSeqName;
1783 }
1784
1785 IdentifierInfo *getTypePackElementName() const {
1786 if (!TypePackElementName)
1787 TypePackElementName = &Idents.get("__type_pack_element");
1788 return TypePackElementName;
1789 }
1790
1791 /// Retrieve the Objective-C "instancetype" type, if already known;
1792 /// otherwise, returns a NULL type;
1793 QualType getObjCInstanceType() {
1794 return getTypeDeclType(getObjCInstanceTypeDecl());
1795 }
1796
1797 /// Retrieve the typedef declaration corresponding to the Objective-C
1798 /// "instancetype" type.
1799 TypedefDecl *getObjCInstanceTypeDecl();
1800
1801 /// Set the type for the C FILE type.
1802 void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
1803
1804 /// Retrieve the C FILE type.
1805 QualType getFILEType() const {
1806 if (FILEDecl)
1807 return getTypeDeclType(FILEDecl);
1808 return QualType();
1809 }
1810
1811 /// Set the type for the C jmp_buf type.
1812 void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
1813 this->jmp_bufDecl = jmp_bufDecl;
1814 }
1815
1816 /// Retrieve the C jmp_buf type.
1817 QualType getjmp_bufType() const {
1818 if (jmp_bufDecl)
1819 return getTypeDeclType(jmp_bufDecl);
1820 return QualType();
1821 }
1822
1823 /// Set the type for the C sigjmp_buf type.
1824 void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
1825 this->sigjmp_bufDecl = sigjmp_bufDecl;
1826 }
1827
1828 /// Retrieve the C sigjmp_buf type.
1829 QualType getsigjmp_bufType() const {
1830 if (sigjmp_bufDecl)
1831 return getTypeDeclType(sigjmp_bufDecl);
1832 return QualType();
1833 }
1834
1835 /// Set the type for the C ucontext_t type.
1836 void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
1837 this->ucontext_tDecl = ucontext_tDecl;
1838 }
1839
1840 /// Retrieve the C ucontext_t type.
1841 QualType getucontext_tType() const {
1842 if (ucontext_tDecl)
1843 return getTypeDeclType(ucontext_tDecl);
1844 return QualType();
1845 }
1846
1847 /// The result type of logical operations, '<', '>', '!=', etc.
1848 QualType getLogicalOperationType() const {
1849 return getLangOpts().CPlusPlus ? BoolTy : IntTy;
1850 }
1851
1852 /// Emit the Objective-CC type encoding for the given type \p T into
1853 /// \p S.
1854 ///
1855 /// If \p Field is specified then record field names are also encoded.
1856 void getObjCEncodingForType(QualType T, std::string &S,
1857 const FieldDecl *Field=nullptr,
1858 QualType *NotEncodedT=nullptr) const;
1859
1860 /// Emit the Objective-C property type encoding for the given
1861 /// type \p T into \p S.
1862 void getObjCEncodingForPropertyType(QualType T, std::string &S) const;
1863
1864 void getLegacyIntegralTypeEncoding(QualType &t) const;
1865
1866 /// Put the string version of the type qualifiers \p QT into \p S.
1867 void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
1868 std::string &S) const;
1869
1870 /// Emit the encoded type for the function \p Decl into \p S.
1871 ///
1872 /// This is in the same format as Objective-C method encodings.
1873 ///
1874 /// \returns true if an error occurred (e.g., because one of the parameter
1875 /// types is incomplete), false otherwise.
1876 std::string getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const;
1877
1878 /// Emit the encoded type for the method declaration \p Decl into
1879 /// \p S.
1880 std::string getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
1881 bool Extended = false) const;
1882
1883 /// Return the encoded type for this block declaration.
1884 std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
1885
1886 /// getObjCEncodingForPropertyDecl - Return the encoded type for
1887 /// this method declaration. If non-NULL, Container must be either
1888 /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
1889 /// only be NULL when getting encodings for protocol properties.
1890 std::string getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
1891 const Decl *Container) const;
1892
1893 bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
1894 ObjCProtocolDecl *rProto) const;
1895
1896 ObjCPropertyImplDecl *getObjCPropertyImplDeclForPropertyDecl(
1897 const ObjCPropertyDecl *PD,
1898 const Decl *Container) const;
1899
1900 /// Return the size of type \p T for Objective-C encoding purpose,
1901 /// in characters.
1902 CharUnits getObjCEncodingTypeSize(QualType T) const;
1903
1904 /// Retrieve the typedef corresponding to the predefined \c id type
1905 /// in Objective-C.
1906 TypedefDecl *getObjCIdDecl() const;
1907
1908 /// Represents the Objective-CC \c id type.
1909 ///
1910 /// This is set up lazily, by Sema. \c id is always a (typedef for a)
1911 /// pointer type, a pointer to a struct.
1912 QualType getObjCIdType() const {
1913 return getTypeDeclType(getObjCIdDecl());
1914 }
1915
1916 /// Retrieve the typedef corresponding to the predefined 'SEL' type
1917 /// in Objective-C.
1918 TypedefDecl *getObjCSelDecl() const;
1919
1920 /// Retrieve the type that corresponds to the predefined Objective-C
1921 /// 'SEL' type.
1922 QualType getObjCSelType() const {
1923 return getTypeDeclType(getObjCSelDecl());
1924 }
1925
1926 /// Retrieve the typedef declaration corresponding to the predefined
1927 /// Objective-C 'Class' type.
1928 TypedefDecl *getObjCClassDecl() const;
1929
1930 /// Represents the Objective-C \c Class type.
1931 ///
1932 /// This is set up lazily, by Sema. \c Class is always a (typedef for a)
1933 /// pointer type, a pointer to a struct.
1934 QualType getObjCClassType() const {
1935 return getTypeDeclType(getObjCClassDecl());
1936 }
1937
1938 /// Retrieve the Objective-C class declaration corresponding to
1939 /// the predefined \c Protocol class.
1940 ObjCInterfaceDecl *getObjCProtocolDecl() const;
1941
1942 /// Retrieve declaration of 'BOOL' typedef
1943 TypedefDecl *getBOOLDecl() const {
1944 return BOOLDecl;
1945 }
1946
1947 /// Save declaration of 'BOOL' typedef
1948 void setBOOLDecl(TypedefDecl *TD) {
1949 BOOLDecl = TD;
1950 }
1951
1952 /// type of 'BOOL' type.
1953 QualType getBOOLType() const {
1954 return getTypeDeclType(getBOOLDecl());
1955 }
1956
1957 /// Retrieve the type of the Objective-C \c Protocol class.
1958 QualType getObjCProtoType() const {
1959 return getObjCInterfaceType(getObjCProtocolDecl());
1960 }
1961
1962 /// Retrieve the C type declaration corresponding to the predefined
1963 /// \c __builtin_va_list type.
1964 TypedefDecl *getBuiltinVaListDecl() const;
1965
1966 /// Retrieve the type of the \c __builtin_va_list type.
1967 QualType getBuiltinVaListType() const {
1968 return getTypeDeclType(getBuiltinVaListDecl());
1969 }
1970
1971 /// Retrieve the C type declaration corresponding to the predefined
1972 /// \c __va_list_tag type used to help define the \c __builtin_va_list type
1973 /// for some targets.
1974 Decl *getVaListTagDecl() const;
1975
1976 /// Retrieve the C type declaration corresponding to the predefined
1977 /// \c __builtin_ms_va_list type.
1978 TypedefDecl *getBuiltinMSVaListDecl() const;
1979
1980 /// Retrieve the type of the \c __builtin_ms_va_list type.
1981 QualType getBuiltinMSVaListType() const {
1982 return getTypeDeclType(getBuiltinMSVaListDecl());
1983 }
1984
1985 /// Retrieve the implicitly-predeclared 'struct _GUID' declaration.
1986 TagDecl *getMSGuidTagDecl() const { return MSGuidTagDecl; }
1987
1988 /// Retrieve the implicitly-predeclared 'struct _GUID' type.
1989 QualType getMSGuidType() const {
1990 assert(MSGuidTagDecl && "asked for GUID type but MS extensions disabled");
1991 return getTagDeclType(MSGuidTagDecl);
1992 }
1993
1994 /// Return whether a declaration to a builtin is allowed to be
1995 /// overloaded/redeclared.
1996 bool canBuiltinBeRedeclared(const FunctionDecl *) const;
1997
1998 /// Return a type with additional \c const, \c volatile, or
1999 /// \c restrict qualifiers.
2000 QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
2001 return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
2002 }
2003
2004 /// Un-split a SplitQualType.
2005 QualType getQualifiedType(SplitQualType split) const {
2006 return getQualifiedType(split.Ty, split.Quals);
2007 }
2008
2009 /// Return a type with additional qualifiers.
2010 QualType getQualifiedType(QualType T, Qualifiers Qs) const {
2011 if (!Qs.hasNonFastQualifiers())
2012 return T.withFastQualifiers(Qs.getFastQualifiers());
2013 QualifierCollector Qc(Qs);
2014 const Type *Ptr = Qc.strip(T);
2015 return getExtQualType(Ptr, Qc);
2016 }
2017
2018 /// Return a type with additional qualifiers.
2019 QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
2020 if (!Qs.hasNonFastQualifiers())
2021 return QualType(T, Qs.getFastQualifiers());
2022 return getExtQualType(T, Qs);
2023 }
2024
2025 /// Return a type with the given lifetime qualifier.
2026 ///
2027 /// \pre Neither type.ObjCLifetime() nor \p lifetime may be \c OCL_None.
2028 QualType getLifetimeQualifiedType(QualType type,
2029 Qualifiers::ObjCLifetime lifetime) {
2030 assert(type.getObjCLifetime() == Qualifiers::OCL_None);
2031 assert(lifetime != Qualifiers::OCL_None);
2032
2033 Qualifiers qs;
2034 qs.addObjCLifetime(lifetime);
2035 return getQualifiedType(type, qs);
2036 }
2037
2038 /// getUnqualifiedObjCPointerType - Returns version of
2039 /// Objective-C pointer type with lifetime qualifier removed.
2040 QualType getUnqualifiedObjCPointerType(QualType type) const {
2041 if (!type.getTypePtr()->isObjCObjectPointerType() ||
2042 !type.getQualifiers().hasObjCLifetime())
2043 return type;
2044 Qualifiers Qs = type.getQualifiers();
2045 Qs.removeObjCLifetime();
2046 return getQualifiedType(type.getUnqualifiedType(), Qs);
2047 }
2048
2049 unsigned char getFixedPointScale(QualType Ty) const;
2050 unsigned char getFixedPointIBits(QualType Ty) const;
2051 llvm::FixedPointSemantics getFixedPointSemantics(QualType Ty) const;
2052 llvm::APFixedPoint getFixedPointMax(QualType Ty) const;
2053 llvm::APFixedPoint getFixedPointMin(QualType Ty) const;
2054
2055 DeclarationNameInfo getNameForTemplate(TemplateName Name,
2056 SourceLocation NameLoc) const;
2057
2058 TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
2059 UnresolvedSetIterator End) const;
2060 TemplateName getAssumedTemplateName(DeclarationName Name) const;
2061
2062 TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
2063 bool TemplateKeyword,
2064 TemplateDecl *Template) const;
2065
2066 TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
2067 const IdentifierInfo *Name) const;
2068 TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
2069 OverloadedOperatorKind Operator) const;
2070 TemplateName getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
2071 TemplateName replacement) const;
2072 TemplateName getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
2073 const TemplateArgument &ArgPack) const;
2074
2075 enum GetBuiltinTypeError {
2076 /// No error
2077 GE_None,
2078
2079 /// Missing a type
2080 GE_Missing_type,
2081
2082 /// Missing a type from <stdio.h>
2083 GE_Missing_stdio,
2084
2085 /// Missing a type from <setjmp.h>
2086 GE_Missing_setjmp,
2087
2088 /// Missing a type from <ucontext.h>
2089 GE_Missing_ucontext
2090 };
2091
2092 QualType DecodeTypeStr(const char *&Str, const ASTContext &Context,
2093 ASTContext::GetBuiltinTypeError &Error,
2094 bool &RequireICE, bool AllowTypeModifiers) const;
2095
2096 /// Return the type for the specified builtin.
2097 ///
2098 /// If \p IntegerConstantArgs is non-null, it is filled in with a bitmask of
2099 /// arguments to the builtin that are required to be integer constant
2100 /// expressions.
2101 QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
2102 unsigned *IntegerConstantArgs = nullptr) const;
2103
2104 /// Types and expressions required to build C++2a three-way comparisons
2105 /// using operator<=>, including the values return by builtin <=> operators.
2106 ComparisonCategories CompCategories;
2107
2108private:
2109 CanQualType getFromTargetType(unsigned Type) const;
2110 TypeInfo getTypeInfoImpl(const Type *T) const;
2111
2112 //===--------------------------------------------------------------------===//
2113 // Type Predicates.
2114 //===--------------------------------------------------------------------===//
2115
2116public:
2117 /// Return one of the GCNone, Weak or Strong Objective-C garbage
2118 /// collection attributes.
2119 Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
2120
2121 /// Return true if the given vector types are of the same unqualified
2122 /// type or if they are equivalent to the same GCC vector type.
2123 ///
2124 /// \note This ignores whether they are target-specific (AltiVec or Neon)
2125 /// types.
2126 bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
2127
2128 /// Return true if the given types are an SVE builtin and a VectorType that
2129 /// is a fixed-length representation of the SVE builtin for a specific
2130 /// vector-length.
2131 bool areCompatibleSveTypes(QualType FirstType, QualType SecondType);
2132
2133 /// Return true if the given vector types are lax-compatible SVE vector types,
2134 /// false otherwise.
2135 bool areLaxCompatibleSveTypes(QualType FirstType, QualType SecondType);
2136
2137 /// Return true if the type has been explicitly qualified with ObjC ownership.
2138 /// A type may be implicitly qualified with ownership under ObjC ARC, and in
2139 /// some cases the compiler treats these differently.
2140 bool hasDirectOwnershipQualifier(QualType Ty) const;
2141
2142 /// Return true if this is an \c NSObject object with its \c NSObject
2143 /// attribute set.
2144 static bool isObjCNSObjectType(QualType Ty) {
2145 return Ty->isObjCNSObjectType();
2146 }
2147
2148 //===--------------------------------------------------------------------===//
2149 // Type Sizing and Analysis
2150 //===--------------------------------------------------------------------===//
2151
2152 /// Return the APFloat 'semantics' for the specified scalar floating
2153 /// point type.
2154 const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
2155
2156 /// Get the size and alignment of the specified complete type in bits.
2157 TypeInfo getTypeInfo(const Type *T) const;
2158 TypeInfo getTypeInfo(QualType T) const { return getTypeInfo(T.getTypePtr()); }
2159
2160 /// Get default simd alignment of the specified complete type in bits.
2161 unsigned getOpenMPDefaultSimdAlign(QualType T) const;
2162
2163 /// Return the size of the specified (complete) type \p T, in bits.
2164 uint64_t getTypeSize(QualType T) const { return getTypeInfo(T).Width; }
2165 uint64_t getTypeSize(const Type *T) const { return getTypeInfo(T).Width; }
2166
2167 /// Return the size of the character type, in bits.
2168 uint64_t getCharWidth() const {
2169 return getTypeSize(CharTy);
2170 }
2171
2172 /// Convert a size in bits to a size in characters.
2173 CharUnits toCharUnitsFromBits(int64_t BitSize) const;
2174
2175 /// Convert a size in characters to a size in bits.
2176 int64_t toBits(CharUnits CharSize) const;
2177
2178 /// Return the size of the specified (complete) type \p T, in
2179 /// characters.
2180 CharUnits getTypeSizeInChars(QualType T) const;
2181 CharUnits getTypeSizeInChars(const Type *T) const;
2182
2183 Optional<CharUnits> getTypeSizeInCharsIfKnown(QualType Ty) const {
2184 if (Ty->isIncompleteType() || Ty->isDependentType())
2185 return None;
2186 return getTypeSizeInChars(Ty);
2187 }
2188
2189 Optional<CharUnits> getTypeSizeInCharsIfKnown(const Type *Ty) const {
2190 return getTypeSizeInCharsIfKnown(QualType(Ty, 0));
2191 }
2192
2193 /// Return the ABI-specified alignment of a (complete) type \p T, in
2194 /// bits.
2195 unsigned getTypeAlign(QualType T) const { return getTypeInfo(T).Align; }
2196 unsigned getTypeAlign(const Type *T) const { return getTypeInfo(T).Align; }
2197
2198 /// Return the ABI-specified natural alignment of a (complete) type \p T,
2199 /// before alignment adjustments, in bits.
2200 ///
2201 /// This alignment is curently used only by ARM and AArch64 when passing
2202 /// arguments of a composite type.
2203 unsigned getTypeUnadjustedAlign(QualType T) const {
2204 return getTypeUnadjustedAlign(T.getTypePtr());
2205 }
2206 unsigned getTypeUnadjustedAlign(const Type *T) const;
2207
2208 /// Return the alignment of a type, in bits, or 0 if
2209 /// the type is incomplete and we cannot determine the alignment (for
2210 /// example, from alignment attributes). The returned alignment is the
2211 /// Preferred alignment if NeedsPreferredAlignment is true, otherwise is the
2212 /// ABI alignment.
2213 unsigned getTypeAlignIfKnown(QualType T,
2214 bool NeedsPreferredAlignment = false) const;
2215
2216 /// Return the ABI-specified alignment of a (complete) type \p T, in
2217 /// characters.
2218 CharUnits getTypeAlignInChars(QualType T) const;
2219 CharUnits getTypeAlignInChars(const Type *T) const;
2220
2221 /// Return the PreferredAlignment of a (complete) type \p T, in
2222 /// characters.
2223 CharUnits getPreferredTypeAlignInChars(QualType T) const {
2224 return toCharUnitsFromBits(getPreferredTypeAlign(T));
2225 }
2226
2227 /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a type,
2228 /// in characters, before alignment adjustments. This method does not work on
2229 /// incomplete types.
2230 CharUnits getTypeUnadjustedAlignInChars(QualType T) const;
2231 CharUnits getTypeUnadjustedAlignInChars(const Type *T) const;
2232
2233 // getTypeInfoDataSizeInChars - Return the size of a type, in chars. If the
2234 // type is a record, its data size is returned.
2235 TypeInfoChars getTypeInfoDataSizeInChars(QualType T) const;
2236
2237 TypeInfoChars getTypeInfoInChars(const Type *T) const;
2238 TypeInfoChars getTypeInfoInChars(QualType T) const;
2239
2240 /// Determine if the alignment the type has was required using an
2241 /// alignment attribute.
2242 bool isAlignmentRequired(const Type *T) const;
2243 bool isAlignmentRequired(QualType T) const;
2244
2245 /// Return the "preferred" alignment of the specified type \p T for
2246 /// the current target, in bits.
2247 ///
2248 /// This can be different than the ABI alignment in cases where it is
2249 /// beneficial for performance or backwards compatibility preserving to
2250 /// overalign a data type. (Note: despite the name, the preferred alignment
2251 /// is ABI-impacting, and not an optimization.)
2252 unsigned getPreferredTypeAlign(QualType T) const {
2253 return getPreferredTypeAlign(T.getTypePtr());
2254 }
2255 unsigned getPreferredTypeAlign(const Type *T) const;
2256
2257 /// Return the default alignment for __attribute__((aligned)) on
2258 /// this target, to be used if no alignment value is specified.
2259 unsigned getTargetDefaultAlignForAttributeAligned() const;
2260
2261 /// Return the alignment in bits that should be given to a
2262 /// global variable with type \p T.
2263 unsigned getAlignOfGlobalVar(QualType T) const;
2264
2265 /// Return the alignment in characters that should be given to a
2266 /// global variable with type \p T.
2267 CharUnits getAlignOfGlobalVarInChars(QualType T) const;
2268
2269 /// Return a conservative estimate of the alignment of the specified
2270 /// decl \p D.
2271 ///
2272 /// \pre \p D must not be a bitfield type, as bitfields do not have a valid
2273 /// alignment.
2274 ///
2275 /// If \p ForAlignof, references are treated like their underlying type
2276 /// and large arrays don't get any special treatment. If not \p ForAlignof
2277 /// it computes the value expected by CodeGen: references are treated like
2278 /// pointers and large arrays get extra alignment.
2279 CharUnits getDeclAlign(const Decl *D, bool ForAlignof = false) const;
2280
2281 /// Return the alignment (in bytes) of the thrown exception object. This is
2282 /// only meaningful for targets that allocate C++ exceptions in a system
2283 /// runtime, such as those using the Itanium C++ ABI.
2284 CharUnits getExnObjectAlignment() const;
2285
2286 /// Get or compute information about the layout of the specified
2287 /// record (struct/union/class) \p D, which indicates its size and field
2288 /// position information.
2289 const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
2290
2291 /// Get or compute information about the layout of the specified
2292 /// Objective-C interface.
2293 const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
2294 const;
2295
2296 void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
2297 bool Simple = false) const;
2298
2299 /// Get or compute information about the layout of the specified
2300 /// Objective-C implementation.
2301 ///
2302 /// This may differ from the interface if synthesized ivars are present.
2303 const ASTRecordLayout &
2304 getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
2305
2306 /// Get our current best idea for the key function of the
2307 /// given record decl, or nullptr if there isn't one.
2308 ///
2309 /// The key function is, according to the Itanium C++ ABI section 5.2.3:
2310 /// ...the first non-pure virtual function that is not inline at the
2311 /// point of class definition.
2312 ///
2313 /// Other ABIs use the same idea. However, the ARM C++ ABI ignores
2314 /// virtual functions that are defined 'inline', which means that
2315 /// the result of this computation can change.
2316 const CXXMethodDecl *getCurrentKeyFunction(const CXXRecordDecl *RD);
2317
2318 /// Observe that the given method cannot be a key function.
2319 /// Checks the key-function cache for the method's class and clears it
2320 /// if matches the given declaration.
2321 ///
2322 /// This is used in ABIs where out-of-line definitions marked
2323 /// inline are not considered to be key functions.
2324 ///
2325 /// \param method should be the declaration from the class definition
2326 void setNonKeyFunction(const CXXMethodDecl *method);
2327
2328 /// Loading virtual member pointers using the virtual inheritance model
2329 /// always results in an adjustment using the vbtable even if the index is
2330 /// zero.
2331 ///
2332 /// This is usually OK because the first slot in the vbtable points
2333 /// backwards to the top of the MDC. However, the MDC might be reusing a
2334 /// vbptr from an nv-base. In this case, the first slot in the vbtable
2335 /// points to the start of the nv-base which introduced the vbptr and *not*
2336 /// the MDC. Modify the NonVirtualBaseAdjustment to account for this.
2337 CharUnits getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const;
2338
2339 /// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
2340 uint64_t getFieldOffset(const ValueDecl *FD) const;
2341
2342 /// Get the offset of an ObjCIvarDecl in bits.
2343 uint64_t lookupFieldBitOffset(const ObjCInterfaceDecl *OID,
2344 const ObjCImplementationDecl *ID,
2345 const ObjCIvarDecl *Ivar) const;
2346
2347 /// Find the 'this' offset for the member path in a pointer-to-member
2348 /// APValue.
2349 CharUnits getMemberPointerPathAdjustment(const APValue &MP) const;
2350
2351 bool isNearlyEmpty(const CXXRecordDecl *RD) const;
2352
2353 VTableContextBase *getVTableContext();
2354
2355 /// If \p T is null pointer, assume the target in ASTContext.
2356 MangleContext *createMangleContext(const TargetInfo *T = nullptr);
2357
2358 void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
2359 SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
2360
2361 unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
2362 void CollectInheritedProtocols(const Decl *CDecl,
2363 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
2364
2365 /// Return true if the specified type has unique object representations
2366 /// according to (C++17 [meta.unary.prop]p9)
2367 bool hasUniqueObjectRepresentations(QualType Ty) const;
2368
2369 //===--------------------------------------------------------------------===//
2370 // Type Operators
2371 //===--------------------------------------------------------------------===//
2372
2373 /// Return the canonical (structural) type corresponding to the
2374 /// specified potentially non-canonical type \p T.
2375 ///
2376 /// The non-canonical version of a type may have many "decorated" versions of
2377 /// types. Decorators can include typedefs, 'typeof' operators, etc. The
2378 /// returned type is guaranteed to be free of any of these, allowing two
2379 /// canonical types to be compared for exact equality with a simple pointer
2380 /// comparison.
2381 CanQualType getCanonicalType(QualType T) const {
2382 return CanQualType::CreateUnsafe(T.getCanonicalType());
2383 }
2384
2385 const Type *getCanonicalType(const Type *T) const {
2386 return T->getCanonicalTypeInternal().getTypePtr();
2387 }
2388
2389 /// Return the canonical parameter type corresponding to the specific
2390 /// potentially non-canonical one.
2391 ///
2392 /// Qualifiers are stripped off, functions are turned into function
2393 /// pointers, and arrays decay one level into pointers.
2394 CanQualType getCanonicalParamType(QualType T) const;
2395
2396 /// Determine whether the given types \p T1 and \p T2 are equivalent.
2397 bool hasSameType(QualType T1, QualType T2) const {
2398 return getCanonicalType(T1) == getCanonicalType(T2);
2399 }
2400 bool hasSameType(const Type *T1, const Type *T2) const {
2401 return getCanonicalType(T1) == getCanonicalType(T2);
2402 }
2403
2404 /// Return this type as a completely-unqualified array type,
2405 /// capturing the qualifiers in \p Quals.
2406 ///
2407 /// This will remove the minimal amount of sugaring from the types, similar
2408 /// to the behavior of QualType::getUnqualifiedType().
2409 ///
2410 /// \param T is the qualified type, which may be an ArrayType
2411 ///
2412 /// \param Quals will receive the full set of qualifiers that were
2413 /// applied to the array.
2414 ///
2415 /// \returns if this is an array type, the completely unqualified array type
2416 /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
2417 QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
2418
2419 /// Determine whether the given types are equivalent after
2420 /// cvr-qualifiers have been removed.
2421 bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
2422 return getCanonicalType(T1).getTypePtr() ==
2423 getCanonicalType(T2).getTypePtr();
2424 }
2425
2426 bool hasSameNullabilityTypeQualifier(QualType SubT, QualType SuperT,
2427 bool IsParam) const {
2428 auto SubTnullability = SubT->getNullability(*this);
2429 auto SuperTnullability = SuperT->getNullability(*this);
2430 if (SubTnullability.hasValue() == SuperTnullability.hasValue()) {
2431 // Neither has nullability; return true
2432 if (!SubTnullability)
2433 return true;
2434 // Both have nullability qualifier.
2435 if (*SubTnullability == *SuperTnullability ||
2436 *SubTnullability == NullabilityKind::Unspecified ||
2437 *SuperTnullability == NullabilityKind::Unspecified)
2438 return true;
2439
2440 if (IsParam) {
2441 // Ok for the superclass method parameter to be "nonnull" and the subclass
2442 // method parameter to be "nullable"
2443 return (*SuperTnullability == NullabilityKind::NonNull &&
2444 *SubTnullability == NullabilityKind::Nullable);
2445 }
2446 // For the return type, it's okay for the superclass method to specify
2447 // "nullable" and the subclass method specify "nonnull"
2448 return (*SuperTnullability == NullabilityKind::Nullable &&
2449 *SubTnullability == NullabilityKind::NonNull);
2450 }
2451 return true;
2452 }
2453
2454 bool ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
2455 const ObjCMethodDecl *MethodImp);
2456
2457 bool UnwrapSimilarTypes(QualType &T1, QualType &T2);
2458 bool UnwrapSimilarArrayTypes(QualType &T1, QualType &T2);
2459
2460 /// Determine if two types are similar, according to the C++ rules. That is,
2461 /// determine if they are the same other than qualifiers on the initial
2462 /// sequence of pointer / pointer-to-member / array (and in Clang, object
2463 /// pointer) types and their element types.
2464 ///
2465 /// Clang offers a number of qualifiers in addition to the C++ qualifiers;
2466 /// those qualifiers are also ignored in the 'similarity' check.
2467 bool hasSimilarType(QualType T1, QualType T2);
2468
2469 /// Determine if two types are similar, ignoring only CVR qualifiers.
2470 bool hasCvrSimilarType(QualType T1, QualType T2);
2471
2472 /// Retrieves the "canonical" nested name specifier for a
2473 /// given nested name specifier.
2474 ///
2475 /// The canonical nested name specifier is a nested name specifier
2476 /// that uniquely identifies a type or namespace within the type
2477 /// system. For example, given:
2478 ///
2479 /// \code
2480 /// namespace N {
2481 /// struct S {
2482 /// template<typename T> struct X { typename T* type; };
2483 /// };
2484 /// }
2485 ///
2486 /// template<typename T> struct Y {
2487 /// typename N::S::X<T>::type member;
2488 /// };
2489 /// \endcode
2490 ///
2491 /// Here, the nested-name-specifier for N::S::X<T>:: will be
2492 /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
2493 /// by declarations in the type system and the canonical type for
2494 /// the template type parameter 'T' is template-param-0-0.
2495 NestedNameSpecifier *
2496 getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
2497
2498 /// Retrieves the default calling convention for the current target.
2499 CallingConv getDefaultCallingConvention(bool IsVariadic,
2500 bool IsCXXMethod,
2501 bool IsBuiltin = false) const;
2502
2503 /// Retrieves the "canonical" template name that refers to a
2504 /// given template.
2505 ///
2506 /// The canonical template name is the simplest expression that can
2507 /// be used to refer to a given template. For most templates, this
2508 /// expression is just the template declaration itself. For example,
2509 /// the template std::vector can be referred to via a variety of
2510 /// names---std::vector, \::std::vector, vector (if vector is in
2511 /// scope), etc.---but all of these names map down to the same
2512 /// TemplateDecl, which is used to form the canonical template name.
2513 ///
2514 /// Dependent template names are more interesting. Here, the
2515 /// template name could be something like T::template apply or
2516 /// std::allocator<T>::template rebind, where the nested name
2517 /// specifier itself is dependent. In this case, the canonical
2518 /// template name uses the shortest form of the dependent
2519 /// nested-name-specifier, which itself contains all canonical
2520 /// types, values, and templates.
2521 TemplateName getCanonicalTemplateName(TemplateName Name) const;
2522
2523 /// Determine whether the given template names refer to the same
2524 /// template.
2525 bool hasSameTemplateName(TemplateName X, TemplateName Y);
2526
2527 /// Retrieve the "canonical" template argument.
2528 ///
2529 /// The canonical template argument is the simplest template argument
2530 /// (which may be a type, value, expression, or declaration) that
2531 /// expresses the value of the argument.
2532 TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
2533 const;
2534
2535 /// Type Query functions. If the type is an instance of the specified class,
2536 /// return the Type pointer for the underlying maximally pretty type. This
2537 /// is a member of ASTContext because this may need to do some amount of
2538 /// canonicalization, e.g. to move type qualifiers into the element type.
2539 const ArrayType *getAsArrayType(QualType T) const;
2540 const ConstantArrayType *getAsConstantArrayType(QualType T) const {
2541 return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
2542 }
2543 const VariableArrayType *getAsVariableArrayType(QualType T) const {
2544 return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
2545 }
2546 const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
2547 return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
2548 }
2549 const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
2550 const {
2551 return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
2552 }
2553
2554 /// Return the innermost element type of an array type.
2555 ///
2556 /// For example, will return "int" for int[m][n]
2557 QualType getBaseElementType(const ArrayType *VAT) const;
2558
2559 /// Return the innermost element type of a type (which needn't
2560 /// actually be an array type).
2561 QualType getBaseElementType(QualType QT) const;
2562
2563 /// Return number of constant array elements.
2564 uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
2565
2566 /// Perform adjustment on the parameter type of a function.
2567 ///
2568 /// This routine adjusts the given parameter type @p T to the actual
2569 /// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
2570 /// C++ [dcl.fct]p3). The adjusted parameter type is returned.
2571 QualType getAdjustedParameterType(QualType T) const;
2572
2573 /// Retrieve the parameter type as adjusted for use in the signature
2574 /// of a function, decaying array and function types and removing top-level
2575 /// cv-qualifiers.
2576 QualType getSignatureParameterType(QualType T) const;
2577
2578 QualType getExceptionObjectType(QualType T) const;
2579
2580 /// Return the properly qualified result of decaying the specified
2581 /// array type to a pointer.
2582 ///
2583 /// This operation is non-trivial when handling typedefs etc. The canonical
2584 /// type of \p T must be an array type, this returns a pointer to a properly
2585 /// qualified element of the array.
2586 ///
2587 /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2588 QualType getArrayDecayedType(QualType T) const;
2589
2590 /// Return the type that \p PromotableType will promote to: C99
2591 /// 6.3.1.1p2, assuming that \p PromotableType is a promotable integer type.
2592 QualType getPromotedIntegerType(QualType PromotableType) const;
2593
2594 /// Recurses in pointer/array types until it finds an Objective-C
2595 /// retainable type and returns its ownership.
2596 Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
2597
2598 /// Whether this is a promotable bitfield reference according
2599 /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2600 ///
2601 /// \returns the type this bit-field will promote to, or NULL if no
2602 /// promotion occurs.
2603 QualType isPromotableBitField(Expr *E) const;
2604
2605 /// Return the highest ranked integer type, see C99 6.3.1.8p1.
2606 ///
2607 /// If \p LHS > \p RHS, returns 1. If \p LHS == \p RHS, returns 0. If
2608 /// \p LHS < \p RHS, return -1.
2609 int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
2610
2611 /// Compare the rank of the two specified floating point types,
2612 /// ignoring the domain of the type (i.e. 'double' == '_Complex double').
2613 ///
2614 /// If \p LHS > \p RHS, returns 1. If \p LHS == \p RHS, returns 0. If
2615 /// \p LHS < \p RHS, return -1.
2616 int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
2617
2618 /// Compare the rank of two floating point types as above, but compare equal
2619 /// if both types have the same floating-point semantics on the target (i.e.
2620 /// long double and double on AArch64 will return 0).
2621 int getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const;
2622
2623 /// Return a real floating point or a complex type (based on
2624 /// \p typeDomain/\p typeSize).
2625 ///
2626 /// \param typeDomain a real floating point or complex type.
2627 /// \param typeSize a real floating point or complex type.
2628 QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
2629 QualType typeDomain) const;
2630
2631 unsigned getTargetAddressSpace(QualType T) const {
2632 return getTargetAddressSpace(T.getQualifiers());
2633 }
2634
2635 unsigned getTargetAddressSpace(Qualifiers Q) const {
2636 return getTargetAddressSpace(Q.getAddressSpace());
2637 }
2638
2639 unsigned getTargetAddressSpace(LangAS AS) const;
2640
2641 LangAS getLangASForBuiltinAddressSpace(unsigned AS) const;
2642
2643 /// Get target-dependent integer value for null pointer which is used for
2644 /// constant folding.
2645 uint64_t getTargetNullPointerValue(QualType QT) const;
2646
2647 bool addressSpaceMapManglingFor(LangAS AS) const {
2648 return AddrSpaceMapMangling || isTargetAddressSpace(AS);
2649 }
2650
2651private:
2652 // Helper for integer ordering
2653 unsigned getIntegerRank(const Type *T) const;
2654
2655public:
2656 //===--------------------------------------------------------------------===//
2657 // Type Compatibility Predicates
2658 //===--------------------------------------------------------------------===//
2659
2660 /// Compatibility predicates used to check assignment expressions.
2661 bool typesAreCompatible(QualType T1, QualType T2,
2662 bool CompareUnqualified = false); // C99 6.2.7p1
2663
2664 bool propertyTypesAreCompatible(QualType, QualType);
2665 bool typesAreBlockPointerCompatible(QualType, QualType);
2666
2667 bool isObjCIdType(QualType T) const {
2668 return T == getObjCIdType();
2669 }
2670
2671 bool isObjCClassType(QualType T) const {
2672 return T == getObjCClassType();
2673 }
2674
2675 bool isObjCSelType(QualType T) const {
2676 return T == getObjCSelType();
2677 }
2678
2679 bool ObjCQualifiedIdTypesAreCompatible(const ObjCObjectPointerType *LHS,
2680 const ObjCObjectPointerType *RHS,
2681 bool ForCompare);
2682
2683 bool ObjCQualifiedClassTypesAreCompatible(const ObjCObjectPointerType *LHS,
2684 const ObjCObjectPointerType *RHS);
2685
2686 // Check the safety of assignment from LHS to RHS
2687 bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
2688 const ObjCObjectPointerType *RHSOPT);
2689 bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
2690 const ObjCObjectType *RHS);
2691 bool canAssignObjCInterfacesInBlockPointer(
2692 const ObjCObjectPointerType *LHSOPT,
2693 const ObjCObjectPointerType *RHSOPT,
2694 bool BlockReturnType);
2695 bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
2696 QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
2697 const ObjCObjectPointerType *RHSOPT);
2698 bool canBindObjCObjectType(QualType To, QualType From);
2699
2700 // Functions for calculating composite types
2701 QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false,
2702 bool Unqualified = false, bool BlockReturnType = false);
2703 QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false,
2704 bool Unqualified = false, bool AllowCXX = false);
2705 QualType mergeFunctionParameterTypes(QualType, QualType,
2706 bool OfBlockPointer = false,
2707 bool Unqualified = false);
2708 QualType mergeTransparentUnionType(QualType, QualType,
2709 bool OfBlockPointer=false,
2710 bool Unqualified = false);
2711
2712 QualType mergeObjCGCQualifiers(QualType, QualType);
2713
2714 /// This function merges the ExtParameterInfo lists of two functions. It
2715 /// returns true if the lists are compatible. The merged list is returned in
2716 /// NewParamInfos.
2717 ///
2718 /// \param FirstFnType The type of the first function.
2719 ///
2720 /// \param SecondFnType The type of the second function.
2721 ///
2722 /// \param CanUseFirst This flag is set to true if the first function's
2723 /// ExtParameterInfo list can be used as the composite list of
2724 /// ExtParameterInfo.
2725 ///
2726 /// \param CanUseSecond This flag is set to true if the second function's
2727 /// ExtParameterInfo list can be used as the composite list of
2728 /// ExtParameterInfo.
2729 ///
2730 /// \param NewParamInfos The composite list of ExtParameterInfo. The list is
2731 /// empty if none of the flags are set.
2732 ///
2733 bool mergeExtParameterInfo(
2734 const FunctionProtoType *FirstFnType,
2735 const FunctionProtoType *SecondFnType,
2736 bool &CanUseFirst, bool &CanUseSecond,
2737 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos);
2738
2739 void ResetObjCLayout(const ObjCContainerDecl *CD);
2740
2741 //===--------------------------------------------------------------------===//
2742 // Integer Predicates
2743 //===--------------------------------------------------------------------===//
2744
2745 // The width of an integer, as defined in C99 6.2.6.2. This is the number
2746 // of bits in an integer type excluding any padding bits.
2747 unsigned getIntWidth(QualType T) const;
2748
2749 // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
2750 // unsigned integer type. This method takes a signed type, and returns the
2751 // corresponding unsigned integer type.
2752 // With the introduction of fixed point types in ISO N1169, this method also
2753 // accepts fixed point types and returns the corresponding unsigned type for
2754 // a given fixed point type.
2755 QualType getCorrespondingUnsignedType(QualType T) const;
2756
2757 // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
2758 // unsigned integer type. This method takes an unsigned type, and returns the
2759 // corresponding signed integer type.
2760 // With the introduction of fixed point types in ISO N1169, this method also
2761 // accepts fixed point types and returns the corresponding signed type for
2762 // a given fixed point type.
2763 QualType getCorrespondingSignedType(QualType T) const;
2764
2765 // Per ISO N1169, this method accepts fixed point types and returns the
2766 // corresponding saturated type for a given fixed point type.
2767 QualType getCorrespondingSaturatedType(QualType Ty) const;
2768
2769 // This method accepts fixed point types and returns the corresponding signed
2770 // type. Unlike getCorrespondingUnsignedType(), this only accepts unsigned
2771 // fixed point types because there are unsigned integer types like bool and
2772 // char8_t that don't have signed equivalents.
2773 QualType getCorrespondingSignedFixedPointType(QualType Ty) const;
2774
2775 //===--------------------------------------------------------------------===//
2776 // Integer Values
2777 //===--------------------------------------------------------------------===//
2778
2779 /// Make an APSInt of the appropriate width and signedness for the
2780 /// given \p Value and integer \p Type.
2781 llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
2782 // If Type is a signed integer type larger than 64 bits, we need to be sure
2783 // to sign extend Res appropriately.
2784 llvm::APSInt Res(64, !Type->isSignedIntegerOrEnumerationType());
2785 Res = Value;
2786 unsigned Width = getIntWidth(Type);
2787 if (Width != Res.getBitWidth())
2788 return Res.extOrTrunc(Width);
2789 return Res;
2790 }
2791
2792 bool isSentinelNullExpr(const Expr *E);
2793
2794 /// Get the implementation of the ObjCInterfaceDecl \p D, or nullptr if
2795 /// none exists.
2796 ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
2797
2798 /// Get the implementation of the ObjCCategoryDecl \p D, or nullptr if
2799 /// none exists.
2800 ObjCCategoryImplDecl *getObjCImplementation(ObjCCategoryDecl *D);
2801
2802 /// Return true if there is at least one \@implementation in the TU.
2803 bool AnyObjCImplementation() {
2804 return !ObjCImpls.empty();
2805 }
2806
2807 /// Set the implementation of ObjCInterfaceDecl.
2808 void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2809 ObjCImplementationDecl *ImplD);
2810
2811 /// Set the implementation of ObjCCategoryDecl.
2812 void setObjCImplementation(ObjCCategoryDecl *CatD,
2813 ObjCCategoryImplDecl *ImplD);
2814
2815 /// Get the duplicate declaration of a ObjCMethod in the same
2816 /// interface, or null if none exists.
2817 const ObjCMethodDecl *
2818 getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const;
2819
2820 void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2821 const ObjCMethodDecl *Redecl);
2822
2823 /// Returns the Objective-C interface that \p ND belongs to if it is
2824 /// an Objective-C method/property/ivar etc. that is part of an interface,
2825 /// otherwise returns null.
2826 const ObjCInterfaceDecl *getObjContainingInterface(const NamedDecl *ND) const;
2827
2828 /// Set the copy initialization expression of a block var decl. \p CanThrow
2829 /// indicates whether the copy expression can throw or not.
2830 void setBlockVarCopyInit(const VarDecl* VD, Expr *CopyExpr, bool CanThrow);
2831
2832 /// Get the copy initialization expression of the VarDecl \p VD, or
2833 /// nullptr if none exists.
2834 BlockVarCopyInit getBlockVarCopyInit(const VarDecl* VD) const;
2835
2836 /// Allocate an uninitialized TypeSourceInfo.
2837 ///
2838 /// The caller should initialize the memory held by TypeSourceInfo using
2839 /// the TypeLoc wrappers.
2840 ///
2841 /// \param T the type that will be the basis for type source info. This type
2842 /// should refer to how the declarator was written in source code, not to
2843 /// what type semantic analysis resolved the declarator to.
2844 ///
2845 /// \param Size the size of the type info to create, or 0 if the size
2846 /// should be calculated based on the type.
2847 TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
2848
2849 /// Allocate a TypeSourceInfo where all locations have been
2850 /// initialized to a given location, which defaults to the empty
2851 /// location.
2852 TypeSourceInfo *
2853 getTrivialTypeSourceInfo(QualType T,
2854 SourceLocation Loc = SourceLocation()) const;
2855
2856 /// Add a deallocation callback that will be invoked when the
2857 /// ASTContext is destroyed.
2858 ///
2859 /// \param Callback A callback function that will be invoked on destruction.
2860 ///
2861 /// \param Data Pointer data that will be provided to the callback function
2862 /// when it is called.
2863 void AddDeallocation(void (*Callback)(void *), void *Data) const;
2864
2865 /// If T isn't trivially destructible, calls AddDeallocation to register it
2866 /// for destruction.
2867 template <typename T> void addDestruction(T *Ptr) const {
2868 if (!std::is_trivially_destructible<T>::value) {
2869 auto DestroyPtr = [](void *V) { static_cast<T *>(V)->~T(); };
2870 AddDeallocation(DestroyPtr, Ptr);
2871 }
2872 }
2873
2874 GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD) const;
2875 GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
2876
2877 /// Determines if the decl can be CodeGen'ed or deserialized from PCH
2878 /// lazily, only when used; this is only relevant for function or file scoped
2879 /// var definitions.
2880 ///
2881 /// \returns true if the function/var must be CodeGen'ed/deserialized even if
2882 /// it is not used.
2883 bool DeclMustBeEmitted(const Decl *D);
2884
2885 /// Visits all versions of a multiversioned function with the passed
2886 /// predicate.
2887 void forEachMultiversionedFunctionVersion(
2888 const FunctionDecl *FD,
2889 llvm::function_ref<void(FunctionDecl *)> Pred) const;
2890
2891 const CXXConstructorDecl *
2892 getCopyConstructorForExceptionObject(CXXRecordDecl *RD);
2893
2894 void addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
2895 CXXConstructorDecl *CD);
2896
2897 void addTypedefNameForUnnamedTagDecl(TagDecl *TD, TypedefNameDecl *TND);
2898
2899 TypedefNameDecl *getTypedefNameForUnnamedTagDecl(const TagDecl *TD);
2900
2901 void addDeclaratorForUnnamedTagDecl(TagDecl *TD, DeclaratorDecl *DD);
2902
2903 DeclaratorDecl *getDeclaratorForUnnamedTagDecl(const TagDecl *TD);
2904
2905 void setManglingNumber(const NamedDecl *ND, unsigned Number);
2906 unsigned getManglingNumber(const NamedDecl *ND) const;
2907
2908 void setStaticLocalNumber(const VarDecl *VD, unsigned Number);
2909 unsigned getStaticLocalNumber(const VarDecl *VD) const;
2910
2911 /// Retrieve the context for computing mangling numbers in the given
2912 /// DeclContext.
2913 MangleNumberingContext &getManglingNumberContext(const DeclContext *DC);
2914 enum NeedExtraManglingDecl_t { NeedExtraManglingDecl };
2915 MangleNumberingContext &getManglingNumberContext(NeedExtraManglingDecl_t,
2916 const Decl *D);
2917
2918 std::unique_ptr<MangleNumberingContext> createMangleNumberingContext() const;
2919
2920 /// Used by ParmVarDecl to store on the side the
2921 /// index of the parameter when it exceeds the size of the normal bitfield.
2922 void setParameterIndex(const ParmVarDecl *D, unsigned index);
2923
2924 /// Used by ParmVarDecl to retrieve on the side the
2925 /// index of the parameter when it exceeds the size of the normal bitfield.
2926 unsigned getParameterIndex(const ParmVarDecl *D) const;
2927
2928 /// Return a string representing the human readable name for the specified
2929 /// function declaration or file name. Used by SourceLocExpr and
2930 /// PredefinedExpr to cache evaluated results.
2931 StringLiteral *getPredefinedStringLiteralFromCache(StringRef Key) const;
2932
2933 /// Return a declaration for the global GUID object representing the given
2934 /// GUID value.
2935 MSGuidDecl *getMSGuidDecl(MSGuidDeclParts Parts) const;
2936
2937 /// Return the template parameter object of the given type with the given
2938 /// value.
2939 TemplateParamObjectDecl *getTemplateParamObjectDecl(QualType T,
2940 const APValue &V) const;
2941
2942 /// Parses the target attributes passed in, and returns only the ones that are
2943 /// valid feature names.
2944 ParsedTargetAttr filterFunctionTargetAttrs(const TargetAttr *TD) const;
2945
2946 void getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
2947 const FunctionDecl *) const;
2948 void getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
2949 GlobalDecl GD) const;
2950
2951 //===--------------------------------------------------------------------===//
2952 // Statistics
2953 //===--------------------------------------------------------------------===//
2954
2955 /// The number of implicitly-declared default constructors.
2956 unsigned NumImplicitDefaultConstructors = 0;
2957
2958 /// The number of implicitly-declared default constructors for
2959 /// which declarations were built.
2960 unsigned NumImplicitDefaultConstructorsDeclared = 0;
2961
2962 /// The number of implicitly-declared copy constructors.
2963 unsigned NumImplicitCopyConstructors = 0;
2964
2965 /// The number of implicitly-declared copy constructors for
2966 /// which declarations were built.
2967 unsigned NumImplicitCopyConstructorsDeclared = 0;
2968
2969 /// The number of implicitly-declared move constructors.
2970 unsigned NumImplicitMoveConstructors = 0;
2971
2972 /// The number of implicitly-declared move constructors for
2973 /// which declarations were built.
2974 unsigned NumImplicitMoveConstructorsDeclared = 0;
2975
2976 /// The number of implicitly-declared copy assignment operators.
2977 unsigned NumImplicitCopyAssignmentOperators = 0;
2978
2979 /// The number of implicitly-declared copy assignment operators for
2980 /// which declarations were built.
2981 unsigned NumImplicitCopyAssignmentOperatorsDeclared = 0;
2982
2983 /// The number of implicitly-declared move assignment operators.
2984 unsigned NumImplicitMoveAssignmentOperators = 0;
2985
2986 /// The number of implicitly-declared move assignment operators for
2987 /// which declarations were built.
2988 unsigned NumImplicitMoveAssignmentOperatorsDeclared = 0;
2989
2990 /// The number of implicitly-declared destructors.
2991 unsigned NumImplicitDestructors = 0;
2992
2993 /// The number of implicitly-declared destructors for which
2994 /// declarations were built.
2995 unsigned NumImplicitDestructorsDeclared = 0;
2996
2997public:
2998 /// Initialize built-in types.
2999 ///
3000 /// This routine may only be invoked once for a given ASTContext object.
3001 /// It is normally invoked after ASTContext construction.
3002 ///
3003 /// \param Target The target
3004 void InitBuiltinTypes(const TargetInfo &Target,
3005 const TargetInfo *AuxTarget = nullptr);
3006
3007private:
3008 void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
3009
3010 class ObjCEncOptions {
3011 unsigned Bits;
3012
3013 ObjCEncOptions(unsigned Bits) : Bits(Bits) {}
3014
3015 public:
3016 ObjCEncOptions() : Bits(0) {}
3017 ObjCEncOptions(const ObjCEncOptions &RHS) : Bits(RHS.Bits) {}
3018
3019#define OPT_LIST(V) \
3020 V(ExpandPointedToStructures, 0) \
3021 V(ExpandStructures, 1) \
3022 V(IsOutermostType, 2) \
3023 V(EncodingProperty, 3) \
3024 V(IsStructField, 4) \
3025 V(EncodeBlockParameters, 5) \
3026 V(EncodeClassNames, 6) \
3027
3028#define V(N,I) ObjCEncOptions& set##N() { Bits |= 1 << I; return *this; }
3029OPT_LIST(V)
3030#undef V
3031
3032#define V(N,I) bool N() const { return Bits & 1 << I; }
3033OPT_LIST(V)
3034#undef V
3035
3036#undef OPT_LIST
3037
3038 LLVM_NODISCARD ObjCEncOptions keepingOnly(ObjCEncOptions Mask) const {
3039 return Bits & Mask.Bits;
3040 }
3041
3042 LLVM_NODISCARD ObjCEncOptions forComponentType() const {
3043 ObjCEncOptions Mask = ObjCEncOptions()
3044 .setIsOutermostType()
3045 .setIsStructField();
3046 return Bits & ~Mask.Bits;
3047 }
3048 };
3049
3050 // Return the Objective-C type encoding for a given type.
3051 void getObjCEncodingForTypeImpl(QualType t, std::string &S,
3052 ObjCEncOptions Options,
3053 const FieldDecl *Field,
3054 QualType *NotEncodedT = nullptr) const;
3055
3056 // Adds the encoding of the structure's members.
3057 void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
3058 const FieldDecl *Field,
3059 bool includeVBases = true,
3060 QualType *NotEncodedT=nullptr) const;
3061
3062public:
3063 // Adds the encoding of a method parameter or return type.
3064 void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
3065 QualType T, std::string& S,
3066 bool Extended) const;
3067
3068 /// Returns true if this is an inline-initialized static data member
3069 /// which is treated as a definition for MSVC compatibility.
3070 bool isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const;
3071
3072 enum class InlineVariableDefinitionKind {
3073 /// Not an inline variable.
3074 None,
3075
3076 /// Weak definition of inline variable.
3077 Weak,
3078
3079 /// Weak for now, might become strong later in this TU.
3080 WeakUnknown,
3081
3082 /// Strong definition.
3083 Strong
3084 };
3085
3086 /// Determine whether a definition of this inline variable should
3087 /// be treated as a weak or strong definition. For compatibility with
3088 /// C++14 and before, for a constexpr static data member, if there is an
3089 /// out-of-line declaration of the member, we may promote it from weak to
3090 /// strong.
3091 InlineVariableDefinitionKind
3092 getInlineVariableDefinitionKind(const VarDecl *VD) const;
3093
3094private:
3095 friend class DeclarationNameTable;
3096 friend class DeclContext;
3097
3098 const ASTRecordLayout &
3099 getObjCLayout(const ObjCInterfaceDecl *D,
3100 const ObjCImplementationDecl *Impl) const;
3101
3102 /// A set of deallocations that should be performed when the
3103 /// ASTContext is destroyed.
3104 // FIXME: We really should have a better mechanism in the ASTContext to
3105 // manage running destructors for types which do variable sized allocation
3106 // within the AST. In some places we thread the AST bump pointer allocator
3107 // into the datastructures which avoids this mess during deallocation but is
3108 // wasteful of memory, and here we require a lot of error prone book keeping
3109 // in order to track and run destructors while we're tearing things down.
3110 using DeallocationFunctionsAndArguments =
3111 llvm::SmallVector<std::pair<void (*)(void *), void *>, 16>;
3112 mutable DeallocationFunctionsAndArguments Deallocations;
3113
3114 // FIXME: This currently contains the set of StoredDeclMaps used
3115 // by DeclContext objects. This probably should not be in ASTContext,
3116 // but we include it here so that ASTContext can quickly deallocate them.
3117 llvm::PointerIntPair<StoredDeclsMap *, 1> LastSDM;
3118
3119 std::vector<Decl *> TraversalScope;
3120
3121 std::unique_ptr<VTableContextBase> VTContext;
3122
3123 void ReleaseDeclContextMaps();
3124
3125public:
3126 enum PragmaSectionFlag : unsigned {
3127 PSF_None = 0,
3128 PSF_Read = 0x1,
3129 PSF_Write = 0x2,
3130 PSF_Execute = 0x4,
3131 PSF_Implicit = 0x8,
3132 PSF_ZeroInit = 0x10,
3133 PSF_Invalid = 0x80000000U,
3134 };
3135
3136 struct SectionInfo {
3137 NamedDecl *Decl;
3138 SourceLocation PragmaSectionLocation;
3139 int SectionFlags;
3140
3141 SectionInfo() = default;
3142 SectionInfo(NamedDecl *Decl, SourceLocation PragmaSectionLocation,
3143 int SectionFlags)
3144 : Decl(Decl), PragmaSectionLocation(PragmaSectionLocation),
3145 SectionFlags(SectionFlags) {}
3146 };
3147
3148 llvm::StringMap<SectionInfo> SectionInfos;
3149
3150 /// Return a new OMPTraitInfo object owned by this context.
3151 OMPTraitInfo &getNewOMPTraitInfo();
3152
3153 /// Whether a C++ static variable may be externalized.
3154 bool mayExternalizeStaticVar(const Decl *D) const;
3155
3156 /// Whether a C++ static variable should be externalized.
3157 bool shouldExternalizeStaticVar(const Decl *D) const;
3158
3159 StringRef getCUIDHash() const;
3160
3161private:
3162 /// All OMPTraitInfo objects live in this collection, one per
3163 /// `pragma omp [begin] declare variant` directive.
3164 SmallVector<std::unique_ptr<OMPTraitInfo>, 4> OMPTraitInfoVector;
3165};
3166
3167/// Insertion operator for diagnostics.
3168const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB,
3169 const ASTContext::SectionInfo &Section);
3170
3171/// Utility function for constructing a nullary selector.
3172inline Selector GetNullarySelector(StringRef name, ASTContext &Ctx) {
3173 IdentifierInfo* II = &Ctx.Idents.get(name);
3174 return Ctx.Selectors.getSelector(0, &II);
3175}
3176
3177/// Utility function for constructing an unary selector.
3178inline Selector GetUnarySelector(StringRef name, ASTContext &Ctx) {
3179 IdentifierInfo* II = &Ctx.Idents.get(name);
3180 return Ctx.Selectors.getSelector(1, &II);
3181}
3182
3183} // namespace clang
3184
3185// operator new and delete aren't allowed inside namespaces.
3186
3187/// Placement new for using the ASTContext's allocator.
3188///
3189/// This placement form of operator new uses the ASTContext's allocator for
3190/// obtaining memory.
3191///
3192/// IMPORTANT: These are also declared in clang/AST/ASTContextAllocate.h!
3193/// Any changes here need to also be made there.
3194///
3195/// We intentionally avoid using a nothrow specification here so that the calls
3196/// to this operator will not perform a null check on the result -- the
3197/// underlying allocator never returns null pointers.
3198///
3199/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
3200/// @code
3201/// // Default alignment (8)
3202/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
3203/// // Specific alignment
3204/// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
3205/// @endcode
3206/// Memory allocated through this placement new operator does not need to be
3207/// explicitly freed, as ASTContext will free all of this memory when it gets
3208/// destroyed. Please note that you cannot use delete on the pointer.
3209///
3210/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
3211/// @param C The ASTContext that provides the allocator.
3212/// @param Alignment The alignment of the allocated memory (if the underlying
3213/// allocator supports it).
3214/// @return The allocated memory. Could be nullptr.
3215inline void *operator new(size_t Bytes, const clang::ASTContext &C,
3216 size_t Alignment /* = 8 */) {
3217 return C.Allocate(Bytes, Alignment);
3218}
3219
3220/// Placement delete companion to the new above.
3221///
3222/// This operator is just a companion to the new above. There is no way of
3223/// invoking it directly; see the new operator for more details. This operator
3224/// is called implicitly by the compiler if a placement new expression using
3225/// the ASTContext throws in the object constructor.
3226inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
3227 C.Deallocate(Ptr);
3228}
3229
3230/// This placement form of operator new[] uses the ASTContext's allocator for
3231/// obtaining memory.
3232///
3233/// We intentionally avoid using a nothrow specification here so that the calls
3234/// to this operator will not perform a null check on the result -- the
3235/// underlying allocator never returns null pointers.
3236///
3237/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
3238/// @code
3239/// // Default alignment (8)
3240/// char *data = new (Context) char[10];
3241/// // Specific alignment
3242/// char *data = new (Context, 4) char[10];
3243/// @endcode
3244/// Memory allocated through this placement new[] operator does not need to be
3245/// explicitly freed, as ASTContext will free all of this memory when it gets
3246/// destroyed. Please note that you cannot use delete on the pointer.
3247///
3248/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
3249/// @param C The ASTContext that provides the allocator.
3250/// @param Alignment The alignment of the allocated memory (if the underlying
3251/// allocator supports it).
3252/// @return The allocated memory. Could be nullptr.
3253inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
3254 size_t Alignment /* = 8 */) {
3255 return C.Allocate(Bytes, Alignment);
3256}
3257
3258/// Placement delete[] companion to the new[] above.
3259///
3260/// This operator is just a companion to the new[] above. There is no way of
3261/// invoking it directly; see the new[] operator for more details. This operator
3262/// is called implicitly by the compiler if a placement new[] expression using
3263/// the ASTContext throws in the object constructor.
3264inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
3265 C.Deallocate(Ptr);
3266}
3267
3268/// Create the representation of a LazyGenerationalUpdatePtr.
3269template <typename Owner, typename T,
3270 void (clang::ExternalASTSource::*Update)(Owner)>
3271typename clang::LazyGenerationalUpdatePtr<Owner, T, Update>::ValueType
3272 clang::LazyGenerationalUpdatePtr<Owner, T, Update>::makeValue(
3273 const clang::ASTContext &Ctx, T Value) {
3274 // Note, this is implemented here so that ExternalASTSource.h doesn't need to
3275 // include ASTContext.h. We explicitly instantiate it for all relevant types
3276 // in ASTContext.cpp.
3277 if (auto *Source = Ctx.getExternalSource())
3278 return new (Ctx) LazyData(Source, Value);
3279 return Value;
3280}
3281
3282#endif // LLVM_CLANG_AST_ASTCONTEXT_H
3283