1//===- ASTContext.h - Context to hold long-lived AST nodes ------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// Defines the clang::ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15#define LLVM_CLANG_AST_ASTCONTEXT_H
16
17#include "clang/AST/ASTFwd.h"
18#include "clang/AST/CanonicalType.h"
19#include "clang/AST/CommentCommandTraits.h"
20#include "clang/AST/ComparisonCategories.h"
21#include "clang/AST/Decl.h"
22#include "clang/AST/DeclarationName.h"
23#include "clang/AST/ExternalASTSource.h"
24#include "clang/AST/PrettyPrinter.h"
25#include "clang/AST/RawCommentList.h"
26#include "clang/AST/TemplateName.h"
27#include "clang/Basic/LLVM.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/SourceLocation.h"
30#include "llvm/ADT/DenseMap.h"
31#include "llvm/ADT/DenseSet.h"
32#include "llvm/ADT/FoldingSet.h"
33#include "llvm/ADT/IntrusiveRefCntPtr.h"
34#include "llvm/ADT/MapVector.h"
35#include "llvm/ADT/PointerIntPair.h"
36#include "llvm/ADT/PointerUnion.h"
37#include "llvm/ADT/SmallVector.h"
38#include "llvm/ADT/StringMap.h"
39#include "llvm/ADT/StringRef.h"
40#include "llvm/ADT/TinyPtrVector.h"
41#include "llvm/Support/TypeSize.h"
42#include <optional>
43
44namespace llvm {
45
46class APFixedPoint;
47class FixedPointSemantics;
48struct fltSemantics;
49template <typename T, unsigned N> class SmallPtrSet;
50
51} // namespace llvm
52
53namespace clang {
54
55class APValue;
56class ASTMutationListener;
57class ASTRecordLayout;
58class AtomicExpr;
59class BlockExpr;
60struct BlockVarCopyInit;
61class BuiltinTemplateDecl;
62class CharUnits;
63class ConceptDecl;
64class CXXABI;
65class CXXConstructorDecl;
66class CXXMethodDecl;
67class CXXRecordDecl;
68class DiagnosticsEngine;
69class DynTypedNodeList;
70class Expr;
71enum class FloatModeKind;
72class GlobalDecl;
73class IdentifierTable;
74class LangOptions;
75class MangleContext;
76class MangleNumberingContext;
77class MemberSpecializationInfo;
78class Module;
79struct MSGuidDeclParts;
80class NestedNameSpecifier;
81class NoSanitizeList;
82class ObjCCategoryDecl;
83class ObjCCategoryImplDecl;
84class ObjCContainerDecl;
85class ObjCImplDecl;
86class ObjCImplementationDecl;
87class ObjCInterfaceDecl;
88class ObjCIvarDecl;
89class ObjCMethodDecl;
90class ObjCPropertyDecl;
91class ObjCPropertyImplDecl;
92class ObjCProtocolDecl;
93class ObjCTypeParamDecl;
94class OMPTraitInfo;
95class ParentMapContext;
96struct ParsedTargetAttr;
97class Preprocessor;
98class ProfileList;
99class StoredDeclsMap;
100class TargetAttr;
101class TargetInfo;
102class TemplateDecl;
103class TemplateParameterList;
104class TemplateTemplateParmDecl;
105class TemplateTypeParmDecl;
106class TypeConstraint;
107class UnresolvedSetIterator;
108class UsingShadowDecl;
109class VarTemplateDecl;
110class VTableContextBase;
111class XRayFunctionFilter;
112
113namespace Builtin {
114
115class Context;
116
117} // namespace Builtin
118
119enum BuiltinTemplateKind : int;
120enum OpenCLTypeKind : uint8_t;
121
122namespace comments {
123
124class FullComment;
125
126} // namespace comments
127
128namespace interp {
129
130class Context;
131
132} // namespace interp
133
134namespace serialization {
135template <class> class AbstractTypeReader;
136} // namespace serialization
137
138enum class AlignRequirementKind {
139 /// The alignment was not explicit in code.
140 None,
141
142 /// The alignment comes from an alignment attribute on a typedef.
143 RequiredByTypedef,
144
145 /// The alignment comes from an alignment attribute on a record type.
146 RequiredByRecord,
147
148 /// The alignment comes from an alignment attribute on a enum type.
149 RequiredByEnum,
150};
151
152struct TypeInfo {
153 uint64_t Width = 0;
154 unsigned Align = 0;
155 AlignRequirementKind AlignRequirement;
156
157 TypeInfo() : AlignRequirement(AlignRequirementKind::None) {}
158 TypeInfo(uint64_t Width, unsigned Align,
159 AlignRequirementKind AlignRequirement)
160 : Width(Width), Align(Align), AlignRequirement(AlignRequirement) {}
161 bool isAlignRequired() {
162 return AlignRequirement != AlignRequirementKind::None;
163 }
164};
165
166struct TypeInfoChars {
167 CharUnits Width;
168 CharUnits Align;
169 AlignRequirementKind AlignRequirement;
170
171 TypeInfoChars() : AlignRequirement(AlignRequirementKind::None) {}
172 TypeInfoChars(CharUnits Width, CharUnits Align,
173 AlignRequirementKind AlignRequirement)
174 : Width(Width), Align(Align), AlignRequirement(AlignRequirement) {}
175 bool isAlignRequired() {
176 return AlignRequirement != AlignRequirementKind::None;
177 }
178};
179
180/// Holds long-lived AST nodes (such as types and decls) that can be
181/// referred to throughout the semantic analysis of a file.
182class ASTContext : public RefCountedBase<ASTContext> {
183 friend class NestedNameSpecifier;
184
185 mutable SmallVector<Type *, 0> Types;
186 mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
187 mutable llvm::FoldingSet<ComplexType> ComplexTypes;
188 mutable llvm::FoldingSet<PointerType> PointerTypes{GeneralTypesLog2InitSize};
189 mutable llvm::FoldingSet<AdjustedType> AdjustedTypes;
190 mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
191 mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
192 mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
193 mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
194 mutable llvm::ContextualFoldingSet<ConstantArrayType, ASTContext &>
195 ConstantArrayTypes;
196 mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
197 mutable std::vector<VariableArrayType*> VariableArrayTypes;
198 mutable llvm::ContextualFoldingSet<DependentSizedArrayType, ASTContext &>
199 DependentSizedArrayTypes;
200 mutable llvm::ContextualFoldingSet<DependentSizedExtVectorType, ASTContext &>
201 DependentSizedExtVectorTypes;
202 mutable llvm::ContextualFoldingSet<DependentAddressSpaceType, ASTContext &>
203 DependentAddressSpaceTypes;
204 mutable llvm::FoldingSet<VectorType> VectorTypes;
205 mutable llvm::ContextualFoldingSet<DependentVectorType, ASTContext &>
206 DependentVectorTypes;
207 mutable llvm::FoldingSet<ConstantMatrixType> MatrixTypes;
208 mutable llvm::ContextualFoldingSet<DependentSizedMatrixType, ASTContext &>
209 DependentSizedMatrixTypes;
210 mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
211 mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
212 FunctionProtoTypes;
213 mutable llvm::ContextualFoldingSet<DependentTypeOfExprType, ASTContext &>
214 DependentTypeOfExprTypes;
215 mutable llvm::ContextualFoldingSet<DependentDecltypeType, ASTContext &>
216 DependentDecltypeTypes;
217
218 mutable llvm::FoldingSet<PackIndexingType> DependentPackIndexingTypes;
219
220 mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
221 mutable llvm::FoldingSet<ObjCTypeParamType> ObjCTypeParamTypes;
222 mutable llvm::FoldingSet<SubstTemplateTypeParmType>
223 SubstTemplateTypeParmTypes;
224 mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
225 SubstTemplateTypeParmPackTypes;
226 mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
227 TemplateSpecializationTypes;
228 mutable llvm::FoldingSet<ParenType> ParenTypes{GeneralTypesLog2InitSize};
229 mutable llvm::FoldingSet<UsingType> UsingTypes;
230 mutable llvm::FoldingSet<TypedefType> TypedefTypes;
231 mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes{
232 GeneralTypesLog2InitSize};
233 mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
234 mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
235 ASTContext&>
236 DependentTemplateSpecializationTypes;
237 llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
238 mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
239 mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
240 mutable llvm::FoldingSet<DependentUnaryTransformType>
241 DependentUnaryTransformTypes;
242 mutable llvm::ContextualFoldingSet<AutoType, ASTContext&> AutoTypes;
243 mutable llvm::FoldingSet<DeducedTemplateSpecializationType>
244 DeducedTemplateSpecializationTypes;
245 mutable llvm::FoldingSet<AtomicType> AtomicTypes;
246 mutable llvm::FoldingSet<AttributedType> AttributedTypes;
247 mutable llvm::FoldingSet<PipeType> PipeTypes;
248 mutable llvm::FoldingSet<BitIntType> BitIntTypes;
249 mutable llvm::ContextualFoldingSet<DependentBitIntType, ASTContext &>
250 DependentBitIntTypes;
251 llvm::FoldingSet<BTFTagAttributedType> BTFTagAttributedTypes;
252
253 mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
254 mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
255 mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage>
256 SubstTemplateTemplateParms;
257 mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
258 ASTContext&>
259 SubstTemplateTemplateParmPacks;
260
261 /// The set of nested name specifiers.
262 ///
263 /// This set is managed by the NestedNameSpecifier class.
264 mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
265 mutable NestedNameSpecifier *GlobalNestedNameSpecifier = nullptr;
266
267 /// A cache mapping from RecordDecls to ASTRecordLayouts.
268 ///
269 /// This is lazily created. This is intentionally not serialized.
270 mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
271 ASTRecordLayouts;
272 mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
273 ObjCLayouts;
274
275 /// A cache from types to size and alignment information.
276 using TypeInfoMap = llvm::DenseMap<const Type *, struct TypeInfo>;
277 mutable TypeInfoMap MemoizedTypeInfo;
278
279 /// A cache from types to unadjusted alignment information. Only ARM and
280 /// AArch64 targets need this information, keeping it separate prevents
281 /// imposing overhead on TypeInfo size.
282 using UnadjustedAlignMap = llvm::DenseMap<const Type *, unsigned>;
283 mutable UnadjustedAlignMap MemoizedUnadjustedAlign;
284
285 /// A cache mapping from CXXRecordDecls to key functions.
286 llvm::DenseMap<const CXXRecordDecl*, LazyDeclPtr> KeyFunctions;
287
288 /// Mapping from ObjCContainers to their ObjCImplementations.
289 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
290
291 /// Mapping from ObjCMethod to its duplicate declaration in the same
292 /// interface.
293 llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
294
295 /// Mapping from __block VarDecls to BlockVarCopyInit.
296 llvm::DenseMap<const VarDecl *, BlockVarCopyInit> BlockVarCopyInits;
297
298 /// Mapping from GUIDs to the corresponding MSGuidDecl.
299 mutable llvm::FoldingSet<MSGuidDecl> MSGuidDecls;
300
301 /// Mapping from APValues to the corresponding UnnamedGlobalConstantDecl.
302 mutable llvm::FoldingSet<UnnamedGlobalConstantDecl>
303 UnnamedGlobalConstantDecls;
304
305 /// Mapping from APValues to the corresponding TemplateParamObjects.
306 mutable llvm::FoldingSet<TemplateParamObjectDecl> TemplateParamObjectDecls;
307
308 /// A cache mapping a string value to a StringLiteral object with the same
309 /// value.
310 ///
311 /// This is lazily created. This is intentionally not serialized.
312 mutable llvm::StringMap<StringLiteral *> StringLiteralCache;
313
314 /// MD5 hash of CUID. It is calculated when first used and cached by this
315 /// data member.
316 mutable std::string CUIDHash;
317
318 /// Representation of a "canonical" template template parameter that
319 /// is used in canonical template names.
320 class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
321 TemplateTemplateParmDecl *Parm;
322
323 public:
324 CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
325 : Parm(Parm) {}
326
327 TemplateTemplateParmDecl *getParam() const { return Parm; }
328
329 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &C) {
330 Profile(ID, C, Parm);
331 }
332
333 static void Profile(llvm::FoldingSetNodeID &ID,
334 const ASTContext &C,
335 TemplateTemplateParmDecl *Parm);
336 };
337 mutable llvm::ContextualFoldingSet<CanonicalTemplateTemplateParm,
338 const ASTContext&>
339 CanonTemplateTemplateParms;
340
341 TemplateTemplateParmDecl *
342 getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
343
344 /// The typedef for the __int128_t type.
345 mutable TypedefDecl *Int128Decl = nullptr;
346
347 /// The typedef for the __uint128_t type.
348 mutable TypedefDecl *UInt128Decl = nullptr;
349
350 /// The typedef for the target specific predefined
351 /// __builtin_va_list type.
352 mutable TypedefDecl *BuiltinVaListDecl = nullptr;
353
354 /// The typedef for the predefined \c __builtin_ms_va_list type.
355 mutable TypedefDecl *BuiltinMSVaListDecl = nullptr;
356
357 /// The typedef for the predefined \c id type.
358 mutable TypedefDecl *ObjCIdDecl = nullptr;
359
360 /// The typedef for the predefined \c SEL type.
361 mutable TypedefDecl *ObjCSelDecl = nullptr;
362
363 /// The typedef for the predefined \c Class type.
364 mutable TypedefDecl *ObjCClassDecl = nullptr;
365
366 /// The typedef for the predefined \c Protocol class in Objective-C.
367 mutable ObjCInterfaceDecl *ObjCProtocolClassDecl = nullptr;
368
369 /// The typedef for the predefined 'BOOL' type.
370 mutable TypedefDecl *BOOLDecl = nullptr;
371
372 // Typedefs which may be provided defining the structure of Objective-C
373 // pseudo-builtins
374 QualType ObjCIdRedefinitionType;
375 QualType ObjCClassRedefinitionType;
376 QualType ObjCSelRedefinitionType;
377
378 /// The identifier 'bool'.
379 mutable IdentifierInfo *BoolName = nullptr;
380
381 /// The identifier 'NSObject'.
382 mutable IdentifierInfo *NSObjectName = nullptr;
383
384 /// The identifier 'NSCopying'.
385 IdentifierInfo *NSCopyingName = nullptr;
386
387 /// The identifier '__make_integer_seq'.
388 mutable IdentifierInfo *MakeIntegerSeqName = nullptr;
389
390 /// The identifier '__type_pack_element'.
391 mutable IdentifierInfo *TypePackElementName = nullptr;
392
393 QualType ObjCConstantStringType;
394 mutable RecordDecl *CFConstantStringTagDecl = nullptr;
395 mutable TypedefDecl *CFConstantStringTypeDecl = nullptr;
396
397 mutable QualType ObjCSuperType;
398
399 QualType ObjCNSStringType;
400
401 /// The typedef declaration for the Objective-C "instancetype" type.
402 TypedefDecl *ObjCInstanceTypeDecl = nullptr;
403
404 /// The type for the C FILE type.
405 TypeDecl *FILEDecl = nullptr;
406
407 /// The type for the C jmp_buf type.
408 TypeDecl *jmp_bufDecl = nullptr;
409
410 /// The type for the C sigjmp_buf type.
411 TypeDecl *sigjmp_bufDecl = nullptr;
412
413 /// The type for the C ucontext_t type.
414 TypeDecl *ucontext_tDecl = nullptr;
415
416 /// Type for the Block descriptor for Blocks CodeGen.
417 ///
418 /// Since this is only used for generation of debug info, it is not
419 /// serialized.
420 mutable RecordDecl *BlockDescriptorType = nullptr;
421
422 /// Type for the Block descriptor for Blocks CodeGen.
423 ///
424 /// Since this is only used for generation of debug info, it is not
425 /// serialized.
426 mutable RecordDecl *BlockDescriptorExtendedType = nullptr;
427
428 /// Declaration for the CUDA cudaConfigureCall function.
429 FunctionDecl *cudaConfigureCallDecl = nullptr;
430
431 /// Keeps track of all declaration attributes.
432 ///
433 /// Since so few decls have attrs, we keep them in a hash map instead of
434 /// wasting space in the Decl class.
435 llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
436
437 /// A mapping from non-redeclarable declarations in modules that were
438 /// merged with other declarations to the canonical declaration that they were
439 /// merged into.
440 llvm::DenseMap<Decl*, Decl*> MergedDecls;
441
442 /// A mapping from a defining declaration to a list of modules (other
443 /// than the owning module of the declaration) that contain merged
444 /// definitions of that entity.
445 llvm::DenseMap<NamedDecl*, llvm::TinyPtrVector<Module*>> MergedDefModules;
446
447 /// Initializers for a module, in order. Each Decl will be either
448 /// something that has a semantic effect on startup (such as a variable with
449 /// a non-constant initializer), or an ImportDecl (which recursively triggers
450 /// initialization of another module).
451 struct PerModuleInitializers {
452 llvm::SmallVector<Decl*, 4> Initializers;
453 llvm::SmallVector<uint32_t, 4> LazyInitializers;
454
455 void resolve(ASTContext &Ctx);
456 };
457 llvm::DenseMap<Module*, PerModuleInitializers*> ModuleInitializers;
458
459 /// This is the top-level (C++20) Named module we are building.
460 Module *CurrentCXXNamedModule = nullptr;
461
462 static constexpr unsigned ConstantArrayTypesLog2InitSize = 8;
463 static constexpr unsigned GeneralTypesLog2InitSize = 9;
464 static constexpr unsigned FunctionProtoTypesLog2InitSize = 12;
465
466 ASTContext &this_() { return *this; }
467
468public:
469 /// A type synonym for the TemplateOrInstantiation mapping.
470 using TemplateOrSpecializationInfo =
471 llvm::PointerUnion<VarTemplateDecl *, MemberSpecializationInfo *>;
472
473private:
474 friend class ASTDeclReader;
475 friend class ASTReader;
476 friend class ASTWriter;
477 template <class> friend class serialization::AbstractTypeReader;
478 friend class CXXRecordDecl;
479 friend class IncrementalParser;
480
481 /// A mapping to contain the template or declaration that
482 /// a variable declaration describes or was instantiated from,
483 /// respectively.
484 ///
485 /// For non-templates, this value will be NULL. For variable
486 /// declarations that describe a variable template, this will be a
487 /// pointer to a VarTemplateDecl. For static data members
488 /// of class template specializations, this will be the
489 /// MemberSpecializationInfo referring to the member variable that was
490 /// instantiated or specialized. Thus, the mapping will keep track of
491 /// the static data member templates from which static data members of
492 /// class template specializations were instantiated.
493 ///
494 /// Given the following example:
495 ///
496 /// \code
497 /// template<typename T>
498 /// struct X {
499 /// static T value;
500 /// };
501 ///
502 /// template<typename T>
503 /// T X<T>::value = T(17);
504 ///
505 /// int *x = &X<int>::value;
506 /// \endcode
507 ///
508 /// This mapping will contain an entry that maps from the VarDecl for
509 /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
510 /// class template X) and will be marked TSK_ImplicitInstantiation.
511 llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>
512 TemplateOrInstantiation;
513
514 /// Keeps track of the declaration from which a using declaration was
515 /// created during instantiation.
516 ///
517 /// The source and target declarations are always a UsingDecl, an
518 /// UnresolvedUsingValueDecl, or an UnresolvedUsingTypenameDecl.
519 ///
520 /// For example:
521 /// \code
522 /// template<typename T>
523 /// struct A {
524 /// void f();
525 /// };
526 ///
527 /// template<typename T>
528 /// struct B : A<T> {
529 /// using A<T>::f;
530 /// };
531 ///
532 /// template struct B<int>;
533 /// \endcode
534 ///
535 /// This mapping will contain an entry that maps from the UsingDecl in
536 /// B<int> to the UnresolvedUsingDecl in B<T>.
537 llvm::DenseMap<NamedDecl *, NamedDecl *> InstantiatedFromUsingDecl;
538
539 /// Like InstantiatedFromUsingDecl, but for using-enum-declarations. Maps
540 /// from the instantiated using-enum to the templated decl from whence it
541 /// came.
542 /// Note that using-enum-declarations cannot be dependent and
543 /// thus will never be instantiated from an "unresolved"
544 /// version thereof (as with using-declarations), so each mapping is from
545 /// a (resolved) UsingEnumDecl to a (resolved) UsingEnumDecl.
546 llvm::DenseMap<UsingEnumDecl *, UsingEnumDecl *>
547 InstantiatedFromUsingEnumDecl;
548
549 /// Simlarly maps instantiated UsingShadowDecls to their origin.
550 llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
551 InstantiatedFromUsingShadowDecl;
552
553 llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
554
555 /// Mapping that stores the methods overridden by a given C++
556 /// member function.
557 ///
558 /// Since most C++ member functions aren't virtual and therefore
559 /// don't override anything, we store the overridden functions in
560 /// this map on the side rather than within the CXXMethodDecl structure.
561 using CXXMethodVector = llvm::TinyPtrVector<const CXXMethodDecl *>;
562 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
563
564 /// Mapping from each declaration context to its corresponding
565 /// mangling numbering context (used for constructs like lambdas which
566 /// need to be consistently numbered for the mangler).
567 llvm::DenseMap<const DeclContext *, std::unique_ptr<MangleNumberingContext>>
568 MangleNumberingContexts;
569 llvm::DenseMap<const Decl *, std::unique_ptr<MangleNumberingContext>>
570 ExtraMangleNumberingContexts;
571
572 /// Side-table of mangling numbers for declarations which rarely
573 /// need them (like static local vars).
574 llvm::MapVector<const NamedDecl *, unsigned> MangleNumbers;
575 llvm::MapVector<const VarDecl *, unsigned> StaticLocalNumbers;
576 /// Mapping the associated device lambda mangling number if present.
577 mutable llvm::DenseMap<const CXXRecordDecl *, unsigned>
578 DeviceLambdaManglingNumbers;
579
580 /// Mapping that stores parameterIndex values for ParmVarDecls when
581 /// that value exceeds the bitfield size of ParmVarDeclBits.ParameterIndex.
582 using ParameterIndexTable = llvm::DenseMap<const VarDecl *, unsigned>;
583 ParameterIndexTable ParamIndices;
584
585 ImportDecl *FirstLocalImport = nullptr;
586 ImportDecl *LastLocalImport = nullptr;
587
588 TranslationUnitDecl *TUDecl = nullptr;
589 mutable ExternCContextDecl *ExternCContext = nullptr;
590 mutable BuiltinTemplateDecl *MakeIntegerSeqDecl = nullptr;
591 mutable BuiltinTemplateDecl *TypePackElementDecl = nullptr;
592
593 /// The associated SourceManager object.
594 SourceManager &SourceMgr;
595
596 /// The language options used to create the AST associated with
597 /// this ASTContext object.
598 LangOptions &LangOpts;
599
600 /// NoSanitizeList object that is used by sanitizers to decide which
601 /// entities should not be instrumented.
602 std::unique_ptr<NoSanitizeList> NoSanitizeL;
603
604 /// Function filtering mechanism to determine whether a given function
605 /// should be imbued with the XRay "always" or "never" attributes.
606 std::unique_ptr<XRayFunctionFilter> XRayFilter;
607
608 /// ProfileList object that is used by the profile instrumentation
609 /// to decide which entities should be instrumented.
610 std::unique_ptr<ProfileList> ProfList;
611
612 /// The allocator used to create AST objects.
613 ///
614 /// AST objects are never destructed; rather, all memory associated with the
615 /// AST objects will be released when the ASTContext itself is destroyed.
616 mutable llvm::BumpPtrAllocator BumpAlloc;
617
618 /// Allocator for partial diagnostics.
619 PartialDiagnostic::DiagStorageAllocator DiagAllocator;
620
621 /// The current C++ ABI.
622 std::unique_ptr<CXXABI> ABI;
623 CXXABI *createCXXABI(const TargetInfo &T);
624
625 /// Address space map mangling must be used with language specific
626 /// address spaces (e.g. OpenCL/CUDA)
627 bool AddrSpaceMapMangling;
628
629 const TargetInfo *Target = nullptr;
630 const TargetInfo *AuxTarget = nullptr;
631 clang::PrintingPolicy PrintingPolicy;
632 std::unique_ptr<interp::Context> InterpContext;
633 std::unique_ptr<ParentMapContext> ParentMapCtx;
634
635 /// Keeps track of the deallocated DeclListNodes for future reuse.
636 DeclListNode *ListNodeFreeList = nullptr;
637
638public:
639 IdentifierTable &Idents;
640 SelectorTable &Selectors;
641 Builtin::Context &BuiltinInfo;
642 const TranslationUnitKind TUKind;
643 mutable DeclarationNameTable DeclarationNames;
644 IntrusiveRefCntPtr<ExternalASTSource> ExternalSource;
645 ASTMutationListener *Listener = nullptr;
646
647 /// Returns the clang bytecode interpreter context.
648 interp::Context &getInterpContext();
649
650 struct CUDAConstantEvalContext {
651 /// Do not allow wrong-sided variables in constant expressions.
652 bool NoWrongSidedVars = false;
653 } CUDAConstantEvalCtx;
654 struct CUDAConstantEvalContextRAII {
655 ASTContext &Ctx;
656 CUDAConstantEvalContext SavedCtx;
657 CUDAConstantEvalContextRAII(ASTContext &Ctx_, bool NoWrongSidedVars)
658 : Ctx(Ctx_), SavedCtx(Ctx_.CUDAConstantEvalCtx) {
659 Ctx_.CUDAConstantEvalCtx.NoWrongSidedVars = NoWrongSidedVars;
660 }
661 ~CUDAConstantEvalContextRAII() { Ctx.CUDAConstantEvalCtx = SavedCtx; }
662 };
663
664 /// Returns the dynamic AST node parent map context.
665 ParentMapContext &getParentMapContext();
666
667 // A traversal scope limits the parts of the AST visible to certain analyses.
668 // RecursiveASTVisitor only visits specified children of TranslationUnitDecl.
669 // getParents() will only observe reachable parent edges.
670 //
671 // The scope is defined by a set of "top-level" declarations which will be
672 // visible under the TranslationUnitDecl.
673 // Initially, it is the entire TU, represented by {getTranslationUnitDecl()}.
674 //
675 // After setTraversalScope({foo, bar}), the exposed AST looks like:
676 // TranslationUnitDecl
677 // - foo
678 // - ...
679 // - bar
680 // - ...
681 // All other siblings of foo and bar are pruned from the tree.
682 // (However they are still accessible via TranslationUnitDecl->decls())
683 //
684 // Changing the scope clears the parent cache, which is expensive to rebuild.
685 std::vector<Decl *> getTraversalScope() const { return TraversalScope; }
686 void setTraversalScope(const std::vector<Decl *> &);
687
688 /// Forwards to get node parents from the ParentMapContext. New callers should
689 /// use ParentMapContext::getParents() directly.
690 template <typename NodeT> DynTypedNodeList getParents(const NodeT &Node);
691
692 const clang::PrintingPolicy &getPrintingPolicy() const {
693 return PrintingPolicy;
694 }
695
696 void setPrintingPolicy(const clang::PrintingPolicy &Policy) {
697 PrintingPolicy = Policy;
698 }
699
700 SourceManager& getSourceManager() { return SourceMgr; }
701 const SourceManager& getSourceManager() const { return SourceMgr; }
702
703 // Cleans up some of the data structures. This allows us to do cleanup
704 // normally done in the destructor earlier. Renders much of the ASTContext
705 // unusable, mostly the actual AST nodes, so should be called when we no
706 // longer need access to the AST.
707 void cleanup();
708
709 llvm::BumpPtrAllocator &getAllocator() const {
710 return BumpAlloc;
711 }
712
713 void *Allocate(size_t Size, unsigned Align = 8) const {
714 return BumpAlloc.Allocate(Size, Alignment: Align);
715 }
716 template <typename T> T *Allocate(size_t Num = 1) const {
717 return static_cast<T *>(Allocate(Size: Num * sizeof(T), Align: alignof(T)));
718 }
719 void Deallocate(void *Ptr) const {}
720
721 /// Allocates a \c DeclListNode or returns one from the \c ListNodeFreeList
722 /// pool.
723 DeclListNode *AllocateDeclListNode(clang::NamedDecl *ND) {
724 if (DeclListNode *Alloc = ListNodeFreeList) {
725 ListNodeFreeList = Alloc->Rest.dyn_cast<DeclListNode*>();
726 Alloc->D = ND;
727 Alloc->Rest = nullptr;
728 return Alloc;
729 }
730 return new (*this) DeclListNode(ND);
731 }
732 /// Deallcates a \c DeclListNode by returning it to the \c ListNodeFreeList
733 /// pool.
734 void DeallocateDeclListNode(DeclListNode *N) {
735 N->Rest = ListNodeFreeList;
736 ListNodeFreeList = N;
737 }
738
739 /// Return the total amount of physical memory allocated for representing
740 /// AST nodes and type information.
741 size_t getASTAllocatedMemory() const {
742 return BumpAlloc.getTotalMemory();
743 }
744
745 /// Return the total memory used for various side tables.
746 size_t getSideTableAllocatedMemory() const;
747
748 PartialDiagnostic::DiagStorageAllocator &getDiagAllocator() {
749 return DiagAllocator;
750 }
751
752 const TargetInfo &getTargetInfo() const { return *Target; }
753 const TargetInfo *getAuxTargetInfo() const { return AuxTarget; }
754
755 /// getIntTypeForBitwidth -
756 /// sets integer QualTy according to specified details:
757 /// bitwidth, signed/unsigned.
758 /// Returns empty type if there is no appropriate target types.
759 QualType getIntTypeForBitwidth(unsigned DestWidth,
760 unsigned Signed) const;
761
762 /// getRealTypeForBitwidth -
763 /// sets floating point QualTy according to specified bitwidth.
764 /// Returns empty type if there is no appropriate target types.
765 QualType getRealTypeForBitwidth(unsigned DestWidth,
766 FloatModeKind ExplicitType) const;
767
768 bool AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const;
769
770 const LangOptions& getLangOpts() const { return LangOpts; }
771
772 // If this condition is false, typo correction must be performed eagerly
773 // rather than delayed in many places, as it makes use of dependent types.
774 // the condition is false for clang's C-only codepath, as it doesn't support
775 // dependent types yet.
776 bool isDependenceAllowed() const {
777 return LangOpts.CPlusPlus || LangOpts.RecoveryAST;
778 }
779
780 const NoSanitizeList &getNoSanitizeList() const { return *NoSanitizeL; }
781
782 const XRayFunctionFilter &getXRayFilter() const {
783 return *XRayFilter;
784 }
785
786 const ProfileList &getProfileList() const { return *ProfList; }
787
788 DiagnosticsEngine &getDiagnostics() const;
789
790 FullSourceLoc getFullLoc(SourceLocation Loc) const {
791 return FullSourceLoc(Loc,SourceMgr);
792 }
793
794 /// Return the C++ ABI kind that should be used. The C++ ABI can be overriden
795 /// at compile time with `-fc++-abi=`. If this is not provided, we instead use
796 /// the default ABI set by the target.
797 TargetCXXABI::Kind getCXXABIKind() const;
798
799 /// All comments in this translation unit.
800 RawCommentList Comments;
801
802 /// True if comments are already loaded from ExternalASTSource.
803 mutable bool CommentsLoaded = false;
804
805 /// Mapping from declaration to directly attached comment.
806 ///
807 /// Raw comments are owned by Comments list. This mapping is populated
808 /// lazily.
809 mutable llvm::DenseMap<const Decl *, const RawComment *> DeclRawComments;
810
811 /// Mapping from canonical declaration to the first redeclaration in chain
812 /// that has a comment attached.
813 ///
814 /// Raw comments are owned by Comments list. This mapping is populated
815 /// lazily.
816 mutable llvm::DenseMap<const Decl *, const Decl *> RedeclChainComments;
817
818 /// Keeps track of redeclaration chains that don't have any comment attached.
819 /// Mapping from canonical declaration to redeclaration chain that has no
820 /// comments attached to any redeclaration. Specifically it's mapping to
821 /// the last redeclaration we've checked.
822 ///
823 /// Shall not contain declarations that have comments attached to any
824 /// redeclaration in their chain.
825 mutable llvm::DenseMap<const Decl *, const Decl *> CommentlessRedeclChains;
826
827 /// Mapping from declarations to parsed comments attached to any
828 /// redeclaration.
829 mutable llvm::DenseMap<const Decl *, comments::FullComment *> ParsedComments;
830
831 /// Attaches \p Comment to \p OriginalD and to its redeclaration chain
832 /// and removes the redeclaration chain from the set of commentless chains.
833 ///
834 /// Don't do anything if a comment has already been attached to \p OriginalD
835 /// or its redeclaration chain.
836 void cacheRawCommentForDecl(const Decl &OriginalD,
837 const RawComment &Comment) const;
838
839 /// \returns searches \p CommentsInFile for doc comment for \p D.
840 ///
841 /// \p RepresentativeLocForDecl is used as a location for searching doc
842 /// comments. \p CommentsInFile is a mapping offset -> comment of files in the
843 /// same file where \p RepresentativeLocForDecl is.
844 RawComment *getRawCommentForDeclNoCacheImpl(
845 const Decl *D, const SourceLocation RepresentativeLocForDecl,
846 const std::map<unsigned, RawComment *> &CommentsInFile) const;
847
848 /// Return the documentation comment attached to a given declaration,
849 /// without looking into cache.
850 RawComment *getRawCommentForDeclNoCache(const Decl *D) const;
851
852public:
853 void addComment(const RawComment &RC);
854
855 /// Return the documentation comment attached to a given declaration.
856 /// Returns nullptr if no comment is attached.
857 ///
858 /// \param OriginalDecl if not nullptr, is set to declaration AST node that
859 /// had the comment, if the comment we found comes from a redeclaration.
860 const RawComment *
861 getRawCommentForAnyRedecl(const Decl *D,
862 const Decl **OriginalDecl = nullptr) const;
863
864 /// Searches existing comments for doc comments that should be attached to \p
865 /// Decls. If any doc comment is found, it is parsed.
866 ///
867 /// Requirement: All \p Decls are in the same file.
868 ///
869 /// If the last comment in the file is already attached we assume
870 /// there are not comments left to be attached to \p Decls.
871 void attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls,
872 const Preprocessor *PP);
873
874 /// Return parsed documentation comment attached to a given declaration.
875 /// Returns nullptr if no comment is attached.
876 ///
877 /// \param PP the Preprocessor used with this TU. Could be nullptr if
878 /// preprocessor is not available.
879 comments::FullComment *getCommentForDecl(const Decl *D,
880 const Preprocessor *PP) const;
881
882 /// Return parsed documentation comment attached to a given declaration.
883 /// Returns nullptr if no comment is attached. Does not look at any
884 /// redeclarations of the declaration.
885 comments::FullComment *getLocalCommentForDeclUncached(const Decl *D) const;
886
887 comments::FullComment *cloneFullComment(comments::FullComment *FC,
888 const Decl *D) const;
889
890private:
891 mutable comments::CommandTraits CommentCommandTraits;
892
893 /// Iterator that visits import declarations.
894 class import_iterator {
895 ImportDecl *Import = nullptr;
896
897 public:
898 using value_type = ImportDecl *;
899 using reference = ImportDecl *;
900 using pointer = ImportDecl *;
901 using difference_type = int;
902 using iterator_category = std::forward_iterator_tag;
903
904 import_iterator() = default;
905 explicit import_iterator(ImportDecl *Import) : Import(Import) {}
906
907 reference operator*() const { return Import; }
908 pointer operator->() const { return Import; }
909
910 import_iterator &operator++() {
911 Import = ASTContext::getNextLocalImport(Import);
912 return *this;
913 }
914
915 import_iterator operator++(int) {
916 import_iterator Other(*this);
917 ++(*this);
918 return Other;
919 }
920
921 friend bool operator==(import_iterator X, import_iterator Y) {
922 return X.Import == Y.Import;
923 }
924
925 friend bool operator!=(import_iterator X, import_iterator Y) {
926 return X.Import != Y.Import;
927 }
928 };
929
930public:
931 comments::CommandTraits &getCommentCommandTraits() const {
932 return CommentCommandTraits;
933 }
934
935 /// Retrieve the attributes for the given declaration.
936 AttrVec& getDeclAttrs(const Decl *D);
937
938 /// Erase the attributes corresponding to the given declaration.
939 void eraseDeclAttrs(const Decl *D);
940
941 /// If this variable is an instantiated static data member of a
942 /// class template specialization, returns the templated static data member
943 /// from which it was instantiated.
944 // FIXME: Remove ?
945 MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
946 const VarDecl *Var);
947
948 /// Note that the static data member \p Inst is an instantiation of
949 /// the static data member template \p Tmpl of a class template.
950 void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
951 TemplateSpecializationKind TSK,
952 SourceLocation PointOfInstantiation = SourceLocation());
953
954 TemplateOrSpecializationInfo
955 getTemplateOrSpecializationInfo(const VarDecl *Var);
956
957 void setTemplateOrSpecializationInfo(VarDecl *Inst,
958 TemplateOrSpecializationInfo TSI);
959
960 /// If the given using decl \p Inst is an instantiation of
961 /// another (possibly unresolved) using decl, return it.
962 NamedDecl *getInstantiatedFromUsingDecl(NamedDecl *Inst);
963
964 /// Remember that the using decl \p Inst is an instantiation
965 /// of the using decl \p Pattern of a class template.
966 void setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern);
967
968 /// If the given using-enum decl \p Inst is an instantiation of
969 /// another using-enum decl, return it.
970 UsingEnumDecl *getInstantiatedFromUsingEnumDecl(UsingEnumDecl *Inst);
971
972 /// Remember that the using enum decl \p Inst is an instantiation
973 /// of the using enum decl \p Pattern of a class template.
974 void setInstantiatedFromUsingEnumDecl(UsingEnumDecl *Inst,
975 UsingEnumDecl *Pattern);
976
977 UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
978 void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
979 UsingShadowDecl *Pattern);
980
981 FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
982
983 void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
984
985 // Access to the set of methods overridden by the given C++ method.
986 using overridden_cxx_method_iterator = CXXMethodVector::const_iterator;
987 overridden_cxx_method_iterator
988 overridden_methods_begin(const CXXMethodDecl *Method) const;
989
990 overridden_cxx_method_iterator
991 overridden_methods_end(const CXXMethodDecl *Method) const;
992
993 unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
994
995 using overridden_method_range =
996 llvm::iterator_range<overridden_cxx_method_iterator>;
997
998 overridden_method_range overridden_methods(const CXXMethodDecl *Method) const;
999
1000 /// Note that the given C++ \p Method overrides the given \p
1001 /// Overridden method.
1002 void addOverriddenMethod(const CXXMethodDecl *Method,
1003 const CXXMethodDecl *Overridden);
1004
1005 /// Return C++ or ObjC overridden methods for the given \p Method.
1006 ///
1007 /// An ObjC method is considered to override any method in the class's
1008 /// base classes, its protocols, or its categories' protocols, that has
1009 /// the same selector and is of the same kind (class or instance).
1010 /// A method in an implementation is not considered as overriding the same
1011 /// method in the interface or its categories.
1012 void getOverriddenMethods(
1013 const NamedDecl *Method,
1014 SmallVectorImpl<const NamedDecl *> &Overridden) const;
1015
1016 /// Notify the AST context that a new import declaration has been
1017 /// parsed or implicitly created within this translation unit.
1018 void addedLocalImportDecl(ImportDecl *Import);
1019
1020 static ImportDecl *getNextLocalImport(ImportDecl *Import) {
1021 return Import->getNextLocalImport();
1022 }
1023
1024 using import_range = llvm::iterator_range<import_iterator>;
1025
1026 import_range local_imports() const {
1027 return import_range(import_iterator(FirstLocalImport), import_iterator());
1028 }
1029
1030 Decl *getPrimaryMergedDecl(Decl *D) {
1031 Decl *Result = MergedDecls.lookup(Val: D);
1032 return Result ? Result : D;
1033 }
1034 void setPrimaryMergedDecl(Decl *D, Decl *Primary) {
1035 MergedDecls[D] = Primary;
1036 }
1037
1038 /// Note that the definition \p ND has been merged into module \p M,
1039 /// and should be visible whenever \p M is visible.
1040 void mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
1041 bool NotifyListeners = true);
1042
1043 /// Clean up the merged definition list. Call this if you might have
1044 /// added duplicates into the list.
1045 void deduplicateMergedDefinitonsFor(NamedDecl *ND);
1046
1047 /// Get the additional modules in which the definition \p Def has
1048 /// been merged.
1049 ArrayRef<Module*> getModulesWithMergedDefinition(const NamedDecl *Def);
1050
1051 /// Add a declaration to the list of declarations that are initialized
1052 /// for a module. This will typically be a global variable (with internal
1053 /// linkage) that runs module initializers, such as the iostream initializer,
1054 /// or an ImportDecl nominating another module that has initializers.
1055 void addModuleInitializer(Module *M, Decl *Init);
1056
1057 void addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs);
1058
1059 /// Get the initializations to perform when importing a module, if any.
1060 ArrayRef<Decl*> getModuleInitializers(Module *M);
1061
1062 /// Set the (C++20) module we are building.
1063 void setCurrentNamedModule(Module *M);
1064
1065 /// Get module under construction, nullptr if this is not a C++20 module.
1066 Module *getCurrentNamedModule() const { return CurrentCXXNamedModule; }
1067
1068 TranslationUnitDecl *getTranslationUnitDecl() const {
1069 return TUDecl->getMostRecentDecl();
1070 }
1071 void addTranslationUnitDecl() {
1072 assert(!TUDecl || TUKind == TU_Incremental);
1073 TranslationUnitDecl *NewTUDecl = TranslationUnitDecl::Create(C&: *this);
1074 if (TraversalScope.empty() || TraversalScope.back() == TUDecl)
1075 TraversalScope = {NewTUDecl};
1076 if (TUDecl)
1077 NewTUDecl->setPreviousDecl(TUDecl);
1078 TUDecl = NewTUDecl;
1079 }
1080
1081 ExternCContextDecl *getExternCContextDecl() const;
1082 BuiltinTemplateDecl *getMakeIntegerSeqDecl() const;
1083 BuiltinTemplateDecl *getTypePackElementDecl() const;
1084
1085 // Builtin Types.
1086 CanQualType VoidTy;
1087 CanQualType BoolTy;
1088 CanQualType CharTy;
1089 CanQualType WCharTy; // [C++ 3.9.1p5].
1090 CanQualType WideCharTy; // Same as WCharTy in C++, integer type in C99.
1091 CanQualType WIntTy; // [C99 7.24.1], integer type unchanged by default promotions.
1092 CanQualType Char8Ty; // [C++20 proposal]
1093 CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
1094 CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
1095 CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
1096 CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
1097 CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
1098 CanQualType FloatTy, DoubleTy, LongDoubleTy, Float128Ty, Ibm128Ty;
1099 CanQualType ShortAccumTy, AccumTy,
1100 LongAccumTy; // ISO/IEC JTC1 SC22 WG14 N1169 Extension
1101 CanQualType UnsignedShortAccumTy, UnsignedAccumTy, UnsignedLongAccumTy;
1102 CanQualType ShortFractTy, FractTy, LongFractTy;
1103 CanQualType UnsignedShortFractTy, UnsignedFractTy, UnsignedLongFractTy;
1104 CanQualType SatShortAccumTy, SatAccumTy, SatLongAccumTy;
1105 CanQualType SatUnsignedShortAccumTy, SatUnsignedAccumTy,
1106 SatUnsignedLongAccumTy;
1107 CanQualType SatShortFractTy, SatFractTy, SatLongFractTy;
1108 CanQualType SatUnsignedShortFractTy, SatUnsignedFractTy,
1109 SatUnsignedLongFractTy;
1110 CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
1111 CanQualType BFloat16Ty;
1112 CanQualType Float16Ty; // C11 extension ISO/IEC TS 18661-3
1113 CanQualType VoidPtrTy, NullPtrTy;
1114 CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
1115 CanQualType BuiltinFnTy;
1116 CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
1117 CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
1118 CanQualType ObjCBuiltinBoolTy;
1119#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1120 CanQualType SingletonId;
1121#include "clang/Basic/OpenCLImageTypes.def"
1122 CanQualType OCLSamplerTy, OCLEventTy, OCLClkEventTy;
1123 CanQualType OCLQueueTy, OCLReserveIDTy;
1124 CanQualType IncompleteMatrixIdxTy;
1125 CanQualType OMPArraySectionTy, OMPArrayShapingTy, OMPIteratorTy;
1126#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
1127 CanQualType Id##Ty;
1128#include "clang/Basic/OpenCLExtensionTypes.def"
1129#define SVE_TYPE(Name, Id, SingletonId) \
1130 CanQualType SingletonId;
1131#include "clang/Basic/AArch64SVEACLETypes.def"
1132#define PPC_VECTOR_TYPE(Name, Id, Size) \
1133 CanQualType Id##Ty;
1134#include "clang/Basic/PPCTypes.def"
1135#define RVV_TYPE(Name, Id, SingletonId) \
1136 CanQualType SingletonId;
1137#include "clang/Basic/RISCVVTypes.def"
1138#define WASM_TYPE(Name, Id, SingletonId) CanQualType SingletonId;
1139#include "clang/Basic/WebAssemblyReferenceTypes.def"
1140
1141 // Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
1142 mutable QualType AutoDeductTy; // Deduction against 'auto'.
1143 mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
1144
1145 // Decl used to help define __builtin_va_list for some targets.
1146 // The decl is built when constructing 'BuiltinVaListDecl'.
1147 mutable Decl *VaListTagDecl = nullptr;
1148
1149 // Implicitly-declared type 'struct _GUID'.
1150 mutable TagDecl *MSGuidTagDecl = nullptr;
1151
1152 /// Keep track of CUDA/HIP device-side variables ODR-used by host code.
1153 /// This does not include extern shared variables used by device host
1154 /// functions as addresses of shared variables are per warp, therefore
1155 /// cannot be accessed by host code.
1156 llvm::DenseSet<const VarDecl *> CUDADeviceVarODRUsedByHost;
1157
1158 /// Keep track of CUDA/HIP external kernels or device variables ODR-used by
1159 /// host code.
1160 llvm::DenseSet<const ValueDecl *> CUDAExternalDeviceDeclODRUsedByHost;
1161
1162 /// Keep track of CUDA/HIP implicit host device functions used on device side
1163 /// in device compilation.
1164 llvm::DenseSet<const FunctionDecl *> CUDAImplicitHostDeviceFunUsedByDevice;
1165
1166 ASTContext(LangOptions &LOpts, SourceManager &SM, IdentifierTable &idents,
1167 SelectorTable &sels, Builtin::Context &builtins,
1168 TranslationUnitKind TUKind);
1169 ASTContext(const ASTContext &) = delete;
1170 ASTContext &operator=(const ASTContext &) = delete;
1171 ~ASTContext();
1172
1173 /// Attach an external AST source to the AST context.
1174 ///
1175 /// The external AST source provides the ability to load parts of
1176 /// the abstract syntax tree as needed from some external storage,
1177 /// e.g., a precompiled header.
1178 void setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source);
1179
1180 /// Retrieve a pointer to the external AST source associated
1181 /// with this AST context, if any.
1182 ExternalASTSource *getExternalSource() const {
1183 return ExternalSource.get();
1184 }
1185
1186 /// Attach an AST mutation listener to the AST context.
1187 ///
1188 /// The AST mutation listener provides the ability to track modifications to
1189 /// the abstract syntax tree entities committed after they were initially
1190 /// created.
1191 void setASTMutationListener(ASTMutationListener *Listener) {
1192 this->Listener = Listener;
1193 }
1194
1195 /// Retrieve a pointer to the AST mutation listener associated
1196 /// with this AST context, if any.
1197 ASTMutationListener *getASTMutationListener() const { return Listener; }
1198
1199 void PrintStats() const;
1200 const SmallVectorImpl<Type *>& getTypes() const { return Types; }
1201
1202 BuiltinTemplateDecl *buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
1203 const IdentifierInfo *II) const;
1204
1205 /// Create a new implicit TU-level CXXRecordDecl or RecordDecl
1206 /// declaration.
1207 RecordDecl *buildImplicitRecord(
1208 StringRef Name,
1209 RecordDecl::TagKind TK = RecordDecl::TagKind::Struct) const;
1210
1211 /// Create a new implicit TU-level typedef declaration.
1212 TypedefDecl *buildImplicitTypedef(QualType T, StringRef Name) const;
1213
1214 /// Retrieve the declaration for the 128-bit signed integer type.
1215 TypedefDecl *getInt128Decl() const;
1216
1217 /// Retrieve the declaration for the 128-bit unsigned integer type.
1218 TypedefDecl *getUInt128Decl() const;
1219
1220 //===--------------------------------------------------------------------===//
1221 // Type Constructors
1222 //===--------------------------------------------------------------------===//
1223
1224private:
1225 /// Return a type with extended qualifiers.
1226 QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
1227
1228 QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
1229
1230 QualType getPipeType(QualType T, bool ReadOnly) const;
1231
1232public:
1233 /// Return the uniqued reference to the type for an address space
1234 /// qualified type with the specified type and address space.
1235 ///
1236 /// The resulting type has a union of the qualifiers from T and the address
1237 /// space. If T already has an address space specifier, it is silently
1238 /// replaced.
1239 QualType getAddrSpaceQualType(QualType T, LangAS AddressSpace) const;
1240
1241 /// Remove any existing address space on the type and returns the type
1242 /// with qualifiers intact (or that's the idea anyway)
1243 ///
1244 /// The return type should be T with all prior qualifiers minus the address
1245 /// space.
1246 QualType removeAddrSpaceQualType(QualType T) const;
1247
1248 /// Apply Objective-C protocol qualifiers to the given type.
1249 /// \param allowOnPointerType specifies if we can apply protocol
1250 /// qualifiers on ObjCObjectPointerType. It can be set to true when
1251 /// constructing the canonical type of a Objective-C type parameter.
1252 QualType applyObjCProtocolQualifiers(QualType type,
1253 ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
1254 bool allowOnPointerType = false) const;
1255
1256 /// Return the uniqued reference to the type for an Objective-C
1257 /// gc-qualified type.
1258 ///
1259 /// The resulting type has a union of the qualifiers from T and the gc
1260 /// attribute.
1261 QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
1262
1263 /// Remove the existing address space on the type if it is a pointer size
1264 /// address space and return the type with qualifiers intact.
1265 QualType removePtrSizeAddrSpace(QualType T) const;
1266
1267 /// Return the uniqued reference to the type for a \c restrict
1268 /// qualified type.
1269 ///
1270 /// The resulting type has a union of the qualifiers from \p T and
1271 /// \c restrict.
1272 QualType getRestrictType(QualType T) const {
1273 return T.withFastQualifiers(TQs: Qualifiers::Restrict);
1274 }
1275
1276 /// Return the uniqued reference to the type for a \c volatile
1277 /// qualified type.
1278 ///
1279 /// The resulting type has a union of the qualifiers from \p T and
1280 /// \c volatile.
1281 QualType getVolatileType(QualType T) const {
1282 return T.withFastQualifiers(TQs: Qualifiers::Volatile);
1283 }
1284
1285 /// Return the uniqued reference to the type for a \c const
1286 /// qualified type.
1287 ///
1288 /// The resulting type has a union of the qualifiers from \p T and \c const.
1289 ///
1290 /// It can be reasonably expected that this will always be equivalent to
1291 /// calling T.withConst().
1292 QualType getConstType(QualType T) const { return T.withConst(); }
1293
1294 /// Change the ExtInfo on a function type.
1295 const FunctionType *adjustFunctionType(const FunctionType *Fn,
1296 FunctionType::ExtInfo EInfo);
1297
1298 /// Adjust the given function result type.
1299 CanQualType getCanonicalFunctionResultType(QualType ResultType) const;
1300
1301 /// Change the result type of a function type once it is deduced.
1302 void adjustDeducedFunctionResultType(FunctionDecl *FD, QualType ResultType);
1303
1304 /// Get a function type and produce the equivalent function type with the
1305 /// specified exception specification. Type sugar that can be present on a
1306 /// declaration of a function with an exception specification is permitted
1307 /// and preserved. Other type sugar (for instance, typedefs) is not.
1308 QualType getFunctionTypeWithExceptionSpec(
1309 QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI) const;
1310
1311 /// Determine whether two function types are the same, ignoring
1312 /// exception specifications in cases where they're part of the type.
1313 bool hasSameFunctionTypeIgnoringExceptionSpec(QualType T, QualType U) const;
1314
1315 /// Change the exception specification on a function once it is
1316 /// delay-parsed, instantiated, or computed.
1317 void adjustExceptionSpec(FunctionDecl *FD,
1318 const FunctionProtoType::ExceptionSpecInfo &ESI,
1319 bool AsWritten = false);
1320
1321 /// Get a function type and produce the equivalent function type where
1322 /// pointer size address spaces in the return type and parameter tyeps are
1323 /// replaced with the default address space.
1324 QualType getFunctionTypeWithoutPtrSizes(QualType T);
1325
1326 /// Determine whether two function types are the same, ignoring pointer sizes
1327 /// in the return type and parameter types.
1328 bool hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U);
1329
1330 /// Return the uniqued reference to the type for a complex
1331 /// number with the specified element type.
1332 QualType getComplexType(QualType T) const;
1333 CanQualType getComplexType(CanQualType T) const {
1334 return CanQualType::CreateUnsafe(Other: getComplexType(T: (QualType) T));
1335 }
1336
1337 /// Return the uniqued reference to the type for a pointer to
1338 /// the specified type.
1339 QualType getPointerType(QualType T) const;
1340 CanQualType getPointerType(CanQualType T) const {
1341 return CanQualType::CreateUnsafe(Other: getPointerType(T: (QualType) T));
1342 }
1343
1344 /// Return the uniqued reference to a type adjusted from the original
1345 /// type to a new type.
1346 QualType getAdjustedType(QualType Orig, QualType New) const;
1347 CanQualType getAdjustedType(CanQualType Orig, CanQualType New) const {
1348 return CanQualType::CreateUnsafe(
1349 Other: getAdjustedType(Orig: (QualType)Orig, New: (QualType)New));
1350 }
1351
1352 /// Return the uniqued reference to the decayed version of the given
1353 /// type. Can only be called on array and function types which decay to
1354 /// pointer types.
1355 QualType getDecayedType(QualType T) const;
1356 CanQualType getDecayedType(CanQualType T) const {
1357 return CanQualType::CreateUnsafe(Other: getDecayedType(T: (QualType) T));
1358 }
1359 /// Return the uniqued reference to a specified decay from the original
1360 /// type to the decayed type.
1361 QualType getDecayedType(QualType Orig, QualType Decayed) const;
1362
1363 /// Return the uniqued reference to the atomic type for the specified
1364 /// type.
1365 QualType getAtomicType(QualType T) const;
1366
1367 /// Return the uniqued reference to the type for a block of the
1368 /// specified type.
1369 QualType getBlockPointerType(QualType T) const;
1370
1371 /// Gets the struct used to keep track of the descriptor for pointer to
1372 /// blocks.
1373 QualType getBlockDescriptorType() const;
1374
1375 /// Return a read_only pipe type for the specified type.
1376 QualType getReadPipeType(QualType T) const;
1377
1378 /// Return a write_only pipe type for the specified type.
1379 QualType getWritePipeType(QualType T) const;
1380
1381 /// Return a bit-precise integer type with the specified signedness and bit
1382 /// count.
1383 QualType getBitIntType(bool Unsigned, unsigned NumBits) const;
1384
1385 /// Return a dependent bit-precise integer type with the specified signedness
1386 /// and bit count.
1387 QualType getDependentBitIntType(bool Unsigned, Expr *BitsExpr) const;
1388
1389 /// Gets the struct used to keep track of the extended descriptor for
1390 /// pointer to blocks.
1391 QualType getBlockDescriptorExtendedType() const;
1392
1393 /// Map an AST Type to an OpenCLTypeKind enum value.
1394 OpenCLTypeKind getOpenCLTypeKind(const Type *T) const;
1395
1396 /// Get address space for OpenCL type.
1397 LangAS getOpenCLTypeAddrSpace(const Type *T) const;
1398
1399 /// Returns default address space based on OpenCL version and enabled features
1400 inline LangAS getDefaultOpenCLPointeeAddrSpace() {
1401 return LangOpts.OpenCLGenericAddressSpace ? LangAS::opencl_generic
1402 : LangAS::opencl_private;
1403 }
1404
1405 void setcudaConfigureCallDecl(FunctionDecl *FD) {
1406 cudaConfigureCallDecl = FD;
1407 }
1408
1409 FunctionDecl *getcudaConfigureCallDecl() {
1410 return cudaConfigureCallDecl;
1411 }
1412
1413 /// Returns true iff we need copy/dispose helpers for the given type.
1414 bool BlockRequiresCopying(QualType Ty, const VarDecl *D);
1415
1416 /// Returns true, if given type has a known lifetime. HasByrefExtendedLayout
1417 /// is set to false in this case. If HasByrefExtendedLayout returns true,
1418 /// byref variable has extended lifetime.
1419 bool getByrefLifetime(QualType Ty,
1420 Qualifiers::ObjCLifetime &Lifetime,
1421 bool &HasByrefExtendedLayout) const;
1422
1423 /// Return the uniqued reference to the type for an lvalue reference
1424 /// to the specified type.
1425 QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
1426 const;
1427
1428 /// Return the uniqued reference to the type for an rvalue reference
1429 /// to the specified type.
1430 QualType getRValueReferenceType(QualType T) const;
1431
1432 /// Return the uniqued reference to the type for a member pointer to
1433 /// the specified type in the specified class.
1434 ///
1435 /// The class \p Cls is a \c Type because it could be a dependent name.
1436 QualType getMemberPointerType(QualType T, const Type *Cls) const;
1437
1438 /// Return a non-unique reference to the type for a variable array of
1439 /// the specified element type.
1440 QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
1441 ArraySizeModifier ASM, unsigned IndexTypeQuals,
1442 SourceRange Brackets) const;
1443
1444 /// Return a non-unique reference to the type for a dependently-sized
1445 /// array of the specified element type.
1446 ///
1447 /// FIXME: We will need these to be uniqued, or at least comparable, at some
1448 /// point.
1449 QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
1450 ArraySizeModifier ASM,
1451 unsigned IndexTypeQuals,
1452 SourceRange Brackets) const;
1453
1454 /// Return a unique reference to the type for an incomplete array of
1455 /// the specified element type.
1456 QualType getIncompleteArrayType(QualType EltTy, ArraySizeModifier ASM,
1457 unsigned IndexTypeQuals) const;
1458
1459 /// Return the unique reference to the type for a constant array of
1460 /// the specified element type.
1461 QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
1462 const Expr *SizeExpr, ArraySizeModifier ASM,
1463 unsigned IndexTypeQuals) const;
1464
1465 /// Return a type for a constant array for a string literal of the
1466 /// specified element type and length.
1467 QualType getStringLiteralArrayType(QualType EltTy, unsigned Length) const;
1468
1469 /// Returns a vla type where known sizes are replaced with [*].
1470 QualType getVariableArrayDecayedType(QualType Ty) const;
1471
1472 // Convenience struct to return information about a builtin vector type.
1473 struct BuiltinVectorTypeInfo {
1474 QualType ElementType;
1475 llvm::ElementCount EC;
1476 unsigned NumVectors;
1477 BuiltinVectorTypeInfo(QualType ElementType, llvm::ElementCount EC,
1478 unsigned NumVectors)
1479 : ElementType(ElementType), EC(EC), NumVectors(NumVectors) {}
1480 };
1481
1482 /// Returns the element type, element count and number of vectors
1483 /// (in case of tuple) for a builtin vector type.
1484 BuiltinVectorTypeInfo
1485 getBuiltinVectorTypeInfo(const BuiltinType *VecTy) const;
1486
1487 /// Return the unique reference to a scalable vector type of the specified
1488 /// element type and scalable number of elements.
1489 /// For RISC-V, number of fields is also provided when it fetching for
1490 /// tuple type.
1491 ///
1492 /// \pre \p EltTy must be a built-in type.
1493 QualType getScalableVectorType(QualType EltTy, unsigned NumElts,
1494 unsigned NumFields = 1) const;
1495
1496 /// Return a WebAssembly externref type.
1497 QualType getWebAssemblyExternrefType() const;
1498
1499 /// Return the unique reference to a vector type of the specified
1500 /// element type and size.
1501 ///
1502 /// \pre \p VectorType must be a built-in type.
1503 QualType getVectorType(QualType VectorType, unsigned NumElts,
1504 VectorKind VecKind) const;
1505 /// Return the unique reference to the type for a dependently sized vector of
1506 /// the specified element type.
1507 QualType getDependentVectorType(QualType VectorType, Expr *SizeExpr,
1508 SourceLocation AttrLoc,
1509 VectorKind VecKind) const;
1510
1511 /// Return the unique reference to an extended vector type
1512 /// of the specified element type and size.
1513 ///
1514 /// \pre \p VectorType must be a built-in type.
1515 QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
1516
1517 /// \pre Return a non-unique reference to the type for a dependently-sized
1518 /// vector of the specified element type.
1519 ///
1520 /// FIXME: We will need these to be uniqued, or at least comparable, at some
1521 /// point.
1522 QualType getDependentSizedExtVectorType(QualType VectorType,
1523 Expr *SizeExpr,
1524 SourceLocation AttrLoc) const;
1525
1526 /// Return the unique reference to the matrix type of the specified element
1527 /// type and size
1528 ///
1529 /// \pre \p ElementType must be a valid matrix element type (see
1530 /// MatrixType::isValidElementType).
1531 QualType getConstantMatrixType(QualType ElementType, unsigned NumRows,
1532 unsigned NumColumns) const;
1533
1534 /// Return the unique reference to the matrix type of the specified element
1535 /// type and size
1536 QualType getDependentSizedMatrixType(QualType ElementType, Expr *RowExpr,
1537 Expr *ColumnExpr,
1538 SourceLocation AttrLoc) const;
1539
1540 QualType getDependentAddressSpaceType(QualType PointeeType,
1541 Expr *AddrSpaceExpr,
1542 SourceLocation AttrLoc) const;
1543
1544 /// Return a K&R style C function type like 'int()'.
1545 QualType getFunctionNoProtoType(QualType ResultTy,
1546 const FunctionType::ExtInfo &Info) const;
1547
1548 QualType getFunctionNoProtoType(QualType ResultTy) const {
1549 return getFunctionNoProtoType(ResultTy, Info: FunctionType::ExtInfo());
1550 }
1551
1552 /// Return a normal function type with a typed argument list.
1553 QualType getFunctionType(QualType ResultTy, ArrayRef<QualType> Args,
1554 const FunctionProtoType::ExtProtoInfo &EPI) const {
1555 return getFunctionTypeInternal(ResultTy, Args, EPI, OnlyWantCanonical: false);
1556 }
1557
1558 QualType adjustStringLiteralBaseType(QualType StrLTy) const;
1559
1560private:
1561 /// Return a normal function type with a typed argument list.
1562 QualType getFunctionTypeInternal(QualType ResultTy, ArrayRef<QualType> Args,
1563 const FunctionProtoType::ExtProtoInfo &EPI,
1564 bool OnlyWantCanonical) const;
1565 QualType
1566 getAutoTypeInternal(QualType DeducedType, AutoTypeKeyword Keyword,
1567 bool IsDependent, bool IsPack = false,
1568 ConceptDecl *TypeConstraintConcept = nullptr,
1569 ArrayRef<TemplateArgument> TypeConstraintArgs = {},
1570 bool IsCanon = false) const;
1571
1572public:
1573 /// Return the unique reference to the type for the specified type
1574 /// declaration.
1575 QualType getTypeDeclType(const TypeDecl *Decl,
1576 const TypeDecl *PrevDecl = nullptr) const {
1577 assert(Decl && "Passed null for Decl param");
1578 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1579
1580 if (PrevDecl) {
1581 assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
1582 Decl->TypeForDecl = PrevDecl->TypeForDecl;
1583 return QualType(PrevDecl->TypeForDecl, 0);
1584 }
1585
1586 return getTypeDeclTypeSlow(Decl);
1587 }
1588
1589 QualType getUsingType(const UsingShadowDecl *Found,
1590 QualType Underlying) const;
1591
1592 /// Return the unique reference to the type for the specified
1593 /// typedef-name decl.
1594 QualType getTypedefType(const TypedefNameDecl *Decl,
1595 QualType Underlying = QualType()) const;
1596
1597 QualType getRecordType(const RecordDecl *Decl) const;
1598
1599 QualType getEnumType(const EnumDecl *Decl) const;
1600
1601 QualType
1602 getUnresolvedUsingType(const UnresolvedUsingTypenameDecl *Decl) const;
1603
1604 QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
1605
1606 QualType getAttributedType(attr::Kind attrKind, QualType modifiedType,
1607 QualType equivalentType) const;
1608
1609 QualType getBTFTagAttributedType(const BTFTypeTagAttr *BTFAttr,
1610 QualType Wrapped);
1611
1612 QualType
1613 getSubstTemplateTypeParmType(QualType Replacement, Decl *AssociatedDecl,
1614 unsigned Index,
1615 std::optional<unsigned> PackIndex) const;
1616 QualType getSubstTemplateTypeParmPackType(Decl *AssociatedDecl,
1617 unsigned Index, bool Final,
1618 const TemplateArgument &ArgPack);
1619
1620 QualType
1621 getTemplateTypeParmType(unsigned Depth, unsigned Index,
1622 bool ParameterPack,
1623 TemplateTypeParmDecl *ParmDecl = nullptr) const;
1624
1625 QualType getTemplateSpecializationType(TemplateName T,
1626 ArrayRef<TemplateArgument> Args,
1627 QualType Canon = QualType()) const;
1628
1629 QualType
1630 getCanonicalTemplateSpecializationType(TemplateName T,
1631 ArrayRef<TemplateArgument> Args) const;
1632
1633 QualType getTemplateSpecializationType(TemplateName T,
1634 ArrayRef<TemplateArgumentLoc> Args,
1635 QualType Canon = QualType()) const;
1636
1637 TypeSourceInfo *
1638 getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
1639 const TemplateArgumentListInfo &Args,
1640 QualType Canon = QualType()) const;
1641
1642 QualType getParenType(QualType NamedType) const;
1643
1644 QualType getMacroQualifiedType(QualType UnderlyingTy,
1645 const IdentifierInfo *MacroII) const;
1646
1647 QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
1648 NestedNameSpecifier *NNS, QualType NamedType,
1649 TagDecl *OwnedTagDecl = nullptr) const;
1650 QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
1651 NestedNameSpecifier *NNS,
1652 const IdentifierInfo *Name,
1653 QualType Canon = QualType()) const;
1654
1655 QualType getDependentTemplateSpecializationType(
1656 ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
1657 const IdentifierInfo *Name, ArrayRef<TemplateArgumentLoc> Args) const;
1658 QualType getDependentTemplateSpecializationType(
1659 ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
1660 const IdentifierInfo *Name, ArrayRef<TemplateArgument> Args) const;
1661
1662 TemplateArgument getInjectedTemplateArg(NamedDecl *ParamDecl);
1663
1664 /// Get a template argument list with one argument per template parameter
1665 /// in a template parameter list, such as for the injected class name of
1666 /// a class template.
1667 void getInjectedTemplateArgs(const TemplateParameterList *Params,
1668 SmallVectorImpl<TemplateArgument> &Args);
1669
1670 /// Form a pack expansion type with the given pattern.
1671 /// \param NumExpansions The number of expansions for the pack, if known.
1672 /// \param ExpectPackInType If \c false, we should not expect \p Pattern to
1673 /// contain an unexpanded pack. This only makes sense if the pack
1674 /// expansion is used in a context where the arity is inferred from
1675 /// elsewhere, such as if the pattern contains a placeholder type or
1676 /// if this is the canonical type of another pack expansion type.
1677 QualType getPackExpansionType(QualType Pattern,
1678 std::optional<unsigned> NumExpansions,
1679 bool ExpectPackInType = true);
1680
1681 QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1682 ObjCInterfaceDecl *PrevDecl = nullptr) const;
1683
1684 /// Legacy interface: cannot provide type arguments or __kindof.
1685 QualType getObjCObjectType(QualType Base,
1686 ObjCProtocolDecl * const *Protocols,
1687 unsigned NumProtocols) const;
1688
1689 QualType getObjCObjectType(QualType Base,
1690 ArrayRef<QualType> typeArgs,
1691 ArrayRef<ObjCProtocolDecl *> protocols,
1692 bool isKindOf) const;
1693
1694 QualType getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
1695 ArrayRef<ObjCProtocolDecl *> protocols) const;
1696 void adjustObjCTypeParamBoundType(const ObjCTypeParamDecl *Orig,
1697 ObjCTypeParamDecl *New) const;
1698
1699 bool ObjCObjectAdoptsQTypeProtocols(QualType QT, ObjCInterfaceDecl *Decl);
1700
1701 /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
1702 /// QT's qualified-id protocol list adopt all protocols in IDecl's list
1703 /// of protocols.
1704 bool QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
1705 ObjCInterfaceDecl *IDecl);
1706
1707 /// Return a ObjCObjectPointerType type for the given ObjCObjectType.
1708 QualType getObjCObjectPointerType(QualType OIT) const;
1709
1710 /// C23 feature and GCC extension.
1711 QualType getTypeOfExprType(Expr *E, TypeOfKind Kind) const;
1712 QualType getTypeOfType(QualType QT, TypeOfKind Kind) const;
1713
1714 QualType getReferenceQualifiedType(const Expr *e) const;
1715
1716 /// C++11 decltype.
1717 QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
1718
1719 QualType getPackIndexingType(QualType Pattern, Expr *IndexExpr,
1720 bool FullySubstituted = false,
1721 ArrayRef<QualType> Expansions = {},
1722 int Index = -1) const;
1723
1724 /// Unary type transforms
1725 QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
1726 UnaryTransformType::UTTKind UKind) const;
1727
1728 /// C++11 deduced auto type.
1729 QualType getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
1730 bool IsDependent, bool IsPack = false,
1731 ConceptDecl *TypeConstraintConcept = nullptr,
1732 ArrayRef<TemplateArgument> TypeConstraintArgs ={}) const;
1733
1734 /// C++11 deduction pattern for 'auto' type.
1735 QualType getAutoDeductType() const;
1736
1737 /// C++11 deduction pattern for 'auto &&' type.
1738 QualType getAutoRRefDeductType() const;
1739
1740 /// Remove any type constraints from a template parameter type, for
1741 /// equivalence comparison of template parameters.
1742 QualType getUnconstrainedType(QualType T) const;
1743
1744 /// C++17 deduced class template specialization type.
1745 QualType getDeducedTemplateSpecializationType(TemplateName Template,
1746 QualType DeducedType,
1747 bool IsDependent) const;
1748
1749 /// Return the unique reference to the type for the specified TagDecl
1750 /// (struct/union/class/enum) decl.
1751 QualType getTagDeclType(const TagDecl *Decl) const;
1752
1753 /// Return the unique type for "size_t" (C99 7.17), defined in
1754 /// <stddef.h>.
1755 ///
1756 /// The sizeof operator requires this (C99 6.5.3.4p4).
1757 CanQualType getSizeType() const;
1758
1759 /// Return the unique signed counterpart of
1760 /// the integer type corresponding to size_t.
1761 CanQualType getSignedSizeType() const;
1762
1763 /// Return the unique type for "intmax_t" (C99 7.18.1.5), defined in
1764 /// <stdint.h>.
1765 CanQualType getIntMaxType() const;
1766
1767 /// Return the unique type for "uintmax_t" (C99 7.18.1.5), defined in
1768 /// <stdint.h>.
1769 CanQualType getUIntMaxType() const;
1770
1771 /// Return the unique wchar_t type available in C++ (and available as
1772 /// __wchar_t as a Microsoft extension).
1773 QualType getWCharType() const { return WCharTy; }
1774
1775 /// Return the type of wide characters. In C++, this returns the
1776 /// unique wchar_t type. In C99, this returns a type compatible with the type
1777 /// defined in <stddef.h> as defined by the target.
1778 QualType getWideCharType() const { return WideCharTy; }
1779
1780 /// Return the type of "signed wchar_t".
1781 ///
1782 /// Used when in C++, as a GCC extension.
1783 QualType getSignedWCharType() const;
1784
1785 /// Return the type of "unsigned wchar_t".
1786 ///
1787 /// Used when in C++, as a GCC extension.
1788 QualType getUnsignedWCharType() const;
1789
1790 /// In C99, this returns a type compatible with the type
1791 /// defined in <stddef.h> as defined by the target.
1792 QualType getWIntType() const { return WIntTy; }
1793
1794 /// Return a type compatible with "intptr_t" (C99 7.18.1.4),
1795 /// as defined by the target.
1796 QualType getIntPtrType() const;
1797
1798 /// Return a type compatible with "uintptr_t" (C99 7.18.1.4),
1799 /// as defined by the target.
1800 QualType getUIntPtrType() const;
1801
1802 /// Return the unique type for "ptrdiff_t" (C99 7.17) defined in
1803 /// <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1804 QualType getPointerDiffType() const;
1805
1806 /// Return the unique unsigned counterpart of "ptrdiff_t"
1807 /// integer type. The standard (C11 7.21.6.1p7) refers to this type
1808 /// in the definition of %tu format specifier.
1809 QualType getUnsignedPointerDiffType() const;
1810
1811 /// Return the unique type for "pid_t" defined in
1812 /// <sys/types.h>. We need this to compute the correct type for vfork().
1813 QualType getProcessIDType() const;
1814
1815 /// Return the C structure type used to represent constant CFStrings.
1816 QualType getCFConstantStringType() const;
1817
1818 /// Returns the C struct type for objc_super
1819 QualType getObjCSuperType() const;
1820 void setObjCSuperType(QualType ST) { ObjCSuperType = ST; }
1821
1822 /// Get the structure type used to representation CFStrings, or NULL
1823 /// if it hasn't yet been built.
1824 QualType getRawCFConstantStringType() const {
1825 if (CFConstantStringTypeDecl)
1826 return getTypedefType(CFConstantStringTypeDecl);
1827 return QualType();
1828 }
1829 void setCFConstantStringType(QualType T);
1830 TypedefDecl *getCFConstantStringDecl() const;
1831 RecordDecl *getCFConstantStringTagDecl() const;
1832
1833 // This setter/getter represents the ObjC type for an NSConstantString.
1834 void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
1835 QualType getObjCConstantStringInterface() const {
1836 return ObjCConstantStringType;
1837 }
1838
1839 QualType getObjCNSStringType() const {
1840 return ObjCNSStringType;
1841 }
1842
1843 void setObjCNSStringType(QualType T) {
1844 ObjCNSStringType = T;
1845 }
1846
1847 /// Retrieve the type that \c id has been defined to, which may be
1848 /// different from the built-in \c id if \c id has been typedef'd.
1849 QualType getObjCIdRedefinitionType() const {
1850 if (ObjCIdRedefinitionType.isNull())
1851 return getObjCIdType();
1852 return ObjCIdRedefinitionType;
1853 }
1854
1855 /// Set the user-written type that redefines \c id.
1856 void setObjCIdRedefinitionType(QualType RedefType) {
1857 ObjCIdRedefinitionType = RedefType;
1858 }
1859
1860 /// Retrieve the type that \c Class has been defined to, which may be
1861 /// different from the built-in \c Class if \c Class has been typedef'd.
1862 QualType getObjCClassRedefinitionType() const {
1863 if (ObjCClassRedefinitionType.isNull())
1864 return getObjCClassType();
1865 return ObjCClassRedefinitionType;
1866 }
1867
1868 /// Set the user-written type that redefines 'SEL'.
1869 void setObjCClassRedefinitionType(QualType RedefType) {
1870 ObjCClassRedefinitionType = RedefType;
1871 }
1872
1873 /// Retrieve the type that 'SEL' has been defined to, which may be
1874 /// different from the built-in 'SEL' if 'SEL' has been typedef'd.
1875 QualType getObjCSelRedefinitionType() const {
1876 if (ObjCSelRedefinitionType.isNull())
1877 return getObjCSelType();
1878 return ObjCSelRedefinitionType;
1879 }
1880
1881 /// Set the user-written type that redefines 'SEL'.
1882 void setObjCSelRedefinitionType(QualType RedefType) {
1883 ObjCSelRedefinitionType = RedefType;
1884 }
1885
1886 /// Retrieve the identifier 'NSObject'.
1887 IdentifierInfo *getNSObjectName() const {
1888 if (!NSObjectName) {
1889 NSObjectName = &Idents.get(Name: "NSObject");
1890 }
1891
1892 return NSObjectName;
1893 }
1894
1895 /// Retrieve the identifier 'NSCopying'.
1896 IdentifierInfo *getNSCopyingName() {
1897 if (!NSCopyingName) {
1898 NSCopyingName = &Idents.get(Name: "NSCopying");
1899 }
1900
1901 return NSCopyingName;
1902 }
1903
1904 CanQualType getNSUIntegerType() const;
1905
1906 CanQualType getNSIntegerType() const;
1907
1908 /// Retrieve the identifier 'bool'.
1909 IdentifierInfo *getBoolName() const {
1910 if (!BoolName)
1911 BoolName = &Idents.get(Name: "bool");
1912 return BoolName;
1913 }
1914
1915 IdentifierInfo *getMakeIntegerSeqName() const {
1916 if (!MakeIntegerSeqName)
1917 MakeIntegerSeqName = &Idents.get(Name: "__make_integer_seq");
1918 return MakeIntegerSeqName;
1919 }
1920
1921 IdentifierInfo *getTypePackElementName() const {
1922 if (!TypePackElementName)
1923 TypePackElementName = &Idents.get(Name: "__type_pack_element");
1924 return TypePackElementName;
1925 }
1926
1927 /// Retrieve the Objective-C "instancetype" type, if already known;
1928 /// otherwise, returns a NULL type;
1929 QualType getObjCInstanceType() {
1930 return getTypeDeclType(getObjCInstanceTypeDecl());
1931 }
1932
1933 /// Retrieve the typedef declaration corresponding to the Objective-C
1934 /// "instancetype" type.
1935 TypedefDecl *getObjCInstanceTypeDecl();
1936
1937 /// Set the type for the C FILE type.
1938 void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
1939
1940 /// Retrieve the C FILE type.
1941 QualType getFILEType() const {
1942 if (FILEDecl)
1943 return getTypeDeclType(Decl: FILEDecl);
1944 return QualType();
1945 }
1946
1947 /// Set the type for the C jmp_buf type.
1948 void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
1949 this->jmp_bufDecl = jmp_bufDecl;
1950 }
1951
1952 /// Retrieve the C jmp_buf type.
1953 QualType getjmp_bufType() const {
1954 if (jmp_bufDecl)
1955 return getTypeDeclType(Decl: jmp_bufDecl);
1956 return QualType();
1957 }
1958
1959 /// Set the type for the C sigjmp_buf type.
1960 void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
1961 this->sigjmp_bufDecl = sigjmp_bufDecl;
1962 }
1963
1964 /// Retrieve the C sigjmp_buf type.
1965 QualType getsigjmp_bufType() const {
1966 if (sigjmp_bufDecl)
1967 return getTypeDeclType(Decl: sigjmp_bufDecl);
1968 return QualType();
1969 }
1970
1971 /// Set the type for the C ucontext_t type.
1972 void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
1973 this->ucontext_tDecl = ucontext_tDecl;
1974 }
1975
1976 /// Retrieve the C ucontext_t type.
1977 QualType getucontext_tType() const {
1978 if (ucontext_tDecl)
1979 return getTypeDeclType(Decl: ucontext_tDecl);
1980 return QualType();
1981 }
1982
1983 /// The result type of logical operations, '<', '>', '!=', etc.
1984 QualType getLogicalOperationType() const {
1985 return getLangOpts().CPlusPlus ? BoolTy : IntTy;
1986 }
1987
1988 /// Emit the Objective-CC type encoding for the given type \p T into
1989 /// \p S.
1990 ///
1991 /// If \p Field is specified then record field names are also encoded.
1992 void getObjCEncodingForType(QualType T, std::string &S,
1993 const FieldDecl *Field=nullptr,
1994 QualType *NotEncodedT=nullptr) const;
1995
1996 /// Emit the Objective-C property type encoding for the given
1997 /// type \p T into \p S.
1998 void getObjCEncodingForPropertyType(QualType T, std::string &S) const;
1999
2000 void getLegacyIntegralTypeEncoding(QualType &t) const;
2001
2002 /// Put the string version of the type qualifiers \p QT into \p S.
2003 void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
2004 std::string &S) const;
2005
2006 /// Emit the encoded type for the function \p Decl into \p S.
2007 ///
2008 /// This is in the same format as Objective-C method encodings.
2009 ///
2010 /// \returns true if an error occurred (e.g., because one of the parameter
2011 /// types is incomplete), false otherwise.
2012 std::string getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const;
2013
2014 /// Emit the encoded type for the method declaration \p Decl into
2015 /// \p S.
2016 std::string getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
2017 bool Extended = false) const;
2018
2019 /// Return the encoded type for this block declaration.
2020 std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
2021
2022 /// getObjCEncodingForPropertyDecl - Return the encoded type for
2023 /// this method declaration. If non-NULL, Container must be either
2024 /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
2025 /// only be NULL when getting encodings for protocol properties.
2026 std::string getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
2027 const Decl *Container) const;
2028
2029 bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
2030 ObjCProtocolDecl *rProto) const;
2031
2032 ObjCPropertyImplDecl *getObjCPropertyImplDeclForPropertyDecl(
2033 const ObjCPropertyDecl *PD,
2034 const Decl *Container) const;
2035
2036 /// Return the size of type \p T for Objective-C encoding purpose,
2037 /// in characters.
2038 CharUnits getObjCEncodingTypeSize(QualType T) const;
2039
2040 /// Retrieve the typedef corresponding to the predefined \c id type
2041 /// in Objective-C.
2042 TypedefDecl *getObjCIdDecl() const;
2043
2044 /// Represents the Objective-CC \c id type.
2045 ///
2046 /// This is set up lazily, by Sema. \c id is always a (typedef for a)
2047 /// pointer type, a pointer to a struct.
2048 QualType getObjCIdType() const {
2049 return getTypeDeclType(getObjCIdDecl());
2050 }
2051
2052 /// Retrieve the typedef corresponding to the predefined 'SEL' type
2053 /// in Objective-C.
2054 TypedefDecl *getObjCSelDecl() const;
2055
2056 /// Retrieve the type that corresponds to the predefined Objective-C
2057 /// 'SEL' type.
2058 QualType getObjCSelType() const {
2059 return getTypeDeclType(getObjCSelDecl());
2060 }
2061
2062 /// Retrieve the typedef declaration corresponding to the predefined
2063 /// Objective-C 'Class' type.
2064 TypedefDecl *getObjCClassDecl() const;
2065
2066 /// Represents the Objective-C \c Class type.
2067 ///
2068 /// This is set up lazily, by Sema. \c Class is always a (typedef for a)
2069 /// pointer type, a pointer to a struct.
2070 QualType getObjCClassType() const {
2071 return getTypeDeclType(getObjCClassDecl());
2072 }
2073
2074 /// Retrieve the Objective-C class declaration corresponding to
2075 /// the predefined \c Protocol class.
2076 ObjCInterfaceDecl *getObjCProtocolDecl() const;
2077
2078 /// Retrieve declaration of 'BOOL' typedef
2079 TypedefDecl *getBOOLDecl() const {
2080 return BOOLDecl;
2081 }
2082
2083 /// Save declaration of 'BOOL' typedef
2084 void setBOOLDecl(TypedefDecl *TD) {
2085 BOOLDecl = TD;
2086 }
2087
2088 /// type of 'BOOL' type.
2089 QualType getBOOLType() const {
2090 return getTypeDeclType(getBOOLDecl());
2091 }
2092
2093 /// Retrieve the type of the Objective-C \c Protocol class.
2094 QualType getObjCProtoType() const {
2095 return getObjCInterfaceType(Decl: getObjCProtocolDecl());
2096 }
2097
2098 /// Retrieve the C type declaration corresponding to the predefined
2099 /// \c __builtin_va_list type.
2100 TypedefDecl *getBuiltinVaListDecl() const;
2101
2102 /// Retrieve the type of the \c __builtin_va_list type.
2103 QualType getBuiltinVaListType() const {
2104 return getTypeDeclType(getBuiltinVaListDecl());
2105 }
2106
2107 /// Retrieve the C type declaration corresponding to the predefined
2108 /// \c __va_list_tag type used to help define the \c __builtin_va_list type
2109 /// for some targets.
2110 Decl *getVaListTagDecl() const;
2111
2112 /// Retrieve the C type declaration corresponding to the predefined
2113 /// \c __builtin_ms_va_list type.
2114 TypedefDecl *getBuiltinMSVaListDecl() const;
2115
2116 /// Retrieve the type of the \c __builtin_ms_va_list type.
2117 QualType getBuiltinMSVaListType() const {
2118 return getTypeDeclType(getBuiltinMSVaListDecl());
2119 }
2120
2121 /// Retrieve the implicitly-predeclared 'struct _GUID' declaration.
2122 TagDecl *getMSGuidTagDecl() const { return MSGuidTagDecl; }
2123
2124 /// Retrieve the implicitly-predeclared 'struct _GUID' type.
2125 QualType getMSGuidType() const {
2126 assert(MSGuidTagDecl && "asked for GUID type but MS extensions disabled");
2127 return getTagDeclType(Decl: MSGuidTagDecl);
2128 }
2129
2130 /// Return whether a declaration to a builtin is allowed to be
2131 /// overloaded/redeclared.
2132 bool canBuiltinBeRedeclared(const FunctionDecl *) const;
2133
2134 /// Return a type with additional \c const, \c volatile, or
2135 /// \c restrict qualifiers.
2136 QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
2137 return getQualifiedType(T, Qs: Qualifiers::fromCVRMask(CVR));
2138 }
2139
2140 /// Un-split a SplitQualType.
2141 QualType getQualifiedType(SplitQualType split) const {
2142 return getQualifiedType(T: split.Ty, Qs: split.Quals);
2143 }
2144
2145 /// Return a type with additional qualifiers.
2146 QualType getQualifiedType(QualType T, Qualifiers Qs) const {
2147 if (!Qs.hasNonFastQualifiers())
2148 return T.withFastQualifiers(TQs: Qs.getFastQualifiers());
2149 QualifierCollector Qc(Qs);
2150 const Type *Ptr = Qc.strip(type: T);
2151 return getExtQualType(Base: Ptr, Quals: Qc);
2152 }
2153
2154 /// Return a type with additional qualifiers.
2155 QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
2156 if (!Qs.hasNonFastQualifiers())
2157 return QualType(T, Qs.getFastQualifiers());
2158 return getExtQualType(Base: T, Quals: Qs);
2159 }
2160
2161 /// Return a type with the given lifetime qualifier.
2162 ///
2163 /// \pre Neither type.ObjCLifetime() nor \p lifetime may be \c OCL_None.
2164 QualType getLifetimeQualifiedType(QualType type,
2165 Qualifiers::ObjCLifetime lifetime) {
2166 assert(type.getObjCLifetime() == Qualifiers::OCL_None);
2167 assert(lifetime != Qualifiers::OCL_None);
2168
2169 Qualifiers qs;
2170 qs.addObjCLifetime(type: lifetime);
2171 return getQualifiedType(T: type, Qs: qs);
2172 }
2173
2174 /// getUnqualifiedObjCPointerType - Returns version of
2175 /// Objective-C pointer type with lifetime qualifier removed.
2176 QualType getUnqualifiedObjCPointerType(QualType type) const {
2177 if (!type.getTypePtr()->isObjCObjectPointerType() ||
2178 !type.getQualifiers().hasObjCLifetime())
2179 return type;
2180 Qualifiers Qs = type.getQualifiers();
2181 Qs.removeObjCLifetime();
2182 return getQualifiedType(T: type.getUnqualifiedType(), Qs);
2183 }
2184
2185 unsigned char getFixedPointScale(QualType Ty) const;
2186 unsigned char getFixedPointIBits(QualType Ty) const;
2187 llvm::FixedPointSemantics getFixedPointSemantics(QualType Ty) const;
2188 llvm::APFixedPoint getFixedPointMax(QualType Ty) const;
2189 llvm::APFixedPoint getFixedPointMin(QualType Ty) const;
2190
2191 DeclarationNameInfo getNameForTemplate(TemplateName Name,
2192 SourceLocation NameLoc) const;
2193
2194 TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
2195 UnresolvedSetIterator End) const;
2196 TemplateName getAssumedTemplateName(DeclarationName Name) const;
2197
2198 TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
2199 bool TemplateKeyword,
2200 TemplateName Template) const;
2201
2202 TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
2203 const IdentifierInfo *Name) const;
2204 TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
2205 OverloadedOperatorKind Operator) const;
2206 TemplateName
2207 getSubstTemplateTemplateParm(TemplateName replacement, Decl *AssociatedDecl,
2208 unsigned Index,
2209 std::optional<unsigned> PackIndex) const;
2210 TemplateName getSubstTemplateTemplateParmPack(const TemplateArgument &ArgPack,
2211 Decl *AssociatedDecl,
2212 unsigned Index,
2213 bool Final) const;
2214
2215 enum GetBuiltinTypeError {
2216 /// No error
2217 GE_None,
2218
2219 /// Missing a type
2220 GE_Missing_type,
2221
2222 /// Missing a type from <stdio.h>
2223 GE_Missing_stdio,
2224
2225 /// Missing a type from <setjmp.h>
2226 GE_Missing_setjmp,
2227
2228 /// Missing a type from <ucontext.h>
2229 GE_Missing_ucontext
2230 };
2231
2232 QualType DecodeTypeStr(const char *&Str, const ASTContext &Context,
2233 ASTContext::GetBuiltinTypeError &Error,
2234 bool &RequireICE, bool AllowTypeModifiers) const;
2235
2236 /// Return the type for the specified builtin.
2237 ///
2238 /// If \p IntegerConstantArgs is non-null, it is filled in with a bitmask of
2239 /// arguments to the builtin that are required to be integer constant
2240 /// expressions.
2241 QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
2242 unsigned *IntegerConstantArgs = nullptr) const;
2243
2244 /// Types and expressions required to build C++2a three-way comparisons
2245 /// using operator<=>, including the values return by builtin <=> operators.
2246 ComparisonCategories CompCategories;
2247
2248private:
2249 CanQualType getFromTargetType(unsigned Type) const;
2250 TypeInfo getTypeInfoImpl(const Type *T) const;
2251
2252 //===--------------------------------------------------------------------===//
2253 // Type Predicates.
2254 //===--------------------------------------------------------------------===//
2255
2256public:
2257 /// Return one of the GCNone, Weak or Strong Objective-C garbage
2258 /// collection attributes.
2259 Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
2260
2261 /// Return true if the given vector types are of the same unqualified
2262 /// type or if they are equivalent to the same GCC vector type.
2263 ///
2264 /// \note This ignores whether they are target-specific (AltiVec or Neon)
2265 /// types.
2266 bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
2267
2268 /// Return true if the given types are an SVE builtin and a VectorType that
2269 /// is a fixed-length representation of the SVE builtin for a specific
2270 /// vector-length.
2271 bool areCompatibleSveTypes(QualType FirstType, QualType SecondType);
2272
2273 /// Return true if the given vector types are lax-compatible SVE vector types,
2274 /// false otherwise.
2275 bool areLaxCompatibleSveTypes(QualType FirstType, QualType SecondType);
2276
2277 /// Return true if the given types are an RISC-V vector builtin type and a
2278 /// VectorType that is a fixed-length representation of the RISC-V vector
2279 /// builtin type for a specific vector-length.
2280 bool areCompatibleRVVTypes(QualType FirstType, QualType SecondType);
2281
2282 /// Return true if the given vector types are lax-compatible RISC-V vector
2283 /// types as defined by -flax-vector-conversions=, which permits implicit
2284 /// conversions between vectors with different number of elements and/or
2285 /// incompatible element types, false otherwise.
2286 bool areLaxCompatibleRVVTypes(QualType FirstType, QualType SecondType);
2287
2288 /// Return true if the type has been explicitly qualified with ObjC ownership.
2289 /// A type may be implicitly qualified with ownership under ObjC ARC, and in
2290 /// some cases the compiler treats these differently.
2291 bool hasDirectOwnershipQualifier(QualType Ty) const;
2292
2293 /// Return true if this is an \c NSObject object with its \c NSObject
2294 /// attribute set.
2295 static bool isObjCNSObjectType(QualType Ty) {
2296 return Ty->isObjCNSObjectType();
2297 }
2298
2299 //===--------------------------------------------------------------------===//
2300 // Type Sizing and Analysis
2301 //===--------------------------------------------------------------------===//
2302
2303 /// Return the APFloat 'semantics' for the specified scalar floating
2304 /// point type.
2305 const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
2306
2307 /// Get the size and alignment of the specified complete type in bits.
2308 TypeInfo getTypeInfo(const Type *T) const;
2309 TypeInfo getTypeInfo(QualType T) const { return getTypeInfo(T: T.getTypePtr()); }
2310
2311 /// Get default simd alignment of the specified complete type in bits.
2312 unsigned getOpenMPDefaultSimdAlign(QualType T) const;
2313
2314 /// Return the size of the specified (complete) type \p T, in bits.
2315 uint64_t getTypeSize(QualType T) const { return getTypeInfo(T).Width; }
2316 uint64_t getTypeSize(const Type *T) const { return getTypeInfo(T).Width; }
2317
2318 /// Return the size of the character type, in bits.
2319 uint64_t getCharWidth() const {
2320 return getTypeSize(CharTy);
2321 }
2322
2323 /// Convert a size in bits to a size in characters.
2324 CharUnits toCharUnitsFromBits(int64_t BitSize) const;
2325
2326 /// Convert a size in characters to a size in bits.
2327 int64_t toBits(CharUnits CharSize) const;
2328
2329 /// Return the size of the specified (complete) type \p T, in
2330 /// characters.
2331 CharUnits getTypeSizeInChars(QualType T) const;
2332 CharUnits getTypeSizeInChars(const Type *T) const;
2333
2334 std::optional<CharUnits> getTypeSizeInCharsIfKnown(QualType Ty) const {
2335 if (Ty->isIncompleteType() || Ty->isDependentType())
2336 return std::nullopt;
2337 return getTypeSizeInChars(T: Ty);
2338 }
2339
2340 std::optional<CharUnits> getTypeSizeInCharsIfKnown(const Type *Ty) const {
2341 return getTypeSizeInCharsIfKnown(Ty: QualType(Ty, 0));
2342 }
2343
2344 /// Return the ABI-specified alignment of a (complete) type \p T, in
2345 /// bits.
2346 unsigned getTypeAlign(QualType T) const { return getTypeInfo(T).Align; }
2347 unsigned getTypeAlign(const Type *T) const { return getTypeInfo(T).Align; }
2348
2349 /// Return the ABI-specified natural alignment of a (complete) type \p T,
2350 /// before alignment adjustments, in bits.
2351 ///
2352 /// This alignment is curently used only by ARM and AArch64 when passing
2353 /// arguments of a composite type.
2354 unsigned getTypeUnadjustedAlign(QualType T) const {
2355 return getTypeUnadjustedAlign(T: T.getTypePtr());
2356 }
2357 unsigned getTypeUnadjustedAlign(const Type *T) const;
2358
2359 /// Return the alignment of a type, in bits, or 0 if
2360 /// the type is incomplete and we cannot determine the alignment (for
2361 /// example, from alignment attributes). The returned alignment is the
2362 /// Preferred alignment if NeedsPreferredAlignment is true, otherwise is the
2363 /// ABI alignment.
2364 unsigned getTypeAlignIfKnown(QualType T,
2365 bool NeedsPreferredAlignment = false) const;
2366
2367 /// Return the ABI-specified alignment of a (complete) type \p T, in
2368 /// characters.
2369 CharUnits getTypeAlignInChars(QualType T) const;
2370 CharUnits getTypeAlignInChars(const Type *T) const;
2371
2372 /// Return the PreferredAlignment of a (complete) type \p T, in
2373 /// characters.
2374 CharUnits getPreferredTypeAlignInChars(QualType T) const {
2375 return toCharUnitsFromBits(BitSize: getPreferredTypeAlign(T));
2376 }
2377
2378 /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a type,
2379 /// in characters, before alignment adjustments. This method does not work on
2380 /// incomplete types.
2381 CharUnits getTypeUnadjustedAlignInChars(QualType T) const;
2382 CharUnits getTypeUnadjustedAlignInChars(const Type *T) const;
2383
2384 // getTypeInfoDataSizeInChars - Return the size of a type, in chars. If the
2385 // type is a record, its data size is returned.
2386 TypeInfoChars getTypeInfoDataSizeInChars(QualType T) const;
2387
2388 TypeInfoChars getTypeInfoInChars(const Type *T) const;
2389 TypeInfoChars getTypeInfoInChars(QualType T) const;
2390
2391 /// Determine if the alignment the type has was required using an
2392 /// alignment attribute.
2393 bool isAlignmentRequired(const Type *T) const;
2394 bool isAlignmentRequired(QualType T) const;
2395
2396 /// More type predicates useful for type checking/promotion
2397 bool isPromotableIntegerType(QualType T) const; // C99 6.3.1.1p2
2398
2399 /// Return the "preferred" alignment of the specified type \p T for
2400 /// the current target, in bits.
2401 ///
2402 /// This can be different than the ABI alignment in cases where it is
2403 /// beneficial for performance or backwards compatibility preserving to
2404 /// overalign a data type. (Note: despite the name, the preferred alignment
2405 /// is ABI-impacting, and not an optimization.)
2406 unsigned getPreferredTypeAlign(QualType T) const {
2407 return getPreferredTypeAlign(T: T.getTypePtr());
2408 }
2409 unsigned getPreferredTypeAlign(const Type *T) const;
2410
2411 /// Return the default alignment for __attribute__((aligned)) on
2412 /// this target, to be used if no alignment value is specified.
2413 unsigned getTargetDefaultAlignForAttributeAligned() const;
2414
2415 /// Return the alignment in bits that should be given to a
2416 /// global variable with type \p T. If \p VD is non-null it will be
2417 /// considered specifically for the query.
2418 unsigned getAlignOfGlobalVar(QualType T, const VarDecl *VD) const;
2419
2420 /// Return the alignment in characters that should be given to a
2421 /// global variable with type \p T. If \p VD is non-null it will be
2422 /// considered specifically for the query.
2423 CharUnits getAlignOfGlobalVarInChars(QualType T, const VarDecl *VD) const;
2424
2425 /// Return the minimum alignement as specified by the target. If \p VD is
2426 /// non-null it may be used to identify external or weak variables.
2427 unsigned getMinGlobalAlignOfVar(uint64_t Size, const VarDecl *VD) const;
2428
2429 /// Return a conservative estimate of the alignment of the specified
2430 /// decl \p D.
2431 ///
2432 /// \pre \p D must not be a bitfield type, as bitfields do not have a valid
2433 /// alignment.
2434 ///
2435 /// If \p ForAlignof, references are treated like their underlying type
2436 /// and large arrays don't get any special treatment. If not \p ForAlignof
2437 /// it computes the value expected by CodeGen: references are treated like
2438 /// pointers and large arrays get extra alignment.
2439 CharUnits getDeclAlign(const Decl *D, bool ForAlignof = false) const;
2440
2441 /// Return the alignment (in bytes) of the thrown exception object. This is
2442 /// only meaningful for targets that allocate C++ exceptions in a system
2443 /// runtime, such as those using the Itanium C++ ABI.
2444 CharUnits getExnObjectAlignment() const;
2445
2446 /// Get or compute information about the layout of the specified
2447 /// record (struct/union/class) \p D, which indicates its size and field
2448 /// position information.
2449 const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
2450
2451 /// Get or compute information about the layout of the specified
2452 /// Objective-C interface.
2453 const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
2454 const;
2455
2456 void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
2457 bool Simple = false) const;
2458
2459 /// Get or compute information about the layout of the specified
2460 /// Objective-C implementation.
2461 ///
2462 /// This may differ from the interface if synthesized ivars are present.
2463 const ASTRecordLayout &
2464 getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
2465
2466 /// Get our current best idea for the key function of the
2467 /// given record decl, or nullptr if there isn't one.
2468 ///
2469 /// The key function is, according to the Itanium C++ ABI section 5.2.3:
2470 /// ...the first non-pure virtual function that is not inline at the
2471 /// point of class definition.
2472 ///
2473 /// Other ABIs use the same idea. However, the ARM C++ ABI ignores
2474 /// virtual functions that are defined 'inline', which means that
2475 /// the result of this computation can change.
2476 const CXXMethodDecl *getCurrentKeyFunction(const CXXRecordDecl *RD);
2477
2478 /// Observe that the given method cannot be a key function.
2479 /// Checks the key-function cache for the method's class and clears it
2480 /// if matches the given declaration.
2481 ///
2482 /// This is used in ABIs where out-of-line definitions marked
2483 /// inline are not considered to be key functions.
2484 ///
2485 /// \param method should be the declaration from the class definition
2486 void setNonKeyFunction(const CXXMethodDecl *method);
2487
2488 /// Loading virtual member pointers using the virtual inheritance model
2489 /// always results in an adjustment using the vbtable even if the index is
2490 /// zero.
2491 ///
2492 /// This is usually OK because the first slot in the vbtable points
2493 /// backwards to the top of the MDC. However, the MDC might be reusing a
2494 /// vbptr from an nv-base. In this case, the first slot in the vbtable
2495 /// points to the start of the nv-base which introduced the vbptr and *not*
2496 /// the MDC. Modify the NonVirtualBaseAdjustment to account for this.
2497 CharUnits getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const;
2498
2499 /// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
2500 uint64_t getFieldOffset(const ValueDecl *FD) const;
2501
2502 /// Get the offset of an ObjCIvarDecl in bits.
2503 uint64_t lookupFieldBitOffset(const ObjCInterfaceDecl *OID,
2504 const ObjCImplementationDecl *ID,
2505 const ObjCIvarDecl *Ivar) const;
2506
2507 /// Find the 'this' offset for the member path in a pointer-to-member
2508 /// APValue.
2509 CharUnits getMemberPointerPathAdjustment(const APValue &MP) const;
2510
2511 bool isNearlyEmpty(const CXXRecordDecl *RD) const;
2512
2513 VTableContextBase *getVTableContext();
2514
2515 /// If \p T is null pointer, assume the target in ASTContext.
2516 MangleContext *createMangleContext(const TargetInfo *T = nullptr);
2517
2518 /// Creates a device mangle context to correctly mangle lambdas in a mixed
2519 /// architecture compile by setting the lambda mangling number source to the
2520 /// DeviceLambdaManglingNumber. Currently this asserts that the TargetInfo
2521 /// (from the AuxTargetInfo) is a an itanium target.
2522 MangleContext *createDeviceMangleContext(const TargetInfo &T);
2523
2524 void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
2525 SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
2526
2527 unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
2528 void CollectInheritedProtocols(const Decl *CDecl,
2529 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
2530
2531 /// Return true if the specified type has unique object representations
2532 /// according to (C++17 [meta.unary.prop]p9)
2533 bool
2534 hasUniqueObjectRepresentations(QualType Ty,
2535 bool CheckIfTriviallyCopyable = true) const;
2536
2537 //===--------------------------------------------------------------------===//
2538 // Type Operators
2539 //===--------------------------------------------------------------------===//
2540
2541 /// Return the canonical (structural) type corresponding to the
2542 /// specified potentially non-canonical type \p T.
2543 ///
2544 /// The non-canonical version of a type may have many "decorated" versions of
2545 /// types. Decorators can include typedefs, 'typeof' operators, etc. The
2546 /// returned type is guaranteed to be free of any of these, allowing two
2547 /// canonical types to be compared for exact equality with a simple pointer
2548 /// comparison.
2549 CanQualType getCanonicalType(QualType T) const {
2550 return CanQualType::CreateUnsafe(Other: T.getCanonicalType());
2551 }
2552
2553 const Type *getCanonicalType(const Type *T) const {
2554 return T->getCanonicalTypeInternal().getTypePtr();
2555 }
2556
2557 /// Return the canonical parameter type corresponding to the specific
2558 /// potentially non-canonical one.
2559 ///
2560 /// Qualifiers are stripped off, functions are turned into function
2561 /// pointers, and arrays decay one level into pointers.
2562 CanQualType getCanonicalParamType(QualType T) const;
2563
2564 /// Determine whether the given types \p T1 and \p T2 are equivalent.
2565 bool hasSameType(QualType T1, QualType T2) const {
2566 return getCanonicalType(T: T1) == getCanonicalType(T: T2);
2567 }
2568 bool hasSameType(const Type *T1, const Type *T2) const {
2569 return getCanonicalType(T: T1) == getCanonicalType(T: T2);
2570 }
2571
2572 /// Determine whether the given expressions \p X and \p Y are equivalent.
2573 bool hasSameExpr(const Expr *X, const Expr *Y) const;
2574
2575 /// Return this type as a completely-unqualified array type,
2576 /// capturing the qualifiers in \p Quals.
2577 ///
2578 /// This will remove the minimal amount of sugaring from the types, similar
2579 /// to the behavior of QualType::getUnqualifiedType().
2580 ///
2581 /// \param T is the qualified type, which may be an ArrayType
2582 ///
2583 /// \param Quals will receive the full set of qualifiers that were
2584 /// applied to the array.
2585 ///
2586 /// \returns if this is an array type, the completely unqualified array type
2587 /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
2588 QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
2589
2590 /// Determine whether the given types are equivalent after
2591 /// cvr-qualifiers have been removed.
2592 bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
2593 return getCanonicalType(T: T1).getTypePtr() ==
2594 getCanonicalType(T: T2).getTypePtr();
2595 }
2596
2597 bool hasSameNullabilityTypeQualifier(QualType SubT, QualType SuperT,
2598 bool IsParam) const {
2599 auto SubTnullability = SubT->getNullability();
2600 auto SuperTnullability = SuperT->getNullability();
2601 if (SubTnullability.has_value() == SuperTnullability.has_value()) {
2602 // Neither has nullability; return true
2603 if (!SubTnullability)
2604 return true;
2605 // Both have nullability qualifier.
2606 if (*SubTnullability == *SuperTnullability ||
2607 *SubTnullability == NullabilityKind::Unspecified ||
2608 *SuperTnullability == NullabilityKind::Unspecified)
2609 return true;
2610
2611 if (IsParam) {
2612 // Ok for the superclass method parameter to be "nonnull" and the subclass
2613 // method parameter to be "nullable"
2614 return (*SuperTnullability == NullabilityKind::NonNull &&
2615 *SubTnullability == NullabilityKind::Nullable);
2616 }
2617 // For the return type, it's okay for the superclass method to specify
2618 // "nullable" and the subclass method specify "nonnull"
2619 return (*SuperTnullability == NullabilityKind::Nullable &&
2620 *SubTnullability == NullabilityKind::NonNull);
2621 }
2622 return true;
2623 }
2624
2625 bool ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
2626 const ObjCMethodDecl *MethodImp);
2627
2628 bool UnwrapSimilarTypes(QualType &T1, QualType &T2,
2629 bool AllowPiMismatch = true);
2630 void UnwrapSimilarArrayTypes(QualType &T1, QualType &T2,
2631 bool AllowPiMismatch = true);
2632
2633 /// Determine if two types are similar, according to the C++ rules. That is,
2634 /// determine if they are the same other than qualifiers on the initial
2635 /// sequence of pointer / pointer-to-member / array (and in Clang, object
2636 /// pointer) types and their element types.
2637 ///
2638 /// Clang offers a number of qualifiers in addition to the C++ qualifiers;
2639 /// those qualifiers are also ignored in the 'similarity' check.
2640 bool hasSimilarType(QualType T1, QualType T2);
2641
2642 /// Determine if two types are similar, ignoring only CVR qualifiers.
2643 bool hasCvrSimilarType(QualType T1, QualType T2);
2644
2645 /// Retrieves the "canonical" nested name specifier for a
2646 /// given nested name specifier.
2647 ///
2648 /// The canonical nested name specifier is a nested name specifier
2649 /// that uniquely identifies a type or namespace within the type
2650 /// system. For example, given:
2651 ///
2652 /// \code
2653 /// namespace N {
2654 /// struct S {
2655 /// template<typename T> struct X { typename T* type; };
2656 /// };
2657 /// }
2658 ///
2659 /// template<typename T> struct Y {
2660 /// typename N::S::X<T>::type member;
2661 /// };
2662 /// \endcode
2663 ///
2664 /// Here, the nested-name-specifier for N::S::X<T>:: will be
2665 /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
2666 /// by declarations in the type system and the canonical type for
2667 /// the template type parameter 'T' is template-param-0-0.
2668 NestedNameSpecifier *
2669 getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
2670
2671 /// Retrieves the default calling convention for the current target.
2672 CallingConv getDefaultCallingConvention(bool IsVariadic,
2673 bool IsCXXMethod,
2674 bool IsBuiltin = false) const;
2675
2676 /// Retrieves the "canonical" template name that refers to a
2677 /// given template.
2678 ///
2679 /// The canonical template name is the simplest expression that can
2680 /// be used to refer to a given template. For most templates, this
2681 /// expression is just the template declaration itself. For example,
2682 /// the template std::vector can be referred to via a variety of
2683 /// names---std::vector, \::std::vector, vector (if vector is in
2684 /// scope), etc.---but all of these names map down to the same
2685 /// TemplateDecl, which is used to form the canonical template name.
2686 ///
2687 /// Dependent template names are more interesting. Here, the
2688 /// template name could be something like T::template apply or
2689 /// std::allocator<T>::template rebind, where the nested name
2690 /// specifier itself is dependent. In this case, the canonical
2691 /// template name uses the shortest form of the dependent
2692 /// nested-name-specifier, which itself contains all canonical
2693 /// types, values, and templates.
2694 TemplateName getCanonicalTemplateName(const TemplateName &Name) const;
2695
2696 /// Determine whether the given template names refer to the same
2697 /// template.
2698 bool hasSameTemplateName(const TemplateName &X, const TemplateName &Y) const;
2699
2700 /// Determine whether the two declarations refer to the same entity.
2701 bool isSameEntity(const NamedDecl *X, const NamedDecl *Y) const;
2702
2703 /// Determine whether two template parameter lists are similar enough
2704 /// that they may be used in declarations of the same template.
2705 bool isSameTemplateParameterList(const TemplateParameterList *X,
2706 const TemplateParameterList *Y) const;
2707
2708 /// Determine whether two template parameters are similar enough
2709 /// that they may be used in declarations of the same template.
2710 bool isSameTemplateParameter(const NamedDecl *X, const NamedDecl *Y) const;
2711
2712 /// Determine whether two 'requires' expressions are similar enough that they
2713 /// may be used in re-declarations.
2714 ///
2715 /// Use of 'requires' isn't mandatory, works with constraints expressed in
2716 /// other ways too.
2717 bool isSameConstraintExpr(const Expr *XCE, const Expr *YCE) const;
2718
2719 /// Determine whether two type contraint are similar enough that they could
2720 /// used in declarations of the same template.
2721 bool isSameTypeConstraint(const TypeConstraint *XTC,
2722 const TypeConstraint *YTC) const;
2723
2724 /// Determine whether two default template arguments are similar enough
2725 /// that they may be used in declarations of the same template.
2726 bool isSameDefaultTemplateArgument(const NamedDecl *X,
2727 const NamedDecl *Y) const;
2728
2729 /// Retrieve the "canonical" template argument.
2730 ///
2731 /// The canonical template argument is the simplest template argument
2732 /// (which may be a type, value, expression, or declaration) that
2733 /// expresses the value of the argument.
2734 TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
2735 const;
2736
2737 /// Type Query functions. If the type is an instance of the specified class,
2738 /// return the Type pointer for the underlying maximally pretty type. This
2739 /// is a member of ASTContext because this may need to do some amount of
2740 /// canonicalization, e.g. to move type qualifiers into the element type.
2741 const ArrayType *getAsArrayType(QualType T) const;
2742 const ConstantArrayType *getAsConstantArrayType(QualType T) const {
2743 return dyn_cast_or_null<ConstantArrayType>(Val: getAsArrayType(T));
2744 }
2745 const VariableArrayType *getAsVariableArrayType(QualType T) const {
2746 return dyn_cast_or_null<VariableArrayType>(Val: getAsArrayType(T));
2747 }
2748 const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
2749 return dyn_cast_or_null<IncompleteArrayType>(Val: getAsArrayType(T));
2750 }
2751 const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
2752 const {
2753 return dyn_cast_or_null<DependentSizedArrayType>(Val: getAsArrayType(T));
2754 }
2755
2756 /// Return the innermost element type of an array type.
2757 ///
2758 /// For example, will return "int" for int[m][n]
2759 QualType getBaseElementType(const ArrayType *VAT) const;
2760
2761 /// Return the innermost element type of a type (which needn't
2762 /// actually be an array type).
2763 QualType getBaseElementType(QualType QT) const;
2764
2765 /// Return number of constant array elements.
2766 uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
2767
2768 /// Return number of elements initialized in an ArrayInitLoopExpr.
2769 uint64_t
2770 getArrayInitLoopExprElementCount(const ArrayInitLoopExpr *AILE) const;
2771
2772 /// Perform adjustment on the parameter type of a function.
2773 ///
2774 /// This routine adjusts the given parameter type @p T to the actual
2775 /// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
2776 /// C++ [dcl.fct]p3). The adjusted parameter type is returned.
2777 QualType getAdjustedParameterType(QualType T) const;
2778
2779 /// Retrieve the parameter type as adjusted for use in the signature
2780 /// of a function, decaying array and function types and removing top-level
2781 /// cv-qualifiers.
2782 QualType getSignatureParameterType(QualType T) const;
2783
2784 QualType getExceptionObjectType(QualType T) const;
2785
2786 /// Return the properly qualified result of decaying the specified
2787 /// array type to a pointer.
2788 ///
2789 /// This operation is non-trivial when handling typedefs etc. The canonical
2790 /// type of \p T must be an array type, this returns a pointer to a properly
2791 /// qualified element of the array.
2792 ///
2793 /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2794 QualType getArrayDecayedType(QualType T) const;
2795
2796 /// Return the type that \p PromotableType will promote to: C99
2797 /// 6.3.1.1p2, assuming that \p PromotableType is a promotable integer type.
2798 QualType getPromotedIntegerType(QualType PromotableType) const;
2799
2800 /// Recurses in pointer/array types until it finds an Objective-C
2801 /// retainable type and returns its ownership.
2802 Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
2803
2804 /// Whether this is a promotable bitfield reference according
2805 /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2806 ///
2807 /// \returns the type this bit-field will promote to, or NULL if no
2808 /// promotion occurs.
2809 QualType isPromotableBitField(Expr *E) const;
2810
2811 /// Return the highest ranked integer type, see C99 6.3.1.8p1.
2812 ///
2813 /// If \p LHS > \p RHS, returns 1. If \p LHS == \p RHS, returns 0. If
2814 /// \p LHS < \p RHS, return -1.
2815 int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
2816
2817 /// Compare the rank of the two specified floating point types,
2818 /// ignoring the domain of the type (i.e. 'double' == '_Complex double').
2819 ///
2820 /// If \p LHS > \p RHS, returns 1. If \p LHS == \p RHS, returns 0. If
2821 /// \p LHS < \p RHS, return -1.
2822 int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
2823
2824 /// Compare the rank of two floating point types as above, but compare equal
2825 /// if both types have the same floating-point semantics on the target (i.e.
2826 /// long double and double on AArch64 will return 0).
2827 int getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const;
2828
2829 unsigned getTargetAddressSpace(LangAS AS) const;
2830
2831 LangAS getLangASForBuiltinAddressSpace(unsigned AS) const;
2832
2833 /// Get target-dependent integer value for null pointer which is used for
2834 /// constant folding.
2835 uint64_t getTargetNullPointerValue(QualType QT) const;
2836
2837 bool addressSpaceMapManglingFor(LangAS AS) const {
2838 return AddrSpaceMapMangling || isTargetAddressSpace(AS);
2839 }
2840
2841 // Merges two exception specifications, such that the resulting
2842 // exception spec is the union of both. For example, if either
2843 // of them can throw something, the result can throw it as well.
2844 FunctionProtoType::ExceptionSpecInfo
2845 mergeExceptionSpecs(FunctionProtoType::ExceptionSpecInfo ESI1,
2846 FunctionProtoType::ExceptionSpecInfo ESI2,
2847 SmallVectorImpl<QualType> &ExceptionTypeStorage,
2848 bool AcceptDependent);
2849
2850 // For two "same" types, return a type which has
2851 // the common sugar between them. If Unqualified is true,
2852 // both types need only be the same unqualified type.
2853 // The result will drop the qualifiers which do not occur
2854 // in both types.
2855 QualType getCommonSugaredType(QualType X, QualType Y,
2856 bool Unqualified = false);
2857
2858private:
2859 // Helper for integer ordering
2860 unsigned getIntegerRank(const Type *T) const;
2861
2862public:
2863 //===--------------------------------------------------------------------===//
2864 // Type Compatibility Predicates
2865 //===--------------------------------------------------------------------===//
2866
2867 /// Compatibility predicates used to check assignment expressions.
2868 bool typesAreCompatible(QualType T1, QualType T2,
2869 bool CompareUnqualified = false); // C99 6.2.7p1
2870
2871 bool propertyTypesAreCompatible(QualType, QualType);
2872 bool typesAreBlockPointerCompatible(QualType, QualType);
2873
2874 bool isObjCIdType(QualType T) const {
2875 if (const auto *ET = dyn_cast<ElaboratedType>(Val&: T))
2876 T = ET->getNamedType();
2877 return T == getObjCIdType();
2878 }
2879
2880 bool isObjCClassType(QualType T) const {
2881 if (const auto *ET = dyn_cast<ElaboratedType>(Val&: T))
2882 T = ET->getNamedType();
2883 return T == getObjCClassType();
2884 }
2885
2886 bool isObjCSelType(QualType T) const {
2887 if (const auto *ET = dyn_cast<ElaboratedType>(Val&: T))
2888 T = ET->getNamedType();
2889 return T == getObjCSelType();
2890 }
2891
2892 bool ObjCQualifiedIdTypesAreCompatible(const ObjCObjectPointerType *LHS,
2893 const ObjCObjectPointerType *RHS,
2894 bool ForCompare);
2895
2896 bool ObjCQualifiedClassTypesAreCompatible(const ObjCObjectPointerType *LHS,
2897 const ObjCObjectPointerType *RHS);
2898
2899 // Check the safety of assignment from LHS to RHS
2900 bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
2901 const ObjCObjectPointerType *RHSOPT);
2902 bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
2903 const ObjCObjectType *RHS);
2904 bool canAssignObjCInterfacesInBlockPointer(
2905 const ObjCObjectPointerType *LHSOPT,
2906 const ObjCObjectPointerType *RHSOPT,
2907 bool BlockReturnType);
2908 bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
2909 QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
2910 const ObjCObjectPointerType *RHSOPT);
2911 bool canBindObjCObjectType(QualType To, QualType From);
2912
2913 // Functions for calculating composite types
2914 QualType mergeTypes(QualType, QualType, bool OfBlockPointer = false,
2915 bool Unqualified = false, bool BlockReturnType = false,
2916 bool IsConditionalOperator = false);
2917 QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer = false,
2918 bool Unqualified = false, bool AllowCXX = false,
2919 bool IsConditionalOperator = false);
2920 QualType mergeFunctionParameterTypes(QualType, QualType,
2921 bool OfBlockPointer = false,
2922 bool Unqualified = false);
2923 QualType mergeTransparentUnionType(QualType, QualType,
2924 bool OfBlockPointer=false,
2925 bool Unqualified = false);
2926
2927 QualType mergeObjCGCQualifiers(QualType, QualType);
2928
2929 /// This function merges the ExtParameterInfo lists of two functions. It
2930 /// returns true if the lists are compatible. The merged list is returned in
2931 /// NewParamInfos.
2932 ///
2933 /// \param FirstFnType The type of the first function.
2934 ///
2935 /// \param SecondFnType The type of the second function.
2936 ///
2937 /// \param CanUseFirst This flag is set to true if the first function's
2938 /// ExtParameterInfo list can be used as the composite list of
2939 /// ExtParameterInfo.
2940 ///
2941 /// \param CanUseSecond This flag is set to true if the second function's
2942 /// ExtParameterInfo list can be used as the composite list of
2943 /// ExtParameterInfo.
2944 ///
2945 /// \param NewParamInfos The composite list of ExtParameterInfo. The list is
2946 /// empty if none of the flags are set.
2947 ///
2948 bool mergeExtParameterInfo(
2949 const FunctionProtoType *FirstFnType,
2950 const FunctionProtoType *SecondFnType,
2951 bool &CanUseFirst, bool &CanUseSecond,
2952 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos);
2953
2954 void ResetObjCLayout(const ObjCContainerDecl *CD);
2955
2956 //===--------------------------------------------------------------------===//
2957 // Integer Predicates
2958 //===--------------------------------------------------------------------===//
2959
2960 // The width of an integer, as defined in C99 6.2.6.2. This is the number
2961 // of bits in an integer type excluding any padding bits.
2962 unsigned getIntWidth(QualType T) const;
2963
2964 // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
2965 // unsigned integer type. This method takes a signed type, and returns the
2966 // corresponding unsigned integer type.
2967 // With the introduction of fixed point types in ISO N1169, this method also
2968 // accepts fixed point types and returns the corresponding unsigned type for
2969 // a given fixed point type.
2970 QualType getCorrespondingUnsignedType(QualType T) const;
2971
2972 // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
2973 // unsigned integer type. This method takes an unsigned type, and returns the
2974 // corresponding signed integer type.
2975 // With the introduction of fixed point types in ISO N1169, this method also
2976 // accepts fixed point types and returns the corresponding signed type for
2977 // a given fixed point type.
2978 QualType getCorrespondingSignedType(QualType T) const;
2979
2980 // Per ISO N1169, this method accepts fixed point types and returns the
2981 // corresponding saturated type for a given fixed point type.
2982 QualType getCorrespondingSaturatedType(QualType Ty) const;
2983
2984 // This method accepts fixed point types and returns the corresponding signed
2985 // type. Unlike getCorrespondingUnsignedType(), this only accepts unsigned
2986 // fixed point types because there are unsigned integer types like bool and
2987 // char8_t that don't have signed equivalents.
2988 QualType getCorrespondingSignedFixedPointType(QualType Ty) const;
2989
2990 //===--------------------------------------------------------------------===//
2991 // Integer Values
2992 //===--------------------------------------------------------------------===//
2993
2994 /// Make an APSInt of the appropriate width and signedness for the
2995 /// given \p Value and integer \p Type.
2996 llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
2997 // If Type is a signed integer type larger than 64 bits, we need to be sure
2998 // to sign extend Res appropriately.
2999 llvm::APSInt Res(64, !Type->isSignedIntegerOrEnumerationType());
3000 Res = Value;
3001 unsigned Width = getIntWidth(T: Type);
3002 if (Width != Res.getBitWidth())
3003 return Res.extOrTrunc(width: Width);
3004 return Res;
3005 }
3006
3007 bool isSentinelNullExpr(const Expr *E);
3008
3009 /// Get the implementation of the ObjCInterfaceDecl \p D, or nullptr if
3010 /// none exists.
3011 ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
3012
3013 /// Get the implementation of the ObjCCategoryDecl \p D, or nullptr if
3014 /// none exists.
3015 ObjCCategoryImplDecl *getObjCImplementation(ObjCCategoryDecl *D);
3016
3017 /// Return true if there is at least one \@implementation in the TU.
3018 bool AnyObjCImplementation() {
3019 return !ObjCImpls.empty();
3020 }
3021
3022 /// Set the implementation of ObjCInterfaceDecl.
3023 void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
3024 ObjCImplementationDecl *ImplD);
3025
3026 /// Set the implementation of ObjCCategoryDecl.
3027 void setObjCImplementation(ObjCCategoryDecl *CatD,
3028 ObjCCategoryImplDecl *ImplD);
3029
3030 /// Get the duplicate declaration of a ObjCMethod in the same
3031 /// interface, or null if none exists.
3032 const ObjCMethodDecl *
3033 getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const;
3034
3035 void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
3036 const ObjCMethodDecl *Redecl);
3037
3038 /// Returns the Objective-C interface that \p ND belongs to if it is
3039 /// an Objective-C method/property/ivar etc. that is part of an interface,
3040 /// otherwise returns null.
3041 const ObjCInterfaceDecl *getObjContainingInterface(const NamedDecl *ND) const;
3042
3043 /// Set the copy initialization expression of a block var decl. \p CanThrow
3044 /// indicates whether the copy expression can throw or not.
3045 void setBlockVarCopyInit(const VarDecl* VD, Expr *CopyExpr, bool CanThrow);
3046
3047 /// Get the copy initialization expression of the VarDecl \p VD, or
3048 /// nullptr if none exists.
3049 BlockVarCopyInit getBlockVarCopyInit(const VarDecl* VD) const;
3050
3051 /// Allocate an uninitialized TypeSourceInfo.
3052 ///
3053 /// The caller should initialize the memory held by TypeSourceInfo using
3054 /// the TypeLoc wrappers.
3055 ///
3056 /// \param T the type that will be the basis for type source info. This type
3057 /// should refer to how the declarator was written in source code, not to
3058 /// what type semantic analysis resolved the declarator to.
3059 ///
3060 /// \param Size the size of the type info to create, or 0 if the size
3061 /// should be calculated based on the type.
3062 TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
3063
3064 /// Allocate a TypeSourceInfo where all locations have been
3065 /// initialized to a given location, which defaults to the empty
3066 /// location.
3067 TypeSourceInfo *
3068 getTrivialTypeSourceInfo(QualType T,
3069 SourceLocation Loc = SourceLocation()) const;
3070
3071 /// Add a deallocation callback that will be invoked when the
3072 /// ASTContext is destroyed.
3073 ///
3074 /// \param Callback A callback function that will be invoked on destruction.
3075 ///
3076 /// \param Data Pointer data that will be provided to the callback function
3077 /// when it is called.
3078 void AddDeallocation(void (*Callback)(void *), void *Data) const;
3079
3080 /// If T isn't trivially destructible, calls AddDeallocation to register it
3081 /// for destruction.
3082 template <typename T> void addDestruction(T *Ptr) const {
3083 if (!std::is_trivially_destructible<T>::value) {
3084 auto DestroyPtr = [](void *V) { static_cast<T *>(V)->~T(); };
3085 AddDeallocation(Callback: DestroyPtr, Data: Ptr);
3086 }
3087 }
3088
3089 GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD) const;
3090 GVALinkage GetGVALinkageForVariable(const VarDecl *VD) const;
3091
3092 /// Determines if the decl can be CodeGen'ed or deserialized from PCH
3093 /// lazily, only when used; this is only relevant for function or file scoped
3094 /// var definitions.
3095 ///
3096 /// \returns true if the function/var must be CodeGen'ed/deserialized even if
3097 /// it is not used.
3098 bool DeclMustBeEmitted(const Decl *D);
3099
3100 /// Visits all versions of a multiversioned function with the passed
3101 /// predicate.
3102 void forEachMultiversionedFunctionVersion(
3103 const FunctionDecl *FD,
3104 llvm::function_ref<void(FunctionDecl *)> Pred) const;
3105
3106 const CXXConstructorDecl *
3107 getCopyConstructorForExceptionObject(CXXRecordDecl *RD);
3108
3109 void addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
3110 CXXConstructorDecl *CD);
3111
3112 void addTypedefNameForUnnamedTagDecl(TagDecl *TD, TypedefNameDecl *TND);
3113
3114 TypedefNameDecl *getTypedefNameForUnnamedTagDecl(const TagDecl *TD);
3115
3116 void addDeclaratorForUnnamedTagDecl(TagDecl *TD, DeclaratorDecl *DD);
3117
3118 DeclaratorDecl *getDeclaratorForUnnamedTagDecl(const TagDecl *TD);
3119
3120 void setManglingNumber(const NamedDecl *ND, unsigned Number);
3121 unsigned getManglingNumber(const NamedDecl *ND,
3122 bool ForAuxTarget = false) const;
3123
3124 void setStaticLocalNumber(const VarDecl *VD, unsigned Number);
3125 unsigned getStaticLocalNumber(const VarDecl *VD) const;
3126
3127 /// Retrieve the context for computing mangling numbers in the given
3128 /// DeclContext.
3129 MangleNumberingContext &getManglingNumberContext(const DeclContext *DC);
3130 enum NeedExtraManglingDecl_t { NeedExtraManglingDecl };
3131 MangleNumberingContext &getManglingNumberContext(NeedExtraManglingDecl_t,
3132 const Decl *D);
3133
3134 std::unique_ptr<MangleNumberingContext> createMangleNumberingContext() const;
3135
3136 /// Used by ParmVarDecl to store on the side the
3137 /// index of the parameter when it exceeds the size of the normal bitfield.
3138 void setParameterIndex(const ParmVarDecl *D, unsigned index);
3139
3140 /// Used by ParmVarDecl to retrieve on the side the
3141 /// index of the parameter when it exceeds the size of the normal bitfield.
3142 unsigned getParameterIndex(const ParmVarDecl *D) const;
3143
3144 /// Return a string representing the human readable name for the specified
3145 /// function declaration or file name. Used by SourceLocExpr and
3146 /// PredefinedExpr to cache evaluated results.
3147 StringLiteral *getPredefinedStringLiteralFromCache(StringRef Key) const;
3148
3149 /// Return a declaration for the global GUID object representing the given
3150 /// GUID value.
3151 MSGuidDecl *getMSGuidDecl(MSGuidDeclParts Parts) const;
3152
3153 /// Return a declaration for a uniquified anonymous global constant
3154 /// corresponding to a given APValue.
3155 UnnamedGlobalConstantDecl *
3156 getUnnamedGlobalConstantDecl(QualType Ty, const APValue &Value) const;
3157
3158 /// Return the template parameter object of the given type with the given
3159 /// value.
3160 TemplateParamObjectDecl *getTemplateParamObjectDecl(QualType T,
3161 const APValue &V) const;
3162
3163 /// Parses the target attributes passed in, and returns only the ones that are
3164 /// valid feature names.
3165 ParsedTargetAttr filterFunctionTargetAttrs(const TargetAttr *TD) const;
3166
3167 std::vector<std::string>
3168 filterFunctionTargetVersionAttrs(const TargetVersionAttr *TV) const;
3169
3170 void getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
3171 const FunctionDecl *) const;
3172 void getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
3173 GlobalDecl GD) const;
3174
3175 //===--------------------------------------------------------------------===//
3176 // Statistics
3177 //===--------------------------------------------------------------------===//
3178
3179 /// The number of implicitly-declared default constructors.
3180 unsigned NumImplicitDefaultConstructors = 0;
3181
3182 /// The number of implicitly-declared default constructors for
3183 /// which declarations were built.
3184 unsigned NumImplicitDefaultConstructorsDeclared = 0;
3185
3186 /// The number of implicitly-declared copy constructors.
3187 unsigned NumImplicitCopyConstructors = 0;
3188
3189 /// The number of implicitly-declared copy constructors for
3190 /// which declarations were built.
3191 unsigned NumImplicitCopyConstructorsDeclared = 0;
3192
3193 /// The number of implicitly-declared move constructors.
3194 unsigned NumImplicitMoveConstructors = 0;
3195
3196 /// The number of implicitly-declared move constructors for
3197 /// which declarations were built.
3198 unsigned NumImplicitMoveConstructorsDeclared = 0;
3199
3200 /// The number of implicitly-declared copy assignment operators.
3201 unsigned NumImplicitCopyAssignmentOperators = 0;
3202
3203 /// The number of implicitly-declared copy assignment operators for
3204 /// which declarations were built.
3205 unsigned NumImplicitCopyAssignmentOperatorsDeclared = 0;
3206
3207 /// The number of implicitly-declared move assignment operators.
3208 unsigned NumImplicitMoveAssignmentOperators = 0;
3209
3210 /// The number of implicitly-declared move assignment operators for
3211 /// which declarations were built.
3212 unsigned NumImplicitMoveAssignmentOperatorsDeclared = 0;
3213
3214 /// The number of implicitly-declared destructors.
3215 unsigned NumImplicitDestructors = 0;
3216
3217 /// The number of implicitly-declared destructors for which
3218 /// declarations were built.
3219 unsigned NumImplicitDestructorsDeclared = 0;
3220
3221public:
3222 /// Initialize built-in types.
3223 ///
3224 /// This routine may only be invoked once for a given ASTContext object.
3225 /// It is normally invoked after ASTContext construction.
3226 ///
3227 /// \param Target The target
3228 void InitBuiltinTypes(const TargetInfo &Target,
3229 const TargetInfo *AuxTarget = nullptr);
3230
3231private:
3232 void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
3233
3234 class ObjCEncOptions {
3235 unsigned Bits;
3236
3237 ObjCEncOptions(unsigned Bits) : Bits(Bits) {}
3238
3239 public:
3240 ObjCEncOptions() : Bits(0) {}
3241
3242#define OPT_LIST(V) \
3243 V(ExpandPointedToStructures, 0) \
3244 V(ExpandStructures, 1) \
3245 V(IsOutermostType, 2) \
3246 V(EncodingProperty, 3) \
3247 V(IsStructField, 4) \
3248 V(EncodeBlockParameters, 5) \
3249 V(EncodeClassNames, 6) \
3250
3251#define V(N,I) ObjCEncOptions& set##N() { Bits |= 1 << I; return *this; }
3252OPT_LIST(V)
3253#undef V
3254
3255#define V(N,I) bool N() const { return Bits & 1 << I; }
3256OPT_LIST(V)
3257#undef V
3258
3259#undef OPT_LIST
3260
3261 [[nodiscard]] ObjCEncOptions keepingOnly(ObjCEncOptions Mask) const {
3262 return Bits & Mask.Bits;
3263 }
3264
3265 [[nodiscard]] ObjCEncOptions forComponentType() const {
3266 ObjCEncOptions Mask = ObjCEncOptions()
3267 .setIsOutermostType()
3268 .setIsStructField();
3269 return Bits & ~Mask.Bits;
3270 }
3271 };
3272
3273 // Return the Objective-C type encoding for a given type.
3274 void getObjCEncodingForTypeImpl(QualType t, std::string &S,
3275 ObjCEncOptions Options,
3276 const FieldDecl *Field,
3277 QualType *NotEncodedT = nullptr) const;
3278
3279 // Adds the encoding of the structure's members.
3280 void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
3281 const FieldDecl *Field,
3282 bool includeVBases = true,
3283 QualType *NotEncodedT=nullptr) const;
3284
3285public:
3286 // Adds the encoding of a method parameter or return type.
3287 void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
3288 QualType T, std::string& S,
3289 bool Extended) const;
3290
3291 /// Returns true if this is an inline-initialized static data member
3292 /// which is treated as a definition for MSVC compatibility.
3293 bool isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const;
3294
3295 enum class InlineVariableDefinitionKind {
3296 /// Not an inline variable.
3297 None,
3298
3299 /// Weak definition of inline variable.
3300 Weak,
3301
3302 /// Weak for now, might become strong later in this TU.
3303 WeakUnknown,
3304
3305 /// Strong definition.
3306 Strong
3307 };
3308
3309 /// Determine whether a definition of this inline variable should
3310 /// be treated as a weak or strong definition. For compatibility with
3311 /// C++14 and before, for a constexpr static data member, if there is an
3312 /// out-of-line declaration of the member, we may promote it from weak to
3313 /// strong.
3314 InlineVariableDefinitionKind
3315 getInlineVariableDefinitionKind(const VarDecl *VD) const;
3316
3317private:
3318 friend class DeclarationNameTable;
3319 friend class DeclContext;
3320
3321 const ASTRecordLayout &
3322 getObjCLayout(const ObjCInterfaceDecl *D,
3323 const ObjCImplementationDecl *Impl) const;
3324
3325 /// A set of deallocations that should be performed when the
3326 /// ASTContext is destroyed.
3327 // FIXME: We really should have a better mechanism in the ASTContext to
3328 // manage running destructors for types which do variable sized allocation
3329 // within the AST. In some places we thread the AST bump pointer allocator
3330 // into the datastructures which avoids this mess during deallocation but is
3331 // wasteful of memory, and here we require a lot of error prone book keeping
3332 // in order to track and run destructors while we're tearing things down.
3333 using DeallocationFunctionsAndArguments =
3334 llvm::SmallVector<std::pair<void (*)(void *), void *>, 16>;
3335 mutable DeallocationFunctionsAndArguments Deallocations;
3336
3337 // FIXME: This currently contains the set of StoredDeclMaps used
3338 // by DeclContext objects. This probably should not be in ASTContext,
3339 // but we include it here so that ASTContext can quickly deallocate them.
3340 llvm::PointerIntPair<StoredDeclsMap *, 1> LastSDM;
3341
3342 std::vector<Decl *> TraversalScope;
3343
3344 std::unique_ptr<VTableContextBase> VTContext;
3345
3346 void ReleaseDeclContextMaps();
3347
3348public:
3349 enum PragmaSectionFlag : unsigned {
3350 PSF_None = 0,
3351 PSF_Read = 0x1,
3352 PSF_Write = 0x2,
3353 PSF_Execute = 0x4,
3354 PSF_Implicit = 0x8,
3355 PSF_ZeroInit = 0x10,
3356 PSF_Invalid = 0x80000000U,
3357 };
3358
3359 struct SectionInfo {
3360 NamedDecl *Decl;
3361 SourceLocation PragmaSectionLocation;
3362 int SectionFlags;
3363
3364 SectionInfo() = default;
3365 SectionInfo(NamedDecl *Decl, SourceLocation PragmaSectionLocation,
3366 int SectionFlags)
3367 : Decl(Decl), PragmaSectionLocation(PragmaSectionLocation),
3368 SectionFlags(SectionFlags) {}
3369 };
3370
3371 llvm::StringMap<SectionInfo> SectionInfos;
3372
3373 /// Return a new OMPTraitInfo object owned by this context.
3374 OMPTraitInfo &getNewOMPTraitInfo();
3375
3376 /// Whether a C++ static variable or CUDA/HIP kernel may be externalized.
3377 bool mayExternalize(const Decl *D) const;
3378
3379 /// Whether a C++ static variable or CUDA/HIP kernel should be externalized.
3380 bool shouldExternalize(const Decl *D) const;
3381
3382 StringRef getCUIDHash() const;
3383
3384private:
3385 /// All OMPTraitInfo objects live in this collection, one per
3386 /// `pragma omp [begin] declare variant` directive.
3387 SmallVector<std::unique_ptr<OMPTraitInfo>, 4> OMPTraitInfoVector;
3388};
3389
3390/// Insertion operator for diagnostics.
3391const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB,
3392 const ASTContext::SectionInfo &Section);
3393
3394/// Utility function for constructing a nullary selector.
3395inline Selector GetNullarySelector(StringRef name, ASTContext &Ctx) {
3396 IdentifierInfo* II = &Ctx.Idents.get(Name: name);
3397 return Ctx.Selectors.getSelector(NumArgs: 0, IIV: &II);
3398}
3399
3400/// Utility function for constructing an unary selector.
3401inline Selector GetUnarySelector(StringRef name, ASTContext &Ctx) {
3402 IdentifierInfo* II = &Ctx.Idents.get(Name: name);
3403 return Ctx.Selectors.getSelector(NumArgs: 1, IIV: &II);
3404}
3405
3406} // namespace clang
3407
3408// operator new and delete aren't allowed inside namespaces.
3409
3410/// Placement new for using the ASTContext's allocator.
3411///
3412/// This placement form of operator new uses the ASTContext's allocator for
3413/// obtaining memory.
3414///
3415/// IMPORTANT: These are also declared in clang/AST/ASTContextAllocate.h!
3416/// Any changes here need to also be made there.
3417///
3418/// We intentionally avoid using a nothrow specification here so that the calls
3419/// to this operator will not perform a null check on the result -- the
3420/// underlying allocator never returns null pointers.
3421///
3422/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
3423/// @code
3424/// // Default alignment (8)
3425/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
3426/// // Specific alignment
3427/// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
3428/// @endcode
3429/// Memory allocated through this placement new operator does not need to be
3430/// explicitly freed, as ASTContext will free all of this memory when it gets
3431/// destroyed. Please note that you cannot use delete on the pointer.
3432///
3433/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
3434/// @param C The ASTContext that provides the allocator.
3435/// @param Alignment The alignment of the allocated memory (if the underlying
3436/// allocator supports it).
3437/// @return The allocated memory. Could be nullptr.
3438inline void *operator new(size_t Bytes, const clang::ASTContext &C,
3439 size_t Alignment /* = 8 */) {
3440 return C.Allocate(Size: Bytes, Align: Alignment);
3441}
3442
3443/// Placement delete companion to the new above.
3444///
3445/// This operator is just a companion to the new above. There is no way of
3446/// invoking it directly; see the new operator for more details. This operator
3447/// is called implicitly by the compiler if a placement new expression using
3448/// the ASTContext throws in the object constructor.
3449inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
3450 C.Deallocate(Ptr);
3451}
3452
3453/// This placement form of operator new[] uses the ASTContext's allocator for
3454/// obtaining memory.
3455///
3456/// We intentionally avoid using a nothrow specification here so that the calls
3457/// to this operator will not perform a null check on the result -- the
3458/// underlying allocator never returns null pointers.
3459///
3460/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
3461/// @code
3462/// // Default alignment (8)
3463/// char *data = new (Context) char[10];
3464/// // Specific alignment
3465/// char *data = new (Context, 4) char[10];
3466/// @endcode
3467/// Memory allocated through this placement new[] operator does not need to be
3468/// explicitly freed, as ASTContext will free all of this memory when it gets
3469/// destroyed. Please note that you cannot use delete on the pointer.
3470///
3471/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
3472/// @param C The ASTContext that provides the allocator.
3473/// @param Alignment The alignment of the allocated memory (if the underlying
3474/// allocator supports it).
3475/// @return The allocated memory. Could be nullptr.
3476inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
3477 size_t Alignment /* = 8 */) {
3478 return C.Allocate(Size: Bytes, Align: Alignment);
3479}
3480
3481/// Placement delete[] companion to the new[] above.
3482///
3483/// This operator is just a companion to the new[] above. There is no way of
3484/// invoking it directly; see the new[] operator for more details. This operator
3485/// is called implicitly by the compiler if a placement new[] expression using
3486/// the ASTContext throws in the object constructor.
3487inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
3488 C.Deallocate(Ptr);
3489}
3490
3491/// Create the representation of a LazyGenerationalUpdatePtr.
3492template <typename Owner, typename T,
3493 void (clang::ExternalASTSource::*Update)(Owner)>
3494typename clang::LazyGenerationalUpdatePtr<Owner, T, Update>::ValueType
3495 clang::LazyGenerationalUpdatePtr<Owner, T, Update>::makeValue(
3496 const clang::ASTContext &Ctx, T Value) {
3497 // Note, this is implemented here so that ExternalASTSource.h doesn't need to
3498 // include ASTContext.h. We explicitly instantiate it for all relevant types
3499 // in ASTContext.cpp.
3500 if (auto *Source = Ctx.getExternalSource())
3501 return new (Ctx) LazyData(Source, Value);
3502 return Value;
3503}
3504
3505#endif // LLVM_CLANG_AST_ASTCONTEXT_H
3506

source code of clang/include/clang/AST/ASTContext.h