1//===- Decl.h - Classes for representing declarations -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the Decl subclasses.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_CLANG_AST_DECL_H
14#define LLVM_CLANG_AST_DECL_H
15
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContextAllocate.h"
18#include "clang/AST/DeclAccessPair.h"
19#include "clang/AST/DeclBase.h"
20#include "clang/AST/DeclarationName.h"
21#include "clang/AST/ExternalASTSource.h"
22#include "clang/AST/NestedNameSpecifier.h"
23#include "clang/AST/Redeclarable.h"
24#include "clang/AST/Type.h"
25#include "clang/Basic/AddressSpaces.h"
26#include "clang/Basic/Diagnostic.h"
27#include "clang/Basic/IdentifierTable.h"
28#include "clang/Basic/LLVM.h"
29#include "clang/Basic/Linkage.h"
30#include "clang/Basic/OperatorKinds.h"
31#include "clang/Basic/PartialDiagnostic.h"
32#include "clang/Basic/PragmaKinds.h"
33#include "clang/Basic/SourceLocation.h"
34#include "clang/Basic/Specifiers.h"
35#include "clang/Basic/Visibility.h"
36#include "llvm/ADT/APSInt.h"
37#include "llvm/ADT/ArrayRef.h"
38#include "llvm/ADT/Optional.h"
39#include "llvm/ADT/PointerIntPair.h"
40#include "llvm/ADT/PointerUnion.h"
41#include "llvm/ADT/StringRef.h"
42#include "llvm/ADT/iterator_range.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/Compiler.h"
45#include "llvm/Support/TrailingObjects.h"
46#include <cassert>
47#include <cstddef>
48#include <cstdint>
49#include <string>
50#include <utility>
51
52namespace clang {
53
54class ASTContext;
55struct ASTTemplateArgumentListInfo;
56class Attr;
57class CompoundStmt;
58class DependentFunctionTemplateSpecializationInfo;
59class EnumDecl;
60class Expr;
61class FunctionTemplateDecl;
62class FunctionTemplateSpecializationInfo;
63class FunctionTypeLoc;
64class LabelStmt;
65class MemberSpecializationInfo;
66class Module;
67class NamespaceDecl;
68class ParmVarDecl;
69class RecordDecl;
70class Stmt;
71class StringLiteral;
72class TagDecl;
73class TemplateArgumentList;
74class TemplateArgumentListInfo;
75class TemplateParameterList;
76class TypeAliasTemplateDecl;
77class TypeLoc;
78class UnresolvedSetImpl;
79class VarTemplateDecl;
80
81/// The top declaration context.
82class TranslationUnitDecl : public Decl, public DeclContext {
83 ASTContext &Ctx;
84
85 /// The (most recently entered) anonymous namespace for this
86 /// translation unit, if one has been created.
87 NamespaceDecl *AnonymousNamespace = nullptr;
88
89 explicit TranslationUnitDecl(ASTContext &ctx);
90
91 virtual void anchor();
92
93public:
94 ASTContext &getASTContext() const { return Ctx; }
95
96 NamespaceDecl *getAnonymousNamespace() const { return AnonymousNamespace; }
97 void setAnonymousNamespace(NamespaceDecl *D) { AnonymousNamespace = D; }
98
99 static TranslationUnitDecl *Create(ASTContext &C);
100
101 // Implement isa/cast/dyncast/etc.
102 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
103 static bool classofKind(Kind K) { return K == TranslationUnit; }
104 static DeclContext *castToDeclContext(const TranslationUnitDecl *D) {
105 return static_cast<DeclContext *>(const_cast<TranslationUnitDecl*>(D));
106 }
107 static TranslationUnitDecl *castFromDeclContext(const DeclContext *DC) {
108 return static_cast<TranslationUnitDecl *>(const_cast<DeclContext*>(DC));
109 }
110};
111
112/// Represents a `#pragma comment` line. Always a child of
113/// TranslationUnitDecl.
114class PragmaCommentDecl final
115 : public Decl,
116 private llvm::TrailingObjects<PragmaCommentDecl, char> {
117 friend class ASTDeclReader;
118 friend class ASTDeclWriter;
119 friend TrailingObjects;
120
121 PragmaMSCommentKind CommentKind;
122
123 PragmaCommentDecl(TranslationUnitDecl *TU, SourceLocation CommentLoc,
124 PragmaMSCommentKind CommentKind)
125 : Decl(PragmaComment, TU, CommentLoc), CommentKind(CommentKind) {}
126
127 virtual void anchor();
128
129public:
130 static PragmaCommentDecl *Create(const ASTContext &C, TranslationUnitDecl *DC,
131 SourceLocation CommentLoc,
132 PragmaMSCommentKind CommentKind,
133 StringRef Arg);
134 static PragmaCommentDecl *CreateDeserialized(ASTContext &C, unsigned ID,
135 unsigned ArgSize);
136
137 PragmaMSCommentKind getCommentKind() const { return CommentKind; }
138
139 StringRef getArg() const { return getTrailingObjects<char>(); }
140
141 // Implement isa/cast/dyncast/etc.
142 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
143 static bool classofKind(Kind K) { return K == PragmaComment; }
144};
145
146/// Represents a `#pragma detect_mismatch` line. Always a child of
147/// TranslationUnitDecl.
148class PragmaDetectMismatchDecl final
149 : public Decl,
150 private llvm::TrailingObjects<PragmaDetectMismatchDecl, char> {
151 friend class ASTDeclReader;
152 friend class ASTDeclWriter;
153 friend TrailingObjects;
154
155 size_t ValueStart;
156
157 PragmaDetectMismatchDecl(TranslationUnitDecl *TU, SourceLocation Loc,
158 size_t ValueStart)
159 : Decl(PragmaDetectMismatch, TU, Loc), ValueStart(ValueStart) {}
160
161 virtual void anchor();
162
163public:
164 static PragmaDetectMismatchDecl *Create(const ASTContext &C,
165 TranslationUnitDecl *DC,
166 SourceLocation Loc, StringRef Name,
167 StringRef Value);
168 static PragmaDetectMismatchDecl *
169 CreateDeserialized(ASTContext &C, unsigned ID, unsigned NameValueSize);
170
171 StringRef getName() const { return getTrailingObjects<char>(); }
172 StringRef getValue() const { return getTrailingObjects<char>() + ValueStart; }
173
174 // Implement isa/cast/dyncast/etc.
175 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
176 static bool classofKind(Kind K) { return K == PragmaDetectMismatch; }
177};
178
179/// Declaration context for names declared as extern "C" in C++. This
180/// is neither the semantic nor lexical context for such declarations, but is
181/// used to check for conflicts with other extern "C" declarations. Example:
182///
183/// \code
184/// namespace N { extern "C" void f(); } // #1
185/// void N::f() {} // #2
186/// namespace M { extern "C" void f(); } // #3
187/// \endcode
188///
189/// The semantic context of #1 is namespace N and its lexical context is the
190/// LinkageSpecDecl; the semantic context of #2 is namespace N and its lexical
191/// context is the TU. However, both declarations are also visible in the
192/// extern "C" context.
193///
194/// The declaration at #3 finds it is a redeclaration of \c N::f through
195/// lookup in the extern "C" context.
196class ExternCContextDecl : public Decl, public DeclContext {
197 explicit ExternCContextDecl(TranslationUnitDecl *TU)
198 : Decl(ExternCContext, TU, SourceLocation()),
199 DeclContext(ExternCContext) {}
200
201 virtual void anchor();
202
203public:
204 static ExternCContextDecl *Create(const ASTContext &C,
205 TranslationUnitDecl *TU);
206
207 // Implement isa/cast/dyncast/etc.
208 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
209 static bool classofKind(Kind K) { return K == ExternCContext; }
210 static DeclContext *castToDeclContext(const ExternCContextDecl *D) {
211 return static_cast<DeclContext *>(const_cast<ExternCContextDecl*>(D));
212 }
213 static ExternCContextDecl *castFromDeclContext(const DeclContext *DC) {
214 return static_cast<ExternCContextDecl *>(const_cast<DeclContext*>(DC));
215 }
216};
217
218/// This represents a decl that may have a name. Many decls have names such
219/// as ObjCMethodDecl, but not \@class, etc.
220///
221/// Note that not every NamedDecl is actually named (e.g., a struct might
222/// be anonymous), and not every name is an identifier.
223class NamedDecl : public Decl {
224 /// The name of this declaration, which is typically a normal
225 /// identifier but may also be a special kind of name (C++
226 /// constructor, Objective-C selector, etc.)
227 DeclarationName Name;
228
229 virtual void anchor();
230
231private:
232 NamedDecl *getUnderlyingDeclImpl() LLVM_READONLY;
233
234protected:
235 NamedDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N)
236 : Decl(DK, DC, L), Name(N) {}
237
238public:
239 /// Get the identifier that names this declaration, if there is one.
240 ///
241 /// This will return NULL if this declaration has no name (e.g., for
242 /// an unnamed class) or if the name is a special name (C++ constructor,
243 /// Objective-C selector, etc.).
244 IdentifierInfo *getIdentifier() const { return Name.getAsIdentifierInfo(); }
245
246 /// Get the name of identifier for this declaration as a StringRef.
247 ///
248 /// This requires that the declaration have a name and that it be a simple
249 /// identifier.
250 StringRef getName() const {
251 assert(Name.isIdentifier() && "Name is not a simple identifier");
252 return getIdentifier() ? getIdentifier()->getName() : "";
253 }
254
255 /// Get a human-readable name for the declaration, even if it is one of the
256 /// special kinds of names (C++ constructor, Objective-C selector, etc).
257 ///
258 /// Creating this name requires expensive string manipulation, so it should
259 /// be called only when performance doesn't matter. For simple declarations,
260 /// getNameAsCString() should suffice.
261 //
262 // FIXME: This function should be renamed to indicate that it is not just an
263 // alternate form of getName(), and clients should move as appropriate.
264 //
265 // FIXME: Deprecated, move clients to getName().
266 std::string getNameAsString() const { return Name.getAsString(); }
267
268 /// Pretty-print the unqualified name of this declaration. Can be overloaded
269 /// by derived classes to provide a more user-friendly name when appropriate.
270 virtual void printName(raw_ostream &os) const;
271
272 /// Get the actual, stored name of the declaration, which may be a special
273 /// name.
274 ///
275 /// Note that generally in diagnostics, the non-null \p NamedDecl* itself
276 /// should be sent into the diagnostic instead of using the result of
277 /// \p getDeclName().
278 ///
279 /// A \p DeclarationName in a diagnostic will just be streamed to the output,
280 /// which will directly result in a call to \p DeclarationName::print.
281 ///
282 /// A \p NamedDecl* in a diagnostic will also ultimately result in a call to
283 /// \p DeclarationName::print, but with two customisation points along the
284 /// way (\p getNameForDiagnostic and \p printName). These are used to print
285 /// the template arguments if any, and to provide a user-friendly name for
286 /// some entities (such as unnamed variables and anonymous records).
287 DeclarationName getDeclName() const { return Name; }
288
289 /// Set the name of this declaration.
290 void setDeclName(DeclarationName N) { Name = N; }
291
292 /// Returns a human-readable qualified name for this declaration, like
293 /// A::B::i, for i being member of namespace A::B.
294 ///
295 /// If the declaration is not a member of context which can be named (record,
296 /// namespace), it will return the same result as printName().
297 ///
298 /// Creating this name is expensive, so it should be called only when
299 /// performance doesn't matter.
300 void printQualifiedName(raw_ostream &OS) const;
301 void printQualifiedName(raw_ostream &OS, const PrintingPolicy &Policy) const;
302
303 /// Print only the nested name specifier part of a fully-qualified name,
304 /// including the '::' at the end. E.g.
305 /// when `printQualifiedName(D)` prints "A::B::i",
306 /// this function prints "A::B::".
307 void printNestedNameSpecifier(raw_ostream &OS) const;
308 void printNestedNameSpecifier(raw_ostream &OS,
309 const PrintingPolicy &Policy) const;
310
311 // FIXME: Remove string version.
312 std::string getQualifiedNameAsString() const;
313
314 /// Appends a human-readable name for this declaration into the given stream.
315 ///
316 /// This is the method invoked by Sema when displaying a NamedDecl
317 /// in a diagnostic. It does not necessarily produce the same
318 /// result as printName(); for example, class template
319 /// specializations are printed with their template arguments.
320 virtual void getNameForDiagnostic(raw_ostream &OS,
321 const PrintingPolicy &Policy,
322 bool Qualified) const;
323
324 /// Determine whether this declaration, if known to be well-formed within
325 /// its context, will replace the declaration OldD if introduced into scope.
326 ///
327 /// A declaration will replace another declaration if, for example, it is
328 /// a redeclaration of the same variable or function, but not if it is a
329 /// declaration of a different kind (function vs. class) or an overloaded
330 /// function.
331 ///
332 /// \param IsKnownNewer \c true if this declaration is known to be newer
333 /// than \p OldD (for instance, if this declaration is newly-created).
334 bool declarationReplaces(NamedDecl *OldD, bool IsKnownNewer = true) const;
335
336 /// Determine whether this declaration has linkage.
337 bool hasLinkage() const;
338
339 using Decl::isModulePrivate;
340 using Decl::setModulePrivate;
341
342 /// Determine whether this declaration is a C++ class member.
343 bool isCXXClassMember() const {
344 const DeclContext *DC = getDeclContext();
345
346 // C++0x [class.mem]p1:
347 // The enumerators of an unscoped enumeration defined in
348 // the class are members of the class.
349 if (isa<EnumDecl>(DC))
350 DC = DC->getRedeclContext();
351
352 return DC->isRecord();
353 }
354
355 /// Determine whether the given declaration is an instance member of
356 /// a C++ class.
357 bool isCXXInstanceMember() const;
358
359 /// Determine if the declaration obeys the reserved identifier rules of the
360 /// given language.
361 ReservedIdentifierStatus isReserved(const LangOptions &LangOpts) const;
362
363 /// Determine what kind of linkage this entity has.
364 ///
365 /// This is not the linkage as defined by the standard or the codegen notion
366 /// of linkage. It is just an implementation detail that is used to compute
367 /// those.
368 Linkage getLinkageInternal() const;
369
370 /// Get the linkage from a semantic point of view. Entities in
371 /// anonymous namespaces are external (in c++98).
372 Linkage getFormalLinkage() const {
373 return clang::getFormalLinkage(getLinkageInternal());
374 }
375
376 /// True if this decl has external linkage.
377 bool hasExternalFormalLinkage() const {
378 return isExternalFormalLinkage(getLinkageInternal());
379 }
380
381 bool isExternallyVisible() const {
382 return clang::isExternallyVisible(getLinkageInternal());
383 }
384
385 /// Determine whether this declaration can be redeclared in a
386 /// different translation unit.
387 bool isExternallyDeclarable() const {
388 return isExternallyVisible() && !getOwningModuleForLinkage();
389 }
390
391 /// Determines the visibility of this entity.
392 Visibility getVisibility() const {
393 return getLinkageAndVisibility().getVisibility();
394 }
395
396 /// Determines the linkage and visibility of this entity.
397 LinkageInfo getLinkageAndVisibility() const;
398
399 /// Kinds of explicit visibility.
400 enum ExplicitVisibilityKind {
401 /// Do an LV computation for, ultimately, a type.
402 /// Visibility may be restricted by type visibility settings and
403 /// the visibility of template arguments.
404 VisibilityForType,
405
406 /// Do an LV computation for, ultimately, a non-type declaration.
407 /// Visibility may be restricted by value visibility settings and
408 /// the visibility of template arguments.
409 VisibilityForValue
410 };
411
412 /// If visibility was explicitly specified for this
413 /// declaration, return that visibility.
414 Optional<Visibility>
415 getExplicitVisibility(ExplicitVisibilityKind kind) const;
416
417 /// True if the computed linkage is valid. Used for consistency
418 /// checking. Should always return true.
419 bool isLinkageValid() const;
420
421 /// True if something has required us to compute the linkage
422 /// of this declaration.
423 ///
424 /// Language features which can retroactively change linkage (like a
425 /// typedef name for linkage purposes) may need to consider this,
426 /// but hopefully only in transitory ways during parsing.
427 bool hasLinkageBeenComputed() const {
428 return hasCachedLinkage();
429 }
430
431 /// Looks through UsingDecls and ObjCCompatibleAliasDecls for
432 /// the underlying named decl.
433 NamedDecl *getUnderlyingDecl() {
434 // Fast-path the common case.
435 if (this->getKind() != UsingShadow &&
436 this->getKind() != ConstructorUsingShadow &&
437 this->getKind() != ObjCCompatibleAlias &&
438 this->getKind() != NamespaceAlias)
439 return this;
440
441 return getUnderlyingDeclImpl();
442 }
443 const NamedDecl *getUnderlyingDecl() const {
444 return const_cast<NamedDecl*>(this)->getUnderlyingDecl();
445 }
446
447 NamedDecl *getMostRecentDecl() {
448 return cast<NamedDecl>(static_cast<Decl *>(this)->getMostRecentDecl());
449 }
450 const NamedDecl *getMostRecentDecl() const {
451 return const_cast<NamedDecl*>(this)->getMostRecentDecl();
452 }
453
454 ObjCStringFormatFamily getObjCFStringFormattingFamily() const;
455
456 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
457 static bool classofKind(Kind K) { return K >= firstNamed && K <= lastNamed; }
458};
459
460inline raw_ostream &operator<<(raw_ostream &OS, const NamedDecl &ND) {
461 ND.printName(OS);
462 return OS;
463}
464
465/// Represents the declaration of a label. Labels also have a
466/// corresponding LabelStmt, which indicates the position that the label was
467/// defined at. For normal labels, the location of the decl is the same as the
468/// location of the statement. For GNU local labels (__label__), the decl
469/// location is where the __label__ is.
470class LabelDecl : public NamedDecl {
471 LabelStmt *TheStmt;
472 StringRef MSAsmName;
473 bool MSAsmNameResolved = false;
474
475 /// For normal labels, this is the same as the main declaration
476 /// label, i.e., the location of the identifier; for GNU local labels,
477 /// this is the location of the __label__ keyword.
478 SourceLocation LocStart;
479
480 LabelDecl(DeclContext *DC, SourceLocation IdentL, IdentifierInfo *II,
481 LabelStmt *S, SourceLocation StartL)
482 : NamedDecl(Label, DC, IdentL, II), TheStmt(S), LocStart(StartL) {}
483
484 void anchor() override;
485
486public:
487 static LabelDecl *Create(ASTContext &C, DeclContext *DC,
488 SourceLocation IdentL, IdentifierInfo *II);
489 static LabelDecl *Create(ASTContext &C, DeclContext *DC,
490 SourceLocation IdentL, IdentifierInfo *II,
491 SourceLocation GnuLabelL);
492 static LabelDecl *CreateDeserialized(ASTContext &C, unsigned ID);
493
494 LabelStmt *getStmt() const { return TheStmt; }
495 void setStmt(LabelStmt *T) { TheStmt = T; }
496
497 bool isGnuLocal() const { return LocStart != getLocation(); }
498 void setLocStart(SourceLocation L) { LocStart = L; }
499
500 SourceRange getSourceRange() const override LLVM_READONLY {
501 return SourceRange(LocStart, getLocation());
502 }
503
504 bool isMSAsmLabel() const { return !MSAsmName.empty(); }
505 bool isResolvedMSAsmLabel() const { return isMSAsmLabel() && MSAsmNameResolved; }
506 void setMSAsmLabel(StringRef Name);
507 StringRef getMSAsmLabel() const { return MSAsmName; }
508 void setMSAsmLabelResolved() { MSAsmNameResolved = true; }
509
510 // Implement isa/cast/dyncast/etc.
511 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
512 static bool classofKind(Kind K) { return K == Label; }
513};
514
515/// Represent a C++ namespace.
516class NamespaceDecl : public NamedDecl, public DeclContext,
517 public Redeclarable<NamespaceDecl>
518{
519 /// The starting location of the source range, pointing
520 /// to either the namespace or the inline keyword.
521 SourceLocation LocStart;
522
523 /// The ending location of the source range.
524 SourceLocation RBraceLoc;
525
526 /// A pointer to either the anonymous namespace that lives just inside
527 /// this namespace or to the first namespace in the chain (the latter case
528 /// only when this is not the first in the chain), along with a
529 /// boolean value indicating whether this is an inline namespace.
530 llvm::PointerIntPair<NamespaceDecl *, 1, bool> AnonOrFirstNamespaceAndInline;
531
532 NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
533 SourceLocation StartLoc, SourceLocation IdLoc,
534 IdentifierInfo *Id, NamespaceDecl *PrevDecl);
535
536 using redeclarable_base = Redeclarable<NamespaceDecl>;
537
538 NamespaceDecl *getNextRedeclarationImpl() override;
539 NamespaceDecl *getPreviousDeclImpl() override;
540 NamespaceDecl *getMostRecentDeclImpl() override;
541
542public:
543 friend class ASTDeclReader;
544 friend class ASTDeclWriter;
545
546 static NamespaceDecl *Create(ASTContext &C, DeclContext *DC,
547 bool Inline, SourceLocation StartLoc,
548 SourceLocation IdLoc, IdentifierInfo *Id,
549 NamespaceDecl *PrevDecl);
550
551 static NamespaceDecl *CreateDeserialized(ASTContext &C, unsigned ID);
552
553 using redecl_range = redeclarable_base::redecl_range;
554 using redecl_iterator = redeclarable_base::redecl_iterator;
555
556 using redeclarable_base::redecls_begin;
557 using redeclarable_base::redecls_end;
558 using redeclarable_base::redecls;
559 using redeclarable_base::getPreviousDecl;
560 using redeclarable_base::getMostRecentDecl;
561 using redeclarable_base::isFirstDecl;
562
563 /// Returns true if this is an anonymous namespace declaration.
564 ///
565 /// For example:
566 /// \code
567 /// namespace {
568 /// ...
569 /// };
570 /// \endcode
571 /// q.v. C++ [namespace.unnamed]
572 bool isAnonymousNamespace() const {
573 return !getIdentifier();
574 }
575
576 /// Returns true if this is an inline namespace declaration.
577 bool isInline() const {
578 return AnonOrFirstNamespaceAndInline.getInt();
579 }
580
581 /// Set whether this is an inline namespace declaration.
582 void setInline(bool Inline) {
583 AnonOrFirstNamespaceAndInline.setInt(Inline);
584 }
585
586 /// Returns true if the inline qualifier for \c Name is redundant.
587 bool isRedundantInlineQualifierFor(DeclarationName Name) const {
588 if (!isInline())
589 return false;
590 auto X = lookup(Name);
591 auto Y = getParent()->lookup(Name);
592 return std::distance(X.begin(), X.end()) ==
593 std::distance(Y.begin(), Y.end());
594 }
595
596 /// Get the original (first) namespace declaration.
597 NamespaceDecl *getOriginalNamespace();
598
599 /// Get the original (first) namespace declaration.
600 const NamespaceDecl *getOriginalNamespace() const;
601
602 /// Return true if this declaration is an original (first) declaration
603 /// of the namespace. This is false for non-original (subsequent) namespace
604 /// declarations and anonymous namespaces.
605 bool isOriginalNamespace() const;
606
607 /// Retrieve the anonymous namespace nested inside this namespace,
608 /// if any.
609 NamespaceDecl *getAnonymousNamespace() const {
610 return getOriginalNamespace()->AnonOrFirstNamespaceAndInline.getPointer();
611 }
612
613 void setAnonymousNamespace(NamespaceDecl *D) {
614 getOriginalNamespace()->AnonOrFirstNamespaceAndInline.setPointer(D);
615 }
616
617 /// Retrieves the canonical declaration of this namespace.
618 NamespaceDecl *getCanonicalDecl() override {
619 return getOriginalNamespace();
620 }
621 const NamespaceDecl *getCanonicalDecl() const {
622 return getOriginalNamespace();
623 }
624
625 SourceRange getSourceRange() const override LLVM_READONLY {
626 return SourceRange(LocStart, RBraceLoc);
627 }
628
629 SourceLocation getBeginLoc() const LLVM_READONLY { return LocStart; }
630 SourceLocation getRBraceLoc() const { return RBraceLoc; }
631 void setLocStart(SourceLocation L) { LocStart = L; }
632 void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
633
634 // Implement isa/cast/dyncast/etc.
635 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
636 static bool classofKind(Kind K) { return K == Namespace; }
637 static DeclContext *castToDeclContext(const NamespaceDecl *D) {
638 return static_cast<DeclContext *>(const_cast<NamespaceDecl*>(D));
639 }
640 static NamespaceDecl *castFromDeclContext(const DeclContext *DC) {
641 return static_cast<NamespaceDecl *>(const_cast<DeclContext*>(DC));
642 }
643};
644
645/// Represent the declaration of a variable (in which case it is
646/// an lvalue) a function (in which case it is a function designator) or
647/// an enum constant.
648class ValueDecl : public NamedDecl {
649 QualType DeclType;
650
651 void anchor() override;
652
653protected:
654 ValueDecl(Kind DK, DeclContext *DC, SourceLocation L,
655 DeclarationName N, QualType T)
656 : NamedDecl(DK, DC, L, N), DeclType(T) {}
657
658public:
659 QualType getType() const { return DeclType; }
660 void setType(QualType newType) { DeclType = newType; }
661
662 /// Determine whether this symbol is weakly-imported,
663 /// or declared with the weak or weak-ref attr.
664 bool isWeak() const;
665
666 // Implement isa/cast/dyncast/etc.
667 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
668 static bool classofKind(Kind K) { return K >= firstValue && K <= lastValue; }
669};
670
671/// A struct with extended info about a syntactic
672/// name qualifier, to be used for the case of out-of-line declarations.
673struct QualifierInfo {
674 NestedNameSpecifierLoc QualifierLoc;
675
676 /// The number of "outer" template parameter lists.
677 /// The count includes all of the template parameter lists that were matched
678 /// against the template-ids occurring into the NNS and possibly (in the
679 /// case of an explicit specialization) a final "template <>".
680 unsigned NumTemplParamLists = 0;
681
682 /// A new-allocated array of size NumTemplParamLists,
683 /// containing pointers to the "outer" template parameter lists.
684 /// It includes all of the template parameter lists that were matched
685 /// against the template-ids occurring into the NNS and possibly (in the
686 /// case of an explicit specialization) a final "template <>".
687 TemplateParameterList** TemplParamLists = nullptr;
688
689 QualifierInfo() = default;
690 QualifierInfo(const QualifierInfo &) = delete;
691 QualifierInfo& operator=(const QualifierInfo &) = delete;
692
693 /// Sets info about "outer" template parameter lists.
694 void setTemplateParameterListsInfo(ASTContext &Context,
695 ArrayRef<TemplateParameterList *> TPLists);
696};
697
698/// Represents a ValueDecl that came out of a declarator.
699/// Contains type source information through TypeSourceInfo.
700class DeclaratorDecl : public ValueDecl {
701 // A struct representing a TInfo, a trailing requires-clause and a syntactic
702 // qualifier, to be used for the (uncommon) case of out-of-line declarations
703 // and constrained function decls.
704 struct ExtInfo : public QualifierInfo {
705 TypeSourceInfo *TInfo;
706 Expr *TrailingRequiresClause = nullptr;
707 };
708
709 llvm::PointerUnion<TypeSourceInfo *, ExtInfo *> DeclInfo;
710
711 /// The start of the source range for this declaration,
712 /// ignoring outer template declarations.
713 SourceLocation InnerLocStart;
714
715 bool hasExtInfo() const { return DeclInfo.is<ExtInfo*>(); }
716 ExtInfo *getExtInfo() { return DeclInfo.get<ExtInfo*>(); }
717 const ExtInfo *getExtInfo() const { return DeclInfo.get<ExtInfo*>(); }
718
719protected:
720 DeclaratorDecl(Kind DK, DeclContext *DC, SourceLocation L,
721 DeclarationName N, QualType T, TypeSourceInfo *TInfo,
722 SourceLocation StartL)
723 : ValueDecl(DK, DC, L, N, T), DeclInfo(TInfo), InnerLocStart(StartL) {}
724
725public:
726 friend class ASTDeclReader;
727 friend class ASTDeclWriter;
728
729 TypeSourceInfo *getTypeSourceInfo() const {
730 return hasExtInfo()
731 ? getExtInfo()->TInfo
732 : DeclInfo.get<TypeSourceInfo*>();
733 }
734
735 void setTypeSourceInfo(TypeSourceInfo *TI) {
736 if (hasExtInfo())
737 getExtInfo()->TInfo = TI;
738 else
739 DeclInfo = TI;
740 }
741
742 /// Return start of source range ignoring outer template declarations.
743 SourceLocation getInnerLocStart() const { return InnerLocStart; }
744 void setInnerLocStart(SourceLocation L) { InnerLocStart = L; }
745
746 /// Return start of source range taking into account any outer template
747 /// declarations.
748 SourceLocation getOuterLocStart() const;
749
750 SourceRange getSourceRange() const override LLVM_READONLY;
751
752 SourceLocation getBeginLoc() const LLVM_READONLY {
753 return getOuterLocStart();
754 }
755
756 /// Retrieve the nested-name-specifier that qualifies the name of this
757 /// declaration, if it was present in the source.
758 NestedNameSpecifier *getQualifier() const {
759 return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier()
760 : nullptr;
761 }
762
763 /// Retrieve the nested-name-specifier (with source-location
764 /// information) that qualifies the name of this declaration, if it was
765 /// present in the source.
766 NestedNameSpecifierLoc getQualifierLoc() const {
767 return hasExtInfo() ? getExtInfo()->QualifierLoc
768 : NestedNameSpecifierLoc();
769 }
770
771 void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc);
772
773 /// \brief Get the constraint-expression introduced by the trailing
774 /// requires-clause in the function/member declaration, or null if no
775 /// requires-clause was provided.
776 Expr *getTrailingRequiresClause() {
777 return hasExtInfo() ? getExtInfo()->TrailingRequiresClause
778 : nullptr;
779 }
780
781 const Expr *getTrailingRequiresClause() const {
782 return hasExtInfo() ? getExtInfo()->TrailingRequiresClause
783 : nullptr;
784 }
785
786 void setTrailingRequiresClause(Expr *TrailingRequiresClause);
787
788 unsigned getNumTemplateParameterLists() const {
789 return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
790 }
791
792 TemplateParameterList *getTemplateParameterList(unsigned index) const {
793 assert(index < getNumTemplateParameterLists());
794 return getExtInfo()->TemplParamLists[index];
795 }
796
797 void setTemplateParameterListsInfo(ASTContext &Context,
798 ArrayRef<TemplateParameterList *> TPLists);
799
800 SourceLocation getTypeSpecStartLoc() const;
801 SourceLocation getTypeSpecEndLoc() const;
802
803 // Implement isa/cast/dyncast/etc.
804 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
805 static bool classofKind(Kind K) {
806 return K >= firstDeclarator && K <= lastDeclarator;
807 }
808};
809
810/// Structure used to store a statement, the constant value to
811/// which it was evaluated (if any), and whether or not the statement
812/// is an integral constant expression (if known).
813struct EvaluatedStmt {
814 /// Whether this statement was already evaluated.
815 bool WasEvaluated : 1;
816
817 /// Whether this statement is being evaluated.
818 bool IsEvaluating : 1;
819
820 /// Whether this variable is known to have constant initialization. This is
821 /// currently only computed in C++, for static / thread storage duration
822 /// variables that might have constant initialization and for variables that
823 /// are usable in constant expressions.
824 bool HasConstantInitialization : 1;
825
826 /// Whether this variable is known to have constant destruction. That is,
827 /// whether running the destructor on the initial value is a side-effect
828 /// (and doesn't inspect any state that might have changed during program
829 /// execution). This is currently only computed if the destructor is
830 /// non-trivial.
831 bool HasConstantDestruction : 1;
832
833 /// In C++98, whether the initializer is an ICE. This affects whether the
834 /// variable is usable in constant expressions.
835 bool HasICEInit : 1;
836 bool CheckedForICEInit : 1;
837
838 Stmt *Value;
839 APValue Evaluated;
840
841 EvaluatedStmt()
842 : WasEvaluated(false), IsEvaluating(false),
843 HasConstantInitialization(false), HasConstantDestruction(false),
844 HasICEInit(false), CheckedForICEInit(false) {}
845};
846
847/// Represents a variable declaration or definition.
848class VarDecl : public DeclaratorDecl, public Redeclarable<VarDecl> {
849public:
850 /// Initialization styles.
851 enum InitializationStyle {
852 /// C-style initialization with assignment
853 CInit,
854
855 /// Call-style initialization (C++98)
856 CallInit,
857
858 /// Direct list-initialization (C++11)
859 ListInit
860 };
861
862 /// Kinds of thread-local storage.
863 enum TLSKind {
864 /// Not a TLS variable.
865 TLS_None,
866
867 /// TLS with a known-constant initializer.
868 TLS_Static,
869
870 /// TLS with a dynamic initializer.
871 TLS_Dynamic
872 };
873
874 /// Return the string used to specify the storage class \p SC.
875 ///
876 /// It is illegal to call this function with SC == None.
877 static const char *getStorageClassSpecifierString(StorageClass SC);
878
879protected:
880 // A pointer union of Stmt * and EvaluatedStmt *. When an EvaluatedStmt, we
881 // have allocated the auxiliary struct of information there.
882 //
883 // TODO: It is a bit unfortunate to use a PointerUnion inside the VarDecl for
884 // this as *many* VarDecls are ParmVarDecls that don't have default
885 // arguments. We could save some space by moving this pointer union to be
886 // allocated in trailing space when necessary.
887 using InitType = llvm::PointerUnion<Stmt *, EvaluatedStmt *>;
888
889 /// The initializer for this variable or, for a ParmVarDecl, the
890 /// C++ default argument.
891 mutable InitType Init;
892
893private:
894 friend class ASTDeclReader;
895 friend class ASTNodeImporter;
896 friend class StmtIteratorBase;
897
898 class VarDeclBitfields {
899 friend class ASTDeclReader;
900 friend class VarDecl;
901
902 unsigned SClass : 3;
903 unsigned TSCSpec : 2;
904 unsigned InitStyle : 2;
905
906 /// Whether this variable is an ARC pseudo-__strong variable; see
907 /// isARCPseudoStrong() for details.
908 unsigned ARCPseudoStrong : 1;
909 };
910 enum { NumVarDeclBits = 8 };
911
912protected:
913 enum { NumParameterIndexBits = 8 };
914
915 enum DefaultArgKind {
916 DAK_None,
917 DAK_Unparsed,
918 DAK_Uninstantiated,
919 DAK_Normal
920 };
921
922 enum { NumScopeDepthOrObjCQualsBits = 7 };
923
924 class ParmVarDeclBitfields {
925 friend class ASTDeclReader;
926 friend class ParmVarDecl;
927
928 unsigned : NumVarDeclBits;
929
930 /// Whether this parameter inherits a default argument from a
931 /// prior declaration.
932 unsigned HasInheritedDefaultArg : 1;
933
934 /// Describes the kind of default argument for this parameter. By default
935 /// this is none. If this is normal, then the default argument is stored in
936 /// the \c VarDecl initializer expression unless we were unable to parse
937 /// (even an invalid) expression for the default argument.
938 unsigned DefaultArgKind : 2;
939
940 /// Whether this parameter undergoes K&R argument promotion.
941 unsigned IsKNRPromoted : 1;
942
943 /// Whether this parameter is an ObjC method parameter or not.
944 unsigned IsObjCMethodParam : 1;
945
946 /// If IsObjCMethodParam, a Decl::ObjCDeclQualifier.
947 /// Otherwise, the number of function parameter scopes enclosing
948 /// the function parameter scope in which this parameter was
949 /// declared.
950 unsigned ScopeDepthOrObjCQuals : NumScopeDepthOrObjCQualsBits;
951
952 /// The number of parameters preceding this parameter in the
953 /// function parameter scope in which it was declared.
954 unsigned ParameterIndex : NumParameterIndexBits;
955 };
956
957 class NonParmVarDeclBitfields {
958 friend class ASTDeclReader;
959 friend class ImplicitParamDecl;
960 friend class VarDecl;
961
962 unsigned : NumVarDeclBits;
963
964 // FIXME: We need something similar to CXXRecordDecl::DefinitionData.
965 /// Whether this variable is a definition which was demoted due to
966 /// module merge.
967 unsigned IsThisDeclarationADemotedDefinition : 1;
968
969 /// Whether this variable is the exception variable in a C++ catch
970 /// or an Objective-C @catch statement.
971 unsigned ExceptionVar : 1;
972
973 /// Whether this local variable could be allocated in the return
974 /// slot of its function, enabling the named return value optimization
975 /// (NRVO).
976 unsigned NRVOVariable : 1;
977
978 /// Whether this variable is the for-range-declaration in a C++0x
979 /// for-range statement.
980 unsigned CXXForRangeDecl : 1;
981
982 /// Whether this variable is the for-in loop declaration in Objective-C.
983 unsigned ObjCForDecl : 1;
984
985 /// Whether this variable is (C++1z) inline.
986 unsigned IsInline : 1;
987
988 /// Whether this variable has (C++1z) inline explicitly specified.
989 unsigned IsInlineSpecified : 1;
990
991 /// Whether this variable is (C++0x) constexpr.
992 unsigned IsConstexpr : 1;
993
994 /// Whether this variable is the implicit variable for a lambda
995 /// init-capture.
996 unsigned IsInitCapture : 1;
997
998 /// Whether this local extern variable's previous declaration was
999 /// declared in the same block scope. This controls whether we should merge
1000 /// the type of this declaration with its previous declaration.
1001 unsigned PreviousDeclInSameBlockScope : 1;
1002
1003 /// Defines kind of the ImplicitParamDecl: 'this', 'self', 'vtt', '_cmd' or
1004 /// something else.
1005 unsigned ImplicitParamKind : 3;
1006
1007 unsigned EscapingByref : 1;
1008 };
1009
1010 union {
1011 unsigned AllBits;
1012 VarDeclBitfields VarDeclBits;
1013 ParmVarDeclBitfields ParmVarDeclBits;
1014 NonParmVarDeclBitfields NonParmVarDeclBits;
1015 };
1016
1017 VarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1018 SourceLocation IdLoc, IdentifierInfo *Id, QualType T,
1019 TypeSourceInfo *TInfo, StorageClass SC);
1020
1021 using redeclarable_base = Redeclarable<VarDecl>;
1022
1023 VarDecl *getNextRedeclarationImpl() override {
1024 return getNextRedeclaration();
1025 }
1026
1027 VarDecl *getPreviousDeclImpl() override {
1028 return getPreviousDecl();
1029 }
1030
1031 VarDecl *getMostRecentDeclImpl() override {
1032 return getMostRecentDecl();
1033 }
1034
1035public:
1036 using redecl_range = redeclarable_base::redecl_range;
1037 using redecl_iterator = redeclarable_base::redecl_iterator;
1038
1039 using redeclarable_base::redecls_begin;
1040 using redeclarable_base::redecls_end;
1041 using redeclarable_base::redecls;
1042 using redeclarable_base::getPreviousDecl;
1043 using redeclarable_base::getMostRecentDecl;
1044 using redeclarable_base::isFirstDecl;
1045
1046 static VarDecl *Create(ASTContext &C, DeclContext *DC,
1047 SourceLocation StartLoc, SourceLocation IdLoc,
1048 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1049 StorageClass S);
1050
1051 static VarDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1052
1053 SourceRange getSourceRange() const override LLVM_READONLY;
1054
1055 /// Returns the storage class as written in the source. For the
1056 /// computed linkage of symbol, see getLinkage.
1057 StorageClass getStorageClass() const {
1058 return (StorageClass) VarDeclBits.SClass;
1059 }
1060 void setStorageClass(StorageClass SC);
1061
1062 void setTSCSpec(ThreadStorageClassSpecifier TSC) {
1063 VarDeclBits.TSCSpec = TSC;
1064 assert(VarDeclBits.TSCSpec == TSC && "truncation");
1065 }
1066 ThreadStorageClassSpecifier getTSCSpec() const {
1067 return static_cast<ThreadStorageClassSpecifier>(VarDeclBits.TSCSpec);
1068 }
1069 TLSKind getTLSKind() const;
1070
1071 /// Returns true if a variable with function scope is a non-static local
1072 /// variable.
1073 bool hasLocalStorage() const {
1074 if (getStorageClass() == SC_None) {
1075 // OpenCL v1.2 s6.5.3: The __constant or constant address space name is
1076 // used to describe variables allocated in global memory and which are
1077 // accessed inside a kernel(s) as read-only variables. As such, variables
1078 // in constant address space cannot have local storage.
1079 if (getType().getAddressSpace() == LangAS::opencl_constant)
1080 return false;
1081 // Second check is for C++11 [dcl.stc]p4.
1082 return !isFileVarDecl() && getTSCSpec() == TSCS_unspecified;
1083 }
1084
1085 // Global Named Register (GNU extension)
1086 if (getStorageClass() == SC_Register && !isLocalVarDeclOrParm())
1087 return false;
1088
1089 // Return true for: Auto, Register.
1090 // Return false for: Extern, Static, PrivateExtern, OpenCLWorkGroupLocal.
1091
1092 return getStorageClass() >= SC_Auto;
1093 }
1094
1095 /// Returns true if a variable with function scope is a static local
1096 /// variable.
1097 bool isStaticLocal() const {
1098 return (getStorageClass() == SC_Static ||
1099 // C++11 [dcl.stc]p4
1100 (getStorageClass() == SC_None && getTSCSpec() == TSCS_thread_local))
1101 && !isFileVarDecl();
1102 }
1103
1104 /// Returns true if a variable has extern or __private_extern__
1105 /// storage.
1106 bool hasExternalStorage() const {
1107 return getStorageClass() == SC_Extern ||
1108 getStorageClass() == SC_PrivateExtern;
1109 }
1110
1111 /// Returns true for all variables that do not have local storage.
1112 ///
1113 /// This includes all global variables as well as static variables declared
1114 /// within a function.
1115 bool hasGlobalStorage() const { return !hasLocalStorage(); }
1116
1117 /// Get the storage duration of this variable, per C++ [basic.stc].
1118 StorageDuration getStorageDuration() const {
1119 return hasLocalStorage() ? SD_Automatic :
1120 getTSCSpec() ? SD_Thread : SD_Static;
1121 }
1122
1123 /// Compute the language linkage.
1124 LanguageLinkage getLanguageLinkage() const;
1125
1126 /// Determines whether this variable is a variable with external, C linkage.
1127 bool isExternC() const;
1128
1129 /// Determines whether this variable's context is, or is nested within,
1130 /// a C++ extern "C" linkage spec.
1131 bool isInExternCContext() const;
1132
1133 /// Determines whether this variable's context is, or is nested within,
1134 /// a C++ extern "C++" linkage spec.
1135 bool isInExternCXXContext() const;
1136
1137 /// Returns true for local variable declarations other than parameters.
1138 /// Note that this includes static variables inside of functions. It also
1139 /// includes variables inside blocks.
1140 ///
1141 /// void foo() { int x; static int y; extern int z; }
1142 bool isLocalVarDecl() const {
1143 if (getKind() != Decl::Var && getKind() != Decl::Decomposition)
1144 return false;
1145 if (const DeclContext *DC = getLexicalDeclContext())
1146 return DC->getRedeclContext()->isFunctionOrMethod();
1147 return false;
1148 }
1149
1150 /// Similar to isLocalVarDecl but also includes parameters.
1151 bool isLocalVarDeclOrParm() const {
1152 return isLocalVarDecl() || getKind() == Decl::ParmVar;
1153 }
1154
1155 /// Similar to isLocalVarDecl, but excludes variables declared in blocks.
1156 bool isFunctionOrMethodVarDecl() const {
1157 if (getKind() != Decl::Var && getKind() != Decl::Decomposition)
1158 return false;
1159 const DeclContext *DC = getLexicalDeclContext()->getRedeclContext();
1160 return DC->isFunctionOrMethod() && DC->getDeclKind() != Decl::Block;
1161 }
1162
1163 /// Determines whether this is a static data member.
1164 ///
1165 /// This will only be true in C++, and applies to, e.g., the
1166 /// variable 'x' in:
1167 /// \code
1168 /// struct S {
1169 /// static int x;
1170 /// };
1171 /// \endcode
1172 bool isStaticDataMember() const {
1173 // If it wasn't static, it would be a FieldDecl.
1174 return getKind() != Decl::ParmVar && getDeclContext()->isRecord();
1175 }
1176
1177 VarDecl *getCanonicalDecl() override;
1178 const VarDecl *getCanonicalDecl() const {
1179 return const_cast<VarDecl*>(this)->getCanonicalDecl();
1180 }
1181
1182 enum DefinitionKind {
1183 /// This declaration is only a declaration.
1184 DeclarationOnly,
1185
1186 /// This declaration is a tentative definition.
1187 TentativeDefinition,
1188
1189 /// This declaration is definitely a definition.
1190 Definition
1191 };
1192
1193 /// Check whether this declaration is a definition. If this could be
1194 /// a tentative definition (in C), don't check whether there's an overriding
1195 /// definition.
1196 DefinitionKind isThisDeclarationADefinition(ASTContext &) const;
1197 DefinitionKind isThisDeclarationADefinition() const {
1198 return isThisDeclarationADefinition(getASTContext());
1199 }
1200
1201 /// Check whether this variable is defined in this translation unit.
1202 DefinitionKind hasDefinition(ASTContext &) const;
1203 DefinitionKind hasDefinition() const {
1204 return hasDefinition(getASTContext());
1205 }
1206
1207 /// Get the tentative definition that acts as the real definition in a TU.
1208 /// Returns null if there is a proper definition available.
1209 VarDecl *getActingDefinition();
1210 const VarDecl *getActingDefinition() const {
1211 return const_cast<VarDecl*>(this)->getActingDefinition();
1212 }
1213
1214 /// Get the real (not just tentative) definition for this declaration.
1215 VarDecl *getDefinition(ASTContext &);
1216 const VarDecl *getDefinition(ASTContext &C) const {
1217 return const_cast<VarDecl*>(this)->getDefinition(C);
1218 }
1219 VarDecl *getDefinition() {
1220 return getDefinition(getASTContext());
1221 }
1222 const VarDecl *getDefinition() const {
1223 return const_cast<VarDecl*>(this)->getDefinition();
1224 }
1225
1226 /// Determine whether this is or was instantiated from an out-of-line
1227 /// definition of a static data member.
1228 bool isOutOfLine() const override;
1229
1230 /// Returns true for file scoped variable declaration.
1231 bool isFileVarDecl() const {
1232 Kind K = getKind();
1233 if (K == ParmVar || K == ImplicitParam)
1234 return false;
1235
1236 if (getLexicalDeclContext()->getRedeclContext()->isFileContext())
1237 return true;
1238
1239 if (isStaticDataMember())
1240 return true;
1241
1242 return false;
1243 }
1244
1245 /// Get the initializer for this variable, no matter which
1246 /// declaration it is attached to.
1247 const Expr *getAnyInitializer() const {
1248 const VarDecl *D;
1249 return getAnyInitializer(D);
1250 }
1251
1252 /// Get the initializer for this variable, no matter which
1253 /// declaration it is attached to. Also get that declaration.
1254 const Expr *getAnyInitializer(const VarDecl *&D) const;
1255
1256 bool hasInit() const;
1257 const Expr *getInit() const {
1258 return const_cast<VarDecl *>(this)->getInit();
1259 }
1260 Expr *getInit();
1261
1262 /// Retrieve the address of the initializer expression.
1263 Stmt **getInitAddress();
1264
1265 void setInit(Expr *I);
1266
1267 /// Get the initializing declaration of this variable, if any. This is
1268 /// usually the definition, except that for a static data member it can be
1269 /// the in-class declaration.
1270 VarDecl *getInitializingDeclaration();
1271 const VarDecl *getInitializingDeclaration() const {
1272 return const_cast<VarDecl *>(this)->getInitializingDeclaration();
1273 }
1274
1275 /// Determine whether this variable's value might be usable in a
1276 /// constant expression, according to the relevant language standard.
1277 /// This only checks properties of the declaration, and does not check
1278 /// whether the initializer is in fact a constant expression.
1279 ///
1280 /// This corresponds to C++20 [expr.const]p3's notion of a
1281 /// "potentially-constant" variable.
1282 bool mightBeUsableInConstantExpressions(const ASTContext &C) const;
1283
1284 /// Determine whether this variable's value can be used in a
1285 /// constant expression, according to the relevant language standard,
1286 /// including checking whether it was initialized by a constant expression.
1287 bool isUsableInConstantExpressions(const ASTContext &C) const;
1288
1289 EvaluatedStmt *ensureEvaluatedStmt() const;
1290 EvaluatedStmt *getEvaluatedStmt() const;
1291
1292 /// Attempt to evaluate the value of the initializer attached to this
1293 /// declaration, and produce notes explaining why it cannot be evaluated.
1294 /// Returns a pointer to the value if evaluation succeeded, 0 otherwise.
1295 APValue *evaluateValue() const;
1296
1297private:
1298 APValue *evaluateValueImpl(SmallVectorImpl<PartialDiagnosticAt> &Notes,
1299 bool IsConstantInitialization) const;
1300
1301public:
1302 /// Return the already-evaluated value of this variable's
1303 /// initializer, or NULL if the value is not yet known. Returns pointer
1304 /// to untyped APValue if the value could not be evaluated.
1305 APValue *getEvaluatedValue() const;
1306
1307 /// Evaluate the destruction of this variable to determine if it constitutes
1308 /// constant destruction.
1309 ///
1310 /// \pre hasConstantInitialization()
1311 /// \return \c true if this variable has constant destruction, \c false if
1312 /// not.
1313 bool evaluateDestruction(SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
1314
1315 /// Determine whether this variable has constant initialization.
1316 ///
1317 /// This is only set in two cases: when the language semantics require
1318 /// constant initialization (globals in C and some globals in C++), and when
1319 /// the variable is usable in constant expressions (constexpr, const int, and
1320 /// reference variables in C++).
1321 bool hasConstantInitialization() const;
1322
1323 /// Determine whether the initializer of this variable is an integer constant
1324 /// expression. For use in C++98, where this affects whether the variable is
1325 /// usable in constant expressions.
1326 bool hasICEInitializer(const ASTContext &Context) const;
1327
1328 /// Evaluate the initializer of this variable to determine whether it's a
1329 /// constant initializer. Should only be called once, after completing the
1330 /// definition of the variable.
1331 bool checkForConstantInitialization(
1332 SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
1333
1334 void setInitStyle(InitializationStyle Style) {
1335 VarDeclBits.InitStyle = Style;
1336 }
1337
1338 /// The style of initialization for this declaration.
1339 ///
1340 /// C-style initialization is "int x = 1;". Call-style initialization is
1341 /// a C++98 direct-initializer, e.g. "int x(1);". The Init expression will be
1342 /// the expression inside the parens or a "ClassType(a,b,c)" class constructor
1343 /// expression for class types. List-style initialization is C++11 syntax,
1344 /// e.g. "int x{1};". Clients can distinguish between different forms of
1345 /// initialization by checking this value. In particular, "int x = {1};" is
1346 /// C-style, "int x({1})" is call-style, and "int x{1};" is list-style; the
1347 /// Init expression in all three cases is an InitListExpr.
1348 InitializationStyle getInitStyle() const {
1349 return static_cast<InitializationStyle>(VarDeclBits.InitStyle);
1350 }
1351
1352 /// Whether the initializer is a direct-initializer (list or call).
1353 bool isDirectInit() const {
1354 return getInitStyle() != CInit;
1355 }
1356
1357 /// If this definition should pretend to be a declaration.
1358 bool isThisDeclarationADemotedDefinition() const {
1359 return isa<ParmVarDecl>(this) ? false :
1360 NonParmVarDeclBits.IsThisDeclarationADemotedDefinition;
1361 }
1362
1363 /// This is a definition which should be demoted to a declaration.
1364 ///
1365 /// In some cases (mostly module merging) we can end up with two visible
1366 /// definitions one of which needs to be demoted to a declaration to keep
1367 /// the AST invariants.
1368 void demoteThisDefinitionToDeclaration() {
1369 assert(isThisDeclarationADefinition() && "Not a definition!");
1370 assert(!isa<ParmVarDecl>(this) && "Cannot demote ParmVarDecls!");
1371 NonParmVarDeclBits.IsThisDeclarationADemotedDefinition = 1;
1372 }
1373
1374 /// Determine whether this variable is the exception variable in a
1375 /// C++ catch statememt or an Objective-C \@catch statement.
1376 bool isExceptionVariable() const {
1377 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.ExceptionVar;
1378 }
1379 void setExceptionVariable(bool EV) {
1380 assert(!isa<ParmVarDecl>(this));
1381 NonParmVarDeclBits.ExceptionVar = EV;
1382 }
1383
1384 /// Determine whether this local variable can be used with the named
1385 /// return value optimization (NRVO).
1386 ///
1387 /// The named return value optimization (NRVO) works by marking certain
1388 /// non-volatile local variables of class type as NRVO objects. These
1389 /// locals can be allocated within the return slot of their containing
1390 /// function, in which case there is no need to copy the object to the
1391 /// return slot when returning from the function. Within the function body,
1392 /// each return that returns the NRVO object will have this variable as its
1393 /// NRVO candidate.
1394 bool isNRVOVariable() const {
1395 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.NRVOVariable;
1396 }
1397 void setNRVOVariable(bool NRVO) {
1398 assert(!isa<ParmVarDecl>(this));
1399 NonParmVarDeclBits.NRVOVariable = NRVO;
1400 }
1401
1402 /// Determine whether this variable is the for-range-declaration in
1403 /// a C++0x for-range statement.
1404 bool isCXXForRangeDecl() const {
1405 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.CXXForRangeDecl;
1406 }
1407 void setCXXForRangeDecl(bool FRD) {
1408 assert(!isa<ParmVarDecl>(this));
1409 NonParmVarDeclBits.CXXForRangeDecl = FRD;
1410 }
1411
1412 /// Determine whether this variable is a for-loop declaration for a
1413 /// for-in statement in Objective-C.
1414 bool isObjCForDecl() const {
1415 return NonParmVarDeclBits.ObjCForDecl;
1416 }
1417
1418 void setObjCForDecl(bool FRD) {
1419 NonParmVarDeclBits.ObjCForDecl = FRD;
1420 }
1421
1422 /// Determine whether this variable is an ARC pseudo-__strong variable. A
1423 /// pseudo-__strong variable has a __strong-qualified type but does not
1424 /// actually retain the object written into it. Generally such variables are
1425 /// also 'const' for safety. There are 3 cases where this will be set, 1) if
1426 /// the variable is annotated with the objc_externally_retained attribute, 2)
1427 /// if its 'self' in a non-init method, or 3) if its the variable in an for-in
1428 /// loop.
1429 bool isARCPseudoStrong() const { return VarDeclBits.ARCPseudoStrong; }
1430 void setARCPseudoStrong(bool PS) { VarDeclBits.ARCPseudoStrong = PS; }
1431
1432 /// Whether this variable is (C++1z) inline.
1433 bool isInline() const {
1434 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsInline;
1435 }
1436 bool isInlineSpecified() const {
1437 return isa<ParmVarDecl>(this) ? false
1438 : NonParmVarDeclBits.IsInlineSpecified;
1439 }
1440 void setInlineSpecified() {
1441 assert(!isa<ParmVarDecl>(this));
1442 NonParmVarDeclBits.IsInline = true;
1443 NonParmVarDeclBits.IsInlineSpecified = true;
1444 }
1445 void setImplicitlyInline() {
1446 assert(!isa<ParmVarDecl>(this));
1447 NonParmVarDeclBits.IsInline = true;
1448 }
1449
1450 /// Whether this variable is (C++11) constexpr.
1451 bool isConstexpr() const {
1452 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsConstexpr;
1453 }
1454 void setConstexpr(bool IC) {
1455 assert(!isa<ParmVarDecl>(this));
1456 NonParmVarDeclBits.IsConstexpr = IC;
1457 }
1458
1459 /// Whether this variable is the implicit variable for a lambda init-capture.
1460 bool isInitCapture() const {
1461 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsInitCapture;
1462 }
1463 void setInitCapture(bool IC) {
1464 assert(!isa<ParmVarDecl>(this));
1465 NonParmVarDeclBits.IsInitCapture = IC;
1466 }
1467
1468 /// Determine whether this variable is actually a function parameter pack or
1469 /// init-capture pack.
1470 bool isParameterPack() const;
1471
1472 /// Whether this local extern variable declaration's previous declaration
1473 /// was declared in the same block scope. Only correct in C++.
1474 bool isPreviousDeclInSameBlockScope() const {
1475 return isa<ParmVarDecl>(this)
1476 ? false
1477 : NonParmVarDeclBits.PreviousDeclInSameBlockScope;
1478 }
1479 void setPreviousDeclInSameBlockScope(bool Same) {
1480 assert(!isa<ParmVarDecl>(this));
1481 NonParmVarDeclBits.PreviousDeclInSameBlockScope = Same;
1482 }
1483
1484 /// Indicates the capture is a __block variable that is captured by a block
1485 /// that can potentially escape (a block for which BlockDecl::doesNotEscape
1486 /// returns false).
1487 bool isEscapingByref() const;
1488
1489 /// Indicates the capture is a __block variable that is never captured by an
1490 /// escaping block.
1491 bool isNonEscapingByref() const;
1492
1493 void setEscapingByref() {
1494 NonParmVarDeclBits.EscapingByref = true;
1495 }
1496
1497 /// Retrieve the variable declaration from which this variable could
1498 /// be instantiated, if it is an instantiation (rather than a non-template).
1499 VarDecl *getTemplateInstantiationPattern() const;
1500
1501 /// If this variable is an instantiated static data member of a
1502 /// class template specialization, returns the templated static data member
1503 /// from which it was instantiated.
1504 VarDecl *getInstantiatedFromStaticDataMember() const;
1505
1506 /// If this variable is an instantiation of a variable template or a
1507 /// static data member of a class template, determine what kind of
1508 /// template specialization or instantiation this is.
1509 TemplateSpecializationKind getTemplateSpecializationKind() const;
1510
1511 /// Get the template specialization kind of this variable for the purposes of
1512 /// template instantiation. This differs from getTemplateSpecializationKind()
1513 /// for an instantiation of a class-scope explicit specialization.
1514 TemplateSpecializationKind
1515 getTemplateSpecializationKindForInstantiation() const;
1516
1517 /// If this variable is an instantiation of a variable template or a
1518 /// static data member of a class template, determine its point of
1519 /// instantiation.
1520 SourceLocation getPointOfInstantiation() const;
1521
1522 /// If this variable is an instantiation of a static data member of a
1523 /// class template specialization, retrieves the member specialization
1524 /// information.
1525 MemberSpecializationInfo *getMemberSpecializationInfo() const;
1526
1527 /// For a static data member that was instantiated from a static
1528 /// data member of a class template, set the template specialiation kind.
1529 void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
1530 SourceLocation PointOfInstantiation = SourceLocation());
1531
1532 /// Specify that this variable is an instantiation of the
1533 /// static data member VD.
1534 void setInstantiationOfStaticDataMember(VarDecl *VD,
1535 TemplateSpecializationKind TSK);
1536
1537 /// Retrieves the variable template that is described by this
1538 /// variable declaration.
1539 ///
1540 /// Every variable template is represented as a VarTemplateDecl and a
1541 /// VarDecl. The former contains template properties (such as
1542 /// the template parameter lists) while the latter contains the
1543 /// actual description of the template's
1544 /// contents. VarTemplateDecl::getTemplatedDecl() retrieves the
1545 /// VarDecl that from a VarTemplateDecl, while
1546 /// getDescribedVarTemplate() retrieves the VarTemplateDecl from
1547 /// a VarDecl.
1548 VarTemplateDecl *getDescribedVarTemplate() const;
1549
1550 void setDescribedVarTemplate(VarTemplateDecl *Template);
1551
1552 // Is this variable known to have a definition somewhere in the complete
1553 // program? This may be true even if the declaration has internal linkage and
1554 // has no definition within this source file.
1555 bool isKnownToBeDefined() const;
1556
1557 /// Is destruction of this variable entirely suppressed? If so, the variable
1558 /// need not have a usable destructor at all.
1559 bool isNoDestroy(const ASTContext &) const;
1560
1561 /// Would the destruction of this variable have any effect, and if so, what
1562 /// kind?
1563 QualType::DestructionKind needsDestruction(const ASTContext &Ctx) const;
1564
1565 // Implement isa/cast/dyncast/etc.
1566 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1567 static bool classofKind(Kind K) { return K >= firstVar && K <= lastVar; }
1568};
1569
1570class ImplicitParamDecl : public VarDecl {
1571 void anchor() override;
1572
1573public:
1574 /// Defines the kind of the implicit parameter: is this an implicit parameter
1575 /// with pointer to 'this', 'self', '_cmd', virtual table pointers, captured
1576 /// context or something else.
1577 enum ImplicitParamKind : unsigned {
1578 /// Parameter for Objective-C 'self' argument
1579 ObjCSelf,
1580
1581 /// Parameter for Objective-C '_cmd' argument
1582 ObjCCmd,
1583
1584 /// Parameter for C++ 'this' argument
1585 CXXThis,
1586
1587 /// Parameter for C++ virtual table pointers
1588 CXXVTT,
1589
1590 /// Parameter for captured context
1591 CapturedContext,
1592
1593 /// Other implicit parameter
1594 Other,
1595 };
1596
1597 /// Create implicit parameter.
1598 static ImplicitParamDecl *Create(ASTContext &C, DeclContext *DC,
1599 SourceLocation IdLoc, IdentifierInfo *Id,
1600 QualType T, ImplicitParamKind ParamKind);
1601 static ImplicitParamDecl *Create(ASTContext &C, QualType T,
1602 ImplicitParamKind ParamKind);
1603
1604 static ImplicitParamDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1605
1606 ImplicitParamDecl(ASTContext &C, DeclContext *DC, SourceLocation IdLoc,
1607 IdentifierInfo *Id, QualType Type,
1608 ImplicitParamKind ParamKind)
1609 : VarDecl(ImplicitParam, C, DC, IdLoc, IdLoc, Id, Type,
1610 /*TInfo=*/nullptr, SC_None) {
1611 NonParmVarDeclBits.ImplicitParamKind = ParamKind;
1612 setImplicit();
1613 }
1614
1615 ImplicitParamDecl(ASTContext &C, QualType Type, ImplicitParamKind ParamKind)
1616 : VarDecl(ImplicitParam, C, /*DC=*/nullptr, SourceLocation(),
1617 SourceLocation(), /*Id=*/nullptr, Type,
1618 /*TInfo=*/nullptr, SC_None) {
1619 NonParmVarDeclBits.ImplicitParamKind = ParamKind;
1620 setImplicit();
1621 }
1622
1623 /// Returns the implicit parameter kind.
1624 ImplicitParamKind getParameterKind() const {
1625 return static_cast<ImplicitParamKind>(NonParmVarDeclBits.ImplicitParamKind);
1626 }
1627
1628 // Implement isa/cast/dyncast/etc.
1629 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1630 static bool classofKind(Kind K) { return K == ImplicitParam; }
1631};
1632
1633/// Represents a parameter to a function.
1634class ParmVarDecl : public VarDecl {
1635public:
1636 enum { MaxFunctionScopeDepth = 255 };
1637 enum { MaxFunctionScopeIndex = 255 };
1638
1639protected:
1640 ParmVarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1641 SourceLocation IdLoc, IdentifierInfo *Id, QualType T,
1642 TypeSourceInfo *TInfo, StorageClass S, Expr *DefArg)
1643 : VarDecl(DK, C, DC, StartLoc, IdLoc, Id, T, TInfo, S) {
1644 assert(ParmVarDeclBits.HasInheritedDefaultArg == false);
1645 assert(ParmVarDeclBits.DefaultArgKind == DAK_None);
1646 assert(ParmVarDeclBits.IsKNRPromoted == false);
1647 assert(ParmVarDeclBits.IsObjCMethodParam == false);
1648 setDefaultArg(DefArg);
1649 }
1650
1651public:
1652 static ParmVarDecl *Create(ASTContext &C, DeclContext *DC,
1653 SourceLocation StartLoc,
1654 SourceLocation IdLoc, IdentifierInfo *Id,
1655 QualType T, TypeSourceInfo *TInfo,
1656 StorageClass S, Expr *DefArg);
1657
1658 static ParmVarDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1659
1660 SourceRange getSourceRange() const override LLVM_READONLY;
1661
1662 void setObjCMethodScopeInfo(unsigned parameterIndex) {
1663 ParmVarDeclBits.IsObjCMethodParam = true;
1664 setParameterIndex(parameterIndex);
1665 }
1666
1667 void setScopeInfo(unsigned scopeDepth, unsigned parameterIndex) {
1668 assert(!ParmVarDeclBits.IsObjCMethodParam);
1669
1670 ParmVarDeclBits.ScopeDepthOrObjCQuals = scopeDepth;
1671 assert(ParmVarDeclBits.ScopeDepthOrObjCQuals == scopeDepth
1672 && "truncation!");
1673
1674 setParameterIndex(parameterIndex);
1675 }
1676
1677 bool isObjCMethodParameter() const {
1678 return ParmVarDeclBits.IsObjCMethodParam;
1679 }
1680
1681 /// Determines whether this parameter is destroyed in the callee function.
1682 bool isDestroyedInCallee() const;
1683
1684 unsigned getFunctionScopeDepth() const {
1685 if (ParmVarDeclBits.IsObjCMethodParam) return 0;
1686 return ParmVarDeclBits.ScopeDepthOrObjCQuals;
1687 }
1688
1689 static constexpr unsigned getMaxFunctionScopeDepth() {
1690 return (1u << NumScopeDepthOrObjCQualsBits) - 1;
1691 }
1692
1693 /// Returns the index of this parameter in its prototype or method scope.
1694 unsigned getFunctionScopeIndex() const {
1695 return getParameterIndex();
1696 }
1697
1698 ObjCDeclQualifier getObjCDeclQualifier() const {
1699 if (!ParmVarDeclBits.IsObjCMethodParam) return OBJC_TQ_None;
1700 return ObjCDeclQualifier(ParmVarDeclBits.ScopeDepthOrObjCQuals);
1701 }
1702 void setObjCDeclQualifier(ObjCDeclQualifier QTVal) {
1703 assert(ParmVarDeclBits.IsObjCMethodParam);
1704 ParmVarDeclBits.ScopeDepthOrObjCQuals = QTVal;
1705 }
1706
1707 /// True if the value passed to this parameter must undergo
1708 /// K&R-style default argument promotion:
1709 ///
1710 /// C99 6.5.2.2.
1711 /// If the expression that denotes the called function has a type
1712 /// that does not include a prototype, the integer promotions are
1713 /// performed on each argument, and arguments that have type float
1714 /// are promoted to double.
1715 bool isKNRPromoted() const {
1716 return ParmVarDeclBits.IsKNRPromoted;
1717 }
1718 void setKNRPromoted(bool promoted) {
1719 ParmVarDeclBits.IsKNRPromoted = promoted;
1720 }
1721
1722 Expr *getDefaultArg();
1723 const Expr *getDefaultArg() const {
1724 return const_cast<ParmVarDecl *>(this)->getDefaultArg();
1725 }
1726
1727 void setDefaultArg(Expr *defarg);
1728
1729 /// Retrieve the source range that covers the entire default
1730 /// argument.
1731 SourceRange getDefaultArgRange() const;
1732 void setUninstantiatedDefaultArg(Expr *arg);
1733 Expr *getUninstantiatedDefaultArg();
1734 const Expr *getUninstantiatedDefaultArg() const {
1735 return const_cast<ParmVarDecl *>(this)->getUninstantiatedDefaultArg();
1736 }
1737
1738 /// Determines whether this parameter has a default argument,
1739 /// either parsed or not.
1740 bool hasDefaultArg() const;
1741
1742 /// Determines whether this parameter has a default argument that has not
1743 /// yet been parsed. This will occur during the processing of a C++ class
1744 /// whose member functions have default arguments, e.g.,
1745 /// @code
1746 /// class X {
1747 /// public:
1748 /// void f(int x = 17); // x has an unparsed default argument now
1749 /// }; // x has a regular default argument now
1750 /// @endcode
1751 bool hasUnparsedDefaultArg() const {
1752 return ParmVarDeclBits.DefaultArgKind == DAK_Unparsed;
1753 }
1754
1755 bool hasUninstantiatedDefaultArg() const {
1756 return ParmVarDeclBits.DefaultArgKind == DAK_Uninstantiated;
1757 }
1758
1759 /// Specify that this parameter has an unparsed default argument.
1760 /// The argument will be replaced with a real default argument via
1761 /// setDefaultArg when the class definition enclosing the function
1762 /// declaration that owns this default argument is completed.
1763 void setUnparsedDefaultArg() {
1764 ParmVarDeclBits.DefaultArgKind = DAK_Unparsed;
1765 }
1766
1767 bool hasInheritedDefaultArg() const {
1768 return ParmVarDeclBits.HasInheritedDefaultArg;
1769 }
1770
1771 void setHasInheritedDefaultArg(bool I = true) {
1772 ParmVarDeclBits.HasInheritedDefaultArg = I;
1773 }
1774
1775 QualType getOriginalType() const;
1776
1777 /// Sets the function declaration that owns this
1778 /// ParmVarDecl. Since ParmVarDecls are often created before the
1779 /// FunctionDecls that own them, this routine is required to update
1780 /// the DeclContext appropriately.
1781 void setOwningFunction(DeclContext *FD) { setDeclContext(FD); }
1782
1783 // Implement isa/cast/dyncast/etc.
1784 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1785 static bool classofKind(Kind K) { return K == ParmVar; }
1786
1787private:
1788 enum { ParameterIndexSentinel = (1 << NumParameterIndexBits) - 1 };
1789
1790 void setParameterIndex(unsigned parameterIndex) {
1791 if (parameterIndex >= ParameterIndexSentinel) {
1792 setParameterIndexLarge(parameterIndex);
1793 return;
1794 }
1795
1796 ParmVarDeclBits.ParameterIndex = parameterIndex;
1797 assert(ParmVarDeclBits.ParameterIndex == parameterIndex && "truncation!");
1798 }
1799 unsigned getParameterIndex() const {
1800 unsigned d = ParmVarDeclBits.ParameterIndex;
1801 return d == ParameterIndexSentinel ? getParameterIndexLarge() : d;
1802 }
1803
1804 void setParameterIndexLarge(unsigned parameterIndex);
1805 unsigned getParameterIndexLarge() const;
1806};
1807
1808enum class MultiVersionKind {
1809 None,
1810 Target,
1811 CPUSpecific,
1812 CPUDispatch
1813};
1814
1815/// Represents a function declaration or definition.
1816///
1817/// Since a given function can be declared several times in a program,
1818/// there may be several FunctionDecls that correspond to that
1819/// function. Only one of those FunctionDecls will be found when
1820/// traversing the list of declarations in the context of the
1821/// FunctionDecl (e.g., the translation unit); this FunctionDecl
1822/// contains all of the information known about the function. Other,
1823/// previous declarations of the function are available via the
1824/// getPreviousDecl() chain.
1825class FunctionDecl : public DeclaratorDecl,
1826 public DeclContext,
1827 public Redeclarable<FunctionDecl> {
1828 // This class stores some data in DeclContext::FunctionDeclBits
1829 // to save some space. Use the provided accessors to access it.
1830public:
1831 /// The kind of templated function a FunctionDecl can be.
1832 enum TemplatedKind {
1833 // Not templated.
1834 TK_NonTemplate,
1835 // The pattern in a function template declaration.
1836 TK_FunctionTemplate,
1837 // A non-template function that is an instantiation or explicit
1838 // specialization of a member of a templated class.
1839 TK_MemberSpecialization,
1840 // An instantiation or explicit specialization of a function template.
1841 // Note: this might have been instantiated from a templated class if it
1842 // is a class-scope explicit specialization.
1843 TK_FunctionTemplateSpecialization,
1844 // A function template specialization that hasn't yet been resolved to a
1845 // particular specialized function template.
1846 TK_DependentFunctionTemplateSpecialization
1847 };
1848
1849 /// Stashed information about a defaulted function definition whose body has
1850 /// not yet been lazily generated.
1851 class DefaultedFunctionInfo final
1852 : llvm::TrailingObjects<DefaultedFunctionInfo, DeclAccessPair> {
1853 friend TrailingObjects;
1854 unsigned NumLookups;
1855
1856 public:
1857 static DefaultedFunctionInfo *Create(ASTContext &Context,
1858 ArrayRef<DeclAccessPair> Lookups);
1859 /// Get the unqualified lookup results that should be used in this
1860 /// defaulted function definition.
1861 ArrayRef<DeclAccessPair> getUnqualifiedLookups() const {
1862 return {getTrailingObjects<DeclAccessPair>(), NumLookups};
1863 }
1864 };
1865
1866private:
1867 /// A new[]'d array of pointers to VarDecls for the formal
1868 /// parameters of this function. This is null if a prototype or if there are
1869 /// no formals.
1870 ParmVarDecl **ParamInfo = nullptr;
1871
1872 /// The active member of this union is determined by
1873 /// FunctionDeclBits.HasDefaultedFunctionInfo.
1874 union {
1875 /// The body of the function.
1876 LazyDeclStmtPtr Body;
1877 /// Information about a future defaulted function definition.
1878 DefaultedFunctionInfo *DefaultedInfo;
1879 };
1880
1881 unsigned ODRHash;
1882
1883 /// End part of this FunctionDecl's source range.
1884 ///
1885 /// We could compute the full range in getSourceRange(). However, when we're
1886 /// dealing with a function definition deserialized from a PCH/AST file,
1887 /// we can only compute the full range once the function body has been
1888 /// de-serialized, so it's far better to have the (sometimes-redundant)
1889 /// EndRangeLoc.
1890 SourceLocation EndRangeLoc;
1891
1892 /// The template or declaration that this declaration
1893 /// describes or was instantiated from, respectively.
1894 ///
1895 /// For non-templates, this value will be NULL. For function
1896 /// declarations that describe a function template, this will be a
1897 /// pointer to a FunctionTemplateDecl. For member functions
1898 /// of class template specializations, this will be a MemberSpecializationInfo
1899 /// pointer containing information about the specialization.
1900 /// For function template specializations, this will be a
1901 /// FunctionTemplateSpecializationInfo, which contains information about
1902 /// the template being specialized and the template arguments involved in
1903 /// that specialization.
1904 llvm::PointerUnion<FunctionTemplateDecl *,
1905 MemberSpecializationInfo *,
1906 FunctionTemplateSpecializationInfo *,
1907 DependentFunctionTemplateSpecializationInfo *>
1908 TemplateOrSpecialization;
1909
1910 /// Provides source/type location info for the declaration name embedded in
1911 /// the DeclaratorDecl base class.
1912 DeclarationNameLoc DNLoc;
1913
1914 /// Specify that this function declaration is actually a function
1915 /// template specialization.
1916 ///
1917 /// \param C the ASTContext.
1918 ///
1919 /// \param Template the function template that this function template
1920 /// specialization specializes.
1921 ///
1922 /// \param TemplateArgs the template arguments that produced this
1923 /// function template specialization from the template.
1924 ///
1925 /// \param InsertPos If non-NULL, the position in the function template
1926 /// specialization set where the function template specialization data will
1927 /// be inserted.
1928 ///
1929 /// \param TSK the kind of template specialization this is.
1930 ///
1931 /// \param TemplateArgsAsWritten location info of template arguments.
1932 ///
1933 /// \param PointOfInstantiation point at which the function template
1934 /// specialization was first instantiated.
1935 void setFunctionTemplateSpecialization(ASTContext &C,
1936 FunctionTemplateDecl *Template,
1937 const TemplateArgumentList *TemplateArgs,
1938 void *InsertPos,
1939 TemplateSpecializationKind TSK,
1940 const TemplateArgumentListInfo *TemplateArgsAsWritten,
1941 SourceLocation PointOfInstantiation);
1942
1943 /// Specify that this record is an instantiation of the
1944 /// member function FD.
1945 void setInstantiationOfMemberFunction(ASTContext &C, FunctionDecl *FD,
1946 TemplateSpecializationKind TSK);
1947
1948 void setParams(ASTContext &C, ArrayRef<ParmVarDecl *> NewParamInfo);
1949
1950 // This is unfortunately needed because ASTDeclWriter::VisitFunctionDecl
1951 // need to access this bit but we want to avoid making ASTDeclWriter
1952 // a friend of FunctionDeclBitfields just for this.
1953 bool isDeletedBit() const { return FunctionDeclBits.IsDeleted; }
1954
1955 /// Whether an ODRHash has been stored.
1956 bool hasODRHash() const { return FunctionDeclBits.HasODRHash; }
1957
1958 /// State that an ODRHash has been stored.
1959 void setHasODRHash(bool B = true) { FunctionDeclBits.HasODRHash = B; }
1960
1961protected:
1962 FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1963 const DeclarationNameInfo &NameInfo, QualType T,
1964 TypeSourceInfo *TInfo, StorageClass S, bool isInlineSpecified,
1965 ConstexprSpecKind ConstexprKind,
1966 Expr *TrailingRequiresClause = nullptr);
1967
1968 using redeclarable_base = Redeclarable<FunctionDecl>;
1969
1970 FunctionDecl *getNextRedeclarationImpl() override {
1971 return getNextRedeclaration();
1972 }
1973
1974 FunctionDecl *getPreviousDeclImpl() override {
1975 return getPreviousDecl();
1976 }
1977
1978 FunctionDecl *getMostRecentDeclImpl() override {
1979 return getMostRecentDecl();
1980 }
1981
1982public:
1983 friend class ASTDeclReader;
1984 friend class ASTDeclWriter;
1985
1986 using redecl_range = redeclarable_base::redecl_range;
1987 using redecl_iterator = redeclarable_base::redecl_iterator;
1988
1989 using redeclarable_base::redecls_begin;
1990 using redeclarable_base::redecls_end;
1991 using redeclarable_base::redecls;
1992 using redeclarable_base::getPreviousDecl;
1993 using redeclarable_base::getMostRecentDecl;
1994 using redeclarable_base::isFirstDecl;
1995
1996 static FunctionDecl *
1997 Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1998 SourceLocation NLoc, DeclarationName N, QualType T,
1999 TypeSourceInfo *TInfo, StorageClass SC, bool isInlineSpecified = false,
2000 bool hasWrittenPrototype = true,
2001 ConstexprSpecKind ConstexprKind = ConstexprSpecKind::Unspecified,
2002 Expr *TrailingRequiresClause = nullptr) {
2003 DeclarationNameInfo NameInfo(N, NLoc);
2004 return FunctionDecl::Create(C, DC, StartLoc, NameInfo, T, TInfo, SC,
2005 isInlineSpecified, hasWrittenPrototype,
2006 ConstexprKind, TrailingRequiresClause);
2007 }
2008
2009 static FunctionDecl *Create(ASTContext &C, DeclContext *DC,
2010 SourceLocation StartLoc,
2011 const DeclarationNameInfo &NameInfo, QualType T,
2012 TypeSourceInfo *TInfo, StorageClass SC,
2013 bool isInlineSpecified, bool hasWrittenPrototype,
2014 ConstexprSpecKind ConstexprKind,
2015 Expr *TrailingRequiresClause);
2016
2017 static FunctionDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2018
2019 DeclarationNameInfo getNameInfo() const {
2020 return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
2021 }
2022
2023 void getNameForDiagnostic(raw_ostream &OS, const PrintingPolicy &Policy,
2024 bool Qualified) const override;
2025
2026 void setRangeEnd(SourceLocation E) { EndRangeLoc = E; }
2027
2028 /// Returns the location of the ellipsis of a variadic function.
2029 SourceLocation getEllipsisLoc() const {
2030 const auto *FPT = getType()->getAs<FunctionProtoType>();
2031 if (FPT && FPT->isVariadic())
2032 return FPT->getEllipsisLoc();
2033 return SourceLocation();
2034 }
2035
2036 SourceRange getSourceRange() const override LLVM_READONLY;
2037
2038 // Function definitions.
2039 //
2040 // A function declaration may be:
2041 // - a non defining declaration,
2042 // - a definition. A function may be defined because:
2043 // - it has a body, or will have it in the case of late parsing.
2044 // - it has an uninstantiated body. The body does not exist because the
2045 // function is not used yet, but the declaration is considered a
2046 // definition and does not allow other definition of this function.
2047 // - it does not have a user specified body, but it does not allow
2048 // redefinition, because it is deleted/defaulted or is defined through
2049 // some other mechanism (alias, ifunc).
2050
2051 /// Returns true if the function has a body.
2052 ///
2053 /// The function body might be in any of the (re-)declarations of this
2054 /// function. The variant that accepts a FunctionDecl pointer will set that
2055 /// function declaration to the actual declaration containing the body (if
2056 /// there is one).
2057 bool hasBody(const FunctionDecl *&Definition) const;
2058
2059 bool hasBody() const override {
2060 const FunctionDecl* Definition;
2061 return hasBody(Definition);
2062 }
2063
2064 /// Returns whether the function has a trivial body that does not require any
2065 /// specific codegen.
2066 bool hasTrivialBody() const;
2067
2068 /// Returns true if the function has a definition that does not need to be
2069 /// instantiated.
2070 ///
2071 /// The variant that accepts a FunctionDecl pointer will set that function
2072 /// declaration to the declaration that is a definition (if there is one).
2073 ///
2074 /// \param CheckForPendingFriendDefinition If \c true, also check for friend
2075 /// declarations that were instantiataed from function definitions.
2076 /// Such a declaration behaves as if it is a definition for the
2077 /// purpose of redefinition checking, but isn't actually a "real"
2078 /// definition until its body is instantiated.
2079 bool isDefined(const FunctionDecl *&Definition,
2080 bool CheckForPendingFriendDefinition = false) const;
2081
2082 bool isDefined() const {
2083 const FunctionDecl* Definition;
2084 return isDefined(Definition);
2085 }
2086
2087 /// Get the definition for this declaration.
2088 FunctionDecl *getDefinition() {
2089 const FunctionDecl *Definition;
2090 if (isDefined(Definition))
2091 return const_cast<FunctionDecl *>(Definition);
2092 return nullptr;
2093 }
2094 const FunctionDecl *getDefinition() const {
2095 return const_cast<FunctionDecl *>(this)->getDefinition();
2096 }
2097
2098 /// Retrieve the body (definition) of the function. The function body might be
2099 /// in any of the (re-)declarations of this function. The variant that accepts
2100 /// a FunctionDecl pointer will set that function declaration to the actual
2101 /// declaration containing the body (if there is one).
2102 /// NOTE: For checking if there is a body, use hasBody() instead, to avoid
2103 /// unnecessary AST de-serialization of the body.
2104 Stmt *getBody(const FunctionDecl *&Definition) const;
2105
2106 Stmt *getBody() const override {
2107 const FunctionDecl* Definition;
2108 return getBody(Definition);
2109 }
2110
2111 /// Returns whether this specific declaration of the function is also a
2112 /// definition that does not contain uninstantiated body.
2113 ///
2114 /// This does not determine whether the function has been defined (e.g., in a
2115 /// previous definition); for that information, use isDefined.
2116 ///
2117 /// Note: the function declaration does not become a definition until the
2118 /// parser reaches the definition, if called before, this function will return
2119 /// `false`.
2120 bool isThisDeclarationADefinition() const {
2121 return isDeletedAsWritten() || isDefaulted() ||
2122 doesThisDeclarationHaveABody() || hasSkippedBody() ||
2123 willHaveBody() || hasDefiningAttr();
2124 }
2125
2126 /// Determine whether this specific declaration of the function is a friend
2127 /// declaration that was instantiated from a function definition. Such
2128 /// declarations behave like definitions in some contexts.
2129 bool isThisDeclarationInstantiatedFromAFriendDefinition() const;
2130
2131 /// Returns whether this specific declaration of the function has a body.
2132 bool doesThisDeclarationHaveABody() const {
2133 return (!FunctionDeclBits.HasDefaultedFunctionInfo && Body) ||
2134 isLateTemplateParsed();
2135 }
2136
2137 void setBody(Stmt *B);
2138 void setLazyBody(uint64_t Offset) {
2139 FunctionDeclBits.HasDefaultedFunctionInfo = false;
2140 Body = LazyDeclStmtPtr(Offset);
2141 }
2142
2143 void setDefaultedFunctionInfo(DefaultedFunctionInfo *Info);
2144 DefaultedFunctionInfo *getDefaultedFunctionInfo() const;
2145
2146 /// Whether this function is variadic.
2147 bool isVariadic() const;
2148
2149 /// Whether this function is marked as virtual explicitly.
2150 bool isVirtualAsWritten() const {
2151 return FunctionDeclBits.IsVirtualAsWritten;
2152 }
2153
2154 /// State that this function is marked as virtual explicitly.
2155 void setVirtualAsWritten(bool V) { FunctionDeclBits.IsVirtualAsWritten = V; }
2156
2157 /// Whether this virtual function is pure, i.e. makes the containing class
2158 /// abstract.
2159 bool isPure() const { return FunctionDeclBits.IsPure; }
2160 void setPure(bool P = true);
2161
2162 /// Whether this templated function will be late parsed.
2163 bool isLateTemplateParsed() const {
2164 return FunctionDeclBits.IsLateTemplateParsed;
2165 }
2166
2167 /// State that this templated function will be late parsed.
2168 void setLateTemplateParsed(bool ILT = true) {
2169 FunctionDeclBits.IsLateTemplateParsed = ILT;
2170 }
2171
2172 /// Whether this function is "trivial" in some specialized C++ senses.
2173 /// Can only be true for default constructors, copy constructors,
2174 /// copy assignment operators, and destructors. Not meaningful until
2175 /// the class has been fully built by Sema.
2176 bool isTrivial() const { return FunctionDeclBits.IsTrivial; }
2177 void setTrivial(bool IT) { FunctionDeclBits.IsTrivial = IT; }
2178
2179 bool isTrivialForCall() const { return FunctionDeclBits.IsTrivialForCall; }
2180 void setTrivialForCall(bool IT) { FunctionDeclBits.IsTrivialForCall = IT; }
2181
2182 /// Whether this function is defaulted. Valid for e.g.
2183 /// special member functions, defaulted comparisions (not methods!).
2184 bool isDefaulted() const { return FunctionDeclBits.IsDefaulted; }
2185 void setDefaulted(bool D = true) { FunctionDeclBits.IsDefaulted = D; }
2186
2187 /// Whether this function is explicitly defaulted.
2188 bool isExplicitlyDefaulted() const {
2189 return FunctionDeclBits.IsExplicitlyDefaulted;
2190 }
2191
2192 /// State that this function is explicitly defaulted.
2193 void setExplicitlyDefaulted(bool ED = true) {
2194 FunctionDeclBits.IsExplicitlyDefaulted = ED;
2195 }
2196
2197 /// True if this method is user-declared and was not
2198 /// deleted or defaulted on its first declaration.
2199 bool isUserProvided() const {
2200 auto *DeclAsWritten = this;
2201 if (FunctionDecl *Pattern = getTemplateInstantiationPattern())
2202 DeclAsWritten = Pattern;
2203 return !(DeclAsWritten->isDeleted() ||
2204 DeclAsWritten->getCanonicalDecl()->isDefaulted());
2205 }
2206
2207 /// Whether falling off this function implicitly returns null/zero.
2208 /// If a more specific implicit return value is required, front-ends
2209 /// should synthesize the appropriate return statements.
2210 bool hasImplicitReturnZero() const {
2211 return FunctionDeclBits.HasImplicitReturnZero;
2212 }
2213
2214 /// State that falling off this function implicitly returns null/zero.
2215 /// If a more specific implicit return value is required, front-ends
2216 /// should synthesize the appropriate return statements.
2217 void setHasImplicitReturnZero(bool IRZ) {
2218 FunctionDeclBits.HasImplicitReturnZero = IRZ;
2219 }
2220
2221 /// Whether this function has a prototype, either because one
2222 /// was explicitly written or because it was "inherited" by merging
2223 /// a declaration without a prototype with a declaration that has a
2224 /// prototype.
2225 bool hasPrototype() const {
2226 return hasWrittenPrototype() || hasInheritedPrototype();
2227 }
2228
2229 /// Whether this function has a written prototype.
2230 bool hasWrittenPrototype() const {
2231 return FunctionDeclBits.HasWrittenPrototype;
2232 }
2233
2234 /// State that this function has a written prototype.
2235 void setHasWrittenPrototype(bool P = true) {
2236 FunctionDeclBits.HasWrittenPrototype = P;
2237 }
2238
2239 /// Whether this function inherited its prototype from a
2240 /// previous declaration.
2241 bool hasInheritedPrototype() const {
2242 return FunctionDeclBits.HasInheritedPrototype;
2243 }
2244
2245 /// State that this function inherited its prototype from a
2246 /// previous declaration.
2247 void setHasInheritedPrototype(bool P = true) {
2248 FunctionDeclBits.HasInheritedPrototype = P;
2249 }
2250
2251 /// Whether this is a (C++11) constexpr function or constexpr constructor.
2252 bool isConstexpr() const {
2253 return getConstexprKind() != ConstexprSpecKind::Unspecified;
2254 }
2255 void setConstexprKind(ConstexprSpecKind CSK) {
2256 FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(CSK);
2257 }
2258 ConstexprSpecKind getConstexprKind() const {
2259 return static_cast<ConstexprSpecKind>(FunctionDeclBits.ConstexprKind);
2260 }
2261 bool isConstexprSpecified() const {
2262 return getConstexprKind() == ConstexprSpecKind::Constexpr;
2263 }
2264 bool isConsteval() const {
2265 return getConstexprKind() == ConstexprSpecKind::Consteval;
2266 }
2267
2268 /// Whether the instantiation of this function is pending.
2269 /// This bit is set when the decision to instantiate this function is made
2270 /// and unset if and when the function body is created. That leaves out
2271 /// cases where instantiation did not happen because the template definition
2272 /// was not seen in this TU. This bit remains set in those cases, under the
2273 /// assumption that the instantiation will happen in some other TU.
2274 bool instantiationIsPending() const {
2275 return FunctionDeclBits.InstantiationIsPending;
2276 }
2277
2278 /// State that the instantiation of this function is pending.
2279 /// (see instantiationIsPending)
2280 void setInstantiationIsPending(bool IC) {
2281 FunctionDeclBits.InstantiationIsPending = IC;
2282 }
2283
2284 /// Indicates the function uses __try.
2285 bool usesSEHTry() const { return FunctionDeclBits.UsesSEHTry; }
2286 void setUsesSEHTry(bool UST) { FunctionDeclBits.UsesSEHTry = UST; }
2287
2288 /// Whether this function has been deleted.
2289 ///
2290 /// A function that is "deleted" (via the C++0x "= delete" syntax)
2291 /// acts like a normal function, except that it cannot actually be
2292 /// called or have its address taken. Deleted functions are
2293 /// typically used in C++ overload resolution to attract arguments
2294 /// whose type or lvalue/rvalue-ness would permit the use of a
2295 /// different overload that would behave incorrectly. For example,
2296 /// one might use deleted functions to ban implicit conversion from
2297 /// a floating-point number to an Integer type:
2298 ///
2299 /// @code
2300 /// struct Integer {
2301 /// Integer(long); // construct from a long
2302 /// Integer(double) = delete; // no construction from float or double
2303 /// Integer(long double) = delete; // no construction from long double
2304 /// };
2305 /// @endcode
2306 // If a function is deleted, its first declaration must be.
2307 bool isDeleted() const {
2308 return getCanonicalDecl()->FunctionDeclBits.IsDeleted;
2309 }
2310
2311 bool isDeletedAsWritten() const {
2312 return FunctionDeclBits.IsDeleted && !isDefaulted();
2313 }
2314
2315 void setDeletedAsWritten(bool D = true) { FunctionDeclBits.IsDeleted = D; }
2316
2317 /// Determines whether this function is "main", which is the
2318 /// entry point into an executable program.
2319 bool isMain() const;
2320
2321 /// Determines whether this function is a MSVCRT user defined entry
2322 /// point.
2323 bool isMSVCRTEntryPoint() const;
2324
2325 /// Determines whether this operator new or delete is one
2326 /// of the reserved global placement operators:
2327 /// void *operator new(size_t, void *);
2328 /// void *operator new[](size_t, void *);
2329 /// void operator delete(void *, void *);
2330 /// void operator delete[](void *, void *);
2331 /// These functions have special behavior under [new.delete.placement]:
2332 /// These functions are reserved, a C++ program may not define
2333 /// functions that displace the versions in the Standard C++ library.
2334 /// The provisions of [basic.stc.dynamic] do not apply to these
2335 /// reserved placement forms of operator new and operator delete.
2336 ///
2337 /// This function must be an allocation or deallocation function.
2338 bool isReservedGlobalPlacementOperator() const;
2339
2340 /// Determines whether this function is one of the replaceable
2341 /// global allocation functions:
2342 /// void *operator new(size_t);
2343 /// void *operator new(size_t, const std::nothrow_t &) noexcept;
2344 /// void *operator new[](size_t);
2345 /// void *operator new[](size_t, const std::nothrow_t &) noexcept;
2346 /// void operator delete(void *) noexcept;
2347 /// void operator delete(void *, std::size_t) noexcept; [C++1y]
2348 /// void operator delete(void *, const std::nothrow_t &) noexcept;
2349 /// void operator delete[](void *) noexcept;
2350 /// void operator delete[](void *, std::size_t) noexcept; [C++1y]
2351 /// void operator delete[](void *, const std::nothrow_t &) noexcept;
2352 /// These functions have special behavior under C++1y [expr.new]:
2353 /// An implementation is allowed to omit a call to a replaceable global
2354 /// allocation function. [...]
2355 ///
2356 /// If this function is an aligned allocation/deallocation function, return
2357 /// the parameter number of the requested alignment through AlignmentParam.
2358 ///
2359 /// If this function is an allocation/deallocation function that takes
2360 /// the `std::nothrow_t` tag, return true through IsNothrow,
2361 bool isReplaceableGlobalAllocationFunction(
2362 Optional<unsigned> *AlignmentParam = nullptr,
2363 bool *IsNothrow = nullptr) const;
2364
2365 /// Determine if this function provides an inline implementation of a builtin.
2366 bool isInlineBuiltinDeclaration() const;
2367
2368 /// Determine whether this is a destroying operator delete.
2369 bool isDestroyingOperatorDelete() const;
2370
2371 /// Compute the language linkage.
2372 LanguageLinkage getLanguageLinkage() const;
2373
2374 /// Determines whether this function is a function with
2375 /// external, C linkage.
2376 bool isExternC() const;
2377
2378 /// Determines whether this function's context is, or is nested within,
2379 /// a C++ extern "C" linkage spec.
2380 bool isInExternCContext() const;
2381
2382 /// Determines whether this function's context is, or is nested within,
2383 /// a C++ extern "C++" linkage spec.
2384 bool isInExternCXXContext() const;
2385
2386 /// Determines whether this is a global function.
2387 bool isGlobal() const;
2388
2389 /// Determines whether this function is known to be 'noreturn', through
2390 /// an attribute on its declaration or its type.
2391 bool isNoReturn() const;
2392
2393 /// True if the function was a definition but its body was skipped.
2394 bool hasSkippedBody() const { return FunctionDeclBits.HasSkippedBody; }
2395 void setHasSkippedBody(bool Skipped = true) {
2396 FunctionDeclBits.HasSkippedBody = Skipped;
2397 }
2398
2399 /// True if this function will eventually have a body, once it's fully parsed.
2400 bool willHaveBody() const { return FunctionDeclBits.WillHaveBody; }
2401 void setWillHaveBody(bool V = true) { FunctionDeclBits.WillHaveBody = V; }
2402
2403 /// True if this function is considered a multiversioned function.
2404 bool isMultiVersion() const {
2405 return getCanonicalDecl()->FunctionDeclBits.IsMultiVersion;
2406 }
2407
2408 /// Sets the multiversion state for this declaration and all of its
2409 /// redeclarations.
2410 void setIsMultiVersion(bool V = true) {
2411 getCanonicalDecl()->FunctionDeclBits.IsMultiVersion = V;
2412 }
2413
2414 /// Gets the kind of multiversioning attribute this declaration has. Note that
2415 /// this can return a value even if the function is not multiversion, such as
2416 /// the case of 'target'.
2417 MultiVersionKind getMultiVersionKind() const;
2418
2419
2420 /// True if this function is a multiversioned dispatch function as a part of
2421 /// the cpu_specific/cpu_dispatch functionality.
2422 bool isCPUDispatchMultiVersion() const;
2423 /// True if this function is a multiversioned processor specific function as a
2424 /// part of the cpu_specific/cpu_dispatch functionality.
2425 bool isCPUSpecificMultiVersion() const;
2426
2427 /// True if this function is a multiversioned dispatch function as a part of
2428 /// the target functionality.
2429 bool isTargetMultiVersion() const;
2430
2431 /// \brief Get the associated-constraints of this function declaration.
2432 /// Currently, this will either be a vector of size 1 containing the
2433 /// trailing-requires-clause or an empty vector.
2434 ///
2435 /// Use this instead of getTrailingRequiresClause for concepts APIs that
2436 /// accept an ArrayRef of constraint expressions.
2437 void getAssociatedConstraints(SmallVectorImpl<const Expr *> &AC) const {
2438 if (auto *TRC = getTrailingRequiresClause())
2439 AC.push_back(TRC);
2440 }
2441
2442 void setPreviousDeclaration(FunctionDecl * PrevDecl);
2443
2444 FunctionDecl *getCanonicalDecl() override;
2445 const FunctionDecl *getCanonicalDecl() const {
2446 return const_cast<FunctionDecl*>(this)->getCanonicalDecl();
2447 }
2448
2449 unsigned getBuiltinID(bool ConsiderWrapperFunctions = false) const;
2450
2451 // ArrayRef interface to parameters.
2452 ArrayRef<ParmVarDecl *> parameters() const {
2453 return {ParamInfo, getNumParams()};
2454 }
2455 MutableArrayRef<ParmVarDecl *> parameters() {
2456 return {ParamInfo, getNumParams()};
2457 }
2458
2459 // Iterator access to formal parameters.
2460 using param_iterator = MutableArrayRef<ParmVarDecl *>::iterator;
2461 using param_const_iterator = ArrayRef<ParmVarDecl *>::const_iterator;
2462
2463 bool param_empty() const { return parameters().empty(); }
2464 param_iterator param_begin() { return parameters().begin(); }
2465 param_iterator param_end() { return parameters().end(); }
2466 param_const_iterator param_begin() const { return parameters().begin(); }
2467 param_const_iterator param_end() const { return parameters().end(); }
2468 size_t param_size() const { return parameters().size(); }
2469
2470 /// Return the number of parameters this function must have based on its
2471 /// FunctionType. This is the length of the ParamInfo array after it has been
2472 /// created.
2473 unsigned getNumParams() const;
2474
2475 const ParmVarDecl *getParamDecl(unsigned i) const {
2476 assert(i < getNumParams() && "Illegal param #");
2477 return ParamInfo[i];
2478 }
2479 ParmVarDecl *getParamDecl(unsigned i) {
2480 assert(i < getNumParams() && "Illegal param #");
2481 return ParamInfo[i];
2482 }
2483 void setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
2484 setParams(getASTContext(), NewParamInfo);
2485 }
2486
2487 /// Returns the minimum number of arguments needed to call this function. This
2488 /// may be fewer than the number of function parameters, if some of the
2489 /// parameters have default arguments (in C++).
2490 unsigned getMinRequiredArguments() const;
2491
2492 /// Determine whether this function has a single parameter, or multiple
2493 /// parameters where all but the first have default arguments.
2494 ///
2495 /// This notion is used in the definition of copy/move constructors and
2496 /// initializer list constructors. Note that, unlike getMinRequiredArguments,
2497 /// parameter packs are not treated specially here.
2498 bool hasOneParamOrDefaultArgs() const;
2499
2500 /// Find the source location information for how the type of this function
2501 /// was written. May be absent (for example if the function was declared via
2502 /// a typedef) and may contain a different type from that of the function
2503 /// (for example if the function type was adjusted by an attribute).
2504 FunctionTypeLoc getFunctionTypeLoc() const;
2505
2506 QualType getReturnType() const {
2507 return getType()->castAs<FunctionType>()->getReturnType();
2508 }
2509
2510 /// Attempt to compute an informative source range covering the
2511 /// function return type. This may omit qualifiers and other information with
2512 /// limited representation in the AST.
2513 SourceRange getReturnTypeSourceRange() const;
2514
2515 /// Attempt to compute an informative source range covering the
2516 /// function parameters, including the ellipsis of a variadic function.
2517 /// The source range excludes the parentheses, and is invalid if there are
2518 /// no parameters and no ellipsis.
2519 SourceRange getParametersSourceRange() const;
2520
2521 /// Get the declared return type, which may differ from the actual return
2522 /// type if the return type is deduced.
2523 QualType getDeclaredReturnType() const {
2524 auto *TSI = getTypeSourceInfo();
2525 QualType T = TSI ? TSI->getType() : getType();
2526 return T->castAs<FunctionType>()->getReturnType();
2527 }
2528
2529 /// Gets the ExceptionSpecificationType as declared.
2530 ExceptionSpecificationType getExceptionSpecType() const {
2531 auto *TSI = getTypeSourceInfo();
2532 QualType T = TSI ? TSI->getType() : getType();
2533 const auto *FPT = T->getAs<FunctionProtoType>();
2534 return FPT ? FPT->getExceptionSpecType() : EST_None;
2535 }
2536
2537 /// Attempt to compute an informative source range covering the
2538 /// function exception specification, if any.
2539 SourceRange getExceptionSpecSourceRange() const;
2540
2541 /// Determine the type of an expression that calls this function.
2542 QualType getCallResultType() const {
2543 return getType()->castAs<FunctionType>()->getCallResultType(
2544 getASTContext());
2545 }
2546
2547 /// Returns the storage class as written in the source. For the
2548 /// computed linkage of symbol, see getLinkage.
2549 StorageClass getStorageClass() const {
2550 return static_cast<StorageClass>(FunctionDeclBits.SClass);
2551 }
2552
2553 /// Sets the storage class as written in the source.
2554 void setStorageClass(StorageClass SClass) {
2555 FunctionDeclBits.SClass = SClass;
2556 }
2557
2558 /// Determine whether the "inline" keyword was specified for this
2559 /// function.
2560 bool isInlineSpecified() const { return FunctionDeclBits.IsInlineSpecified; }
2561
2562 /// Set whether the "inline" keyword was specified for this function.
2563 void setInlineSpecified(bool I) {
2564 FunctionDeclBits.IsInlineSpecified = I;
2565 FunctionDeclBits.IsInline = I;
2566 }
2567
2568 /// Flag that this function is implicitly inline.
2569 void setImplicitlyInline(bool I = true) { FunctionDeclBits.IsInline = I; }
2570
2571 /// Determine whether this function should be inlined, because it is
2572 /// either marked "inline" or "constexpr" or is a member function of a class
2573 /// that was defined in the class body.
2574 bool isInlined() const { return FunctionDeclBits.IsInline; }
2575
2576 bool isInlineDefinitionExternallyVisible() const;
2577
2578 bool isMSExternInline() const;
2579
2580 bool doesDeclarationForceExternallyVisibleDefinition() const;
2581
2582 bool isStatic() const { return getStorageClass() == SC_Static; }
2583
2584 /// Whether this function declaration represents an C++ overloaded
2585 /// operator, e.g., "operator+".
2586 bool isOverloadedOperator() const {
2587 return getOverloadedOperator() != OO_None;
2588 }
2589
2590 OverloadedOperatorKind getOverloadedOperator() const;
2591
2592 const IdentifierInfo *getLiteralIdentifier() const;
2593
2594 /// If this function is an instantiation of a member function
2595 /// of a class template specialization, retrieves the function from
2596 /// which it was instantiated.
2597 ///
2598 /// This routine will return non-NULL for (non-templated) member
2599 /// functions of class templates and for instantiations of function
2600 /// templates. For example, given:
2601 ///
2602 /// \code
2603 /// template<typename T>
2604 /// struct X {
2605 /// void f(T);
2606 /// };
2607 /// \endcode
2608 ///
2609 /// The declaration for X<int>::f is a (non-templated) FunctionDecl
2610 /// whose parent is the class template specialization X<int>. For
2611 /// this declaration, getInstantiatedFromFunction() will return
2612 /// the FunctionDecl X<T>::A. When a complete definition of
2613 /// X<int>::A is required, it will be instantiated from the
2614 /// declaration returned by getInstantiatedFromMemberFunction().
2615 FunctionDecl *getInstantiatedFromMemberFunction() const;
2616
2617 /// What kind of templated function this is.
2618 TemplatedKind getTemplatedKind() const;
2619
2620 /// If this function is an instantiation of a member function of a
2621 /// class template specialization, retrieves the member specialization
2622 /// information.
2623 MemberSpecializationInfo *getMemberSpecializationInfo() const;
2624
2625 /// Specify that this record is an instantiation of the
2626 /// member function FD.
2627 void setInstantiationOfMemberFunction(FunctionDecl *FD,
2628 TemplateSpecializationKind TSK) {
2629 setInstantiationOfMemberFunction(getASTContext(), FD, TSK);
2630 }
2631
2632 /// Retrieves the function template that is described by this
2633 /// function declaration.
2634 ///
2635 /// Every function template is represented as a FunctionTemplateDecl
2636 /// and a FunctionDecl (or something derived from FunctionDecl). The
2637 /// former contains template properties (such as the template
2638 /// parameter lists) while the latter contains the actual
2639 /// description of the template's
2640 /// contents. FunctionTemplateDecl::getTemplatedDecl() retrieves the
2641 /// FunctionDecl that describes the function template,
2642 /// getDescribedFunctionTemplate() retrieves the
2643 /// FunctionTemplateDecl from a FunctionDecl.
2644 FunctionTemplateDecl *getDescribedFunctionTemplate() const;
2645
2646 void setDescribedFunctionTemplate(FunctionTemplateDecl *Template);
2647
2648 /// Determine whether this function is a function template
2649 /// specialization.
2650 bool isFunctionTemplateSpecialization() const {
2651 return getPrimaryTemplate() != nullptr;
2652 }
2653
2654 /// If this function is actually a function template specialization,
2655 /// retrieve information about this function template specialization.
2656 /// Otherwise, returns NULL.
2657 FunctionTemplateSpecializationInfo *getTemplateSpecializationInfo() const;
2658
2659 /// Determines whether this function is a function template
2660 /// specialization or a member of a class template specialization that can
2661 /// be implicitly instantiated.
2662 bool isImplicitlyInstantiable() const;
2663
2664 /// Determines if the given function was instantiated from a
2665 /// function template.
2666 bool isTemplateInstantiation() const;
2667
2668 /// Retrieve the function declaration from which this function could
2669 /// be instantiated, if it is an instantiation (rather than a non-template
2670 /// or a specialization, for example).
2671 ///
2672 /// If \p ForDefinition is \c false, explicit specializations will be treated
2673 /// as if they were implicit instantiations. This will then find the pattern
2674 /// corresponding to non-definition portions of the declaration, such as
2675 /// default arguments and the exception specification.
2676 FunctionDecl *
2677 getTemplateInstantiationPattern(bool ForDefinition = true) const;
2678
2679 /// Retrieve the primary template that this function template
2680 /// specialization either specializes or was instantiated from.
2681 ///
2682 /// If this function declaration is not a function template specialization,
2683 /// returns NULL.
2684 FunctionTemplateDecl *getPrimaryTemplate() const;
2685
2686 /// Retrieve the template arguments used to produce this function
2687 /// template specialization from the primary template.
2688 ///
2689 /// If this function declaration is not a function template specialization,
2690 /// returns NULL.
2691 const TemplateArgumentList *getTemplateSpecializationArgs() const;
2692
2693 /// Retrieve the template argument list as written in the sources,
2694 /// if any.
2695 ///
2696 /// If this function declaration is not a function template specialization
2697 /// or if it had no explicit template argument list, returns NULL.
2698 /// Note that it an explicit template argument list may be written empty,
2699 /// e.g., template<> void foo<>(char* s);
2700 const ASTTemplateArgumentListInfo*
2701 getTemplateSpecializationArgsAsWritten() const;
2702
2703 /// Specify that this function declaration is actually a function
2704 /// template specialization.
2705 ///
2706 /// \param Template the function template that this function template
2707 /// specialization specializes.
2708 ///
2709 /// \param TemplateArgs the template arguments that produced this
2710 /// function template specialization from the template.
2711 ///
2712 /// \param InsertPos If non-NULL, the position in the function template
2713 /// specialization set where the function template specialization data will
2714 /// be inserted.
2715 ///
2716 /// \param TSK the kind of template specialization this is.
2717 ///
2718 /// \param TemplateArgsAsWritten location info of template arguments.
2719 ///
2720 /// \param PointOfInstantiation point at which the function template
2721 /// specialization was first instantiated.
2722 void setFunctionTemplateSpecialization(FunctionTemplateDecl *Template,
2723 const TemplateArgumentList *TemplateArgs,
2724 void *InsertPos,
2725 TemplateSpecializationKind TSK = TSK_ImplicitInstantiation,
2726 const TemplateArgumentListInfo *TemplateArgsAsWritten = nullptr,
2727 SourceLocation PointOfInstantiation = SourceLocation()) {
2728 setFunctionTemplateSpecialization(getASTContext(), Template, TemplateArgs,
2729 InsertPos, TSK, TemplateArgsAsWritten,
2730 PointOfInstantiation);
2731 }
2732
2733 /// Specifies that this function declaration is actually a
2734 /// dependent function template specialization.
2735 void setDependentTemplateSpecialization(ASTContext &Context,
2736 const UnresolvedSetImpl &Templates,
2737 const TemplateArgumentListInfo &TemplateArgs);
2738
2739 DependentFunctionTemplateSpecializationInfo *
2740 getDependentSpecializationInfo() const;
2741
2742 /// Determine what kind of template instantiation this function
2743 /// represents.
2744 TemplateSpecializationKind getTemplateSpecializationKind() const;
2745
2746 /// Determine the kind of template specialization this function represents
2747 /// for the purpose of template instantiation.
2748 TemplateSpecializationKind
2749 getTemplateSpecializationKindForInstantiation() const;
2750
2751 /// Determine what kind of template instantiation this function
2752 /// represents.
2753 void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2754 SourceLocation PointOfInstantiation = SourceLocation());
2755
2756 /// Retrieve the (first) point of instantiation of a function template
2757 /// specialization or a member of a class template specialization.
2758 ///
2759 /// \returns the first point of instantiation, if this function was
2760 /// instantiated from a template; otherwise, returns an invalid source
2761 /// location.
2762 SourceLocation getPointOfInstantiation() const;
2763
2764 /// Determine whether this is or was instantiated from an out-of-line
2765 /// definition of a member function.
2766 bool isOutOfLine() const override;
2767
2768 /// Identify a memory copying or setting function.
2769 /// If the given function is a memory copy or setting function, returns
2770 /// the corresponding Builtin ID. If the function is not a memory function,
2771 /// returns 0.
2772 unsigned getMemoryFunctionKind() const;
2773
2774 /// Returns ODRHash of the function. This value is calculated and
2775 /// stored on first call, then the stored value returned on the other calls.
2776 unsigned getODRHash();
2777
2778 /// Returns cached ODRHash of the function. This must have been previously
2779 /// computed and stored.
2780 unsigned getODRHash() const;
2781
2782 // Implement isa/cast/dyncast/etc.
2783 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2784 static bool classofKind(Kind K) {
2785 return K >= firstFunction && K <= lastFunction;
2786 }
2787 static DeclContext *castToDeclContext(const FunctionDecl *D) {
2788 return static_cast<DeclContext *>(const_cast<FunctionDecl*>(D));
2789 }
2790 static FunctionDecl *castFromDeclContext(const DeclContext *DC) {
2791 return static_cast<FunctionDecl *>(const_cast<DeclContext*>(DC));
2792 }
2793};
2794
2795/// Represents a member of a struct/union/class.
2796class FieldDecl : public DeclaratorDecl, public Mergeable<FieldDecl> {
2797 unsigned BitField : 1;
2798 unsigned Mutable : 1;
2799 mutable unsigned CachedFieldIndex : 30;
2800
2801 /// The kinds of value we can store in InitializerOrBitWidth.
2802 ///
2803 /// Note that this is compatible with InClassInitStyle except for
2804 /// ISK_CapturedVLAType.
2805 enum InitStorageKind {
2806 /// If the pointer is null, there's nothing special. Otherwise,
2807 /// this is a bitfield and the pointer is the Expr* storing the
2808 /// bit-width.
2809 ISK_NoInit = (unsigned) ICIS_NoInit,
2810
2811 /// The pointer is an (optional due to delayed parsing) Expr*
2812 /// holding the copy-initializer.
2813 ISK_InClassCopyInit = (unsigned) ICIS_CopyInit,
2814
2815 /// The pointer is an (optional due to delayed parsing) Expr*
2816 /// holding the list-initializer.
2817 ISK_InClassListInit = (unsigned) ICIS_ListInit,
2818
2819 /// The pointer is a VariableArrayType* that's been captured;
2820 /// the enclosing context is a lambda or captured statement.
2821 ISK_CapturedVLAType,
2822 };
2823
2824 /// If this is a bitfield with a default member initializer, this
2825 /// structure is used to represent the two expressions.
2826 struct InitAndBitWidth {
2827 Expr *Init;
2828 Expr *BitWidth;
2829 };
2830
2831 /// Storage for either the bit-width, the in-class initializer, or
2832 /// both (via InitAndBitWidth), or the captured variable length array bound.
2833 ///
2834 /// If the storage kind is ISK_InClassCopyInit or
2835 /// ISK_InClassListInit, but the initializer is null, then this
2836 /// field has an in-class initializer that has not yet been parsed
2837 /// and attached.
2838 // FIXME: Tail-allocate this to reduce the size of FieldDecl in the
2839 // overwhelmingly common case that we have none of these things.
2840 llvm::PointerIntPair<void *, 2, InitStorageKind> InitStorage;
2841
2842protected:
2843 FieldDecl(Kind DK, DeclContext *DC, SourceLocation StartLoc,
2844 SourceLocation IdLoc, IdentifierInfo *Id,
2845 QualType T, TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
2846 InClassInitStyle InitStyle)
2847 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
2848 BitField(false), Mutable(Mutable), CachedFieldIndex(0),
2849 InitStorage(nullptr, (InitStorageKind) InitStyle) {
2850 if (BW)
2851 setBitWidth(BW);
2852 }
2853
2854public:
2855 friend class ASTDeclReader;
2856 friend class ASTDeclWriter;
2857
2858 static FieldDecl *Create(const ASTContext &C, DeclContext *DC,
2859 SourceLocation StartLoc, SourceLocation IdLoc,
2860 IdentifierInfo *Id, QualType T,
2861 TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
2862 InClassInitStyle InitStyle);
2863
2864 static FieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2865
2866 /// Returns the index of this field within its record,
2867 /// as appropriate for passing to ASTRecordLayout::getFieldOffset.
2868 unsigned getFieldIndex() const;
2869
2870 /// Determines whether this field is mutable (C++ only).
2871 bool isMutable() const { return Mutable; }
2872
2873 /// Determines whether this field is a bitfield.
2874 bool isBitField() const { return BitField; }
2875
2876 /// Determines whether this is an unnamed bitfield.
2877 bool isUnnamedBitfield() const { return isBitField() && !getDeclName(); }
2878
2879 /// Determines whether this field is a
2880 /// representative for an anonymous struct or union. Such fields are
2881 /// unnamed and are implicitly generated by the implementation to
2882 /// store the data for the anonymous union or struct.
2883 bool isAnonymousStructOrUnion() const;
2884
2885 Expr *getBitWidth() const {
2886 if (!BitField)
2887 return nullptr;
2888 void *Ptr = InitStorage.getPointer();
2889 if (getInClassInitStyle())
2890 return static_cast<InitAndBitWidth*>(Ptr)->BitWidth;
2891 return static_cast<Expr*>(Ptr);
2892 }
2893
2894 unsigned getBitWidthValue(const ASTContext &Ctx) const;
2895
2896 /// Set the bit-field width for this member.
2897 // Note: used by some clients (i.e., do not remove it).
2898 void setBitWidth(Expr *Width) {
2899 assert(!hasCapturedVLAType() && !BitField &&
2900 "bit width or captured type already set");
2901 assert(Width && "no bit width specified");
2902 InitStorage.setPointer(
2903 InitStorage.getInt()
2904 ? new (getASTContext())
2905 InitAndBitWidth{getInClassInitializer(), Width}
2906 : static_cast<void*>(Width));
2907 BitField = true;
2908 }
2909
2910 /// Remove the bit-field width from this member.
2911 // Note: used by some clients (i.e., do not remove it).
2912 void removeBitWidth() {
2913 assert(isBitField() && "no bitfield width to remove");
2914 InitStorage.setPointer(getInClassInitializer());
2915 BitField = false;
2916 }
2917
2918 /// Is this a zero-length bit-field? Such bit-fields aren't really bit-fields
2919 /// at all and instead act as a separator between contiguous runs of other
2920 /// bit-fields.
2921 bool isZeroLengthBitField(const ASTContext &Ctx) const;
2922
2923 /// Determine if this field is a subobject of zero size, that is, either a
2924 /// zero-length bit-field or a field of empty class type with the
2925 /// [[no_unique_address]] attribute.
2926 bool isZeroSize(const ASTContext &Ctx) const;
2927
2928 /// Get the kind of (C++11) default member initializer that this field has.
2929 InClassInitStyle getInClassInitStyle() const {
2930 InitStorageKind storageKind = InitStorage.getInt();
2931 return (storageKind == ISK_CapturedVLAType
2932 ? ICIS_NoInit : (InClassInitStyle) storageKind);
2933 }
2934
2935 /// Determine whether this member has a C++11 default member initializer.
2936 bool hasInClassInitializer() const {
2937 return getInClassInitStyle() != ICIS_NoInit;
2938 }
2939
2940 /// Get the C++11 default member initializer for this member, or null if one
2941 /// has not been set. If a valid declaration has a default member initializer,
2942 /// but this returns null, then we have not parsed and attached it yet.
2943 Expr *getInClassInitializer() const {
2944 if (!hasInClassInitializer())
2945 return nullptr;
2946 void *Ptr = InitStorage.getPointer();
2947 if (BitField)
2948 return static_cast<InitAndBitWidth*>(Ptr)->Init;
2949 return static_cast<Expr*>(Ptr);
2950 }
2951
2952 /// Set the C++11 in-class initializer for this member.
2953 void setInClassInitializer(Expr *Init) {
2954 assert(hasInClassInitializer() && !getInClassInitializer());
2955 if (BitField)
2956 static_cast<InitAndBitWidth*>(InitStorage.getPointer())->Init = Init;
2957 else
2958 InitStorage.setPointer(Init);
2959 }
2960
2961 /// Remove the C++11 in-class initializer from this member.
2962 void removeInClassInitializer() {
2963 assert(hasInClassInitializer() && "no initializer to remove");
2964 InitStorage.setPointerAndInt(getBitWidth(), ISK_NoInit);
2965 }
2966
2967 /// Determine whether this member captures the variable length array
2968 /// type.
2969 bool hasCapturedVLAType() const {
2970 return InitStorage.getInt() == ISK_CapturedVLAType;
2971 }
2972
2973 /// Get the captured variable length array type.
2974 const VariableArrayType *getCapturedVLAType() const {
2975 return hasCapturedVLAType() ? static_cast<const VariableArrayType *>(
2976 InitStorage.getPointer())
2977 : nullptr;
2978 }
2979
2980 /// Set the captured variable length array type for this field.
2981 void setCapturedVLAType(const VariableArrayType *VLAType);
2982
2983 /// Returns the parent of this field declaration, which
2984 /// is the struct in which this field is defined.
2985 ///
2986 /// Returns null if this is not a normal class/struct field declaration, e.g.
2987 /// ObjCAtDefsFieldDecl, ObjCIvarDecl.
2988 const RecordDecl *getParent() const {
2989 return dyn_cast<RecordDecl>(getDeclContext());
2990 }
2991
2992 RecordDecl *getParent() {
2993 return dyn_cast<RecordDecl>(getDeclContext());
2994 }
2995
2996 SourceRange getSourceRange() const override LLVM_READONLY;
2997
2998 /// Retrieves the canonical declaration of this field.
2999 FieldDecl *getCanonicalDecl() override { return getFirstDecl(); }
3000 const FieldDecl *getCanonicalDecl() const { return getFirstDecl(); }
3001
3002 // Implement isa/cast/dyncast/etc.
3003 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3004 static bool classofKind(Kind K) { return K >= firstField && K <= lastField; }
3005};
3006
3007/// An instance of this object exists for each enum constant
3008/// that is defined. For example, in "enum X {a,b}", each of a/b are
3009/// EnumConstantDecl's, X is an instance of EnumDecl, and the type of a/b is a
3010/// TagType for the X EnumDecl.
3011class EnumConstantDecl : public ValueDecl, public Mergeable<EnumConstantDecl> {
3012 Stmt *Init; // an integer constant expression
3013 llvm::APSInt Val; // The value.
3014
3015protected:
3016 EnumConstantDecl(DeclContext *DC, SourceLocation L,
3017 IdentifierInfo *Id, QualType T, Expr *E,
3018 const llvm::APSInt &V)
3019 : ValueDecl(EnumConstant, DC, L, Id, T), Init((Stmt*)E), Val(V) {}
3020
3021public:
3022 friend class StmtIteratorBase;
3023
3024 static EnumConstantDecl *Create(ASTContext &C, EnumDecl *DC,
3025 SourceLocation L, IdentifierInfo *Id,
3026 QualType T, Expr *E,
3027 const llvm::APSInt &V);
3028 static EnumConstantDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3029
3030 const Expr *getInitExpr() const { return (const Expr*) Init; }
3031 Expr *getInitExpr() { return (Expr*) Init; }
3032 const llvm::APSInt &getInitVal() const { return Val; }
3033
3034 void setInitExpr(Expr *E) { Init = (Stmt*) E; }
3035 void setInitVal(const llvm::APSInt &V) { Val = V; }
3036
3037 SourceRange getSourceRange() const override LLVM_READONLY;
3038
3039 /// Retrieves the canonical declaration of this enumerator.
3040 EnumConstantDecl *getCanonicalDecl() override { return getFirstDecl(); }
3041 const EnumConstantDecl *getCanonicalDecl() const { return getFirstDecl(); }
3042
3043 // Implement isa/cast/dyncast/etc.
3044 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3045 static bool classofKind(Kind K) { return K == EnumConstant; }
3046};
3047
3048/// Represents a field injected from an anonymous union/struct into the parent
3049/// scope. These are always implicit.
3050class IndirectFieldDecl : public ValueDecl,
3051 public Mergeable<IndirectFieldDecl> {
3052 NamedDecl **Chaining;
3053 unsigned ChainingSize;
3054
3055 IndirectFieldDecl(ASTContext &C, DeclContext *DC, SourceLocation L,
3056 DeclarationName N, QualType T,
3057 MutableArrayRef<NamedDecl *> CH);
3058
3059 void anchor() override;
3060
3061public:
3062 friend class ASTDeclReader;
3063
3064 static IndirectFieldDecl *Create(ASTContext &C, DeclContext *DC,
3065 SourceLocation L, IdentifierInfo *Id,
3066 QualType T, llvm::MutableArrayRef<NamedDecl *> CH);
3067
3068 static IndirectFieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3069
3070 using chain_iterator = ArrayRef<NamedDecl *>::const_iterator;
3071
3072 ArrayRef<NamedDecl *> chain() const {
3073 return llvm::makeArrayRef(Chaining, ChainingSize);
3074 }
3075 chain_iterator chain_begin() const { return chain().begin(); }
3076 chain_iterator chain_end() const { return chain().end(); }
3077
3078 unsigned getChainingSize() const { return ChainingSize; }
3079
3080 FieldDecl *getAnonField() const {
3081 assert(chain().size() >= 2);
3082 return cast<FieldDecl>(chain().back());
3083 }
3084
3085 VarDecl *getVarDecl() const {
3086 assert(chain().size() >= 2);
3087 return dyn_cast<VarDecl>(chain().front());
3088 }
3089
3090 IndirectFieldDecl *getCanonicalDecl() override { return getFirstDecl(); }
3091 const IndirectFieldDecl *getCanonicalDecl() const { return getFirstDecl(); }
3092
3093 // Implement isa/cast/dyncast/etc.
3094 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3095 static bool classofKind(Kind K) { return K == IndirectField; }
3096};
3097
3098/// Represents a declaration of a type.
3099class TypeDecl : public NamedDecl {
3100 friend class ASTContext;
3101
3102 /// This indicates the Type object that represents
3103 /// this TypeDecl. It is a cache maintained by
3104 /// ASTContext::getTypedefType, ASTContext::getTagDeclType, and
3105 /// ASTContext::getTemplateTypeParmType, and TemplateTypeParmDecl.
3106 mutable const Type *TypeForDecl = nullptr;
3107
3108 /// The start of the source range for this declaration.
3109 SourceLocation LocStart;
3110
3111 void anchor() override;
3112
3113protected:
3114 TypeDecl(Kind DK, DeclContext *DC, SourceLocation L, IdentifierInfo *Id,
3115 SourceLocation StartL = SourceLocation())
3116 : NamedDecl(DK, DC, L, Id), LocStart(StartL) {}
3117
3118public:
3119 // Low-level accessor. If you just want the type defined by this node,
3120 // check out ASTContext::getTypeDeclType or one of
3121 // ASTContext::getTypedefType, ASTContext::getRecordType, etc. if you
3122 // already know the specific kind of node this is.
3123 const Type *getTypeForDecl() const { return TypeForDecl; }
3124 void setTypeForDecl(const Type *TD) { TypeForDecl = TD; }
3125
3126 SourceLocation getBeginLoc() const LLVM_READONLY { return LocStart; }
3127 void setLocStart(SourceLocation L) { LocStart = L; }
3128 SourceRange getSourceRange() const override LLVM_READONLY {
3129 if (LocStart.isValid())
3130 return SourceRange(LocStart, getLocation());
3131 else
3132 return SourceRange(getLocation());
3133 }
3134
3135 // Implement isa/cast/dyncast/etc.
3136 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3137 static bool classofKind(Kind K) { return K >= firstType && K <= lastType; }
3138};
3139
3140/// Base class for declarations which introduce a typedef-name.
3141class TypedefNameDecl : public TypeDecl, public Redeclarable<TypedefNameDecl> {
3142 struct alignas(8) ModedTInfo {
3143 TypeSourceInfo *first;
3144 QualType second;
3145 };
3146
3147 /// If int part is 0, we have not computed IsTransparentTag.
3148 /// Otherwise, IsTransparentTag is (getInt() >> 1).
3149 mutable llvm::PointerIntPair<
3150 llvm::PointerUnion<TypeSourceInfo *, ModedTInfo *>, 2>
3151 MaybeModedTInfo;
3152
3153 void anchor() override;
3154
3155protected:
3156 TypedefNameDecl(Kind DK, ASTContext &C, DeclContext *DC,
3157 SourceLocation StartLoc, SourceLocation IdLoc,
3158 IdentifierInfo *Id, TypeSourceInfo *TInfo)
3159 : TypeDecl(DK, DC, IdLoc, Id, StartLoc), redeclarable_base(C),
3160 MaybeModedTInfo(TInfo, 0) {}
3161
3162 using redeclarable_base = Redeclarable<TypedefNameDecl>;
3163
3164 TypedefNameDecl *getNextRedeclarationImpl() override {
3165 return getNextRedeclaration();
3166 }
3167
3168 TypedefNameDecl *getPreviousDeclImpl() override {
3169 return getPreviousDecl();
3170 }
3171
3172 TypedefNameDecl *getMostRecentDeclImpl() override {
3173 return getMostRecentDecl();
3174 }
3175
3176public:
3177 using redecl_range = redeclarable_base::redecl_range;
3178 using redecl_iterator = redeclarable_base::redecl_iterator;
3179
3180 using redeclarable_base::redecls_begin;
3181 using redeclarable_base::redecls_end;
3182 using redeclarable_base::redecls;
3183 using redeclarable_base::getPreviousDecl;
3184 using redeclarable_base::getMostRecentDecl;
3185 using redeclarable_base::isFirstDecl;
3186
3187 bool isModed() const {
3188 return MaybeModedTInfo.getPointer().is<ModedTInfo *>();
3189 }
3190
3191 TypeSourceInfo *getTypeSourceInfo() const {
3192 return isModed() ? MaybeModedTInfo.getPointer().get<ModedTInfo *>()->first
3193 : MaybeModedTInfo.getPointer().get<TypeSourceInfo *>();
3194 }
3195
3196 QualType getUnderlyingType() const {
3197 return isModed() ? MaybeModedTInfo.getPointer().get<ModedTInfo *>()->second
3198 : MaybeModedTInfo.getPointer()
3199 .get<TypeSourceInfo *>()
3200 ->getType();
3201 }
3202
3203 void setTypeSourceInfo(TypeSourceInfo *newType) {
3204 MaybeModedTInfo.setPointer(newType);
3205 }
3206
3207 void setModedTypeSourceInfo(TypeSourceInfo *unmodedTSI, QualType modedTy) {
3208 MaybeModedTInfo.setPointer(new (getASTContext(), 8)
3209 ModedTInfo({unmodedTSI, modedTy}));
3210 }
3211
3212 /// Retrieves the canonical declaration of this typedef-name.
3213 TypedefNameDecl *getCanonicalDecl() override { return getFirstDecl(); }
3214 const TypedefNameDecl *getCanonicalDecl() const { return getFirstDecl(); }
3215
3216 /// Retrieves the tag declaration for which this is the typedef name for
3217 /// linkage purposes, if any.
3218 ///
3219 /// \param AnyRedecl Look for the tag declaration in any redeclaration of
3220 /// this typedef declaration.
3221 TagDecl *getAnonDeclWithTypedefName(bool AnyRedecl = false) const;
3222
3223 /// Determines if this typedef shares a name and spelling location with its
3224 /// underlying tag type, as is the case with the NS_ENUM macro.
3225 bool isTransparentTag() const {
3226 if (MaybeModedTInfo.getInt())
3227 return MaybeModedTInfo.getInt() & 0x2;
3228 return isTransparentTagSlow();
3229 }
3230
3231 // Implement isa/cast/dyncast/etc.
3232 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3233 static bool classofKind(Kind K) {
3234 return K >= firstTypedefName && K <= lastTypedefName;
3235 }
3236
3237private:
3238 bool isTransparentTagSlow() const;
3239};
3240
3241/// Represents the declaration of a typedef-name via the 'typedef'
3242/// type specifier.
3243class TypedefDecl : public TypedefNameDecl {
3244 TypedefDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
3245 SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo)
3246 : TypedefNameDecl(Typedef, C, DC, StartLoc, IdLoc, Id, TInfo) {}
3247
3248public:
3249 static TypedefDecl *Create(ASTContext &C, DeclContext *DC,
3250 SourceLocation StartLoc, SourceLocation IdLoc,
3251 IdentifierInfo *Id, TypeSourceInfo *TInfo);
3252 static TypedefDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3253
3254 SourceRange getSourceRange() const override LLVM_READONLY;
3255
3256 // Implement isa/cast/dyncast/etc.
3257 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3258 static bool classofKind(Kind K) { return K == Typedef; }
3259};
3260
3261/// Represents the declaration of a typedef-name via a C++11
3262/// alias-declaration.
3263class TypeAliasDecl : public TypedefNameDecl {
3264 /// The template for which this is the pattern, if any.
3265 TypeAliasTemplateDecl *Template;
3266
3267 TypeAliasDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
3268 SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo)
3269 : TypedefNameDecl(TypeAlias, C, DC, StartLoc, IdLoc, Id, TInfo),
3270 Template(nullptr) {}
3271
3272public:
3273 static TypeAliasDecl *Create(ASTContext &C, DeclContext *DC,
3274 SourceLocation StartLoc, SourceLocation IdLoc,
3275 IdentifierInfo *Id, TypeSourceInfo *TInfo);
3276 static TypeAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3277
3278 SourceRange getSourceRange() const override LLVM_READONLY;
3279
3280 TypeAliasTemplateDecl *getDescribedAliasTemplate() const { return Template; }
3281 void setDescribedAliasTemplate(TypeAliasTemplateDecl *TAT) { Template = TAT; }
3282
3283 // Implement isa/cast/dyncast/etc.
3284 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3285 static bool classofKind(Kind K) { return K == TypeAlias; }
3286};
3287
3288/// Represents the declaration of a struct/union/class/enum.
3289class TagDecl : public TypeDecl,
3290 public DeclContext,
3291 public Redeclarable<TagDecl> {
3292 // This class stores some data in DeclContext::TagDeclBits
3293 // to save some space. Use the provided accessors to access it.
3294public:
3295 // This is really ugly.
3296 using TagKind = TagTypeKind;
3297
3298private:
3299 SourceRange BraceRange;
3300
3301 // A struct representing syntactic qualifier info,
3302 // to be used for the (uncommon) case of out-of-line declarations.
3303 using ExtInfo = QualifierInfo;
3304
3305 /// If the (out-of-line) tag declaration name
3306 /// is qualified, it points to the qualifier info (nns and range);
3307 /// otherwise, if the tag declaration is anonymous and it is part of
3308 /// a typedef or alias, it points to the TypedefNameDecl (used for mangling);
3309 /// otherwise, if the tag declaration is anonymous and it is used as a
3310 /// declaration specifier for variables, it points to the first VarDecl (used
3311 /// for mangling);
3312 /// otherwise, it is a null (TypedefNameDecl) pointer.
3313 llvm::PointerUnion<TypedefNameDecl *, ExtInfo *> TypedefNameDeclOrQualifier;
3314
3315 bool hasExtInfo() const { return TypedefNameDeclOrQualifier.is<ExtInfo *>(); }
3316 ExtInfo *getExtInfo() { return TypedefNameDeclOrQualifier.get<ExtInfo *>(); }
3317 const ExtInfo *getExtInfo() const {
3318 return TypedefNameDeclOrQualifier.get<ExtInfo *>();
3319 }
3320
3321protected:
3322 TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
3323 SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
3324 SourceLocation StartL);
3325
3326 using redeclarable_base = Redeclarable<TagDecl>;
3327
3328 TagDecl *getNextRedeclarationImpl() override {
3329 return getNextRedeclaration();
3330 }
3331
3332 TagDecl *getPreviousDeclImpl() override {
3333 return getPreviousDecl();
3334 }
3335
3336 TagDecl *getMostRecentDeclImpl() override {
3337 return getMostRecentDecl();
3338 }
3339
3340 /// Completes the definition of this tag declaration.
3341 ///
3342 /// This is a helper function for derived classes.
3343 void completeDefinition();
3344
3345 /// True if this decl is currently being defined.
3346 void setBeingDefined(bool V = true) { TagDeclBits.IsBeingDefined = V; }
3347
3348 /// Indicates whether it is possible for declarations of this kind
3349 /// to have an out-of-date definition.
3350 ///
3351 /// This option is only enabled when modules are enabled.
3352 void setMayHaveOutOfDateDef(bool V = true) {
3353 TagDeclBits.MayHaveOutOfDateDef = V;
3354 }
3355
3356public:
3357 friend class ASTDeclReader;
3358 friend class ASTDeclWriter;
3359
3360 using redecl_range = redeclarable_base::redecl_range;
3361 using redecl_iterator = redeclarable_base::redecl_iterator;
3362
3363 using redeclarable_base::redecls_begin;
3364 using redeclarable_base::redecls_end;
3365 using redeclarable_base::redecls;
3366 using redeclarable_base::getPreviousDecl;
3367 using redeclarable_base::getMostRecentDecl;
3368 using redeclarable_base::isFirstDecl;
3369
3370 SourceRange getBraceRange() const { return BraceRange; }
3371 void setBraceRange(SourceRange R) { BraceRange = R; }
3372
3373 /// Return SourceLocation representing start of source
3374 /// range ignoring outer template declarations.
3375 SourceLocation getInnerLocStart() const { return getBeginLoc(); }
3376
3377 /// Return SourceLocation representing start of source
3378 /// range taking into account any outer template declarations.
3379 SourceLocation getOuterLocStart() const;
3380 SourceRange getSourceRange() const override LLVM_READONLY;
3381
3382 TagDecl *getCanonicalDecl() override;
3383 const TagDecl *getCanonicalDecl() const {
3384 return const_cast<TagDecl*>(this)->getCanonicalDecl();
3385 }
3386
3387 /// Return true if this declaration is a completion definition of the type.
3388 /// Provided for consistency.
3389 bool isThisDeclarationADefinition() const {
3390 return isCompleteDefinition();
3391 }
3392
3393 /// Return true if this decl has its body fully specified.
3394 bool isCompleteDefinition() const { return TagDeclBits.IsCompleteDefinition; }
3395
3396 /// True if this decl has its body fully specified.
3397 void setCompleteDefinition(bool V = true) {
3398 TagDeclBits.IsCompleteDefinition = V;
3399 }
3400
3401 /// Return true if this complete decl is
3402 /// required to be complete for some existing use.
3403 bool isCompleteDefinitionRequired() const {
3404 return TagDeclBits.IsCompleteDefinitionRequired;
3405 }
3406
3407 /// True if this complete decl is
3408 /// required to be complete for some existing use.
3409 void setCompleteDefinitionRequired(bool V = true) {
3410 TagDeclBits.IsCompleteDefinitionRequired = V;
3411 }
3412
3413 /// Return true if this decl is currently being defined.
3414 bool isBeingDefined() const { return TagDeclBits.IsBeingDefined; }
3415
3416 /// True if this tag declaration is "embedded" (i.e., defined or declared
3417 /// for the very first time) in the syntax of a declarator.
3418 bool isEmbeddedInDeclarator() const {
3419 return TagDeclBits.IsEmbeddedInDeclarator;
3420 }
3421
3422 /// True if this tag declaration is "embedded" (i.e., defined or declared
3423 /// for the very first time) in the syntax of a declarator.
3424 void