1//===- ASTMatchersInternal.h - Structural query framework -------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Implements the base layer of the matcher framework.
10//
11// Matchers are methods that return a Matcher<T> which provides a method
12// Matches(...) which is a predicate on an AST node. The Matches method's
13// parameters define the context of the match, which allows matchers to recurse
14// or store the current node as bound to a specific string, so that it can be
15// retrieved later.
16//
17// In general, matchers have two parts:
18// 1. A function Matcher<T> MatcherName(<arguments>) which returns a Matcher<T>
19// based on the arguments and optionally on template type deduction based
20// on the arguments. Matcher<T>s form an implicit reverse hierarchy
21// to clang's AST class hierarchy, meaning that you can use a Matcher<Base>
22// everywhere a Matcher<Derived> is required.
23// 2. An implementation of a class derived from MatcherInterface<T>.
24//
25// The matcher functions are defined in ASTMatchers.h. To make it possible
26// to implement both the matcher function and the implementation of the matcher
27// interface in one place, ASTMatcherMacros.h defines macros that allow
28// implementing a matcher in a single place.
29//
30// This file contains the base classes needed to construct the actual matchers.
31//
32//===----------------------------------------------------------------------===//
33
34#ifndef LLVM_CLANG_ASTMATCHERS_ASTMATCHERSINTERNAL_H
35#define LLVM_CLANG_ASTMATCHERS_ASTMATCHERSINTERNAL_H
36
37#include "clang/AST/ASTTypeTraits.h"
38#include "clang/AST/Decl.h"
39#include "clang/AST/DeclCXX.h"
40#include "clang/AST/DeclFriend.h"
41#include "clang/AST/DeclTemplate.h"
42#include "clang/AST/Expr.h"
43#include "clang/AST/ExprCXX.h"
44#include "clang/AST/ExprObjC.h"
45#include "clang/AST/NestedNameSpecifier.h"
46#include "clang/AST/Stmt.h"
47#include "clang/AST/TemplateName.h"
48#include "clang/AST/Type.h"
49#include "clang/AST/TypeLoc.h"
50#include "clang/Basic/LLVM.h"
51#include "clang/Basic/OperatorKinds.h"
52#include "llvm/ADT/APFloat.h"
53#include "llvm/ADT/ArrayRef.h"
54#include "llvm/ADT/IntrusiveRefCntPtr.h"
55#include "llvm/ADT/None.h"
56#include "llvm/ADT/Optional.h"
57#include "llvm/ADT/STLExtras.h"
58#include "llvm/ADT/SmallVector.h"
59#include "llvm/ADT/StringRef.h"
60#include "llvm/ADT/iterator.h"
61#include "llvm/Support/Casting.h"
62#include "llvm/Support/ManagedStatic.h"
63#include "llvm/Support/Regex.h"
64#include <algorithm>
65#include <cassert>
66#include <cstddef>
67#include <cstdint>
68#include <map>
69#include <memory>
70#include <string>
71#include <tuple>
72#include <type_traits>
73#include <utility>
74#include <vector>
75
76namespace clang {
77
78class ASTContext;
79
80namespace ast_matchers {
81
82class BoundNodes;
83
84namespace internal {
85
86/// Variadic function object.
87///
88/// Most of the functions below that use VariadicFunction could be implemented
89/// using plain C++11 variadic functions, but the function object allows us to
90/// capture it on the dynamic matcher registry.
91template <typename ResultT, typename ArgT,
92 ResultT (*Func)(ArrayRef<const ArgT *>)>
93struct VariadicFunction {
94 ResultT operator()() const { return Func(None); }
95
96 template <typename... ArgsT>
97 ResultT operator()(const ArgT &Arg1, const ArgsT &... Args) const {
98 return Execute(Arg1, static_cast<const ArgT &>(Args)...);
99 }
100
101 // We also allow calls with an already created array, in case the caller
102 // already had it.
103 ResultT operator()(ArrayRef<ArgT> Args) const {
104 SmallVector<const ArgT*, 8> InnerArgs;
105 for (const ArgT &Arg : Args)
106 InnerArgs.push_back(&Arg);
107 return Func(InnerArgs);
108 }
109
110private:
111 // Trampoline function to allow for implicit conversions to take place
112 // before we make the array.
113 template <typename... ArgsT> ResultT Execute(const ArgsT &... Args) const {
114 const ArgT *const ArgsArray[] = {&Args...};
115 return Func(ArrayRef<const ArgT *>(ArgsArray, sizeof...(ArgsT)));
116 }
117};
118
119/// Unifies obtaining the underlying type of a regular node through
120/// `getType` and a TypedefNameDecl node through `getUnderlyingType`.
121inline QualType getUnderlyingType(const Expr &Node) { return Node.getType(); }
122
123inline QualType getUnderlyingType(const ValueDecl &Node) {
124 return Node.getType();
125}
126inline QualType getUnderlyingType(const TypedefNameDecl &Node) {
127 return Node.getUnderlyingType();
128}
129inline QualType getUnderlyingType(const FriendDecl &Node) {
130 if (const TypeSourceInfo *TSI = Node.getFriendType())
131 return TSI->getType();
132 return QualType();
133}
134inline QualType getUnderlyingType(const CXXBaseSpecifier &Node) {
135 return Node.getType();
136}
137
138/// Unifies obtaining the FunctionProtoType pointer from both
139/// FunctionProtoType and FunctionDecl nodes..
140inline const FunctionProtoType *
141getFunctionProtoType(const FunctionProtoType &Node) {
142 return &Node;
143}
144
145inline const FunctionProtoType *getFunctionProtoType(const FunctionDecl &Node) {
146 return Node.getType()->getAs<FunctionProtoType>();
147}
148
149/// Unifies obtaining the access specifier from Decl and CXXBaseSpecifier nodes.
150inline clang::AccessSpecifier getAccessSpecifier(const Decl &Node) {
151 return Node.getAccess();
152}
153
154inline clang::AccessSpecifier getAccessSpecifier(const CXXBaseSpecifier &Node) {
155 return Node.getAccessSpecifier();
156}
157
158/// Internal version of BoundNodes. Holds all the bound nodes.
159class BoundNodesMap {
160public:
161 /// Adds \c Node to the map with key \c ID.
162 ///
163 /// The node's base type should be in NodeBaseType or it will be unaccessible.
164 void addNode(StringRef ID, const DynTypedNode &DynNode) {
165 NodeMap[std::string(ID)] = DynNode;
166 }
167
168 /// Returns the AST node bound to \c ID.
169 ///
170 /// Returns NULL if there was no node bound to \c ID or if there is a node but
171 /// it cannot be converted to the specified type.
172 template <typename T>
173 const T *getNodeAs(StringRef ID) const {
174 IDToNodeMap::const_iterator It = NodeMap.find(ID);
175 if (It == NodeMap.end()) {
176 return nullptr;
177 }
178 return It->second.get<T>();
179 }
180
181 DynTypedNode getNode(StringRef ID) const {
182 IDToNodeMap::const_iterator It = NodeMap.find(ID);
183 if (It == NodeMap.end()) {
184 return DynTypedNode();
185 }
186 return It->second;
187 }
188
189 /// Imposes an order on BoundNodesMaps.
190 bool operator<(const BoundNodesMap &Other) const {
191 return NodeMap < Other.NodeMap;
192 }
193
194 /// A map from IDs to the bound nodes.
195 ///
196 /// Note that we're using std::map here, as for memoization:
197 /// - we need a comparison operator
198 /// - we need an assignment operator
199 using IDToNodeMap = std::map<std::string, DynTypedNode, std::less<>>;
200
201 const IDToNodeMap &getMap() const {
202 return NodeMap;
203 }
204
205 /// Returns \c true if this \c BoundNodesMap can be compared, i.e. all
206 /// stored nodes have memoization data.
207 bool isComparable() const {
208 for (const auto &IDAndNode : NodeMap) {
209 if (!IDAndNode.second.getMemoizationData())
210 return false;
211 }
212 return true;
213 }
214
215private:
216 IDToNodeMap NodeMap;
217};
218
219/// Creates BoundNodesTree objects.
220///
221/// The tree builder is used during the matching process to insert the bound
222/// nodes from the Id matcher.
223class BoundNodesTreeBuilder {
224public:
225 /// A visitor interface to visit all BoundNodes results for a
226 /// BoundNodesTree.
227 class Visitor {
228 public:
229 virtual ~Visitor() = default;
230
231 /// Called multiple times during a single call to VisitMatches(...).
232 ///
233 /// 'BoundNodesView' contains the bound nodes for a single match.
234 virtual void visitMatch(const BoundNodes& BoundNodesView) = 0;
235 };
236
237 /// Add a binding from an id to a node.
238 void setBinding(StringRef Id, const DynTypedNode &DynNode) {
239 if (Bindings.empty())
240 Bindings.emplace_back();
241 for (BoundNodesMap &Binding : Bindings)
242 Binding.addNode(Id, DynNode);
243 }
244
245 /// Adds a branch in the tree.
246 void addMatch(const BoundNodesTreeBuilder &Bindings);
247
248 /// Visits all matches that this BoundNodesTree represents.
249 ///
250 /// The ownership of 'ResultVisitor' remains at the caller.
251 void visitMatches(Visitor* ResultVisitor);
252
253 template <typename ExcludePredicate>
254 bool removeBindings(const ExcludePredicate &Predicate) {
255 Bindings.erase(std::remove_if(Bindings.begin(), Bindings.end(), Predicate),
256 Bindings.end());
257 return !Bindings.empty();
258 }
259
260 /// Imposes an order on BoundNodesTreeBuilders.
261 bool operator<(const BoundNodesTreeBuilder &Other) const {
262 return Bindings < Other.Bindings;
263 }
264
265 /// Returns \c true if this \c BoundNodesTreeBuilder can be compared,
266 /// i.e. all stored node maps have memoization data.
267 bool isComparable() const {
268 for (const BoundNodesMap &NodesMap : Bindings) {
269 if (!NodesMap.isComparable())
270 return false;
271 }
272 return true;
273 }
274
275private:
276 SmallVector<BoundNodesMap, 1> Bindings;
277};
278
279class ASTMatchFinder;
280
281/// Generic interface for all matchers.
282///
283/// Used by the implementation of Matcher<T> and DynTypedMatcher.
284/// In general, implement MatcherInterface<T> or SingleNodeMatcherInterface<T>
285/// instead.
286class DynMatcherInterface
287 : public llvm::ThreadSafeRefCountedBase<DynMatcherInterface> {
288public:
289 virtual ~DynMatcherInterface() = default;
290
291 /// Returns true if \p DynNode can be matched.
292 ///
293 /// May bind \p DynNode to an ID via \p Builder, or recurse into
294 /// the AST via \p Finder.
295 virtual bool dynMatches(const DynTypedNode &DynNode, ASTMatchFinder *Finder,
296 BoundNodesTreeBuilder *Builder) const = 0;
297
298 virtual llvm::Optional<clang::TraversalKind> TraversalKind() const {
299 return llvm::None;
300 }
301};
302
303/// Generic interface for matchers on an AST node of type T.
304///
305/// Implement this if your matcher may need to inspect the children or
306/// descendants of the node or bind matched nodes to names. If you are
307/// writing a simple matcher that only inspects properties of the
308/// current node and doesn't care about its children or descendants,
309/// implement SingleNodeMatcherInterface instead.
310template <typename T>
311class MatcherInterface : public DynMatcherInterface {
312public:
313 /// Returns true if 'Node' can be matched.
314 ///
315 /// May bind 'Node' to an ID via 'Builder', or recurse into
316 /// the AST via 'Finder'.
317 virtual bool matches(const T &Node,
318 ASTMatchFinder *Finder,
319 BoundNodesTreeBuilder *Builder) const = 0;
320
321 bool dynMatches(const DynTypedNode &DynNode, ASTMatchFinder *Finder,
322 BoundNodesTreeBuilder *Builder) const override {
323 return matches(DynNode.getUnchecked<T>(), Finder, Builder);
324 }
325};
326
327/// Interface for matchers that only evaluate properties on a single
328/// node.
329template <typename T>
330class SingleNodeMatcherInterface : public MatcherInterface<T> {
331public:
332 /// Returns true if the matcher matches the provided node.
333 ///
334 /// A subclass must implement this instead of Matches().
335 virtual bool matchesNode(const T &Node) const = 0;
336
337private:
338 /// Implements MatcherInterface::Matches.
339 bool matches(const T &Node,
340 ASTMatchFinder * /* Finder */,
341 BoundNodesTreeBuilder * /* Builder */) const override {
342 return matchesNode(Node);
343 }
344};
345
346template <typename> class Matcher;
347
348/// Matcher that works on a \c DynTypedNode.
349///
350/// It is constructed from a \c Matcher<T> object and redirects most calls to
351/// underlying matcher.
352/// It checks whether the \c DynTypedNode is convertible into the type of the
353/// underlying matcher and then do the actual match on the actual node, or
354/// return false if it is not convertible.
355class DynTypedMatcher {
356public:
357 /// Takes ownership of the provided implementation pointer.
358 template <typename T>
359 DynTypedMatcher(MatcherInterface<T> *Implementation)
360 : SupportedKind(ASTNodeKind::getFromNodeKind<T>()),
361 RestrictKind(SupportedKind), Implementation(Implementation) {}
362
363 /// Construct from a variadic function.
364 enum VariadicOperator {
365 /// Matches nodes for which all provided matchers match.
366 VO_AllOf,
367
368 /// Matches nodes for which at least one of the provided matchers
369 /// matches.
370 VO_AnyOf,
371
372 /// Matches nodes for which at least one of the provided matchers
373 /// matches, but doesn't stop at the first match.
374 VO_EachOf,
375
376 /// Matches any node but executes all inner matchers to find result
377 /// bindings.
378 VO_Optionally,
379
380 /// Matches nodes that do not match the provided matcher.
381 ///
382 /// Uses the variadic matcher interface, but fails if
383 /// InnerMatchers.size() != 1.
384 VO_UnaryNot
385 };
386
387 static DynTypedMatcher
388 constructVariadic(VariadicOperator Op, ASTNodeKind SupportedKind,
389 std::vector<DynTypedMatcher> InnerMatchers);
390
391 static DynTypedMatcher
392 constructRestrictedWrapper(const DynTypedMatcher &InnerMatcher,
393 ASTNodeKind RestrictKind);
394
395 /// Get a "true" matcher for \p NodeKind.
396 ///
397 /// It only checks that the node is of the right kind.
398 static DynTypedMatcher trueMatcher(ASTNodeKind NodeKind);
399
400 void setAllowBind(bool AB) { AllowBind = AB; }
401
402 /// Check whether this matcher could ever match a node of kind \p Kind.
403 /// \return \c false if this matcher will never match such a node. Otherwise,
404 /// return \c true.
405 bool canMatchNodesOfKind(ASTNodeKind Kind) const;
406
407 /// Return a matcher that points to the same implementation, but
408 /// restricts the node types for \p Kind.
409 DynTypedMatcher dynCastTo(const ASTNodeKind Kind) const;
410
411 /// Return a matcher that that points to the same implementation, but sets the
412 /// traversal kind.
413 ///
414 /// If the traversal kind is already set, then \c TK overrides it.
415 DynTypedMatcher withTraversalKind(TraversalKind TK);
416
417 /// Returns true if the matcher matches the given \c DynNode.
418 bool matches(const DynTypedNode &DynNode, ASTMatchFinder *Finder,
419 BoundNodesTreeBuilder *Builder) const;
420
421 /// Same as matches(), but skips the kind check.
422 ///
423 /// It is faster, but the caller must ensure the node is valid for the
424 /// kind of this matcher.
425 bool matchesNoKindCheck(const DynTypedNode &DynNode, ASTMatchFinder *Finder,
426 BoundNodesTreeBuilder *Builder) const;
427
428 /// Bind the specified \p ID to the matcher.
429 /// \return A new matcher with the \p ID bound to it if this matcher supports
430 /// binding. Otherwise, returns an empty \c Optional<>.
431 llvm::Optional<DynTypedMatcher> tryBind(StringRef ID) const;
432
433 /// Returns a unique \p ID for the matcher.
434 ///
435 /// Casting a Matcher<T> to Matcher<U> creates a matcher that has the
436 /// same \c Implementation pointer, but different \c RestrictKind. We need to
437 /// include both in the ID to make it unique.
438 ///
439 /// \c MatcherIDType supports operator< and provides strict weak ordering.
440 using MatcherIDType = std::pair<ASTNodeKind, uint64_t>;
441 MatcherIDType getID() const {
442 /// FIXME: Document the requirements this imposes on matcher
443 /// implementations (no new() implementation_ during a Matches()).
444 return std::make_pair(RestrictKind,
445 reinterpret_cast<uint64_t>(Implementation.get()));
446 }
447
448 /// Returns the type this matcher works on.
449 ///
450 /// \c matches() will always return false unless the node passed is of this
451 /// or a derived type.
452 ASTNodeKind getSupportedKind() const { return SupportedKind; }
453
454 /// Returns \c true if the passed \c DynTypedMatcher can be converted
455 /// to a \c Matcher<T>.
456 ///
457 /// This method verifies that the underlying matcher in \c Other can process
458 /// nodes of types T.
459 template <typename T> bool canConvertTo() const {
460 return canConvertTo(ASTNodeKind::getFromNodeKind<T>());
461 }
462 bool canConvertTo(ASTNodeKind To) const;
463
464 /// Construct a \c Matcher<T> interface around the dynamic matcher.
465 ///
466 /// This method asserts that \c canConvertTo() is \c true. Callers
467 /// should call \c canConvertTo() first to make sure that \c this is
468 /// compatible with T.
469 template <typename T> Matcher<T> convertTo() const {
470 assert(canConvertTo<T>());
471 return unconditionalConvertTo<T>();
472 }
473
474 /// Same as \c convertTo(), but does not check that the underlying
475 /// matcher can handle a value of T.
476 ///
477 /// If it is not compatible, then this matcher will never match anything.
478 template <typename T> Matcher<T> unconditionalConvertTo() const;
479
480 /// Returns the \c TraversalKind respected by calls to `match()`, if any.
481 ///
482 /// Most matchers will not have a traversal kind set, instead relying on the
483 /// surrounding context. For those, \c llvm::None is returned.
484 llvm::Optional<clang::TraversalKind> getTraversalKind() const {
485 return Implementation->TraversalKind();
486 }
487
488private:
489 DynTypedMatcher(ASTNodeKind SupportedKind, ASTNodeKind RestrictKind,
490 IntrusiveRefCntPtr<DynMatcherInterface> Implementation)
491 : SupportedKind(SupportedKind), RestrictKind(RestrictKind),
492 Implementation(std::move(Implementation)) {}
493
494 bool AllowBind = false;
495 ASTNodeKind SupportedKind;
496
497 /// A potentially stricter node kind.
498 ///
499 /// It allows to perform implicit and dynamic cast of matchers without
500 /// needing to change \c Implementation.
501 ASTNodeKind RestrictKind;
502 IntrusiveRefCntPtr<DynMatcherInterface> Implementation;
503};
504
505/// Wrapper of a MatcherInterface<T> *that allows copying.
506///
507/// A Matcher<Base> can be used anywhere a Matcher<Derived> is
508/// required. This establishes an is-a relationship which is reverse
509/// to the AST hierarchy. In other words, Matcher<T> is contravariant
510/// with respect to T. The relationship is built via a type conversion
511/// operator rather than a type hierarchy to be able to templatize the
512/// type hierarchy instead of spelling it out.
513template <typename T>
514class Matcher {
515public:
516 /// Takes ownership of the provided implementation pointer.
517 explicit Matcher(MatcherInterface<T> *Implementation)
518 : Implementation(Implementation) {}
519
520 /// Implicitly converts \c Other to a Matcher<T>.
521 ///
522 /// Requires \c T to be derived from \c From.
523 template <typename From>
524 Matcher(const Matcher<From> &Other,
525 std::enable_if_t<std::is_base_of<From, T>::value &&
526 !std::is_same<From, T>::value> * = nullptr)
527 : Implementation(restrictMatcher(Other.Implementation)) {
528 assert(Implementation.getSupportedKind().isSame(
529 ASTNodeKind::getFromNodeKind<T>()));
530 }
531
532 /// Implicitly converts \c Matcher<Type> to \c Matcher<QualType>.
533 ///
534 /// The resulting matcher is not strict, i.e. ignores qualifiers.
535 template <typename TypeT>
536 Matcher(const Matcher<TypeT> &Other,
537 std::enable_if_t<std::is_same<T, QualType>::value &&
538 std::is_same<TypeT, Type>::value> * = nullptr)
539 : Implementation(new TypeToQualType<TypeT>(Other)) {}
540
541 /// Convert \c this into a \c Matcher<T> by applying dyn_cast<> to the
542 /// argument.
543 /// \c To must be a base class of \c T.
544 template <typename To> Matcher<To> dynCastTo() const LLVM_LVALUE_FUNCTION {
545 static_assert(std::is_base_of<To, T>::value, "Invalid dynCast call.");
546 return Matcher<To>(Implementation);
547 }
548
549#if LLVM_HAS_RVALUE_REFERENCE_THIS
550 template <typename To> Matcher<To> dynCastTo() && {
551 static_assert(std::is_base_of<To, T>::value, "Invalid dynCast call.");
552 return Matcher<To>(std::move(Implementation));
553 }
554#endif
555
556 /// Forwards the call to the underlying MatcherInterface<T> pointer.
557 bool matches(const T &Node,
558 ASTMatchFinder *Finder,
559 BoundNodesTreeBuilder *Builder) const {
560 return Implementation.matches(DynTypedNode::create(Node), Finder, Builder);
561 }
562
563 /// Returns an ID that uniquely identifies the matcher.
564 DynTypedMatcher::MatcherIDType getID() const {
565 return Implementation.getID();
566 }
567
568 /// Extract the dynamic matcher.
569 ///
570 /// The returned matcher keeps the same restrictions as \c this and remembers
571 /// that it is meant to support nodes of type \c T.
572 operator DynTypedMatcher() const LLVM_LVALUE_FUNCTION {
573 return Implementation;
574 }
575
576#if LLVM_HAS_RVALUE_REFERENCE_THIS
577 operator DynTypedMatcher() && { return std::move(Implementation); }
578#endif
579
580 /// Allows the conversion of a \c Matcher<Type> to a \c
581 /// Matcher<QualType>.
582 ///
583 /// Depending on the constructor argument, the matcher is either strict, i.e.
584 /// does only matches in the absence of qualifiers, or not, i.e. simply
585 /// ignores any qualifiers.
586 template <typename TypeT>
587 class TypeToQualType : public MatcherInterface<QualType> {
588 const DynTypedMatcher InnerMatcher;
589
590 public:
591 TypeToQualType(const Matcher<TypeT> &InnerMatcher)
592 : InnerMatcher(InnerMatcher) {}
593
594 bool matches(const QualType &Node, ASTMatchFinder *Finder,
595 BoundNodesTreeBuilder *Builder) const override {
596 if (Node.isNull())
597 return false;
598 return this->InnerMatcher.matches(DynTypedNode::create(*Node), Finder,
599 Builder);
600 }
601
602 llvm::Optional<clang::TraversalKind> TraversalKind() const override {
603 return this->InnerMatcher.getTraversalKind();
604 }
605 };
606
607private:
608 // For Matcher<T> <=> Matcher<U> conversions.
609 template <typename U> friend class Matcher;
610
611 // For DynTypedMatcher::unconditionalConvertTo<T>.
612 friend class DynTypedMatcher;
613
614 static DynTypedMatcher restrictMatcher(const DynTypedMatcher &Other) {
615 return Other.dynCastTo(ASTNodeKind::getFromNodeKind<T>());
616 }
617
618 explicit Matcher(const DynTypedMatcher &Implementation)
619 : Implementation(restrictMatcher(Implementation)) {
620 assert(this->Implementation.getSupportedKind().isSame(
621 ASTNodeKind::getFromNodeKind<T>()));
622 }
623
624 DynTypedMatcher Implementation;
625}; // class Matcher
626
627/// A convenient helper for creating a Matcher<T> without specifying
628/// the template type argument.
629template <typename T>
630inline Matcher<T> makeMatcher(MatcherInterface<T> *Implementation) {
631 return Matcher<T>(Implementation);
632}
633
634/// Interface that allows matchers to traverse the AST.
635/// FIXME: Find a better name.
636///
637/// This provides three entry methods for each base node type in the AST:
638/// - \c matchesChildOf:
639/// Matches a matcher on every child node of the given node. Returns true
640/// if at least one child node could be matched.
641/// - \c matchesDescendantOf:
642/// Matches a matcher on all descendant nodes of the given node. Returns true
643/// if at least one descendant matched.
644/// - \c matchesAncestorOf:
645/// Matches a matcher on all ancestors of the given node. Returns true if
646/// at least one ancestor matched.
647///
648/// FIXME: Currently we only allow Stmt and Decl nodes to start a traversal.
649/// In the future, we want to implement this for all nodes for which it makes
650/// sense. In the case of matchesAncestorOf, we'll want to implement it for
651/// all nodes, as all nodes have ancestors.
652class ASTMatchFinder {
653public:
654 /// Defines how bindings are processed on recursive matches.
655 enum BindKind {
656 /// Stop at the first match and only bind the first match.
657 BK_First,
658
659 /// Create results for all combinations of bindings that match.
660 BK_All
661 };
662
663 /// Defines which ancestors are considered for a match.
664 enum AncestorMatchMode {
665 /// All ancestors.
666 AMM_All,
667
668 /// Direct parent only.
669 AMM_ParentOnly
670 };
671
672 virtual ~ASTMatchFinder() = default;
673
674 /// Returns true if the given C++ class is directly or indirectly derived
675 /// from a base type matching \c base.
676 ///
677 /// A class is not considered to be derived from itself.
678 virtual bool classIsDerivedFrom(const CXXRecordDecl *Declaration,
679 const Matcher<NamedDecl> &Base,
680 BoundNodesTreeBuilder *Builder,
681 bool Directly) = 0;
682
683 /// Returns true if the given Objective-C class is directly or indirectly
684 /// derived from a base class matching \c base.
685 ///
686 /// A class is not considered to be derived from itself.
687 virtual bool objcClassIsDerivedFrom(const ObjCInterfaceDecl *Declaration,
688 const Matcher<NamedDecl> &Base,
689 BoundNodesTreeBuilder *Builder,
690 bool Directly) = 0;
691
692 template <typename T>
693 bool matchesChildOf(const T &Node, const DynTypedMatcher &Matcher,
694 BoundNodesTreeBuilder *Builder, BindKind Bind) {
695 static_assert(std::is_base_of<Decl, T>::value ||
696 std::is_base_of<Stmt, T>::value ||
697 std::is_base_of<NestedNameSpecifier, T>::value ||
698 std::is_base_of<NestedNameSpecifierLoc, T>::value ||
699 std::is_base_of<TypeLoc, T>::value ||
700 std::is_base_of<QualType, T>::value,
701 "unsupported type for recursive matching");
702 return matchesChildOf(DynTypedNode::create(Node), getASTContext(), Matcher,
703 Builder, Bind);
704 }
705
706 template <typename T>
707 bool matchesDescendantOf(const T &Node, const DynTypedMatcher &Matcher,
708 BoundNodesTreeBuilder *Builder, BindKind Bind) {
709 static_assert(std::is_base_of<Decl, T>::value ||
710 std::is_base_of<Stmt, T>::value ||
711 std::is_base_of<NestedNameSpecifier, T>::value ||
712 std::is_base_of<NestedNameSpecifierLoc, T>::value ||
713 std::is_base_of<TypeLoc, T>::value ||
714 std::is_base_of<QualType, T>::value,
715 "unsupported type for recursive matching");
716 return matchesDescendantOf(DynTypedNode::create(Node), getASTContext(),
717 Matcher, Builder, Bind);
718 }
719
720 // FIXME: Implement support for BindKind.
721 template <typename T>
722 bool matchesAncestorOf(const T &Node, const DynTypedMatcher &Matcher,
723 BoundNodesTreeBuilder *Builder,
724 AncestorMatchMode MatchMode) {
725 static_assert(std::is_base_of<Decl, T>::value ||
726 std::is_base_of<NestedNameSpecifierLoc, T>::value ||
727 std::is_base_of<Stmt, T>::value ||
728 std::is_base_of<TypeLoc, T>::value,
729 "type not allowed for recursive matching");
730 return matchesAncestorOf(DynTypedNode::create(Node), getASTContext(),
731 Matcher, Builder, MatchMode);
732 }
733
734 virtual ASTContext &getASTContext() const = 0;
735
736 virtual bool IsMatchingInASTNodeNotSpelledInSource() const = 0;
737
738 virtual bool IsMatchingInASTNodeNotAsIs() const = 0;
739
740 bool isTraversalIgnoringImplicitNodes() const;
741
742protected:
743 virtual bool matchesChildOf(const DynTypedNode &Node, ASTContext &Ctx,
744 const DynTypedMatcher &Matcher,
745 BoundNodesTreeBuilder *Builder,
746 BindKind Bind) = 0;
747
748 virtual bool matchesDescendantOf(const DynTypedNode &Node, ASTContext &Ctx,
749 const DynTypedMatcher &Matcher,
750 BoundNodesTreeBuilder *Builder,
751 BindKind Bind) = 0;
752
753 virtual bool matchesAncestorOf(const DynTypedNode &Node, ASTContext &Ctx,
754 const DynTypedMatcher &Matcher,
755 BoundNodesTreeBuilder *Builder,
756 AncestorMatchMode MatchMode) = 0;
757private:
758 friend struct ASTChildrenNotSpelledInSourceScope;
759 virtual bool isMatchingChildrenNotSpelledInSource() const = 0;
760 virtual void setMatchingChildrenNotSpelledInSource(bool Set) = 0;
761};
762
763struct ASTChildrenNotSpelledInSourceScope {
764 ASTChildrenNotSpelledInSourceScope(ASTMatchFinder *V, bool B)
765 : MV(V), MB(V->isMatchingChildrenNotSpelledInSource()) {
766 V->setMatchingChildrenNotSpelledInSource(B);
767 }
768 ~ASTChildrenNotSpelledInSourceScope() {
769 MV->setMatchingChildrenNotSpelledInSource(MB);
770 }
771
772private:
773 ASTMatchFinder *MV;
774 bool MB;
775};
776
777/// Specialization of the conversion functions for QualType.
778///
779/// This specialization provides the Matcher<Type>->Matcher<QualType>
780/// conversion that the static API does.
781template <>
782inline Matcher<QualType> DynTypedMatcher::convertTo<QualType>() const {
783 assert(canConvertTo<QualType>());
784 const ASTNodeKind SourceKind = getSupportedKind();
785 if (SourceKind.isSame(ASTNodeKind::getFromNodeKind<Type>())) {
786 // We support implicit conversion from Matcher<Type> to Matcher<QualType>
787 return unconditionalConvertTo<Type>();
788 }
789 return unconditionalConvertTo<QualType>();
790}
791
792/// Finds the first node in a range that matches the given matcher.
793template <typename MatcherT, typename IteratorT>
794IteratorT matchesFirstInRange(const MatcherT &Matcher, IteratorT Start,
795 IteratorT End, ASTMatchFinder *Finder,
796 BoundNodesTreeBuilder *Builder) {
797 for (IteratorT I = Start; I != End; ++I) {
798 BoundNodesTreeBuilder Result(*Builder);
799 if (Matcher.matches(*I, Finder, &Result)) {
800 *Builder = std::move(Result);
801 return I;
802 }
803 }
804 return End;
805}
806
807/// Finds the first node in a pointer range that matches the given
808/// matcher.
809template <typename MatcherT, typename IteratorT>
810IteratorT matchesFirstInPointerRange(const MatcherT &Matcher, IteratorT Start,
811 IteratorT End, ASTMatchFinder *Finder,
812 BoundNodesTreeBuilder *Builder) {
813 for (IteratorT I = Start; I != End; ++I) {
814 BoundNodesTreeBuilder Result(*Builder);
815 if (Matcher.matches(**I, Finder, &Result)) {
816 *Builder = std::move(Result);
817 return I;
818 }
819 }
820 return End;
821}
822
823template <typename T, std::enable_if_t<!std::is_base_of<FunctionDecl, T>::value>
824 * = nullptr>
825inline bool isDefaultedHelper(const T *) {
826 return false;
827}
828inline bool isDefaultedHelper(const FunctionDecl *FD) {
829 return FD->isDefaulted();
830}
831
832// Metafunction to determine if type T has a member called getDecl.
833template <typename Ty>
834class has_getDecl {
835 using yes = char[1];
836 using no = char[2];
837
838 template <typename Inner>
839 static yes& test(Inner *I, decltype(I->getDecl()) * = nullptr);
840
841 template <typename>
842 static no& test(...);
843
844public:
845 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
846};
847
848/// Matches overloaded operators with a specific name.
849///
850/// The type argument ArgT is not used by this matcher but is used by
851/// PolymorphicMatcher and should be StringRef.
852template <typename T, typename ArgT>
853class HasOverloadedOperatorNameMatcher : public SingleNodeMatcherInterface<T> {
854 static_assert(std::is_same<T, CXXOperatorCallExpr>::value ||
855 std::is_base_of<FunctionDecl, T>::value,
856 "unsupported class for matcher");
857 static_assert(std::is_same<ArgT, std::vector<std::string>>::value,
858 "argument type must be std::vector<std::string>");
859
860public:
861 explicit HasOverloadedOperatorNameMatcher(std::vector<std::string> Names)
862 : SingleNodeMatcherInterface<T>(), Names(std::move(Names)) {}
863
864 bool matchesNode(const T &Node) const override {
865 return matchesSpecialized(Node);
866 }
867
868private:
869
870 /// CXXOperatorCallExpr exist only for calls to overloaded operators
871 /// so this function returns true if the call is to an operator of the given
872 /// name.
873 bool matchesSpecialized(const CXXOperatorCallExpr &Node) const {
874 return llvm::is_contained(Names, getOperatorSpelling(Node.getOperator()));
875 }
876
877 /// Returns true only if CXXMethodDecl represents an overloaded
878 /// operator and has the given operator name.
879 bool matchesSpecialized(const FunctionDecl &Node) const {
880 return Node.isOverloadedOperator() &&
881 llvm::is_contained(
882 Names, getOperatorSpelling(Node.getOverloadedOperator()));
883 }
884
885 std::vector<std::string> Names;
886};
887
888/// Matches named declarations with a specific name.
889///
890/// See \c hasName() and \c hasAnyName() in ASTMatchers.h for details.
891class HasNameMatcher : public SingleNodeMatcherInterface<NamedDecl> {
892 public:
893 explicit HasNameMatcher(std::vector<std::string> Names);
894
895 bool matchesNode(const NamedDecl &Node) const override;
896
897 private:
898 /// Unqualified match routine.
899 ///
900 /// It is much faster than the full match, but it only works for unqualified
901 /// matches.
902 bool matchesNodeUnqualified(const NamedDecl &Node) const;
903
904 /// Full match routine
905 ///
906 /// Fast implementation for the simple case of a named declaration at
907 /// namespace or RecordDecl scope.
908 /// It is slower than matchesNodeUnqualified, but faster than
909 /// matchesNodeFullSlow.
910 bool matchesNodeFullFast(const NamedDecl &Node) const;
911
912 /// Full match routine
913 ///
914 /// It generates the fully qualified name of the declaration (which is
915 /// expensive) before trying to match.
916 /// It is slower but simple and works on all cases.
917 bool matchesNodeFullSlow(const NamedDecl &Node) const;
918
919 bool UseUnqualifiedMatch;
920 std::vector<std::string> Names;
921};
922
923/// Trampoline function to use VariadicFunction<> to construct a
924/// HasNameMatcher.
925Matcher<NamedDecl> hasAnyNameFunc(ArrayRef<const StringRef *> NameRefs);
926
927/// Trampoline function to use VariadicFunction<> to construct a
928/// hasAnySelector matcher.
929Matcher<ObjCMessageExpr> hasAnySelectorFunc(
930 ArrayRef<const StringRef *> NameRefs);
931
932/// Matches declarations for QualType and CallExpr.
933///
934/// Type argument DeclMatcherT is required by PolymorphicMatcher but
935/// not actually used.
936template <typename T, typename DeclMatcherT>
937class HasDeclarationMatcher : public MatcherInterface<T> {
938 static_assert(std::is_same<DeclMatcherT, Matcher<Decl>>::value,
939 "instantiated with wrong types");
940
941 DynTypedMatcher InnerMatcher;
942
943public:
944 explicit HasDeclarationMatcher(const Matcher<Decl> &InnerMatcher)
945 : InnerMatcher(InnerMatcher) {}
946
947 bool matches(const T &Node, ASTMatchFinder *Finder,
948 BoundNodesTreeBuilder *Builder) const override {
949 return matchesSpecialized(Node, Finder, Builder);
950 }
951
952private:
953 /// Forwards to matching on the underlying type of the QualType.
954 bool matchesSpecialized(const QualType &Node, ASTMatchFinder *Finder,
955 BoundNodesTreeBuilder *Builder) const {
956 if (Node.isNull())
957 return false;
958
959 return matchesSpecialized(*Node, Finder, Builder);
960 }
961
962 /// Finds the best declaration for a type and returns whether the inner
963 /// matcher matches on it.
964 bool matchesSpecialized(const Type &Node, ASTMatchFinder *Finder,
965 BoundNodesTreeBuilder *Builder) const {
966 // DeducedType does not have declarations of its own, so
967 // match the deduced type instead.
968 const Type *EffectiveType = &Node;
969 if (const auto *S = dyn_cast<DeducedType>(&Node)) {
970 EffectiveType = S->getDeducedType().getTypePtrOrNull();
971 if (!EffectiveType)
972 return false;
973 }
974
975 // First, for any types that have a declaration, extract the declaration and
976 // match on it.
977 if (const auto *S = dyn_cast<TagType>(EffectiveType)) {
978 return matchesDecl(S->getDecl(), Finder, Builder);
979 }
980 if (const auto *S = dyn_cast<InjectedClassNameType>(EffectiveType)) {
981 return matchesDecl(S->getDecl(), Finder, Builder);
982 }
983 if (const auto *S = dyn_cast<TemplateTypeParmType>(EffectiveType)) {
984 return matchesDecl(S->getDecl(), Finder, Builder);
985 }
986 if (const auto *S = dyn_cast<TypedefType>(EffectiveType)) {
987 return matchesDecl(S->getDecl(), Finder, Builder);
988 }
989 if (const auto *S = dyn_cast<UnresolvedUsingType>(EffectiveType)) {
990 return matchesDecl(S->getDecl(), Finder, Builder);
991 }
992 if (const auto *S = dyn_cast<ObjCObjectType>(EffectiveType)) {
993 return matchesDecl(S->getInterface(), Finder, Builder);
994 }
995
996 // A SubstTemplateTypeParmType exists solely to mark a type substitution
997 // on the instantiated template. As users usually want to match the
998 // template parameter on the uninitialized template, we can always desugar
999 // one level without loss of expressivness.
1000 // For example, given:
1001 // template<typename T> struct X { T t; } class A {}; X<A> a;
1002 // The following matcher will match, which otherwise would not:
1003 // fieldDecl(hasType(pointerType())).
1004 if (const auto *S = dyn_cast<SubstTemplateTypeParmType>(EffectiveType)) {
1005 return matchesSpecialized(S->getReplacementType(), Finder, Builder);
1006 }
1007
1008 // For template specialization types, we want to match the template
1009 // declaration, as long as the type is still dependent, and otherwise the
1010 // declaration of the instantiated tag type.
1011 if (const auto *S = dyn_cast<TemplateSpecializationType>(EffectiveType)) {
1012 if (!S->isTypeAlias() && S->isSugared()) {
1013 // If the template is non-dependent, we want to match the instantiated
1014 // tag type.
1015 // For example, given:
1016 // template<typename T> struct X {}; X<int> a;
1017 // The following matcher will match, which otherwise would not:
1018 // templateSpecializationType(hasDeclaration(cxxRecordDecl())).
1019 return matchesSpecialized(*S->desugar(), Finder, Builder);
1020 }
1021 // If the template is dependent or an alias, match the template
1022 // declaration.
1023 return matchesDecl(S->getTemplateName().getAsTemplateDecl(), Finder,
1024 Builder);
1025 }
1026
1027 // FIXME: We desugar elaborated types. This makes the assumption that users
1028 // do never want to match on whether a type is elaborated - there are
1029 // arguments for both sides; for now, continue desugaring.
1030 if (const auto *S = dyn_cast<ElaboratedType>(EffectiveType)) {
1031 return matchesSpecialized(S->desugar(), Finder, Builder);
1032 }
1033 return false;
1034 }
1035
1036 /// Extracts the Decl the DeclRefExpr references and returns whether
1037 /// the inner matcher matches on it.
1038 bool matchesSpecialized(const DeclRefExpr &Node, ASTMatchFinder *Finder,
1039 BoundNodesTreeBuilder *Builder) const {
1040 return matchesDecl(Node.getDecl(), Finder, Builder);
1041 }
1042
1043 /// Extracts the Decl of the callee of a CallExpr and returns whether
1044 /// the inner matcher matches on it.
1045 bool matchesSpecialized(const CallExpr &Node, ASTMatchFinder *Finder,
1046 BoundNodesTreeBuilder *Builder) const {
1047 return matchesDecl(Node.getCalleeDecl(), Finder, Builder);
1048 }
1049
1050 /// Extracts the Decl of the constructor call and returns whether the
1051 /// inner matcher matches on it.
1052 bool matchesSpecialized(const CXXConstructExpr &Node,
1053 ASTMatchFinder *Finder,
1054 BoundNodesTreeBuilder *Builder) const {
1055 return matchesDecl(Node.getConstructor(), Finder, Builder);
1056 }
1057
1058 bool matchesSpecialized(const ObjCIvarRefExpr &Node,
1059 ASTMatchFinder *Finder,
1060 BoundNodesTreeBuilder *Builder) const {
1061 return matchesDecl(Node.getDecl(), Finder, Builder);
1062 }
1063
1064 /// Extracts the operator new of the new call and returns whether the
1065 /// inner matcher matches on it.
1066 bool matchesSpecialized(const CXXNewExpr &Node,
1067 ASTMatchFinder *Finder,
1068 BoundNodesTreeBuilder *Builder) const {
1069 return matchesDecl(Node.getOperatorNew(), Finder, Builder);
1070 }
1071
1072 /// Extracts the \c ValueDecl a \c MemberExpr refers to and returns
1073 /// whether the inner matcher matches on it.
1074 bool matchesSpecialized(const MemberExpr &Node,
1075 ASTMatchFinder *Finder,
1076 BoundNodesTreeBuilder *Builder) const {
1077 return matchesDecl(Node.getMemberDecl(), Finder, Builder);
1078 }
1079
1080 /// Extracts the \c LabelDecl a \c AddrLabelExpr refers to and returns
1081 /// whether the inner matcher matches on it.
1082 bool matchesSpecialized(const AddrLabelExpr &Node,
1083 ASTMatchFinder *Finder,
1084 BoundNodesTreeBuilder *Builder) const {
1085 return matchesDecl(Node.getLabel(), Finder, Builder);
1086 }
1087
1088 /// Extracts the declaration of a LabelStmt and returns whether the
1089 /// inner matcher matches on it.
1090 bool matchesSpecialized(const LabelStmt &Node, ASTMatchFinder *Finder,
1091 BoundNodesTreeBuilder *Builder) const {
1092 return matchesDecl(Node.getDecl(), Finder, Builder);
1093 }
1094
1095 /// Returns whether the inner matcher \c Node. Returns false if \c Node
1096 /// is \c NULL.
1097 bool matchesDecl(const Decl *Node, ASTMatchFinder *Finder,
1098 BoundNodesTreeBuilder *Builder) const {
1099 return Node != nullptr &&
1100 !(Finder->isTraversalIgnoringImplicitNodes() &&
1101 Node->isImplicit()) &&
1102 this->InnerMatcher.matches(DynTypedNode::create(*Node), Finder,
1103 Builder);
1104 }
1105};
1106
1107/// IsBaseType<T>::value is true if T is a "base" type in the AST
1108/// node class hierarchies.
1109template <typename T>
1110struct IsBaseType {
1111 static const bool value =
1112 std::is_same<T, Decl>::value || std::is_same<T, Stmt>::value ||
1113 std::is_same<T, QualType>::value || std::is_same<T, Type>::value ||
1114 std::is_same<T, TypeLoc>::value ||
1115 std::is_same<T, NestedNameSpecifier>::value ||
1116 std::is_same<T, NestedNameSpecifierLoc>::value ||
1117 std::is_same<T, CXXCtorInitializer>::value ||
1118 std::is_same<T, TemplateArgumentLoc>::value;
1119};
1120template <typename T>
1121const bool IsBaseType<T>::value;
1122
1123/// A type-list implementation.
1124///
1125/// A "linked list" of types, accessible by using the ::head and ::tail
1126/// typedefs.
1127template <typename... Ts> struct TypeList {}; // Empty sentinel type list.
1128
1129template <typename T1, typename... Ts> struct TypeList<T1, Ts...> {
1130 /// The first type on the list.
1131 using head = T1;
1132
1133 /// A sublist with the tail. ie everything but the head.
1134 ///
1135 /// This type is used to do recursion. TypeList<>/EmptyTypeList indicates the
1136 /// end of the list.
1137 using tail = TypeList<Ts...>;
1138};
1139
1140/// The empty type list.
1141using EmptyTypeList = TypeList<>;
1142
1143/// Helper meta-function to determine if some type \c T is present or
1144/// a parent type in the list.
1145template <typename AnyTypeList, typename T>
1146struct TypeListContainsSuperOf {
1147 static const bool value =
1148 std::is_base_of<typename AnyTypeList::head, T>::value ||
1149 TypeListContainsSuperOf<typename AnyTypeList::tail, T>::value;
1150};
1151template <typename T>
1152struct TypeListContainsSuperOf<EmptyTypeList, T> {
1153 static const bool value = false;
1154};
1155
1156/// A "type list" that contains all types.
1157///
1158/// Useful for matchers like \c anything and \c unless.
1159using AllNodeBaseTypes =
1160 TypeList<Decl, Stmt, NestedNameSpecifier, NestedNameSpecifierLoc, QualType,
1161 Type, TypeLoc, CXXCtorInitializer>;
1162
1163/// Helper meta-function to extract the argument out of a function of
1164/// type void(Arg).
1165///
1166/// See AST_POLYMORPHIC_SUPPORTED_TYPES for details.
1167template <class T> struct ExtractFunctionArgMeta;
1168template <class T> struct ExtractFunctionArgMeta<void(T)> {
1169 using type = T;
1170};
1171
1172template <class T, class Tuple, std::size_t... I>
1173constexpr T *new_from_tuple_impl(Tuple &&t, std::index_sequence<I...>) {
1174 return new T(std::get<I>(std::forward<Tuple>(t))...);
1175}
1176
1177template <class T, class Tuple> constexpr T *new_from_tuple(Tuple &&t) {
1178 return new_from_tuple_impl<T>(
1179 std::forward<Tuple>(t),
1180 std::make_index_sequence<
1181 std::tuple_size<std::remove_reference_t<Tuple>>::value>{});
1182}
1183
1184/// Default type lists for ArgumentAdaptingMatcher matchers.
1185using AdaptativeDefaultFromTypes = AllNodeBaseTypes;
1186using AdaptativeDefaultToTypes =
1187 TypeList<Decl, Stmt, NestedNameSpecifier, NestedNameSpecifierLoc, TypeLoc,
1188 QualType>;
1189
1190/// All types that are supported by HasDeclarationMatcher above.
1191using HasDeclarationSupportedTypes =
1192 TypeList<CallExpr, CXXConstructExpr, CXXNewExpr, DeclRefExpr, EnumType,
1193 ElaboratedType, InjectedClassNameType, LabelStmt, AddrLabelExpr,
1194 MemberExpr, QualType, RecordType, TagType,
1195 TemplateSpecializationType, TemplateTypeParmType, TypedefType,
1196 UnresolvedUsingType, ObjCIvarRefExpr>;
1197
1198/// A Matcher that allows binding the node it matches to an id.
1199///
1200/// BindableMatcher provides a \a bind() method that allows binding the
1201/// matched node to an id if the match was successful.
1202template <typename T> class BindableMatcher : public Matcher<T> {
1203public:
1204 explicit BindableMatcher(const Matcher<T> &M) : Matcher<T>(M) {}
1205 explicit BindableMatcher(MatcherInterface<T> *Implementation)
1206 : Matcher<T>(Implementation) {}
1207
1208 /// Returns a matcher that will bind the matched node on a match.
1209 ///
1210 /// The returned matcher is equivalent to this matcher, but will
1211 /// bind the matched node on a match.
1212 Matcher<T> bind(StringRef ID) const {
1213 return DynTypedMatcher(*this)
1214 .tryBind(ID)
1215 ->template unconditionalConvertTo<T>();
1216 }
1217
1218 /// Same as Matcher<T>'s conversion operator, but enables binding on
1219 /// the returned matcher.
1220 operator DynTypedMatcher() const {
1221 DynTypedMatcher Result = static_cast<const Matcher<T> &>(*this);
1222 Result.setAllowBind(true);
1223 return Result;
1224 }
1225};
1226
1227/// Matches any instance of the given NodeType.
1228///
1229/// This is useful when a matcher syntactically requires a child matcher,
1230/// but the context doesn't care. See for example: anything().
1231class TrueMatcher {
1232public:
1233 using ReturnTypes = AllNodeBaseTypes;
1234
1235 template <typename T> operator Matcher<T>() const {
1236 return DynTypedMatcher::trueMatcher(ASTNodeKind::getFromNodeKind<T>())
1237 .template unconditionalConvertTo<T>();
1238 }
1239};
1240
1241/// Creates a Matcher<T> that matches if all inner matchers match.
1242template <typename T>
1243BindableMatcher<T>
1244makeAllOfComposite(ArrayRef<const Matcher<T> *> InnerMatchers) {
1245 // For the size() == 0 case, we return a "true" matcher.
1246 if (InnerMatchers.empty()) {
1247 return BindableMatcher<T>(TrueMatcher());
1248 }
1249 // For the size() == 1 case, we simply return that one matcher.
1250 // No need to wrap it in a variadic operation.
1251 if (InnerMatchers.size() == 1) {
1252 return BindableMatcher<T>(*InnerMatchers[0]);
1253 }
1254
1255 using PI = llvm::pointee_iterator<const Matcher<T> *const *>;
1256
1257 std::vector<DynTypedMatcher> DynMatchers(PI(InnerMatchers.begin()),
1258 PI(InnerMatchers.end()));
1259 return BindableMatcher<T>(
1260 DynTypedMatcher::constructVariadic(DynTypedMatcher::VO_AllOf,
1261 ASTNodeKind::getFromNodeKind<T>(),
1262 std::move(DynMatchers))
1263 .template unconditionalConvertTo<T>());
1264}
1265
1266/// Creates a Matcher<T> that matches if
1267/// T is dyn_cast'able into InnerT and all inner matchers match.
1268///
1269/// Returns BindableMatcher, as matchers that use dyn_cast have
1270/// the same object both to match on and to run submatchers on,
1271/// so there is no ambiguity with what gets bound.
1272template <typename T, typename InnerT>
1273BindableMatcher<T>
1274makeDynCastAllOfComposite(ArrayRef<const Matcher<InnerT> *> InnerMatchers) {
1275 return BindableMatcher<T>(
1276 makeAllOfComposite(InnerMatchers).template dynCastTo<T>());
1277}
1278
1279/// A VariadicDynCastAllOfMatcher<SourceT, TargetT> object is a
1280/// variadic functor that takes a number of Matcher<TargetT> and returns a
1281/// Matcher<SourceT> that matches TargetT nodes that are matched by all of the
1282/// given matchers, if SourceT can be dynamically casted into TargetT.
1283///
1284/// For example:
1285/// const VariadicDynCastAllOfMatcher<Decl, CXXRecordDecl> record;
1286/// Creates a functor record(...) that creates a Matcher<Decl> given
1287/// a variable number of arguments of type Matcher<CXXRecordDecl>.
1288/// The returned matcher matches if the given Decl can by dynamically
1289/// casted to CXXRecordDecl and all given matchers match.
1290template <typename SourceT, typename TargetT>
1291class VariadicDynCastAllOfMatcher
1292 : public VariadicFunction<BindableMatcher<SourceT>, Matcher<TargetT>,
1293 makeDynCastAllOfComposite<SourceT, TargetT>> {
1294public:
1295 VariadicDynCastAllOfMatcher() {}
1296};
1297
1298/// A \c VariadicAllOfMatcher<T> object is a variadic functor that takes
1299/// a number of \c Matcher<T> and returns a \c Matcher<T> that matches \c T
1300/// nodes that are matched by all of the given matchers.
1301///
1302/// For example:
1303/// const VariadicAllOfMatcher<NestedNameSpecifier> nestedNameSpecifier;
1304/// Creates a functor nestedNameSpecifier(...) that creates a
1305/// \c Matcher<NestedNameSpecifier> given a variable number of arguments of type
1306/// \c Matcher<NestedNameSpecifier>.
1307/// The returned matcher matches if all given matchers match.
1308template <typename T>
1309class VariadicAllOfMatcher
1310 : public VariadicFunction<BindableMatcher<T>, Matcher<T>,
1311 makeAllOfComposite<T>> {
1312public:
1313 VariadicAllOfMatcher() {}
1314};
1315
1316/// VariadicOperatorMatcher related types.
1317/// @{
1318
1319/// Polymorphic matcher object that uses a \c
1320/// DynTypedMatcher::VariadicOperator operator.
1321///
1322/// Input matchers can have any type (including other polymorphic matcher
1323/// types), and the actual Matcher<T> is generated on demand with an implicit
1324/// conversion operator.
1325template <typename... Ps> class VariadicOperatorMatcher {
1326public:
1327 VariadicOperatorMatcher(DynTypedMatcher::VariadicOperator Op, Ps &&... Params)
1328 : Op(Op), Params(std::forward<Ps>(Params)...) {}
1329
1330 template <typename T> operator Matcher<T>() const LLVM_LVALUE_FUNCTION {
1331 return DynTypedMatcher::constructVariadic(
1332 Op, ASTNodeKind::getFromNodeKind<T>(),
1333 getMatchers<T>(std::index_sequence_for<Ps...>()))
1334 .template unconditionalConvertTo<T>();
1335 }
1336
1337#if LLVM_HAS_RVALUE_REFERENCE_THIS
1338 template <typename T> operator Matcher<T>() && {
1339 return DynTypedMatcher::constructVariadic(
1340 Op, ASTNodeKind::getFromNodeKind<T>(),
1341 getMatchers<T>(std::index_sequence_for<Ps...>()))
1342 .template unconditionalConvertTo<T>();
1343 }
1344#endif
1345private:
1346 // Helper method to unpack the tuple into a vector.
1347 template <typename T, std::size_t... Is>
1348 std::vector<DynTypedMatcher>
1349 getMatchers(std::index_sequence<Is...>) const LLVM_LVALUE_FUNCTION {
1350 return {Matcher<T>(std::get<Is>(Params))...};
1351 }
1352
1353#if LLVM_HAS_RVALUE_REFERENCE_THIS
1354 template <typename T, std::size_t... Is>
1355 std::vector<DynTypedMatcher> getMatchers(std::index_sequence<Is...>) && {
1356 return {Matcher<T>(std::get<Is>(std::move(Params)))...};
1357 }
1358#endif
1359
1360 const DynTypedMatcher::VariadicOperator Op;
1361 std::tuple<Ps...> Params;
1362};
1363
1364/// Overloaded function object to generate VariadicOperatorMatcher
1365/// objects from arbitrary matchers.
1366template <unsigned MinCount, unsigned MaxCount>
1367struct VariadicOperatorMatcherFunc {
1368 DynTypedMatcher::VariadicOperator Op;
1369
1370 template <typename... Ms>
1371 VariadicOperatorMatcher<Ms...> operator()(Ms &&... Ps) const {
1372 static_assert(MinCount <= sizeof...(Ms) && sizeof...(Ms) <= MaxCount,
1373 "invalid number of parameters for variadic matcher");
1374 return VariadicOperatorMatcher<Ms...>(Op, std::forward<Ms>(Ps)...);
1375 }
1376};
1377
1378template <typename F, typename Tuple, std::size_t... I>
1379constexpr auto applyMatcherImpl(F &&f, Tuple &&args,
1380 std::index_sequence<I...>) {
1381 return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(args))...);
1382}
1383
1384template <typename F, typename Tuple>
1385constexpr auto applyMatcher(F &&f, Tuple &&args) {
1386 return applyMatcherImpl(
1387 std::forward<F>(f), std::forward<Tuple>(args),
1388 std::make_index_sequence<
1389 std::tuple_size<typename std::decay<Tuple>::type>::value>());
1390}
1391
1392template <typename T, bool IsBaseOf, typename Head, typename Tail>
1393struct GetCladeImpl {
1394 using Type = Head;
1395};
1396template <typename T, typename Head, typename Tail>
1397struct GetCladeImpl<T, false, Head, Tail>
1398 : GetCladeImpl<T, std::is_base_of<typename Tail::head, T>::value,
1399 typename Tail::head, typename Tail::tail> {};
1400
1401template <typename T, typename... U>
1402struct GetClade : GetCladeImpl<T, false, T, AllNodeBaseTypes> {};
1403
1404template <typename CladeType, typename... MatcherTypes>
1405struct MapAnyOfMatcherImpl {
1406
1407 template <typename... InnerMatchers>
1408 BindableMatcher<CladeType>
1409 operator()(InnerMatchers &&... InnerMatcher) const {
1410 // TODO: Use std::apply from c++17
1411 return VariadicAllOfMatcher<CladeType>()(applyMatcher(
1412 internal::VariadicOperatorMatcherFunc<
1413 0, std::numeric_limits<unsigned>::max()>{
1414 internal::DynTypedMatcher::VO_AnyOf},
1415 applyMatcher(
1416 [&](auto... Matcher) {
1417 return std::make_tuple(Matcher(InnerMatcher...)...);
1418 },
1419 std::tuple<
1420 VariadicDynCastAllOfMatcher<CladeType, MatcherTypes>...>())));
1421 }
1422};
1423
1424template <typename... MatcherTypes>
1425using MapAnyOfMatcher =
1426 MapAnyOfMatcherImpl<typename GetClade<MatcherTypes...>::Type,
1427 MatcherTypes...>;
1428
1429template <typename... MatcherTypes> struct MapAnyOfHelper {
1430 using CladeType = typename GetClade<MatcherTypes...>::Type;
1431
1432 MapAnyOfMatcher<MatcherTypes...> with;
1433
1434 operator BindableMatcher<CladeType>() const { return with(); }
1435
1436 Matcher<CladeType> bind(StringRef ID) const { return with().bind(ID); }
1437};
1438
1439template <template <typename ToArg, typename FromArg> class ArgumentAdapterT,
1440 typename T, typename ToTypes>
1441class ArgumentAdaptingMatcherFuncAdaptor {
1442public:
1443 explicit ArgumentAdaptingMatcherFuncAdaptor(const Matcher<T> &InnerMatcher)
1444 : InnerMatcher(InnerMatcher) {}
1445
1446 using ReturnTypes = ToTypes;
1447
1448 template <typename To> operator Matcher<To>() const LLVM_LVALUE_FUNCTION {
1449 return Matcher<To>(new ArgumentAdapterT<To, T>(InnerMatcher));
1450 }
1451
1452#if LLVM_HAS_RVALUE_REFERENCE_THIS
1453 template <typename To> operator Matcher<To>() && {
1454 return Matcher<To>(new ArgumentAdapterT<To, T>(std::move(InnerMatcher)));
1455 }
1456#endif
1457
1458private:
1459 Matcher<T> InnerMatcher;
1460};
1461
1462/// Converts a \c Matcher<T> to a matcher of desired type \c To by
1463/// "adapting" a \c To into a \c T.
1464///
1465/// The \c ArgumentAdapterT argument specifies how the adaptation is done.
1466///
1467/// For example:
1468/// \c ArgumentAdaptingMatcher<HasMatcher, T>(InnerMatcher);
1469/// Given that \c InnerMatcher is of type \c Matcher<T>, this returns a matcher
1470/// that is convertible into any matcher of type \c To by constructing
1471/// \c HasMatcher<To, T>(InnerMatcher).
1472///
1473/// If a matcher does not need knowledge about the inner type, prefer to use
1474/// PolymorphicMatcher.
1475template <template <typename ToArg, typename FromArg> class ArgumentAdapterT,
1476 typename FromTypes = AdaptativeDefaultFromTypes,
1477 typename ToTypes = AdaptativeDefaultToTypes>
1478struct ArgumentAdaptingMatcherFunc {
1479 template <typename T>
1480 static ArgumentAdaptingMatcherFuncAdaptor<ArgumentAdapterT, T, ToTypes>
1481 create(const Matcher<T> &InnerMatcher) {
1482 return ArgumentAdaptingMatcherFuncAdaptor<ArgumentAdapterT, T, ToTypes>(
1483 InnerMatcher);
1484 }
1485
1486 template <typename T>
1487 ArgumentAdaptingMatcherFuncAdaptor<ArgumentAdapterT, T, ToTypes>
1488 operator()(const Matcher<T> &InnerMatcher) const {
1489 return create(InnerMatcher);
1490 }
1491
1492 template <typename... T>
1493 ArgumentAdaptingMatcherFuncAdaptor<ArgumentAdapterT,
1494 typename GetClade<T...>::Type, ToTypes>
1495 operator()(const MapAnyOfHelper<T...> &InnerMatcher) const {
1496 return create(InnerMatcher.with());
1497 }
1498};
1499
1500template <typename T> class TraversalMatcher : public MatcherInterface<T> {
1501 DynTypedMatcher InnerMatcher;
1502 clang::TraversalKind Traversal;
1503
1504public:
1505 explicit TraversalMatcher(clang::TraversalKind TK,
1506 const Matcher<T> &InnerMatcher)
1507 : InnerMatcher(InnerMatcher), Traversal(TK) {}
1508
1509 bool matches(const T &Node, ASTMatchFinder *Finder,
1510 BoundNodesTreeBuilder *Builder) const override {
1511 return this->InnerMatcher.matches(DynTypedNode::create(Node), Finder,
1512 Builder);
1513 }
1514
1515 llvm::Optional<clang::TraversalKind> TraversalKind() const override {
1516 if (auto NestedKind = this->InnerMatcher.getTraversalKind())
1517 return NestedKind;
1518 return Traversal;
1519 }
1520};
1521
1522template <typename MatcherType> class TraversalWrapper {
1523public:
1524 TraversalWrapper(TraversalKind TK, const MatcherType &InnerMatcher)
1525 : TK(TK), InnerMatcher(InnerMatcher) {}
1526
1527 template <typename T> operator Matcher<T>() const LLVM_LVALUE_FUNCTION {
1528 return internal::DynTypedMatcher::constructRestrictedWrapper(
1529 new internal::TraversalMatcher<T>(TK, InnerMatcher),
1530 ASTNodeKind::getFromNodeKind<T>())
1531 .template unconditionalConvertTo<T>();
1532 }
1533
1534#if LLVM_HAS_RVALUE_REFERENCE_THIS
1535 template <typename T> operator Matcher<T>() && {
1536 return internal::DynTypedMatcher::constructRestrictedWrapper(
1537 new internal::TraversalMatcher<T>(TK, std::move(InnerMatcher)),
1538 ASTNodeKind::getFromNodeKind<T>())
1539 .template unconditionalConvertTo<T>();
1540 }
1541#endif
1542
1543private:
1544 TraversalKind TK;
1545 MatcherType InnerMatcher;
1546};
1547
1548/// A PolymorphicMatcher<MatcherT, P1, ..., PN> object can be
1549/// created from N parameters p1, ..., pN (of type P1, ..., PN) and
1550/// used as a Matcher<T> where a MatcherT<T, P1, ..., PN>(p1, ..., pN)
1551/// can be constructed.
1552///
1553/// For example:
1554/// - PolymorphicMatcher<IsDefinitionMatcher>()
1555/// creates an object that can be used as a Matcher<T> for any type T
1556/// where an IsDefinitionMatcher<T>() can be constructed.
1557/// - PolymorphicMatcher<ValueEqualsMatcher, int>(42)
1558/// creates an object that can be used as a Matcher<T> for any type T
1559/// where a ValueEqualsMatcher<T, int>(42) can be constructed.
1560template <template <typename T, typename... Params> class MatcherT,
1561 typename ReturnTypesF, typename... ParamTypes>
1562class PolymorphicMatcher {
1563public:
1564 PolymorphicMatcher(const ParamTypes &... Params) : Params(Params...) {}
1565
1566 using ReturnTypes = typename ExtractFunctionArgMeta<ReturnTypesF>::type;
1567
1568 template <typename T> operator Matcher<T>() const LLVM_LVALUE_FUNCTION {
1569 static_assert(TypeListContainsSuperOf<ReturnTypes, T>::value,
1570 "right polymorphic conversion");
1571 return Matcher<T>(new_from_tuple<MatcherT<T, ParamTypes...>>(Params));
1572 }
1573
1574#if LLVM_HAS_RVALUE_REFERENCE_THIS
1575 template <typename T> operator Matcher<T>() && {
1576 static_assert(TypeListContainsSuperOf<ReturnTypes, T>::value,
1577 "right polymorphic conversion");
1578 return Matcher<T>(
1579 new_from_tuple<MatcherT<T, ParamTypes...>>(std::move(Params)));
1580 }
1581#endif
1582
1583private:
1584 std::tuple<ParamTypes...> Params;
1585};
1586
1587/// Matches nodes of type T that have child nodes of type ChildT for
1588/// which a specified child matcher matches.
1589///
1590/// ChildT must be an AST base type.
1591template <typename T, typename ChildT>
1592class HasMatcher : public MatcherInterface<T> {
1593 DynTypedMatcher InnerMatcher;
1594
1595public:
1596 explicit HasMatcher(const Matcher<ChildT> &InnerMatcher)
1597 : InnerMatcher(InnerMatcher) {}
1598
1599 bool matches(const T &Node, ASTMatchFinder *Finder,
1600 BoundNodesTreeBuilder *Builder) const override {
1601 return Finder->matchesChildOf(Node, this->InnerMatcher, Builder,
1602 ASTMatchFinder::BK_First);
1603 }
1604};
1605
1606/// Matches nodes of type T that have child nodes of type ChildT for
1607/// which a specified child matcher matches. ChildT must be an AST base
1608/// type.
1609/// As opposed to the HasMatcher, the ForEachMatcher will produce a match
1610/// for each child that matches.
1611template <typename T, typename ChildT>
1612class ForEachMatcher : public MatcherInterface<T> {
1613 static_assert(IsBaseType<ChildT>::value,
1614 "for each only accepts base type matcher");
1615
1616 DynTypedMatcher InnerMatcher;
1617
1618public:
1619 explicit ForEachMatcher(const Matcher<ChildT> &InnerMatcher)
1620 : InnerMatcher(InnerMatcher) {}
1621
1622 bool matches(const T &Node, ASTMatchFinder *Finder,
1623 BoundNodesTreeBuilder *Builder) const override {
1624 return Finder->matchesChildOf(
1625 Node, this->InnerMatcher, Builder,
1626 ASTMatchFinder::BK_All);
1627 }
1628};
1629
1630/// @}
1631
1632template <typename T>
1633inline Matcher<T> DynTypedMatcher::unconditionalConvertTo() const {
1634 return Matcher<T>(*this);
1635}
1636
1637/// Matches nodes of type T that have at least one descendant node of
1638/// type DescendantT for which the given inner matcher matches.
1639///
1640/// DescendantT must be an AST base type.
1641template <typename T, typename DescendantT>
1642class HasDescendantMatcher : public MatcherInterface<T> {
1643 static_assert(IsBaseType<DescendantT>::value,
1644 "has descendant only accepts base type matcher");
1645
1646 DynTypedMatcher DescendantMatcher;
1647
1648public:
1649 explicit HasDescendantMatcher(const Matcher<DescendantT> &DescendantMatcher)
1650 : DescendantMatcher(DescendantMatcher) {}
1651
1652 bool matches(const T &Node, ASTMatchFinder *Finder,
1653 BoundNodesTreeBuilder *Builder) const override {
1654 return Finder->matchesDescendantOf(Node, this->DescendantMatcher, Builder,
1655 ASTMatchFinder::BK_First);
1656 }
1657};
1658
1659/// Matches nodes of type \c T that have a parent node of type \c ParentT
1660/// for which the given inner matcher matches.
1661///
1662/// \c ParentT must be an AST base type.
1663template <typename T, typename ParentT>
1664class HasParentMatcher : public MatcherInterface<T> {
1665 static_assert(IsBaseType<ParentT>::value,
1666 "has parent only accepts base type matcher");
1667
1668 DynTypedMatcher ParentMatcher;
1669
1670public:
1671 explicit HasParentMatcher(const Matcher<ParentT> &ParentMatcher)
1672 : ParentMatcher(ParentMatcher) {}
1673
1674 bool matches(const T &Node, ASTMatchFinder *Finder,
1675 BoundNodesTreeBuilder *Builder) const override {
1676 return Finder->matchesAncestorOf(Node, this->ParentMatcher, Builder,
1677 ASTMatchFinder::AMM_ParentOnly);
1678 }
1679};
1680
1681/// Matches nodes of type \c T that have at least one ancestor node of
1682/// type \c AncestorT for which the given inner matcher matches.
1683///
1684/// \c AncestorT must be an AST base type.
1685template <typename T, typename AncestorT>
1686class HasAncestorMatcher : public MatcherInterface<T> {
1687 static_assert(IsBaseType<AncestorT>::value,
1688 "has ancestor only accepts base type matcher");
1689
1690 DynTypedMatcher AncestorMatcher;
1691
1692public:
1693 explicit HasAncestorMatcher(const Matcher<AncestorT> &AncestorMatcher)
1694 : AncestorMatcher(AncestorMatcher) {}
1695
1696 bool matches(const T &Node, ASTMatchFinder *Finder,
1697 BoundNodesTreeBuilder *Builder) const override {
1698 return Finder->matchesAncestorOf(Node, this->AncestorMatcher, Builder,
1699 ASTMatchFinder::AMM_All);
1700 }
1701};
1702
1703/// Matches nodes of type T that have at least one descendant node of
1704/// type DescendantT for which the given inner matcher matches.
1705///
1706/// DescendantT must be an AST base type.
1707/// As opposed to HasDescendantMatcher, ForEachDescendantMatcher will match
1708/// for each descendant node that matches instead of only for the first.
1709template <typename T, typename DescendantT>
1710class ForEachDescendantMatcher : public MatcherInterface<T> {
1711 static_assert(IsBaseType<DescendantT>::value,
1712 "for each descendant only accepts base type matcher");
1713
1714 DynTypedMatcher DescendantMatcher;
1715
1716public:
1717 explicit ForEachDescendantMatcher(
1718 const Matcher<DescendantT> &DescendantMatcher)
1719 : DescendantMatcher(DescendantMatcher) {}
1720
1721 bool matches(const T &Node, ASTMatchFinder *Finder,
1722 BoundNodesTreeBuilder *Builder) const override {
1723 return Finder->matchesDescendantOf(Node, this->DescendantMatcher, Builder,
1724 ASTMatchFinder::BK_All);
1725 }
1726};
1727
1728/// Matches on nodes that have a getValue() method if getValue() equals
1729/// the value the ValueEqualsMatcher was constructed with.
1730template <typename T, typename ValueT>
1731class ValueEqualsMatcher : public SingleNodeMatcherInterface<T> {
1732 static_assert(std::is_base_of<CharacterLiteral, T>::value ||
1733 std::is_base_of<CXXBoolLiteralExpr, T>::value ||
1734 std::is_base_of<FloatingLiteral, T>::value ||
1735 std::is_base_of<IntegerLiteral, T>::value,
1736 "the node must have a getValue method");
1737
1738public:
1739 explicit ValueEqualsMatcher(const ValueT &ExpectedValue)
1740 : ExpectedValue(ExpectedValue) {}
1741
1742 bool matchesNode(const T &Node) const override {
1743 return Node.getValue() == ExpectedValue;
1744 }
1745
1746private:
1747 ValueT ExpectedValue;
1748};
1749
1750/// Template specializations to easily write matchers for floating point
1751/// literals.
1752template <>
1753inline bool ValueEqualsMatcher<FloatingLiteral, double>::matchesNode(
1754 const FloatingLiteral &Node) const {
1755 if ((&Node.getSemantics()) == &llvm::APFloat::IEEEsingle())
1756 return Node.getValue().convertToFloat() == ExpectedValue;
1757 if ((&Node.getSemantics()) == &llvm::APFloat::IEEEdouble())
1758 return Node.getValue().convertToDouble() == ExpectedValue;
1759 return false;
1760}
1761template <>
1762inline bool ValueEqualsMatcher<FloatingLiteral, float>::matchesNode(
1763 const FloatingLiteral &Node) const {
1764 if ((&Node.getSemantics()) == &llvm::APFloat::IEEEsingle())
1765 return Node.getValue().convertToFloat() == ExpectedValue;
1766 if ((&Node.getSemantics()) == &llvm::APFloat::IEEEdouble())
1767 return Node.getValue().convertToDouble() == ExpectedValue;
1768 return false;
1769}
1770template <>
1771inline bool ValueEqualsMatcher<FloatingLiteral, llvm::APFloat>::matchesNode(
1772 const FloatingLiteral &Node) const {
1773 return ExpectedValue.compare(Node.getValue()) == llvm::APFloat::cmpEqual;
1774}
1775
1776/// Matches nodes of type \c TLoc for which the inner
1777/// \c Matcher<T> matches.
1778template <typename TLoc, typename T>
1779class LocMatcher : public MatcherInterface<TLoc> {
1780 DynTypedMatcher InnerMatcher;
1781
1782public:
1783 explicit LocMatcher(const Matcher<T> &InnerMatcher)
1784 : InnerMatcher(InnerMatcher) {}
1785
1786 bool matches(const TLoc &Node, ASTMatchFinder *Finder,
1787 BoundNodesTreeBuilder *Builder) const override {
1788 if (!Node)
1789 return false;
1790 return this->InnerMatcher.matches(extract(Node), Finder, Builder);
1791 }
1792
1793private:
1794 static DynTypedNode extract(const NestedNameSpecifierLoc &Loc) {
1795 return DynTypedNode::create(*Loc.getNestedNameSpecifier());
1796 }
1797};
1798
1799/// Matches \c TypeLocs based on an inner matcher matching a certain
1800/// \c QualType.
1801///
1802/// Used to implement the \c loc() matcher.
1803class TypeLocTypeMatcher : public MatcherInterface<TypeLoc> {
1804 DynTypedMatcher InnerMatcher;
1805
1806public:
1807 explicit TypeLocTypeMatcher(const Matcher<QualType> &InnerMatcher)
1808 : InnerMatcher(InnerMatcher) {}
1809
1810 bool matches(const TypeLoc &Node, ASTMatchFinder *Finder,
1811 BoundNodesTreeBuilder *Builder) const override {
1812 if (!Node)
1813 return false;
1814 return this->InnerMatcher.matches(DynTypedNode::create(Node.getType()),
1815 Finder, Builder);
1816 }
1817};
1818
1819/// Matches nodes of type \c T for which the inner matcher matches on a
1820/// another node of type \c T that can be reached using a given traverse
1821/// function.
1822template <typename T> class TypeTraverseMatcher : public MatcherInterface<T> {
1823 DynTypedMatcher InnerMatcher;
1824
1825public:
1826 explicit TypeTraverseMatcher(const Matcher<QualType> &InnerMatcher,
1827 QualType (T::*TraverseFunction)() const)
1828 : InnerMatcher(InnerMatcher), TraverseFunction(TraverseFunction) {}
1829
1830 bool matches(const T &Node, ASTMatchFinder *Finder,
1831 BoundNodesTreeBuilder *Builder) const override {
1832 QualType NextNode = (Node.*TraverseFunction)();
1833 if (NextNode.isNull())
1834 return false;
1835 return this->InnerMatcher.matches(DynTypedNode::create(NextNode), Finder,
1836 Builder);
1837 }
1838
1839private:
1840 QualType (T::*TraverseFunction)() const;
1841};
1842
1843/// Matches nodes of type \c T in a ..Loc hierarchy, for which the inner
1844/// matcher matches on a another node of type \c T that can be reached using a
1845/// given traverse function.
1846template <typename T>
1847class TypeLocTraverseMatcher : public MatcherInterface<T> {
1848 DynTypedMatcher InnerMatcher;
1849
1850public:
1851 explicit TypeLocTraverseMatcher(const Matcher<TypeLoc> &InnerMatcher,
1852 TypeLoc (T::*TraverseFunction)() const)
1853 : InnerMatcher(InnerMatcher), TraverseFunction(TraverseFunction) {}
1854
1855 bool matches(const T &Node, ASTMatchFinder *Finder,
1856 BoundNodesTreeBuilder *Builder) const override {
1857 TypeLoc NextNode = (Node.*TraverseFunction)();
1858 if (!NextNode)
1859 return false;
1860 return this->InnerMatcher.matches(DynTypedNode::create(NextNode), Finder,
1861 Builder);
1862 }
1863
1864private:
1865 TypeLoc (T::*TraverseFunction)() const;
1866};
1867
1868/// Converts a \c Matcher<InnerT> to a \c Matcher<OuterT>, where
1869/// \c OuterT is any type that is supported by \c Getter.
1870///
1871/// \code Getter<OuterT>::value() \endcode returns a
1872/// \code InnerTBase (OuterT::*)() \endcode, which is used to adapt a \c OuterT
1873/// object into a \c InnerT
1874template <typename InnerTBase,
1875 template <typename OuterT> class Getter,
1876 template <typename OuterT> class MatcherImpl,
1877 typename ReturnTypesF>
1878class TypeTraversePolymorphicMatcher {
1879private:
1880 using Self = TypeTraversePolymorphicMatcher<InnerTBase, Getter, MatcherImpl,
1881 ReturnTypesF>;
1882
1883 static Self create(ArrayRef<const Matcher<InnerTBase> *> InnerMatchers);
1884
1885public:
1886 using ReturnTypes = typename ExtractFunctionArgMeta<ReturnTypesF>::type;
1887
1888 explicit TypeTraversePolymorphicMatcher(
1889 ArrayRef<const Matcher<InnerTBase> *> InnerMatchers)
1890 : InnerMatcher(makeAllOfComposite(InnerMatchers)) {}
1891
1892 template <typename OuterT> operator Matcher<OuterT>() const {
1893 return Matcher<OuterT>(
1894 new MatcherImpl<OuterT>(InnerMatcher, Getter<OuterT>::value()));
1895 }
1896
1897 struct Func
1898 : public VariadicFunction<Self, Matcher<InnerTBase>, &Self::create> {
1899 Func() {}
1900 };
1901
1902private:
1903 Matcher<InnerTBase> InnerMatcher;
1904};
1905
1906/// A simple memoizer of T(*)() functions.
1907///
1908/// It will call the passed 'Func' template parameter at most once.
1909/// Used to support AST_MATCHER_FUNCTION() macro.
1910template <typename Matcher, Matcher (*Func)()> class MemoizedMatcher {
1911 struct Wrapper {
1912 Wrapper() : M(Func()) {}
1913
1914 Matcher M;
1915 };
1916
1917public:
1918 static const Matcher &getInstance() {
1919 static llvm::ManagedStatic<Wrapper> Instance;
1920 return Instance->M;
1921 }
1922};
1923
1924// Define the create() method out of line to silence a GCC warning about
1925// the struct "Func" having greater visibility than its base, which comes from
1926// using the flag -fvisibility-inlines-hidden.
1927template <typename InnerTBase, template <typename OuterT> class Getter,
1928 template <typename OuterT> class MatcherImpl, typename ReturnTypesF>
1929TypeTraversePolymorphicMatcher<InnerTBase, Getter, MatcherImpl, ReturnTypesF>
1930TypeTraversePolymorphicMatcher<
1931 InnerTBase, Getter, MatcherImpl,
1932 ReturnTypesF>::create(ArrayRef<const Matcher<InnerTBase> *> InnerMatchers) {
1933 return Self(InnerMatchers);
1934}
1935
1936// FIXME: unify ClassTemplateSpecializationDecl and TemplateSpecializationType's
1937// APIs for accessing the template argument list.
1938inline ArrayRef<TemplateArgument>
1939getTemplateSpecializationArgs(const ClassTemplateSpecializationDecl &D) {
1940 return D.getTemplateArgs().asArray();
1941}
1942
1943inline ArrayRef<TemplateArgument>
1944getTemplateSpecializationArgs(const TemplateSpecializationType &T) {
1945 return llvm::makeArrayRef(T.getArgs(), T.getNumArgs());
1946}
1947
1948inline ArrayRef<TemplateArgument>
1949getTemplateSpecializationArgs(const FunctionDecl &FD) {
1950 if (const auto* TemplateArgs = FD.getTemplateSpecializationArgs())
1951 return TemplateArgs->asArray();
1952 return ArrayRef<TemplateArgument>();
1953}
1954
1955struct NotEqualsBoundNodePredicate {
1956 bool operator()(const internal::BoundNodesMap &Nodes) const {
1957 return Nodes.getNode(ID) != Node;
1958 }
1959
1960 std::string ID;
1961 DynTypedNode Node;
1962};
1963
1964template <typename Ty, typename Enable = void> struct GetBodyMatcher {
1965 static const Stmt *get(const Ty &Node) { return Node.getBody(); }
1966};
1967
1968template <typename Ty>
1969struct GetBodyMatcher<Ty, typename std::enable_if<
1970 std::is_base_of<FunctionDecl, Ty>::value>::type> {
1971 static const Stmt *get(const Ty &Node) {
1972 return Node.doesThisDeclarationHaveABody() ? Node.getBody() : nullptr;
1973 }
1974};
1975
1976template <typename NodeType>
1977inline Optional<BinaryOperatorKind>
1978equivalentBinaryOperator(const NodeType &Node) {
1979 return Node.getOpcode();
1980}
1981
1982template <>
1983inline Optional<BinaryOperatorKind>
1984equivalentBinaryOperator<CXXOperatorCallExpr>(const CXXOperatorCallExpr &Node) {
1985 if (Node.getNumArgs() != 2)
1986 return None;
1987 switch (Node.getOperator()) {
1988 default:
1989 return None;
1990 case OO_ArrowStar:
1991 return BO_PtrMemI;
1992 case OO_Star:
1993 return BO_Mul;
1994 case OO_Slash:
1995 return BO_Div;
1996 case OO_Percent:
1997 return BO_Rem;
1998 case OO_Plus:
1999 return BO_Add;
2000 case OO_Minus:
2001 return BO_Sub;
2002 case OO_LessLess:
2003 return BO_Shl;
2004 case OO_GreaterGreater:
2005 return BO_Shr;
2006 case OO_Spaceship:
2007 return BO_Cmp;
2008 case OO_Less:
2009 return BO_LT;
2010 case OO_Greater:
2011 return BO_GT;
2012 case OO_LessEqual:
2013 return BO_LE;
2014 case OO_GreaterEqual:
2015 return BO_GE;
2016 case OO_EqualEqual:
2017 return BO_EQ;
2018 case OO_ExclaimEqual:
2019 return BO_NE;
2020 case OO_Amp:
2021 return BO_And;
2022 case OO_Caret:
2023 return BO_Xor;
2024 case OO_Pipe:
2025 return BO_Or;
2026 case OO_AmpAmp:
2027 return BO_LAnd;
2028 case OO_PipePipe:
2029 return BO_LOr;
2030 case OO_Equal:
2031 return BO_Assign;
2032 case OO_StarEqual:
2033 return BO_MulAssign;
2034 case OO_SlashEqual:
2035 return BO_DivAssign;
2036 case OO_PercentEqual:
2037 return BO_RemAssign;
2038 case OO_PlusEqual:
2039 return BO_AddAssign;
2040 case OO_MinusEqual:
2041 return BO_SubAssign;
2042 case OO_LessLessEqual:
2043 return BO_ShlAssign;
2044 case OO_GreaterGreaterEqual:
2045 return BO_ShrAssign;
2046 case OO_AmpEqual:
2047 return BO_AndAssign;
2048 case OO_CaretEqual:
2049 return BO_XorAssign;
2050 case OO_PipeEqual:
2051 return BO_OrAssign;
2052 case OO_Comma:
2053 return BO_Comma;
2054 }
2055}
2056
2057template <typename NodeType>
2058inline Optional<UnaryOperatorKind>
2059equivalentUnaryOperator(const NodeType &Node) {
2060 return Node.getOpcode();
2061}
2062
2063template <>
2064inline Optional<UnaryOperatorKind>
2065equivalentUnaryOperator<CXXOperatorCallExpr>(const CXXOperatorCallExpr &Node) {
2066 if (Node.getNumArgs() != 1 && Node.getOperator() != OO_PlusPlus &&
2067 Node.getOperator() != OO_MinusMinus)
2068 return None;
2069 switch (Node.getOperator()) {
2070 default:
2071 return None;
2072 case OO_Plus:
2073 return UO_Plus;
2074 case OO_Minus:
2075 return UO_Minus;
2076 case OO_Amp:
2077 return UO_AddrOf;
2078 case OO_Tilde:
2079 return UO_Not;
2080 case OO_Exclaim:
2081 return UO_LNot;
2082 case OO_PlusPlus: {
2083 const auto *FD = Node.getDirectCallee();
2084 if (!FD)
2085 return None;
2086 return FD->getNumParams() > 0 ? UO_PostInc : UO_PreInc;
2087 }
2088 case OO_MinusMinus: {
2089 const auto *FD = Node.getDirectCallee();
2090 if (!FD)
2091 return None;
2092 return FD->getNumParams() > 0 ? UO_PostDec : UO_PreDec;
2093 }
2094 case OO_Coawait:
2095 return UO_Coawait;
2096 }
2097}
2098
2099template <typename NodeType> inline const Expr *getLHS(const NodeType &Node) {
2100 return Node.getLHS();
2101}
2102template <>
2103inline const Expr *
2104getLHS<CXXOperatorCallExpr>(const CXXOperatorCallExpr &Node) {
2105 if (!internal::equivalentBinaryOperator(Node))
2106 return nullptr;
2107 return Node.getArg(0);
2108}
2109template <typename NodeType> inline const Expr *getRHS(const NodeType &Node) {
2110 return Node.getRHS();
2111}
2112template <>
2113inline const Expr *
2114getRHS<CXXOperatorCallExpr>(const CXXOperatorCallExpr &Node) {
2115 if (!internal::equivalentBinaryOperator(Node))
2116 return nullptr;
2117 return Node.getArg(1);
2118}
2119template <typename NodeType>
2120inline const Expr *getSubExpr(const NodeType &Node) {
2121 return Node.getSubExpr();
2122}
2123template <>
2124inline const Expr *
2125getSubExpr<CXXOperatorCallExpr>(const CXXOperatorCallExpr &Node) {
2126 if (!internal::equivalentUnaryOperator(Node))
2127 return nullptr;
2128 return Node.getArg(0);
2129}
2130
2131template <typename Ty>
2132struct HasSizeMatcher {
2133 static bool hasSize(const Ty &Node, unsigned int N) {
2134 return Node.getSize() == N;
2135 }
2136};
2137
2138template <>
2139inline bool HasSizeMatcher<StringLiteral>::hasSize(
2140 const StringLiteral &Node, unsigned int N) {
2141 return Node.getLength() == N;
2142}
2143
2144template <typename Ty>
2145struct GetSourceExpressionMatcher {
2146 static const Expr *get(const Ty &Node) {
2147 return Node.getSubExpr();
2148 }
2149};
2150
2151template <>
2152inline const Expr *GetSourceExpressionMatcher<OpaqueValueExpr>::get(
2153 const OpaqueValueExpr &Node) {
2154 return Node.getSourceExpr();
2155}
2156
2157template <typename Ty>
2158struct CompoundStmtMatcher {
2159 static const CompoundStmt *get(const Ty &Node) {
2160 return &Node;
2161 }
2162};
2163
2164template <>
2165inline const CompoundStmt *
2166CompoundStmtMatcher<StmtExpr>::get(const StmtExpr &Node) {
2167 return Node.getSubStmt();
2168}
2169
2170/// If \p Loc is (transitively) expanded from macro \p MacroName, returns the
2171/// location (in the chain of expansions) at which \p MacroName was
2172/// expanded. Since the macro may have been expanded inside a series of
2173/// expansions, that location may itself be a MacroID.
2174llvm::Optional<SourceLocation>
2175getExpansionLocOfMacro(StringRef MacroName, SourceLocation Loc,
2176 const ASTContext &Context);
2177
2178inline Optional<StringRef> getOpName(const UnaryOperator &Node) {
2179 return Node.getOpcodeStr(Node.getOpcode());
2180}
2181inline Optional<StringRef> getOpName(const BinaryOperator &Node) {
2182 return Node.getOpcodeStr();
2183}
2184inline StringRef getOpName(const CXXRewrittenBinaryOperator &Node) {
2185 return Node.getOpcodeStr();
2186}
2187inline Optional<StringRef> getOpName(const CXXOperatorCallExpr &Node) {
2188 auto optBinaryOpcode = equivalentBinaryOperator(Node);
2189 if (!optBinaryOpcode) {
2190 auto optUnaryOpcode = equivalentUnaryOperator(Node);
2191 if (!optUnaryOpcode)
2192 return None;
2193 return UnaryOperator::getOpcodeStr(*optUnaryOpcode);
2194 }
2195 return BinaryOperator::getOpcodeStr(*optBinaryOpcode);
2196}
2197
2198/// Matches overloaded operators with a specific name.
2199///
2200/// The type argument ArgT is not used by this matcher but is used by
2201/// PolymorphicMatcher and should be std::vector<std::string>>.
2202template <typename T, typename ArgT = std::vector<std::string>>
2203class HasAnyOperatorNameMatcher : public SingleNodeMatcherInterface<T> {
2204 static_assert(std::is_same<T, BinaryOperator>::value ||
2205 std::is_same<T, CXXOperatorCallExpr>::value ||
2206 std::is_same<T, CXXRewrittenBinaryOperator>::value ||
2207 std::is_same<T, UnaryOperator>::value,
2208 "Matcher only supports `BinaryOperator`, `UnaryOperator`, "
2209 "`CXXOperatorCallExpr` and `CXXRewrittenBinaryOperator`");
2210 static_assert(std::is_same<ArgT, std::vector<std::string>>::value,
2211 "Matcher ArgT must be std::vector<std::string>");
2212
2213public:
2214 explicit HasAnyOperatorNameMatcher(std::vector<std::string> Names)
2215 : SingleNodeMatcherInterface<T>(), Names(std::move(Names)) {}
2216
2217 bool matchesNode(const T &Node) const override {
2218 Optional<StringRef> OptOpName = getOpName(Node);
2219 if (!OptOpName)
2220 return false;
2221 return llvm::any_of(Names, [OpName = *OptOpName](const std::string &Name) {
2222 return Name == OpName;
2223 });
2224 }
2225
2226private:
2227 static Optional<StringRef> getOpName(const UnaryOperator &Node) {
2228 return Node.getOpcodeStr(Node.getOpcode());
2229 }
2230 static Optional<StringRef> getOpName(const BinaryOperator &Node) {
2231 return Node.getOpcodeStr();
2232 }
2233 static StringRef getOpName(const CXXRewrittenBinaryOperator &Node) {
2234 return Node.getOpcodeStr();
2235 }
2236 static Optional<StringRef> getOpName(const CXXOperatorCallExpr &Node) {
2237 auto optBinaryOpcode = equivalentBinaryOperator(Node);
2238 if (!optBinaryOpcode) {
2239 auto optUnaryOpcode = equivalentUnaryOperator(Node);
2240 if (!optUnaryOpcode)
2241 return None;
2242 return UnaryOperator::getOpcodeStr(*optUnaryOpcode);
2243 }
2244 return BinaryOperator::getOpcodeStr(*optBinaryOpcode);
2245 }
2246
2247 std::vector<std::string> Names;
2248};
2249
2250using HasOpNameMatcher =
2251 PolymorphicMatcher<HasAnyOperatorNameMatcher,
2252 void(
2253 TypeList<BinaryOperator, CXXOperatorCallExpr,
2254 CXXRewrittenBinaryOperator, UnaryOperator>),
2255 std::vector<std::string>>;
2256
2257HasOpNameMatcher hasAnyOperatorNameFunc(ArrayRef<const StringRef *> NameRefs);
2258
2259using HasOverloadOpNameMatcher =
2260 PolymorphicMatcher<HasOverloadedOperatorNameMatcher,
2261 void(TypeList<CXXOperatorCallExpr, FunctionDecl>),
2262 std::vector<std::string>>;
2263
2264HasOverloadOpNameMatcher
2265hasAnyOverloadedOperatorNameFunc(ArrayRef<const StringRef *> NameRefs);
2266
2267/// Returns true if \p Node has a base specifier matching \p BaseSpec.
2268///
2269/// A class is not considered to be derived from itself.
2270bool matchesAnyBase(const CXXRecordDecl &Node,
2271 const Matcher<CXXBaseSpecifier> &BaseSpecMatcher,
2272 ASTMatchFinder *Finder, BoundNodesTreeBuilder *Builder);
2273
2274std::shared_ptr<llvm::Regex> createAndVerifyRegex(StringRef Regex,
2275 llvm::Regex::RegexFlags Flags,
2276 StringRef MatcherID);
2277
2278} // namespace internal
2279
2280} // namespace ast_matchers
2281
2282} // namespace clang
2283
2284#endif // LLVM_CLANG_ASTMATCHERS_ASTMATCHERSINTERNAL_H
2285