1//===- Type.h - C Language Family Type Representation -----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10/// \file
11/// C Language Family Type Representation
12///
13/// This file defines the clang::Type interface and subclasses, used to
14/// represent types for languages in the C family.
15//
16//===----------------------------------------------------------------------===//
17
18#ifndef LLVM_CLANG_AST_TYPE_H
19#define LLVM_CLANG_AST_TYPE_H
20
21#include "clang/AST/NestedNameSpecifier.h"
22#include "clang/AST/TemplateName.h"
23#include "clang/Basic/AddressSpaces.h"
24#include "clang/Basic/AttrKinds.h"
25#include "clang/Basic/Diagnostic.h"
26#include "clang/Basic/ExceptionSpecificationType.h"
27#include "clang/Basic/LLVM.h"
28#include "clang/Basic/Linkage.h"
29#include "clang/Basic/PartialDiagnostic.h"
30#include "clang/Basic/SourceLocation.h"
31#include "clang/Basic/Specifiers.h"
32#include "clang/Basic/Visibility.h"
33#include "llvm/ADT/APInt.h"
34#include "llvm/ADT/APSInt.h"
35#include "llvm/ADT/ArrayRef.h"
36#include "llvm/ADT/FoldingSet.h"
37#include "llvm/ADT/None.h"
38#include "llvm/ADT/Optional.h"
39#include "llvm/ADT/PointerIntPair.h"
40#include "llvm/ADT/PointerUnion.h"
41#include "llvm/ADT/StringRef.h"
42#include "llvm/ADT/Twine.h"
43#include "llvm/ADT/iterator_range.h"
44#include "llvm/Support/Casting.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/PointerLikeTypeTraits.h"
48#include "llvm/Support/type_traits.h"
49#include "llvm/Support/TrailingObjects.h"
50#include <cassert>
51#include <cstddef>
52#include <cstdint>
53#include <cstring>
54#include <string>
55#include <type_traits>
56#include <utility>
57
58namespace clang {
59
60class ExtQuals;
61class QualType;
62class TagDecl;
63class Type;
64
65enum {
66 TypeAlignmentInBits = 4,
67 TypeAlignment = 1 << TypeAlignmentInBits
68};
69
70} // namespace clang
71
72namespace llvm {
73
74 template <typename T>
75 struct PointerLikeTypeTraits;
76 template<>
77 struct PointerLikeTypeTraits< ::clang::Type*> {
78 static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
79
80 static inline ::clang::Type *getFromVoidPointer(void *P) {
81 return static_cast< ::clang::Type*>(P);
82 }
83
84 enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
85 };
86
87 template<>
88 struct PointerLikeTypeTraits< ::clang::ExtQuals*> {
89 static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
90
91 static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
92 return static_cast< ::clang::ExtQuals*>(P);
93 }
94
95 enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
96 };
97
98 template <>
99 struct isPodLike<clang::QualType> { static const bool value = true; };
100
101} // namespace llvm
102
103namespace clang {
104
105class ASTContext;
106template <typename> class CanQual;
107class CXXRecordDecl;
108class DeclContext;
109class EnumDecl;
110class Expr;
111class ExtQualsTypeCommonBase;
112class FunctionDecl;
113class IdentifierInfo;
114class NamedDecl;
115class ObjCInterfaceDecl;
116class ObjCProtocolDecl;
117class ObjCTypeParamDecl;
118struct PrintingPolicy;
119class RecordDecl;
120class Stmt;
121class TagDecl;
122class TemplateArgument;
123class TemplateArgumentListInfo;
124class TemplateArgumentLoc;
125class TemplateTypeParmDecl;
126class TypedefNameDecl;
127class UnresolvedUsingTypenameDecl;
128
129using CanQualType = CanQual<Type>;
130
131// Provide forward declarations for all of the *Type classes.
132#define TYPE(Class, Base) class Class##Type;
133#include "clang/AST/TypeNodes.def"
134
135/// The collection of all-type qualifiers we support.
136/// Clang supports five independent qualifiers:
137/// * C99: const, volatile, and restrict
138/// * MS: __unaligned
139/// * Embedded C (TR18037): address spaces
140/// * Objective C: the GC attributes (none, weak, or strong)
141class Qualifiers {
142public:
143 enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
144 Const = 0x1,
145 Restrict = 0x2,
146 Volatile = 0x4,
147 CVRMask = Const | Volatile | Restrict
148 };
149
150 enum GC {
151 GCNone = 0,
152 Weak,
153 Strong
154 };
155
156 enum ObjCLifetime {
157 /// There is no lifetime qualification on this type.
158 OCL_None,
159
160 /// This object can be modified without requiring retains or
161 /// releases.
162 OCL_ExplicitNone,
163
164 /// Assigning into this object requires the old value to be
165 /// released and the new value to be retained. The timing of the
166 /// release of the old value is inexact: it may be moved to
167 /// immediately after the last known point where the value is
168 /// live.
169 OCL_Strong,
170
171 /// Reading or writing from this object requires a barrier call.
172 OCL_Weak,
173
174 /// Assigning into this object requires a lifetime extension.
175 OCL_Autoreleasing
176 };
177
178 enum {
179 /// The maximum supported address space number.
180 /// 23 bits should be enough for anyone.
181 MaxAddressSpace = 0x7fffffu,
182
183 /// The width of the "fast" qualifier mask.
184 FastWidth = 3,
185
186 /// The fast qualifier mask.
187 FastMask = (1 << FastWidth) - 1
188 };
189
190 /// Returns the common set of qualifiers while removing them from
191 /// the given sets.
192 static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
193 // If both are only CVR-qualified, bit operations are sufficient.
194 if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
195 Qualifiers Q;
196 Q.Mask = L.Mask & R.Mask;
197 L.Mask &= ~Q.Mask;
198 R.Mask &= ~Q.Mask;
199 return Q;
200 }
201
202 Qualifiers Q;
203 unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
204 Q.addCVRQualifiers(CommonCRV);
205 L.removeCVRQualifiers(CommonCRV);
206 R.removeCVRQualifiers(CommonCRV);
207
208 if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
209 Q.setObjCGCAttr(L.getObjCGCAttr());
210 L.removeObjCGCAttr();
211 R.removeObjCGCAttr();
212 }
213
214 if (L.getObjCLifetime() == R.getObjCLifetime()) {
215 Q.setObjCLifetime(L.getObjCLifetime());
216 L.removeObjCLifetime();
217 R.removeObjCLifetime();
218 }
219
220 if (L.getAddressSpace() == R.getAddressSpace()) {
221 Q.setAddressSpace(L.getAddressSpace());
222 L.removeAddressSpace();
223 R.removeAddressSpace();
224 }
225 return Q;
226 }
227
228 static Qualifiers fromFastMask(unsigned Mask) {
229 Qualifiers Qs;
230 Qs.addFastQualifiers(Mask);
231 return Qs;
232 }
233
234 static Qualifiers fromCVRMask(unsigned CVR) {
235 Qualifiers Qs;
236 Qs.addCVRQualifiers(CVR);
237 return Qs;
238 }
239
240 static Qualifiers fromCVRUMask(unsigned CVRU) {
241 Qualifiers Qs;
242 Qs.addCVRUQualifiers(CVRU);
243 return Qs;
244 }
245
246 // Deserialize qualifiers from an opaque representation.
247 static Qualifiers fromOpaqueValue(unsigned opaque) {
248 Qualifiers Qs;
249 Qs.Mask = opaque;
250 return Qs;
251 }
252
253 // Serialize these qualifiers into an opaque representation.
254 unsigned getAsOpaqueValue() const {
255 return Mask;
256 }
257
258 bool hasConst() const { return Mask & Const; }
259 void setConst(bool flag) {
260 Mask = (Mask & ~Const) | (flag ? Const : 0);
261 }
262 void removeConst() { Mask &= ~Const; }
263 void addConst() { Mask |= Const; }
264
265 bool hasVolatile() const { return Mask & Volatile; }
266 void setVolatile(bool flag) {
267 Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
268 }
269 void removeVolatile() { Mask &= ~Volatile; }
270 void addVolatile() { Mask |= Volatile; }
271
272 bool hasRestrict() const { return Mask & Restrict; }
273 void setRestrict(bool flag) {
274 Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
275 }
276 void removeRestrict() { Mask &= ~Restrict; }
277 void addRestrict() { Mask |= Restrict; }
278
279 bool hasCVRQualifiers() const { return getCVRQualifiers(); }
280 unsigned getCVRQualifiers() const { return Mask & CVRMask; }
281 void setCVRQualifiers(unsigned mask) {
282 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
283 Mask = (Mask & ~CVRMask) | mask;
284 }
285 void removeCVRQualifiers(unsigned mask) {
286 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
287 Mask &= ~mask;
288 }
289 void removeCVRQualifiers() {
290 removeCVRQualifiers(CVRMask);
291 }
292 void addCVRQualifiers(unsigned mask) {
293 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
294 Mask |= mask;
295 }
296 void addCVRUQualifiers(unsigned mask) {
297 assert(!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits");
298 Mask |= mask;
299 }
300
301 bool hasUnaligned() const { return Mask & UMask; }
302 void setUnaligned(bool flag) {
303 Mask = (Mask & ~UMask) | (flag ? UMask : 0);
304 }
305 void removeUnaligned() { Mask &= ~UMask; }
306 void addUnaligned() { Mask |= UMask; }
307
308 bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
309 GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
310 void setObjCGCAttr(GC type) {
311 Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
312 }
313 void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
314 void addObjCGCAttr(GC type) {
315 assert(type);
316 setObjCGCAttr(type);
317 }
318 Qualifiers withoutObjCGCAttr() const {
319 Qualifiers qs = *this;
320 qs.removeObjCGCAttr();
321 return qs;
322 }
323 Qualifiers withoutObjCLifetime() const {
324 Qualifiers qs = *this;
325 qs.removeObjCLifetime();
326 return qs;
327 }
328
329 bool hasObjCLifetime() const { return Mask & LifetimeMask; }
330 ObjCLifetime getObjCLifetime() const {
331 return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
332 }
333 void setObjCLifetime(ObjCLifetime type) {
334 Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
335 }
336 void removeObjCLifetime() { setObjCLifetime(OCL_None); }
337 void addObjCLifetime(ObjCLifetime type) {
338 assert(type);
339 assert(!hasObjCLifetime());
340 Mask |= (type << LifetimeShift);
341 }
342
343 /// True if the lifetime is neither None or ExplicitNone.
344 bool hasNonTrivialObjCLifetime() const {
345 ObjCLifetime lifetime = getObjCLifetime();
346 return (lifetime > OCL_ExplicitNone);
347 }
348
349 /// True if the lifetime is either strong or weak.
350 bool hasStrongOrWeakObjCLifetime() const {
351 ObjCLifetime lifetime = getObjCLifetime();
352 return (lifetime == OCL_Strong || lifetime == OCL_Weak);
353 }
354
355 bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
356 LangAS getAddressSpace() const {
357 return static_cast<LangAS>(Mask >> AddressSpaceShift);
358 }
359 bool hasTargetSpecificAddressSpace() const {
360 return isTargetAddressSpace(getAddressSpace());
361 }
362 /// Get the address space attribute value to be printed by diagnostics.
363 unsigned getAddressSpaceAttributePrintValue() const {
364 auto Addr = getAddressSpace();
365 // This function is not supposed to be used with language specific
366 // address spaces. If that happens, the diagnostic message should consider
367 // printing the QualType instead of the address space value.
368 assert(Addr == LangAS::Default || hasTargetSpecificAddressSpace());
369 if (Addr != LangAS::Default)
370 return toTargetAddressSpace(Addr);
371 // TODO: The diagnostic messages where Addr may be 0 should be fixed
372 // since it cannot differentiate the situation where 0 denotes the default
373 // address space or user specified __attribute__((address_space(0))).
374 return 0;
375 }
376 void setAddressSpace(LangAS space) {
377 assert((unsigned)space <= MaxAddressSpace);
378 Mask = (Mask & ~AddressSpaceMask)
379 | (((uint32_t) space) << AddressSpaceShift);
380 }
381 void removeAddressSpace() { setAddressSpace(LangAS::Default); }
382 void addAddressSpace(LangAS space) {
383 assert(space != LangAS::Default);
384 setAddressSpace(space);
385 }
386
387 // Fast qualifiers are those that can be allocated directly
388 // on a QualType object.
389 bool hasFastQualifiers() const { return getFastQualifiers(); }
390 unsigned getFastQualifiers() const { return Mask & FastMask; }
391 void setFastQualifiers(unsigned mask) {
392 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
393 Mask = (Mask & ~FastMask) | mask;
394 }
395 void removeFastQualifiers(unsigned mask) {
396 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
397 Mask &= ~mask;
398 }
399 void removeFastQualifiers() {
400 removeFastQualifiers(FastMask);
401 }
402 void addFastQualifiers(unsigned mask) {
403 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
404 Mask |= mask;
405 }
406
407 /// Return true if the set contains any qualifiers which require an ExtQuals
408 /// node to be allocated.
409 bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
410 Qualifiers getNonFastQualifiers() const {
411 Qualifiers Quals = *this;
412 Quals.setFastQualifiers(0);
413 return Quals;
414 }
415
416 /// Return true if the set contains any qualifiers.
417 bool hasQualifiers() const { return Mask; }
418 bool empty() const { return !Mask; }
419
420 /// Add the qualifiers from the given set to this set.
421 void addQualifiers(Qualifiers Q) {
422 // If the other set doesn't have any non-boolean qualifiers, just
423 // bit-or it in.
424 if (!(Q.Mask & ~CVRMask))
425 Mask |= Q.Mask;
426 else {
427 Mask |= (Q.Mask & CVRMask);
428 if (Q.hasAddressSpace())
429 addAddressSpace(Q.getAddressSpace());
430 if (Q.hasObjCGCAttr())
431 addObjCGCAttr(Q.getObjCGCAttr());
432 if (Q.hasObjCLifetime())
433 addObjCLifetime(Q.getObjCLifetime());
434 }
435 }
436
437 /// Remove the qualifiers from the given set from this set.
438 void removeQualifiers(Qualifiers Q) {
439 // If the other set doesn't have any non-boolean qualifiers, just
440 // bit-and the inverse in.
441 if (!(Q.Mask & ~CVRMask))
442 Mask &= ~Q.Mask;
443 else {
444 Mask &= ~(Q.Mask & CVRMask);
445 if (getObjCGCAttr() == Q.getObjCGCAttr())
446 removeObjCGCAttr();
447 if (getObjCLifetime() == Q.getObjCLifetime())
448 removeObjCLifetime();
449 if (getAddressSpace() == Q.getAddressSpace())
450 removeAddressSpace();
451 }
452 }
453
454 /// Add the qualifiers from the given set to this set, given that
455 /// they don't conflict.
456 void addConsistentQualifiers(Qualifiers qs) {
457 assert(getAddressSpace() == qs.getAddressSpace() ||
458 !hasAddressSpace() || !qs.hasAddressSpace());
459 assert(getObjCGCAttr() == qs.getObjCGCAttr() ||
460 !hasObjCGCAttr() || !qs.hasObjCGCAttr());
461 assert(getObjCLifetime() == qs.getObjCLifetime() ||
462 !hasObjCLifetime() || !qs.hasObjCLifetime());
463 Mask |= qs.Mask;
464 }
465
466 /// Returns true if this address space is a superset of the other one.
467 /// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of
468 /// overlapping address spaces.
469 /// CL1.1 or CL1.2:
470 /// every address space is a superset of itself.
471 /// CL2.0 adds:
472 /// __generic is a superset of any address space except for __constant.
473 bool isAddressSpaceSupersetOf(Qualifiers other) const {
474 return
475 // Address spaces must match exactly.
476 getAddressSpace() == other.getAddressSpace() ||
477 // Otherwise in OpenCLC v2.0 s6.5.5: every address space except
478 // for __constant can be used as __generic.
479 (getAddressSpace() == LangAS::opencl_generic &&
480 other.getAddressSpace() != LangAS::opencl_constant);
481 }
482
483 /// Determines if these qualifiers compatibly include another set.
484 /// Generally this answers the question of whether an object with the other
485 /// qualifiers can be safely used as an object with these qualifiers.
486 bool compatiblyIncludes(Qualifiers other) const {
487 return isAddressSpaceSupersetOf(other) &&
488 // ObjC GC qualifiers can match, be added, or be removed, but can't
489 // be changed.
490 (getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() ||
491 !other.hasObjCGCAttr()) &&
492 // ObjC lifetime qualifiers must match exactly.
493 getObjCLifetime() == other.getObjCLifetime() &&
494 // CVR qualifiers may subset.
495 (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask)) &&
496 // U qualifier may superset.
497 (!other.hasUnaligned() || hasUnaligned());
498 }
499
500 /// Determines if these qualifiers compatibly include another set of
501 /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
502 ///
503 /// One set of Objective-C lifetime qualifiers compatibly includes the other
504 /// if the lifetime qualifiers match, or if both are non-__weak and the
505 /// including set also contains the 'const' qualifier, or both are non-__weak
506 /// and one is None (which can only happen in non-ARC modes).
507 bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
508 if (getObjCLifetime() == other.getObjCLifetime())
509 return true;
510
511 if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
512 return false;
513
514 if (getObjCLifetime() == OCL_None || other.getObjCLifetime() == OCL_None)
515 return true;
516
517 return hasConst();
518 }
519
520 /// Determine whether this set of qualifiers is a strict superset of
521 /// another set of qualifiers, not considering qualifier compatibility.
522 bool isStrictSupersetOf(Qualifiers Other) const;
523
524 bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
525 bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
526
527 explicit operator bool() const { return hasQualifiers(); }
528
529 Qualifiers &operator+=(Qualifiers R) {
530 addQualifiers(R);
531 return *this;
532 }
533
534 // Union two qualifier sets. If an enumerated qualifier appears
535 // in both sets, use the one from the right.
536 friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
537 L += R;
538 return L;
539 }
540
541 Qualifiers &operator-=(Qualifiers R) {
542 removeQualifiers(R);
543 return *this;
544 }
545
546 /// Compute the difference between two qualifier sets.
547 friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
548 L -= R;
549 return L;
550 }
551
552 std::string getAsString() const;
553 std::string getAsString(const PrintingPolicy &Policy) const;
554
555 bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
556 void print(raw_ostream &OS, const PrintingPolicy &Policy,
557 bool appendSpaceIfNonEmpty = false) const;
558
559 void Profile(llvm::FoldingSetNodeID &ID) const {
560 ID.AddInteger(Mask);
561 }
562
563private:
564 // bits: |0 1 2|3|4 .. 5|6 .. 8|9 ... 31|
565 // |C R V|U|GCAttr|Lifetime|AddressSpace|
566 uint32_t Mask = 0;
567
568 static const uint32_t UMask = 0x8;
569 static const uint32_t UShift = 3;
570 static const uint32_t GCAttrMask = 0x30;
571 static const uint32_t GCAttrShift = 4;
572 static const uint32_t LifetimeMask = 0x1C0;
573 static const uint32_t LifetimeShift = 6;
574 static const uint32_t AddressSpaceMask =
575 ~(CVRMask | UMask | GCAttrMask | LifetimeMask);
576 static const uint32_t AddressSpaceShift = 9;
577};
578
579/// A std::pair-like structure for storing a qualified type split
580/// into its local qualifiers and its locally-unqualified type.
581struct SplitQualType {
582 /// The locally-unqualified type.
583 const Type *Ty = nullptr;
584
585 /// The local qualifiers.
586 Qualifiers Quals;
587
588 SplitQualType() = default;
589 SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
590
591 SplitQualType getSingleStepDesugaredType() const; // end of this file
592
593 // Make std::tie work.
594 std::pair<const Type *,Qualifiers> asPair() const {
595 return std::pair<const Type *, Qualifiers>(Ty, Quals);
596 }
597
598 friend bool operator==(SplitQualType a, SplitQualType b) {
599 return a.Ty == b.Ty && a.Quals == b.Quals;
600 }
601 friend bool operator!=(SplitQualType a, SplitQualType b) {
602 return a.Ty != b.Ty || a.Quals != b.Quals;
603 }
604};
605
606/// The kind of type we are substituting Objective-C type arguments into.
607///
608/// The kind of substitution affects the replacement of type parameters when
609/// no concrete type information is provided, e.g., when dealing with an
610/// unspecialized type.
611enum class ObjCSubstitutionContext {
612 /// An ordinary type.
613 Ordinary,
614
615 /// The result type of a method or function.
616 Result,
617
618 /// The parameter type of a method or function.
619 Parameter,
620
621 /// The type of a property.
622 Property,
623
624 /// The superclass of a type.
625 Superclass,
626};
627
628/// A (possibly-)qualified type.
629///
630/// For efficiency, we don't store CV-qualified types as nodes on their
631/// own: instead each reference to a type stores the qualifiers. This
632/// greatly reduces the number of nodes we need to allocate for types (for
633/// example we only need one for 'int', 'const int', 'volatile int',
634/// 'const volatile int', etc).
635///
636/// As an added efficiency bonus, instead of making this a pair, we
637/// just store the two bits we care about in the low bits of the
638/// pointer. To handle the packing/unpacking, we make QualType be a
639/// simple wrapper class that acts like a smart pointer. A third bit
640/// indicates whether there are extended qualifiers present, in which
641/// case the pointer points to a special structure.
642class QualType {
643 friend class QualifierCollector;
644
645 // Thankfully, these are efficiently composable.
646 llvm::PointerIntPair<llvm::PointerUnion<const Type *, const ExtQuals *>,
647 Qualifiers::FastWidth> Value;
648
649 const ExtQuals *getExtQualsUnsafe() const {
650 return Value.getPointer().get<const ExtQuals*>();
651 }
652
653 const Type *getTypePtrUnsafe() const {
654 return Value.getPointer().get<const Type*>();
655 }
656
657 const ExtQualsTypeCommonBase *getCommonPtr() const {
658 assert(!isNull() && "Cannot retrieve a NULL type pointer");
659 auto CommonPtrVal = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
660 CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
661 return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
662 }
663
664public:
665 QualType() = default;
666 QualType(const Type *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
667 QualType(const ExtQuals *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
668
669 unsigned getLocalFastQualifiers() const { return Value.getInt(); }
670 void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
671
672 /// Retrieves a pointer to the underlying (unqualified) type.
673 ///
674 /// This function requires that the type not be NULL. If the type might be
675 /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
676 const Type *getTypePtr() const;
677
678 const Type *getTypePtrOrNull() const;
679
680 /// Retrieves a pointer to the name of the base type.
681 const IdentifierInfo *getBaseTypeIdentifier() const;
682
683 /// Divides a QualType into its unqualified type and a set of local
684 /// qualifiers.
685 SplitQualType split() const;
686
687 void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
688
689 static QualType getFromOpaquePtr(const void *Ptr) {
690 QualType T;
691 T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
692 return T;
693 }
694
695 const Type &operator*() const {
696 return *getTypePtr();
697 }
698
699 const Type *operator->() const {
700 return getTypePtr();
701 }
702
703 bool isCanonical() const;
704 bool isCanonicalAsParam() const;
705
706 /// Return true if this QualType doesn't point to a type yet.
707 bool isNull() const {
708 return Value.getPointer().isNull();
709 }
710
711 /// Determine whether this particular QualType instance has the
712 /// "const" qualifier set, without looking through typedefs that may have
713 /// added "const" at a different level.
714 bool isLocalConstQualified() const {
715 return (getLocalFastQualifiers() & Qualifiers::Const);
716 }
717
718 /// Determine whether this type is const-qualified.
719 bool isConstQualified() const;
720
721 /// Determine whether this particular QualType instance has the
722 /// "restrict" qualifier set, without looking through typedefs that may have
723 /// added "restrict" at a different level.
724 bool isLocalRestrictQualified() const {
725 return (getLocalFastQualifiers() & Qualifiers::Restrict);
726 }
727
728 /// Determine whether this type is restrict-qualified.
729 bool isRestrictQualified() const;
730
731 /// Determine whether this particular QualType instance has the
732 /// "volatile" qualifier set, without looking through typedefs that may have
733 /// added "volatile" at a different level.
734 bool isLocalVolatileQualified() const {
735 return (getLocalFastQualifiers() & Qualifiers::Volatile);
736 }
737
738 /// Determine whether this type is volatile-qualified.
739 bool isVolatileQualified() const;
740
741 /// Determine whether this particular QualType instance has any
742 /// qualifiers, without looking through any typedefs that might add
743 /// qualifiers at a different level.
744 bool hasLocalQualifiers() const {
745 return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
746 }
747
748 /// Determine whether this type has any qualifiers.
749 bool hasQualifiers() const;
750
751 /// Determine whether this particular QualType instance has any
752 /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
753 /// instance.
754 bool hasLocalNonFastQualifiers() const {
755 return Value.getPointer().is<const ExtQuals*>();
756 }
757
758 /// Retrieve the set of qualifiers local to this particular QualType
759 /// instance, not including any qualifiers acquired through typedefs or
760 /// other sugar.
761 Qualifiers getLocalQualifiers() const;
762
763 /// Retrieve the set of qualifiers applied to this type.
764 Qualifiers getQualifiers() const;
765
766 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
767 /// local to this particular QualType instance, not including any qualifiers
768 /// acquired through typedefs or other sugar.
769 unsigned getLocalCVRQualifiers() const {
770 return getLocalFastQualifiers();
771 }
772
773 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
774 /// applied to this type.
775 unsigned getCVRQualifiers() const;
776
777 bool isConstant(const ASTContext& Ctx) const {
778 return QualType::isConstant(*this, Ctx);
779 }
780
781 /// Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
782 bool isPODType(const ASTContext &Context) const;
783
784 /// Return true if this is a POD type according to the rules of the C++98
785 /// standard, regardless of the current compilation's language.
786 bool isCXX98PODType(const ASTContext &Context) const;
787
788 /// Return true if this is a POD type according to the more relaxed rules
789 /// of the C++11 standard, regardless of the current compilation's language.
790 /// (C++0x [basic.types]p9). Note that, unlike
791 /// CXXRecordDecl::isCXX11StandardLayout, this takes DRs into account.
792 bool isCXX11PODType(const ASTContext &Context) const;
793
794 /// Return true if this is a trivial type per (C++0x [basic.types]p9)
795 bool isTrivialType(const ASTContext &Context) const;
796
797 /// Return true if this is a trivially copyable type (C++0x [basic.types]p9)
798 bool isTriviallyCopyableType(const ASTContext &Context) const;
799
800
801 /// Returns true if it is a class and it might be dynamic.
802 bool mayBeDynamicClass() const;
803
804 /// Returns true if it is not a class or if the class might not be dynamic.
805 bool mayBeNotDynamicClass() const;
806
807 // Don't promise in the API that anything besides 'const' can be
808 // easily added.
809
810 /// Add the `const` type qualifier to this QualType.
811 void addConst() {
812 addFastQualifiers(Qualifiers::Const);
813 }
814 QualType withConst() const {
815 return withFastQualifiers(Qualifiers::Const);
816 }
817
818 /// Add the `volatile` type qualifier to this QualType.
819 void addVolatile() {
820 addFastQualifiers(Qualifiers::Volatile);
821 }
822 QualType withVolatile() const {
823 return withFastQualifiers(Qualifiers::Volatile);
824 }
825
826 /// Add the `restrict` qualifier to this QualType.
827 void addRestrict() {
828 addFastQualifiers(Qualifiers::Restrict);
829 }
830 QualType withRestrict() const {
831 return withFastQualifiers(Qualifiers::Restrict);
832 }
833
834 QualType withCVRQualifiers(unsigned CVR) const {
835 return withFastQualifiers(CVR);
836 }
837
838 void addFastQualifiers(unsigned TQs) {
839 assert(!(TQs & ~Qualifiers::FastMask)
840 && "non-fast qualifier bits set in mask!");
841 Value.setInt(Value.getInt() | TQs);
842 }
843
844 void removeLocalConst();
845 void removeLocalVolatile();
846 void removeLocalRestrict();
847 void removeLocalCVRQualifiers(unsigned Mask);
848
849 void removeLocalFastQualifiers() { Value.setInt(0); }
850 void removeLocalFastQualifiers(unsigned Mask) {
851 assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
852 Value.setInt(Value.getInt() & ~Mask);
853 }
854
855 // Creates a type with the given qualifiers in addition to any
856 // qualifiers already on this type.
857 QualType withFastQualifiers(unsigned TQs) const {
858 QualType T = *this;
859 T.addFastQualifiers(TQs);
860 return T;
861 }
862
863 // Creates a type with exactly the given fast qualifiers, removing
864 // any existing fast qualifiers.
865 QualType withExactLocalFastQualifiers(unsigned TQs) const {
866 return withoutLocalFastQualifiers().withFastQualifiers(TQs);
867 }
868
869 // Removes fast qualifiers, but leaves any extended qualifiers in place.
870 QualType withoutLocalFastQualifiers() const {
871 QualType T = *this;
872 T.removeLocalFastQualifiers();
873 return T;
874 }
875
876 QualType getCanonicalType() const;
877
878 /// Return this type with all of the instance-specific qualifiers
879 /// removed, but without removing any qualifiers that may have been applied
880 /// through typedefs.
881 QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
882
883 /// Retrieve the unqualified variant of the given type,
884 /// removing as little sugar as possible.
885 ///
886 /// This routine looks through various kinds of sugar to find the
887 /// least-desugared type that is unqualified. For example, given:
888 ///
889 /// \code
890 /// typedef int Integer;
891 /// typedef const Integer CInteger;
892 /// typedef CInteger DifferenceType;
893 /// \endcode
894 ///
895 /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
896 /// desugar until we hit the type \c Integer, which has no qualifiers on it.
897 ///
898 /// The resulting type might still be qualified if it's sugar for an array
899 /// type. To strip qualifiers even from within a sugared array type, use
900 /// ASTContext::getUnqualifiedArrayType.
901 inline QualType getUnqualifiedType() const;
902
903 /// Retrieve the unqualified variant of the given type, removing as little
904 /// sugar as possible.
905 ///
906 /// Like getUnqualifiedType(), but also returns the set of
907 /// qualifiers that were built up.
908 ///
909 /// The resulting type might still be qualified if it's sugar for an array
910 /// type. To strip qualifiers even from within a sugared array type, use
911 /// ASTContext::getUnqualifiedArrayType.
912 inline SplitQualType getSplitUnqualifiedType() const;
913
914 /// Determine whether this type is more qualified than the other
915 /// given type, requiring exact equality for non-CVR qualifiers.
916 bool isMoreQualifiedThan(QualType Other) const;
917
918 /// Determine whether this type is at least as qualified as the other
919 /// given type, requiring exact equality for non-CVR qualifiers.
920 bool isAtLeastAsQualifiedAs(QualType Other) const;
921
922 QualType getNonReferenceType() const;
923
924 /// Determine the type of a (typically non-lvalue) expression with the
925 /// specified result type.
926 ///
927 /// This routine should be used for expressions for which the return type is
928 /// explicitly specified (e.g., in a cast or call) and isn't necessarily
929 /// an lvalue. It removes a top-level reference (since there are no
930 /// expressions of reference type) and deletes top-level cvr-qualifiers
931 /// from non-class types (in C++) or all types (in C).
932 QualType getNonLValueExprType(const ASTContext &Context) const;
933
934 /// Return the specified type with any "sugar" removed from
935 /// the type. This takes off typedefs, typeof's etc. If the outer level of
936 /// the type is already concrete, it returns it unmodified. This is similar
937 /// to getting the canonical type, but it doesn't remove *all* typedefs. For
938 /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
939 /// concrete.
940 ///
941 /// Qualifiers are left in place.
942 QualType getDesugaredType(const ASTContext &Context) const {
943 return getDesugaredType(*this, Context);
944 }
945
946 SplitQualType getSplitDesugaredType() const {
947 return getSplitDesugaredType(*this);
948 }
949
950 /// Return the specified type with one level of "sugar" removed from
951 /// the type.
952 ///
953 /// This routine takes off the first typedef, typeof, etc. If the outer level
954 /// of the type is already concrete, it returns it unmodified.
955 QualType getSingleStepDesugaredType(const ASTContext &Context) const {
956 return getSingleStepDesugaredTypeImpl(*this, Context);
957 }
958
959 /// Returns the specified type after dropping any
960 /// outer-level parentheses.
961 QualType IgnoreParens() const {
962 if (isa<ParenType>(*this))
963 return QualType::IgnoreParens(*this);
964 return *this;
965 }
966
967 /// Indicate whether the specified types and qualifiers are identical.
968 friend bool operator==(const QualType &LHS, const QualType &RHS) {
969 return LHS.Value == RHS.Value;
970 }
971 friend bool operator!=(const QualType &LHS, const QualType &RHS) {
972 return LHS.Value != RHS.Value;
973 }
974
975 static std::string getAsString(SplitQualType split,
976 const PrintingPolicy &Policy) {
977 return getAsString(split.Ty, split.Quals, Policy);
978 }
979 static std::string getAsString(const Type *ty, Qualifiers qs,
980 const PrintingPolicy &Policy);
981
982 std::string getAsString() const;
983 std::string getAsString(const PrintingPolicy &Policy) const;
984
985 void print(raw_ostream &OS, const PrintingPolicy &Policy,
986 const Twine &PlaceHolder = Twine(),
987 unsigned Indentation = 0) const {
988 print(split(), OS, Policy, PlaceHolder, Indentation);
989 }
990
991 static void print(SplitQualType split, raw_ostream &OS,
992 const PrintingPolicy &policy, const Twine &PlaceHolder,
993 unsigned Indentation = 0) {
994 return print(split.Ty, split.Quals, OS, policy, PlaceHolder, Indentation);
995 }
996
997 static void print(const Type *ty, Qualifiers qs,
998 raw_ostream &OS, const PrintingPolicy &policy,
999 const Twine &PlaceHolder,
1000 unsigned Indentation = 0);
1001
1002 void getAsStringInternal(std::string &Str,
1003 const PrintingPolicy &Policy) const {
1004 return getAsStringInternal(split(), Str, Policy);
1005 }
1006
1007 static void getAsStringInternal(SplitQualType split, std::string &out,
1008 const PrintingPolicy &policy) {
1009 return getAsStringInternal(split.Ty, split.Quals, out, policy);
1010 }
1011
1012 static void getAsStringInternal(const Type *ty, Qualifiers qs,
1013 std::string &out,
1014 const PrintingPolicy &policy);
1015
1016 class StreamedQualTypeHelper {
1017 const QualType &T;
1018 const PrintingPolicy &Policy;
1019 const Twine &PlaceHolder;
1020 unsigned Indentation;
1021
1022 public:
1023 StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
1024 const Twine &PlaceHolder, unsigned Indentation)
1025 : T(T), Policy(Policy), PlaceHolder(PlaceHolder),
1026 Indentation(Indentation) {}
1027
1028 friend raw_ostream &operator<<(raw_ostream &OS,
1029 const StreamedQualTypeHelper &SQT) {
1030 SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder, SQT.Indentation);
1031 return OS;
1032 }
1033 };
1034
1035 StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
1036 const Twine &PlaceHolder = Twine(),
1037 unsigned Indentation = 0) const {
1038 return StreamedQualTypeHelper(*this, Policy, PlaceHolder, Indentation);
1039 }
1040
1041 void dump(const char *s) const;
1042 void dump() const;
1043 void dump(llvm::raw_ostream &OS) const;
1044
1045 void Profile(llvm::FoldingSetNodeID &ID) const {
1046 ID.AddPointer(getAsOpaquePtr());
1047 }
1048
1049 /// Return the address space of this type.
1050 inline LangAS getAddressSpace() const;
1051
1052 /// Returns gc attribute of this type.
1053 inline Qualifiers::GC getObjCGCAttr() const;
1054
1055 /// true when Type is objc's weak.
1056 bool isObjCGCWeak() const {
1057 return getObjCGCAttr() == Qualifiers::Weak;
1058 }
1059
1060 /// true when Type is objc's strong.
1061 bool isObjCGCStrong() const {
1062 return getObjCGCAttr() == Qualifiers::Strong;
1063 }
1064
1065 /// Returns lifetime attribute of this type.
1066 Qualifiers::ObjCLifetime getObjCLifetime() const {
1067 return getQualifiers().getObjCLifetime();
1068 }
1069
1070 bool hasNonTrivialObjCLifetime() const {
1071 return getQualifiers().hasNonTrivialObjCLifetime();
1072 }
1073
1074 bool hasStrongOrWeakObjCLifetime() const {
1075 return getQualifiers().hasStrongOrWeakObjCLifetime();
1076 }
1077
1078 // true when Type is objc's weak and weak is enabled but ARC isn't.
1079 bool isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const;
1080
1081 enum PrimitiveDefaultInitializeKind {
1082 /// The type does not fall into any of the following categories. Note that
1083 /// this case is zero-valued so that values of this enum can be used as a
1084 /// boolean condition for non-triviality.
1085 PDIK_Trivial,
1086
1087 /// The type is an Objective-C retainable pointer type that is qualified
1088 /// with the ARC __strong qualifier.
1089 PDIK_ARCStrong,
1090
1091 /// The type is an Objective-C retainable pointer type that is qualified
1092 /// with the ARC __weak qualifier.
1093 PDIK_ARCWeak,
1094
1095 /// The type is a struct containing a field whose type is not PCK_Trivial.
1096 PDIK_Struct
1097 };
1098
1099 /// Functions to query basic properties of non-trivial C struct types.
1100
1101 /// Check if this is a non-trivial type that would cause a C struct
1102 /// transitively containing this type to be non-trivial to default initialize
1103 /// and return the kind.
1104 PrimitiveDefaultInitializeKind
1105 isNonTrivialToPrimitiveDefaultInitialize() const;
1106
1107 enum PrimitiveCopyKind {
1108 /// The type does not fall into any of the following categories. Note that
1109 /// this case is zero-valued so that values of this enum can be used as a
1110 /// boolean condition for non-triviality.
1111 PCK_Trivial,
1112
1113 /// The type would be trivial except that it is volatile-qualified. Types
1114 /// that fall into one of the other non-trivial cases may additionally be
1115 /// volatile-qualified.
1116 PCK_VolatileTrivial,
1117
1118 /// The type is an Objective-C retainable pointer type that is qualified
1119 /// with the ARC __strong qualifier.
1120 PCK_ARCStrong,
1121
1122 /// The type is an Objective-C retainable pointer type that is qualified
1123 /// with the ARC __weak qualifier.
1124 PCK_ARCWeak,
1125
1126 /// The type is a struct containing a field whose type is neither
1127 /// PCK_Trivial nor PCK_VolatileTrivial.
1128 /// Note that a C++ struct type does not necessarily match this; C++ copying
1129 /// semantics are too complex to express here, in part because they depend
1130 /// on the exact constructor or assignment operator that is chosen by
1131 /// overload resolution to do the copy.
1132 PCK_Struct
1133 };
1134
1135 /// Check if this is a non-trivial type that would cause a C struct
1136 /// transitively containing this type to be non-trivial to copy and return the
1137 /// kind.
1138 PrimitiveCopyKind isNonTrivialToPrimitiveCopy() const;
1139
1140 /// Check if this is a non-trivial type that would cause a C struct
1141 /// transitively containing this type to be non-trivial to destructively
1142 /// move and return the kind. Destructive move in this context is a C++-style
1143 /// move in which the source object is placed in a valid but unspecified state
1144 /// after it is moved, as opposed to a truly destructive move in which the
1145 /// source object is placed in an uninitialized state.
1146 PrimitiveCopyKind isNonTrivialToPrimitiveDestructiveMove() const;
1147
1148 enum DestructionKind {
1149 DK_none,
1150 DK_cxx_destructor,
1151 DK_objc_strong_lifetime,
1152 DK_objc_weak_lifetime,
1153 DK_nontrivial_c_struct
1154 };
1155
1156 /// Returns a nonzero value if objects of this type require
1157 /// non-trivial work to clean up after. Non-zero because it's
1158 /// conceivable that qualifiers (objc_gc(weak)?) could make
1159 /// something require destruction.
1160 DestructionKind isDestructedType() const {
1161 return isDestructedTypeImpl(*this);
1162 }
1163
1164 /// Determine whether expressions of the given type are forbidden
1165 /// from being lvalues in C.
1166 ///
1167 /// The expression types that are forbidden to be lvalues are:
1168 /// - 'void', but not qualified void
1169 /// - function types
1170 ///
1171 /// The exact rule here is C99 6.3.2.1:
1172 /// An lvalue is an expression with an object type or an incomplete
1173 /// type other than void.
1174 bool isCForbiddenLValueType() const;
1175
1176 /// Substitute type arguments for the Objective-C type parameters used in the
1177 /// subject type.
1178 ///
1179 /// \param ctx ASTContext in which the type exists.
1180 ///
1181 /// \param typeArgs The type arguments that will be substituted for the
1182 /// Objective-C type parameters in the subject type, which are generally
1183 /// computed via \c Type::getObjCSubstitutions. If empty, the type
1184 /// parameters will be replaced with their bounds or id/Class, as appropriate
1185 /// for the context.
1186 ///
1187 /// \param context The context in which the subject type was written.
1188 ///
1189 /// \returns the resulting type.
1190 QualType substObjCTypeArgs(ASTContext &ctx,
1191 ArrayRef<QualType> typeArgs,
1192 ObjCSubstitutionContext context) const;
1193
1194 /// Substitute type arguments from an object type for the Objective-C type
1195 /// parameters used in the subject type.
1196 ///
1197 /// This operation combines the computation of type arguments for
1198 /// substitution (\c Type::getObjCSubstitutions) with the actual process of
1199 /// substitution (\c QualType::substObjCTypeArgs) for the convenience of
1200 /// callers that need to perform a single substitution in isolation.
1201 ///
1202 /// \param objectType The type of the object whose member type we're
1203 /// substituting into. For example, this might be the receiver of a message
1204 /// or the base of a property access.
1205 ///
1206 /// \param dc The declaration context from which the subject type was
1207 /// retrieved, which indicates (for example) which type parameters should
1208 /// be substituted.
1209 ///
1210 /// \param context The context in which the subject type was written.
1211 ///
1212 /// \returns the subject type after replacing all of the Objective-C type
1213 /// parameters with their corresponding arguments.
1214 QualType substObjCMemberType(QualType objectType,
1215 const DeclContext *dc,
1216 ObjCSubstitutionContext context) const;
1217
1218 /// Strip Objective-C "__kindof" types from the given type.
1219 QualType stripObjCKindOfType(const ASTContext &ctx) const;
1220
1221 /// Remove all qualifiers including _Atomic.
1222 QualType getAtomicUnqualifiedType() const;
1223
1224private:
1225 // These methods are implemented in a separate translation unit;
1226 // "static"-ize them to avoid creating temporary QualTypes in the
1227 // caller.
1228 static bool isConstant(QualType T, const ASTContext& Ctx);
1229 static QualType getDesugaredType(QualType T, const ASTContext &Context);
1230 static SplitQualType getSplitDesugaredType(QualType T);
1231 static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
1232 static QualType getSingleStepDesugaredTypeImpl(QualType type,
1233 const ASTContext &C);
1234 static QualType IgnoreParens(QualType T);
1235 static DestructionKind isDestructedTypeImpl(QualType type);
1236};
1237
1238} // namespace clang
1239
1240namespace llvm {
1241
1242/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
1243/// to a specific Type class.
1244template<> struct simplify_type< ::clang::QualType> {
1245 using SimpleType = const ::clang::Type *;
1246
1247 static SimpleType getSimplifiedValue(::clang::QualType Val) {
1248 return Val.getTypePtr();
1249 }
1250};
1251
1252// Teach SmallPtrSet that QualType is "basically a pointer".
1253template<>
1254struct PointerLikeTypeTraits<clang::QualType> {
1255 static inline void *getAsVoidPointer(clang::QualType P) {
1256 return P.getAsOpaquePtr();
1257 }
1258
1259 static inline clang::QualType getFromVoidPointer(void *P) {
1260 return clang::QualType::getFromOpaquePtr(P);
1261 }
1262
1263 // Various qualifiers go in low bits.
1264 enum { NumLowBitsAvailable = 0 };
1265};
1266
1267} // namespace llvm
1268
1269namespace clang {
1270
1271/// Base class that is common to both the \c ExtQuals and \c Type
1272/// classes, which allows \c QualType to access the common fields between the
1273/// two.
1274class ExtQualsTypeCommonBase {
1275 friend class ExtQuals;
1276 friend class QualType;
1277 friend class Type;
1278
1279 /// The "base" type of an extended qualifiers type (\c ExtQuals) or
1280 /// a self-referential pointer (for \c Type).
1281 ///
1282 /// This pointer allows an efficient mapping from a QualType to its
1283 /// underlying type pointer.
1284 const Type *const BaseType;
1285
1286 /// The canonical type of this type. A QualType.
1287 QualType CanonicalType;
1288
1289 ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
1290 : BaseType(baseType), CanonicalType(canon) {}
1291};
1292
1293/// We can encode up to four bits in the low bits of a
1294/// type pointer, but there are many more type qualifiers that we want
1295/// to be able to apply to an arbitrary type. Therefore we have this
1296/// struct, intended to be heap-allocated and used by QualType to
1297/// store qualifiers.
1298///
1299/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
1300/// in three low bits on the QualType pointer; a fourth bit records whether
1301/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
1302/// Objective-C GC attributes) are much more rare.
1303class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
1304 // NOTE: changing the fast qualifiers should be straightforward as
1305 // long as you don't make 'const' non-fast.
1306 // 1. Qualifiers:
1307 // a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
1308 // Fast qualifiers must occupy the low-order bits.
1309 // b) Update Qualifiers::FastWidth and FastMask.
1310 // 2. QualType:
1311 // a) Update is{Volatile,Restrict}Qualified(), defined inline.
1312 // b) Update remove{Volatile,Restrict}, defined near the end of
1313 // this header.
1314 // 3. ASTContext:
1315 // a) Update get{Volatile,Restrict}Type.
1316
1317 /// The immutable set of qualifiers applied by this node. Always contains
1318 /// extended qualifiers.
1319 Qualifiers Quals;
1320
1321 ExtQuals *this_() { return this; }
1322
1323public:
1324 ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
1325 : ExtQualsTypeCommonBase(baseType,
1326 canon.isNull() ? QualType(this_(), 0) : canon),
1327 Quals(quals) {
1328 assert(Quals.hasNonFastQualifiers()
1329 && "ExtQuals created with no fast qualifiers");
1330 assert(!Quals.hasFastQualifiers()
1331 && "ExtQuals created with fast qualifiers");
1332 }
1333
1334 Qualifiers getQualifiers() const { return Quals; }
1335
1336 bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
1337 Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
1338
1339 bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
1340 Qualifiers::ObjCLifetime getObjCLifetime() const {
1341 return Quals.getObjCLifetime();
1342 }
1343
1344 bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
1345 LangAS getAddressSpace() const { return Quals.getAddressSpace(); }
1346
1347 const Type *getBaseType() const { return BaseType; }
1348
1349public:
1350 void Profile(llvm::FoldingSetNodeID &ID) const {
1351 Profile(ID, getBaseType(), Quals);
1352 }
1353
1354 static void Profile(llvm::FoldingSetNodeID &ID,
1355 const Type *BaseType,
1356 Qualifiers Quals) {
1357 assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
1358 ID.AddPointer(BaseType);
1359 Quals.Profile(ID);
1360 }
1361};
1362
1363/// The kind of C++11 ref-qualifier associated with a function type.
1364/// This determines whether a member function's "this" object can be an
1365/// lvalue, rvalue, or neither.
1366enum RefQualifierKind {
1367 /// No ref-qualifier was provided.
1368 RQ_None = 0,
1369
1370 /// An lvalue ref-qualifier was provided (\c &).
1371 RQ_LValue,
1372
1373 /// An rvalue ref-qualifier was provided (\c &&).
1374 RQ_RValue
1375};
1376
1377/// Which keyword(s) were used to create an AutoType.
1378enum class AutoTypeKeyword {
1379 /// auto
1380 Auto,
1381
1382 /// decltype(auto)
1383 DecltypeAuto,
1384
1385 /// __auto_type (GNU extension)
1386 GNUAutoType
1387};
1388
1389/// The base class of the type hierarchy.
1390///
1391/// A central concept with types is that each type always has a canonical
1392/// type. A canonical type is the type with any typedef names stripped out
1393/// of it or the types it references. For example, consider:
1394///
1395/// typedef int foo;
1396/// typedef foo* bar;
1397/// 'int *' 'foo *' 'bar'
1398///
1399/// There will be a Type object created for 'int'. Since int is canonical, its
1400/// CanonicalType pointer points to itself. There is also a Type for 'foo' (a
1401/// TypedefType). Its CanonicalType pointer points to the 'int' Type. Next
1402/// there is a PointerType that represents 'int*', which, like 'int', is
1403/// canonical. Finally, there is a PointerType type for 'foo*' whose canonical
1404/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1405/// is also 'int*'.
1406///
1407/// Non-canonical types are useful for emitting diagnostics, without losing
1408/// information about typedefs being used. Canonical types are useful for type
1409/// comparisons (they allow by-pointer equality tests) and useful for reasoning
1410/// about whether something has a particular form (e.g. is a function type),
1411/// because they implicitly, recursively, strip all typedefs out of a type.
1412///
1413/// Types, once created, are immutable.
1414///
1415class Type : public ExtQualsTypeCommonBase {
1416public:
1417 enum TypeClass {
1418#define TYPE(Class, Base) Class,
1419#define LAST_TYPE(Class) TypeLast = Class,
1420#define ABSTRACT_TYPE(Class, Base)
1421#include "clang/AST/TypeNodes.def"
1422 TagFirst = Record, TagLast = Enum
1423 };
1424
1425private:
1426 /// Bitfields required by the Type class.
1427 class TypeBitfields {
1428 friend class Type;
1429 template <class T> friend class TypePropertyCache;
1430
1431 /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1432 unsigned TC : 8;
1433
1434 /// Whether this type is a dependent type (C++ [temp.dep.type]).
1435 unsigned Dependent : 1;
1436
1437 /// Whether this type somehow involves a template parameter, even
1438 /// if the resolution of the type does not depend on a template parameter.
1439 unsigned InstantiationDependent : 1;
1440
1441 /// Whether this type is a variably-modified type (C99 6.7.5).
1442 unsigned VariablyModified : 1;
1443
1444 /// Whether this type contains an unexpanded parameter pack
1445 /// (for C++11 variadic templates).
1446 unsigned ContainsUnexpandedParameterPack : 1;
1447
1448 /// True if the cache (i.e. the bitfields here starting with
1449 /// 'Cache') is valid.
1450 mutable unsigned CacheValid : 1;
1451
1452 /// Linkage of this type.
1453 mutable unsigned CachedLinkage : 3;
1454
1455 /// Whether this type involves and local or unnamed types.
1456 mutable unsigned CachedLocalOrUnnamed : 1;
1457
1458 /// Whether this type comes from an AST file.
1459 mutable unsigned FromAST : 1;
1460
1461 bool isCacheValid() const {
1462 return CacheValid;
1463 }
1464
1465 Linkage getLinkage() const {
1466 assert(isCacheValid() && "getting linkage from invalid cache");
1467 return static_cast<Linkage>(CachedLinkage);
1468 }
1469
1470 bool hasLocalOrUnnamedType() const {
1471 assert(isCacheValid() && "getting linkage from invalid cache");
1472 return CachedLocalOrUnnamed;
1473 }
1474 };
1475 enum { NumTypeBits = 18 };
1476
1477protected:
1478 // These classes allow subclasses to somewhat cleanly pack bitfields
1479 // into Type.
1480
1481 class ArrayTypeBitfields {
1482 friend class ArrayType;
1483
1484 unsigned : NumTypeBits;
1485
1486 /// CVR qualifiers from declarations like
1487 /// 'int X[static restrict 4]'. For function parameters only.
1488 unsigned IndexTypeQuals : 3;
1489
1490 /// Storage class qualifiers from declarations like
1491 /// 'int X[static restrict 4]'. For function parameters only.
1492 /// Actually an ArrayType::ArraySizeModifier.
1493 unsigned SizeModifier : 3;
1494 };
1495
1496 class BuiltinTypeBitfields {
1497 friend class BuiltinType;
1498
1499 unsigned : NumTypeBits;
1500
1501 /// The kind (BuiltinType::Kind) of builtin type this is.
1502 unsigned Kind : 8;
1503 };
1504
1505 /// FunctionTypeBitfields store various bits belonging to FunctionProtoType.
1506 /// Only common bits are stored here. Additional uncommon bits are stored
1507 /// in a trailing object after FunctionProtoType.
1508 class FunctionTypeBitfields {
1509 friend class FunctionProtoType;
1510 friend class FunctionType;
1511
1512 unsigned : NumTypeBits;
1513
1514 /// Extra information which affects how the function is called, like
1515 /// regparm and the calling convention.
1516 unsigned ExtInfo : 12;
1517
1518 /// The ref-qualifier associated with a \c FunctionProtoType.
1519 ///
1520 /// This is a value of type \c RefQualifierKind.
1521 unsigned RefQualifier : 2;
1522
1523 /// Used only by FunctionProtoType, put here to pack with the
1524 /// other bitfields.
1525 /// The qualifiers are part of FunctionProtoType because...
1526 ///
1527 /// C++ 8.3.5p4: The return type, the parameter type list and the
1528 /// cv-qualifier-seq, [...], are part of the function type.
1529 unsigned TypeQuals : 4;
1530
1531 /// The number of parameters this function has, not counting '...'.
1532 /// According to [implimits] 8 bits should be enough here but this is
1533 /// somewhat easy to exceed with metaprogramming and so we would like to
1534 /// keep NumParams as wide as reasonably possible.
1535 unsigned NumParams : 16;
1536
1537 /// The type of exception specification this function has.
1538 unsigned ExceptionSpecType : 4;
1539
1540 /// Whether this function has extended parameter information.
1541 unsigned HasExtParameterInfos : 1;
1542
1543 /// Whether the function is variadic.
1544 unsigned Variadic : 1;
1545
1546 /// Whether this function has a trailing return type.
1547 unsigned HasTrailingReturn : 1;
1548 };
1549
1550 class ObjCObjectTypeBitfields {
1551 friend class ObjCObjectType;
1552
1553 unsigned : NumTypeBits;
1554
1555 /// The number of type arguments stored directly on this object type.
1556 unsigned NumTypeArgs : 7;
1557
1558 /// The number of protocols stored directly on this object type.
1559 unsigned NumProtocols : 6;
1560
1561 /// Whether this is a "kindof" type.
1562 unsigned IsKindOf : 1;
1563 };
1564
1565 class ReferenceTypeBitfields {
1566 friend class ReferenceType;
1567
1568 unsigned : NumTypeBits;
1569
1570 /// True if the type was originally spelled with an lvalue sigil.
1571 /// This is never true of rvalue references but can also be false
1572 /// on lvalue references because of C++0x [dcl.typedef]p9,
1573 /// as follows:
1574 ///
1575 /// typedef int &ref; // lvalue, spelled lvalue
1576 /// typedef int &&rvref; // rvalue
1577 /// ref &a; // lvalue, inner ref, spelled lvalue
1578 /// ref &&a; // lvalue, inner ref
1579 /// rvref &a; // lvalue, inner ref, spelled lvalue
1580 /// rvref &&a; // rvalue, inner ref
1581 unsigned SpelledAsLValue : 1;
1582
1583 /// True if the inner type is a reference type. This only happens
1584 /// in non-canonical forms.
1585 unsigned InnerRef : 1;
1586 };
1587
1588 class TypeWithKeywordBitfields {
1589 friend class TypeWithKeyword;
1590
1591 unsigned : NumTypeBits;
1592
1593 /// An ElaboratedTypeKeyword. 8 bits for efficient access.
1594 unsigned Keyword : 8;
1595 };
1596
1597 enum { NumTypeWithKeywordBits = 8 };
1598
1599 class ElaboratedTypeBitfields {
1600 friend class ElaboratedType;
1601
1602 unsigned : NumTypeBits;
1603 unsigned : NumTypeWithKeywordBits;
1604
1605 /// Whether the ElaboratedType has a trailing OwnedTagDecl.
1606 unsigned HasOwnedTagDecl : 1;
1607 };
1608
1609 class VectorTypeBitfields {
1610 friend class VectorType;
1611 friend class DependentVectorType;
1612
1613 unsigned : NumTypeBits;
1614
1615 /// The kind of vector, either a generic vector type or some
1616 /// target-specific vector type such as for AltiVec or Neon.
1617 unsigned VecKind : 3;
1618
1619 /// The number of elements in the vector.
1620 unsigned NumElements : 29 - NumTypeBits;
1621
1622 enum { MaxNumElements = (1 << (29 - NumTypeBits)) - 1 };
1623 };
1624
1625 class AttributedTypeBitfields {
1626 friend class AttributedType;
1627
1628 unsigned : NumTypeBits;
1629
1630 /// An AttributedType::Kind
1631 unsigned AttrKind : 32 - NumTypeBits;
1632 };
1633
1634 class AutoTypeBitfields {
1635 friend class AutoType;
1636
1637 unsigned : NumTypeBits;
1638
1639 /// Was this placeholder type spelled as 'auto', 'decltype(auto)',
1640 /// or '__auto_type'? AutoTypeKeyword value.
1641 unsigned Keyword : 2;
1642 };
1643
1644 class SubstTemplateTypeParmPackTypeBitfields {
1645 friend class SubstTemplateTypeParmPackType;
1646
1647 unsigned : NumTypeBits;
1648
1649 /// The number of template arguments in \c Arguments, which is
1650 /// expected to be able to hold at least 1024 according to [implimits].
1651 /// However as this limit is somewhat easy to hit with template
1652 /// metaprogramming we'd prefer to keep it as large as possible.
1653 /// At the moment it has been left as a non-bitfield since this type
1654 /// safely fits in 64 bits as an unsigned, so there is no reason to
1655 /// introduce the performance impact of a bitfield.
1656 unsigned NumArgs;
1657 };
1658
1659 class TemplateSpecializationTypeBitfields {
1660 friend class TemplateSpecializationType;
1661
1662 unsigned : NumTypeBits;
1663
1664 /// Whether this template specialization type is a substituted type alias.
1665 unsigned TypeAlias : 1;
1666
1667 /// The number of template arguments named in this class template
1668 /// specialization, which is expected to be able to hold at least 1024
1669 /// according to [implimits]. However, as this limit is somewhat easy to
1670 /// hit with template metaprogramming we'd prefer to keep it as large
1671 /// as possible. At the moment it has been left as a non-bitfield since
1672 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1673 /// to introduce the performance impact of a bitfield.
1674 unsigned NumArgs;
1675 };
1676
1677 class DependentTemplateSpecializationTypeBitfields {
1678 friend class DependentTemplateSpecializationType;
1679
1680 unsigned : NumTypeBits;
1681 unsigned : NumTypeWithKeywordBits;
1682
1683 /// The number of template arguments named in this class template
1684 /// specialization, which is expected to be able to hold at least 1024
1685 /// according to [implimits]. However, as this limit is somewhat easy to
1686 /// hit with template metaprogramming we'd prefer to keep it as large
1687 /// as possible. At the moment it has been left as a non-bitfield since
1688 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1689 /// to introduce the performance impact of a bitfield.
1690 unsigned NumArgs;
1691 };
1692
1693 class PackExpansionTypeBitfields {
1694 friend class PackExpansionType;
1695
1696 unsigned : NumTypeBits;
1697
1698 /// The number of expansions that this pack expansion will
1699 /// generate when substituted (+1), which is expected to be able to
1700 /// hold at least 1024 according to [implimits]. However, as this limit
1701 /// is somewhat easy to hit with template metaprogramming we'd prefer to
1702 /// keep it as large as possible. At the moment it has been left as a
1703 /// non-bitfield since this type safely fits in 64 bits as an unsigned, so
1704 /// there is no reason to introduce the performance impact of a bitfield.
1705 ///
1706 /// This field will only have a non-zero value when some of the parameter
1707 /// packs that occur within the pattern have been substituted but others
1708 /// have not.
1709 unsigned NumExpansions;
1710 };
1711
1712 union {
1713 TypeBitfields TypeBits;
1714 ArrayTypeBitfields ArrayTypeBits;
1715 AttributedTypeBitfields AttributedTypeBits;
1716 AutoTypeBitfields AutoTypeBits;
1717 BuiltinTypeBitfields BuiltinTypeBits;
1718 FunctionTypeBitfields FunctionTypeBits;
1719 ObjCObjectTypeBitfields ObjCObjectTypeBits;
1720 ReferenceTypeBitfields ReferenceTypeBits;
1721 TypeWithKeywordBitfields TypeWithKeywordBits;
1722 ElaboratedTypeBitfields ElaboratedTypeBits;
1723 VectorTypeBitfields VectorTypeBits;
1724 SubstTemplateTypeParmPackTypeBitfields SubstTemplateTypeParmPackTypeBits;
1725 TemplateSpecializationTypeBitfields TemplateSpecializationTypeBits;
1726 DependentTemplateSpecializationTypeBitfields
1727 DependentTemplateSpecializationTypeBits;
1728 PackExpansionTypeBitfields PackExpansionTypeBits;
1729
1730 static_assert(sizeof(TypeBitfields) <= 8,
1731 "TypeBitfields is larger than 8 bytes!");
1732 static_assert(sizeof(ArrayTypeBitfields) <= 8,
1733 "ArrayTypeBitfields is larger than 8 bytes!");
1734 static_assert(sizeof(AttributedTypeBitfields) <= 8,
1735 "AttributedTypeBitfields is larger than 8 bytes!");
1736 static_assert(sizeof(AutoTypeBitfields) <= 8,
1737 "AutoTypeBitfields is larger than 8 bytes!");
1738 static_assert(sizeof(BuiltinTypeBitfields) <= 8,
1739 "BuiltinTypeBitfields is larger than 8 bytes!");
1740 static_assert(sizeof(FunctionTypeBitfields) <= 8,
1741 "FunctionTypeBitfields is larger than 8 bytes!");
1742 static_assert(sizeof(ObjCObjectTypeBitfields) <= 8,
1743 "ObjCObjectTypeBitfields is larger than 8 bytes!");
1744 static_assert(sizeof(ReferenceTypeBitfields) <= 8,
1745 "ReferenceTypeBitfields is larger than 8 bytes!");
1746 static_assert(sizeof(TypeWithKeywordBitfields) <= 8,
1747 "TypeWithKeywordBitfields is larger than 8 bytes!");
1748 static_assert(sizeof(ElaboratedTypeBitfields) <= 8,
1749 "ElaboratedTypeBitfields is larger than 8 bytes!");
1750 static_assert(sizeof(VectorTypeBitfields) <= 8,
1751 "VectorTypeBitfields is larger than 8 bytes!");
1752 static_assert(sizeof(SubstTemplateTypeParmPackTypeBitfields) <= 8,
1753 "SubstTemplateTypeParmPackTypeBitfields is larger"
1754 " than 8 bytes!");
1755 static_assert(sizeof(TemplateSpecializationTypeBitfields) <= 8,
1756 "TemplateSpecializationTypeBitfields is larger"
1757 " than 8 bytes!");
1758 static_assert(sizeof(DependentTemplateSpecializationTypeBitfields) <= 8,
1759 "DependentTemplateSpecializationTypeBitfields is larger"
1760 " than 8 bytes!");
1761 static_assert(sizeof(PackExpansionTypeBitfields) <= 8,
1762 "PackExpansionTypeBitfields is larger than 8 bytes");
1763 };
1764
1765private:
1766 template <class T> friend class TypePropertyCache;
1767
1768 /// Set whether this type comes from an AST file.
1769 void setFromAST(bool V = true) const {
1770 TypeBits.FromAST = V;
1771 }
1772
1773protected:
1774 friend class ASTContext;
1775
1776 Type(TypeClass tc, QualType canon, bool Dependent,
1777 bool InstantiationDependent, bool VariablyModified,
1778 bool ContainsUnexpandedParameterPack)
1779 : ExtQualsTypeCommonBase(this,
1780 canon.isNull() ? QualType(this_(), 0) : canon) {
1781 TypeBits.TC = tc;
1782 TypeBits.Dependent = Dependent;
1783 TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
1784 TypeBits.VariablyModified = VariablyModified;
1785 TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1786 TypeBits.CacheValid = false;
1787 TypeBits.CachedLocalOrUnnamed = false;
1788 TypeBits.CachedLinkage = NoLinkage;
1789 TypeBits.FromAST = false;
1790 }
1791
1792 // silence VC++ warning C4355: 'this' : used in base member initializer list
1793 Type *this_() { return this; }
1794
1795 void setDependent(bool D = true) {
1796 TypeBits.Dependent = D;
1797 if (D)
1798 TypeBits.InstantiationDependent = true;
1799 }
1800
1801 void setInstantiationDependent(bool D = true) {
1802 TypeBits.InstantiationDependent = D; }
1803
1804 void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM; }
1805
1806 void setContainsUnexpandedParameterPack(bool PP = true) {
1807 TypeBits.ContainsUnexpandedParameterPack = PP;
1808 }
1809
1810public:
1811 friend class ASTReader;
1812 friend class ASTWriter;
1813
1814 Type(const Type &) = delete;
1815 Type &operator=(const Type &) = delete;
1816
1817 TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1818
1819 /// Whether this type comes from an AST file.
1820 bool isFromAST() const { return TypeBits.FromAST; }
1821
1822 /// Whether this type is or contains an unexpanded parameter
1823 /// pack, used to support C++0x variadic templates.
1824 ///
1825 /// A type that contains a parameter pack shall be expanded by the
1826 /// ellipsis operator at some point. For example, the typedef in the
1827 /// following example contains an unexpanded parameter pack 'T':
1828 ///
1829 /// \code
1830 /// template<typename ...T>
1831 /// struct X {
1832 /// typedef T* pointer_types; // ill-formed; T is a parameter pack.
1833 /// };
1834 /// \endcode
1835 ///
1836 /// Note that this routine does not specify which
1837 bool containsUnexpandedParameterPack() const {
1838 return TypeBits.ContainsUnexpandedParameterPack;
1839 }
1840
1841 /// Determines if this type would be canonical if it had no further
1842 /// qualification.
1843 bool isCanonicalUnqualified() const {
1844 return CanonicalType == QualType(this, 0);
1845 }
1846
1847 /// Pull a single level of sugar off of this locally-unqualified type.
1848 /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
1849 /// or QualType::getSingleStepDesugaredType(const ASTContext&).
1850 QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
1851
1852 /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1853 /// object types, function types, and incomplete types.
1854
1855 /// Return true if this is an incomplete type.
1856 /// A type that can describe objects, but which lacks information needed to
1857 /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1858 /// routine will need to determine if the size is actually required.
1859 ///
1860 /// Def If non-null, and the type refers to some kind of declaration
1861 /// that can be completed (such as a C struct, C++ class, or Objective-C
1862 /// class), will be set to the declaration.
1863 bool isIncompleteType(NamedDecl **Def = nullptr) const;
1864
1865 /// Return true if this is an incomplete or object
1866 /// type, in other words, not a function type.
1867 bool isIncompleteOrObjectType() const {
1868 return !isFunctionType();
1869 }
1870
1871 /// Determine whether this type is an object type.
1872 bool isObjectType() const {
1873 // C++ [basic.types]p8:
1874 // An object type is a (possibly cv-qualified) type that is not a
1875 // function type, not a reference type, and not a void type.
1876 return !isReferenceType() && !isFunctionType() && !isVoidType();
1877 }
1878
1879 /// Return true if this is a literal type
1880 /// (C++11 [basic.types]p10)
1881 bool isLiteralType(const ASTContext &Ctx) const;
1882
1883 /// Test if this type is a standard-layout type.
1884 /// (C++0x [basic.type]p9)
1885 bool isStandardLayoutType() const;
1886
1887 /// Helper methods to distinguish type categories. All type predicates
1888 /// operate on the canonical type, ignoring typedefs and qualifiers.
1889
1890 /// Returns true if the type is a builtin type.
1891 bool isBuiltinType() const;
1892
1893 /// Test for a particular builtin type.
1894 bool isSpecificBuiltinType(unsigned K) const;
1895
1896 /// Test for a type which does not represent an actual type-system type but
1897 /// is instead used as a placeholder for various convenient purposes within
1898 /// Clang. All such types are BuiltinTypes.
1899 bool isPlaceholderType() const;
1900 const BuiltinType *getAsPlaceholderType() const;
1901
1902 /// Test for a specific placeholder type.
1903 bool isSpecificPlaceholderType(unsigned K) const;
1904
1905 /// Test for a placeholder type other than Overload; see
1906 /// BuiltinType::isNonOverloadPlaceholderType.
1907 bool isNonOverloadPlaceholderType() const;
1908
1909 /// isIntegerType() does *not* include complex integers (a GCC extension).
1910 /// isComplexIntegerType() can be used to test for complex integers.
1911 bool isIntegerType() const; // C99 6.2.5p17 (int, char, bool, enum)
1912 bool isEnumeralType() const;
1913
1914 /// Determine whether this type is a scoped enumeration type.
1915 bool isScopedEnumeralType() const;
1916 bool isBooleanType() const;
1917 bool isCharType() const;
1918 bool isWideCharType() const;
1919 bool isChar8Type() const;
1920 bool isChar16Type() const;
1921 bool isChar32Type() const;
1922 bool isAnyCharacterType() const;
1923 bool isIntegralType(const ASTContext &Ctx) const;
1924
1925 /// Determine whether this type is an integral or enumeration type.
1926 bool isIntegralOrEnumerationType() const;
1927
1928 /// Determine whether this type is an integral or unscoped enumeration type.
1929 bool isIntegralOrUnscopedEnumerationType() const;
1930
1931 /// Floating point categories.
1932 bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1933 /// isComplexType() does *not* include complex integers (a GCC extension).
1934 /// isComplexIntegerType() can be used to test for complex integers.
1935 bool isComplexType() const; // C99 6.2.5p11 (complex)
1936 bool isAnyComplexType() const; // C99 6.2.5p11 (complex) + Complex Int.
1937 bool isFloatingType() const; // C99 6.2.5p11 (real floating + complex)
1938 bool isHalfType() const; // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
1939 bool isFloat16Type() const; // C11 extension ISO/IEC TS 18661
1940 bool isFloat128Type() const;
1941 bool isRealType() const; // C99 6.2.5p17 (real floating + integer)
1942 bool isArithmeticType() const; // C99 6.2.5p18 (integer + floating)
1943 bool isVoidType() const; // C99 6.2.5p19
1944 bool isScalarType() const; // C99 6.2.5p21 (arithmetic + pointers)
1945 bool isAggregateType() const;
1946 bool isFundamentalType() const;
1947 bool isCompoundType() const;
1948
1949 // Type Predicates: Check to see if this type is structurally the specified
1950 // type, ignoring typedefs and qualifiers.
1951 bool isFunctionType() const;
1952 bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
1953 bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
1954 bool isPointerType() const;
1955 bool isAnyPointerType() const; // Any C pointer or ObjC object pointer
1956 bool isBlockPointerType() const;
1957 bool isVoidPointerType() const;
1958 bool isReferenceType() const;
1959 bool isLValueReferenceType() const;
1960 bool isRValueReferenceType() const;
1961 bool isFunctionPointerType() const;
1962 bool isMemberPointerType() const;
1963 bool isMemberFunctionPointerType() const;
1964 bool isMemberDataPointerType() const;
1965 bool isArrayType() const;
1966 bool isConstantArrayType() const;
1967 bool isIncompleteArrayType() const;
1968 bool isVariableArrayType() const;
1969 bool isDependentSizedArrayType() const;
1970 bool isRecordType() const;
1971 bool isClassType() const;
1972 bool isStructureType() const;
1973 bool isObjCBoxableRecordType() const;
1974 bool isInterfaceType() const;
1975 bool isStructureOrClassType() const;
1976 bool isUnionType() const;
1977 bool isComplexIntegerType() const; // GCC _Complex integer type.
1978 bool isVectorType() const; // GCC vector type.
1979 bool isExtVectorType() const; // Extended vector type.
1980 bool isDependentAddressSpaceType() const; // value-dependent address space qualifier
1981 bool isObjCObjectPointerType() const; // pointer to ObjC object
1982 bool isObjCRetainableType() const; // ObjC object or block pointer
1983 bool isObjCLifetimeType() const; // (array of)* retainable type
1984 bool isObjCIndirectLifetimeType() const; // (pointer to)* lifetime type
1985 bool isObjCNSObjectType() const; // __attribute__((NSObject))
1986 bool isObjCIndependentClassType() const; // __attribute__((objc_independent_class))
1987 // FIXME: change this to 'raw' interface type, so we can used 'interface' type
1988 // for the common case.
1989 bool isObjCObjectType() const; // NSString or typeof(*(id)0)
1990 bool isObjCQualifiedInterfaceType() const; // NSString<foo>
1991 bool isObjCQualifiedIdType() const; // id<foo>
1992 bool isObjCQualifiedClassType() const; // Class<foo>
1993 bool isObjCObjectOrInterfaceType() const;
1994 bool isObjCIdType() const; // id
1995
1996 /// Was this type written with the special inert-in-ARC __unsafe_unretained
1997 /// qualifier?
1998 ///
1999 /// This approximates the answer to the following question: if this
2000 /// translation unit were compiled in ARC, would this type be qualified
2001 /// with __unsafe_unretained?
2002 bool isObjCInertUnsafeUnretainedType() const {
2003 return hasAttr(attr::ObjCInertUnsafeUnretained);
2004 }
2005
2006 /// Whether the type is Objective-C 'id' or a __kindof type of an
2007 /// object type, e.g., __kindof NSView * or __kindof id
2008 /// <NSCopying>.
2009 ///
2010 /// \param bound Will be set to the bound on non-id subtype types,
2011 /// which will be (possibly specialized) Objective-C class type, or
2012 /// null for 'id.
2013 bool isObjCIdOrObjectKindOfType(const ASTContext &ctx,
2014 const ObjCObjectType *&bound) const;
2015
2016 bool isObjCClassType() const; // Class
2017
2018 /// Whether the type is Objective-C 'Class' or a __kindof type of an
2019 /// Class type, e.g., __kindof Class <NSCopying>.
2020 ///
2021 /// Unlike \c isObjCIdOrObjectKindOfType, there is no relevant bound
2022 /// here because Objective-C's type system cannot express "a class
2023 /// object for a subclass of NSFoo".
2024 bool isObjCClassOrClassKindOfType() const;
2025
2026 bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const;
2027 bool isObjCSelType() const; // Class
2028 bool isObjCBuiltinType() const; // 'id' or 'Class'
2029 bool isObjCARCBridgableType() const;
2030 bool isCARCBridgableType() const;
2031 bool isTemplateTypeParmType() const; // C++ template type parameter
2032 bool isNullPtrType() const; // C++11 std::nullptr_t
2033 bool isAlignValT() const; // C++17 std::align_val_t
2034 bool isStdByteType() const; // C++17 std::byte
2035 bool isAtomicType() const; // C11 _Atomic()
2036
2037#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2038 bool is##Id##Type() const;
2039#include "clang/Basic/OpenCLImageTypes.def"
2040
2041 bool isImageType() const; // Any OpenCL image type
2042
2043 bool isSamplerT() const; // OpenCL sampler_t
2044 bool isEventT() const; // OpenCL event_t
2045 bool isClkEventT() const; // OpenCL clk_event_t
2046 bool isQueueT() const; // OpenCL queue_t
2047 bool isReserveIDT() const; // OpenCL reserve_id_t
2048
2049#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2050 bool is##Id##Type() const;
2051#include "clang/Basic/OpenCLExtensionTypes.def"
2052 // Type defined in cl_intel_device_side_avc_motion_estimation OpenCL extension
2053 bool isOCLIntelSubgroupAVCType() const;
2054 bool isOCLExtOpaqueType() const; // Any OpenCL extension type
2055
2056 bool isPipeType() const; // OpenCL pipe type
2057 bool isOpenCLSpecificType() const; // Any OpenCL specific type
2058
2059 /// Determines if this type, which must satisfy
2060 /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
2061 /// than implicitly __strong.
2062 bool isObjCARCImplicitlyUnretainedType() const;
2063
2064 /// Return the implicit lifetime for this type, which must not be dependent.
2065 Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
2066
2067 enum ScalarTypeKind {
2068 STK_CPointer,
2069 STK_BlockPointer,
2070 STK_ObjCObjectPointer,
2071 STK_MemberPointer,
2072 STK_Bool,
2073 STK_Integral,
2074 STK_Floating,
2075 STK_IntegralComplex,
2076 STK_FloatingComplex,
2077 STK_FixedPoint
2078 };
2079
2080 /// Given that this is a scalar type, classify it.
2081 ScalarTypeKind getScalarTypeKind() const;
2082
2083 /// Whether this type is a dependent type, meaning that its definition
2084 /// somehow depends on a template parameter (C++ [temp.dep.type]).
2085 bool isDependentType() const { return TypeBits.Dependent; }
2086
2087 /// Determine whether this type is an instantiation-dependent type,
2088 /// meaning that the type involves a template parameter (even if the
2089 /// definition does not actually depend on the type substituted for that
2090 /// template parameter).
2091 bool isInstantiationDependentType() const {
2092 return TypeBits.InstantiationDependent;
2093 }
2094
2095 /// Determine whether this type is an undeduced type, meaning that
2096 /// it somehow involves a C++11 'auto' type or similar which has not yet been
2097 /// deduced.
2098 bool isUndeducedType() const;
2099
2100 /// Whether this type is a variably-modified type (C99 6.7.5).
2101 bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
2102
2103 /// Whether this type involves a variable-length array type
2104 /// with a definite size.
2105 bool hasSizedVLAType() const;
2106
2107 /// Whether this type is or contains a local or unnamed type.
2108 bool hasUnnamedOrLocalType() const;
2109
2110 bool isOverloadableType() const;
2111
2112 /// Determine wither this type is a C++ elaborated-type-specifier.
2113 bool isElaboratedTypeSpecifier() const;
2114
2115 bool canDecayToPointerType() const;
2116
2117 /// Whether this type is represented natively as a pointer. This includes
2118 /// pointers, references, block pointers, and Objective-C interface,
2119 /// qualified id, and qualified interface types, as well as nullptr_t.
2120 bool hasPointerRepresentation() const;
2121
2122 /// Whether this type can represent an objective pointer type for the
2123 /// purpose of GC'ability
2124 bool hasObjCPointerRepresentation() const;
2125
2126 /// Determine whether this type has an integer representation
2127 /// of some sort, e.g., it is an integer type or a vector.
2128 bool hasIntegerRepresentation() const;
2129
2130 /// Determine whether this type has an signed integer representation
2131 /// of some sort, e.g., it is an signed integer type or a vector.
2132 bool hasSignedIntegerRepresentation() const;
2133
2134 /// Determine whether this type has an unsigned integer representation
2135 /// of some sort, e.g., it is an unsigned integer type or a vector.
2136 bool hasUnsignedIntegerRepresentation() const;
2137
2138 /// Determine whether this type has a floating-point representation
2139 /// of some sort, e.g., it is a floating-point type or a vector thereof.
2140 bool hasFloatingRepresentation() const;
2141
2142 // Type Checking Functions: Check to see if this type is structurally the
2143 // specified type, ignoring typedefs and qualifiers, and return a pointer to
2144 // the best type we can.
2145 const RecordType *getAsStructureType() const;
2146 /// NOTE: getAs*ArrayType are methods on ASTContext.
2147 const RecordType *getAsUnionType() const;
2148 const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
2149 const ObjCObjectType *getAsObjCInterfaceType() const;
2150
2151 // The following is a convenience method that returns an ObjCObjectPointerType
2152 // for object declared using an interface.
2153 const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
2154 const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
2155 const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
2156 const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
2157
2158 /// Retrieves the CXXRecordDecl that this type refers to, either
2159 /// because the type is a RecordType or because it is the injected-class-name
2160 /// type of a class template or class template partial specialization.
2161 CXXRecordDecl *getAsCXXRecordDecl() const;
2162
2163 /// Retrieves the RecordDecl this type refers to.
2164 RecordDecl *getAsRecordDecl() const;
2165
2166 /// Retrieves the TagDecl that this type refers to, either
2167 /// because the type is a TagType or because it is the injected-class-name
2168 /// type of a class template or class template partial specialization.
2169 TagDecl *getAsTagDecl() const;
2170
2171 /// If this is a pointer or reference to a RecordType, return the
2172 /// CXXRecordDecl that the type refers to.
2173 ///
2174 /// If this is not a pointer or reference, or the type being pointed to does
2175 /// not refer to a CXXRecordDecl, returns NULL.
2176 const CXXRecordDecl *getPointeeCXXRecordDecl() const;
2177
2178 /// Get the DeducedType whose type will be deduced for a variable with
2179 /// an initializer of this type. This looks through declarators like pointer
2180 /// types, but not through decltype or typedefs.
2181 DeducedType *getContainedDeducedType() const;
2182
2183 /// Get the AutoType whose type will be deduced for a variable with
2184 /// an initializer of this type. This looks through declarators like pointer
2185 /// types, but not through decltype or typedefs.
2186 AutoType *getContainedAutoType() const {
2187 return dyn_cast_or_null<AutoType>(getContainedDeducedType());
2188 }
2189
2190 /// Determine whether this type was written with a leading 'auto'
2191 /// corresponding to a trailing return type (possibly for a nested
2192 /// function type within a pointer to function type or similar).
2193 bool hasAutoForTrailingReturnType() const;
2194
2195 /// Member-template getAs<specific type>'. Look through sugar for
2196 /// an instance of \<specific type>. This scheme will eventually
2197 /// replace the specific getAsXXXX methods above.
2198 ///
2199 /// There are some specializations of this member template listed
2200 /// immediately following this class.
2201 template <typename T> const T *getAs() const;
2202
2203 /// Member-template getAsAdjusted<specific type>. Look through specific kinds
2204 /// of sugar (parens, attributes, etc) for an instance of \<specific type>.
2205 /// This is used when you need to walk over sugar nodes that represent some
2206 /// kind of type adjustment from a type that was written as a \<specific type>
2207 /// to another type that is still canonically a \<specific type>.
2208 template <typename T> const T *getAsAdjusted() const;
2209
2210 /// A variant of getAs<> for array types which silently discards
2211 /// qualifiers from the outermost type.
2212 const ArrayType *getAsArrayTypeUnsafe() const;
2213
2214 /// Member-template castAs<specific type>. Look through sugar for
2215 /// the underlying instance of \<specific type>.
2216 ///
2217 /// This method has the same relationship to getAs<T> as cast<T> has
2218 /// to dyn_cast<T>; which is to say, the underlying type *must*
2219 /// have the intended type, and this method will never return null.
2220 template <typename T> const T *castAs() const;
2221
2222 /// A variant of castAs<> for array type which silently discards
2223 /// qualifiers from the outermost type.
2224 const ArrayType *castAsArrayTypeUnsafe() const;
2225
2226 /// Determine whether this type had the specified attribute applied to it
2227 /// (looking through top-level type sugar).
2228 bool hasAttr(attr::Kind AK) const;
2229
2230 /// Get the base element type of this type, potentially discarding type
2231 /// qualifiers. This should never be used when type qualifiers
2232 /// are meaningful.
2233 const Type *getBaseElementTypeUnsafe() const;
2234
2235 /// If this is an array type, return the element type of the array,
2236 /// potentially with type qualifiers missing.
2237 /// This should never be used when type qualifiers are meaningful.
2238 const Type *getArrayElementTypeNoTypeQual() const;
2239
2240 /// If this is a pointer type, return the pointee type.
2241 /// If this is an array type, return the array element type.
2242 /// This should never be used when type qualifiers are meaningful.
2243 const Type *getPointeeOrArrayElementType() const;
2244
2245 /// If this is a pointer, ObjC object pointer, or block
2246 /// pointer, this returns the respective pointee.
2247 QualType getPointeeType() const;
2248
2249 /// Return the specified type with any "sugar" removed from the type,
2250 /// removing any typedefs, typeofs, etc., as well as any qualifiers.
2251 const Type *getUnqualifiedDesugaredType() const;
2252
2253 /// More type predicates useful for type checking/promotion
2254 bool isPromotableIntegerType() const; // C99 6.3.1.1p2
2255
2256 /// Return true if this is an integer type that is
2257 /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
2258 /// or an enum decl which has a signed representation.
2259 bool isSignedIntegerType() const;
2260
2261 /// Return true if this is an integer type that is
2262 /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
2263 /// or an enum decl which has an unsigned representation.
2264 bool isUnsignedIntegerType() const;
2265
2266 /// Determines whether this is an integer type that is signed or an
2267 /// enumeration types whose underlying type is a signed integer type.
2268 bool isSignedIntegerOrEnumerationType() const;
2269
2270 /// Determines whether this is an integer type that is unsigned or an
2271 /// enumeration types whose underlying type is a unsigned integer type.
2272 bool isUnsignedIntegerOrEnumerationType() const;
2273
2274 /// Return true if this is a fixed point type according to
2275 /// ISO/IEC JTC1 SC22 WG14 N1169.
2276 bool isFixedPointType() const;
2277
2278 /// Return true if this is a saturated fixed point type according to
2279 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2280 bool isSaturatedFixedPointType() const;
2281
2282 /// Return true if this is a saturated fixed point type according to
2283 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2284 bool isUnsaturatedFixedPointType() const;
2285
2286 /// Return true if this is a fixed point type that is signed according
2287 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2288 bool isSignedFixedPointType() const;
2289
2290 /// Return true if this is a fixed point type that is unsigned according
2291 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2292 bool isUnsignedFixedPointType() const;
2293
2294 /// Return true if this is not a variable sized type,
2295 /// according to the rules of C99 6.7.5p3. It is not legal to call this on
2296 /// incomplete types.
2297 bool isConstantSizeType() const;
2298
2299 /// Returns true if this type can be represented by some
2300 /// set of type specifiers.
2301 bool isSpecifierType() const;
2302
2303 /// Determine the linkage of this type.
2304 Linkage getLinkage() const;
2305
2306 /// Determine the visibility of this type.
2307 Visibility getVisibility() const {
2308 return getLinkageAndVisibility().getVisibility();
2309 }
2310
2311 /// Return true if the visibility was explicitly set is the code.
2312 bool isVisibilityExplicit() const {
2313 return getLinkageAndVisibility().isVisibilityExplicit();
2314 }
2315
2316 /// Determine the linkage and visibility of this type.
2317 LinkageInfo getLinkageAndVisibility() const;
2318
2319 /// True if the computed linkage is valid. Used for consistency
2320 /// checking. Should always return true.
2321 bool isLinkageValid() const;
2322
2323 /// Determine the nullability of the given type.
2324 ///
2325 /// Note that nullability is only captured as sugar within the type
2326 /// system, not as part of the canonical type, so nullability will
2327 /// be lost by canonicalization and desugaring.
2328 Optional<NullabilityKind> getNullability(const ASTContext &context) const;
2329
2330 /// Determine whether the given type can have a nullability
2331 /// specifier applied to it, i.e., if it is any kind of pointer type.
2332 ///
2333 /// \param ResultIfUnknown The value to return if we don't yet know whether
2334 /// this type can have nullability because it is dependent.
2335 bool canHaveNullability(bool ResultIfUnknown = true) const;
2336
2337 /// Retrieve the set of substitutions required when accessing a member
2338 /// of the Objective-C receiver type that is declared in the given context.
2339 ///
2340 /// \c *this is the type of the object we're operating on, e.g., the
2341 /// receiver for a message send or the base of a property access, and is
2342 /// expected to be of some object or object pointer type.
2343 ///
2344 /// \param dc The declaration context for which we are building up a
2345 /// substitution mapping, which should be an Objective-C class, extension,
2346 /// category, or method within.
2347 ///
2348 /// \returns an array of type arguments that can be substituted for
2349 /// the type parameters of the given declaration context in any type described
2350 /// within that context, or an empty optional to indicate that no
2351 /// substitution is required.
2352 Optional<ArrayRef<QualType>>
2353 getObjCSubstitutions(const DeclContext *dc) const;
2354
2355 /// Determines if this is an ObjC interface type that may accept type
2356 /// parameters.
2357 bool acceptsObjCTypeParams() const;
2358
2359 const char *getTypeClassName() const;
2360
2361 QualType getCanonicalTypeInternal() const {
2362 return CanonicalType;
2363 }
2364
2365 CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
2366 void dump() const;
2367 void dump(llvm::raw_ostream &OS) const;
2368};
2369
2370/// This will check for a TypedefType by removing any existing sugar
2371/// until it reaches a TypedefType or a non-sugared type.
2372template <> const TypedefType *Type::getAs() const;
2373
2374/// This will check for a TemplateSpecializationType by removing any
2375/// existing sugar until it reaches a TemplateSpecializationType or a
2376/// non-sugared type.
2377template <> const TemplateSpecializationType *Type::getAs() const;
2378
2379/// This will check for an AttributedType by removing any existing sugar
2380/// until it reaches an AttributedType or a non-sugared type.
2381template <> const AttributedType *Type::getAs() const;
2382
2383// We can do canonical leaf types faster, because we don't have to
2384// worry about preserving child type decoration.
2385#define TYPE(Class, Base)
2386#define LEAF_TYPE(Class) \
2387template <> inline const Class##Type *Type::getAs() const { \
2388 return dyn_cast<Class##Type>(CanonicalType); \
2389} \
2390template <> inline const Class##Type *Type::castAs() const { \
2391 return cast<Class##Type>(CanonicalType); \
2392}
2393#include "clang/AST/TypeNodes.def"
2394
2395/// This class is used for builtin types like 'int'. Builtin
2396/// types are always canonical and have a literal name field.
2397class BuiltinType : public Type {
2398public:
2399 enum Kind {
2400// OpenCL image types
2401#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) Id,
2402#include "clang/Basic/OpenCLImageTypes.def"
2403// OpenCL extension types
2404#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) Id,
2405#include "clang/Basic/OpenCLExtensionTypes.def"
2406// All other builtin types
2407#define BUILTIN_TYPE(Id, SingletonId) Id,
2408#define LAST_BUILTIN_TYPE(Id) LastKind = Id
2409#include "clang/AST/BuiltinTypes.def"
2410 };
2411
2412private:
2413 friend class ASTContext; // ASTContext creates these.
2414
2415 BuiltinType(Kind K)
2416 : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
2417 /*InstantiationDependent=*/(K == Dependent),
2418 /*VariablyModified=*/false,
2419 /*Unexpanded parameter pack=*/false) {
2420 BuiltinTypeBits.Kind = K;
2421 }
2422
2423public:
2424 Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
2425 StringRef getName(const PrintingPolicy &Policy) const;
2426
2427 const char *getNameAsCString(const PrintingPolicy &Policy) const {
2428 // The StringRef is null-terminated.
2429 StringRef str = getName(Policy);
2430 assert(!str.empty() && str.data()[str.size()] == '\0');
2431 return str.data();
2432 }
2433
2434 bool isSugared() const { return false; }
2435 QualType desugar() const { return QualType(this, 0); }
2436
2437 bool isInteger() const {
2438 return getKind() >= Bool && getKind() <= Int128;
2439 }
2440
2441 bool isSignedInteger() const {
2442 return getKind() >= Char_S && getKind() <= Int128;
2443 }
2444
2445 bool isUnsignedInteger() const {
2446 return getKind() >= Bool && getKind() <= UInt128;
2447 }
2448
2449 bool isFloatingPoint() const {
2450 return getKind() >= Half && getKind() <= Float128;
2451 }
2452
2453 /// Determines whether the given kind corresponds to a placeholder type.
2454 static bool isPlaceholderTypeKind(Kind K) {
2455 return K >= Overload;
2456 }
2457
2458 /// Determines whether this type is a placeholder type, i.e. a type
2459 /// which cannot appear in arbitrary positions in a fully-formed
2460 /// expression.
2461 bool isPlaceholderType() const {
2462 return isPlaceholderTypeKind(getKind());
2463 }
2464
2465 /// Determines whether this type is a placeholder type other than
2466 /// Overload. Most placeholder types require only syntactic
2467 /// information about their context in order to be resolved (e.g.
2468 /// whether it is a call expression), which means they can (and
2469 /// should) be resolved in an earlier "phase" of analysis.
2470 /// Overload expressions sometimes pick up further information
2471 /// from their context, like whether the context expects a
2472 /// specific function-pointer type, and so frequently need
2473 /// special treatment.
2474 bool isNonOverloadPlaceholderType() const {
2475 return getKind() > Overload;
2476 }
2477
2478 static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
2479};
2480
2481/// Complex values, per C99 6.2.5p11. This supports the C99 complex
2482/// types (_Complex float etc) as well as the GCC integer complex extensions.
2483class ComplexType : public Type, public llvm::FoldingSetNode {
2484 friend class ASTContext; // ASTContext creates these.
2485
2486 QualType ElementType;
2487
2488 ComplexType(QualType Element, QualType CanonicalPtr)
2489 : Type(Complex, CanonicalPtr, Element->isDependentType(),
2490 Element->isInstantiationDependentType(),
2491 Element->isVariablyModifiedType(),
2492 Element->containsUnexpandedParameterPack()),
2493 ElementType(Element) {}
2494
2495public:
2496 QualType getElementType() const { return ElementType; }
2497
2498 bool isSugared() const { return false; }
2499 QualType desugar() const { return QualType(this, 0); }
2500
2501 void Profile(llvm::FoldingSetNodeID &ID) {
2502 Profile(ID, getElementType());
2503 }
2504
2505 static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
2506 ID.AddPointer(Element.getAsOpaquePtr());
2507 }
2508
2509 static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
2510};
2511
2512/// Sugar for parentheses used when specifying types.
2513class ParenType : public Type, public llvm::FoldingSetNode {
2514 friend class ASTContext; // ASTContext creates these.
2515
2516 QualType Inner;
2517
2518 ParenType(QualType InnerType, QualType CanonType)
2519 : Type(Paren, CanonType, InnerType->isDependentType(),
2520 InnerType->isInstantiationDependentType(),
2521 InnerType->isVariablyModifiedType(),
2522 InnerType->containsUnexpandedParameterPack()),
2523 Inner(InnerType) {}
2524
2525public:
2526 QualType getInnerType() const { return Inner; }
2527
2528 bool isSugared() const { return true; }
2529 QualType desugar() const { return getInnerType(); }
2530
2531 void Profile(llvm::FoldingSetNodeID &ID) {
2532 Profile(ID, getInnerType());
2533 }
2534
2535 static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
2536 Inner.Profile(ID);
2537 }
2538
2539 static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
2540};
2541
2542/// PointerType - C99 6.7.5.1 - Pointer Declarators.
2543class PointerType : public Type, public llvm::FoldingSetNode {
2544 friend class ASTContext; // ASTContext creates these.
2545
2546 QualType PointeeType;
2547
2548 PointerType(QualType Pointee, QualType CanonicalPtr)
2549 : Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
2550 Pointee->isInstantiationDependentType(),
2551 Pointee->isVariablyModifiedType(),
2552 Pointee->containsUnexpandedParameterPack()),
2553 PointeeType(Pointee) {}
2554
2555public:
2556 QualType getPointeeType() const { return PointeeType; }
2557
2558 /// Returns true if address spaces of pointers overlap.
2559 /// OpenCL v2.0 defines conversion rules for pointers to different
2560 /// address spaces (OpenCLC v2.0 s6.5.5) and notion of overlapping
2561 /// address spaces.
2562 /// CL1.1 or CL1.2:
2563 /// address spaces overlap iff they are they same.
2564 /// CL2.0 adds:
2565 /// __generic overlaps with any address space except for __constant.
2566 bool isAddressSpaceOverlapping(const PointerType &other) const {
2567 Qualifiers thisQuals = PointeeType.getQualifiers();
2568 Qualifiers otherQuals = other.getPointeeType().getQualifiers();
2569 // Address spaces overlap if at least one of them is a superset of another
2570 return thisQuals.isAddressSpaceSupersetOf(otherQuals) ||
2571 otherQuals.isAddressSpaceSupersetOf(thisQuals);
2572 }
2573
2574 bool isSugared() const { return false; }
2575 QualType desugar() const { return QualType(this, 0); }
2576
2577 void Profile(llvm::FoldingSetNodeID &ID) {
2578 Profile(ID, getPointeeType());
2579 }
2580
2581 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2582 ID.AddPointer(Pointee.getAsOpaquePtr());
2583 }
2584
2585 static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
2586};
2587
2588/// Represents a type which was implicitly adjusted by the semantic
2589/// engine for arbitrary reasons. For example, array and function types can
2590/// decay, and function types can have their calling conventions adjusted.
2591class AdjustedType : public Type, public llvm::FoldingSetNode {
2592 QualType OriginalTy;
2593 QualType AdjustedTy;
2594
2595protected:
2596 friend class ASTContext; // ASTContext creates these.
2597
2598 AdjustedType(TypeClass TC, QualType OriginalTy, QualType AdjustedTy,
2599 QualType CanonicalPtr)
2600 : Type(TC, CanonicalPtr, OriginalTy->isDependentType(),
2601 OriginalTy->isInstantiationDependentType(),
2602 OriginalTy->isVariablyModifiedType(),
2603 OriginalTy->containsUnexpandedParameterPack()),
2604 OriginalTy(OriginalTy), AdjustedTy(AdjustedTy) {}
2605
2606public:
2607 QualType getOriginalType() const { return OriginalTy; }
2608 QualType getAdjustedType() const { return AdjustedTy; }
2609
2610 bool isSugared() const { return true; }
2611 QualType desugar() const { return AdjustedTy; }
2612
2613 void Profile(llvm::FoldingSetNodeID &ID) {
2614 Profile(ID, OriginalTy, AdjustedTy);
2615 }
2616
2617 static void Profile(llvm::FoldingSetNodeID &ID, QualType Orig, QualType New) {
2618 ID.AddPointer(Orig.getAsOpaquePtr());
2619 ID.AddPointer(New.getAsOpaquePtr());
2620 }
2621
2622 static bool classof(const Type *T) {
2623 return T->getTypeClass() == Adjusted || T->getTypeClass() == Decayed;
2624 }
2625};
2626
2627/// Represents a pointer type decayed from an array or function type.
2628class DecayedType : public AdjustedType {
2629 friend class ASTContext; // ASTContext creates these.
2630
2631 inline
2632 DecayedType(QualType OriginalType, QualType Decayed, QualType Canonical);
2633
2634public:
2635 QualType getDecayedType() const { return getAdjustedType(); }
2636
2637 inline QualType getPointeeType() const;
2638
2639 static bool classof(const Type *T) { return T->getTypeClass() == Decayed; }
2640};
2641
2642/// Pointer to a block type.
2643/// This type is to represent types syntactically represented as
2644/// "void (^)(int)", etc. Pointee is required to always be a function type.
2645class BlockPointerType : public Type, public llvm::FoldingSetNode {
2646 friend class ASTContext; // ASTContext creates these.
2647
2648 // Block is some kind of pointer type
2649 QualType PointeeType;
2650
2651 BlockPointerType(QualType Pointee, QualType CanonicalCls)
2652 : Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
2653 Pointee->isInstantiationDependentType(),
2654 Pointee->isVariablyModifiedType(),
2655 Pointee->containsUnexpandedParameterPack()),
2656 PointeeType(Pointee) {}
2657
2658public:
2659 // Get the pointee type. Pointee is required to always be a function type.
2660 QualType getPointeeType() const { return PointeeType; }
2661
2662 bool isSugared() const { return false; }
2663 QualType desugar() const { return QualType(this, 0); }
2664
2665 void Profile(llvm::FoldingSetNodeID &ID) {
2666 Profile(ID, getPointeeType());
2667 }
2668
2669 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2670 ID.AddPointer(Pointee.getAsOpaquePtr());
2671 }
2672
2673 static bool classof(const Type *T) {
2674 return T->getTypeClass() == BlockPointer;
2675 }
2676};
2677
2678/// Base for LValueReferenceType and RValueReferenceType
2679class ReferenceType : public Type, public llvm::FoldingSetNode {
2680 QualType PointeeType;
2681
2682protected:
2683 ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
2684 bool SpelledAsLValue)
2685 : Type(tc, CanonicalRef, Referencee->isDependentType(),
2686 Referencee->isInstantiationDependentType(),
2687 Referencee->isVariablyModifiedType(),
2688 Referencee->containsUnexpandedParameterPack()),
2689 PointeeType(Referencee) {
2690 ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
2691 ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
2692 }
2693
2694public:
2695 bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
2696 bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
2697
2698 QualType getPointeeTypeAsWritten() const { return PointeeType; }
2699
2700 QualType getPointeeType() const {
2701 // FIXME: this might strip inner qualifiers; okay?
2702 const ReferenceType *T = this;
2703 while (T->isInnerRef())
2704 T = T->PointeeType->castAs<ReferenceType>();
2705 return T->PointeeType;
2706 }
2707
2708 void Profile(llvm::FoldingSetNodeID &ID) {
2709 Profile(ID, PointeeType, isSpelledAsLValue());
2710 }
2711
2712 static void Profile(llvm::FoldingSetNodeID &ID,
2713 QualType Referencee,
2714 bool SpelledAsLValue) {
2715 ID.AddPointer(Referencee.getAsOpaquePtr());
2716 ID.AddBoolean(SpelledAsLValue);
2717 }
2718
2719 static bool classof(const Type *T) {
2720 return T->getTypeClass() == LValueReference ||
2721 T->getTypeClass() == RValueReference;
2722 }
2723};
2724
2725/// An lvalue reference type, per C++11 [dcl.ref].
2726class LValueReferenceType : public ReferenceType {
2727 friend class ASTContext; // ASTContext creates these
2728
2729 LValueReferenceType(QualType Referencee, QualType CanonicalRef,
2730 bool SpelledAsLValue)
2731 : ReferenceType(LValueReference, Referencee, CanonicalRef,
2732 SpelledAsLValue) {}
2733
2734public:
2735 bool isSugared() const { return false; }
2736 QualType desugar() const { return QualType(this, 0); }
2737
2738 static bool classof(const Type *T) {
2739 return T->getTypeClass() == LValueReference;
2740 }
2741};
2742
2743/// An rvalue reference type, per C++11 [dcl.ref].
2744class RValueReferenceType : public ReferenceType {
2745 friend class ASTContext; // ASTContext creates these
2746
2747 RValueReferenceType(QualType Referencee, QualType CanonicalRef)
2748 : ReferenceType(RValueReference, Referencee, CanonicalRef, false) {}
2749
2750public:
2751 bool isSugared() const { return false; }
2752 QualType desugar() const { return QualType(this, 0); }
2753
2754 static bool classof(const Type *T) {
2755 return T->getTypeClass() == RValueReference;
2756 }
2757};
2758
2759/// A pointer to member type per C++ 8.3.3 - Pointers to members.
2760///
2761/// This includes both pointers to data members and pointer to member functions.
2762class MemberPointerType : public Type, public llvm::FoldingSetNode {
2763 friend class ASTContext; // ASTContext creates these.
2764
2765 QualType PointeeType;
2766
2767 /// The class of which the pointee is a member. Must ultimately be a
2768 /// RecordType, but could be a typedef or a template parameter too.
2769 const Type *Class;
2770
2771 MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr)
2772 : Type(MemberPointer, CanonicalPtr,
2773 Cls->isDependentType() || Pointee->isDependentType(),
2774 (Cls->isInstantiationDependentType() ||
2775 Pointee->isInstantiationDependentType()),
2776 Pointee->isVariablyModifiedType(),
2777 (Cls->containsUnexpandedParameterPack() ||
2778 Pointee->containsUnexpandedParameterPack())),
2779 PointeeType(Pointee), Class(Cls) {}
2780
2781public:
2782 QualType getPointeeType() const { return PointeeType; }
2783
2784 /// Returns true if the member type (i.e. the pointee type) is a
2785 /// function type rather than a data-member type.
2786 bool isMemberFunctionPointer() const {
2787 return PointeeType->isFunctionProtoType();
2788 }
2789
2790 /// Returns true if the member type (i.e. the pointee type) is a
2791 /// data type rather than a function type.
2792 bool isMemberDataPointer() const {
2793 return !PointeeType->isFunctionProtoType();
2794 }
2795
2796 const Type *getClass() const { return Class; }
2797 CXXRecordDecl *getMostRecentCXXRecordDecl() const;
2798
2799 bool isSugared() const { return false; }
2800 QualType desugar() const { return QualType(this, 0); }
2801
2802 void Profile(llvm::FoldingSetNodeID &ID) {
2803 Profile(ID, getPointeeType(), getClass());
2804 }
2805
2806 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
2807 const Type *Class) {
2808 ID.AddPointer(Pointee.getAsOpaquePtr());
2809 ID.AddPointer(Class);
2810 }
2811
2812 static bool classof(const Type *T) {
2813 return T->getTypeClass() == MemberPointer;
2814 }
2815};
2816
2817/// Represents an array type, per C99 6.7.5.2 - Array Declarators.
2818class ArrayType : public Type, public llvm::FoldingSetNode {
2819public:
2820 /// Capture whether this is a normal array (e.g. int X[4])
2821 /// an array with a static size (e.g. int X[static 4]), or an array
2822 /// with a star size (e.g. int X[*]).
2823 /// 'static' is only allowed on function parameters.
2824 enum ArraySizeModifier {
2825 Normal, Static, Star
2826 };
2827
2828private:
2829 /// The element type of the array.
2830 QualType ElementType;
2831
2832protected:
2833 friend class ASTContext; // ASTContext creates these.
2834
2835 // C++ [temp.dep.type]p1:
2836 // A type is dependent if it is...
2837 // - an array type constructed from any dependent type or whose
2838 // size is specified by a constant expression that is
2839 // value-dependent,
2840 ArrayType(TypeClass tc, QualType et, QualType can,
2841 ArraySizeModifier sm, unsigned tq,
2842 bool ContainsUnexpandedParameterPack)
2843 : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
2844 et->isInstantiationDependentType() || tc == DependentSizedArray,
2845 (tc == VariableArray || et->isVariablyModifiedType()),
2846 ContainsUnexpandedParameterPack),
2847 ElementType(et) {
2848 ArrayTypeBits.IndexTypeQuals = tq;
2849 ArrayTypeBits.SizeModifier = sm;
2850 }
2851
2852public:
2853 QualType getElementType() const { return ElementType; }
2854
2855 ArraySizeModifier getSizeModifier() const {
2856 return ArraySizeModifier(ArrayTypeBits.SizeModifier);
2857 }
2858
2859 Qualifiers getIndexTypeQualifiers() const {
2860 return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
2861 }
2862
2863 unsigned getIndexTypeCVRQualifiers() const {
2864 return ArrayTypeBits.IndexTypeQuals;
2865 }
2866
2867 static bool classof(const Type *T) {
2868 return T->getTypeClass() == ConstantArray ||
2869 T->getTypeClass() == VariableArray ||
2870 T->getTypeClass() == IncompleteArray ||
2871 T->getTypeClass() == DependentSizedArray;
2872 }
2873};
2874
2875/// Represents the canonical version of C arrays with a specified constant size.
2876/// For example, the canonical type for 'int A[4 + 4*100]' is a
2877/// ConstantArrayType where the element type is 'int' and the size is 404.
2878class ConstantArrayType : public ArrayType {
2879 llvm::APInt Size; // Allows us to unique the type.
2880
2881 ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
2882 ArraySizeModifier sm, unsigned tq)
2883 : ArrayType(ConstantArray, et, can, sm, tq,
2884 et->containsUnexpandedParameterPack()),
2885 Size(size) {}
2886
2887protected:
2888 friend class ASTContext; // ASTContext creates these.
2889
2890 ConstantArrayType(TypeClass tc, QualType et, QualType can,
2891 const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
2892 : ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
2893 Size(size) {}
2894
2895public:
2896 const llvm::APInt &getSize() const { return Size; }
2897 bool isSugared() const { return false; }
2898 QualType desugar() const { return QualType(this, 0); }
2899
2900 /// Determine the number of bits required to address a member of
2901 // an array with the given element type and number of elements.
2902 static unsigned getNumAddressingBits(const ASTContext &Context,
2903 QualType ElementType,
2904 const llvm::APInt &NumElements);
2905
2906 /// Determine the maximum number of active bits that an array's size
2907 /// can require, which limits the maximum size of the array.
2908 static unsigned getMaxSizeBits(const ASTContext &Context);
2909
2910 void Profile(llvm::FoldingSetNodeID &ID) {
2911 Profile(ID, getElementType(), getSize(),
2912 getSizeModifier(), getIndexTypeCVRQualifiers());
2913 }
2914
2915 static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2916 const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
2917 unsigned TypeQuals) {
2918 ID.AddPointer(ET.getAsOpaquePtr());
2919 ID.AddInteger(ArraySize.getZExtValue());
2920 ID.AddInteger(SizeMod);
2921 ID.AddInteger(TypeQuals);
2922 }
2923
2924 static bool classof(const Type *T) {
2925 return T->getTypeClass() == ConstantArray;
2926 }
2927};
2928
2929/// Represents a C array with an unspecified size. For example 'int A[]' has
2930/// an IncompleteArrayType where the element type is 'int' and the size is
2931/// unspecified.
2932class IncompleteArrayType : public ArrayType {
2933 friend class ASTContext; // ASTContext creates these.
2934
2935 IncompleteArrayType(QualType et, QualType can,
2936 ArraySizeModifier sm, unsigned tq)
2937 : ArrayType(IncompleteArray, et, can, sm, tq,
2938 et->containsUnexpandedParameterPack()) {}
2939
2940public:
2941 friend class StmtIteratorBase;
2942
2943 bool isSugared() const { return false; }
2944 QualType desugar() const { return QualType(this, 0); }
2945
2946 static bool classof(const Type *T) {
2947 return T->getTypeClass() == IncompleteArray;
2948 }
2949
2950 void Profile(llvm::FoldingSetNodeID &ID) {
2951 Profile(ID, getElementType(), getSizeModifier(),
2952 getIndexTypeCVRQualifiers());
2953 }
2954
2955 static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2956 ArraySizeModifier SizeMod, unsigned TypeQuals) {
2957 ID.AddPointer(ET.getAsOpaquePtr());
2958 ID.AddInteger(SizeMod);
2959 ID.AddInteger(TypeQuals);
2960 }
2961};
2962
2963/// Represents a C array with a specified size that is not an
2964/// integer-constant-expression. For example, 'int s[x+foo()]'.
2965/// Since the size expression is an arbitrary expression, we store it as such.
2966///
2967/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
2968/// should not be: two lexically equivalent variable array types could mean
2969/// different things, for example, these variables do not have the same type
2970/// dynamically:
2971///
2972/// void foo(int x) {
2973/// int Y[x];
2974/// ++x;
2975/// int Z[x];
2976/// }
2977class VariableArrayType : public ArrayType {
2978 friend class ASTContext; // ASTContext creates these.
2979
2980 /// An assignment-expression. VLA's are only permitted within
2981 /// a function block.
2982 Stmt *SizeExpr;
2983
2984 /// The range spanned by the left and right array brackets.
2985 SourceRange Brackets;
2986
2987 VariableArrayType(QualType et, QualType can, Expr *e,
2988 ArraySizeModifier sm, unsigned tq,
2989 SourceRange brackets)
2990 : ArrayType(VariableArray, et, can, sm, tq,
2991 et->containsUnexpandedParameterPack()),
2992 SizeExpr((Stmt*) e), Brackets(brackets) {}
2993
2994public:
2995 friend class StmtIteratorBase;
2996
2997 Expr *getSizeExpr() const {
2998 // We use C-style casts instead of cast<> here because we do not wish
2999 // to have a dependency of Type.h on Stmt.h/Expr.h.
3000 return (Expr*) SizeExpr;
3001 }
3002
3003 SourceRange getBracketsRange() const { return Brackets; }
3004 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3005 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3006
3007 bool isSugared() const { return false; }
3008 QualType desugar() const { return QualType(this, 0); }
3009
3010 static bool classof(const Type *T) {
3011 return T->getTypeClass() == VariableArray;
3012 }
3013
3014 void Profile(llvm::FoldingSetNodeID &ID) {
3015 llvm_unreachable("Cannot unique VariableArrayTypes.");
3016 }
3017};
3018
3019/// Represents an array type in C++ whose size is a value-dependent expression.
3020///
3021/// For example:
3022/// \code
3023/// template<typename T, int Size>
3024/// class array {
3025/// T data[Size];
3026/// };
3027/// \endcode
3028///
3029/// For these types, we won't actually know what the array bound is
3030/// until template instantiation occurs, at which point this will
3031/// become either a ConstantArrayType or a VariableArrayType.
3032class DependentSizedArrayType : public ArrayType {
3033 friend class ASTContext; // ASTContext creates these.
3034
3035 const ASTContext &Context;
3036
3037 /// An assignment expression that will instantiate to the
3038 /// size of the array.
3039 ///
3040 /// The expression itself might be null, in which case the array
3041 /// type will have its size deduced from an initializer.
3042 Stmt *SizeExpr;
3043
3044 /// The range spanned by the left and right array brackets.
3045 SourceRange Brackets;
3046
3047 DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
3048 Expr *e, ArraySizeModifier sm, unsigned tq,
3049 SourceRange brackets);
3050
3051public:
3052 friend class StmtIteratorBase;
3053
3054 Expr *getSizeExpr() const {
3055 // We use C-style casts instead of cast<> here because we do not wish
3056 // to have a dependency of Type.h on Stmt.h/Expr.h.
3057 return (Expr*) SizeExpr;
3058 }
3059
3060 SourceRange getBracketsRange() const { return Brackets; }
3061 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3062 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3063
3064 bool isSugared() const { return false; }
3065 QualType desugar() const { return QualType(this, 0); }
3066
3067 static bool classof(const Type *T) {
3068 return T->getTypeClass() == DependentSizedArray;
3069 }
3070
3071 void Profile(llvm::FoldingSetNodeID &ID) {
3072 Profile(ID, Context, getElementType(),
3073 getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
3074 }
3075
3076 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3077 QualType ET, ArraySizeModifier SizeMod,
3078 unsigned TypeQuals, Expr *E);
3079};
3080
3081/// Represents an extended address space qualifier where the input address space
3082/// value is dependent. Non-dependent address spaces are not represented with a
3083/// special Type subclass; they are stored on an ExtQuals node as part of a QualType.
3084///
3085/// For example:
3086/// \code
3087/// template<typename T, int AddrSpace>
3088/// class AddressSpace {
3089/// typedef T __attribute__((address_space(AddrSpace))) type;
3090/// }
3091/// \endcode
3092class DependentAddressSpaceType : public Type, public llvm::FoldingSetNode {
3093 friend class ASTContext;
3094
3095 const ASTContext &Context;
3096 Expr *AddrSpaceExpr;
3097 QualType PointeeType;
3098 SourceLocation loc;
3099
3100 DependentAddressSpaceType(const ASTContext &Context, QualType PointeeType,
3101 QualType can, Expr *AddrSpaceExpr,
3102 SourceLocation loc);
3103
3104public:
3105 Expr *getAddrSpaceExpr() const { return AddrSpaceExpr; }
3106 QualType getPointeeType() const { return PointeeType; }
3107 SourceLocation getAttributeLoc() const { return loc; }
3108
3109 bool isSugared() const { return false; }
3110 QualType desugar() const { return QualType(this, 0); }
3111
3112 static bool classof(const Type *T) {
3113 return T->getTypeClass() == DependentAddressSpace;
3114 }
3115
3116 void Profile(llvm::FoldingSetNodeID &ID) {
3117 Profile(ID, Context, getPointeeType(), getAddrSpaceExpr());
3118 }
3119
3120 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3121 QualType PointeeType, Expr *AddrSpaceExpr);
3122};
3123
3124/// Represents an extended vector type where either the type or size is
3125/// dependent.
3126///
3127/// For example:
3128/// \code
3129/// template<typename T, int Size>
3130/// class vector {
3131/// typedef T __attribute__((ext_vector_type(Size))) type;
3132/// }
3133/// \endcode
3134class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
3135 friend class ASTContext;
3136
3137 const ASTContext &Context;
3138 Expr *SizeExpr;
3139
3140 /// The element type of the array.
3141 QualType ElementType;
3142
3143 SourceLocation loc;
3144
3145 DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
3146 QualType can, Expr *SizeExpr, SourceLocation loc);
3147
3148public:
3149 Expr *getSizeExpr() const { return SizeExpr; }
3150 QualType getElementType() const { return ElementType; }
3151 SourceLocation getAttributeLoc() const { return loc; }
3152
3153 bool isSugared() const { return false; }
3154 QualType desugar() const { return QualType(this, 0); }
3155
3156 static bool classof(const Type *T) {
3157 return T->getTypeClass() == DependentSizedExtVector;
3158 }
3159
3160 void Profile(llvm::FoldingSetNodeID &ID) {
3161 Profile(ID, Context, getElementType(), getSizeExpr());
3162 }
3163
3164 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3165 QualType ElementType, Expr *SizeExpr);
3166};
3167
3168
3169/// Represents a GCC generic vector type. This type is created using
3170/// __attribute__((vector_size(n)), where "n" specifies the vector size in
3171/// bytes; or from an Altivec __vector or vector declaration.
3172/// Since the constructor takes the number of vector elements, the
3173/// client is responsible for converting the size into the number of elements.
3174class VectorType : public Type, public llvm::FoldingSetNode {
3175public:
3176 enum VectorKind {
3177 /// not a target-specific vector type
3178 GenericVector,
3179
3180 /// is AltiVec vector
3181 AltiVecVector,
3182
3183 /// is AltiVec 'vector Pixel'
3184 AltiVecPixel,
3185
3186 /// is AltiVec 'vector bool ...'
3187 AltiVecBool,
3188
3189 /// is ARM Neon vector
3190 NeonVector,
3191
3192 /// is ARM Neon polynomial vector
3193 NeonPolyVector
3194 };
3195
3196protected:
3197 friend class ASTContext; // ASTContext creates these.
3198
3199 /// The element type of the vector.
3200 QualType ElementType;
3201
3202 VectorType(QualType vecType, unsigned nElements, QualType canonType,
3203 VectorKind vecKind);
3204
3205 VectorType(TypeClass tc, QualType vecType, unsigned nElements,
3206 QualType canonType, VectorKind vecKind);
3207
3208public:
3209 QualType getElementType() const { return ElementType; }
3210 unsigned getNumElements() const { return VectorTypeBits.NumElements; }
3211
3212 static bool isVectorSizeTooLarge(unsigned NumElements) {
3213 return NumElements > VectorTypeBitfields::MaxNumElements;
3214 }
3215
3216 bool isSugared() const { return false; }
3217 QualType desugar() const { return QualType(this, 0); }
3218
3219 VectorKind getVectorKind() const {
3220 return VectorKind(VectorTypeBits.VecKind);
3221 }
3222
3223 void Profile(llvm::FoldingSetNodeID &ID) {
3224 Profile(ID, getElementType(), getNumElements(),
3225 getTypeClass(), getVectorKind());
3226 }
3227
3228 static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
3229 unsigned NumElements, TypeClass TypeClass,
3230 VectorKind VecKind) {
3231 ID.AddPointer(ElementType.getAsOpaquePtr());
3232 ID.AddInteger(NumElements);
3233 ID.AddInteger(TypeClass);
3234 ID.AddInteger(VecKind);
3235 }
3236
3237 static bool classof(const Type *T) {
3238 return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
3239 }
3240};
3241
3242/// Represents a vector type where either the type or size is dependent.
3243////
3244/// For example:
3245/// \code
3246/// template<typename T, int Size>
3247/// class vector {
3248/// typedef T __attribute__((vector_size(Size))) type;
3249/// }
3250/// \endcode
3251class DependentVectorType : public Type, public llvm::FoldingSetNode {
3252 friend class ASTContext;
3253
3254 const ASTContext &Context;
3255 QualType ElementType;
3256 Expr *SizeExpr;
3257 SourceLocation Loc;
3258
3259 DependentVectorType(const ASTContext &Context, QualType ElementType,
3260 QualType CanonType, Expr *SizeExpr,
3261 SourceLocation Loc, VectorType::VectorKind vecKind);
3262
3263public:
3264 Expr *getSizeExpr() const { return SizeExpr; }
3265 QualType getElementType() const { return ElementType; }
3266 SourceLocation getAttributeLoc() const { return Loc; }
3267 VectorType::VectorKind getVectorKind() const {
3268 return VectorType::VectorKind(VectorTypeBits.VecKind);
3269 }
3270
3271 bool isSugared() const { return false; }
3272 QualType desugar() const { return QualType(this, 0); }
3273
3274 static bool classof(const Type *T) {
3275 return T->getTypeClass() == DependentVector;
3276 }
3277
3278 void Profile(llvm::FoldingSetNodeID &ID) {
3279 Profile(ID, Context, getElementType(), getSizeExpr(), getVectorKind());
3280 }
3281
3282 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3283 QualType ElementType, const Expr *SizeExpr,
3284 VectorType::VectorKind VecKind);
3285};
3286
3287/// ExtVectorType - Extended vector type. This type is created using
3288/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
3289/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
3290/// class enables syntactic extensions, like Vector Components for accessing
3291/// points (as .xyzw), colors (as .rgba), and textures (modeled after OpenGL
3292/// Shading Language).
3293class ExtVectorType : public VectorType {
3294 friend class ASTContext; // ASTContext creates these.
3295
3296 ExtVectorType(QualType vecType, unsigned nElements, QualType canonType)
3297 : VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
3298
3299public:
3300 static int getPointAccessorIdx(char c) {
3301 switch (c) {
3302 default: return -1;
3303 case 'x': case 'r': return 0;
3304 case 'y': case 'g': return 1;
3305 case 'z': case 'b': return 2;
3306 case 'w': case 'a': return 3;
3307 }
3308 }
3309
3310 static int getNumericAccessorIdx(char c) {
3311 switch (c) {
3312 default: return -1;
3313 case '0': return 0;
3314 case '1': return 1;
3315 case '2': return 2;
3316 case '3': return 3;
3317 case '4': return 4;
3318 case '5': return 5;
3319 case '6': return 6;
3320 case '7': return 7;
3321 case '8': return 8;
3322 case '9': return 9;
3323 case 'A':
3324 case 'a': return 10;
3325 case 'B':
3326 case 'b': return 11;
3327 case 'C':
3328 case 'c': return 12;
3329 case 'D':
3330 case 'd': return 13;
3331 case 'E':
3332 case 'e': return 14;
3333 case 'F':
3334 case 'f': return 15;
3335 }
3336 }
3337
3338 static int getAccessorIdx(char c, bool isNumericAccessor) {
3339 if (isNumericAccessor)
3340 return getNumericAccessorIdx(c);
3341 else
3342 return getPointAccessorIdx(c);
3343 }
3344
3345 bool isAccessorWithinNumElements(char c, bool isNumericAccessor) const {
3346 if (int idx = getAccessorIdx(c, isNumericAccessor)+1)
3347 return unsigned(idx-1) < getNumElements();
3348 return false;
3349 }
3350
3351 bool isSugared() const { return false; }
3352 QualType desugar() const { return QualType(this, 0); }
3353
3354 static bool classof(const Type *T) {
3355 return T->getTypeClass() == ExtVector;
3356 }
3357};
3358
3359/// FunctionType - C99 6.7.5.3 - Function Declarators. This is the common base
3360/// class of FunctionNoProtoType and FunctionProtoType.
3361class FunctionType : public Type {
3362 // The type returned by the function.
3363 QualType ResultType;
3364
3365public:
3366 /// Interesting information about a specific parameter that can't simply
3367 /// be reflected in parameter's type. This is only used by FunctionProtoType
3368 /// but is in FunctionType to make this class available during the
3369 /// specification of the bases of FunctionProtoType.
3370 ///
3371 /// It makes sense to model language features this way when there's some
3372 /// sort of parameter-specific override (such as an attribute) that
3373 /// affects how the function is called. For example, the ARC ns_consumed
3374 /// attribute changes whether a parameter is passed at +0 (the default)
3375 /// or +1 (ns_consumed). This must be reflected in the function type,
3376 /// but isn't really a change to the parameter type.
3377 ///
3378 /// One serious disadvantage of modelling language features this way is
3379 /// that they generally do not work with language features that attempt
3380 /// to destructure types. For example, template argument deduction will
3381 /// not be able to match a parameter declared as
3382 /// T (*)(U)
3383 /// against an argument of type
3384 /// void (*)(__attribute__((ns_consumed)) id)
3385 /// because the substitution of T=void, U=id into the former will
3386 /// not produce the latter.
3387 class ExtParameterInfo {
3388 enum {
3389 ABIMask = 0x0F,
3390 IsConsumed = 0x10,
3391 HasPassObjSize = 0x20,
3392 IsNoEscape = 0x40,
3393 };
3394 unsigned char Data = 0;
3395
3396 public:
3397 ExtParameterInfo() = default;
3398
3399 /// Return the ABI treatment of this parameter.
3400 ParameterABI getABI() const { return ParameterABI(Data & ABIMask); }
3401 ExtParameterInfo withABI(ParameterABI kind) const {
3402 ExtParameterInfo copy = *this;
3403 copy.Data = (copy.Data & ~ABIMask) | unsigned(kind);
3404 return copy;
3405 }
3406
3407 /// Is this parameter considered "consumed" by Objective-C ARC?
3408 /// Consumed parameters must have retainable object type.
3409 bool isConsumed() const { return (Data & IsConsumed); }
3410 ExtParameterInfo withIsConsumed(bool consumed) const {
3411 ExtParameterInfo copy = *this;
3412 if (consumed)
3413 copy.Data |= IsConsumed;
3414 else
3415 copy.Data &= ~IsConsumed;
3416 return copy;
3417 }
3418
3419 bool hasPassObjectSize() const { return Data & HasPassObjSize; }
3420 ExtParameterInfo withHasPassObjectSize() const {
3421 ExtParameterInfo Copy = *this;
3422 Copy.Data |= HasPassObjSize;
3423 return Copy;
3424 }
3425
3426 bool isNoEscape() const { return Data & IsNoEscape; }
3427 ExtParameterInfo withIsNoEscape(bool NoEscape) const {
3428 ExtParameterInfo Copy = *this;
3429 if (NoEscape)
3430 Copy.Data |= IsNoEscape;
3431 else
3432 Copy.Data &= ~IsNoEscape;
3433 return Copy;
3434 }
3435
3436 unsigned char getOpaqueValue() const { return Data; }
3437 static ExtParameterInfo getFromOpaqueValue(unsigned char data) {
3438 ExtParameterInfo result;
3439 result.Data = data;
3440 return result;
3441 }
3442
3443 friend bool operator==(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3444 return lhs.Data == rhs.Data;
3445 }
3446
3447 friend bool operator!=(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3448 return lhs.Data != rhs.Data;
3449 }
3450 };
3451
3452 /// A class which abstracts out some details necessary for
3453 /// making a call.
3454 ///
3455 /// It is not actually used directly for storing this information in
3456 /// a FunctionType, although FunctionType does currently use the
3457 /// same bit-pattern.
3458 ///
3459 // If you add a field (say Foo), other than the obvious places (both,
3460 // constructors, compile failures), what you need to update is
3461 // * Operator==
3462 // * getFoo
3463 // * withFoo
3464 // * functionType. Add Foo, getFoo.
3465 // * ASTContext::getFooType
3466 // * ASTContext::mergeFunctionTypes
3467 // * FunctionNoProtoType::Profile
3468 // * FunctionProtoType::Profile
3469 // * TypePrinter::PrintFunctionProto
3470 // * AST read and write
3471 // * Codegen
3472 class ExtInfo {
3473 friend class FunctionType;
3474
3475 // Feel free to rearrange or add bits, but if you go over 12,
3476 // you'll need to adjust both the Bits field below and
3477 // Type::FunctionTypeBitfields.
3478
3479 // | CC |noreturn|produces|nocallersavedregs|regparm|nocfcheck|
3480 // |0 .. 4| 5 | 6 | 7 |8 .. 10| 11 |
3481 //
3482 // regparm is either 0 (no regparm attribute) or the regparm value+1.
3483 enum { CallConvMask = 0x1F };
3484 enum { NoReturnMask = 0x20 };
3485 enum { ProducesResultMask = 0x40 };
3486 enum { NoCallerSavedRegsMask = 0x80 };
3487 enum { NoCfCheckMask = 0x800 };
3488 enum {
3489 RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask |
3490 NoCallerSavedRegsMask | NoCfCheckMask),
3491 RegParmOffset = 8
3492 }; // Assumed to be the last field
3493 uint16_t Bits = CC_C;
3494
3495 ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
3496
3497 public:
3498 // Constructor with no defaults. Use this when you know that you
3499 // have all the elements (when reading an AST file for example).
3500 ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
3501 bool producesResult, bool noCallerSavedRegs, bool NoCfCheck) {
3502 assert((!hasRegParm || regParm < 7) && "Invalid regparm value");
3503 Bits = ((unsigned)cc) | (noReturn ? NoReturnMask : 0) |
3504 (producesResult ? ProducesResultMask : 0) |
3505 (noCallerSavedRegs ? NoCallerSavedRegsMask : 0) |
3506 (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0) |
3507 (NoCfCheck ? NoCfCheckMask : 0);
3508 }
3509
3510 // Constructor with all defaults. Use when for example creating a
3511 // function known to use defaults.
3512 ExtInfo() = default;
3513
3514 // Constructor with just the calling convention, which is an important part
3515 // of the canonical type.
3516 ExtInfo(CallingConv CC) : Bits(CC) {}
3517
3518 bool getNoReturn() const { return Bits & NoReturnMask; }
3519 bool getProducesResult() const { return Bits & ProducesResultMask; }
3520 bool getNoCallerSavedRegs() const { return Bits & NoCallerSavedRegsMask; }
3521 bool getNoCfCheck() const { return Bits & NoCfCheckMask; }
3522 bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; }
3523
3524 unsigned getRegParm() const {
3525 unsigned RegParm = (Bits & RegParmMask) >> RegParmOffset;
3526 if (RegParm > 0)
3527 --RegParm;
3528 return RegParm;
3529 }
3530
3531 CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
3532
3533 bool operator==(ExtInfo Other) const {
3534 return Bits == Other.Bits;
3535 }
3536 bool operator!=(ExtInfo Other) const {
3537 return Bits != Other.Bits;
3538 }
3539
3540 // Note that we don't have setters. That is by design, use
3541 // the following with methods instead of mutating these objects.
3542
3543 ExtInfo withNoReturn(bool noReturn) const {
3544 if (noReturn)
3545 return ExtInfo(Bits | NoReturnMask);
3546 else
3547 return ExtInfo(Bits & ~NoReturnMask);
3548 }
3549
3550 ExtInfo withProducesResult(bool producesResult) const {
3551 if (producesResult)
3552 return ExtInfo(Bits | ProducesResultMask);
3553 else
3554 return ExtInfo(Bits & ~ProducesResultMask);
3555 }
3556
3557 ExtInfo withNoCallerSavedRegs(bool noCallerSavedRegs) const {
3558 if (noCallerSavedRegs)
3559 return ExtInfo(Bits | NoCallerSavedRegsMask);
3560 else
3561 return ExtInfo(Bits & ~NoCallerSavedRegsMask);
3562 }
3563
3564 ExtInfo withNoCfCheck(bool noCfCheck) const {
3565 if (noCfCheck)
3566 return ExtInfo(Bits | NoCfCheckMask);
3567 else
3568 return ExtInfo(Bits & ~NoCfCheckMask);
3569 }
3570
3571 ExtInfo withRegParm(unsigned RegParm) const {
3572 assert(RegParm < 7 && "Invalid regparm value");
3573 return ExtInfo((Bits & ~RegParmMask) |
3574 ((RegParm + 1) << RegParmOffset));
3575 }
3576
3577 ExtInfo withCallingConv(CallingConv cc) const {
3578 return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
3579 }
3580
3581 void Profile(llvm::FoldingSetNodeID &ID) const {
3582 ID.AddInteger(Bits);
3583 }
3584 };
3585
3586 /// A simple holder for a QualType representing a type in an
3587 /// exception specification. Unfortunately needed by FunctionProtoType
3588 /// because TrailingObjects cannot handle repeated types.
3589 struct ExceptionType { QualType Type; };
3590
3591 /// A simple holder for various uncommon bits which do not fit in
3592 /// FunctionTypeBitfields. Aligned to alignof(void *) to maintain the
3593 /// alignment of subsequent objects in TrailingObjects. You must update
3594 /// hasExtraBitfields in FunctionProtoType after adding extra data here.
3595 struct alignas(void *) FunctionTypeExtraBitfields {
3596 /// The number of types in the exception specification.
3597 /// A whole unsigned is not needed here and according to
3598 /// [implimits] 8 bits would be enough here.
3599 unsigned NumExceptionType;
3600 };
3601
3602protected:
3603 FunctionType(TypeClass tc, QualType res,
3604 QualType Canonical, bool Dependent,
3605 bool InstantiationDependent,
3606 bool VariablyModified, bool ContainsUnexpandedParameterPack,
3607 ExtInfo Info)
3608 : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
3609 ContainsUnexpandedParameterPack),
3610 ResultType(res) {
3611 FunctionTypeBits.ExtInfo = Info.Bits;
3612 }
3613
3614 unsigned getTypeQuals() const { return FunctionTypeBits.TypeQuals; }
3615
3616public:
3617 QualType getReturnType() const { return ResultType; }
3618
3619 bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
3620 unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
3621
3622 /// Determine whether this function type includes the GNU noreturn
3623 /// attribute. The C++11 [[noreturn]] attribute does not affect the function
3624 /// type.
3625 bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
3626
3627 CallingConv getCallConv() const { return getExtInfo().getCC(); }
3628