1//===- Decl.h - Classes for representing declarations -----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the Decl subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_DECL_H
15#define LLVM_CLANG_AST_DECL_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/DeclBase.h"
19#include "clang/AST/DeclarationName.h"
20#include "clang/AST/ExternalASTSource.h"
21#include "clang/AST/NestedNameSpecifier.h"
22#include "clang/AST/Redeclarable.h"
23#include "clang/AST/Type.h"
24#include "clang/Basic/AddressSpaces.h"
25#include "clang/Basic/Diagnostic.h"
26#include "clang/Basic/IdentifierTable.h"
27#include "clang/Basic/LLVM.h"
28#include "clang/Basic/Linkage.h"
29#include "clang/Basic/OperatorKinds.h"
30#include "clang/Basic/PartialDiagnostic.h"
31#include "clang/Basic/PragmaKinds.h"
32#include "clang/Basic/SourceLocation.h"
33#include "clang/Basic/Specifiers.h"
34#include "clang/Basic/Visibility.h"
35#include "llvm/ADT/APSInt.h"
36#include "llvm/ADT/ArrayRef.h"
37#include "llvm/ADT/Optional.h"
38#include "llvm/ADT/PointerIntPair.h"
39#include "llvm/ADT/PointerUnion.h"
40#include "llvm/ADT/StringRef.h"
41#include "llvm/ADT/iterator_range.h"
42#include "llvm/Support/Casting.h"
43#include "llvm/Support/Compiler.h"
44#include "llvm/Support/TrailingObjects.h"
45#include <cassert>
46#include <cstddef>
47#include <cstdint>
48#include <string>
49#include <utility>
50
51namespace clang {
52
53class ASTContext;
54struct ASTTemplateArgumentListInfo;
55class Attr;
56class CompoundStmt;
57class DependentFunctionTemplateSpecializationInfo;
58class EnumDecl;
59class Expr;
60class FunctionTemplateDecl;
61class FunctionTemplateSpecializationInfo;
62class LabelStmt;
63class MemberSpecializationInfo;
64class Module;
65class NamespaceDecl;
66class ParmVarDecl;
67class RecordDecl;
68class Stmt;
69class StringLiteral;
70class TagDecl;
71class TemplateArgumentList;
72class TemplateArgumentListInfo;
73class TemplateParameterList;
74class TypeAliasTemplateDecl;
75class TypeLoc;
76class UnresolvedSetImpl;
77class VarTemplateDecl;
78
79/// A container of type source information.
80///
81/// A client can read the relevant info using TypeLoc wrappers, e.g:
82/// @code
83/// TypeLoc TL = TypeSourceInfo->getTypeLoc();
84/// TL.getBeginLoc().print(OS, SrcMgr);
85/// @endcode
86class alignas(8) TypeSourceInfo {
87 // Contains a memory block after the class, used for type source information,
88 // allocated by ASTContext.
89 friend class ASTContext;
90
91 QualType Ty;
92
93 TypeSourceInfo(QualType ty) : Ty(ty) {}
94
95public:
96 /// Return the type wrapped by this type source info.
97 QualType getType() const { return Ty; }
98
99 /// Return the TypeLoc wrapper for the type source info.
100 TypeLoc getTypeLoc() const; // implemented in TypeLoc.h
101
102 /// Override the type stored in this TypeSourceInfo. Use with caution!
103 void overrideType(QualType T) { Ty = T; }
104};
105
106/// The top declaration context.
107class TranslationUnitDecl : public Decl, public DeclContext {
108 ASTContext &Ctx;
109
110 /// The (most recently entered) anonymous namespace for this
111 /// translation unit, if one has been created.
112 NamespaceDecl *AnonymousNamespace = nullptr;
113
114 explicit TranslationUnitDecl(ASTContext &ctx);
115
116 virtual void anchor();
117
118public:
119 ASTContext &getASTContext() const { return Ctx; }
120
121 NamespaceDecl *getAnonymousNamespace() const { return AnonymousNamespace; }
122 void setAnonymousNamespace(NamespaceDecl *D) { AnonymousNamespace = D; }
123
124 static TranslationUnitDecl *Create(ASTContext &C);
125
126 // Implement isa/cast/dyncast/etc.
127 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
128 static bool classofKind(Kind K) { return K == TranslationUnit; }
129 static DeclContext *castToDeclContext(const TranslationUnitDecl *D) {
130 return static_cast<DeclContext *>(const_cast<TranslationUnitDecl*>(D));
131 }
132 static TranslationUnitDecl *castFromDeclContext(const DeclContext *DC) {
133 return static_cast<TranslationUnitDecl *>(const_cast<DeclContext*>(DC));
134 }
135};
136
137/// Represents a `#pragma comment` line. Always a child of
138/// TranslationUnitDecl.
139class PragmaCommentDecl final
140 : public Decl,
141 private llvm::TrailingObjects<PragmaCommentDecl, char> {
142 friend class ASTDeclReader;
143 friend class ASTDeclWriter;
144 friend TrailingObjects;
145
146 PragmaMSCommentKind CommentKind;
147
148 PragmaCommentDecl(TranslationUnitDecl *TU, SourceLocation CommentLoc,
149 PragmaMSCommentKind CommentKind)
150 : Decl(PragmaComment, TU, CommentLoc), CommentKind(CommentKind) {}
151
152 virtual void anchor();
153
154public:
155 static PragmaCommentDecl *Create(const ASTContext &C, TranslationUnitDecl *DC,
156 SourceLocation CommentLoc,
157 PragmaMSCommentKind CommentKind,
158 StringRef Arg);
159 static PragmaCommentDecl *CreateDeserialized(ASTContext &C, unsigned ID,
160 unsigned ArgSize);
161
162 PragmaMSCommentKind getCommentKind() const { return CommentKind; }
163
164 StringRef getArg() const { return getTrailingObjects<char>(); }
165
166 // Implement isa/cast/dyncast/etc.
167 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
168 static bool classofKind(Kind K) { return K == PragmaComment; }
169};
170
171/// Represents a `#pragma detect_mismatch` line. Always a child of
172/// TranslationUnitDecl.
173class PragmaDetectMismatchDecl final
174 : public Decl,
175 private llvm::TrailingObjects<PragmaDetectMismatchDecl, char> {
176 friend class ASTDeclReader;
177 friend class ASTDeclWriter;
178 friend TrailingObjects;
179
180 size_t ValueStart;
181
182 PragmaDetectMismatchDecl(TranslationUnitDecl *TU, SourceLocation Loc,
183 size_t ValueStart)
184 : Decl(PragmaDetectMismatch, TU, Loc), ValueStart(ValueStart) {}
185
186 virtual void anchor();
187
188public:
189 static PragmaDetectMismatchDecl *Create(const ASTContext &C,
190 TranslationUnitDecl *DC,
191 SourceLocation Loc, StringRef Name,
192 StringRef Value);
193 static PragmaDetectMismatchDecl *
194 CreateDeserialized(ASTContext &C, unsigned ID, unsigned NameValueSize);
195
196 StringRef getName() const { return getTrailingObjects<char>(); }
197 StringRef getValue() const { return getTrailingObjects<char>() + ValueStart; }
198
199 // Implement isa/cast/dyncast/etc.
200 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
201 static bool classofKind(Kind K) { return K == PragmaDetectMismatch; }
202};
203
204/// Declaration context for names declared as extern "C" in C++. This
205/// is neither the semantic nor lexical context for such declarations, but is
206/// used to check for conflicts with other extern "C" declarations. Example:
207///
208/// \code
209/// namespace N { extern "C" void f(); } // #1
210/// void N::f() {} // #2
211/// namespace M { extern "C" void f(); } // #3
212/// \endcode
213///
214/// The semantic context of #1 is namespace N and its lexical context is the
215/// LinkageSpecDecl; the semantic context of #2 is namespace N and its lexical
216/// context is the TU. However, both declarations are also visible in the
217/// extern "C" context.
218///
219/// The declaration at #3 finds it is a redeclaration of \c N::f through
220/// lookup in the extern "C" context.
221class ExternCContextDecl : public Decl, public DeclContext {
222 explicit ExternCContextDecl(TranslationUnitDecl *TU)
223 : Decl(ExternCContext, TU, SourceLocation()),
224 DeclContext(ExternCContext) {}
225
226 virtual void anchor();
227
228public:
229 static ExternCContextDecl *Create(const ASTContext &C,
230 TranslationUnitDecl *TU);
231
232 // Implement isa/cast/dyncast/etc.
233 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
234 static bool classofKind(Kind K) { return K == ExternCContext; }
235 static DeclContext *castToDeclContext(const ExternCContextDecl *D) {
236 return static_cast<DeclContext *>(const_cast<ExternCContextDecl*>(D));
237 }
238 static ExternCContextDecl *castFromDeclContext(const DeclContext *DC) {
239 return static_cast<ExternCContextDecl *>(const_cast<DeclContext*>(DC));
240 }
241};
242
243/// This represents a decl that may have a name. Many decls have names such
244/// as ObjCMethodDecl, but not \@class, etc.
245///
246/// Note that not every NamedDecl is actually named (e.g., a struct might
247/// be anonymous), and not every name is an identifier.
248class NamedDecl : public Decl {
249 /// The name of this declaration, which is typically a normal
250 /// identifier but may also be a special kind of name (C++
251 /// constructor, Objective-C selector, etc.)
252 DeclarationName Name;
253
254 virtual void anchor();
255
256private:
257 NamedDecl *getUnderlyingDeclImpl() LLVM_READONLY;
258
259protected:
260 NamedDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N)
261 : Decl(DK, DC, L), Name(N) {}
262
263public:
264 /// Get the identifier that names this declaration, if there is one.
265 ///
266 /// This will return NULL if this declaration has no name (e.g., for
267 /// an unnamed class) or if the name is a special name (C++ constructor,
268 /// Objective-C selector, etc.).
269 IdentifierInfo *getIdentifier() const { return Name.getAsIdentifierInfo(); }
270
271 /// Get the name of identifier for this declaration as a StringRef.
272 ///
273 /// This requires that the declaration have a name and that it be a simple
274 /// identifier.
275 StringRef getName() const {
276 assert(Name.isIdentifier() && "Name is not a simple identifier");
277 return getIdentifier() ? getIdentifier()->getName() : "";
278 }
279
280 /// Get a human-readable name for the declaration, even if it is one of the
281 /// special kinds of names (C++ constructor, Objective-C selector, etc).
282 ///
283 /// Creating this name requires expensive string manipulation, so it should
284 /// be called only when performance doesn't matter. For simple declarations,
285 /// getNameAsCString() should suffice.
286 //
287 // FIXME: This function should be renamed to indicate that it is not just an
288 // alternate form of getName(), and clients should move as appropriate.
289 //
290 // FIXME: Deprecated, move clients to getName().
291 std::string getNameAsString() const { return Name.getAsString(); }
292
293 virtual void printName(raw_ostream &os) const;
294
295 /// Get the actual, stored name of the declaration, which may be a special
296 /// name.
297 DeclarationName getDeclName() const { return Name; }
298
299 /// Set the name of this declaration.
300 void setDeclName(DeclarationName N) { Name = N; }
301
302 /// Returns a human-readable qualified name for this declaration, like
303 /// A::B::i, for i being member of namespace A::B.
304 ///
305 /// If the declaration is not a member of context which can be named (record,
306 /// namespace), it will return the same result as printName().
307 ///
308 /// Creating this name is expensive, so it should be called only when
309 /// performance doesn't matter.
310 void printQualifiedName(raw_ostream &OS) const;
311 void printQualifiedName(raw_ostream &OS, const PrintingPolicy &Policy) const;
312
313 // FIXME: Remove string version.
314 std::string getQualifiedNameAsString() const;
315
316 /// Appends a human-readable name for this declaration into the given stream.
317 ///
318 /// This is the method invoked by Sema when displaying a NamedDecl
319 /// in a diagnostic. It does not necessarily produce the same
320 /// result as printName(); for example, class template
321 /// specializations are printed with their template arguments.
322 virtual void getNameForDiagnostic(raw_ostream &OS,
323 const PrintingPolicy &Policy,
324 bool Qualified) const;
325
326 /// Determine whether this declaration, if known to be well-formed within
327 /// its context, will replace the declaration OldD if introduced into scope.
328 ///
329 /// A declaration will replace another declaration if, for example, it is
330 /// a redeclaration of the same variable or function, but not if it is a
331 /// declaration of a different kind (function vs. class) or an overloaded
332 /// function.
333 ///
334 /// \param IsKnownNewer \c true if this declaration is known to be newer
335 /// than \p OldD (for instance, if this declaration is newly-created).
336 bool declarationReplaces(NamedDecl *OldD, bool IsKnownNewer = true) const;
337
338 /// Determine whether this declaration has linkage.
339 bool hasLinkage() const;
340
341 using Decl::isModulePrivate;
342 using Decl::setModulePrivate;
343
344 /// Determine whether this declaration is a C++ class member.
345 bool isCXXClassMember() const {
346 const DeclContext *DC = getDeclContext();
347
348 // C++0x [class.mem]p1:
349 // The enumerators of an unscoped enumeration defined in
350 // the class are members of the class.
351 if (isa<EnumDecl>(DC))
352 DC = DC->getRedeclContext();
353
354 return DC->isRecord();
355 }
356
357 /// Determine whether the given declaration is an instance member of
358 /// a C++ class.
359 bool isCXXInstanceMember() const;
360
361 /// Determine what kind of linkage this entity has.
362 ///
363 /// This is not the linkage as defined by the standard or the codegen notion
364 /// of linkage. It is just an implementation detail that is used to compute
365 /// those.
366 Linkage getLinkageInternal() const;
367
368 /// Get the linkage from a semantic point of view. Entities in
369 /// anonymous namespaces are external (in c++98).
370 Linkage getFormalLinkage() const {
371 return clang::getFormalLinkage(getLinkageInternal());
372 }
373
374 /// True if this decl has external linkage.
375 bool hasExternalFormalLinkage() const {
376 return isExternalFormalLinkage(getLinkageInternal());
377 }
378
379 bool isExternallyVisible() const {
380 return clang::isExternallyVisible(getLinkageInternal());
381 }
382
383 /// Determine whether this declaration can be redeclared in a
384 /// different translation unit.
385 bool isExternallyDeclarable() const {
386 return isExternallyVisible() && !getOwningModuleForLinkage();
387 }
388
389 /// Determines the visibility of this entity.
390 Visibility getVisibility() const {
391 return getLinkageAndVisibility().getVisibility();
392 }
393
394 /// Determines the linkage and visibility of this entity.
395 LinkageInfo getLinkageAndVisibility() const;
396
397 /// Kinds of explicit visibility.
398 enum ExplicitVisibilityKind {
399 /// Do an LV computation for, ultimately, a type.
400 /// Visibility may be restricted by type visibility settings and
401 /// the visibility of template arguments.
402 VisibilityForType,
403
404 /// Do an LV computation for, ultimately, a non-type declaration.
405 /// Visibility may be restricted by value visibility settings and
406 /// the visibility of template arguments.
407 VisibilityForValue
408 };
409
410 /// If visibility was explicitly specified for this
411 /// declaration, return that visibility.
412 Optional<Visibility>
413 getExplicitVisibility(ExplicitVisibilityKind kind) const;
414
415 /// True if the computed linkage is valid. Used for consistency
416 /// checking. Should always return true.
417 bool isLinkageValid() const;
418
419 /// True if something has required us to compute the linkage
420 /// of this declaration.
421 ///
422 /// Language features which can retroactively change linkage (like a
423 /// typedef name for linkage purposes) may need to consider this,
424 /// but hopefully only in transitory ways during parsing.
425 bool hasLinkageBeenComputed() const {
426 return hasCachedLinkage();
427 }
428
429 /// Looks through UsingDecls and ObjCCompatibleAliasDecls for
430 /// the underlying named decl.
431 NamedDecl *getUnderlyingDecl() {
432 // Fast-path the common case.
433 if (this->getKind() != UsingShadow &&
434 this->getKind() != ConstructorUsingShadow &&
435 this->getKind() != ObjCCompatibleAlias &&
436 this->getKind() != NamespaceAlias)
437 return this;
438
439 return getUnderlyingDeclImpl();
440 }
441 const NamedDecl *getUnderlyingDecl() const {
442 return const_cast<NamedDecl*>(this)->getUnderlyingDecl();
443 }
444
445 NamedDecl *getMostRecentDecl() {
446 return cast<NamedDecl>(static_cast<Decl *>(this)->getMostRecentDecl());
447 }
448 const NamedDecl *getMostRecentDecl() const {
449 return const_cast<NamedDecl*>(this)->getMostRecentDecl();
450 }
451
452 ObjCStringFormatFamily getObjCFStringFormattingFamily() const;
453
454 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
455 static bool classofKind(Kind K) { return K >= firstNamed && K <= lastNamed; }
456};
457
458inline raw_ostream &operator<<(raw_ostream &OS, const NamedDecl &ND) {
459 ND.printName(OS);
460 return OS;
461}
462
463/// Represents the declaration of a label. Labels also have a
464/// corresponding LabelStmt, which indicates the position that the label was
465/// defined at. For normal labels, the location of the decl is the same as the
466/// location of the statement. For GNU local labels (__label__), the decl
467/// location is where the __label__ is.
468class LabelDecl : public NamedDecl {
469 LabelStmt *TheStmt;
470 StringRef MSAsmName;
471 bool MSAsmNameResolved = false;
472
473 /// For normal labels, this is the same as the main declaration
474 /// label, i.e., the location of the identifier; for GNU local labels,
475 /// this is the location of the __label__ keyword.
476 SourceLocation LocStart;
477
478 LabelDecl(DeclContext *DC, SourceLocation IdentL, IdentifierInfo *II,
479 LabelStmt *S, SourceLocation StartL)
480 : NamedDecl(Label, DC, IdentL, II), TheStmt(S), LocStart(StartL) {}
481
482 void anchor() override;
483
484public:
485 static LabelDecl *Create(ASTContext &C, DeclContext *DC,
486 SourceLocation IdentL, IdentifierInfo *II);
487 static LabelDecl *Create(ASTContext &C, DeclContext *DC,
488 SourceLocation IdentL, IdentifierInfo *II,
489 SourceLocation GnuLabelL);
490 static LabelDecl *CreateDeserialized(ASTContext &C, unsigned ID);
491
492 LabelStmt *getStmt() const { return TheStmt; }
493 void setStmt(LabelStmt *T) { TheStmt = T; }
494
495 bool isGnuLocal() const { return LocStart != getLocation(); }
496 void setLocStart(SourceLocation L) { LocStart = L; }
497
498 SourceRange getSourceRange() const override LLVM_READONLY {
499 return SourceRange(LocStart, getLocation());
500 }
501
502 bool isMSAsmLabel() const { return !MSAsmName.empty(); }
503 bool isResolvedMSAsmLabel() const { return isMSAsmLabel() && MSAsmNameResolved; }
504 void setMSAsmLabel(StringRef Name);
505 StringRef getMSAsmLabel() const { return MSAsmName; }
506 void setMSAsmLabelResolved() { MSAsmNameResolved = true; }
507
508 // Implement isa/cast/dyncast/etc.
509 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
510 static bool classofKind(Kind K) { return K == Label; }
511};
512
513/// Represent a C++ namespace.
514class NamespaceDecl : public NamedDecl, public DeclContext,
515 public Redeclarable<NamespaceDecl>
516{
517 /// The starting location of the source range, pointing
518 /// to either the namespace or the inline keyword.
519 SourceLocation LocStart;
520
521 /// The ending location of the source range.
522 SourceLocation RBraceLoc;
523
524 /// A pointer to either the anonymous namespace that lives just inside
525 /// this namespace or to the first namespace in the chain (the latter case
526 /// only when this is not the first in the chain), along with a
527 /// boolean value indicating whether this is an inline namespace.
528 llvm::PointerIntPair<NamespaceDecl *, 1, bool> AnonOrFirstNamespaceAndInline;
529
530 NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
531 SourceLocation StartLoc, SourceLocation IdLoc,
532 IdentifierInfo *Id, NamespaceDecl *PrevDecl);
533
534 using redeclarable_base = Redeclarable<NamespaceDecl>;
535
536 NamespaceDecl *getNextRedeclarationImpl() override;
537 NamespaceDecl *getPreviousDeclImpl() override;
538 NamespaceDecl *getMostRecentDeclImpl() override;
539
540public:
541 friend class ASTDeclReader;
542 friend class ASTDeclWriter;
543
544 static NamespaceDecl *Create(ASTContext &C, DeclContext *DC,
545 bool Inline, SourceLocation StartLoc,
546 SourceLocation IdLoc, IdentifierInfo *Id,
547 NamespaceDecl *PrevDecl);
548
549 static NamespaceDecl *CreateDeserialized(ASTContext &C, unsigned ID);
550
551 using redecl_range = redeclarable_base::redecl_range;
552 using redecl_iterator = redeclarable_base::redecl_iterator;
553
554 using redeclarable_base::redecls_begin;
555 using redeclarable_base::redecls_end;
556 using redeclarable_base::redecls;
557 using redeclarable_base::getPreviousDecl;
558 using redeclarable_base::getMostRecentDecl;
559 using redeclarable_base::isFirstDecl;
560
561 /// Returns true if this is an anonymous namespace declaration.
562 ///
563 /// For example:
564 /// \code
565 /// namespace {
566 /// ...
567 /// };
568 /// \endcode
569 /// q.v. C++ [namespace.unnamed]
570 bool isAnonymousNamespace() const {
571 return !getIdentifier();
572 }
573
574 /// Returns true if this is an inline namespace declaration.
575 bool isInline() const {
576 return AnonOrFirstNamespaceAndInline.getInt();
577 }
578
579 /// Set whether this is an inline namespace declaration.
580 void setInline(bool Inline) {
581 AnonOrFirstNamespaceAndInline.setInt(Inline);
582 }
583
584 /// Get the original (first) namespace declaration.
585 NamespaceDecl *getOriginalNamespace();
586
587 /// Get the original (first) namespace declaration.
588 const NamespaceDecl *getOriginalNamespace() const;
589
590 /// Return true if this declaration is an original (first) declaration
591 /// of the namespace. This is false for non-original (subsequent) namespace
592 /// declarations and anonymous namespaces.
593 bool isOriginalNamespace() const;
594
595 /// Retrieve the anonymous namespace nested inside this namespace,
596 /// if any.
597 NamespaceDecl *getAnonymousNamespace() const {
598 return getOriginalNamespace()->AnonOrFirstNamespaceAndInline.getPointer();
599 }
600
601 void setAnonymousNamespace(NamespaceDecl *D) {
602 getOriginalNamespace()->AnonOrFirstNamespaceAndInline.setPointer(D);
603 }
604
605 /// Retrieves the canonical declaration of this namespace.
606 NamespaceDecl *getCanonicalDecl() override {
607 return getOriginalNamespace();
608 }
609 const NamespaceDecl *getCanonicalDecl() const {
610 return getOriginalNamespace();
611 }
612
613 SourceRange getSourceRange() const override LLVM_READONLY {
614 return SourceRange(LocStart, RBraceLoc);
615 }
616
617 SourceLocation getBeginLoc() const LLVM_READONLY { return LocStart; }
618 SourceLocation getRBraceLoc() const { return RBraceLoc; }
619 void setLocStart(SourceLocation L) { LocStart = L; }
620 void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
621
622 // Implement isa/cast/dyncast/etc.
623 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
624 static bool classofKind(Kind K) { return K == Namespace; }
625 static DeclContext *castToDeclContext(const NamespaceDecl *D) {
626 return static_cast<DeclContext *>(const_cast<NamespaceDecl*>(D));
627 }
628 static NamespaceDecl *castFromDeclContext(const DeclContext *DC) {
629 return static_cast<NamespaceDecl *>(const_cast<DeclContext*>(DC));
630 }
631};
632
633/// Represent the declaration of a variable (in which case it is
634/// an lvalue) a function (in which case it is a function designator) or
635/// an enum constant.
636class ValueDecl : public NamedDecl {
637 QualType DeclType;
638
639 void anchor() override;
640
641protected:
642 ValueDecl(Kind DK, DeclContext *DC, SourceLocation L,
643 DeclarationName N, QualType T)
644 : NamedDecl(DK, DC, L, N), DeclType(T) {}
645
646public:
647 QualType getType() const { return DeclType; }
648 void setType(QualType newType) { DeclType = newType; }
649
650 /// Determine whether this symbol is weakly-imported,
651 /// or declared with the weak or weak-ref attr.
652 bool isWeak() const;
653
654 // Implement isa/cast/dyncast/etc.
655 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
656 static bool classofKind(Kind K) { return K >= firstValue && K <= lastValue; }
657};
658
659/// A struct with extended info about a syntactic
660/// name qualifier, to be used for the case of out-of-line declarations.
661struct QualifierInfo {
662 NestedNameSpecifierLoc QualifierLoc;
663
664 /// The number of "outer" template parameter lists.
665 /// The count includes all of the template parameter lists that were matched
666 /// against the template-ids occurring into the NNS and possibly (in the
667 /// case of an explicit specialization) a final "template <>".
668 unsigned NumTemplParamLists = 0;
669
670 /// A new-allocated array of size NumTemplParamLists,
671 /// containing pointers to the "outer" template parameter lists.
672 /// It includes all of the template parameter lists that were matched
673 /// against the template-ids occurring into the NNS and possibly (in the
674 /// case of an explicit specialization) a final "template <>".
675 TemplateParameterList** TemplParamLists = nullptr;
676
677 QualifierInfo() = default;
678 QualifierInfo(const QualifierInfo &) = delete;
679 QualifierInfo& operator=(const QualifierInfo &) = delete;
680
681 /// Sets info about "outer" template parameter lists.
682 void setTemplateParameterListsInfo(ASTContext &Context,
683 ArrayRef<TemplateParameterList *> TPLists);
684};
685
686/// Represents a ValueDecl that came out of a declarator.
687/// Contains type source information through TypeSourceInfo.
688class DeclaratorDecl : public ValueDecl {
689 // A struct representing both a TInfo and a syntactic qualifier,
690 // to be used for the (uncommon) case of out-of-line declarations.
691 struct ExtInfo : public QualifierInfo {
692 TypeSourceInfo *TInfo;
693 };
694
695 llvm::PointerUnion<TypeSourceInfo *, ExtInfo *> DeclInfo;
696
697 /// The start of the source range for this declaration,
698 /// ignoring outer template declarations.
699 SourceLocation InnerLocStart;
700
701 bool hasExtInfo() const { return DeclInfo.is<ExtInfo*>(); }
702 ExtInfo *getExtInfo() { return DeclInfo.get<ExtInfo*>(); }
703 const ExtInfo *getExtInfo() const { return DeclInfo.get<ExtInfo*>(); }
704
705protected:
706 DeclaratorDecl(Kind DK, DeclContext *DC, SourceLocation L,
707 DeclarationName N, QualType T, TypeSourceInfo *TInfo,
708 SourceLocation StartL)
709 : ValueDecl(DK, DC, L, N, T), DeclInfo(TInfo), InnerLocStart(StartL) {}
710
711public:
712 friend class ASTDeclReader;
713 friend class ASTDeclWriter;
714
715 TypeSourceInfo *getTypeSourceInfo() const {
716 return hasExtInfo()
717 ? getExtInfo()->TInfo
718 : DeclInfo.get<TypeSourceInfo*>();
719 }
720
721 void setTypeSourceInfo(TypeSourceInfo *TI) {
722 if (hasExtInfo())
723 getExtInfo()->TInfo = TI;
724 else
725 DeclInfo = TI;
726 }
727
728 /// Return start of source range ignoring outer template declarations.
729 SourceLocation getInnerLocStart() const { return InnerLocStart; }
730 void setInnerLocStart(SourceLocation L) { InnerLocStart = L; }
731
732 /// Return start of source range taking into account any outer template
733 /// declarations.
734 SourceLocation getOuterLocStart() const;
735
736 SourceRange getSourceRange() const override LLVM_READONLY;
737
738 SourceLocation getBeginLoc() const LLVM_READONLY {
739 return getOuterLocStart();
740 }
741
742 /// Retrieve the nested-name-specifier that qualifies the name of this
743 /// declaration, if it was present in the source.
744 NestedNameSpecifier *getQualifier() const {
745 return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier()
746 : nullptr;
747 }
748
749 /// Retrieve the nested-name-specifier (with source-location
750 /// information) that qualifies the name of this declaration, if it was
751 /// present in the source.
752 NestedNameSpecifierLoc getQualifierLoc() const {
753 return hasExtInfo() ? getExtInfo()->QualifierLoc
754 : NestedNameSpecifierLoc();
755 }
756
757 void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc);
758
759 unsigned getNumTemplateParameterLists() const {
760 return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
761 }
762
763 TemplateParameterList *getTemplateParameterList(unsigned index) const {
764 assert(index < getNumTemplateParameterLists());
765 return getExtInfo()->TemplParamLists[index];
766 }
767
768 void setTemplateParameterListsInfo(ASTContext &Context,
769 ArrayRef<TemplateParameterList *> TPLists);
770
771 SourceLocation getTypeSpecStartLoc() const;
772
773 // Implement isa/cast/dyncast/etc.
774 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
775 static bool classofKind(Kind K) {
776 return K >= firstDeclarator && K <= lastDeclarator;
777 }
778};
779
780/// Structure used to store a statement, the constant value to
781/// which it was evaluated (if any), and whether or not the statement
782/// is an integral constant expression (if known).
783struct EvaluatedStmt {
784 /// Whether this statement was already evaluated.
785 bool WasEvaluated : 1;
786
787 /// Whether this statement is being evaluated.
788 bool IsEvaluating : 1;
789
790 /// Whether we already checked whether this statement was an
791 /// integral constant expression.
792 bool CheckedICE : 1;
793
794 /// Whether we are checking whether this statement is an
795 /// integral constant expression.
796 bool CheckingICE : 1;
797
798 /// Whether this statement is an integral constant expression,
799 /// or in C++11, whether the statement is a constant expression. Only
800 /// valid if CheckedICE is true.
801 bool IsICE : 1;
802
803 Stmt *Value;
804 APValue Evaluated;
805
806 EvaluatedStmt() : WasEvaluated(false), IsEvaluating(false), CheckedICE(false),
807 CheckingICE(false), IsICE(false) {}
808
809};
810
811/// Represents a variable declaration or definition.
812class VarDecl : public DeclaratorDecl, public Redeclarable<VarDecl> {
813public:
814 /// Initialization styles.
815 enum InitializationStyle {
816 /// C-style initialization with assignment
817 CInit,
818
819 /// Call-style initialization (C++98)
820 CallInit,
821
822 /// Direct list-initialization (C++11)
823 ListInit
824 };
825
826 /// Kinds of thread-local storage.
827 enum TLSKind {
828 /// Not a TLS variable.
829 TLS_None,
830
831 /// TLS with a known-constant initializer.
832 TLS_Static,
833
834 /// TLS with a dynamic initializer.
835 TLS_Dynamic
836 };
837
838 /// Return the string used to specify the storage class \p SC.
839 ///
840 /// It is illegal to call this function with SC == None.
841 static const char *getStorageClassSpecifierString(StorageClass SC);
842
843protected:
844 // A pointer union of Stmt * and EvaluatedStmt *. When an EvaluatedStmt, we
845 // have allocated the auxiliary struct of information there.
846 //
847 // TODO: It is a bit unfortunate to use a PointerUnion inside the VarDecl for
848 // this as *many* VarDecls are ParmVarDecls that don't have default
849 // arguments. We could save some space by moving this pointer union to be
850 // allocated in trailing space when necessary.
851 using InitType = llvm::PointerUnion<Stmt *, EvaluatedStmt *>;
852
853 /// The initializer for this variable or, for a ParmVarDecl, the
854 /// C++ default argument.
855 mutable InitType Init;
856
857private:
858 friend class ASTDeclReader;
859 friend class ASTNodeImporter;
860 friend class StmtIteratorBase;
861
862 class VarDeclBitfields {
863 friend class ASTDeclReader;
864 friend class VarDecl;
865
866 unsigned SClass : 3;
867 unsigned TSCSpec : 2;
868 unsigned InitStyle : 2;
869 };
870 enum { NumVarDeclBits = 7 };
871
872protected:
873 enum { NumParameterIndexBits = 8 };
874
875 enum DefaultArgKind {
876 DAK_None,
877 DAK_Unparsed,
878 DAK_Uninstantiated,
879 DAK_Normal
880 };
881
882 class ParmVarDeclBitfields {
883 friend class ASTDeclReader;
884 friend class ParmVarDecl;
885
886 unsigned : NumVarDeclBits;
887
888 /// Whether this parameter inherits a default argument from a
889 /// prior declaration.
890 unsigned HasInheritedDefaultArg : 1;
891
892 /// Describes the kind of default argument for this parameter. By default
893 /// this is none. If this is normal, then the default argument is stored in
894 /// the \c VarDecl initializer expression unless we were unable to parse
895 /// (even an invalid) expression for the default argument.
896 unsigned DefaultArgKind : 2;
897
898 /// Whether this parameter undergoes K&R argument promotion.
899 unsigned IsKNRPromoted : 1;
900
901 /// Whether this parameter is an ObjC method parameter or not.
902 unsigned IsObjCMethodParam : 1;
903
904 /// If IsObjCMethodParam, a Decl::ObjCDeclQualifier.
905 /// Otherwise, the number of function parameter scopes enclosing
906 /// the function parameter scope in which this parameter was
907 /// declared.
908 unsigned ScopeDepthOrObjCQuals : 7;
909
910 /// The number of parameters preceding this parameter in the
911 /// function parameter scope in which it was declared.
912 unsigned ParameterIndex : NumParameterIndexBits;
913 };
914
915 class NonParmVarDeclBitfields {
916 friend class ASTDeclReader;
917 friend class ImplicitParamDecl;
918 friend class VarDecl;
919
920 unsigned : NumVarDeclBits;
921
922 // FIXME: We need something similar to CXXRecordDecl::DefinitionData.
923 /// Whether this variable is a definition which was demoted due to
924 /// module merge.
925 unsigned IsThisDeclarationADemotedDefinition : 1;
926
927 /// Whether this variable is the exception variable in a C++ catch
928 /// or an Objective-C @catch statement.
929 unsigned ExceptionVar : 1;
930
931 /// Whether this local variable could be allocated in the return
932 /// slot of its function, enabling the named return value optimization
933 /// (NRVO).
934 unsigned NRVOVariable : 1;
935
936 /// Whether this variable is the for-range-declaration in a C++0x
937 /// for-range statement.
938 unsigned CXXForRangeDecl : 1;
939
940 /// Whether this variable is the for-in loop declaration in Objective-C.
941 unsigned ObjCForDecl : 1;
942
943 /// Whether this variable is an ARC pseudo-__strong
944 /// variable; see isARCPseudoStrong() for details.
945 unsigned ARCPseudoStrong : 1;
946
947 /// Whether this variable is (C++1z) inline.
948 unsigned IsInline : 1;
949
950 /// Whether this variable has (C++1z) inline explicitly specified.
951 unsigned IsInlineSpecified : 1;
952
953 /// Whether this variable is (C++0x) constexpr.
954 unsigned IsConstexpr : 1;
955
956 /// Whether this variable is the implicit variable for a lambda
957 /// init-capture.
958 unsigned IsInitCapture : 1;
959
960 /// Whether this local extern variable's previous declaration was
961 /// declared in the same block scope. This controls whether we should merge
962 /// the type of this declaration with its previous declaration.
963 unsigned PreviousDeclInSameBlockScope : 1;
964
965 /// Defines kind of the ImplicitParamDecl: 'this', 'self', 'vtt', '_cmd' or
966 /// something else.
967 unsigned ImplicitParamKind : 3;
968
969 unsigned EscapingByref : 1;
970 };
971
972 union {
973 unsigned AllBits;
974 VarDeclBitfields VarDeclBits;
975 ParmVarDeclBitfields ParmVarDeclBits;
976 NonParmVarDeclBitfields NonParmVarDeclBits;
977 };
978
979 VarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
980 SourceLocation IdLoc, IdentifierInfo *Id, QualType T,
981 TypeSourceInfo *TInfo, StorageClass SC);
982
983 using redeclarable_base = Redeclarable<VarDecl>;
984
985 VarDecl *getNextRedeclarationImpl() override {
986 return getNextRedeclaration();
987 }
988
989 VarDecl *getPreviousDeclImpl() override {
990 return getPreviousDecl();
991 }
992
993 VarDecl *getMostRecentDeclImpl() override {
994 return getMostRecentDecl();
995 }
996
997public:
998 using redecl_range = redeclarable_base::redecl_range;
999 using redecl_iterator = redeclarable_base::redecl_iterator;
1000
1001 using redeclarable_base::redecls_begin;
1002 using redeclarable_base::redecls_end;
1003 using redeclarable_base::redecls;
1004 using redeclarable_base::getPreviousDecl;
1005 using redeclarable_base::getMostRecentDecl;
1006 using redeclarable_base::isFirstDecl;
1007
1008 static VarDecl *Create(ASTContext &C, DeclContext *DC,
1009 SourceLocation StartLoc, SourceLocation IdLoc,
1010 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1011 StorageClass S);
1012
1013 static VarDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1014
1015 SourceRange getSourceRange() const override LLVM_READONLY;
1016
1017 /// Returns the storage class as written in the source. For the
1018 /// computed linkage of symbol, see getLinkage.
1019 StorageClass getStorageClass() const {
1020 return (StorageClass) VarDeclBits.SClass;
1021 }
1022 void setStorageClass(StorageClass SC);
1023
1024 void setTSCSpec(ThreadStorageClassSpecifier TSC) {
1025 VarDeclBits.TSCSpec = TSC;
1026 assert(VarDeclBits.TSCSpec == TSC && "truncation");
1027 }
1028 ThreadStorageClassSpecifier getTSCSpec() const {
1029 return static_cast<ThreadStorageClassSpecifier>(VarDeclBits.TSCSpec);
1030 }
1031 TLSKind getTLSKind() const;
1032
1033 /// Returns true if a variable with function scope is a non-static local
1034 /// variable.
1035 bool hasLocalStorage() const {
1036 if (getStorageClass() == SC_None) {
1037 // OpenCL v1.2 s6.5.3: The __constant or constant address space name is
1038 // used to describe variables allocated in global memory and which are
1039 // accessed inside a kernel(s) as read-only variables. As such, variables
1040 // in constant address space cannot have local storage.
1041 if (getType().getAddressSpace() == LangAS::opencl_constant)
1042 return false;
1043 // Second check is for C++11 [dcl.stc]p4.
1044 return !isFileVarDecl() && getTSCSpec() == TSCS_unspecified;
1045 }
1046
1047 // Global Named Register (GNU extension)
1048 if (getStorageClass() == SC_Register && !isLocalVarDeclOrParm())
1049 return false;
1050
1051 // Return true for: Auto, Register.
1052 // Return false for: Extern, Static, PrivateExtern, OpenCLWorkGroupLocal.
1053
1054 return getStorageClass() >= SC_Auto;
1055 }
1056
1057 /// Returns true if a variable with function scope is a static local
1058 /// variable.
1059 bool isStaticLocal() const {
1060 return (getStorageClass() == SC_Static ||
1061 // C++11 [dcl.stc]p4
1062 (getStorageClass() == SC_None && getTSCSpec() == TSCS_thread_local))
1063 && !isFileVarDecl();
1064 }
1065
1066 /// Returns true if a variable has extern or __private_extern__
1067 /// storage.
1068 bool hasExternalStorage() const {
1069 return getStorageClass() == SC_Extern ||
1070 getStorageClass() == SC_PrivateExtern;
1071 }
1072
1073 /// Returns true for all variables that do not have local storage.
1074 ///
1075 /// This includes all global variables as well as static variables declared
1076 /// within a function.
1077 bool hasGlobalStorage() const { return !hasLocalStorage(); }
1078
1079 /// Get the storage duration of this variable, per C++ [basic.stc].
1080 StorageDuration getStorageDuration() const {
1081 return hasLocalStorage() ? SD_Automatic :
1082 getTSCSpec() ? SD_Thread : SD_Static;
1083 }
1084
1085 /// Compute the language linkage.
1086 LanguageLinkage getLanguageLinkage() const;
1087
1088 /// Determines whether this variable is a variable with external, C linkage.
1089 bool isExternC() const;
1090
1091 /// Determines whether this variable's context is, or is nested within,
1092 /// a C++ extern "C" linkage spec.
1093 bool isInExternCContext() const;
1094
1095 /// Determines whether this variable's context is, or is nested within,
1096 /// a C++ extern "C++" linkage spec.
1097 bool isInExternCXXContext() const;
1098
1099 /// Returns true for local variable declarations other than parameters.
1100 /// Note that this includes static variables inside of functions. It also
1101 /// includes variables inside blocks.
1102 ///
1103 /// void foo() { int x; static int y; extern int z; }
1104 bool isLocalVarDecl() const {
1105 if (getKind() != Decl::Var && getKind() != Decl::Decomposition)
1106 return false;
1107 if (const DeclContext *DC = getLexicalDeclContext())
1108 return DC->getRedeclContext()->isFunctionOrMethod();
1109 return false;
1110 }
1111
1112 /// Similar to isLocalVarDecl but also includes parameters.
1113 bool isLocalVarDeclOrParm() const {
1114 return isLocalVarDecl() || getKind() == Decl::ParmVar;
1115 }
1116
1117 /// Similar to isLocalVarDecl, but excludes variables declared in blocks.
1118 bool isFunctionOrMethodVarDecl() const {
1119 if (getKind() != Decl::Var && getKind() != Decl::Decomposition)
1120 return false;
1121 const DeclContext *DC = getLexicalDeclContext()->getRedeclContext();
1122 return DC->isFunctionOrMethod() && DC->getDeclKind() != Decl::Block;
1123 }
1124
1125 /// Determines whether this is a static data member.
1126 ///
1127 /// This will only be true in C++, and applies to, e.g., the
1128 /// variable 'x' in:
1129 /// \code
1130 /// struct S {
1131 /// static int x;
1132 /// };
1133 /// \endcode
1134 bool isStaticDataMember() const {
1135 // If it wasn't static, it would be a FieldDecl.
1136 return getKind() != Decl::ParmVar && getDeclContext()->isRecord();
1137 }
1138
1139 VarDecl *getCanonicalDecl() override;
1140 const VarDecl *getCanonicalDecl() const {
1141 return const_cast<VarDecl*>(this)->getCanonicalDecl();
1142 }
1143
1144 enum DefinitionKind {
1145 /// This declaration is only a declaration.
1146 DeclarationOnly,
1147
1148 /// This declaration is a tentative definition.
1149 TentativeDefinition,
1150
1151 /// This declaration is definitely a definition.
1152 Definition
1153 };
1154
1155 /// Check whether this declaration is a definition. If this could be
1156 /// a tentative definition (in C), don't check whether there's an overriding
1157 /// definition.
1158 DefinitionKind isThisDeclarationADefinition(ASTContext &) const;
1159 DefinitionKind isThisDeclarationADefinition() const {
1160 return isThisDeclarationADefinition(getASTContext());
1161 }
1162
1163 /// Check whether this variable is defined in this translation unit.
1164 DefinitionKind hasDefinition(ASTContext &) const;
1165 DefinitionKind hasDefinition() const {
1166 return hasDefinition(getASTContext());
1167 }
1168
1169 /// Get the tentative definition that acts as the real definition in a TU.
1170 /// Returns null if there is a proper definition available.
1171 VarDecl *getActingDefinition();
1172 const VarDecl *getActingDefinition() const {
1173 return const_cast<VarDecl*>(this)->getActingDefinition();
1174 }
1175
1176 /// Get the real (not just tentative) definition for this declaration.
1177 VarDecl *getDefinition(ASTContext &);
1178 const VarDecl *getDefinition(ASTContext &C) const {
1179 return const_cast<VarDecl*>(this)->getDefinition(C);
1180 }
1181 VarDecl *getDefinition() {
1182 return getDefinition(getASTContext());
1183 }
1184 const VarDecl *getDefinition() const {
1185 return const_cast<VarDecl*>(this)->getDefinition();
1186 }
1187
1188 /// Determine whether this is or was instantiated from an out-of-line
1189 /// definition of a static data member.
1190 bool isOutOfLine() const override;
1191
1192 /// Returns true for file scoped variable declaration.
1193 bool isFileVarDecl() const {
1194 Kind K = getKind();
1195 if (K == ParmVar || K == ImplicitParam)
1196 return false;
1197
1198 if (getLexicalDeclContext()->getRedeclContext()->isFileContext())
1199 return true;
1200
1201 if (isStaticDataMember())
1202 return true;
1203
1204 return false;
1205 }
1206
1207 /// Get the initializer for this variable, no matter which
1208 /// declaration it is attached to.
1209 const Expr *getAnyInitializer() const {
1210 const VarDecl *D;
1211 return getAnyInitializer(D);
1212 }
1213
1214 /// Get the initializer for this variable, no matter which
1215 /// declaration it is attached to. Also get that declaration.
1216 const Expr *getAnyInitializer(const VarDecl *&D) const;
1217
1218 bool hasInit() const;
1219 const Expr *getInit() const {
1220 return const_cast<VarDecl *>(this)->getInit();
1221 }
1222 Expr *getInit();
1223
1224 /// Retrieve the address of the initializer expression.
1225 Stmt **getInitAddress();
1226
1227 void setInit(Expr *I);
1228
1229 /// Determine whether this variable's value can be used in a
1230 /// constant expression, according to the relevant language standard.
1231 /// This only checks properties of the declaration, and does not check
1232 /// whether the initializer is in fact a constant expression.
1233 bool isUsableInConstantExpressions(ASTContext &C) const;
1234
1235 EvaluatedStmt *ensureEvaluatedStmt() const;
1236
1237 /// Attempt to evaluate the value of the initializer attached to this
1238 /// declaration, and produce notes explaining why it cannot be evaluated or is
1239 /// not a constant expression. Returns a pointer to the value if evaluation
1240 /// succeeded, 0 otherwise.
1241 APValue *evaluateValue() const;
1242 APValue *evaluateValue(SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
1243
1244 /// Return the already-evaluated value of this variable's
1245 /// initializer, or NULL if the value is not yet known. Returns pointer
1246 /// to untyped APValue if the value could not be evaluated.
1247 APValue *getEvaluatedValue() const;
1248
1249 /// Determines whether it is already known whether the
1250 /// initializer is an integral constant expression or not.
1251 bool isInitKnownICE() const;
1252
1253 /// Determines whether the initializer is an integral constant
1254 /// expression, or in C++11, whether the initializer is a constant
1255 /// expression.
1256 ///
1257 /// \pre isInitKnownICE()
1258 bool isInitICE() const;
1259
1260 /// Determine whether the value of the initializer attached to this
1261 /// declaration is an integral constant expression.
1262 bool checkInitIsICE() const;
1263
1264 void setInitStyle(InitializationStyle Style) {
1265 VarDeclBits.InitStyle = Style;
1266 }
1267
1268 /// The style of initialization for this declaration.
1269 ///
1270 /// C-style initialization is "int x = 1;". Call-style initialization is
1271 /// a C++98 direct-initializer, e.g. "int x(1);". The Init expression will be
1272 /// the expression inside the parens or a "ClassType(a,b,c)" class constructor
1273 /// expression for class types. List-style initialization is C++11 syntax,
1274 /// e.g. "int x{1};". Clients can distinguish between different forms of
1275 /// initialization by checking this value. In particular, "int x = {1};" is
1276 /// C-style, "int x({1})" is call-style, and "int x{1};" is list-style; the
1277 /// Init expression in all three cases is an InitListExpr.
1278 InitializationStyle getInitStyle() const {
1279 return static_cast<InitializationStyle>(VarDeclBits.InitStyle);
1280 }
1281
1282 /// Whether the initializer is a direct-initializer (list or call).
1283 bool isDirectInit() const {
1284 return getInitStyle() != CInit;
1285 }
1286
1287 /// If this definition should pretend to be a declaration.
1288 bool isThisDeclarationADemotedDefinition() const {
1289 return isa<ParmVarDecl>(this) ? false :
1290 NonParmVarDeclBits.IsThisDeclarationADemotedDefinition;
1291 }
1292
1293 /// This is a definition which should be demoted to a declaration.
1294 ///
1295 /// In some cases (mostly module merging) we can end up with two visible
1296 /// definitions one of which needs to be demoted to a declaration to keep
1297 /// the AST invariants.
1298 void demoteThisDefinitionToDeclaration() {
1299 assert(isThisDeclarationADefinition() && "Not a definition!");
1300 assert(!isa<ParmVarDecl>(this) && "Cannot demote ParmVarDecls!");
1301 NonParmVarDeclBits.IsThisDeclarationADemotedDefinition = 1;
1302 }
1303
1304 /// Determine whether this variable is the exception variable in a
1305 /// C++ catch statememt or an Objective-C \@catch statement.
1306 bool isExceptionVariable() const {
1307 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.ExceptionVar;
1308 }
1309 void setExceptionVariable(bool EV) {
1310 assert(!isa<ParmVarDecl>(this));
1311 NonParmVarDeclBits.ExceptionVar = EV;
1312 }
1313
1314 /// Determine whether this local variable can be used with the named
1315 /// return value optimization (NRVO).
1316 ///
1317 /// The named return value optimization (NRVO) works by marking certain
1318 /// non-volatile local variables of class type as NRVO objects. These
1319 /// locals can be allocated within the return slot of their containing
1320 /// function, in which case there is no need to copy the object to the
1321 /// return slot when returning from the function. Within the function body,
1322 /// each return that returns the NRVO object will have this variable as its
1323 /// NRVO candidate.
1324 bool isNRVOVariable() const {
1325 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.NRVOVariable;
1326 }
1327 void setNRVOVariable(bool NRVO) {
1328 assert(!isa<ParmVarDecl>(this));
1329 NonParmVarDeclBits.NRVOVariable = NRVO;
1330 }
1331
1332 /// Determine whether this variable is the for-range-declaration in
1333 /// a C++0x for-range statement.
1334 bool isCXXForRangeDecl() const {
1335 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.CXXForRangeDecl;
1336 }
1337 void setCXXForRangeDecl(bool FRD) {
1338 assert(!isa<ParmVarDecl>(this));
1339 NonParmVarDeclBits.CXXForRangeDecl = FRD;
1340 }
1341
1342 /// Determine whether this variable is a for-loop declaration for a
1343 /// for-in statement in Objective-C.
1344 bool isObjCForDecl() const {
1345 return NonParmVarDeclBits.ObjCForDecl;
1346 }
1347
1348 void setObjCForDecl(bool FRD) {
1349 NonParmVarDeclBits.ObjCForDecl = FRD;
1350 }
1351
1352 /// Determine whether this variable is an ARC pseudo-__strong
1353 /// variable. A pseudo-__strong variable has a __strong-qualified
1354 /// type but does not actually retain the object written into it.
1355 /// Generally such variables are also 'const' for safety.
1356 bool isARCPseudoStrong() const {
1357 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.ARCPseudoStrong;
1358 }
1359 void setARCPseudoStrong(bool ps) {
1360 assert(!isa<ParmVarDecl>(this));
1361 NonParmVarDeclBits.ARCPseudoStrong = ps;
1362 }
1363
1364 /// Whether this variable is (C++1z) inline.
1365 bool isInline() const {
1366 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsInline;
1367 }
1368 bool isInlineSpecified() const {
1369 return isa<ParmVarDecl>(this) ? false
1370 : NonParmVarDeclBits.IsInlineSpecified;
1371 }
1372 void setInlineSpecified() {
1373 assert(!isa<ParmVarDecl>(this));
1374 NonParmVarDeclBits.IsInline = true;
1375 NonParmVarDeclBits.IsInlineSpecified = true;
1376 }
1377 void setImplicitlyInline() {
1378 assert(!isa<ParmVarDecl>(this));
1379 NonParmVarDeclBits.IsInline = true;
1380 }
1381
1382 /// Whether this variable is (C++11) constexpr.
1383 bool isConstexpr() const {
1384 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsConstexpr;
1385 }
1386 void setConstexpr(bool IC) {
1387 assert(!isa<ParmVarDecl>(this));
1388 NonParmVarDeclBits.IsConstexpr = IC;
1389 }
1390
1391 /// Whether this variable is the implicit variable for a lambda init-capture.
1392 bool isInitCapture() const {
1393 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsInitCapture;
1394 }
1395 void setInitCapture(bool IC) {
1396 assert(!isa<ParmVarDecl>(this));
1397 NonParmVarDeclBits.IsInitCapture = IC;
1398 }
1399
1400 /// Whether this local extern variable declaration's previous declaration
1401 /// was declared in the same block scope. Only correct in C++.
1402 bool isPreviousDeclInSameBlockScope() const {
1403 return isa<ParmVarDecl>(this)
1404 ? false
1405 : NonParmVarDeclBits.PreviousDeclInSameBlockScope;
1406 }
1407 void setPreviousDeclInSameBlockScope(bool Same) {
1408 assert(!isa<ParmVarDecl>(this));
1409 NonParmVarDeclBits.PreviousDeclInSameBlockScope = Same;
1410 }
1411
1412 /// Indicates the capture is a __block variable that is captured by a block
1413 /// that can potentially escape (a block for which BlockDecl::doesNotEscape
1414 /// returns false).
1415 bool isEscapingByref() const;
1416
1417 /// Indicates the capture is a __block variable that is never captured by an
1418 /// escaping block.
1419 bool isNonEscapingByref() const;
1420
1421 void setEscapingByref() {
1422 NonParmVarDeclBits.EscapingByref = true;
1423 }
1424
1425 /// Retrieve the variable declaration from which this variable could
1426 /// be instantiated, if it is an instantiation (rather than a non-template).
1427 VarDecl *getTemplateInstantiationPattern() const;
1428
1429 /// If this variable is an instantiated static data member of a
1430 /// class template specialization, returns the templated static data member
1431 /// from which it was instantiated.
1432 VarDecl *getInstantiatedFromStaticDataMember() const;
1433
1434 /// If this variable is an instantiation of a variable template or a
1435 /// static data member of a class template, determine what kind of
1436 /// template specialization or instantiation this is.
1437 TemplateSpecializationKind getTemplateSpecializationKind() const;
1438
1439 /// If this variable is an instantiation of a variable template or a
1440 /// static data member of a class template, determine its point of
1441 /// instantiation.
1442 SourceLocation getPointOfInstantiation() const;
1443
1444 /// If this variable is an instantiation of a static data member of a
1445 /// class template specialization, retrieves the member specialization
1446 /// information.
1447 MemberSpecializationInfo *getMemberSpecializationInfo() const;
1448
1449 /// For a static data member that was instantiated from a static
1450 /// data member of a class template, set the template specialiation kind.
1451 void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
1452 SourceLocation PointOfInstantiation = SourceLocation());
1453
1454 /// Specify that this variable is an instantiation of the
1455 /// static data member VD.
1456 void setInstantiationOfStaticDataMember(VarDecl *VD,
1457 TemplateSpecializationKind TSK);
1458
1459 /// Retrieves the variable template that is described by this
1460 /// variable declaration.
1461 ///
1462 /// Every variable template is represented as a VarTemplateDecl and a
1463 /// VarDecl. The former contains template properties (such as
1464 /// the template parameter lists) while the latter contains the
1465 /// actual description of the template's
1466 /// contents. VarTemplateDecl::getTemplatedDecl() retrieves the
1467 /// VarDecl that from a VarTemplateDecl, while
1468 /// getDescribedVarTemplate() retrieves the VarTemplateDecl from
1469 /// a VarDecl.
1470 VarTemplateDecl *getDescribedVarTemplate() const;
1471
1472 void setDescribedVarTemplate(VarTemplateDecl *Template);
1473
1474 // Is this variable known to have a definition somewhere in the complete
1475 // program? This may be true even if the declaration has internal linkage and
1476 // has no definition within this source file.
1477 bool isKnownToBeDefined() const;
1478
1479 /// Do we need to emit an exit-time destructor for this variable?
1480 bool isNoDestroy(const ASTContext &) const;
1481
1482 // Implement isa/cast/dyncast/etc.
1483 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1484 static bool classofKind(Kind K) { return K >= firstVar && K <= lastVar; }
1485};
1486
1487class ImplicitParamDecl : public VarDecl {
1488 void anchor() override;
1489
1490public:
1491 /// Defines the kind of the implicit parameter: is this an implicit parameter
1492 /// with pointer to 'this', 'self', '_cmd', virtual table pointers, captured
1493 /// context or something else.
1494 enum ImplicitParamKind : unsigned {
1495 /// Parameter for Objective-C 'self' argument
1496 ObjCSelf,
1497
1498 /// Parameter for Objective-C '_cmd' argument
1499 ObjCCmd,
1500
1501 /// Parameter for C++ 'this' argument
1502 CXXThis,
1503
1504 /// Parameter for C++ virtual table pointers
1505 CXXVTT,
1506
1507 /// Parameter for captured context
1508 CapturedContext,
1509
1510 /// Other implicit parameter
1511 Other,
1512 };
1513
1514 /// Create implicit parameter.
1515 static ImplicitParamDecl *Create(ASTContext &C, DeclContext *DC,
1516 SourceLocation IdLoc, IdentifierInfo *Id,
1517 QualType T, ImplicitParamKind ParamKind);
1518 static ImplicitParamDecl *Create(ASTContext &C, QualType T,
1519 ImplicitParamKind ParamKind);
1520
1521 static ImplicitParamDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1522
1523 ImplicitParamDecl(ASTContext &C, DeclContext *DC, SourceLocation IdLoc,
1524 IdentifierInfo *Id, QualType Type,
1525 ImplicitParamKind ParamKind)
1526 : VarDecl(ImplicitParam, C, DC, IdLoc, IdLoc, Id, Type,
1527 /*TInfo=*/nullptr, SC_None) {
1528 NonParmVarDeclBits.ImplicitParamKind = ParamKind;
1529 setImplicit();
1530 }
1531
1532 ImplicitParamDecl(ASTContext &C, QualType Type, ImplicitParamKind ParamKind)
1533 : VarDecl(ImplicitParam, C, /*DC=*/nullptr, SourceLocation(),
1534 SourceLocation(), /*Id=*/nullptr, Type,
1535 /*TInfo=*/nullptr, SC_None) {
1536 NonParmVarDeclBits.ImplicitParamKind = ParamKind;
1537 setImplicit();
1538 }
1539
1540 /// Returns the implicit parameter kind.
1541 ImplicitParamKind getParameterKind() const {
1542 return static_cast<ImplicitParamKind>(NonParmVarDeclBits.ImplicitParamKind);
1543 }
1544
1545 // Implement isa/cast/dyncast/etc.
1546 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1547 static bool classofKind(Kind K) { return K == ImplicitParam; }
1548};
1549
1550/// Represents a parameter to a function.
1551class ParmVarDecl : public VarDecl {
1552public:
1553 enum { MaxFunctionScopeDepth = 255 };
1554 enum { MaxFunctionScopeIndex = 255 };
1555
1556protected:
1557 ParmVarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1558 SourceLocation IdLoc, IdentifierInfo *Id, QualType T,
1559 TypeSourceInfo *TInfo, StorageClass S, Expr *DefArg)
1560 : VarDecl(DK, C, DC, StartLoc, IdLoc, Id, T, TInfo, S) {
1561 assert(ParmVarDeclBits.HasInheritedDefaultArg == false);
1562 assert(ParmVarDeclBits.DefaultArgKind == DAK_None);
1563 assert(ParmVarDeclBits.IsKNRPromoted == false);
1564 assert(ParmVarDeclBits.IsObjCMethodParam == false);
1565 setDefaultArg(DefArg);
1566 }
1567
1568public:
1569 static ParmVarDecl *Create(ASTContext &C, DeclContext *DC,
1570 SourceLocation StartLoc,
1571 SourceLocation IdLoc, IdentifierInfo *Id,
1572 QualType T, TypeSourceInfo *TInfo,
1573 StorageClass S, Expr *DefArg);
1574
1575 static ParmVarDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1576
1577 SourceRange getSourceRange() const override LLVM_READONLY;
1578
1579 void setObjCMethodScopeInfo(unsigned parameterIndex) {
1580 ParmVarDeclBits.IsObjCMethodParam = true;
1581 setParameterIndex(parameterIndex);
1582 }
1583
1584 void setScopeInfo(unsigned scopeDepth, unsigned parameterIndex) {
1585 assert(!ParmVarDeclBits.IsObjCMethodParam);
1586
1587 ParmVarDeclBits.ScopeDepthOrObjCQuals = scopeDepth;
1588 assert(ParmVarDeclBits.ScopeDepthOrObjCQuals == scopeDepth
1589 && "truncation!");
1590
1591 setParameterIndex(parameterIndex);
1592 }
1593
1594 bool isObjCMethodParameter() const {
1595 return ParmVarDeclBits.IsObjCMethodParam;
1596 }
1597
1598 unsigned getFunctionScopeDepth() const {
1599 if (ParmVarDeclBits.IsObjCMethodParam) return 0;
1600 return ParmVarDeclBits.ScopeDepthOrObjCQuals;
1601 }
1602
1603 /// Returns the index of this parameter in its prototype or method scope.
1604 unsigned getFunctionScopeIndex() const {
1605 return getParameterIndex();
1606 }
1607
1608 ObjCDeclQualifier getObjCDeclQualifier() const {
1609 if (!ParmVarDeclBits.IsObjCMethodParam) return OBJC_TQ_None;
1610 return ObjCDeclQualifier(ParmVarDeclBits.ScopeDepthOrObjCQuals);
1611 }
1612 void setObjCDeclQualifier(ObjCDeclQualifier QTVal) {
1613 assert(ParmVarDeclBits.IsObjCMethodParam);
1614 ParmVarDeclBits.ScopeDepthOrObjCQuals = QTVal;
1615 }
1616
1617 /// True if the value passed to this parameter must undergo
1618 /// K&R-style default argument promotion:
1619 ///
1620 /// C99 6.5.2.2.
1621 /// If the expression that denotes the called function has a type
1622 /// that does not include a prototype, the integer promotions are
1623 /// performed on each argument, and arguments that have type float
1624 /// are promoted to double.
1625 bool isKNRPromoted() const {
1626 return ParmVarDeclBits.IsKNRPromoted;
1627 }
1628 void setKNRPromoted(bool promoted) {
1629 ParmVarDeclBits.IsKNRPromoted = promoted;
1630 }
1631
1632 Expr *getDefaultArg();
1633 const Expr *getDefaultArg() const {
1634 return const_cast<ParmVarDecl *>(this)->getDefaultArg();
1635 }
1636
1637 void setDefaultArg(Expr *defarg);
1638
1639 /// Retrieve the source range that covers the entire default
1640 /// argument.
1641 SourceRange getDefaultArgRange() const;
1642 void setUninstantiatedDefaultArg(Expr *arg);
1643 Expr *getUninstantiatedDefaultArg();
1644 const Expr *getUninstantiatedDefaultArg() const {
1645 return const_cast<ParmVarDecl *>(this)->getUninstantiatedDefaultArg();
1646 }
1647
1648 /// Determines whether this parameter has a default argument,
1649 /// either parsed or not.
1650 bool hasDefaultArg() const;
1651
1652 /// Determines whether this parameter has a default argument that has not
1653 /// yet been parsed. This will occur during the processing of a C++ class
1654 /// whose member functions have default arguments, e.g.,
1655 /// @code
1656 /// class X {
1657 /// public:
1658 /// void f(int x = 17); // x has an unparsed default argument now
1659 /// }; // x has a regular default argument now
1660 /// @endcode
1661 bool hasUnparsedDefaultArg() const {
1662 return ParmVarDeclBits.DefaultArgKind == DAK_Unparsed;
1663 }
1664
1665 bool hasUninstantiatedDefaultArg() const {
1666 return ParmVarDeclBits.DefaultArgKind == DAK_Uninstantiated;
1667 }
1668
1669 /// Specify that this parameter has an unparsed default argument.
1670 /// The argument will be replaced with a real default argument via
1671 /// setDefaultArg when the class definition enclosing the function
1672 /// declaration that owns this default argument is completed.
1673 void setUnparsedDefaultArg() {
1674 ParmVarDeclBits.DefaultArgKind = DAK_Unparsed;
1675 }
1676
1677 bool hasInheritedDefaultArg() const {
1678 return ParmVarDeclBits.HasInheritedDefaultArg;
1679 }
1680
1681 void setHasInheritedDefaultArg(bool I = true) {
1682 ParmVarDeclBits.HasInheritedDefaultArg = I;
1683 }
1684
1685 QualType getOriginalType() const;
1686
1687 /// Determine whether this parameter is actually a function
1688 /// parameter pack.
1689 bool isParameterPack() const;
1690
1691 /// Sets the function declaration that owns this
1692 /// ParmVarDecl. Since ParmVarDecls are often created before the
1693 /// FunctionDecls that own them, this routine is required to update
1694 /// the DeclContext appropriately.
1695 void setOwningFunction(DeclContext *FD) { setDeclContext(FD); }
1696
1697 // Implement isa/cast/dyncast/etc.
1698 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1699 static bool classofKind(Kind K) { return K == ParmVar; }
1700
1701private:
1702 enum { ParameterIndexSentinel = (1 << NumParameterIndexBits) - 1 };
1703
1704 void setParameterIndex(unsigned parameterIndex) {
1705 if (parameterIndex >= ParameterIndexSentinel) {
1706 setParameterIndexLarge(parameterIndex);
1707 return;
1708 }
1709
1710 ParmVarDeclBits.ParameterIndex = parameterIndex;
1711 assert(ParmVarDeclBits.ParameterIndex == parameterIndex && "truncation!");
1712 }
1713 unsigned getParameterIndex() const {
1714 unsigned d = ParmVarDeclBits.ParameterIndex;
1715 return d == ParameterIndexSentinel ? getParameterIndexLarge() : d;
1716 }
1717
1718 void setParameterIndexLarge(unsigned parameterIndex);
1719 unsigned getParameterIndexLarge() const;
1720};
1721
1722/// Represents a function declaration or definition.
1723///
1724/// Since a given function can be declared several times in a program,
1725/// there may be several FunctionDecls that correspond to that
1726/// function. Only one of those FunctionDecls will be found when
1727/// traversing the list of declarations in the context of the
1728/// FunctionDecl (e.g., the translation unit); this FunctionDecl
1729/// contains all of the information known about the function. Other,
1730/// previous declarations of the function are available via the
1731/// getPreviousDecl() chain.
1732class FunctionDecl : public DeclaratorDecl,
1733 public DeclContext,
1734 public Redeclarable<FunctionDecl> {
1735 // This class stores some data in DeclContext::FunctionDeclBits
1736 // to save some space. Use the provided accessors to access it.
1737public:
1738 /// The kind of templated function a FunctionDecl can be.
1739 enum TemplatedKind {
1740 TK_NonTemplate,
1741 TK_FunctionTemplate,
1742 TK_MemberSpecialization,
1743 TK_FunctionTemplateSpecialization,
1744 TK_DependentFunctionTemplateSpecialization
1745 };
1746
1747private:
1748 /// A new[]'d array of pointers to VarDecls for the formal
1749 /// parameters of this function. This is null if a prototype or if there are
1750 /// no formals.
1751 ParmVarDecl **ParamInfo = nullptr;
1752
1753 LazyDeclStmtPtr Body;
1754
1755 unsigned ODRHash;
1756
1757 /// End part of this FunctionDecl's source range.
1758 ///
1759 /// We could compute the full range in getSourceRange(). However, when we're
1760 /// dealing with a function definition deserialized from a PCH/AST file,
1761 /// we can only compute the full range once the function body has been
1762 /// de-serialized, so it's far better to have the (sometimes-redundant)
1763 /// EndRangeLoc.
1764 SourceLocation EndRangeLoc;
1765
1766 /// The template or declaration that this declaration
1767 /// describes or was instantiated from, respectively.
1768 ///
1769 /// For non-templates, this value will be NULL. For function
1770 /// declarations that describe a function template, this will be a
1771 /// pointer to a FunctionTemplateDecl. For member functions
1772 /// of class template specializations, this will be a MemberSpecializationInfo
1773 /// pointer containing information about the specialization.
1774 /// For function template specializations, this will be a
1775 /// FunctionTemplateSpecializationInfo, which contains information about
1776 /// the template being specialized and the template arguments involved in
1777 /// that specialization.
1778 llvm::PointerUnion4<FunctionTemplateDecl *,
1779 MemberSpecializationInfo *,
1780 FunctionTemplateSpecializationInfo *,
1781 DependentFunctionTemplateSpecializationInfo *>
1782 TemplateOrSpecialization;
1783
1784 /// Provides source/type location info for the declaration name embedded in
1785 /// the DeclaratorDecl base class.
1786 DeclarationNameLoc DNLoc;
1787
1788 /// Specify that this function declaration is actually a function
1789 /// template specialization.
1790 ///
1791 /// \param C the ASTContext.
1792 ///
1793 /// \param Template the function template that this function template
1794 /// specialization specializes.
1795 ///
1796 /// \param TemplateArgs the template arguments that produced this
1797 /// function template specialization from the template.
1798 ///
1799 /// \param InsertPos If non-NULL, the position in the function template
1800 /// specialization set where the function template specialization data will
1801 /// be inserted.
1802 ///
1803 /// \param TSK the kind of template specialization this is.
1804 ///
1805 /// \param TemplateArgsAsWritten location info of template arguments.
1806 ///
1807 /// \param PointOfInstantiation point at which the function template
1808 /// specialization was first instantiated.
1809 void setFunctionTemplateSpecialization(ASTContext &C,
1810 FunctionTemplateDecl *Template,
1811 const TemplateArgumentList *TemplateArgs,
1812 void *InsertPos,
1813 TemplateSpecializationKind TSK,
1814 const TemplateArgumentListInfo *TemplateArgsAsWritten,
1815 SourceLocation PointOfInstantiation);
1816
1817 /// Specify that this record is an instantiation of the
1818 /// member function FD.
1819 void setInstantiationOfMemberFunction(ASTContext &C, FunctionDecl *FD,
1820 TemplateSpecializationKind TSK);
1821
1822 void setParams(ASTContext &C, ArrayRef<ParmVarDecl *> NewParamInfo);
1823
1824 // This is unfortunately needed because ASTDeclWriter::VisitFunctionDecl
1825 // need to access this bit but we want to avoid making ASTDeclWriter
1826 // a friend of FunctionDeclBitfields just for this.
1827 bool isDeletedBit() const { return FunctionDeclBits.IsDeleted; }
1828
1829 /// Whether an ODRHash has been stored.
1830 bool hasODRHash() const { return FunctionDeclBits.HasODRHash; }
1831
1832 /// State that an ODRHash has been stored.
1833 void setHasODRHash(bool B = true) { FunctionDeclBits.HasODRHash = B; }
1834
1835protected:
1836 FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1837 const DeclarationNameInfo &NameInfo, QualType T,
1838 TypeSourceInfo *TInfo, StorageClass S, bool isInlineSpecified,
1839 bool isConstexprSpecified);
1840
1841 using redeclarable_base = Redeclarable<FunctionDecl>;
1842
1843 FunctionDecl *getNextRedeclarationImpl() override {
1844 return getNextRedeclaration();
1845 }
1846
1847 FunctionDecl *getPreviousDeclImpl() override {
1848 return getPreviousDecl();
1849 }
1850
1851 FunctionDecl *getMostRecentDeclImpl() override {
1852 return getMostRecentDecl();
1853 }
1854
1855public:
1856 friend class ASTDeclReader;
1857 friend class ASTDeclWriter;
1858
1859 using redecl_range = redeclarable_base::redecl_range;
1860 using redecl_iterator = redeclarable_base::redecl_iterator;
1861
1862 using redeclarable_base::redecls_begin;
1863 using redeclarable_base::redecls_end;
1864 using redeclarable_base::redecls;
1865 using redeclarable_base::getPreviousDecl;
1866 using redeclarable_base::getMostRecentDecl;
1867 using redeclarable_base::isFirstDecl;
1868
1869 static FunctionDecl *Create(ASTContext &C, DeclContext *DC,
1870 SourceLocation StartLoc, SourceLocation NLoc,
1871 DeclarationName N, QualType T,
1872 TypeSourceInfo *TInfo,
1873 StorageClass SC,
1874 bool isInlineSpecified = false,
1875 bool hasWrittenPrototype = true,
1876 bool isConstexprSpecified = false) {
1877 DeclarationNameInfo NameInfo(N, NLoc);
1878 return FunctionDecl::Create(C, DC, StartLoc, NameInfo, T, TInfo,
1879 SC,
1880 isInlineSpecified, hasWrittenPrototype,
1881 isConstexprSpecified);
1882 }
1883
1884 static FunctionDecl *Create(ASTContext &C, DeclContext *DC,
1885 SourceLocation StartLoc,
1886 const DeclarationNameInfo &NameInfo,
1887 QualType T, TypeSourceInfo *TInfo,
1888 StorageClass SC,
1889 bool isInlineSpecified,
1890 bool hasWrittenPrototype,
1891 bool isConstexprSpecified = false);
1892
1893 static FunctionDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1894
1895 DeclarationNameInfo getNameInfo() const {
1896 return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
1897 }
1898
1899 void getNameForDiagnostic(raw_ostream &OS, const PrintingPolicy &Policy,
1900 bool Qualified) const override;
1901
1902 void setRangeEnd(SourceLocation E) { EndRangeLoc = E; }
1903
1904 SourceRange getSourceRange() const override LLVM_READONLY;
1905
1906 // Function definitions.
1907 //
1908 // A function declaration may be:
1909 // - a non defining declaration,
1910 // - a definition. A function may be defined because:
1911 // - it has a body, or will have it in the case of late parsing.
1912 // - it has an uninstantiated body. The body does not exist because the
1913 // function is not used yet, but the declaration is considered a
1914 // definition and does not allow other definition of this function.
1915 // - it does not have a user specified body, but it does not allow
1916 // redefinition, because it is deleted/defaulted or is defined through
1917 // some other mechanism (alias, ifunc).
1918
1919 /// Returns true if the function has a body.
1920 ///
1921 /// The function body might be in any of the (re-)declarations of this
1922 /// function. The variant that accepts a FunctionDecl pointer will set that
1923 /// function declaration to the actual declaration containing the body (if
1924 /// there is one).
1925 bool hasBody(const FunctionDecl *&Definition) const;
1926
1927 bool hasBody() const override {
1928 const FunctionDecl* Definition;
1929 return hasBody(Definition);
1930 }
1931
1932 /// Returns whether the function has a trivial body that does not require any
1933 /// specific codegen.
1934 bool hasTrivialBody() const;
1935
1936 /// Returns true if the function has a definition that does not need to be
1937 /// instantiated.
1938 ///
1939 /// The variant that accepts a FunctionDecl pointer will set that function
1940 /// declaration to the declaration that is a definition (if there is one).
1941 bool isDefined(const FunctionDecl *&Definition) const;
1942
1943 virtual bool isDefined() const {
1944 const FunctionDecl* Definition;
1945 return isDefined(Definition);
1946 }
1947
1948 /// Get the definition for this declaration.
1949 FunctionDecl *getDefinition() {
1950 const FunctionDecl *Definition;
1951 if (isDefined(Definition))
1952 return const_cast<FunctionDecl *>(Definition);
1953 return nullptr;
1954 }
1955 const FunctionDecl *getDefinition() const {
1956 return const_cast<FunctionDecl *>(this)->getDefinition();
1957 }
1958
1959 /// Retrieve the body (definition) of the function. The function body might be
1960 /// in any of the (re-)declarations of this function. The variant that accepts
1961 /// a FunctionDecl pointer will set that function declaration to the actual
1962 /// declaration containing the body (if there is one).
1963 /// NOTE: For checking if there is a body, use hasBody() instead, to avoid
1964 /// unnecessary AST de-serialization of the body.
1965 Stmt *getBody(const FunctionDecl *&Definition) const;
1966
1967 Stmt *getBody() const override {
1968 const FunctionDecl* Definition;
1969 return getBody(Definition);
1970 }
1971
1972 /// Returns whether this specific declaration of the function is also a
1973 /// definition that does not contain uninstantiated body.
1974 ///
1975 /// This does not determine whether the function has been defined (e.g., in a
1976 /// previous definition); for that information, use isDefined.
1977 bool isThisDeclarationADefinition() const {
1978 return isDeletedAsWritten() || isDefaulted() || Body || hasSkippedBody() ||
1979 isLateTemplateParsed() || willHaveBody() || hasDefiningAttr();
1980 }
1981
1982 /// Returns whether this specific declaration of the function has a body.
1983 bool doesThisDeclarationHaveABody() const {
1984 return Body || isLateTemplateParsed();
1985 }
1986
1987 void setBody(Stmt *B);
1988 void setLazyBody(uint64_t Offset) { Body = Offset; }
1989
1990 /// Whether this function is variadic.
1991 bool isVariadic() const;
1992
1993 /// Whether this function is marked as virtual explicitly.
1994 bool isVirtualAsWritten() const {
1995 return FunctionDeclBits.IsVirtualAsWritten;
1996 }
1997
1998 /// State that this function is marked as virtual explicitly.
1999 void setVirtualAsWritten(bool V) { FunctionDeclBits.IsVirtualAsWritten = V; }
2000
2001 /// Whether this virtual function is pure, i.e. makes the containing class
2002 /// abstract.
2003 bool isPure() const { return FunctionDeclBits.IsPure; }
2004 void setPure(bool P = true);
2005
2006 /// Whether this templated function will be late parsed.
2007 bool isLateTemplateParsed() const {
2008 return FunctionDeclBits.IsLateTemplateParsed;
2009 }
2010
2011 /// State that this templated function will be late parsed.
2012 void setLateTemplateParsed(bool ILT = true) {
2013 FunctionDeclBits.IsLateTemplateParsed = ILT;
2014 }
2015
2016 /// Whether this function is "trivial" in some specialized C++ senses.
2017 /// Can only be true for default constructors, copy constructors,
2018 /// copy assignment operators, and destructors. Not meaningful until
2019 /// the class has been fully built by Sema.
2020 bool isTrivial() const { return FunctionDeclBits.IsTrivial; }
2021 void setTrivial(bool IT) { FunctionDeclBits.IsTrivial = IT; }
2022
2023 bool isTrivialForCall() const { return FunctionDeclBits.IsTrivialForCall; }
2024 void setTrivialForCall(bool IT) { FunctionDeclBits.IsTrivialForCall = IT; }
2025
2026 /// Whether this function is defaulted per C++0x. Only valid for
2027 /// special member functions.
2028 bool isDefaulted() const { return FunctionDeclBits.IsDefaulted; }
2029 void setDefaulted(bool D = true) { FunctionDeclBits.IsDefaulted = D; }
2030
2031 /// Whether this function is explicitly defaulted per C++0x. Only valid
2032 /// for special member functions.
2033 bool isExplicitlyDefaulted() const {
2034 return FunctionDeclBits.IsExplicitlyDefaulted;
2035 }
2036
2037 /// State that this function is explicitly defaulted per C++0x. Only valid
2038 /// for special member functions.
2039 void setExplicitlyDefaulted(bool ED = true) {
2040 FunctionDeclBits.IsExplicitlyDefaulted = ED;
2041 }
2042
2043 /// Whether falling off this function implicitly returns null/zero.
2044 /// If a more specific implicit return value is required, front-ends
2045 /// should synthesize the appropriate return statements.
2046 bool hasImplicitReturnZero() const {
2047 return FunctionDeclBits.HasImplicitReturnZero;
2048 }
2049
2050 /// State that falling off this function implicitly returns null/zero.
2051 /// If a more specific implicit return value is required, front-ends
2052 /// should synthesize the appropriate return statements.
2053 void setHasImplicitReturnZero(bool IRZ) {
2054 FunctionDeclBits.HasImplicitReturnZero = IRZ;
2055 }
2056
2057 /// Whether this function has a prototype, either because one
2058 /// was explicitly written or because it was "inherited" by merging
2059 /// a declaration without a prototype with a declaration that has a
2060 /// prototype.
2061 bool hasPrototype() const {
2062 return hasWrittenPrototype() || hasInheritedPrototype();
2063 }
2064
2065 /// Whether this function has a written prototype.
2066 bool hasWrittenPrototype() const {
2067 return FunctionDeclBits.HasWrittenPrototype;
2068 }
2069
2070 /// State that this function has a written prototype.
2071 void setHasWrittenPrototype(bool P = true) {
2072 FunctionDeclBits.HasWrittenPrototype = P;
2073 }
2074
2075 /// Whether this function inherited its prototype from a
2076 /// previous declaration.
2077 bool hasInheritedPrototype() const {
2078 return FunctionDeclBits.HasInheritedPrototype;
2079 }
2080
2081 /// State that this function inherited its prototype from a
2082 /// previous declaration.
2083 void setHasInheritedPrototype(bool P = true) {
2084 FunctionDeclBits.HasInheritedPrototype = P;
2085 }
2086
2087 /// Whether this is a (C++11) constexpr function or constexpr constructor.
2088 bool isConstexpr() const { return FunctionDeclBits.IsConstexpr; }
2089 void setConstexpr(bool IC) { FunctionDeclBits.IsConstexpr = IC; }
2090
2091 /// Whether the instantiation of this function is pending.
2092 /// This bit is set when the decision to instantiate this function is made
2093 /// and unset if and when the function body is created. That leaves out
2094 /// cases where instantiation did not happen because the template definition
2095 /// was not seen in this TU. This bit remains set in those cases, under the
2096 /// assumption that the instantiation will happen in some other TU.
2097 bool instantiationIsPending() const {
2098 return FunctionDeclBits.InstantiationIsPending;
2099 }
2100
2101 /// State that the instantiation of this function is pending.
2102 /// (see instantiationIsPending)
2103 void setInstantiationIsPending(bool IC) {
2104 FunctionDeclBits.InstantiationIsPending = IC;
2105 }
2106
2107 /// Indicates the function uses __try.
2108 bool usesSEHTry() const { return FunctionDeclBits.UsesSEHTry; }
2109 void setUsesSEHTry(bool UST) { FunctionDeclBits.UsesSEHTry = UST; }
2110
2111 /// Whether this function has been deleted.
2112 ///
2113 /// A function that is "deleted" (via the C++0x "= delete" syntax)
2114 /// acts like a normal function, except that it cannot actually be
2115 /// called or have its address taken. Deleted functions are
2116 /// typically used in C++ overload resolution to attract arguments
2117 /// whose type or lvalue/rvalue-ness would permit the use of a
2118 /// different overload that would behave incorrectly. For example,
2119 /// one might use deleted functions to ban implicit conversion from
2120 /// a floating-point number to an Integer type:
2121 ///
2122 /// @code
2123 /// struct Integer {
2124 /// Integer(long); // construct from a long
2125 /// Integer(double) = delete; // no construction from float or double
2126 /// Integer(long double) = delete; // no construction from long double
2127 /// };
2128 /// @endcode
2129 // If a function is deleted, its first declaration must be.
2130 bool isDeleted() const {
2131 return getCanonicalDecl()->FunctionDeclBits.IsDeleted;
2132 }
2133
2134 bool isDeletedAsWritten() const {
2135 return FunctionDeclBits.IsDeleted && !isDefaulted();
2136 }
2137
2138 void setDeletedAsWritten(bool D = true) { FunctionDeclBits.IsDeleted = D; }
2139
2140 /// Determines whether this function is "main", which is the
2141 /// entry point into an executable program.
2142 bool isMain() const;
2143
2144 /// Determines whether this function is a MSVCRT user defined entry
2145 /// point.
2146 bool isMSVCRTEntryPoint() const;
2147
2148 /// Determines whether this operator new or delete is one
2149 /// of the reserved global placement operators:
2150 /// void *operator new(size_t, void *);
2151 /// void *operator new[](size_t, void *);
2152 /// void operator delete(void *, void *);
2153 /// void operator delete[](void *, void *);
2154 /// These functions have special behavior under [new.delete.placement]:
2155 /// These functions are reserved, a C++ program may not define
2156 /// functions that displace the versions in the Standard C++ library.
2157 /// The provisions of [basic.stc.dynamic] do not apply to these
2158 /// reserved placement forms of operator new and operator delete.
2159 ///
2160 /// This function must be an allocation or deallocation function.
2161 bool isReservedGlobalPlacementOperator() const;
2162
2163 /// Determines whether this function is one of the replaceable
2164 /// global allocation functions:
2165 /// void *operator new(size_t);
2166 /// void *operator new(size_t, const std::nothrow_t &) noexcept;
2167 /// void *operator new[](size_t);
2168 /// void *operator new[](size_t, const std::nothrow_t &) noexcept;
2169 /// void operator delete(void *) noexcept;
2170 /// void operator delete(void *, std::size_t) noexcept; [C++1y]
2171 /// void operator delete(void *, const std::nothrow_t &) noexcept;
2172 /// void operator delete[](void *) noexcept;
2173 /// void operator delete[](void *, std::size_t) noexcept; [C++1y]
2174 /// void operator delete[](void *, const std::nothrow_t &) noexcept;
2175 /// These functions have special behavior under C++1y [expr.new]:
2176 /// An implementation is allowed to omit a call to a replaceable global
2177 /// allocation function. [...]
2178 ///
2179 /// If this function is an aligned allocation/deallocation function, return
2180 /// true through IsAligned.
2181 bool isReplaceableGlobalAllocationFunction(bool *IsAligned = nullptr) const;
2182
2183 /// Determine whether this is a destroying operator delete.
2184 bool isDestroyingOperatorDelete() const;
2185
2186 /// Compute the language linkage.
2187 LanguageLinkage getLanguageLinkage() const;
2188
2189 /// Determines whether this function is a function with
2190 /// external, C linkage.
2191 bool isExternC() const;
2192
2193 /// Determines whether this function's context is, or is nested within,
2194 /// a C++ extern "C" linkage spec.
2195 bool isInExternCContext() const;
2196
2197 /// Determines whether this function's context is, or is nested within,
2198 /// a C++ extern "C++" linkage spec.
2199 bool isInExternCXXContext() const;
2200
2201 /// Determines whether this is a global function.
2202 bool isGlobal() const;
2203
2204 /// Determines whether this function is known to be 'noreturn', through
2205 /// an attribute on its declaration or its type.
2206 bool isNoReturn() const;
2207
2208 /// True if the function was a definition but its body was skipped.
2209 bool hasSkippedBody() const { return FunctionDeclBits.HasSkippedBody; }
2210 void setHasSkippedBody(bool Skipped = true) {
2211 FunctionDeclBits.HasSkippedBody = Skipped;
2212 }
2213
2214 /// True if this function will eventually have a body, once it's fully parsed.
2215 bool willHaveBody() const { return FunctionDeclBits.WillHaveBody; }
2216 void setWillHaveBody(bool V = true) { FunctionDeclBits.WillHaveBody = V; }
2217
2218 /// True if this function is considered a multiversioned function.
2219 bool isMultiVersion() const {
2220 return getCanonicalDecl()->FunctionDeclBits.IsMultiVersion;
2221 }
2222
2223 /// Sets the multiversion state for this declaration and all of its
2224 /// redeclarations.
2225 void setIsMultiVersion(bool V = true) {
2226 getCanonicalDecl()->FunctionDeclBits.IsMultiVersion = V;
2227 }
2228
2229 /// True if this function is a multiversioned dispatch function as a part of
2230 /// the cpu_specific/cpu_dispatch functionality.
2231 bool isCPUDispatchMultiVersion() const;
2232 /// True if this function is a multiversioned processor specific function as a
2233 /// part of the cpu_specific/cpu_dispatch functionality.
2234 bool isCPUSpecificMultiVersion() const;
2235
2236 /// True if this function is a multiversioned dispatch function as a part of
2237 /// the target functionality.
2238 bool isTargetMultiVersion() const;
2239
2240 void setPreviousDeclaration(FunctionDecl * PrevDecl);
2241
2242 FunctionDecl *getCanonicalDecl() override;
2243 const FunctionDecl *getCanonicalDecl() const {
2244 return const_cast<FunctionDecl*>(this)->getCanonicalDecl();
2245 }
2246
2247 unsigned getBuiltinID() const;
2248
2249 // ArrayRef interface to parameters.
2250 ArrayRef<ParmVarDecl *> parameters() const {
2251 return {ParamInfo, getNumParams()};
2252 }
2253 MutableArrayRef<ParmVarDecl *> parameters() {
2254 return {ParamInfo, getNumParams()};
2255 }
2256
2257 // Iterator access to formal parameters.
2258 using param_iterator = MutableArrayRef<ParmVarDecl *>::iterator;
2259 using param_const_iterator = ArrayRef<ParmVarDecl *>::const_iterator;
2260
2261 bool param_empty() const { return parameters().empty(); }
2262 param_iterator param_begin() { return parameters().begin(); }
2263 param_iterator param_end() { return parameters().end(); }
2264 param_const_iterator param_begin() const { return parameters().begin(); }
2265 param_const_iterator param_end() const { return parameters().end(); }
2266 size_t param_size() const { return parameters().size(); }
2267
2268 /// Return the number of parameters this function must have based on its
2269 /// FunctionType. This is the length of the ParamInfo array after it has been
2270 /// created.
2271 unsigned getNumParams() const;
2272
2273 const ParmVarDecl *getParamDecl(unsigned i) const {
2274 assert(i < getNumParams() && "Illegal param #");
2275 return ParamInfo[i];
2276 }
2277 ParmVarDecl *getParamDecl(unsigned i) {
2278 assert(i < getNumParams() && "Illegal param #");
2279 return ParamInfo[i];
2280 }
2281 void setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
2282 setParams(getASTContext(), NewParamInfo);
2283 }
2284
2285 /// Returns the minimum number of arguments needed to call this function. This
2286 /// may be fewer than the number of function parameters, if some of the
2287 /// parameters have default arguments (in C++).
2288 unsigned getMinRequiredArguments() const;
2289
2290 QualType getReturnType() const {
2291 return getType()->castAs<FunctionType>()->getReturnType();
2292 }
2293
2294 /// Attempt to compute an informative source range covering the
2295 /// function return type. This may omit qualifiers and other information with
2296 /// limited representation in the AST.
2297 SourceRange getReturnTypeSourceRange() const;
2298
2299 /// Get the declared return type, which may differ from the actual return
2300 /// type if the return type is deduced.
2301 QualType getDeclaredReturnType() const {
2302 auto *TSI = getTypeSourceInfo();
2303 QualType T = TSI ? TSI->getType() : getType();
2304 return T->castAs<FunctionType>()->getReturnType();
2305 }
2306
2307 /// Attempt to compute an informative source range covering the
2308 /// function exception specification, if any.
2309 SourceRange getExceptionSpecSourceRange() const;
2310
2311 /// Determine the type of an expression that calls this function.
2312 QualType getCallResultType() const {
2313 return getType()->castAs<FunctionType>()->getCallResultType(
2314 getASTContext());
2315 }
2316
2317 /// Returns the WarnUnusedResultAttr that is either declared on this
2318 /// function, or its return type declaration.
2319 const Attr *getUnusedResultAttr() const;
2320
2321 /// Returns true if this function or its return type has the
2322 /// warn_unused_result attribute.
2323 bool hasUnusedResultAttr() const { return getUnusedResultAttr() != nullptr; }
2324
2325 /// Returns the storage class as written in the source. For the
2326 /// computed linkage of symbol, see getLinkage.
2327 StorageClass getStorageClass() const {
2328 return static_cast<StorageClass>(FunctionDeclBits.SClass);
2329 }
2330
2331 /// Sets the storage class as written in the source.
2332 void setStorageClass(StorageClass SClass) {
2333 FunctionDeclBits.SClass = SClass;
2334 }
2335
2336 /// Determine whether the "inline" keyword was specified for this
2337 /// function.
2338 bool isInlineSpecified() const { return FunctionDeclBits.IsInlineSpecified; }
2339
2340 /// Set whether the "inline" keyword was specified for this function.
2341 void setInlineSpecified(bool I) {
2342 FunctionDeclBits.IsInlineSpecified = I;
2343 FunctionDeclBits.IsInline = I;
2344 }
2345
2346 /// Flag that this function is implicitly inline.
2347 void setImplicitlyInline(bool I = true) { FunctionDeclBits.IsInline = I; }
2348
2349 /// Determine whether this function should be inlined, because it is
2350 /// either marked "inline" or "constexpr" or is a member function of a class
2351 /// that was defined in the class body.
2352 bool isInlined() const { return FunctionDeclBits.IsInline; }
2353
2354 /// Whether this function is marked as explicit explicitly.
2355 bool isExplicitSpecified() const {
2356 return FunctionDeclBits.IsExplicitSpecified;
2357 }
2358
2359 /// State that this function is marked as explicit explicitly.
2360 void setExplicitSpecified(bool ExpSpec = true) {
2361 FunctionDeclBits.IsExplicitSpecified = ExpSpec;
2362 }
2363
2364 bool isInlineDefinitionExternallyVisible() const;
2365
2366 bool isMSExternInline() const;
2367
2368 bool doesDeclarationForceExternallyVisibleDefinition() const;
2369
2370 /// Whether this function declaration represents an C++ overloaded
2371 /// operator, e.g., "operator+".
2372 bool isOverloadedOperator() const {
2373 return getOverloadedOperator() != OO_None;
2374 }
2375
2376 OverloadedOperatorKind getOverloadedOperator() const;
2377
2378 const IdentifierInfo *getLiteralIdentifier() const;
2379
2380 /// If this function is an instantiation of a member function
2381 /// of a class template specialization, retrieves the function from
2382 /// which it was instantiated.
2383 ///
2384 /// This routine will return non-NULL for (non-templated) member
2385 /// functions of class templates and for instantiations of function
2386 /// templates. For example, given:
2387 ///
2388 /// \code
2389 /// template<typename T>
2390 /// struct X {
2391 /// void f(T);
2392 /// };
2393 /// \endcode
2394 ///
2395 /// The declaration for X<int>::f is a (non-templated) FunctionDecl
2396 /// whose parent is the class template specialization X<int>. For
2397 /// this declaration, getInstantiatedFromFunction() will return
2398 /// the FunctionDecl X<T>::A. When a complete definition of
2399 /// X<int>::A is required, it will be instantiated from the
2400 /// declaration returned by getInstantiatedFromMemberFunction().
2401 FunctionDecl *getInstantiatedFromMemberFunction() const;
2402
2403 /// What kind of templated function this is.
2404 TemplatedKind getTemplatedKind() const;
2405
2406 /// If this function is an instantiation of a member function of a
2407 /// class template specialization, retrieves the member specialization
2408 /// information.
2409 MemberSpecializationInfo *getMemberSpecializationInfo() const;
2410
2411 /// Specify that this record is an instantiation of the
2412 /// member function FD.
2413 void setInstantiationOfMemberFunction(FunctionDecl *FD,
2414 TemplateSpecializationKind TSK) {
2415 setInstantiationOfMemberFunction(getASTContext(), FD, TSK);
2416 }
2417
2418 /// Retrieves the function template that is described by this
2419 /// function declaration.
2420 ///
2421 /// Every function template is represented as a FunctionTemplateDecl
2422 /// and a FunctionDecl (or something derived from FunctionDecl). The
2423 /// former contains template properties (such as the template
2424 /// parameter lists) while the latter contains the actual
2425 /// description of the template's
2426 /// contents. FunctionTemplateDecl::getTemplatedDecl() retrieves the
2427 /// FunctionDecl that describes the function template,
2428 /// getDescribedFunctionTemplate() retrieves the
2429 /// FunctionTemplateDecl from a FunctionDecl.
2430 FunctionTemplateDecl *getDescribedFunctionTemplate() const;
2431
2432 void setDescribedFunctionTemplate(FunctionTemplateDecl *Template);
2433
2434 /// Determine whether this function is a function template
2435 /// specialization.
2436 bool isFunctionTemplateSpecialization() const {
2437 return getPrimaryTemplate() != nullptr;
2438 }
2439
2440 /// Retrieve the class scope template pattern that this function
2441 /// template specialization is instantiated from.
2442 FunctionDecl *getClassScopeSpecializationPattern() const;
2443
2444 /// If this function is actually a function template specialization,
2445 /// retrieve information about this function template specialization.
2446 /// Otherwise, returns NULL.
2447 FunctionTemplateSpecializationInfo *getTemplateSpecializationInfo() const;
2448
2449 /// Determines whether this function is a function template
2450 /// specialization or a member of a class template specialization that can
2451 /// be implicitly instantiated.
2452 bool isImplicitlyInstantiable() const;
2453
2454 /// Determines if the given function was instantiated from a
2455 /// function template.
2456 bool isTemplateInstantiation() const;
2457
2458 /// Retrieve the function declaration from which this function could
2459 /// be instantiated, if it is an instantiation (rather than a non-template
2460 /// or a specialization, for example).
2461 FunctionDecl *getTemplateInstantiationPattern() const;
2462
2463 /// Retrieve the primary template that this function template
2464 /// specialization either specializes or was instantiated from.
2465 ///
2466 /// If this function declaration is not a function template specialization,
2467 /// returns NULL.
2468 FunctionTemplateDecl *getPrimaryTemplate() const;
2469
2470 /// Retrieve the template arguments used to produce this function
2471 /// template specialization from the primary template.
2472 ///
2473 /// If this function declaration is not a function template specialization,
2474 /// returns NULL.
2475 const TemplateArgumentList *getTemplateSpecializationArgs() const;
2476
2477 /// Retrieve the template argument list as written in the sources,
2478 /// if any.
2479 ///
2480 /// If this function declaration is not a function template specialization
2481 /// or if it had no explicit template argument list, returns NULL.
2482 /// Note that it an explicit template argument list may be written empty,
2483 /// e.g., template<> void foo<>(char* s);
2484 const ASTTemplateArgumentListInfo*
2485 getTemplateSpecializationArgsAsWritten() const;
2486
2487 /// Specify that this function declaration is actually a function
2488 /// template specialization.
2489 ///
2490 /// \param Template the function template that this function template
2491 /// specialization specializes.
2492 ///
2493 /// \param TemplateArgs the template arguments that produced this
2494 /// function template specialization from the template.
2495 ///
2496 /// \param InsertPos If non-NULL, the position in the function template
2497 /// specialization set where the function template specialization data will
2498 /// be inserted.
2499 ///
2500 /// \param TSK the kind of template specialization this is.
2501 ///
2502 /// \param TemplateArgsAsWritten location info of template arguments.
2503 ///
2504 /// \param PointOfInstantiation point at which the function template
2505 /// specialization was first instantiated.
2506 void setFunctionTemplateSpecialization(FunctionTemplateDecl *Template,
2507 const TemplateArgumentList *TemplateArgs,
2508 void *InsertPos,
2509 TemplateSpecializationKind TSK = TSK_ImplicitInstantiation,
2510 const TemplateArgumentListInfo *TemplateArgsAsWritten = nullptr,
2511 SourceLocation PointOfInstantiation = SourceLocation()) {
2512 setFunctionTemplateSpecialization(getASTContext(), Template, TemplateArgs,
2513 InsertPos, TSK, TemplateArgsAsWritten,
2514 PointOfInstantiation);
2515 }
2516
2517 /// Specifies that this function declaration is actually a
2518 /// dependent function template specialization.
2519 void setDependentTemplateSpecialization(ASTContext &Context,
2520 const UnresolvedSetImpl &Templates,
2521 const TemplateArgumentListInfo &TemplateArgs);
2522
2523 DependentFunctionTemplateSpecializationInfo *
2524 getDependentSpecializationInfo() const;
2525
2526 /// Determine what kind of template instantiation this function
2527 /// represents.
2528 TemplateSpecializationKind getTemplateSpecializationKind() const;
2529
2530 /// Determine what kind of template instantiation this function
2531 /// represents.
2532 void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2533 SourceLocation PointOfInstantiation = SourceLocation());
2534
2535 /// Retrieve the (first) point of instantiation of a function template
2536 /// specialization or a member of a class template specialization.
2537 ///
2538 /// \returns the first point of instantiation, if this function was
2539 /// instantiated from a template; otherwise, returns an invalid source
2540 /// location.
2541 SourceLocation getPointOfInstantiation() const;
2542
2543 /// Determine whether this is or was instantiated from an out-of-line
2544 /// definition of a member function.
2545 bool isOutOfLine() const override;
2546
2547 /// Identify a memory copying or setting function.
2548 /// If the given function is a memory copy or setting function, returns
2549 /// the corresponding Builtin ID. If the function is not a memory function,
2550 /// returns 0.
2551 unsigned getMemoryFunctionKind() const;
2552
2553 /// Returns ODRHash of the function. This value is calculated and
2554 /// stored on first call, then the stored value returned on the other calls.
2555 unsigned getODRHash();
2556
2557 /// Returns cached ODRHash of the function. This must have been previously
2558 /// computed and stored.
2559 unsigned getODRHash() const;
2560
2561 // Implement isa/cast/dyncast/etc.
2562 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2563 static bool classofKind(Kind K) {
2564 return K >= firstFunction && K <= lastFunction;
2565 }
2566 static DeclContext *castToDeclContext(const FunctionDecl *D) {
2567 return static_cast<DeclContext *>(const_cast<FunctionDecl*>(D));
2568 }
2569 static FunctionDecl *castFromDeclContext(const DeclContext *DC) {
2570 return static_cast<FunctionDecl *>(const_cast<DeclContext*>(DC));
2571 }
2572};
2573
2574/// Represents a member of a struct/union/class.
2575class FieldDecl : public DeclaratorDecl, public Mergeable<FieldDecl> {
2576 unsigned BitField : 1;
2577 unsigned Mutable : 1;
2578 mutable unsigned CachedFieldIndex : 30;
2579
2580 /// The kinds of value we can store in InitializerOrBitWidth.
2581 ///
2582 /// Note that this is compatible with InClassInitStyle except for
2583 /// ISK_CapturedVLAType.
2584 enum InitStorageKind {
2585 /// If the pointer is null, there's nothing special. Otherwise,
2586 /// this is a bitfield and the pointer is the Expr* storing the
2587 /// bit-width.
2588 ISK_NoInit = (unsigned) ICIS_NoInit,
2589
2590 /// The pointer is an (optional due to delayed parsing) Expr*
2591 /// holding the copy-initializer.
2592 ISK_InClassCopyInit = (unsigned) ICIS_CopyInit,
2593
2594 /// The pointer is an (optional due to delayed parsing) Expr*
2595 /// holding the list-initializer.
2596 ISK_InClassListInit = (unsigned) ICIS_ListInit,
2597
2598 /// The pointer is a VariableArrayType* that's been captured;
2599 /// the enclosing context is a lambda or captured statement.
2600 ISK_CapturedVLAType,
2601 };
2602
2603 /// If this is a bitfield with a default member initializer, this
2604 /// structure is used to represent the two expressions.
2605 struct InitAndBitWidth {
2606 Expr *Init;
2607 Expr *BitWidth;
2608 };
2609
2610 /// Storage for either the bit-width, the in-class initializer, or
2611 /// both (via InitAndBitWidth), or the captured variable length array bound.
2612 ///
2613 /// If the storage kind is ISK_InClassCopyInit or
2614 /// ISK_InClassListInit, but the initializer is null, then this
2615 /// field has an in-class initializer that has not yet been parsed
2616 /// and attached.
2617 // FIXME: Tail-allocate this to reduce the size of FieldDecl in the
2618 // overwhelmingly common case that we have none of these things.
2619 llvm::PointerIntPair<void *, 2, InitStorageKind> InitStorage;
2620
2621protected:
2622 FieldDecl(Kind DK, DeclContext *DC, SourceLocation StartLoc,
2623 SourceLocation IdLoc, IdentifierInfo *Id,
2624 QualType T, TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
2625 InClassInitStyle InitStyle)
2626 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
2627 BitField(false), Mutable(Mutable), CachedFieldIndex(0),
2628 InitStorage(nullptr, (InitStorageKind) InitStyle) {
2629 if (BW)
2630 setBitWidth(BW);
2631 }
2632
2633public:
2634 friend class ASTDeclReader;
2635 friend class ASTDeclWriter;
2636
2637 static FieldDecl *Create(const ASTContext &C, DeclContext *DC,
2638 SourceLocation StartLoc, SourceLocation IdLoc,
2639 IdentifierInfo *Id, QualType T,
2640 TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
2641 InClassInitStyle InitStyle);
2642
2643 static FieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2644
2645 /// Returns the index of this field within its record,
2646 /// as appropriate for passing to ASTRecordLayout::getFieldOffset.
2647 unsigned getFieldIndex() const;
2648
2649 /// Determines whether this field is mutable (C++ only).
2650 bool isMutable() const { return Mutable; }
2651
2652 /// Determines whether this field is a bitfield.
2653 bool isBitField() const { return BitField; }
2654
2655 /// Determines whether this is an unnamed bitfield.
2656 bool isUnnamedBitfield() const { return isBitField() && !getDeclName(); }
2657
2658 /// Determines whether this field is a
2659 /// representative for an anonymous struct or union. Such fields are
2660 /// unnamed and are implicitly generated by the implementation to
2661 /// store the data for the anonymous union or struct.
2662 bool isAnonymousStructOrUnion() const;
2663
2664 Expr *getBitWidth() const {
2665 if (!BitField)
2666 return nullptr;
2667 void *Ptr = InitStorage.getPointer();
2668 if (getInClassInitStyle())
2669 return static_cast<InitAndBitWidth*>(Ptr)->BitWidth;
2670 return static_cast<Expr*>(Ptr);
2671 }
2672
2673 unsigned getBitWidthValue(const ASTContext &Ctx) const;
2674
2675 /// Set the bit-field width for this member.
2676 // Note: used by some clients (i.e., do not remove it).
2677 void setBitWidth(Expr *Width) {
2678 assert(!hasCapturedVLAType() && !BitField &&
2679 "bit width or captured type already set");
2680 assert(Width && "no bit width specified");
2681 InitStorage.setPointer(
2682 InitStorage.getInt()
2683 ? new (getASTContext())
2684 InitAndBitWidth{getInClassInitializer(), Width}
2685 : static_cast<void*>(Width));
2686 BitField = true;
2687 }
2688
2689 /// Remove the bit-field width from this member.
2690 // Note: used by some clients (i.e., do not remove it).
2691 void removeBitWidth() {
2692 assert(isBitField() && "no bitfield width to remove");
2693 InitStorage.setPointer(getInClassInitializer());
2694 BitField = false;
2695 }
2696
2697 /// Is this a zero-length bit-field? Such bit-fields aren't really bit-fields
2698 /// at all and instead act as a separator between contiguous runs of other
2699 /// bit-fields.
2700 bool isZeroLengthBitField(const ASTContext &Ctx) const;
2701
2702 /// Get the kind of (C++11) default member initializer that this field has.
2703 InClassInitStyle getInClassInitStyle() const {
2704 InitStorageKind storageKind = InitStorage.getInt();
2705 return (storageKind == ISK_CapturedVLAType
2706 ? ICIS_NoInit : (InClassInitStyle) storageKind);
2707 }
2708
2709 /// Determine whether this member has a C++11 default member initializer.
2710 bool hasInClassInitializer() const {
2711 return getInClassInitStyle() != ICIS_NoInit;
2712 }
2713
2714 /// Get the C++11 default member initializer for this member, or null if one
2715 /// has not been set. If a valid declaration has a default member initializer,
2716 /// but this returns null, then we have not parsed and attached it yet.
2717 Expr *getInClassInitializer() const {
2718 if (!hasInClassInitializer())
2719 return nullptr;
2720 void *Ptr = InitStorage.getPointer();
2721 if (BitField)
2722 return static_cast<InitAndBitWidth*>(Ptr)->Init;
2723 return static_cast<Expr*>(Ptr);
2724 }
2725
2726 /// Set the C++11 in-class initializer for this member.
2727 void setInClassInitializer(Expr *Init) {
2728 assert(hasInClassInitializer() && !getInClassInitializer());
2729 if (BitField)
2730 static_cast<InitAndBitWidth*>(InitStorage.getPointer())->Init = Init;
2731 else
2732 InitStorage.setPointer(Init);
2733 }
2734
2735 /// Remove the C++11 in-class initializer from this member.
2736 void removeInClassInitializer() {
2737 assert(hasInClassInitializer() && "no initializer to remove");
2738 InitStorage.setPointerAndInt(getBitWidth(), ISK_NoInit);
2739 }
2740
2741 /// Determine whether this member captures the variable length array
2742 /// type.
2743 bool hasCapturedVLAType() const {
2744 return InitStorage.getInt() == ISK_CapturedVLAType;
2745 }
2746
2747 /// Get the captured variable length array type.
2748 const VariableArrayType *getCapturedVLAType() const {
2749 return hasCapturedVLAType() ? static_cast<const VariableArrayType *>(
2750 InitStorage.getPointer())
2751 : nullptr;
2752 }
2753
2754 /// Set the captured variable length array type for this field.
2755 void setCapturedVLAType(const VariableArrayType *VLAType);
2756
2757 /// Returns the parent of this field declaration, which
2758 /// is the struct in which this field is defined.
2759 const RecordDecl *getParent() const {
2760 return cast<RecordDecl>(getDeclContext());
2761 }
2762
2763 RecordDecl *getParent() {
2764 return cast<RecordDecl>(getDeclContext());
2765 }
2766
2767 SourceRange getSourceRange() const override LLVM_READONLY;
2768
2769 /// Retrieves the canonical declaration of this field.
2770 FieldDecl *getCanonicalDecl() override { return getFirstDecl(); }
2771 const FieldDecl *getCanonicalDecl() const { return getFirstDecl(); }
2772
2773 // Implement isa/cast/dyncast/etc.
2774 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2775 static bool classofKind(Kind K) { return K >= firstField && K <= lastField; }
2776};
2777
2778/// An instance of this object exists for each enum constant
2779/// that is defined. For example, in "enum X {a,b}", each of a/b are
2780/// EnumConstantDecl's, X is an instance of EnumDecl, and the type of a/b is a
2781/// TagType for the X EnumDecl.
2782class EnumConstantDecl : public ValueDecl, public Mergeable<EnumConstantDecl> {
2783 Stmt *Init; // an integer constant expression
2784 llvm::APSInt Val; // The value.
2785
2786protected:
2787 EnumConstantDecl(DeclContext *DC, SourceLocation L,
2788 IdentifierInfo *Id, QualType T, Expr *E,
2789 const llvm::APSInt &V)
2790 : ValueDecl(EnumConstant, DC, L, Id, T), Init((Stmt*)E), Val(V) {}
2791
2792public:
2793 friend class StmtIteratorBase;
2794
2795 static EnumConstantDecl *Create(ASTContext &C, EnumDecl *DC,
2796 SourceLocation L, IdentifierInfo *Id,
2797 QualType T, Expr *E,
2798 const llvm::APSInt &V);
2799 static EnumConstantDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2800
2801 const Expr *getInitExpr() const { return (const Expr*) Init; }
2802 Expr *getInitExpr() { return (Expr*) Init; }
2803 const llvm::APSInt &getInitVal() const { return Val; }
2804
2805 void setInitExpr(Expr *E) { Init = (Stmt*) E; }
2806 void setInitVal(const llvm::APSInt &V) { Val = V; }
2807
2808 SourceRange getSourceRange() const override LLVM_READONLY;
2809
2810 /// Retrieves the canonical declaration of this enumerator.
2811 EnumConstantDecl *getCanonicalDecl() override { return getFirstDecl(); }
2812 const EnumConstantDecl *getCanonicalDecl() const { return getFirstDecl(); }
2813
2814 // Implement isa/cast/dyncast/etc.
2815 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2816 static bool classofKind(Kind K) { return K == EnumConstant; }
2817};
2818
2819/// Represents a field injected from an anonymous union/struct into the parent
2820/// scope. These are always implicit.
2821class IndirectFieldDecl : public ValueDecl,
2822 public Mergeable<IndirectFieldDecl> {
2823 NamedDecl **Chaining;
2824 unsigned ChainingSize;
2825
2826 IndirectFieldDecl(ASTContext &C, DeclContext *DC, SourceLocation L,
2827 DeclarationName N, QualType T,
2828 MutableArrayRef<NamedDecl *> CH);
2829
2830 void anchor() override;
2831
2832public:
2833 friend class ASTDeclReader;
2834
2835 static IndirectFieldDecl *Create(ASTContext &C, DeclContext *DC,
2836 SourceLocation L, IdentifierInfo *Id,
2837 QualType T, llvm::MutableArrayRef<NamedDecl *> CH);
2838
2839 static IndirectFieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2840
2841 using chain_iterator = ArrayRef<NamedDecl *>::const_iterator;
2842
2843 ArrayRef<NamedDecl *> chain() const {
2844 return llvm::makeArrayRef(Chaining, ChainingSize);
2845 }
2846 chain_iterator chain_begin() const { return chain().begin(); }
2847 chain_iterator chain_end() const { return chain().end(); }
2848
2849 unsigned getChainingSize() const { return ChainingSize; }
2850
2851 FieldDecl *getAnonField() const {
2852 assert(chain().size() >= 2);
2853 return cast<FieldDecl>(chain().back());
2854 }
2855
2856 VarDecl *getVarDecl() const {
2857 assert(chain().size() >= 2);
2858 return dyn_cast<VarDecl>(chain().front());
2859 }
2860
2861 IndirectFieldDecl *getCanonicalDecl() override { return getFirstDecl(); }
2862 const IndirectFieldDecl *getCanonicalDecl() const { return getFirstDecl(); }
2863
2864 // Implement isa/cast/dyncast/etc.
2865 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2866 static bool classofKind(Kind K) { return K == IndirectField; }
2867};
2868
2869/// Represents a declaration of a type.
2870class TypeDecl : public NamedDecl {
2871 friend class ASTContext;
2872
2873 /// This indicates the Type object that represents
2874 /// this TypeDecl. It is a cache maintained by
2875 /// ASTContext::getTypedefType, ASTContext::getTagDeclType, and
2876 /// ASTContext::getTemplateTypeParmType, and TemplateTypeParmDecl.
2877 mutable const Type *TypeForDecl = nullptr;
2878
2879 /// The start of the source range for this declaration.
2880 SourceLocation LocStart;
2881
2882 void anchor() override;
2883
2884protected:
2885 TypeDecl(Kind DK, DeclContext *DC, SourceLocation L, IdentifierInfo *Id,
2886 SourceLocation StartL = SourceLocation())
2887 : NamedDecl(DK, DC, L, Id), LocStart(StartL) {}
2888
2889public:
2890 // Low-level accessor. If you just want the type defined by this node,
2891 // check out ASTContext::getTypeDeclType or one of
2892 // ASTContext::getTypedefType, ASTContext::getRecordType, etc. if you
2893 // already know the specific kind of node this is.
2894 const Type *getTypeForDecl() const { return TypeForDecl; }
2895 void setTypeForDecl(const Type *TD) { TypeForDecl = TD; }
2896
2897 SourceLocation getBeginLoc() const LLVM_READONLY { return LocStart; }
2898 void setLocStart(SourceLocation L) { LocStart = L; }
2899 SourceRange getSourceRange() const override LLVM_READONLY {
2900 if (LocStart.isValid())
2901 return SourceRange(LocStart, getLocation());
2902 else
2903 return SourceRange(getLocation());
2904 }
2905
2906 // Implement isa/cast/dyncast/etc.
2907 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2908 static bool classofKind(Kind K) { return K >= firstType && K <= lastType; }
2909};
2910
2911/// Base class for declarations which introduce a typedef-name.
2912class TypedefNameDecl : public TypeDecl, public Redeclarable<TypedefNameDecl> {
2913 struct alignas(8) ModedTInfo {
2914 TypeSourceInfo *first;
2915 QualType second;
2916 };
2917
2918 /// If int part is 0, we have not computed IsTransparentTag.
2919 /// Otherwise, IsTransparentTag is (getInt() >> 1).
2920 mutable llvm::PointerIntPair<
2921 llvm::PointerUnion<TypeSourceInfo *, ModedTInfo *>, 2>
2922 MaybeModedTInfo;
2923
2924 void anchor() override;
2925
2926protected:
2927 TypedefNameDecl(Kind DK, ASTContext &C, DeclContext *DC,
2928 SourceLocation StartLoc, SourceLocation IdLoc,
2929 IdentifierInfo *Id, TypeSourceInfo *TInfo)
2930 : TypeDecl(DK, DC, IdLoc, Id, StartLoc), redeclarable_base(C),
2931 MaybeModedTInfo(TInfo, 0) {}
2932
2933 using redeclarable_base = Redeclarable<TypedefNameDecl>;
2934
2935 TypedefNameDecl *getNextRedeclarationImpl() override {
2936 return getNextRedeclaration();
2937 }
2938
2939 TypedefNameDecl *getPreviousDeclImpl() override {
2940 return getPreviousDecl();
2941 }
2942
2943 TypedefNameDecl *getMostRecentDeclImpl() override {
2944 return getMostRecentDecl();
2945 }
2946
2947public:
2948 using redecl_range = redeclarable_base::redecl_range;
2949 using redecl_iterator = redeclarable_base::redecl_iterator;
2950
2951 using redeclarable_base::redecls_begin;
2952 using redeclarable_base::redecls_end;
2953 using redeclarable_base::redecls;
2954 using redeclarable_base::getPreviousDecl;
2955 using redeclarable_base::getMostRecentDecl;
2956 using redeclarable_base::isFirstDecl;
2957
2958 bool isModed() const {
2959 return MaybeModedTInfo.getPointer().is<ModedTInfo *>();
2960 }
2961
2962 TypeSourceInfo *getTypeSourceInfo() const {
2963 return isModed() ? MaybeModedTInfo.getPointer().get<ModedTInfo *>()->first
2964 : MaybeModedTInfo.getPointer().get<TypeSourceInfo *>();
2965 }
2966
2967 QualType getUnderlyingType() const {
2968 return isModed() ? MaybeModedTInfo.getPointer().get<ModedTInfo *>()->second
2969 : MaybeModedTInfo.getPointer()
2970 .get<TypeSourceInfo *>()
2971 ->getType();
2972 }
2973
2974 void setTypeSourceInfo(TypeSourceInfo *newType) {
2975 MaybeModedTInfo.setPointer(newType);
2976 }
2977
2978 void setModedTypeSourceInfo(TypeSourceInfo *unmodedTSI, QualType modedTy) {
2979 MaybeModedTInfo.setPointer(new (getASTContext(), 8)
2980 ModedTInfo({unmodedTSI, modedTy}));
2981 }
2982
2983 /// Retrieves the canonical declaration of this typedef-name.
2984 TypedefNameDecl *getCanonicalDecl() override { return getFirstDecl(); }
2985 const TypedefNameDecl *getCanonicalDecl() const { return getFirstDecl(); }
2986
2987 /// Retrieves the tag declaration for which this is the typedef name for
2988 /// linkage purposes, if any.
2989 ///
2990 /// \param AnyRedecl Look for the tag declaration in any redeclaration of
2991 /// this typedef declaration.
2992 TagDecl *getAnonDeclWithTypedefName(bool AnyRedecl = false) const;
2993
2994 /// Determines if this typedef shares a name and spelling location with its
2995 /// underlying tag type, as is the case with the NS_ENUM macro.
2996 bool isTransparentTag() const {
2997 if (MaybeModedTInfo.getInt())
2998 return MaybeModedTInfo.getInt() & 0x2;
2999 return isTransparentTagSlow();
3000 }
3001
3002 // Implement isa/cast/dyncast/etc.
3003 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3004 static bool classofKind(Kind K) {
3005 return K >= firstTypedefName && K <= lastTypedefName;
3006 }
3007
3008private:
3009 bool isTransparentTagSlow() const;
3010};
3011
3012/// Represents the declaration of a typedef-name via the 'typedef'
3013/// type specifier.
3014class TypedefDecl : public TypedefNameDecl {
3015 TypedefDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
3016 SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo)
3017 : TypedefNameDecl(Typedef, C, DC, StartLoc, IdLoc, Id, TInfo) {}
3018
3019public:
3020 static TypedefDecl *Create(ASTContext &C, DeclContext *DC,
3021 SourceLocation StartLoc, SourceLocation IdLoc,
3022 IdentifierInfo *Id, TypeSourceInfo *TInfo);
3023 static TypedefDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3024
3025 SourceRange getSourceRange() const override LLVM_READONLY;
3026
3027 // Implement isa/cast/dyncast/etc.
3028 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3029 static bool classofKind(Kind K) { return K == Typedef; }
3030};
3031
3032/// Represents the declaration of a typedef-name via a C++11
3033/// alias-declaration.
3034class TypeAliasDecl : public TypedefNameDecl {
3035 /// The template for which this is the pattern, if any.
3036 TypeAliasTemplateDecl *Template;
3037
3038 TypeAliasDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
3039 SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo)
3040 : TypedefNameDecl(TypeAlias, C, DC, StartLoc, IdLoc, Id, TInfo),
3041 Template(nullptr) {}
3042
3043public:
3044 static TypeAliasDecl *Create(ASTContext &C, DeclContext *DC,
3045 SourceLocation StartLoc, SourceLocation IdLoc,
3046 IdentifierInfo *Id, TypeSourceInfo *TInfo);
3047 static TypeAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3048
3049 SourceRange getSourceRange() const override LLVM_READONLY;
3050
3051 TypeAliasTemplateDecl *getDescribedAliasTemplate() const { return Template; }
3052 void setDescribedAliasTemplate(TypeAliasTemplateDecl *TAT) { Template = TAT; }
3053
3054 // Implement isa/cast/dyncast/etc.
3055 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3056 static bool classofKind(Kind K) { return K == TypeAlias; }
3057};
3058
3059/// Represents the declaration of a struct/union/class/enum.
3060class TagDecl : public TypeDecl,
3061 public DeclContext,
3062 public Redeclarable<TagDecl> {
3063 // This class stores some data in DeclContext::TagDeclBits
3064 // to save some space. Use the provided accessors to access it.
3065public:
3066 // This is really ugly.
3067 using TagKind = TagTypeKind;
3068
3069private:
3070 SourceRange BraceRange;
3071
3072 // A struct representing syntactic qualifier info,
3073 // to be used for the (uncommon) case of out-of-line declarations.
3074 using ExtInfo = QualifierInfo;
3075
3076 /// If the (out-of-line) tag declaration name
3077 /// is qualified, it points to the qualifier info (nns and range);
3078 /// otherwise, if the tag declaration is anonymous and it is part of
3079 /// a typedef or alias, it points to the TypedefNameDecl (used for mangling);
3080 /// otherwise, if the tag declaration is anonymous and it is used as a
3081 /// declaration specifier for variables, it points to the first VarDecl (used
3082 /// for mangling);
3083 /// otherwise, it is a null (TypedefNameDecl) pointer.
3084 llvm::PointerUnion<TypedefNameDecl *, ExtInfo *> TypedefNameDeclOrQualifier;
3085
3086 bool hasExtInfo() const { return TypedefNameDeclOrQualifier.is<ExtInfo *>(); }
3087 ExtInfo *getExtInfo() { return TypedefNameDeclOrQualifier.get<ExtInfo *>(); }
3088 const ExtInfo *getExtInfo() const {
3089 return TypedefNameDeclOrQualifier.get<ExtInfo *>();
3090 }
3091
3092protected:
3093 TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
3094 SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
3095 SourceLocation StartL);
3096
3097 using redeclarable_base = Redeclarable<TagDecl>;
3098
3099 TagDecl *getNextRedeclarationImpl() override {
3100 return getNextRedeclaration();
3101 }
3102
3103 TagDecl *getPreviousDeclImpl() override {
3104 return getPreviousDecl();
3105 }
3106
3107 TagDecl *getMostRecentDeclImpl() override {
3108 return getMostRecentDecl();
3109 }
3110
3111 /// Completes the definition of this tag declaration.
3112 ///
3113 /// This is a helper function for derived classes.
3114 void completeDefinition();
3115
3116 /// True if this decl is currently being defined.
3117 void setBeingDefined(bool V = true) { TagDeclBits.IsBeingDefined = V; }
3118
3119 /// Indicates whether it is possible for declarations of this kind
3120 /// to have an out-of-date definition.
3121 ///
3122 /// This option is only enabled when modules are enabled.
3123 void setMayHaveOutOfDateDef(bool V = true) {
3124 TagDeclBits.MayHaveOutOfDateDef = V;
3125 }
3126
3127public:
3128 friend class ASTDeclReader;
3129 friend class ASTDeclWriter;
3130
3131 using redecl_range = redeclarable_base::redecl_range;
3132 using redecl_iterator = redeclarable_base::redecl_iterator;
3133
3134 using redeclarable_base::redecls_begin;
3135 using redeclarable_base::redecls_end;
3136 using redeclarable_base::redecls;
3137 using redeclarable_base::getPreviousDecl;
3138 using redeclarable_base::getMostRecentDecl;
3139 using redeclarable_base::isFirstDecl;
3140
3141 SourceRange getBraceRange() const { return BraceRange; }
3142 void setBraceRange(SourceRange R) { BraceRange = R; }
3143
3144 /// Return SourceLocation representing start of source
3145 /// range ignoring outer template declarations.
3146 SourceLocation getInnerLocStart() const { return getBeginLoc(); }
3147
3148 /// Return SourceLocation representing start of source
3149 /// range taking into account any outer template declarations.
3150 SourceLocation getOuterLocStart() const;
3151 SourceRange getSourceRange() const override LLVM_READONLY;
3152
3153 TagDecl *getCanonicalDecl() override;
3154 const TagDecl *getCanonicalDecl() const {
3155 return const_cast<TagDecl*>(this)->getCanonicalDecl();
3156 }
3157
3158 /// Return true if this declaration is a completion definition of the type.
3159 /// Provided for consistency.
3160 bool isThisDeclarationADefinition() const {
3161 return isCompleteDefinition();
3162 }
3163
3164 /// Return true if this decl has its body fully specified.
3165 bool isCompleteDefinition() const { return TagDeclBits.IsCompleteDefinition; }
3166
3167 /// True if this decl has its body fully specified.
3168 void setCompleteDefinition(bool V = true) {
3169 TagDeclBits.IsCompleteDefinition = V;
3170 }
3171
3172 /// Return true if this complete decl is
3173 /// required to be complete for some existing use.
3174 bool isCompleteDefinitionRequired() const {
3175 return TagDeclBits.IsCompleteDefinitionRequired;
3176 }
3177
3178 /// True if this complete decl is
3179 /// required to be complete for some existing use.
3180 void setCompleteDefinitionRequired(bool V = true) {
3181 TagDeclBits.IsCompleteDefinitionRequired = V;
3182 }
3183
3184 /// Return true if this decl is currently being defined.
3185 bool isBeingDefined() const { return TagDeclBits.IsBeingDefined; }
3186
3187 /// True if this tag declaration is "embedded" (i.e., defined or declared
3188 /// for the very first time) in the syntax of a declarator.
3189 bool isEmbeddedInDeclarator() const {
3190 return TagDeclBits.IsEmbeddedInDeclarator;
3191 }
3192
3193 /// True if this tag declaration is "embedded" (i.e., defined or declared
3194 /// for the very first time) in the syntax of a declarator.
3195 void setEmbeddedInDeclarator(bool isInDeclarator) {
3196 TagDeclBits.IsEmbeddedInDeclarator = isInDeclarator;
3197 }
3198
3199 /// True if this tag is free standing, e.g. "struct foo;".
3200 bool isFreeStanding() const { return TagDeclBits.IsFreeStanding; }
3201
3202 /// True if this tag is free standing, e.g. "struct foo;".
3203 void setFreeStanding(bool isFreeStanding = true) {
3204 TagDeclBits.IsFreeStanding = isFreeStanding;
3205 }
3206
3207 /// Indicates whether it is possible for declarations of this kind
3208 /// to have an out-of-date definition.
3209 ///
3210 /// This option is only enabled when modules are enabled.
3211 bool mayHaveOutOfDateDef() const { return TagDeclBits.MayHaveOutOfDateDef; }
3212
3213 /// Whether this declaration declares a type that is
3214 /// dependent, i.e., a type that somehow depends on template
3215 /// parameters.
3216 bool isDependentType() const { return isDependentContext(); }
3217
3218 /// Starts the definition of this tag declaration.
3219 ///
3220 /// This method should be invoked at the beginning of the definition
3221 /// of this tag declaration. It will set the tag type into a state
3222 /// where it is in the process of being defined.
3223 void startDefinition();
3224
3225 /// Returns the TagDecl that actually defines this
3226 /// struct/union/class/enum. When determining whether or not a
3227 /// struct/union/class/enum has a definition, one should use this
3228 /// method as opposed to 'isDefinition'. 'isDefinition' indicates
3229 /// whether or not a specific TagDecl is defining declaration, not
3230 /// whether or not the struct/union/class/enum type is defined.
3231 /// This method returns NULL if there is no TagDecl that defines
3232 /// the struct/union/class/enum.
3233 TagDecl *getDefinition() const;
3234
3235 StringRef getKindName() const {
3236 return TypeWithKeyword::getTagTypeKindName(getTagKind());
3237 }
3238
3239 TagKind getTagKind() const {
3240 return static_cast<TagKind>(TagDeclBits.TagDeclKind);
3241 }
3242
3243 void setTagKind(TagKind TK) { TagDeclBits.TagDeclKind = TK; }
3244
3245 bool isStruct() const { return getTagKind() == TTK_Struct; }
3246 bool isInterface() const { return getTagKind() == TTK_Interface; }
3247 bool isClass() const { return getTagKind() == TTK_Class; }
3248 bool isUnion() const { return getTagKind() == TTK_Union; }
3249 bool isEnum() const { return getTagKind() == TTK_Enum; }
3250
3251 /// Is this tag type named, either directly or via being defined in
3252 /// a typedef of this type?
3253 ///
3254 /// C++11 [basic.link]p8:
3255 /// A type is said to have linkage if and only if:
3256 /// - it is a class or enumeration type that is named (or has a
3257 /// name for linkage purposes) and the name has linkage; ...
3258 /// C++11 [dcl.typedef]p9:
3259 /// If the typedef declaration defines an unnamed class (or enum),
3260 /// the first typedef-name declared by the declaration to be that
3261 /// class type (or enum type) is used to denote the class type (or
3262 /// enum type) for linkage purposes only.
3263 ///
3264 /// C does not have an analogous rule, but the same concept is
3265 /// nonetheless useful in some places.
3266 bool hasNameForLinkage() const {
3267 return (getDeclName() || getTypedefNameForAnonDecl());
3268 }
3269
3270 TypedefNameDecl *getTypedefNameForAnonDecl() const {
3271 return hasExtInfo() ? nullptr
3272 : TypedefNameDeclOrQualifier.get<TypedefNameDecl *>();
3273 }
3274
3275 void setTypedefNameForAnonDecl(TypedefNameDecl *TDD);
3276
3277 /// Retrieve the nested-name-specifier that qualifies the name of this
3278 /// declaration, if it was present in the source.
3279 NestedNameSpecifier *getQualifier() const {
3280 return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier()
3281 : nullptr;
3282 }
3283
3284 /// Retrieve the nested-name-specifier (with source-location
3285 /// information) that qualifies the name of this declaration, if it was
3286 /// present in the source.
3287 NestedNameSpecifierLoc getQualifierLoc() const {
3288 return hasExtInfo() ? getExtInfo()->QualifierLoc
3289 : NestedNameSpecifierLoc();
3290 }
3291
3292 void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc);
3293
3294 unsigned getNumTemplateParameterLists() const {
3295 return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
3296 }
3297
3298 TemplateParameterList *getTemplateParameterList(unsigned i) const {
3299 assert(i < getNumTemplateParameterLists());
3300 return getExtInfo()->TemplParamLists[i];
3301 }
3302
3303 void setTemplateParameterListsInfo(ASTContext &Context,
3304 ArrayRef<TemplateParameterList *> TPLists);
3305
3306 // Implement isa/cast/dyncast/etc.
3307 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3308 static bool classofKind(Kind K) { return K >= firstTag && K <= lastTag; }
3309
3310 static DeclContext *castToDeclContext(const TagDecl *D) {
3311 return static_cast<DeclContext *>(const_cast<TagDecl*>(D));
3312 }
3313
3314 static TagDecl *castFromDeclContext(const DeclContext *DC) {
3315 return static_cast<TagDecl *>(const_cast<DeclContext*>(DC));
3316 }
3317};
3318
3319/// Represents an enum. In C++11, enums can be forward-declared
3320/// with a fixed underlying type, and in C we allow them to be forward-declared
3321/// with no underlying type as an extension.
3322class EnumDecl : public TagDecl {
3323 // This class stores some data in DeclContext::EnumDeclBits
3324 // to save some space. Use the provided accessors to access it.
3325
3326 /// This represent the integer type that the enum corresponds
3327 /// to for code generation purposes. Note that the enumerator constants may
3328 /// have a different type than this does.
3329 ///
3330 /// If the underlying integer type was explicitly stated in the source
3331 /// code, this is a TypeSourceInfo* for that type. Otherwise this type
3332 /// was automatically deduced somehow, and this is a Type*.
3333 ///
3334 /// Normally if IsFixed(), this would contain a TypeSourceInfo*, but in
3335 /// some cases it won't.
3336 ///
3337 /// The underlying type of an enumeration never has any qualifiers, so
3338 /// we can get away with just storing a raw Type*, and thus save an
3339 /// extra pointer when TypeSourceInfo is needed.
3340 llvm::PointerUnion<const Type *, TypeSourceInfo *> IntegerType;
3341
3342 /// The integer type that values of this type should
3343 /// promote to. In C, enumerators are generally of an integer type
3344 /// directly, but gcc-style large enumerators (and all enumerators
3345 /// in C++) are of the enum type instead.
3346 QualType PromotionType;
3347
3348 /// If this enumeration is an instantiation of a member enumeration
3349 /// of a class template specialization, this is the member specialization
3350 /// information.
3351 MemberSpecializationInfo *SpecializationInfo = nullptr;
3352
3353 /// Store the ODRHash after first calculation.
3354 /// The corresponding flag HasODRHash is in EnumDeclBits
3355 /// and can be accessed with the provided accessors.
3356 unsigned ODRHash;
3357
3358 EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
3359 SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
3360 bool Scoped, bool ScopedUsingClassTag, bool Fixed);
3361
3362 void anchor() override;
3363
3364 void setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
3365 TemplateSpecializationKind TSK);
3366
3367 /// Sets the width in bits required to store all the
3368 /// non-negative enumerators of this enum.
3369 void setNumPositiveBits(unsigned Num) {
3370 EnumDeclBits.NumPositiveBits = Num;
3371 assert(EnumDeclBits.NumPositiveBits == Num && "can't store this bitcount");
3372 }
3373
3374 /// Returns the width in bits required to store all the
3375 /// negative enumerators of this enum. (see getNumNegativeBits)
3376 void setNumNegativeBits(unsigned Num) { EnumDeclBits.NumNegativeBits = Num; }
3377
3378 /// True if this tag declaration is a scoped enumeration. Only
3379 /// possible in C++11 mode.
3380 void setScoped(bool Scoped = true) { EnumDeclBits.IsScoped = Scoped; }
3381
3382 /// If this tag declaration is a scoped enum,
3383 /// then this is true if the scoped enum was declared using the class
3384 /// tag, false if it was declared with the struct tag. No meaning is
3385 /// associated if this tag declaration is not a scoped enum.
3386 void setScopedUsingClassTag(bool ScopedUCT = true) {
3387 EnumDeclBits.IsScopedUsingClassTag = ScopedUCT;
3388 }
3389
3390 /// True if this is an Objective-C, C++11, or
3391 /// Microsoft-style enumeration with a fixed underlying type.
3392 void setFixed(bool Fixed = true) { EnumDeclBits.IsFixed = Fixed; }
3393
3394 /// True if a valid hash is stored in ODRHash.
3395 bool hasODRHash() const { return EnumDeclBits.HasODRHash; }
3396 void setHasODRHash(bool Hash = true) { EnumDeclBits.HasODRHash = Hash; }
3397
3398public:
3399 friend class ASTDeclReader;
3400
3401 EnumDecl *getCanonicalDecl() override {
3402 return cast<EnumDecl>(TagDecl::getCanonicalDecl());
3403 }
3404 const EnumDecl *getCanonicalDecl() const {
3405 return const_cast<EnumDecl*>(this)->getCanonicalDecl();
3406 }
3407
3408 EnumDecl *getPreviousDecl() {
3409 return cast_or_null<EnumDecl>(
3410 static_cast<TagDecl *>(this)->getPreviousDecl());
3411 }
3412 const EnumDecl *getPreviousDecl() const {
3413 return const_cast<EnumDecl*>(this)->getPreviousDecl();
3414 }
3415
3416 EnumDecl *getMostRecentDecl() {
3417 return cast<EnumDecl>(static_cast<TagDecl *>(this)->