1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Expr class and subclasses.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/Expr.h"
14#include "clang/AST/APValue.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Attr.h"
17#include "clang/AST/ComputeDependence.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/DependenceFlags.h"
22#include "clang/AST/EvaluatedExprVisitor.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/IgnoreExpr.h"
25#include "clang/AST/Mangle.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/Basic/Builtins.h"
29#include "clang/Basic/CharInfo.h"
30#include "clang/Basic/SourceManager.h"
31#include "clang/Basic/TargetInfo.h"
32#include "clang/Lex/Lexer.h"
33#include "clang/Lex/LiteralSupport.h"
34#include "clang/Lex/Preprocessor.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/Format.h"
37#include "llvm/Support/raw_ostream.h"
38#include <algorithm>
39#include <cstring>
40#include <optional>
41using namespace clang;
42
43const Expr *Expr::getBestDynamicClassTypeExpr() const {
44 const Expr *E = this;
45 while (true) {
46 E = E->IgnoreParenBaseCasts();
47
48 // Follow the RHS of a comma operator.
49 if (auto *BO = dyn_cast<BinaryOperator>(Val: E)) {
50 if (BO->getOpcode() == BO_Comma) {
51 E = BO->getRHS();
52 continue;
53 }
54 }
55
56 // Step into initializer for materialized temporaries.
57 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Val: E)) {
58 E = MTE->getSubExpr();
59 continue;
60 }
61
62 break;
63 }
64
65 return E;
66}
67
68const CXXRecordDecl *Expr::getBestDynamicClassType() const {
69 const Expr *E = getBestDynamicClassTypeExpr();
70 QualType DerivedType = E->getType();
71 if (const PointerType *PTy = DerivedType->getAs<PointerType>())
72 DerivedType = PTy->getPointeeType();
73
74 if (DerivedType->isDependentType())
75 return nullptr;
76
77 const RecordType *Ty = DerivedType->castAs<RecordType>();
78 Decl *D = Ty->getDecl();
79 return cast<CXXRecordDecl>(Val: D);
80}
81
82const Expr *Expr::skipRValueSubobjectAdjustments(
83 SmallVectorImpl<const Expr *> &CommaLHSs,
84 SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
85 const Expr *E = this;
86 while (true) {
87 E = E->IgnoreParens();
88
89 if (const auto *CE = dyn_cast<CastExpr>(Val: E)) {
90 if ((CE->getCastKind() == CK_DerivedToBase ||
91 CE->getCastKind() == CK_UncheckedDerivedToBase) &&
92 E->getType()->isRecordType()) {
93 E = CE->getSubExpr();
94 const auto *Derived =
95 cast<CXXRecordDecl>(Val: E->getType()->castAs<RecordType>()->getDecl());
96 Adjustments.push_back(Elt: SubobjectAdjustment(CE, Derived));
97 continue;
98 }
99
100 if (CE->getCastKind() == CK_NoOp) {
101 E = CE->getSubExpr();
102 continue;
103 }
104 } else if (const auto *ME = dyn_cast<MemberExpr>(Val: E)) {
105 if (!ME->isArrow()) {
106 assert(ME->getBase()->getType()->isRecordType());
107 if (const auto *Field = dyn_cast<FieldDecl>(Val: ME->getMemberDecl())) {
108 if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
109 E = ME->getBase();
110 Adjustments.push_back(Elt: SubobjectAdjustment(Field));
111 continue;
112 }
113 }
114 }
115 } else if (const auto *BO = dyn_cast<BinaryOperator>(Val: E)) {
116 if (BO->getOpcode() == BO_PtrMemD) {
117 assert(BO->getRHS()->isPRValue());
118 E = BO->getLHS();
119 const auto *MPT = BO->getRHS()->getType()->getAs<MemberPointerType>();
120 Adjustments.push_back(Elt: SubobjectAdjustment(MPT, BO->getRHS()));
121 continue;
122 }
123 if (BO->getOpcode() == BO_Comma) {
124 CommaLHSs.push_back(Elt: BO->getLHS());
125 E = BO->getRHS();
126 continue;
127 }
128 }
129
130 // Nothing changed.
131 break;
132 }
133 return E;
134}
135
136bool Expr::isKnownToHaveBooleanValue(bool Semantic) const {
137 const Expr *E = IgnoreParens();
138
139 // If this value has _Bool type, it is obvious 0/1.
140 if (E->getType()->isBooleanType()) return true;
141 // If this is a non-scalar-integer type, we don't care enough to try.
142 if (!E->getType()->isIntegralOrEnumerationType()) return false;
143
144 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Val: E)) {
145 switch (UO->getOpcode()) {
146 case UO_Plus:
147 return UO->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
148 case UO_LNot:
149 return true;
150 default:
151 return false;
152 }
153 }
154
155 // Only look through implicit casts. If the user writes
156 // '(int) (a && b)' treat it as an arbitrary int.
157 // FIXME: Should we look through any cast expression in !Semantic mode?
158 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Val: E))
159 return CE->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
160
161 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: E)) {
162 switch (BO->getOpcode()) {
163 default: return false;
164 case BO_LT: // Relational operators.
165 case BO_GT:
166 case BO_LE:
167 case BO_GE:
168 case BO_EQ: // Equality operators.
169 case BO_NE:
170 case BO_LAnd: // AND operator.
171 case BO_LOr: // Logical OR operator.
172 return true;
173
174 case BO_And: // Bitwise AND operator.
175 case BO_Xor: // Bitwise XOR operator.
176 case BO_Or: // Bitwise OR operator.
177 // Handle things like (x==2)|(y==12).
178 return BO->getLHS()->isKnownToHaveBooleanValue(Semantic) &&
179 BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
180
181 case BO_Comma:
182 case BO_Assign:
183 return BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
184 }
185 }
186
187 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(Val: E))
188 return CO->getTrueExpr()->isKnownToHaveBooleanValue(Semantic) &&
189 CO->getFalseExpr()->isKnownToHaveBooleanValue(Semantic);
190
191 if (isa<ObjCBoolLiteralExpr>(Val: E))
192 return true;
193
194 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Val: E))
195 return OVE->getSourceExpr()->isKnownToHaveBooleanValue(Semantic);
196
197 if (const FieldDecl *FD = E->getSourceBitField())
198 if (!Semantic && FD->getType()->isUnsignedIntegerType() &&
199 !FD->getBitWidth()->isValueDependent() &&
200 FD->getBitWidthValue(Ctx: FD->getASTContext()) == 1)
201 return true;
202
203 return false;
204}
205
206bool Expr::isFlexibleArrayMemberLike(
207 ASTContext &Ctx,
208 LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel,
209 bool IgnoreTemplateOrMacroSubstitution) const {
210 const Expr *E = IgnoreParens();
211 const Decl *D = nullptr;
212
213 if (const auto *ME = dyn_cast<MemberExpr>(Val: E))
214 D = ME->getMemberDecl();
215 else if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: E))
216 D = DRE->getDecl();
217 else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(Val: E))
218 D = IRE->getDecl();
219
220 return Decl::isFlexibleArrayMemberLike(Context&: Ctx, D, Ty: E->getType(),
221 StrictFlexArraysLevel,
222 IgnoreTemplateOrMacroSubstitution);
223}
224
225const ValueDecl *
226Expr::getAsBuiltinConstantDeclRef(const ASTContext &Context) const {
227 Expr::EvalResult Eval;
228
229 if (EvaluateAsConstantExpr(Result&: Eval, Ctx: Context)) {
230 APValue &Value = Eval.Val;
231
232 if (Value.isMemberPointer())
233 return Value.getMemberPointerDecl();
234
235 if (Value.isLValue() && Value.getLValueOffset().isZero())
236 return Value.getLValueBase().dyn_cast<const ValueDecl *>();
237 }
238
239 return nullptr;
240}
241
242// Amusing macro metaprogramming hack: check whether a class provides
243// a more specific implementation of getExprLoc().
244//
245// See also Stmt.cpp:{getBeginLoc(),getEndLoc()}.
246namespace {
247 /// This implementation is used when a class provides a custom
248 /// implementation of getExprLoc.
249 template <class E, class T>
250 SourceLocation getExprLocImpl(const Expr *expr,
251 SourceLocation (T::*v)() const) {
252 return static_cast<const E*>(expr)->getExprLoc();
253 }
254
255 /// This implementation is used when a class doesn't provide
256 /// a custom implementation of getExprLoc. Overload resolution
257 /// should pick it over the implementation above because it's
258 /// more specialized according to function template partial ordering.
259 template <class E>
260 SourceLocation getExprLocImpl(const Expr *expr,
261 SourceLocation (Expr::*v)() const) {
262 return static_cast<const E *>(expr)->getBeginLoc();
263 }
264}
265
266SourceLocation Expr::getExprLoc() const {
267 switch (getStmtClass()) {
268 case Stmt::NoStmtClass: llvm_unreachable("statement without class");
269#define ABSTRACT_STMT(type)
270#define STMT(type, base) \
271 case Stmt::type##Class: break;
272#define EXPR(type, base) \
273 case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
274#include "clang/AST/StmtNodes.inc"
275 }
276 llvm_unreachable("unknown expression kind");
277}
278
279//===----------------------------------------------------------------------===//
280// Primary Expressions.
281//===----------------------------------------------------------------------===//
282
283static void AssertResultStorageKind(ConstantResultStorageKind Kind) {
284 assert((Kind == ConstantResultStorageKind::APValue ||
285 Kind == ConstantResultStorageKind::Int64 ||
286 Kind == ConstantResultStorageKind::None) &&
287 "Invalid StorageKind Value");
288 (void)Kind;
289}
290
291ConstantResultStorageKind ConstantExpr::getStorageKind(const APValue &Value) {
292 switch (Value.getKind()) {
293 case APValue::None:
294 case APValue::Indeterminate:
295 return ConstantResultStorageKind::None;
296 case APValue::Int:
297 if (!Value.getInt().needsCleanup())
298 return ConstantResultStorageKind::Int64;
299 [[fallthrough]];
300 default:
301 return ConstantResultStorageKind::APValue;
302 }
303}
304
305ConstantResultStorageKind
306ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) {
307 if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64)
308 return ConstantResultStorageKind::Int64;
309 return ConstantResultStorageKind::APValue;
310}
311
312ConstantExpr::ConstantExpr(Expr *SubExpr, ConstantResultStorageKind StorageKind,
313 bool IsImmediateInvocation)
314 : FullExpr(ConstantExprClass, SubExpr) {
315 ConstantExprBits.ResultKind = llvm::to_underlying(E: StorageKind);
316 ConstantExprBits.APValueKind = APValue::None;
317 ConstantExprBits.IsUnsigned = false;
318 ConstantExprBits.BitWidth = 0;
319 ConstantExprBits.HasCleanup = false;
320 ConstantExprBits.IsImmediateInvocation = IsImmediateInvocation;
321
322 if (StorageKind == ConstantResultStorageKind::APValue)
323 ::new (getTrailingObjects<APValue>()) APValue();
324}
325
326ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
327 ConstantResultStorageKind StorageKind,
328 bool IsImmediateInvocation) {
329 assert(!isa<ConstantExpr>(E));
330 AssertResultStorageKind(Kind: StorageKind);
331
332 unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
333 Counts: StorageKind == ConstantResultStorageKind::APValue,
334 Counts: StorageKind == ConstantResultStorageKind::Int64);
335 void *Mem = Context.Allocate(Size, Align: alignof(ConstantExpr));
336 return new (Mem) ConstantExpr(E, StorageKind, IsImmediateInvocation);
337}
338
339ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
340 const APValue &Result) {
341 ConstantResultStorageKind StorageKind = getStorageKind(Value: Result);
342 ConstantExpr *Self = Create(Context, E, StorageKind);
343 Self->SetResult(Value: Result, Context);
344 return Self;
345}
346
347ConstantExpr::ConstantExpr(EmptyShell Empty,
348 ConstantResultStorageKind StorageKind)
349 : FullExpr(ConstantExprClass, Empty) {
350 ConstantExprBits.ResultKind = llvm::to_underlying(E: StorageKind);
351
352 if (StorageKind == ConstantResultStorageKind::APValue)
353 ::new (getTrailingObjects<APValue>()) APValue();
354}
355
356ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context,
357 ConstantResultStorageKind StorageKind) {
358 AssertResultStorageKind(Kind: StorageKind);
359
360 unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
361 Counts: StorageKind == ConstantResultStorageKind::APValue,
362 Counts: StorageKind == ConstantResultStorageKind::Int64);
363 void *Mem = Context.Allocate(Size, Align: alignof(ConstantExpr));
364 return new (Mem) ConstantExpr(EmptyShell(), StorageKind);
365}
366
367void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) {
368 assert((unsigned)getStorageKind(Value) <= ConstantExprBits.ResultKind &&
369 "Invalid storage for this value kind");
370 ConstantExprBits.APValueKind = Value.getKind();
371 switch (getResultStorageKind()) {
372 case ConstantResultStorageKind::None:
373 return;
374 case ConstantResultStorageKind::Int64:
375 Int64Result() = *Value.getInt().getRawData();
376 ConstantExprBits.BitWidth = Value.getInt().getBitWidth();
377 ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned();
378 return;
379 case ConstantResultStorageKind::APValue:
380 if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) {
381 ConstantExprBits.HasCleanup = true;
382 Context.addDestruction(Ptr: &APValueResult());
383 }
384 APValueResult() = std::move(Value);
385 return;
386 }
387 llvm_unreachable("Invalid ResultKind Bits");
388}
389
390llvm::APSInt ConstantExpr::getResultAsAPSInt() const {
391 switch (getResultStorageKind()) {
392 case ConstantResultStorageKind::APValue:
393 return APValueResult().getInt();
394 case ConstantResultStorageKind::Int64:
395 return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
396 ConstantExprBits.IsUnsigned);
397 default:
398 llvm_unreachable("invalid Accessor");
399 }
400}
401
402APValue ConstantExpr::getAPValueResult() const {
403
404 switch (getResultStorageKind()) {
405 case ConstantResultStorageKind::APValue:
406 return APValueResult();
407 case ConstantResultStorageKind::Int64:
408 return APValue(
409 llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
410 ConstantExprBits.IsUnsigned));
411 case ConstantResultStorageKind::None:
412 if (ConstantExprBits.APValueKind == APValue::Indeterminate)
413 return APValue::IndeterminateValue();
414 return APValue();
415 }
416 llvm_unreachable("invalid ResultKind");
417}
418
419DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D,
420 bool RefersToEnclosingVariableOrCapture, QualType T,
421 ExprValueKind VK, SourceLocation L,
422 const DeclarationNameLoc &LocInfo,
423 NonOdrUseReason NOUR)
424 : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), DNLoc(LocInfo) {
425 DeclRefExprBits.HasQualifier = false;
426 DeclRefExprBits.HasTemplateKWAndArgsInfo = false;
427 DeclRefExprBits.HasFoundDecl = false;
428 DeclRefExprBits.HadMultipleCandidates = false;
429 DeclRefExprBits.RefersToEnclosingVariableOrCapture =
430 RefersToEnclosingVariableOrCapture;
431 DeclRefExprBits.CapturedByCopyInLambdaWithExplicitObjectParameter = false;
432 DeclRefExprBits.NonOdrUseReason = NOUR;
433 DeclRefExprBits.IsImmediateEscalating = false;
434 DeclRefExprBits.Loc = L;
435 setDependence(computeDependence(E: this, Ctx));
436}
437
438DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
439 NestedNameSpecifierLoc QualifierLoc,
440 SourceLocation TemplateKWLoc, ValueDecl *D,
441 bool RefersToEnclosingVariableOrCapture,
442 const DeclarationNameInfo &NameInfo, NamedDecl *FoundD,
443 const TemplateArgumentListInfo *TemplateArgs,
444 QualType T, ExprValueKind VK, NonOdrUseReason NOUR)
445 : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D),
446 DNLoc(NameInfo.getInfo()) {
447 DeclRefExprBits.Loc = NameInfo.getLoc();
448 DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
449 if (QualifierLoc)
450 new (getTrailingObjects<NestedNameSpecifierLoc>())
451 NestedNameSpecifierLoc(QualifierLoc);
452 DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
453 if (FoundD)
454 *getTrailingObjects<NamedDecl *>() = FoundD;
455 DeclRefExprBits.HasTemplateKWAndArgsInfo
456 = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
457 DeclRefExprBits.RefersToEnclosingVariableOrCapture =
458 RefersToEnclosingVariableOrCapture;
459 DeclRefExprBits.CapturedByCopyInLambdaWithExplicitObjectParameter = false;
460 DeclRefExprBits.NonOdrUseReason = NOUR;
461 if (TemplateArgs) {
462 auto Deps = TemplateArgumentDependence::None;
463 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
464 TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
465 Deps);
466 assert(!(Deps & TemplateArgumentDependence::Dependent) &&
467 "built a DeclRefExpr with dependent template args");
468 } else if (TemplateKWLoc.isValid()) {
469 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
470 TemplateKWLoc);
471 }
472 DeclRefExprBits.IsImmediateEscalating = false;
473 DeclRefExprBits.HadMultipleCandidates = 0;
474 setDependence(computeDependence(E: this, Ctx));
475}
476
477DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
478 NestedNameSpecifierLoc QualifierLoc,
479 SourceLocation TemplateKWLoc, ValueDecl *D,
480 bool RefersToEnclosingVariableOrCapture,
481 SourceLocation NameLoc, QualType T,
482 ExprValueKind VK, NamedDecl *FoundD,
483 const TemplateArgumentListInfo *TemplateArgs,
484 NonOdrUseReason NOUR) {
485 return Create(Context, QualifierLoc, TemplateKWLoc, D,
486 RefersToEnclosingVariableOrCapture,
487 NameInfo: DeclarationNameInfo(D->getDeclName(), NameLoc),
488 T, VK, FoundD, TemplateArgs, NOUR);
489}
490
491DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
492 NestedNameSpecifierLoc QualifierLoc,
493 SourceLocation TemplateKWLoc, ValueDecl *D,
494 bool RefersToEnclosingVariableOrCapture,
495 const DeclarationNameInfo &NameInfo,
496 QualType T, ExprValueKind VK,
497 NamedDecl *FoundD,
498 const TemplateArgumentListInfo *TemplateArgs,
499 NonOdrUseReason NOUR) {
500 // Filter out cases where the found Decl is the same as the value refenenced.
501 if (D == FoundD)
502 FoundD = nullptr;
503
504 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
505 std::size_t Size =
506 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
507 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
508 Counts: QualifierLoc ? 1 : 0, Counts: FoundD ? 1 : 0,
509 Counts: HasTemplateKWAndArgsInfo ? 1 : 0,
510 Counts: TemplateArgs ? TemplateArgs->size() : 0);
511
512 void *Mem = Context.Allocate(Size, Align: alignof(DeclRefExpr));
513 return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
514 RefersToEnclosingVariableOrCapture, NameInfo,
515 FoundD, TemplateArgs, T, VK, NOUR);
516}
517
518DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
519 bool HasQualifier,
520 bool HasFoundDecl,
521 bool HasTemplateKWAndArgsInfo,
522 unsigned NumTemplateArgs) {
523 assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo);
524 std::size_t Size =
525 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
526 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
527 Counts: HasQualifier ? 1 : 0, Counts: HasFoundDecl ? 1 : 0, Counts: HasTemplateKWAndArgsInfo,
528 Counts: NumTemplateArgs);
529 void *Mem = Context.Allocate(Size, Align: alignof(DeclRefExpr));
530 return new (Mem) DeclRefExpr(EmptyShell());
531}
532
533void DeclRefExpr::setDecl(ValueDecl *NewD) {
534 D = NewD;
535 if (getType()->isUndeducedType())
536 setType(NewD->getType());
537 setDependence(computeDependence(this, NewD->getASTContext()));
538}
539
540SourceLocation DeclRefExpr::getBeginLoc() const {
541 if (hasQualifier())
542 return getQualifierLoc().getBeginLoc();
543 return getNameInfo().getBeginLoc();
544}
545SourceLocation DeclRefExpr::getEndLoc() const {
546 if (hasExplicitTemplateArgs())
547 return getRAngleLoc();
548 return getNameInfo().getEndLoc();
549}
550
551SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(SourceLocation OpLoc,
552 SourceLocation LParen,
553 SourceLocation RParen,
554 QualType ResultTy,
555 TypeSourceInfo *TSI)
556 : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary),
557 OpLoc(OpLoc), LParen(LParen), RParen(RParen) {
558 setTypeSourceInfo(TSI);
559 setDependence(computeDependence(E: this));
560}
561
562SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(EmptyShell Empty,
563 QualType ResultTy)
564 : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary) {}
565
566SYCLUniqueStableNameExpr *
567SYCLUniqueStableNameExpr::Create(const ASTContext &Ctx, SourceLocation OpLoc,
568 SourceLocation LParen, SourceLocation RParen,
569 TypeSourceInfo *TSI) {
570 QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst());
571 return new (Ctx)
572 SYCLUniqueStableNameExpr(OpLoc, LParen, RParen, ResultTy, TSI);
573}
574
575SYCLUniqueStableNameExpr *
576SYCLUniqueStableNameExpr::CreateEmpty(const ASTContext &Ctx) {
577 QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst());
578 return new (Ctx) SYCLUniqueStableNameExpr(EmptyShell(), ResultTy);
579}
580
581std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context) const {
582 return SYCLUniqueStableNameExpr::ComputeName(Context,
583 Ty: getTypeSourceInfo()->getType());
584}
585
586std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context,
587 QualType Ty) {
588 auto MangleCallback = [](ASTContext &Ctx,
589 const NamedDecl *ND) -> std::optional<unsigned> {
590 if (const auto *RD = dyn_cast<CXXRecordDecl>(Val: ND))
591 return RD->getDeviceLambdaManglingNumber();
592 return std::nullopt;
593 };
594
595 std::unique_ptr<MangleContext> Ctx{ItaniumMangleContext::create(
596 Context, Diags&: Context.getDiagnostics(), Discriminator: MangleCallback)};
597
598 std::string Buffer;
599 Buffer.reserve(res: 128);
600 llvm::raw_string_ostream Out(Buffer);
601 Ctx->mangleCanonicalTypeName(T: Ty, Out);
602
603 return Out.str();
604}
605
606PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy,
607 PredefinedIdentKind IK, bool IsTransparent,
608 StringLiteral *SL)
609 : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary) {
610 PredefinedExprBits.Kind = llvm::to_underlying(E: IK);
611 assert((getIdentKind() == IK) &&
612 "IdentKind do not fit in PredefinedExprBitfields!");
613 bool HasFunctionName = SL != nullptr;
614 PredefinedExprBits.HasFunctionName = HasFunctionName;
615 PredefinedExprBits.IsTransparent = IsTransparent;
616 PredefinedExprBits.Loc = L;
617 if (HasFunctionName)
618 setFunctionName(SL);
619 setDependence(computeDependence(E: this));
620}
621
622PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName)
623 : Expr(PredefinedExprClass, Empty) {
624 PredefinedExprBits.HasFunctionName = HasFunctionName;
625}
626
627PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L,
628 QualType FNTy, PredefinedIdentKind IK,
629 bool IsTransparent, StringLiteral *SL) {
630 bool HasFunctionName = SL != nullptr;
631 void *Mem = Ctx.Allocate(Size: totalSizeToAlloc<Stmt *>(Counts: HasFunctionName),
632 Align: alignof(PredefinedExpr));
633 return new (Mem) PredefinedExpr(L, FNTy, IK, IsTransparent, SL);
634}
635
636PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx,
637 bool HasFunctionName) {
638 void *Mem = Ctx.Allocate(Size: totalSizeToAlloc<Stmt *>(Counts: HasFunctionName),
639 Align: alignof(PredefinedExpr));
640 return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName);
641}
642
643StringRef PredefinedExpr::getIdentKindName(PredefinedIdentKind IK) {
644 switch (IK) {
645 case PredefinedIdentKind::Func:
646 return "__func__";
647 case PredefinedIdentKind::Function:
648 return "__FUNCTION__";
649 case PredefinedIdentKind::FuncDName:
650 return "__FUNCDNAME__";
651 case PredefinedIdentKind::LFunction:
652 return "L__FUNCTION__";
653 case PredefinedIdentKind::PrettyFunction:
654 return "__PRETTY_FUNCTION__";
655 case PredefinedIdentKind::FuncSig:
656 return "__FUNCSIG__";
657 case PredefinedIdentKind::LFuncSig:
658 return "L__FUNCSIG__";
659 case PredefinedIdentKind::PrettyFunctionNoVirtual:
660 break;
661 }
662 llvm_unreachable("Unknown ident kind for PredefinedExpr");
663}
664
665// FIXME: Maybe this should use DeclPrinter with a special "print predefined
666// expr" policy instead.
667std::string PredefinedExpr::ComputeName(PredefinedIdentKind IK,
668 const Decl *CurrentDecl) {
669 ASTContext &Context = CurrentDecl->getASTContext();
670
671 if (IK == PredefinedIdentKind::FuncDName) {
672 if (const NamedDecl *ND = dyn_cast<NamedDecl>(Val: CurrentDecl)) {
673 std::unique_ptr<MangleContext> MC;
674 MC.reset(p: Context.createMangleContext());
675
676 if (MC->shouldMangleDeclName(D: ND)) {
677 SmallString<256> Buffer;
678 llvm::raw_svector_ostream Out(Buffer);
679 GlobalDecl GD;
680 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Val: ND))
681 GD = GlobalDecl(CD, Ctor_Base);
682 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Val: ND))
683 GD = GlobalDecl(DD, Dtor_Base);
684 else if (ND->hasAttr<CUDAGlobalAttr>())
685 GD = GlobalDecl(cast<FunctionDecl>(Val: ND));
686 else
687 GD = GlobalDecl(ND);
688 MC->mangleName(GD, Out);
689
690 if (!Buffer.empty() && Buffer.front() == '\01')
691 return std::string(Buffer.substr(Start: 1));
692 return std::string(Buffer);
693 }
694 return std::string(ND->getIdentifier()->getName());
695 }
696 return "";
697 }
698 if (isa<BlockDecl>(Val: CurrentDecl)) {
699 // For blocks we only emit something if it is enclosed in a function
700 // For top-level block we'd like to include the name of variable, but we
701 // don't have it at this point.
702 auto DC = CurrentDecl->getDeclContext();
703 if (DC->isFileContext())
704 return "";
705
706 SmallString<256> Buffer;
707 llvm::raw_svector_ostream Out(Buffer);
708 if (auto *DCBlock = dyn_cast<BlockDecl>(Val: DC))
709 // For nested blocks, propagate up to the parent.
710 Out << ComputeName(IK, DCBlock);
711 else if (auto *DCDecl = dyn_cast<Decl>(Val: DC))
712 Out << ComputeName(IK, CurrentDecl: DCDecl) << "_block_invoke";
713 return std::string(Out.str());
714 }
715 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: CurrentDecl)) {
716 if (IK != PredefinedIdentKind::PrettyFunction &&
717 IK != PredefinedIdentKind::PrettyFunctionNoVirtual &&
718 IK != PredefinedIdentKind::FuncSig &&
719 IK != PredefinedIdentKind::LFuncSig)
720 return FD->getNameAsString();
721
722 SmallString<256> Name;
723 llvm::raw_svector_ostream Out(Name);
724
725 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: FD)) {
726 if (MD->isVirtual() && IK != PredefinedIdentKind::PrettyFunctionNoVirtual)
727 Out << "virtual ";
728 if (MD->isStatic())
729 Out << "static ";
730 }
731
732 class PrettyCallbacks final : public PrintingCallbacks {
733 public:
734 PrettyCallbacks(const LangOptions &LO) : LO(LO) {}
735 std::string remapPath(StringRef Path) const override {
736 SmallString<128> p(Path);
737 LO.remapPathPrefix(Path&: p);
738 return std::string(p);
739 }
740
741 private:
742 const LangOptions &LO;
743 };
744 PrintingPolicy Policy(Context.getLangOpts());
745 PrettyCallbacks PrettyCB(Context.getLangOpts());
746 Policy.Callbacks = &PrettyCB;
747 std::string Proto;
748 llvm::raw_string_ostream POut(Proto);
749
750 const FunctionDecl *Decl = FD;
751 if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
752 Decl = Pattern;
753 const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
754 const FunctionProtoType *FT = nullptr;
755 if (FD->hasWrittenPrototype())
756 FT = dyn_cast<FunctionProtoType>(Val: AFT);
757
758 if (IK == PredefinedIdentKind::FuncSig ||
759 IK == PredefinedIdentKind::LFuncSig) {
760 switch (AFT->getCallConv()) {
761 case CC_C: POut << "__cdecl "; break;
762 case CC_X86StdCall: POut << "__stdcall "; break;
763 case CC_X86FastCall: POut << "__fastcall "; break;
764 case CC_X86ThisCall: POut << "__thiscall "; break;
765 case CC_X86VectorCall: POut << "__vectorcall "; break;
766 case CC_X86RegCall: POut << "__regcall "; break;
767 // Only bother printing the conventions that MSVC knows about.
768 default: break;
769 }
770 }
771
772 FD->printQualifiedName(POut, Policy);
773
774 POut << "(";
775 if (FT) {
776 for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
777 if (i) POut << ", ";
778 POut << Decl->getParamDecl(i)->getType().stream(Policy);
779 }
780
781 if (FT->isVariadic()) {
782 if (FD->getNumParams()) POut << ", ";
783 POut << "...";
784 } else if ((IK == PredefinedIdentKind::FuncSig ||
785 IK == PredefinedIdentKind::LFuncSig ||
786 !Context.getLangOpts().CPlusPlus) &&
787 !Decl->getNumParams()) {
788 POut << "void";
789 }
790 }
791 POut << ")";
792
793 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: FD)) {
794 assert(FT && "We must have a written prototype in this case.");
795 if (FT->isConst())
796 POut << " const";
797 if (FT->isVolatile())
798 POut << " volatile";
799 RefQualifierKind Ref = MD->getRefQualifier();
800 if (Ref == RQ_LValue)
801 POut << " &";
802 else if (Ref == RQ_RValue)
803 POut << " &&";
804 }
805
806 typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
807 SpecsTy Specs;
808 const DeclContext *Ctx = FD->getDeclContext();
809 while (Ctx && isa<NamedDecl>(Val: Ctx)) {
810 const ClassTemplateSpecializationDecl *Spec
811 = dyn_cast<ClassTemplateSpecializationDecl>(Val: Ctx);
812 if (Spec && !Spec->isExplicitSpecialization())
813 Specs.push_back(Elt: Spec);
814 Ctx = Ctx->getParent();
815 }
816
817 std::string TemplateParams;
818 llvm::raw_string_ostream TOut(TemplateParams);
819 for (const ClassTemplateSpecializationDecl *D : llvm::reverse(C&: Specs)) {
820 const TemplateParameterList *Params =
821 D->getSpecializedTemplate()->getTemplateParameters();
822 const TemplateArgumentList &Args = D->getTemplateArgs();
823 assert(Params->size() == Args.size());
824 for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
825 StringRef Param = Params->getParam(Idx: i)->getName();
826 if (Param.empty()) continue;
827 TOut << Param << " = ";
828 Args.get(Idx: i).print(Policy, Out&: TOut,
829 IncludeType: TemplateParameterList::shouldIncludeTypeForArgument(
830 Policy, TPL: Params, Idx: i));
831 TOut << ", ";
832 }
833 }
834
835 FunctionTemplateSpecializationInfo *FSI
836 = FD->getTemplateSpecializationInfo();
837 if (FSI && !FSI->isExplicitSpecialization()) {
838 const TemplateParameterList* Params
839 = FSI->getTemplate()->getTemplateParameters();
840 const TemplateArgumentList* Args = FSI->TemplateArguments;
841 assert(Params->size() == Args->size());
842 for (unsigned i = 0, e = Params->size(); i != e; ++i) {
843 StringRef Param = Params->getParam(Idx: i)->getName();
844 if (Param.empty()) continue;
845 TOut << Param << " = ";
846 Args->get(Idx: i).print(Policy, Out&: TOut, /*IncludeType*/ true);
847 TOut << ", ";
848 }
849 }
850
851 TOut.flush();
852 if (!TemplateParams.empty()) {
853 // remove the trailing comma and space
854 TemplateParams.resize(n: TemplateParams.size() - 2);
855 POut << " [" << TemplateParams << "]";
856 }
857
858 POut.flush();
859
860 // Print "auto" for all deduced return types. This includes C++1y return
861 // type deduction and lambdas. For trailing return types resolve the
862 // decltype expression. Otherwise print the real type when this is
863 // not a constructor or destructor.
864 if (isa<CXXMethodDecl>(Val: FD) &&
865 cast<CXXMethodDecl>(Val: FD)->getParent()->isLambda())
866 Proto = "auto " + Proto;
867 else if (FT && FT->getReturnType()->getAs<DecltypeType>())
868 FT->getReturnType()
869 ->getAs<DecltypeType>()
870 ->getUnderlyingType()
871 .getAsStringInternal(Proto, Policy);
872 else if (!isa<CXXConstructorDecl>(Val: FD) && !isa<CXXDestructorDecl>(Val: FD))
873 AFT->getReturnType().getAsStringInternal(Str&: Proto, Policy);
874
875 Out << Proto;
876
877 return std::string(Name);
878 }
879 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(Val: CurrentDecl)) {
880 for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
881 // Skip to its enclosing function or method, but not its enclosing
882 // CapturedDecl.
883 if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
884 const Decl *D = Decl::castFromDeclContext(DC);
885 return ComputeName(IK, CurrentDecl: D);
886 }
887 llvm_unreachable("CapturedDecl not inside a function or method");
888 }
889 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Val: CurrentDecl)) {
890 SmallString<256> Name;
891 llvm::raw_svector_ostream Out(Name);
892 Out << (MD->isInstanceMethod() ? '-' : '+');
893 Out << '[';
894
895 // For incorrect code, there might not be an ObjCInterfaceDecl. Do
896 // a null check to avoid a crash.
897 if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
898 Out << *ID;
899
900 if (const ObjCCategoryImplDecl *CID =
901 dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
902 Out << '(' << *CID << ')';
903
904 Out << ' ';
905 MD->getSelector().print(OS&: Out);
906 Out << ']';
907
908 return std::string(Name);
909 }
910 if (isa<TranslationUnitDecl>(Val: CurrentDecl) &&
911 IK == PredefinedIdentKind::PrettyFunction) {
912 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
913 return "top level";
914 }
915 return "";
916}
917
918void APNumericStorage::setIntValue(const ASTContext &C,
919 const llvm::APInt &Val) {
920 if (hasAllocation())
921 C.Deallocate(Ptr: pVal);
922
923 BitWidth = Val.getBitWidth();
924 unsigned NumWords = Val.getNumWords();
925 const uint64_t* Words = Val.getRawData();
926 if (NumWords > 1) {
927 pVal = new (C) uint64_t[NumWords];
928 std::copy(first: Words, last: Words + NumWords, result: pVal);
929 } else if (NumWords == 1)
930 VAL = Words[0];
931 else
932 VAL = 0;
933}
934
935IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
936 QualType type, SourceLocation l)
937 : Expr(IntegerLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l) {
938 assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
939 assert(V.getBitWidth() == C.getIntWidth(type) &&
940 "Integer type is not the correct size for constant.");
941 setValue(C, V);
942 setDependence(ExprDependence::None);
943}
944
945IntegerLiteral *
946IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
947 QualType type, SourceLocation l) {
948 return new (C) IntegerLiteral(C, V, type, l);
949}
950
951IntegerLiteral *
952IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
953 return new (C) IntegerLiteral(Empty);
954}
955
956FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V,
957 QualType type, SourceLocation l,
958 unsigned Scale)
959 : Expr(FixedPointLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l),
960 Scale(Scale) {
961 assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral");
962 assert(V.getBitWidth() == C.getTypeInfo(type).Width &&
963 "Fixed point type is not the correct size for constant.");
964 setValue(C, V);
965 setDependence(ExprDependence::None);
966}
967
968FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C,
969 const llvm::APInt &V,
970 QualType type,
971 SourceLocation l,
972 unsigned Scale) {
973 return new (C) FixedPointLiteral(C, V, type, l, Scale);
974}
975
976FixedPointLiteral *FixedPointLiteral::Create(const ASTContext &C,
977 EmptyShell Empty) {
978 return new (C) FixedPointLiteral(Empty);
979}
980
981std::string FixedPointLiteral::getValueAsString(unsigned Radix) const {
982 // Currently the longest decimal number that can be printed is the max for an
983 // unsigned long _Accum: 4294967295.99999999976716935634613037109375
984 // which is 43 characters.
985 SmallString<64> S;
986 FixedPointValueToString(
987 S, llvm::APSInt::getUnsigned(X: getValue().getZExtValue()), Scale);
988 return std::string(S);
989}
990
991void CharacterLiteral::print(unsigned Val, CharacterLiteralKind Kind,
992 raw_ostream &OS) {
993 switch (Kind) {
994 case CharacterLiteralKind::Ascii:
995 break; // no prefix.
996 case CharacterLiteralKind::Wide:
997 OS << 'L';
998 break;
999 case CharacterLiteralKind::UTF8:
1000 OS << "u8";
1001 break;
1002 case CharacterLiteralKind::UTF16:
1003 OS << 'u';
1004 break;
1005 case CharacterLiteralKind::UTF32:
1006 OS << 'U';
1007 break;
1008 }
1009
1010 StringRef Escaped = escapeCStyle<EscapeChar::Single>(Ch: Val);
1011 if (!Escaped.empty()) {
1012 OS << "'" << Escaped << "'";
1013 } else {
1014 // A character literal might be sign-extended, which
1015 // would result in an invalid \U escape sequence.
1016 // FIXME: multicharacter literals such as '\xFF\xFF\xFF\xFF'
1017 // are not correctly handled.
1018 if ((Val & ~0xFFu) == ~0xFFu && Kind == CharacterLiteralKind::Ascii)
1019 Val &= 0xFFu;
1020 if (Val < 256 && isPrintable(c: (unsigned char)Val))
1021 OS << "'" << (char)Val << "'";
1022 else if (Val < 256)
1023 OS << "'\\x" << llvm::format(Fmt: "%02x", Vals: Val) << "'";
1024 else if (Val <= 0xFFFF)
1025 OS << "'\\u" << llvm::format(Fmt: "%04x", Vals: Val) << "'";
1026 else
1027 OS << "'\\U" << llvm::format(Fmt: "%08x", Vals: Val) << "'";
1028 }
1029}
1030
1031FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
1032 bool isexact, QualType Type, SourceLocation L)
1033 : Expr(FloatingLiteralClass, Type, VK_PRValue, OK_Ordinary), Loc(L) {
1034 setSemantics(V.getSemantics());
1035 FloatingLiteralBits.IsExact = isexact;
1036 setValue(C, Val: V);
1037 setDependence(ExprDependence::None);
1038}
1039
1040FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
1041 : Expr(FloatingLiteralClass, Empty) {
1042 setRawSemantics(llvm::APFloatBase::S_IEEEhalf);
1043 FloatingLiteralBits.IsExact = false;
1044}
1045
1046FloatingLiteral *
1047FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
1048 bool isexact, QualType Type, SourceLocation L) {
1049 return new (C) FloatingLiteral(C, V, isexact, Type, L);
1050}
1051
1052FloatingLiteral *
1053FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
1054 return new (C) FloatingLiteral(C, Empty);
1055}
1056
1057/// getValueAsApproximateDouble - This returns the value as an inaccurate
1058/// double. Note that this may cause loss of precision, but is useful for
1059/// debugging dumps, etc.
1060double FloatingLiteral::getValueAsApproximateDouble() const {
1061 llvm::APFloat V = getValue();
1062 bool ignored;
1063 V.convert(ToSemantics: llvm::APFloat::IEEEdouble(), RM: llvm::APFloat::rmNearestTiesToEven,
1064 losesInfo: &ignored);
1065 return V.convertToDouble();
1066}
1067
1068unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target,
1069 StringLiteralKind SK) {
1070 unsigned CharByteWidth = 0;
1071 switch (SK) {
1072 case StringLiteralKind::Ordinary:
1073 case StringLiteralKind::UTF8:
1074 CharByteWidth = Target.getCharWidth();
1075 break;
1076 case StringLiteralKind::Wide:
1077 CharByteWidth = Target.getWCharWidth();
1078 break;
1079 case StringLiteralKind::UTF16:
1080 CharByteWidth = Target.getChar16Width();
1081 break;
1082 case StringLiteralKind::UTF32:
1083 CharByteWidth = Target.getChar32Width();
1084 break;
1085 case StringLiteralKind::Unevaluated:
1086 return sizeof(char); // Host;
1087 }
1088 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
1089 CharByteWidth /= 8;
1090 assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
1091 "The only supported character byte widths are 1,2 and 4!");
1092 return CharByteWidth;
1093}
1094
1095StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str,
1096 StringLiteralKind Kind, bool Pascal, QualType Ty,
1097 const SourceLocation *Loc,
1098 unsigned NumConcatenated)
1099 : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary) {
1100
1101 unsigned Length = Str.size();
1102
1103 StringLiteralBits.Kind = llvm::to_underlying(E: Kind);
1104 StringLiteralBits.NumConcatenated = NumConcatenated;
1105
1106 if (Kind != StringLiteralKind::Unevaluated) {
1107 assert(Ctx.getAsConstantArrayType(Ty) &&
1108 "StringLiteral must be of constant array type!");
1109 unsigned CharByteWidth = mapCharByteWidth(Target: Ctx.getTargetInfo(), SK: Kind);
1110 unsigned ByteLength = Str.size();
1111 assert((ByteLength % CharByteWidth == 0) &&
1112 "The size of the data must be a multiple of CharByteWidth!");
1113
1114 // Avoid the expensive division. The compiler should be able to figure it
1115 // out by itself. However as of clang 7, even with the appropriate
1116 // llvm_unreachable added just here, it is not able to do so.
1117 switch (CharByteWidth) {
1118 case 1:
1119 Length = ByteLength;
1120 break;
1121 case 2:
1122 Length = ByteLength / 2;
1123 break;
1124 case 4:
1125 Length = ByteLength / 4;
1126 break;
1127 default:
1128 llvm_unreachable("Unsupported character width!");
1129 }
1130
1131 StringLiteralBits.CharByteWidth = CharByteWidth;
1132 StringLiteralBits.IsPascal = Pascal;
1133 } else {
1134 assert(!Pascal && "Can't make an unevaluated Pascal string");
1135 StringLiteralBits.CharByteWidth = 1;
1136 StringLiteralBits.IsPascal = false;
1137 }
1138
1139 *getTrailingObjects<unsigned>() = Length;
1140
1141 // Initialize the trailing array of SourceLocation.
1142 // This is safe since SourceLocation is POD-like.
1143 std::memcpy(dest: getTrailingObjects<SourceLocation>(), src: Loc,
1144 n: NumConcatenated * sizeof(SourceLocation));
1145
1146 // Initialize the trailing array of char holding the string data.
1147 std::memcpy(dest: getTrailingObjects<char>(), src: Str.data(), n: Str.size());
1148
1149 setDependence(ExprDependence::None);
1150}
1151
1152StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated,
1153 unsigned Length, unsigned CharByteWidth)
1154 : Expr(StringLiteralClass, Empty) {
1155 StringLiteralBits.CharByteWidth = CharByteWidth;
1156 StringLiteralBits.NumConcatenated = NumConcatenated;
1157 *getTrailingObjects<unsigned>() = Length;
1158}
1159
1160StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str,
1161 StringLiteralKind Kind, bool Pascal,
1162 QualType Ty, const SourceLocation *Loc,
1163 unsigned NumConcatenated) {
1164 void *Mem = Ctx.Allocate(Size: totalSizeToAlloc<unsigned, SourceLocation, char>(
1165 Counts: 1, Counts: NumConcatenated, Counts: Str.size()),
1166 Align: alignof(StringLiteral));
1167 return new (Mem)
1168 StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated);
1169}
1170
1171StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx,
1172 unsigned NumConcatenated,
1173 unsigned Length,
1174 unsigned CharByteWidth) {
1175 void *Mem = Ctx.Allocate(Size: totalSizeToAlloc<unsigned, SourceLocation, char>(
1176 Counts: 1, Counts: NumConcatenated, Counts: Length * CharByteWidth),
1177 Align: alignof(StringLiteral));
1178 return new (Mem)
1179 StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth);
1180}
1181
1182void StringLiteral::outputString(raw_ostream &OS) const {
1183 switch (getKind()) {
1184 case StringLiteralKind::Unevaluated:
1185 case StringLiteralKind::Ordinary:
1186 break; // no prefix.
1187 case StringLiteralKind::Wide:
1188 OS << 'L';
1189 break;
1190 case StringLiteralKind::UTF8:
1191 OS << "u8";
1192 break;
1193 case StringLiteralKind::UTF16:
1194 OS << 'u';
1195 break;
1196 case StringLiteralKind::UTF32:
1197 OS << 'U';
1198 break;
1199 }
1200 OS << '"';
1201 static const char Hex[] = "0123456789ABCDEF";
1202
1203 unsigned LastSlashX = getLength();
1204 for (unsigned I = 0, N = getLength(); I != N; ++I) {
1205 uint32_t Char = getCodeUnit(i: I);
1206 StringRef Escaped = escapeCStyle<EscapeChar::Double>(Ch: Char);
1207 if (Escaped.empty()) {
1208 // FIXME: Convert UTF-8 back to codepoints before rendering.
1209
1210 // Convert UTF-16 surrogate pairs back to codepoints before rendering.
1211 // Leave invalid surrogates alone; we'll use \x for those.
1212 if (getKind() == StringLiteralKind::UTF16 && I != N - 1 &&
1213 Char >= 0xd800 && Char <= 0xdbff) {
1214 uint32_t Trail = getCodeUnit(i: I + 1);
1215 if (Trail >= 0xdc00 && Trail <= 0xdfff) {
1216 Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
1217 ++I;
1218 }
1219 }
1220
1221 if (Char > 0xff) {
1222 // If this is a wide string, output characters over 0xff using \x
1223 // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
1224 // codepoint: use \x escapes for invalid codepoints.
1225 if (getKind() == StringLiteralKind::Wide ||
1226 (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
1227 // FIXME: Is this the best way to print wchar_t?
1228 OS << "\\x";
1229 int Shift = 28;
1230 while ((Char >> Shift) == 0)
1231 Shift -= 4;
1232 for (/**/; Shift >= 0; Shift -= 4)
1233 OS << Hex[(Char >> Shift) & 15];
1234 LastSlashX = I;
1235 continue;
1236 }
1237
1238 if (Char > 0xffff)
1239 OS << "\\U00"
1240 << Hex[(Char >> 20) & 15]
1241 << Hex[(Char >> 16) & 15];
1242 else
1243 OS << "\\u";
1244 OS << Hex[(Char >> 12) & 15]
1245 << Hex[(Char >> 8) & 15]
1246 << Hex[(Char >> 4) & 15]
1247 << Hex[(Char >> 0) & 15];
1248 continue;
1249 }
1250
1251 // If we used \x... for the previous character, and this character is a
1252 // hexadecimal digit, prevent it being slurped as part of the \x.
1253 if (LastSlashX + 1 == I) {
1254 switch (Char) {
1255 case '0': case '1': case '2': case '3': case '4':
1256 case '5': case '6': case '7': case '8': case '9':
1257 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
1258 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
1259 OS << "\"\"";
1260 }
1261 }
1262
1263 assert(Char <= 0xff &&
1264 "Characters above 0xff should already have been handled.");
1265
1266 if (isPrintable(c: Char))
1267 OS << (char)Char;
1268 else // Output anything hard as an octal escape.
1269 OS << '\\'
1270 << (char)('0' + ((Char >> 6) & 7))
1271 << (char)('0' + ((Char >> 3) & 7))
1272 << (char)('0' + ((Char >> 0) & 7));
1273 } else {
1274 // Handle some common non-printable cases to make dumps prettier.
1275 OS << Escaped;
1276 }
1277 }
1278 OS << '"';
1279}
1280
1281/// getLocationOfByte - Return a source location that points to the specified
1282/// byte of this string literal.
1283///
1284/// Strings are amazingly complex. They can be formed from multiple tokens and
1285/// can have escape sequences in them in addition to the usual trigraph and
1286/// escaped newline business. This routine handles this complexity.
1287///
1288/// The *StartToken sets the first token to be searched in this function and
1289/// the *StartTokenByteOffset is the byte offset of the first token. Before
1290/// returning, it updates the *StartToken to the TokNo of the token being found
1291/// and sets *StartTokenByteOffset to the byte offset of the token in the
1292/// string.
1293/// Using these two parameters can reduce the time complexity from O(n^2) to
1294/// O(n) if one wants to get the location of byte for all the tokens in a
1295/// string.
1296///
1297SourceLocation
1298StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1299 const LangOptions &Features,
1300 const TargetInfo &Target, unsigned *StartToken,
1301 unsigned *StartTokenByteOffset) const {
1302 assert((getKind() == StringLiteralKind::Ordinary ||
1303 getKind() == StringLiteralKind::UTF8 ||
1304 getKind() == StringLiteralKind::Unevaluated) &&
1305 "Only narrow string literals are currently supported");
1306
1307 // Loop over all of the tokens in this string until we find the one that
1308 // contains the byte we're looking for.
1309 unsigned TokNo = 0;
1310 unsigned StringOffset = 0;
1311 if (StartToken)
1312 TokNo = *StartToken;
1313 if (StartTokenByteOffset) {
1314 StringOffset = *StartTokenByteOffset;
1315 ByteNo -= StringOffset;
1316 }
1317 while (true) {
1318 assert(TokNo < getNumConcatenated() && "Invalid byte number!");
1319 SourceLocation StrTokLoc = getStrTokenLoc(TokNum: TokNo);
1320
1321 // Get the spelling of the string so that we can get the data that makes up
1322 // the string literal, not the identifier for the macro it is potentially
1323 // expanded through.
1324 SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(Loc: StrTokLoc);
1325
1326 // Re-lex the token to get its length and original spelling.
1327 std::pair<FileID, unsigned> LocInfo =
1328 SM.getDecomposedLoc(Loc: StrTokSpellingLoc);
1329 bool Invalid = false;
1330 StringRef Buffer = SM.getBufferData(FID: LocInfo.first, Invalid: &Invalid);
1331 if (Invalid) {
1332 if (StartTokenByteOffset != nullptr)
1333 *StartTokenByteOffset = StringOffset;
1334 if (StartToken != nullptr)
1335 *StartToken = TokNo;
1336 return StrTokSpellingLoc;
1337 }
1338
1339 const char *StrData = Buffer.data()+LocInfo.second;
1340
1341 // Create a lexer starting at the beginning of this token.
1342 Lexer TheLexer(SM.getLocForStartOfFile(FID: LocInfo.first), Features,
1343 Buffer.begin(), StrData, Buffer.end());
1344 Token TheTok;
1345 TheLexer.LexFromRawLexer(Result&: TheTok);
1346
1347 // Use the StringLiteralParser to compute the length of the string in bytes.
1348 StringLiteralParser SLP(TheTok, SM, Features, Target);
1349 unsigned TokNumBytes = SLP.GetStringLength();
1350
1351 // If the byte is in this token, return the location of the byte.
1352 if (ByteNo < TokNumBytes ||
1353 (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
1354 unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
1355
1356 // Now that we know the offset of the token in the spelling, use the
1357 // preprocessor to get the offset in the original source.
1358 if (StartTokenByteOffset != nullptr)
1359 *StartTokenByteOffset = StringOffset;
1360 if (StartToken != nullptr)
1361 *StartToken = TokNo;
1362 return Lexer::AdvanceToTokenCharacter(TokStart: StrTokLoc, Characters: Offset, SM, LangOpts: Features);
1363 }
1364
1365 // Move to the next string token.
1366 StringOffset += TokNumBytes;
1367 ++TokNo;
1368 ByteNo -= TokNumBytes;
1369 }
1370}
1371
1372/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1373/// corresponds to, e.g. "sizeof" or "[pre]++".
1374StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
1375 switch (Op) {
1376#define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling;
1377#include "clang/AST/OperationKinds.def"
1378 }
1379 llvm_unreachable("Unknown unary operator");
1380}
1381
1382UnaryOperatorKind
1383UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
1384 switch (OO) {
1385 default: llvm_unreachable("No unary operator for overloaded function");
1386 case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc;
1387 case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
1388 case OO_Amp: return UO_AddrOf;
1389 case OO_Star: return UO_Deref;
1390 case OO_Plus: return UO_Plus;
1391 case OO_Minus: return UO_Minus;
1392 case OO_Tilde: return UO_Not;
1393 case OO_Exclaim: return UO_LNot;
1394 case OO_Coawait: return UO_Coawait;
1395 }
1396}
1397
1398OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
1399 switch (Opc) {
1400 case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
1401 case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
1402 case UO_AddrOf: return OO_Amp;
1403 case UO_Deref: return OO_Star;
1404 case UO_Plus: return OO_Plus;
1405 case UO_Minus: return OO_Minus;
1406 case UO_Not: return OO_Tilde;
1407 case UO_LNot: return OO_Exclaim;
1408 case UO_Coawait: return OO_Coawait;
1409 default: return OO_None;
1410 }
1411}
1412
1413
1414//===----------------------------------------------------------------------===//
1415// Postfix Operators.
1416//===----------------------------------------------------------------------===//
1417
1418CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs,
1419 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
1420 SourceLocation RParenLoc, FPOptionsOverride FPFeatures,
1421 unsigned MinNumArgs, ADLCallKind UsesADL)
1422 : Expr(SC, Ty, VK, OK_Ordinary), RParenLoc(RParenLoc) {
1423 NumArgs = std::max<unsigned>(a: Args.size(), b: MinNumArgs);
1424 unsigned NumPreArgs = PreArgs.size();
1425 CallExprBits.NumPreArgs = NumPreArgs;
1426 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1427
1428 unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
1429 CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
1430 assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
1431 "OffsetToTrailingObjects overflow!");
1432
1433 CallExprBits.UsesADL = static_cast<bool>(UsesADL);
1434
1435 setCallee(Fn);
1436 for (unsigned I = 0; I != NumPreArgs; ++I)
1437 setPreArg(I, PreArgs[I]);
1438 for (unsigned I = 0; I != Args.size(); ++I)
1439 setArg(Arg: I, ArgExpr: Args[I]);
1440 for (unsigned I = Args.size(); I != NumArgs; ++I)
1441 setArg(Arg: I, ArgExpr: nullptr);
1442
1443 this->computeDependence();
1444
1445 CallExprBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
1446 if (hasStoredFPFeatures())
1447 setStoredFPFeatures(FPFeatures);
1448}
1449
1450CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs,
1451 bool HasFPFeatures, EmptyShell Empty)
1452 : Expr(SC, Empty), NumArgs(NumArgs) {
1453 CallExprBits.NumPreArgs = NumPreArgs;
1454 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1455
1456 unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
1457 CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
1458 assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
1459 "OffsetToTrailingObjects overflow!");
1460 CallExprBits.HasFPFeatures = HasFPFeatures;
1461}
1462
1463CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn,
1464 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
1465 SourceLocation RParenLoc,
1466 FPOptionsOverride FPFeatures, unsigned MinNumArgs,
1467 ADLCallKind UsesADL) {
1468 unsigned NumArgs = std::max<unsigned>(a: Args.size(), b: MinNumArgs);
1469 unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects(
1470 /*NumPreArgs=*/0, NumArgs, HasFPFeatures: FPFeatures.requiresTrailingStorage());
1471 void *Mem =
1472 Ctx.Allocate(Size: sizeof(CallExpr) + SizeOfTrailingObjects, Align: alignof(CallExpr));
1473 return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK,
1474 RParenLoc, FPFeatures, MinNumArgs, UsesADL);
1475}
1476
1477CallExpr *CallExpr::CreateTemporary(void *Mem, Expr *Fn, QualType Ty,
1478 ExprValueKind VK, SourceLocation RParenLoc,
1479 ADLCallKind UsesADL) {
1480 assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) &&
1481 "Misaligned memory in CallExpr::CreateTemporary!");
1482 return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty,
1483 VK, RParenLoc, FPOptionsOverride(),
1484 /*MinNumArgs=*/0, UsesADL);
1485}
1486
1487CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs,
1488 bool HasFPFeatures, EmptyShell Empty) {
1489 unsigned SizeOfTrailingObjects =
1490 CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs, HasFPFeatures);
1491 void *Mem =
1492 Ctx.Allocate(Size: sizeof(CallExpr) + SizeOfTrailingObjects, Align: alignof(CallExpr));
1493 return new (Mem)
1494 CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, HasFPFeatures, Empty);
1495}
1496
1497unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) {
1498 switch (SC) {
1499 case CallExprClass:
1500 return sizeof(CallExpr);
1501 case CXXOperatorCallExprClass:
1502 return sizeof(CXXOperatorCallExpr);
1503 case CXXMemberCallExprClass:
1504 return sizeof(CXXMemberCallExpr);
1505 case UserDefinedLiteralClass:
1506 return sizeof(UserDefinedLiteral);
1507 case CUDAKernelCallExprClass:
1508 return sizeof(CUDAKernelCallExpr);
1509 default:
1510 llvm_unreachable("unexpected class deriving from CallExpr!");
1511 }
1512}
1513
1514Decl *Expr::getReferencedDeclOfCallee() {
1515 Expr *CEE = IgnoreParenImpCasts();
1516
1517 while (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(Val: CEE))
1518 CEE = NTTP->getReplacement()->IgnoreParenImpCasts();
1519
1520 // If we're calling a dereference, look at the pointer instead.
1521 while (true) {
1522 if (auto *BO = dyn_cast<BinaryOperator>(Val: CEE)) {
1523 if (BO->isPtrMemOp()) {
1524 CEE = BO->getRHS()->IgnoreParenImpCasts();
1525 continue;
1526 }
1527 } else if (auto *UO = dyn_cast<UnaryOperator>(Val: CEE)) {
1528 if (UO->getOpcode() == UO_Deref || UO->getOpcode() == UO_AddrOf ||
1529 UO->getOpcode() == UO_Plus) {
1530 CEE = UO->getSubExpr()->IgnoreParenImpCasts();
1531 continue;
1532 }
1533 }
1534 break;
1535 }
1536
1537 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: CEE))
1538 return DRE->getDecl();
1539 if (auto *ME = dyn_cast<MemberExpr>(Val: CEE))
1540 return ME->getMemberDecl();
1541 if (auto *BE = dyn_cast<BlockExpr>(Val: CEE))
1542 return BE->getBlockDecl();
1543
1544 return nullptr;
1545}
1546
1547/// If this is a call to a builtin, return the builtin ID. If not, return 0.
1548unsigned CallExpr::getBuiltinCallee() const {
1549 const auto *FDecl = getDirectCallee();
1550 return FDecl ? FDecl->getBuiltinID() : 0;
1551}
1552
1553bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const {
1554 if (unsigned BI = getBuiltinCallee())
1555 return Ctx.BuiltinInfo.isUnevaluated(ID: BI);
1556 return false;
1557}
1558
1559QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const {
1560 const Expr *Callee = getCallee();
1561 QualType CalleeType = Callee->getType();
1562 if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
1563 CalleeType = FnTypePtr->getPointeeType();
1564 } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
1565 CalleeType = BPT->getPointeeType();
1566 } else if (CalleeType->isSpecificPlaceholderType(K: BuiltinType::BoundMember)) {
1567 if (isa<CXXPseudoDestructorExpr>(Val: Callee->IgnoreParens()))
1568 return Ctx.VoidTy;
1569
1570 if (isa<UnresolvedMemberExpr>(Val: Callee->IgnoreParens()))
1571 return Ctx.DependentTy;
1572
1573 // This should never be overloaded and so should never return null.
1574 CalleeType = Expr::findBoundMemberType(expr: Callee);
1575 assert(!CalleeType.isNull());
1576 } else if (CalleeType->isRecordType()) {
1577 // If the Callee is a record type, then it is a not-yet-resolved
1578 // dependent call to the call operator of that type.
1579 return Ctx.DependentTy;
1580 } else if (CalleeType->isDependentType() ||
1581 CalleeType->isSpecificPlaceholderType(K: BuiltinType::Overload)) {
1582 return Ctx.DependentTy;
1583 }
1584
1585 const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1586 return FnType->getReturnType();
1587}
1588
1589const Attr *CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const {
1590 // If the return type is a struct, union, or enum that is marked nodiscard,
1591 // then return the return type attribute.
1592 if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl())
1593 if (const auto *A = TD->getAttr<WarnUnusedResultAttr>())
1594 return A;
1595
1596 for (const auto *TD = getCallReturnType(Ctx)->getAs<TypedefType>(); TD;
1597 TD = TD->desugar()->getAs<TypedefType>())
1598 if (const auto *A = TD->getDecl()->getAttr<WarnUnusedResultAttr>())
1599 return A;
1600
1601 // Otherwise, see if the callee is marked nodiscard and return that attribute
1602 // instead.
1603 const Decl *D = getCalleeDecl();
1604 return D ? D->getAttr<WarnUnusedResultAttr>() : nullptr;
1605}
1606
1607SourceLocation CallExpr::getBeginLoc() const {
1608 if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(Val: this))
1609 return OCE->getBeginLoc();
1610
1611 SourceLocation begin = getCallee()->getBeginLoc();
1612 if (begin.isInvalid() && getNumArgs() > 0 && getArg(Arg: 0))
1613 begin = getArg(Arg: 0)->getBeginLoc();
1614 return begin;
1615}
1616SourceLocation CallExpr::getEndLoc() const {
1617 if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(Val: this))
1618 return OCE->getEndLoc();
1619
1620 SourceLocation end = getRParenLoc();
1621 if (end.isInvalid() && getNumArgs() > 0 && getArg(Arg: getNumArgs() - 1))
1622 end = getArg(Arg: getNumArgs() - 1)->getEndLoc();
1623 return end;
1624}
1625
1626OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
1627 SourceLocation OperatorLoc,
1628 TypeSourceInfo *tsi,
1629 ArrayRef<OffsetOfNode> comps,
1630 ArrayRef<Expr*> exprs,
1631 SourceLocation RParenLoc) {
1632 void *Mem = C.Allocate(
1633 Size: totalSizeToAlloc<OffsetOfNode, Expr *>(Counts: comps.size(), Counts: exprs.size()));
1634
1635 return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1636 RParenLoc);
1637}
1638
1639OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
1640 unsigned numComps, unsigned numExprs) {
1641 void *Mem =
1642 C.Allocate(Size: totalSizeToAlloc<OffsetOfNode, Expr *>(Counts: numComps, Counts: numExprs));
1643 return new (Mem) OffsetOfExpr(numComps, numExprs);
1644}
1645
1646OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
1647 SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1648 ArrayRef<OffsetOfNode> comps, ArrayRef<Expr *> exprs,
1649 SourceLocation RParenLoc)
1650 : Expr(OffsetOfExprClass, type, VK_PRValue, OK_Ordinary),
1651 OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1652 NumComps(comps.size()), NumExprs(exprs.size()) {
1653 for (unsigned i = 0; i != comps.size(); ++i)
1654 setComponent(Idx: i, ON: comps[i]);
1655 for (unsigned i = 0; i != exprs.size(); ++i)
1656 setIndexExpr(Idx: i, E: exprs[i]);
1657
1658 setDependence(computeDependence(E: this));
1659}
1660
1661IdentifierInfo *OffsetOfNode::getFieldName() const {
1662 assert(getKind() == Field || getKind() == Identifier);
1663 if (getKind() == Field)
1664 return getField()->getIdentifier();
1665
1666 return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1667}
1668
1669UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr(
1670 UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
1671 SourceLocation op, SourceLocation rp)
1672 : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_PRValue, OK_Ordinary),
1673 OpLoc(op), RParenLoc(rp) {
1674 assert(ExprKind <= UETT_Last && "invalid enum value!");
1675 UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1676 assert(static_cast<unsigned>(ExprKind) == UnaryExprOrTypeTraitExprBits.Kind &&
1677 "UnaryExprOrTypeTraitExprBits.Kind overflow!");
1678 UnaryExprOrTypeTraitExprBits.IsType = false;
1679 Argument.Ex = E;
1680 setDependence(computeDependence(E: this));
1681}
1682
1683MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1684 ValueDecl *MemberDecl,
1685 const DeclarationNameInfo &NameInfo, QualType T,
1686 ExprValueKind VK, ExprObjectKind OK,
1687 NonOdrUseReason NOUR)
1688 : Expr(MemberExprClass, T, VK, OK), Base(Base), MemberDecl(MemberDecl),
1689 MemberDNLoc(NameInfo.getInfo()), MemberLoc(NameInfo.getLoc()) {
1690 assert(!NameInfo.getName() ||
1691 MemberDecl->getDeclName() == NameInfo.getName());
1692 MemberExprBits.IsArrow = IsArrow;
1693 MemberExprBits.HasQualifierOrFoundDecl = false;
1694 MemberExprBits.HasTemplateKWAndArgsInfo = false;
1695 MemberExprBits.HadMultipleCandidates = false;
1696 MemberExprBits.NonOdrUseReason = NOUR;
1697 MemberExprBits.OperatorLoc = OperatorLoc;
1698 setDependence(computeDependence(E: this));
1699}
1700
1701MemberExpr *MemberExpr::Create(
1702 const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1703 NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
1704 ValueDecl *MemberDecl, DeclAccessPair FoundDecl,
1705 DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs,
1706 QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) {
1707 bool HasQualOrFound = QualifierLoc || FoundDecl.getDecl() != MemberDecl ||
1708 FoundDecl.getAccess() != MemberDecl->getAccess();
1709 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
1710 std::size_t Size =
1711 totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
1712 TemplateArgumentLoc>(
1713 Counts: HasQualOrFound ? 1 : 0, Counts: HasTemplateKWAndArgsInfo ? 1 : 0,
1714 Counts: TemplateArgs ? TemplateArgs->size() : 0);
1715
1716 void *Mem = C.Allocate(Size, Align: alignof(MemberExpr));
1717 MemberExpr *E = new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, MemberDecl,
1718 NameInfo, T, VK, OK, NOUR);
1719
1720 if (HasQualOrFound) {
1721 E->MemberExprBits.HasQualifierOrFoundDecl = true;
1722
1723 MemberExprNameQualifier *NQ =
1724 E->getTrailingObjects<MemberExprNameQualifier>();
1725 NQ->QualifierLoc = QualifierLoc;
1726 NQ->FoundDecl = FoundDecl;
1727 }
1728
1729 E->MemberExprBits.HasTemplateKWAndArgsInfo =
1730 TemplateArgs || TemplateKWLoc.isValid();
1731
1732 // FIXME: remove remaining dependence computation to computeDependence().
1733 auto Deps = E->getDependence();
1734 if (TemplateArgs) {
1735 auto TemplateArgDeps = TemplateArgumentDependence::None;
1736 E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1737 TemplateKWLoc, *TemplateArgs,
1738 E->getTrailingObjects<TemplateArgumentLoc>(), TemplateArgDeps);
1739 for (const TemplateArgumentLoc &ArgLoc : TemplateArgs->arguments()) {
1740 Deps |= toExprDependence(TA: ArgLoc.getArgument().getDependence());
1741 }
1742 } else if (TemplateKWLoc.isValid()) {
1743 E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1744 TemplateKWLoc);
1745 }
1746 E->setDependence(Deps);
1747
1748 return E;
1749}
1750
1751MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context,
1752 bool HasQualifier, bool HasFoundDecl,
1753 bool HasTemplateKWAndArgsInfo,
1754 unsigned NumTemplateArgs) {
1755 assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) &&
1756 "template args but no template arg info?");
1757 bool HasQualOrFound = HasQualifier || HasFoundDecl;
1758 std::size_t Size =
1759 totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
1760 TemplateArgumentLoc>(Counts: HasQualOrFound ? 1 : 0,
1761 Counts: HasTemplateKWAndArgsInfo ? 1 : 0,
1762 Counts: NumTemplateArgs);
1763 void *Mem = Context.Allocate(Size, Align: alignof(MemberExpr));
1764 return new (Mem) MemberExpr(EmptyShell());
1765}
1766
1767void MemberExpr::setMemberDecl(ValueDecl *NewD) {
1768 MemberDecl = NewD;
1769 if (getType()->isUndeducedType())
1770 setType(NewD->getType());
1771 setDependence(computeDependence(E: this));
1772}
1773
1774SourceLocation MemberExpr::getBeginLoc() const {
1775 if (isImplicitAccess()) {
1776 if (hasQualifier())
1777 return getQualifierLoc().getBeginLoc();
1778 return MemberLoc;
1779 }
1780
1781 // FIXME: We don't want this to happen. Rather, we should be able to
1782 // detect all kinds of implicit accesses more cleanly.
1783 SourceLocation BaseStartLoc = getBase()->getBeginLoc();
1784 if (BaseStartLoc.isValid())
1785 return BaseStartLoc;
1786 return MemberLoc;
1787}
1788SourceLocation MemberExpr::getEndLoc() const {
1789 SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
1790 if (hasExplicitTemplateArgs())
1791 EndLoc = getRAngleLoc();
1792 else if (EndLoc.isInvalid())
1793 EndLoc = getBase()->getEndLoc();
1794 return EndLoc;
1795}
1796
1797bool CastExpr::CastConsistency() const {
1798 switch (getCastKind()) {
1799 case CK_DerivedToBase:
1800 case CK_UncheckedDerivedToBase:
1801 case CK_DerivedToBaseMemberPointer:
1802 case CK_BaseToDerived:
1803 case CK_BaseToDerivedMemberPointer:
1804 assert(!path_empty() && "Cast kind should have a base path!");
1805 break;
1806
1807 case CK_CPointerToObjCPointerCast:
1808 assert(getType()->isObjCObjectPointerType());
1809 assert(getSubExpr()->getType()->isPointerType());
1810 goto CheckNoBasePath;
1811
1812 case CK_BlockPointerToObjCPointerCast:
1813 assert(getType()->isObjCObjectPointerType());
1814 assert(getSubExpr()->getType()->isBlockPointerType());
1815 goto CheckNoBasePath;
1816
1817 case CK_ReinterpretMemberPointer:
1818 assert(getType()->isMemberPointerType());
1819 assert(getSubExpr()->getType()->isMemberPointerType());
1820 goto CheckNoBasePath;
1821
1822 case CK_BitCast:
1823 // Arbitrary casts to C pointer types count as bitcasts.
1824 // Otherwise, we should only have block and ObjC pointer casts
1825 // here if they stay within the type kind.
1826 if (!getType()->isPointerType()) {
1827 assert(getType()->isObjCObjectPointerType() ==
1828 getSubExpr()->getType()->isObjCObjectPointerType());
1829 assert(getType()->isBlockPointerType() ==
1830 getSubExpr()->getType()->isBlockPointerType());
1831 }
1832 goto CheckNoBasePath;
1833
1834 case CK_AnyPointerToBlockPointerCast:
1835 assert(getType()->isBlockPointerType());
1836 assert(getSubExpr()->getType()->isAnyPointerType() &&
1837 !getSubExpr()->getType()->isBlockPointerType());
1838 goto CheckNoBasePath;
1839
1840 case CK_CopyAndAutoreleaseBlockObject:
1841 assert(getType()->isBlockPointerType());
1842 assert(getSubExpr()->getType()->isBlockPointerType());
1843 goto CheckNoBasePath;
1844
1845 case CK_FunctionToPointerDecay:
1846 assert(getType()->isPointerType());
1847 assert(getSubExpr()->getType()->isFunctionType());
1848 goto CheckNoBasePath;
1849
1850 case CK_AddressSpaceConversion: {
1851 auto Ty = getType();
1852 auto SETy = getSubExpr()->getType();
1853 assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy));
1854 if (isPRValue() && !Ty->isDependentType() && !SETy->isDependentType()) {
1855 Ty = Ty->getPointeeType();
1856 SETy = SETy->getPointeeType();
1857 }
1858 assert((Ty->isDependentType() || SETy->isDependentType()) ||
1859 (!Ty.isNull() && !SETy.isNull() &&
1860 Ty.getAddressSpace() != SETy.getAddressSpace()));
1861 goto CheckNoBasePath;
1862 }
1863 // These should not have an inheritance path.
1864 case CK_Dynamic:
1865 case CK_ToUnion:
1866 case CK_ArrayToPointerDecay:
1867 case CK_NullToMemberPointer:
1868 case CK_NullToPointer:
1869 case CK_ConstructorConversion:
1870 case CK_IntegralToPointer:
1871 case CK_PointerToIntegral:
1872 case CK_ToVoid:
1873 case CK_VectorSplat:
1874 case CK_IntegralCast:
1875 case CK_BooleanToSignedIntegral:
1876 case CK_IntegralToFloating:
1877 case CK_FloatingToIntegral:
1878 case CK_FloatingCast:
1879 case CK_ObjCObjectLValueCast:
1880 case CK_FloatingRealToComplex:
1881 case CK_FloatingComplexToReal:
1882 case CK_FloatingComplexCast:
1883 case CK_FloatingComplexToIntegralComplex:
1884 case CK_IntegralRealToComplex:
1885 case CK_IntegralComplexToReal:
1886 case CK_IntegralComplexCast:
1887 case CK_IntegralComplexToFloatingComplex:
1888 case CK_ARCProduceObject:
1889 case CK_ARCConsumeObject:
1890 case CK_ARCReclaimReturnedObject:
1891 case CK_ARCExtendBlockObject:
1892 case CK_ZeroToOCLOpaqueType:
1893 case CK_IntToOCLSampler:
1894 case CK_FloatingToFixedPoint:
1895 case CK_FixedPointToFloating:
1896 case CK_FixedPointCast:
1897 case CK_FixedPointToIntegral:
1898 case CK_IntegralToFixedPoint:
1899 case CK_MatrixCast:
1900 assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1901 goto CheckNoBasePath;
1902
1903 case CK_Dependent:
1904 case CK_LValueToRValue:
1905 case CK_NoOp:
1906 case CK_AtomicToNonAtomic:
1907 case CK_NonAtomicToAtomic:
1908 case CK_PointerToBoolean:
1909 case CK_IntegralToBoolean:
1910 case CK_FloatingToBoolean:
1911 case CK_MemberPointerToBoolean:
1912 case CK_FloatingComplexToBoolean:
1913 case CK_IntegralComplexToBoolean:
1914 case CK_LValueBitCast: // -> bool&
1915 case CK_LValueToRValueBitCast:
1916 case CK_UserDefinedConversion: // operator bool()
1917 case CK_BuiltinFnToFnPtr:
1918 case CK_FixedPointToBoolean:
1919 CheckNoBasePath:
1920 assert(path_empty() && "Cast kind should not have a base path!");
1921 break;
1922 }
1923 return true;
1924}
1925
1926const char *CastExpr::getCastKindName(CastKind CK) {
1927 switch (CK) {
1928#define CAST_OPERATION(Name) case CK_##Name: return #Name;
1929#include "clang/AST/OperationKinds.def"
1930 }
1931 llvm_unreachable("Unhandled cast kind!");
1932}
1933
1934namespace {
1935// Skip over implicit nodes produced as part of semantic analysis.
1936// Designed for use with IgnoreExprNodes.
1937static Expr *ignoreImplicitSemaNodes(Expr *E) {
1938 if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(Val: E))
1939 return Materialize->getSubExpr();
1940
1941 if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(Val: E))
1942 return Binder->getSubExpr();
1943
1944 if (auto *Full = dyn_cast<FullExpr>(Val: E))
1945 return Full->getSubExpr();
1946
1947 if (auto *CPLIE = dyn_cast<CXXParenListInitExpr>(Val: E);
1948 CPLIE && CPLIE->getInitExprs().size() == 1)
1949 return CPLIE->getInitExprs()[0];
1950
1951 return E;
1952}
1953} // namespace
1954
1955Expr *CastExpr::getSubExprAsWritten() {
1956 const Expr *SubExpr = nullptr;
1957
1958 for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(Val: SubExpr)) {
1959 SubExpr = IgnoreExprNodes(E: E->getSubExpr(), Fns&: ignoreImplicitSemaNodes);
1960
1961 // Conversions by constructor and conversion functions have a
1962 // subexpression describing the call; strip it off.
1963 if (E->getCastKind() == CK_ConstructorConversion) {
1964 SubExpr = IgnoreExprNodes(E: cast<CXXConstructExpr>(Val: SubExpr)->getArg(Arg: 0),
1965 Fns&: ignoreImplicitSemaNodes);
1966 } else if (E->getCastKind() == CK_UserDefinedConversion) {
1967 assert((isa<CXXMemberCallExpr>(SubExpr) || isa<BlockExpr>(SubExpr)) &&
1968 "Unexpected SubExpr for CK_UserDefinedConversion.");
1969 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Val: SubExpr))
1970 SubExpr = MCE->getImplicitObjectArgument();
1971 }
1972 }
1973
1974 return const_cast<Expr *>(SubExpr);
1975}
1976
1977NamedDecl *CastExpr::getConversionFunction() const {
1978 const Expr *SubExpr = nullptr;
1979
1980 for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(Val: SubExpr)) {
1981 SubExpr = IgnoreExprNodes(E: E->getSubExpr(), Fns&: ignoreImplicitSemaNodes);
1982
1983 if (E->getCastKind() == CK_ConstructorConversion)
1984 return cast<CXXConstructExpr>(Val: SubExpr)->getConstructor();
1985
1986 if (E->getCastKind() == CK_UserDefinedConversion) {
1987 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Val: SubExpr))
1988 return MCE->getMethodDecl();
1989 }
1990 }
1991
1992 return nullptr;
1993}
1994
1995CXXBaseSpecifier **CastExpr::path_buffer() {
1996 switch (getStmtClass()) {
1997#define ABSTRACT_STMT(x)
1998#define CASTEXPR(Type, Base) \
1999 case Stmt::Type##Class: \
2000 return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>();
2001#define STMT(Type, Base)
2002#include "clang/AST/StmtNodes.inc"
2003 default:
2004 llvm_unreachable("non-cast expressions not possible here");
2005 }
2006}
2007
2008const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType,
2009 QualType opType) {
2010 auto RD = unionType->castAs<RecordType>()->getDecl();
2011 return getTargetFieldForToUnionCast(RD, opType);
2012}
2013
2014const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD,
2015 QualType OpType) {
2016 auto &Ctx = RD->getASTContext();
2017 RecordDecl::field_iterator Field, FieldEnd;
2018 for (Field = RD->field_begin(), FieldEnd = RD->field_end();
2019 Field != FieldEnd; ++Field) {
2020 if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) &&
2021 !Field->isUnnamedBitfield()) {
2022 return *Field;
2023 }
2024 }
2025 return nullptr;
2026}
2027
2028FPOptionsOverride *CastExpr::getTrailingFPFeatures() {
2029 assert(hasStoredFPFeatures());
2030 switch (getStmtClass()) {
2031 case ImplicitCastExprClass:
2032 return static_cast<ImplicitCastExpr *>(this)
2033 ->getTrailingObjects<FPOptionsOverride>();
2034 case CStyleCastExprClass:
2035 return static_cast<CStyleCastExpr *>(this)
2036 ->getTrailingObjects<FPOptionsOverride>();
2037 case CXXFunctionalCastExprClass:
2038 return static_cast<CXXFunctionalCastExpr *>(this)
2039 ->getTrailingObjects<FPOptionsOverride>();
2040 case CXXStaticCastExprClass:
2041 return static_cast<CXXStaticCastExpr *>(this)
2042 ->getTrailingObjects<FPOptionsOverride>();
2043 default:
2044 llvm_unreachable("Cast does not have FPFeatures");
2045 }
2046}
2047
2048ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
2049 CastKind Kind, Expr *Operand,
2050 const CXXCastPath *BasePath,
2051 ExprValueKind VK,
2052 FPOptionsOverride FPO) {
2053 unsigned PathSize = (BasePath ? BasePath->size() : 0);
2054 void *Buffer =
2055 C.Allocate(Size: totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2056 Counts: PathSize, Counts: FPO.requiresTrailingStorage()));
2057 // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and
2058 // std::nullptr_t have special semantics not captured by CK_LValueToRValue.
2059 assert((Kind != CK_LValueToRValue ||
2060 !(T->isNullPtrType() || T->getAsCXXRecordDecl())) &&
2061 "invalid type for lvalue-to-rvalue conversion");
2062 ImplicitCastExpr *E =
2063 new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, FPO, VK);
2064 if (PathSize)
2065 std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
2066 E->getTrailingObjects<CXXBaseSpecifier *>());
2067 return E;
2068}
2069
2070ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
2071 unsigned PathSize,
2072 bool HasFPFeatures) {
2073 void *Buffer =
2074 C.Allocate(Size: totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2075 Counts: PathSize, Counts: HasFPFeatures));
2076 return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize, HasFPFeatures);
2077}
2078
2079CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
2080 ExprValueKind VK, CastKind K, Expr *Op,
2081 const CXXCastPath *BasePath,
2082 FPOptionsOverride FPO,
2083 TypeSourceInfo *WrittenTy,
2084 SourceLocation L, SourceLocation R) {
2085 unsigned PathSize = (BasePath ? BasePath->size() : 0);
2086 void *Buffer =
2087 C.Allocate(Size: totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2088 Counts: PathSize, Counts: FPO.requiresTrailingStorage()));
2089 CStyleCastExpr *E =
2090 new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, FPO, WrittenTy, L, R);
2091 if (PathSize)
2092 std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
2093 E->getTrailingObjects<CXXBaseSpecifier *>());
2094 return E;
2095}
2096
2097CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
2098 unsigned PathSize,
2099 bool HasFPFeatures) {
2100 void *Buffer =
2101 C.Allocate(Size: totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2102 Counts: PathSize, Counts: HasFPFeatures));
2103 return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize, HasFPFeatures);
2104}
2105
2106/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2107/// corresponds to, e.g. "<<=".
2108StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
2109 switch (Op) {
2110#define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling;
2111#include "clang/AST/OperationKinds.def"
2112 }
2113 llvm_unreachable("Invalid OpCode!");
2114}
2115
2116BinaryOperatorKind
2117BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
2118 switch (OO) {
2119 default: llvm_unreachable("Not an overloadable binary operator");
2120 case OO_Plus: return BO_Add;
2121 case OO_Minus: return BO_Sub;
2122 case OO_Star: return BO_Mul;
2123 case OO_Slash: return BO_Div;
2124 case OO_Percent: return BO_Rem;
2125 case OO_Caret: return BO_Xor;
2126 case OO_Amp: return BO_And;
2127 case OO_Pipe: return BO_Or;
2128 case OO_Equal: return BO_Assign;
2129 case OO_Spaceship: return BO_Cmp;
2130 case OO_Less: return BO_LT;
2131 case OO_Greater: return BO_GT;
2132 case OO_PlusEqual: return BO_AddAssign;
2133 case OO_MinusEqual: return BO_SubAssign;
2134 case OO_StarEqual: return BO_MulAssign;
2135 case OO_SlashEqual: return BO_DivAssign;
2136 case OO_PercentEqual: return BO_RemAssign;
2137 case OO_CaretEqual: return BO_XorAssign;
2138 case OO_AmpEqual: return BO_AndAssign;
2139 case OO_PipeEqual: return BO_OrAssign;
2140 case OO_LessLess: return BO_Shl;
2141 case OO_GreaterGreater: return BO_Shr;
2142 case OO_LessLessEqual: return BO_ShlAssign;
2143 case OO_GreaterGreaterEqual: return BO_ShrAssign;
2144 case OO_EqualEqual: return BO_EQ;
2145 case OO_ExclaimEqual: return BO_NE;
2146 case OO_LessEqual: return BO_LE;
2147 case OO_GreaterEqual: return BO_GE;
2148 case OO_AmpAmp: return BO_LAnd;
2149 case OO_PipePipe: return BO_LOr;
2150 case OO_Comma: return BO_Comma;
2151 case OO_ArrowStar: return BO_PtrMemI;
2152 }
2153}
2154
2155OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
2156 static const OverloadedOperatorKind OverOps[] = {
2157 /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
2158 OO_Star, OO_Slash, OO_Percent,
2159 OO_Plus, OO_Minus,
2160 OO_LessLess, OO_GreaterGreater,
2161 OO_Spaceship,
2162 OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
2163 OO_EqualEqual, OO_ExclaimEqual,
2164 OO_Amp,
2165 OO_Caret,
2166 OO_Pipe,
2167 OO_AmpAmp,
2168 OO_PipePipe,
2169 OO_Equal, OO_StarEqual,
2170 OO_SlashEqual, OO_PercentEqual,
2171 OO_PlusEqual, OO_MinusEqual,
2172 OO_LessLessEqual, OO_GreaterGreaterEqual,
2173 OO_AmpEqual, OO_CaretEqual,
2174 OO_PipeEqual,
2175 OO_Comma
2176 };
2177 return OverOps[Opc];
2178}
2179
2180bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx,
2181 Opcode Opc,
2182 const Expr *LHS,
2183 const Expr *RHS) {
2184 if (Opc != BO_Add)
2185 return false;
2186
2187 // Check that we have one pointer and one integer operand.
2188 const Expr *PExp;
2189 if (LHS->getType()->isPointerType()) {
2190 if (!RHS->getType()->isIntegerType())
2191 return false;
2192 PExp = LHS;
2193 } else if (RHS->getType()->isPointerType()) {
2194 if (!LHS->getType()->isIntegerType())
2195 return false;
2196 PExp = RHS;
2197 } else {
2198 return false;
2199 }
2200
2201 // Check that the pointer is a nullptr.
2202 if (!PExp->IgnoreParenCasts()
2203 ->isNullPointerConstant(Ctx, NPC: Expr::NPC_ValueDependentIsNotNull))
2204 return false;
2205
2206 // Check that the pointee type is char-sized.
2207 const PointerType *PTy = PExp->getType()->getAs<PointerType>();
2208 if (!PTy || !PTy->getPointeeType()->isCharType())
2209 return false;
2210
2211 return true;
2212}
2213
2214SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, SourceLocIdentKind Kind,
2215 QualType ResultTy, SourceLocation BLoc,
2216 SourceLocation RParenLoc,
2217 DeclContext *ParentContext)
2218 : Expr(SourceLocExprClass, ResultTy, VK_PRValue, OK_Ordinary),
2219 BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) {
2220 SourceLocExprBits.Kind = llvm::to_underlying(E: Kind);
2221 // In dependent contexts, function names may change.
2222 setDependence(MayBeDependent(Kind) && ParentContext->isDependentContext()
2223 ? ExprDependence::Value
2224 : ExprDependence::None);
2225}
2226
2227StringRef SourceLocExpr::getBuiltinStr() const {
2228 switch (getIdentKind()) {
2229 case SourceLocIdentKind::File:
2230 return "__builtin_FILE";
2231 case SourceLocIdentKind::FileName:
2232 return "__builtin_FILE_NAME";
2233 case SourceLocIdentKind::Function:
2234 return "__builtin_FUNCTION";
2235 case SourceLocIdentKind::FuncSig:
2236 return "__builtin_FUNCSIG";
2237 case SourceLocIdentKind::Line:
2238 return "__builtin_LINE";
2239 case SourceLocIdentKind::Column:
2240 return "__builtin_COLUMN";
2241 case SourceLocIdentKind::SourceLocStruct:
2242 return "__builtin_source_location";
2243 }
2244 llvm_unreachable("unexpected IdentKind!");
2245}
2246
2247APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx,
2248 const Expr *DefaultExpr) const {
2249 SourceLocation Loc;
2250 const DeclContext *Context;
2251
2252 if (const auto *DIE = dyn_cast_if_present<CXXDefaultInitExpr>(Val: DefaultExpr)) {
2253 Loc = DIE->getUsedLocation();
2254 Context = DIE->getUsedContext();
2255 } else if (const auto *DAE =
2256 dyn_cast_if_present<CXXDefaultArgExpr>(Val: DefaultExpr)) {
2257 Loc = DAE->getUsedLocation();
2258 Context = DAE->getUsedContext();
2259 } else {
2260 Loc = getLocation();
2261 Context = getParentContext();
2262 }
2263
2264 PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc(
2265 Loc: Ctx.getSourceManager().getExpansionRange(Loc).getEnd());
2266
2267 auto MakeStringLiteral = [&](StringRef Tmp) {
2268 using LValuePathEntry = APValue::LValuePathEntry;
2269 StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Key: Tmp);
2270 // Decay the string to a pointer to the first character.
2271 LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(Index: 0)};
2272 return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false);
2273 };
2274
2275 switch (getIdentKind()) {
2276 case SourceLocIdentKind::FileName: {
2277 // __builtin_FILE_NAME() is a Clang-specific extension that expands to the
2278 // the last part of __builtin_FILE().
2279 SmallString<256> FileName;
2280 clang::Preprocessor::processPathToFileName(
2281 FileName, PLoc, LangOpts: Ctx.getLangOpts(), TI: Ctx.getTargetInfo());
2282 return MakeStringLiteral(FileName);
2283 }
2284 case SourceLocIdentKind::File: {
2285 SmallString<256> Path(PLoc.getFilename());
2286 clang::Preprocessor::processPathForFileMacro(Path, LangOpts: Ctx.getLangOpts(),
2287 TI: Ctx.getTargetInfo());
2288 return MakeStringLiteral(Path);
2289 }
2290 case SourceLocIdentKind::Function:
2291 case SourceLocIdentKind::FuncSig: {
2292 const auto *CurDecl = dyn_cast<Decl>(Val: Context);
2293 const auto Kind = getIdentKind() == SourceLocIdentKind::Function
2294 ? PredefinedIdentKind::Function
2295 : PredefinedIdentKind::FuncSig;
2296 return MakeStringLiteral(
2297 CurDecl ? PredefinedExpr::ComputeName(IK: Kind, CurrentDecl: CurDecl) : std::string(""));
2298 }
2299 case SourceLocIdentKind::Line:
2300 return APValue(Ctx.MakeIntValue(Value: PLoc.getLine(), Type: Ctx.UnsignedIntTy));
2301 case SourceLocIdentKind::Column:
2302 return APValue(Ctx.MakeIntValue(Value: PLoc.getColumn(), Type: Ctx.UnsignedIntTy));
2303 case SourceLocIdentKind::SourceLocStruct: {
2304 // Fill in a std::source_location::__impl structure, by creating an
2305 // artificial file-scoped CompoundLiteralExpr, and returning a pointer to
2306 // that.
2307 const CXXRecordDecl *ImplDecl = getType()->getPointeeCXXRecordDecl();
2308 assert(ImplDecl);
2309
2310 // Construct an APValue for the __impl struct, and get or create a Decl
2311 // corresponding to that. Note that we've already verified that the shape of
2312 // the ImplDecl type is as expected.
2313
2314 APValue Value(APValue::UninitStruct(), 0, 4);
2315 for (const FieldDecl *F : ImplDecl->fields()) {
2316 StringRef Name = F->getName();
2317 if (Name == "_M_file_name") {
2318 SmallString<256> Path(PLoc.getFilename());
2319 clang::Preprocessor::processPathForFileMacro(Path, Ctx.getLangOpts(),
2320 Ctx.getTargetInfo());
2321 Value.getStructField(F->getFieldIndex()) = MakeStringLiteral(Path);
2322 } else if (Name == "_M_function_name") {
2323 // Note: this emits the PrettyFunction name -- different than what
2324 // __builtin_FUNCTION() above returns!
2325 const auto *CurDecl = dyn_cast<Decl>(Context);
2326 Value.getStructField(F->getFieldIndex()) = MakeStringLiteral(
2327 CurDecl && !isa<TranslationUnitDecl>(CurDecl)
2328 ? StringRef(PredefinedExpr::ComputeName(
2329 PredefinedIdentKind::PrettyFunction, CurDecl))
2330 : "");
2331 } else if (Name == "_M_line") {
2332 llvm::APSInt IntVal = Ctx.MakeIntValue(PLoc.getLine(), F->getType());
2333 Value.getStructField(F->getFieldIndex()) = APValue(IntVal);
2334 } else if (Name == "_M_column") {
2335 llvm::APSInt IntVal = Ctx.MakeIntValue(PLoc.getColumn(), F->getType());
2336 Value.getStructField(F->getFieldIndex()) = APValue(IntVal);
2337 }
2338 }
2339
2340 UnnamedGlobalConstantDecl *GV =
2341 Ctx.getUnnamedGlobalConstantDecl(getType()->getPointeeType(), Value);
2342
2343 return APValue(GV, CharUnits::Zero(), ArrayRef<APValue::LValuePathEntry>{},
2344 false);
2345 }
2346 }
2347 llvm_unreachable("unhandled case");
2348}
2349
2350InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
2351 ArrayRef<Expr *> initExprs, SourceLocation rbraceloc)
2352 : Expr(InitListExprClass, QualType(), VK_PRValue, OK_Ordinary),
2353 InitExprs(C, initExprs.size()), LBraceLoc(lbraceloc),
2354 RBraceLoc(rbraceloc), AltForm(nullptr, true) {
2355 sawArrayRangeDesignator(ARD: false);
2356 InitExprs.insert(C, I: InitExprs.end(), From: initExprs.begin(), To: initExprs.end());
2357
2358 setDependence(computeDependence(E: this));
2359}
2360
2361void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
2362 if (NumInits > InitExprs.size())
2363 InitExprs.reserve(C, N: NumInits);
2364}
2365
2366void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
2367 InitExprs.resize(C, N: NumInits, NV: nullptr);
2368}
2369
2370Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
2371 if (Init >= InitExprs.size()) {
2372 InitExprs.insert(C, I: InitExprs.end(), NumToInsert: Init - InitExprs.size() + 1, Elt: nullptr);
2373 setInit(Init, expr);
2374 return nullptr;
2375 }
2376
2377 Expr *Result = cast_or_null<Expr>(Val: InitExprs[Init]);
2378 setInit(Init, expr);
2379 return Result;
2380}
2381
2382void InitListExpr::setArrayFiller(Expr *filler) {
2383 assert(!hasArrayFiller() && "Filler already set!");
2384 ArrayFillerOrUnionFieldInit = filler;
2385 // Fill out any "holes" in the array due to designated initializers.
2386 Expr **inits = getInits();
2387 for (unsigned i = 0, e = getNumInits(); i != e; ++i)
2388 if (inits[i] == nullptr)
2389 inits[i] = filler;
2390}
2391
2392bool InitListExpr::isStringLiteralInit() const {
2393 if (getNumInits() != 1)
2394 return false;
2395 const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
2396 if (!AT || !AT->getElementType()->isIntegerType())
2397 return false;
2398 // It is possible for getInit() to return null.
2399 const Expr *Init = getInit(Init: 0);
2400 if (!Init)
2401 return false;
2402 Init = Init->IgnoreParenImpCasts();
2403 return isa<StringLiteral>(Val: Init) || isa<ObjCEncodeExpr>(Val: Init);
2404}
2405
2406bool InitListExpr::isTransparent() const {
2407 assert(isSemanticForm() && "syntactic form never semantically transparent");
2408
2409 // A glvalue InitListExpr is always just sugar.
2410 if (isGLValue()) {
2411 assert(getNumInits() == 1 && "multiple inits in glvalue init list");
2412 return true;
2413 }
2414
2415 // Otherwise, we're sugar if and only if we have exactly one initializer that
2416 // is of the same type.
2417 if (getNumInits() != 1 || !getInit(Init: 0))
2418 return false;
2419
2420 // Don't confuse aggregate initialization of a struct X { X &x; }; with a
2421 // transparent struct copy.
2422 if (!getInit(Init: 0)->isPRValue() && getType()->isRecordType())
2423 return false;
2424
2425 return getType().getCanonicalType() ==
2426 getInit(Init: 0)->getType().getCanonicalType();
2427}
2428
2429bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const {
2430 assert(isSyntacticForm() && "only test syntactic form as zero initializer");
2431
2432 if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(Init: 0)) {
2433 return false;
2434 }
2435
2436 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(Val: getInit(Init: 0)->IgnoreImplicit());
2437 return Lit && Lit->getValue() == 0;
2438}
2439
2440SourceLocation InitListExpr::getBeginLoc() const {
2441 if (InitListExpr *SyntacticForm = getSyntacticForm())
2442 return SyntacticForm->getBeginLoc();
2443 SourceLocation Beg = LBraceLoc;
2444 if (Beg.isInvalid()) {
2445 // Find the first non-null initializer.
2446 for (InitExprsTy::const_iterator I = InitExprs.begin(),
2447 E = InitExprs.end();
2448 I != E; ++I) {
2449 if (Stmt *S = *I) {
2450 Beg = S->getBeginLoc();
2451 break;
2452 }
2453 }
2454 }
2455 return Beg;
2456}
2457
2458SourceLocation InitListExpr::getEndLoc() const {
2459 if (InitListExpr *SyntacticForm = getSyntacticForm())
2460 return SyntacticForm->getEndLoc();
2461 SourceLocation End = RBraceLoc;
2462 if (End.isInvalid()) {
2463 // Find the first non-null initializer from the end.
2464 for (Stmt *S : llvm::reverse(C: InitExprs)) {
2465 if (S) {
2466 End = S->getEndLoc();
2467 break;
2468 }
2469 }
2470 }
2471 return End;
2472}
2473
2474/// getFunctionType - Return the underlying function type for this block.
2475///
2476const FunctionProtoType *BlockExpr::getFunctionType() const {
2477 // The block pointer is never sugared, but the function type might be.
2478 return cast<BlockPointerType>(getType())
2479 ->getPointeeType()->castAs<FunctionProtoType>();
2480}
2481
2482SourceLocation BlockExpr::getCaretLocation() const {
2483 return TheBlock->getCaretLocation();
2484}
2485const Stmt *BlockExpr::getBody() const {
2486 return TheBlock->getBody();
2487}
2488Stmt *BlockExpr::getBody() {
2489 return TheBlock->getBody();
2490}
2491
2492
2493//===----------------------------------------------------------------------===//
2494// Generic Expression Routines
2495//===----------------------------------------------------------------------===//
2496
2497bool Expr::isReadIfDiscardedInCPlusPlus11() const {
2498 // In C++11, discarded-value expressions of a certain form are special,
2499 // according to [expr]p10:
2500 // The lvalue-to-rvalue conversion (4.1) is applied only if the
2501 // expression is a glvalue of volatile-qualified type and it has
2502 // one of the following forms:
2503 if (!isGLValue() || !getType().isVolatileQualified())
2504 return false;
2505
2506 const Expr *E = IgnoreParens();
2507
2508 // - id-expression (5.1.1),
2509 if (isa<DeclRefExpr>(Val: E))
2510 return true;
2511
2512 // - subscripting (5.2.1),
2513 if (isa<ArraySubscriptExpr>(Val: E))
2514 return true;
2515
2516 // - class member access (5.2.5),
2517 if (isa<MemberExpr>(Val: E))
2518 return true;
2519
2520 // - indirection (5.3.1),
2521 if (auto *UO = dyn_cast<UnaryOperator>(Val: E))
2522 if (UO->getOpcode() == UO_Deref)
2523 return true;
2524
2525 if (auto *BO = dyn_cast<BinaryOperator>(Val: E)) {
2526 // - pointer-to-member operation (5.5),
2527 if (BO->isPtrMemOp())
2528 return true;
2529
2530 // - comma expression (5.18) where the right operand is one of the above.
2531 if (BO->getOpcode() == BO_Comma)
2532 return BO->getRHS()->isReadIfDiscardedInCPlusPlus11();
2533 }
2534
2535 // - conditional expression (5.16) where both the second and the third
2536 // operands are one of the above, or
2537 if (auto *CO = dyn_cast<ConditionalOperator>(Val: E))
2538 return CO->getTrueExpr()->isReadIfDiscardedInCPlusPlus11() &&
2539 CO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2540 // The related edge case of "*x ?: *x".
2541 if (auto *BCO =
2542 dyn_cast<BinaryConditionalOperator>(Val: E)) {
2543 if (auto *OVE = dyn_cast<OpaqueValueExpr>(Val: BCO->getTrueExpr()))
2544 return OVE->getSourceExpr()->isReadIfDiscardedInCPlusPlus11() &&
2545 BCO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2546 }
2547
2548 // Objective-C++ extensions to the rule.
2549 if (isa<ObjCIvarRefExpr>(Val: E))
2550 return true;
2551 if (const auto *POE = dyn_cast<PseudoObjectExpr>(Val: E)) {
2552 if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>(Val: POE->getSyntacticForm()))
2553 return true;
2554 }
2555
2556 return false;
2557}
2558
2559/// isUnusedResultAWarning - Return true if this immediate expression should
2560/// be warned about if the result is unused. If so, fill in Loc and Ranges
2561/// with location to warn on and the source range[s] to report with the
2562/// warning.
2563bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
2564 SourceRange &R1, SourceRange &R2,
2565 ASTContext &Ctx) const {
2566 // Don't warn if the expr is type dependent. The type could end up
2567 // instantiating to void.
2568 if (isTypeDependent())
2569 return false;
2570
2571 switch (getStmtClass()) {
2572 default:
2573 if (getType()->isVoidType())
2574 return false;
2575 WarnE = this;
2576 Loc = getExprLoc();
2577 R1 = getSourceRange();
2578 return true;
2579 case ParenExprClass:
2580 return cast<ParenExpr>(Val: this)->getSubExpr()->
2581 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2582 case GenericSelectionExprClass:
2583 return cast<GenericSelectionExpr>(Val: this)->getResultExpr()->
2584 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2585 case CoawaitExprClass:
2586 case CoyieldExprClass:
2587 return cast<CoroutineSuspendExpr>(Val: this)->getResumeExpr()->
2588 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2589 case ChooseExprClass:
2590 return cast<ChooseExpr>(Val: this)->getChosenSubExpr()->
2591 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2592 case UnaryOperatorClass: {
2593 const UnaryOperator *UO = cast<UnaryOperator>(Val: this);
2594
2595 switch (UO->getOpcode()) {
2596 case UO_Plus:
2597 case UO_Minus:
2598 case UO_AddrOf:
2599 case UO_Not:
2600 case UO_LNot:
2601 case UO_Deref:
2602 break;
2603 case UO_Coawait:
2604 // This is just the 'operator co_await' call inside the guts of a
2605 // dependent co_await call.
2606 case UO_PostInc:
2607 case UO_PostDec:
2608 case UO_PreInc:
2609 case UO_PreDec: // ++/--
2610 return false; // Not a warning.
2611 case UO_Real:
2612 case UO_Imag:
2613 // accessing a piece of a volatile complex is a side-effect.
2614 if (Ctx.getCanonicalType(T: UO->getSubExpr()->getType())
2615 .isVolatileQualified())
2616 return false;
2617 break;
2618 case UO_Extension:
2619 return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2620 }
2621 WarnE = this;
2622 Loc = UO->getOperatorLoc();
2623 R1 = UO->getSubExpr()->getSourceRange();
2624 return true;
2625 }
2626 case BinaryOperatorClass: {
2627 const BinaryOperator *BO = cast<BinaryOperator>(Val: this);
2628 switch (BO->getOpcode()) {
2629 default:
2630 break;
2631 // Consider the RHS of comma for side effects. LHS was checked by
2632 // Sema::CheckCommaOperands.
2633 case BO_Comma:
2634 // ((foo = <blah>), 0) is an idiom for hiding the result (and
2635 // lvalue-ness) of an assignment written in a macro.
2636 if (IntegerLiteral *IE =
2637 dyn_cast<IntegerLiteral>(Val: BO->getRHS()->IgnoreParens()))
2638 if (IE->getValue() == 0)
2639 return false;
2640 return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2641 // Consider '||', '&&' to have side effects if the LHS or RHS does.
2642 case BO_LAnd:
2643 case BO_LOr:
2644 if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
2645 !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2646 return false;
2647 break;
2648 }
2649 if (BO->isAssignmentOp())
2650 return false;
2651 WarnE = this;
2652 Loc = BO->getOperatorLoc();
2653 R1 = BO->getLHS()->getSourceRange();
2654 R2 = BO->getRHS()->getSourceRange();
2655 return true;
2656 }
2657 case CompoundAssignOperatorClass:
2658 case VAArgExprClass:
2659 case AtomicExprClass:
2660 return false;
2661
2662 case ConditionalOperatorClass: {
2663 // If only one of the LHS or RHS is a warning, the operator might
2664 // be being used for control flow. Only warn if both the LHS and
2665 // RHS are warnings.
2666 const auto *Exp = cast<ConditionalOperator>(Val: this);
2667 return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) &&
2668 Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2669 }
2670 case BinaryConditionalOperatorClass: {
2671 const auto *Exp = cast<BinaryConditionalOperator>(Val: this);
2672 return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2673 }
2674
2675 case MemberExprClass:
2676 WarnE = this;
2677 Loc = cast<MemberExpr>(Val: this)->getMemberLoc();
2678 R1 = SourceRange(Loc, Loc);
2679 R2 = cast<MemberExpr>(Val: this)->getBase()->getSourceRange();
2680 return true;
2681
2682 case ArraySubscriptExprClass:
2683 WarnE = this;
2684 Loc = cast<ArraySubscriptExpr>(Val: this)->getRBracketLoc();
2685 R1 = cast<ArraySubscriptExpr>(Val: this)->getLHS()->getSourceRange();
2686 R2 = cast<ArraySubscriptExpr>(Val: this)->getRHS()->getSourceRange();
2687 return true;
2688
2689 case CXXOperatorCallExprClass: {
2690 // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
2691 // overloads as there is no reasonable way to define these such that they
2692 // have non-trivial, desirable side-effects. See the -Wunused-comparison
2693 // warning: operators == and != are commonly typo'ed, and so warning on them
2694 // provides additional value as well. If this list is updated,
2695 // DiagnoseUnusedComparison should be as well.
2696 const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(Val: this);
2697 switch (Op->getOperator()) {
2698 default:
2699 break;
2700 case OO_EqualEqual:
2701 case OO_ExclaimEqual:
2702 case OO_Less:
2703 case OO_Greater:
2704 case OO_GreaterEqual:
2705 case OO_LessEqual:
2706 if (Op->getCallReturnType(Ctx)->isReferenceType() ||
2707 Op->getCallReturnType(Ctx)->isVoidType())
2708 break;
2709 WarnE = this;
2710 Loc = Op->getOperatorLoc();
2711 R1 = Op->getSourceRange();
2712 return true;
2713 }
2714
2715 // Fallthrough for generic call handling.
2716 [[fallthrough]];
2717 }
2718 case CallExprClass:
2719 case CXXMemberCallExprClass:
2720 case UserDefinedLiteralClass: {
2721 // If this is a direct call, get the callee.
2722 const CallExpr *CE = cast<CallExpr>(Val: this);
2723 if (const Decl *FD = CE->getCalleeDecl()) {
2724 // If the callee has attribute pure, const, or warn_unused_result, warn
2725 // about it. void foo() { strlen("bar"); } should warn.
2726 //
2727 // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2728 // updated to match for QoI.
2729 if (CE->hasUnusedResultAttr(Ctx) ||
2730 FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
2731 WarnE = this;
2732 Loc = CE->getCallee()->getBeginLoc();
2733 R1 = CE->getCallee()->getSourceRange();
2734
2735 if (unsigned NumArgs = CE->getNumArgs())
2736 R2 = SourceRange(CE->getArg(Arg: 0)->getBeginLoc(),
2737 CE->getArg(Arg: NumArgs - 1)->getEndLoc());
2738 return true;
2739 }
2740 }
2741 return false;
2742 }
2743
2744 // If we don't know precisely what we're looking at, let's not warn.
2745 case UnresolvedLookupExprClass:
2746 case CXXUnresolvedConstructExprClass:
2747 case RecoveryExprClass:
2748 return false;
2749
2750 case CXXTemporaryObjectExprClass:
2751 case CXXConstructExprClass: {
2752 if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
2753 const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>();
2754 if (Type->hasAttr<WarnUnusedAttr>() ||
2755 (WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) {
2756 WarnE = this;
2757 Loc = getBeginLoc();
2758 R1 = getSourceRange();
2759 return true;
2760 }
2761 }
2762
2763 const auto *CE = cast<CXXConstructExpr>(Val: this);
2764 if (const CXXConstructorDecl *Ctor = CE->getConstructor()) {
2765 const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>();
2766 if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) {
2767 WarnE = this;
2768 Loc = getBeginLoc();
2769 R1 = getSourceRange();
2770
2771 if (unsigned NumArgs = CE->getNumArgs())
2772 R2 = SourceRange(CE->getArg(Arg: 0)->getBeginLoc(),
2773 CE->getArg(Arg: NumArgs - 1)->getEndLoc());
2774 return true;
2775 }
2776 }
2777
2778 return false;
2779 }
2780
2781 case ObjCMessageExprClass: {
2782 const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(Val: this);
2783 if (Ctx.getLangOpts().ObjCAutoRefCount &&
2784 ME->isInstanceMessage() &&
2785 !ME->getType()->isVoidType() &&
2786 ME->getMethodFamily() == OMF_init) {
2787 WarnE = this;
2788 Loc = getExprLoc();
2789 R1 = ME->getSourceRange();
2790 return true;
2791 }
2792
2793 if (const ObjCMethodDecl *MD = ME->getMethodDecl())
2794 if (MD->hasAttr<WarnUnusedResultAttr>()) {
2795 WarnE = this;
2796 Loc = getExprLoc();
2797 return true;
2798 }
2799
2800 return false;
2801 }
2802
2803 case ObjCPropertyRefExprClass:
2804 case ObjCSubscriptRefExprClass:
2805 WarnE = this;
2806 Loc = getExprLoc();
2807 R1 = getSourceRange();
2808 return true;
2809
2810 case PseudoObjectExprClass: {
2811 const auto *POE = cast<PseudoObjectExpr>(Val: this);
2812
2813 // For some syntactic forms, we should always warn.
2814 if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>(
2815 Val: POE->getSyntacticForm())) {
2816 WarnE = this;
2817 Loc = getExprLoc();
2818 R1 = getSourceRange();
2819 return true;
2820 }
2821
2822 // For others, we should never warn.
2823 if (auto *BO = dyn_cast<BinaryOperator>(Val: POE->getSyntacticForm()))
2824 if (BO->isAssignmentOp())
2825 return false;
2826 if (auto *UO = dyn_cast<UnaryOperator>(Val: POE->getSyntacticForm()))
2827 if (UO->isIncrementDecrementOp())
2828 return false;
2829
2830 // Otherwise, warn if the result expression would warn.
2831 const Expr *Result = POE->getResultExpr();
2832 return Result && Result->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2833 }
2834
2835 case StmtExprClass: {
2836 // Statement exprs don't logically have side effects themselves, but are
2837 // sometimes used in macros in ways that give them a type that is unused.
2838 // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2839 // however, if the result of the stmt expr is dead, we don't want to emit a
2840 // warning.
2841 const CompoundStmt *CS = cast<StmtExpr>(Val: this)->getSubStmt();
2842 if (!CS->body_empty()) {
2843 if (const Expr *E = dyn_cast<Expr>(Val: CS->body_back()))
2844 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2845 if (const LabelStmt *Label = dyn_cast<LabelStmt>(Val: CS->body_back()))
2846 if (const Expr *E = dyn_cast<Expr>(Val: Label->getSubStmt()))
2847 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2848 }
2849
2850 if (getType()->isVoidType())
2851 return false;
2852 WarnE = this;
2853 Loc = cast<StmtExpr>(Val: this)->getLParenLoc();
2854 R1 = getSourceRange();
2855 return true;
2856 }
2857 case CXXFunctionalCastExprClass:
2858 case CStyleCastExprClass: {
2859 // Ignore an explicit cast to void, except in C++98 if the operand is a
2860 // volatile glvalue for which we would trigger an implicit read in any
2861 // other language mode. (Such an implicit read always happens as part of
2862 // the lvalue conversion in C, and happens in C++ for expressions of all
2863 // forms where it seems likely the user intended to trigger a volatile
2864 // load.)
2865 const CastExpr *CE = cast<CastExpr>(Val: this);
2866 const Expr *SubE = CE->getSubExpr()->IgnoreParens();
2867 if (CE->getCastKind() == CK_ToVoid) {
2868 if (Ctx.getLangOpts().CPlusPlus && !Ctx.getLangOpts().CPlusPlus11 &&
2869 SubE->isReadIfDiscardedInCPlusPlus11()) {
2870 // Suppress the "unused value" warning for idiomatic usage of
2871 // '(void)var;' used to suppress "unused variable" warnings.
2872 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: SubE))
2873 if (auto *VD = dyn_cast<VarDecl>(Val: DRE->getDecl()))
2874 if (!VD->isExternallyVisible())
2875 return false;
2876
2877 // The lvalue-to-rvalue conversion would have no effect for an array.
2878 // It's implausible that the programmer expected this to result in a
2879 // volatile array load, so don't warn.
2880 if (SubE->getType()->isArrayType())
2881 return false;
2882
2883 return SubE->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2884 }
2885 return false;
2886 }
2887
2888 // If this is a cast to a constructor conversion, check the operand.
2889 // Otherwise, the result of the cast is unused.
2890 if (CE->getCastKind() == CK_ConstructorConversion)
2891 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2892 if (CE->getCastKind() == CK_Dependent)
2893 return false;
2894
2895 WarnE = this;
2896 if (const CXXFunctionalCastExpr *CXXCE =
2897 dyn_cast<CXXFunctionalCastExpr>(Val: this)) {
2898 Loc = CXXCE->getBeginLoc();
2899 R1 = CXXCE->getSubExpr()->getSourceRange();
2900 } else {
2901 const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(Val: this);
2902 Loc = CStyleCE->getLParenLoc();
2903 R1 = CStyleCE->getSubExpr()->getSourceRange();
2904 }
2905 return true;
2906 }
2907 case ImplicitCastExprClass: {
2908 const CastExpr *ICE = cast<ImplicitCastExpr>(Val: this);
2909
2910 // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2911 if (ICE->getCastKind() == CK_LValueToRValue &&
2912 ICE->getSubExpr()->getType().isVolatileQualified())
2913 return false;
2914
2915 return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2916 }
2917 case CXXDefaultArgExprClass:
2918 return (cast<CXXDefaultArgExpr>(Val: this)
2919 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2920 case CXXDefaultInitExprClass:
2921 return (cast<CXXDefaultInitExpr>(Val: this)
2922 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2923
2924 case CXXNewExprClass:
2925 // FIXME: In theory, there might be new expressions that don't have side
2926 // effects (e.g. a placement new with an uninitialized POD).
2927 case CXXDeleteExprClass:
2928 return false;
2929 case MaterializeTemporaryExprClass:
2930 return cast<MaterializeTemporaryExpr>(Val: this)
2931 ->getSubExpr()
2932 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2933 case CXXBindTemporaryExprClass:
2934 return cast<CXXBindTemporaryExpr>(Val: this)->getSubExpr()
2935 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2936 case ExprWithCleanupsClass:
2937 return cast<ExprWithCleanups>(Val: this)->getSubExpr()
2938 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2939 }
2940}
2941
2942/// isOBJCGCCandidate - Check if an expression is objc gc'able.
2943/// returns true, if it is; false otherwise.
2944bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
2945 const Expr *E = IgnoreParens();
2946 switch (E->getStmtClass()) {
2947 default:
2948 return false;
2949 case ObjCIvarRefExprClass:
2950 return true;
2951 case Expr::UnaryOperatorClass:
2952 return cast<UnaryOperator>(Val: E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2953 case ImplicitCastExprClass:
2954 return cast<ImplicitCastExpr>(Val: E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2955 case MaterializeTemporaryExprClass:
2956 return cast<MaterializeTemporaryExpr>(Val: E)->getSubExpr()->isOBJCGCCandidate(
2957 Ctx);
2958 case CStyleCastExprClass:
2959 return cast<CStyleCastExpr>(Val: E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2960 case DeclRefExprClass: {
2961 const Decl *D = cast<DeclRefExpr>(Val: E)->getDecl();
2962
2963 if (const VarDecl *VD = dyn_cast<VarDecl>(Val: D)) {
2964 if (VD->hasGlobalStorage())
2965 return true;
2966 QualType T = VD->getType();
2967 // dereferencing to a pointer is always a gc'able candidate,
2968 // unless it is __weak.
2969 return T->isPointerType() &&
2970 (Ctx.getObjCGCAttrKind(Ty: T) != Qualifiers::Weak);
2971 }
2972 return false;
2973 }
2974 case MemberExprClass: {
2975 const MemberExpr *M = cast<MemberExpr>(Val: E);
2976 return M->getBase()->isOBJCGCCandidate(Ctx);
2977 }
2978 case ArraySubscriptExprClass:
2979 return cast<ArraySubscriptExpr>(Val: E)->getBase()->isOBJCGCCandidate(Ctx);
2980 }
2981}
2982
2983bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
2984 if (isTypeDependent())
2985 return false;
2986 return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
2987}
2988
2989QualType Expr::findBoundMemberType(const Expr *expr) {
2990 assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
2991
2992 // Bound member expressions are always one of these possibilities:
2993 // x->m x.m x->*y x.*y
2994 // (possibly parenthesized)
2995
2996 expr = expr->IgnoreParens();
2997 if (const MemberExpr *mem = dyn_cast<MemberExpr>(Val: expr)) {
2998 assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
2999 return mem->getMemberDecl()->getType();
3000 }
3001
3002 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(Val: expr)) {
3003 QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
3004 ->getPointeeType();
3005 assert(type->isFunctionType());
3006 return type;
3007 }
3008
3009 assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr));
3010 return QualType();
3011}
3012
3013Expr *Expr::IgnoreImpCasts() {
3014 return IgnoreExprNodes(E: this, Fns&: IgnoreImplicitCastsSingleStep);
3015}
3016
3017Expr *Expr::IgnoreCasts() {
3018 return IgnoreExprNodes(E: this, Fns&: IgnoreCastsSingleStep);
3019}
3020
3021Expr *Expr::IgnoreImplicit() {
3022 return IgnoreExprNodes(E: this, Fns&: IgnoreImplicitSingleStep);
3023}
3024
3025Expr *Expr::IgnoreImplicitAsWritten() {
3026 return IgnoreExprNodes(E: this, Fns&: IgnoreImplicitAsWrittenSingleStep);
3027}
3028
3029Expr *Expr::IgnoreParens() {
3030 return IgnoreExprNodes(E: this, Fns&: IgnoreParensSingleStep);
3031}
3032
3033Expr *Expr::IgnoreParenImpCasts() {
3034 return IgnoreExprNodes(E: this, Fns&: IgnoreParensSingleStep,
3035 Fns&: IgnoreImplicitCastsExtraSingleStep);
3036}
3037
3038Expr *Expr::IgnoreParenCasts() {
3039 return IgnoreExprNodes(E: this, Fns&: IgnoreParensSingleStep, Fns&: IgnoreCastsSingleStep);
3040}
3041
3042Expr *Expr::IgnoreConversionOperatorSingleStep() {
3043 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Val: this)) {
3044 if (MCE->getMethodDecl() && isa<CXXConversionDecl>(Val: MCE->getMethodDecl()))
3045 return MCE->getImplicitObjectArgument();
3046 }
3047 return this;
3048}
3049
3050Expr *Expr::IgnoreParenLValueCasts() {
3051 return IgnoreExprNodes(E: this, Fns&: IgnoreParensSingleStep,
3052 Fns&: IgnoreLValueCastsSingleStep);
3053}
3054
3055Expr *Expr::IgnoreParenBaseCasts() {
3056 return IgnoreExprNodes(E: this, Fns&: IgnoreParensSingleStep,
3057 Fns&: IgnoreBaseCastsSingleStep);
3058}
3059
3060Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) {
3061 auto IgnoreNoopCastsSingleStep = [&Ctx](Expr *E) {
3062 if (auto *CE = dyn_cast<CastExpr>(Val: E)) {
3063 // We ignore integer <-> casts that are of the same width, ptr<->ptr and
3064 // ptr<->int casts of the same width. We also ignore all identity casts.
3065 Expr *SubExpr = CE->getSubExpr();
3066 bool IsIdentityCast =
3067 Ctx.hasSameUnqualifiedType(T1: E->getType(), T2: SubExpr->getType());
3068 bool IsSameWidthCast = (E->getType()->isPointerType() ||
3069 E->getType()->isIntegralType(Ctx)) &&
3070 (SubExpr->getType()->isPointerType() ||
3071 SubExpr->getType()->isIntegralType(Ctx)) &&
3072 (Ctx.getTypeSize(T: E->getType()) ==
3073 Ctx.getTypeSize(T: SubExpr->getType()));
3074
3075 if (IsIdentityCast || IsSameWidthCast)
3076 return SubExpr;
3077 } else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(Val: E))
3078 return NTTP->getReplacement();
3079
3080 return E;
3081 };
3082 return IgnoreExprNodes(E: this, Fns&: IgnoreParensSingleStep,
3083 Fns&: IgnoreNoopCastsSingleStep);
3084}
3085
3086Expr *Expr::IgnoreUnlessSpelledInSource() {
3087 auto IgnoreImplicitConstructorSingleStep = [](Expr *E) {
3088 if (auto *Cast = dyn_cast<CXXFunctionalCastExpr>(Val: E)) {
3089 auto *SE = Cast->getSubExpr();
3090 if (SE->getSourceRange() == E->getSourceRange())
3091 return SE;
3092 }
3093
3094 if (auto *C = dyn_cast<CXXConstructExpr>(Val: E)) {
3095 auto NumArgs = C->getNumArgs();
3096 if (NumArgs == 1 ||
3097 (NumArgs > 1 && isa<CXXDefaultArgExpr>(Val: C->getArg(Arg: 1)))) {
3098 Expr *A = C->getArg(Arg: 0);
3099 if (A->getSourceRange() == E->getSourceRange() || C->isElidable())
3100 return A;
3101 }
3102 }
3103 return E;
3104 };
3105 auto IgnoreImplicitMemberCallSingleStep = [](Expr *E) {
3106 if (auto *C = dyn_cast<CXXMemberCallExpr>(Val: E)) {
3107 Expr *ExprNode = C->getImplicitObjectArgument();
3108 if (ExprNode->getSourceRange() == E->getSourceRange()) {
3109 return ExprNode;
3110 }
3111 if (auto *PE = dyn_cast<ParenExpr>(Val: ExprNode)) {
3112 if (PE->getSourceRange() == C->getSourceRange()) {
3113 return cast<Expr>(Val: PE);
3114 }
3115 }
3116 ExprNode = ExprNode->IgnoreParenImpCasts();
3117 if (ExprNode->getSourceRange() == E->getSourceRange())
3118 return ExprNode;
3119 }
3120 return E;
3121 };
3122 return IgnoreExprNodes(
3123 E: this, Fns&: IgnoreImplicitSingleStep, Fns&: IgnoreImplicitCastsExtraSingleStep,
3124 Fns&: IgnoreParensOnlySingleStep, Fns&: IgnoreImplicitConstructorSingleStep,
3125 Fns&: IgnoreImplicitMemberCallSingleStep);
3126}
3127
3128bool Expr::isDefaultArgument() const {
3129 const Expr *E = this;
3130 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(Val: E))
3131 E = M->getSubExpr();
3132
3133 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E))
3134 E = ICE->getSubExprAsWritten();
3135
3136 return isa<CXXDefaultArgExpr>(Val: E);
3137}
3138
3139/// Skip over any no-op casts and any temporary-binding
3140/// expressions.
3141static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
3142 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(Val: E))
3143 E = M->getSubExpr();
3144
3145 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) {
3146 if (ICE->getCastKind() == CK_NoOp)
3147 E = ICE->getSubExpr();
3148 else
3149 break;
3150 }
3151
3152 while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(Val: E))
3153 E = BE->getSubExpr();
3154
3155 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) {
3156 if (ICE->getCastKind() == CK_NoOp)
3157 E = ICE->getSubExpr();
3158 else
3159 break;
3160 }
3161
3162 return E->IgnoreParens();
3163}
3164
3165/// isTemporaryObject - Determines if this expression produces a
3166/// temporary of the given class type.
3167bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
3168 if (!C.hasSameUnqualifiedType(T1: getType(), T2: C.getTypeDeclType(TempTy)))
3169 return false;
3170
3171 const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(E: this);
3172
3173 // Temporaries are by definition pr-values of class type.
3174 if (!E->Classify(Ctx&: C).isPRValue()) {
3175 // In this context, property reference is a message call and is pr-value.
3176 if (!isa<ObjCPropertyRefExpr>(Val: E))
3177 return false;
3178 }
3179
3180 // Black-list a few cases which yield pr-values of class type that don't
3181 // refer to temporaries of that type:
3182
3183 // - implicit derived-to-base conversions
3184 if (isa<ImplicitCastExpr>(Val: E)) {
3185 switch (cast<ImplicitCastExpr>(Val: E)->getCastKind()) {
3186 case CK_DerivedToBase:
3187 case CK_UncheckedDerivedToBase:
3188 return false;
3189 default:
3190 break;
3191 }
3192 }
3193
3194 // - member expressions (all)
3195 if (isa<MemberExpr>(Val: E))
3196 return false;
3197
3198 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: E))
3199 if (BO->isPtrMemOp())
3200 return false;
3201
3202 // - opaque values (all)
3203 if (isa<OpaqueValueExpr>(Val: E))
3204 return false;
3205
3206 return true;
3207}
3208
3209bool Expr::isImplicitCXXThis() const {
3210 const Expr *E = this;
3211
3212 // Strip away parentheses and casts we don't care about.
3213 while (true) {
3214 if (const ParenExpr *Paren = dyn_cast<ParenExpr>(Val: E)) {
3215 E = Paren->getSubExpr();
3216 continue;
3217 }
3218
3219 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) {
3220 if (ICE->getCastKind() == CK_NoOp ||
3221 ICE->getCastKind() == CK_LValueToRValue ||
3222 ICE->getCastKind() == CK_DerivedToBase ||
3223 ICE->getCastKind() == CK_UncheckedDerivedToBase) {
3224 E = ICE->getSubExpr();
3225 continue;
3226 }
3227 }
3228
3229 if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(Val: E)) {
3230 if (UnOp->getOpcode() == UO_Extension) {
3231 E = UnOp->getSubExpr();
3232 continue;
3233 }
3234 }
3235
3236 if (const MaterializeTemporaryExpr *M
3237 = dyn_cast<MaterializeTemporaryExpr>(Val: E)) {
3238 E = M->getSubExpr();
3239 continue;
3240 }
3241
3242 break;
3243 }
3244
3245 if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(Val: E))
3246 return This->isImplicit();
3247
3248 return false;
3249}
3250
3251/// hasAnyTypeDependentArguments - Determines if any of the expressions
3252/// in Exprs is type-dependent.
3253bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
3254 for (unsigned I = 0; I < Exprs.size(); ++I)
3255 if (Exprs[I]->isTypeDependent())
3256 return true;
3257
3258 return false;
3259}
3260
3261bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
3262 const Expr **Culprit) const {
3263 assert(!isValueDependent() &&
3264 "Expression evaluator can't be called on a dependent expression.");
3265
3266 // This function is attempting whether an expression is an initializer
3267 // which can be evaluated at compile-time. It very closely parallels
3268 // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
3269 // will lead to unexpected results. Like ConstExprEmitter, it falls back
3270 // to isEvaluatable most of the time.
3271 //
3272 // If we ever capture reference-binding directly in the AST, we can
3273 // kill the second parameter.
3274
3275 if (IsForRef) {
3276 if (auto *EWC = dyn_cast<ExprWithCleanups>(Val: this))
3277 return EWC->getSubExpr()->isConstantInitializer(Ctx, true, Culprit);
3278 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Val: this))
3279 return MTE->getSubExpr()->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3280 EvalResult Result;
3281 if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
3282 return true;
3283 if (Culprit)
3284 *Culprit = this;
3285 return false;
3286 }
3287
3288 switch (getStmtClass()) {
3289 default: break;
3290 case Stmt::ExprWithCleanupsClass:
3291 return cast<ExprWithCleanups>(Val: this)->getSubExpr()->isConstantInitializer(
3292 Ctx, IsForRef, Culprit);
3293 case StringLiteralClass:
3294 case ObjCEncodeExprClass:
3295 return true;
3296 case CXXTemporaryObjectExprClass:
3297 case CXXConstructExprClass: {
3298 const CXXConstructExpr *CE = cast<CXXConstructExpr>(Val: this);
3299
3300 if (CE->getConstructor()->isTrivial() &&
3301 CE->getConstructor()->getParent()->hasTrivialDestructor()) {
3302 // Trivial default constructor
3303 if (!CE->getNumArgs()) return true;
3304
3305 // Trivial copy constructor
3306 assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
3307 return CE->getArg(Arg: 0)->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3308 }
3309
3310 break;
3311 }
3312 case ConstantExprClass: {
3313 // FIXME: We should be able to return "true" here, but it can lead to extra
3314 // error messages. E.g. in Sema/array-init.c.
3315 const Expr *Exp = cast<ConstantExpr>(Val: this)->getSubExpr();
3316 return Exp->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3317 }
3318 case CompoundLiteralExprClass: {
3319 // This handles gcc's extension that allows global initializers like
3320 // "struct x {int x;} x = (struct x) {};".
3321 // FIXME: This accepts other cases it shouldn't!
3322 const Expr *Exp = cast<CompoundLiteralExpr>(Val: this)->getInitializer();
3323 return Exp->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3324 }
3325 case DesignatedInitUpdateExprClass: {
3326 const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(Val: this);
3327 return DIUE->getBase()->isConstantInitializer(Ctx, IsForRef: false, Culprit) &&
3328 DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit);
3329 }
3330 case InitListExprClass: {
3331 // C++ [dcl.init.aggr]p2:
3332 // The elements of an aggregate are:
3333 // - for an array, the array elements in increasing subscript order, or
3334 // - for a class, the direct base classes in declaration order, followed
3335 // by the direct non-static data members (11.4) that are not members of
3336 // an anonymous union, in declaration order.
3337 const InitListExpr *ILE = cast<InitListExpr>(Val: this);
3338 assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form");
3339 if (ILE->getType()->isArrayType()) {
3340 unsigned numInits = ILE->getNumInits();
3341 for (unsigned i = 0; i < numInits; i++) {
3342 if (!ILE->getInit(Init: i)->isConstantInitializer(Ctx, IsForRef: false, Culprit))
3343 return false;
3344 }
3345 return true;
3346 }
3347
3348 if (ILE->getType()->isRecordType()) {
3349 unsigned ElementNo = 0;
3350 RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
3351
3352 // In C++17, bases were added to the list of members used by aggregate
3353 // initialization.
3354 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3355 for (unsigned i = 0, e = CXXRD->getNumBases(); i < e; i++) {
3356 if (ElementNo < ILE->getNumInits()) {
3357 const Expr *Elt = ILE->getInit(Init: ElementNo++);
3358 if (!Elt->isConstantInitializer(Ctx, IsForRef: false, Culprit))
3359 return false;
3360 }
3361 }
3362 }
3363
3364 for (const auto *Field : RD->fields()) {
3365 // If this is a union, skip all the fields that aren't being initialized.
3366 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
3367 continue;
3368
3369 // Don't emit anonymous bitfields, they just affect layout.
3370 if (Field->isUnnamedBitfield())
3371 continue;
3372
3373 if (ElementNo < ILE->getNumInits()) {
3374 const Expr *Elt = ILE->getInit(ElementNo++);
3375 if (Field->isBitField()) {
3376 // Bitfields have to evaluate to an integer.
3377 EvalResult Result;
3378 if (!Elt->EvaluateAsInt(Result, Ctx)) {
3379 if (Culprit)
3380 *Culprit = Elt;
3381 return false;
3382 }
3383 } else {
3384 bool RefType = Field->getType()->isReferenceType();
3385 if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
3386 return false;
3387 }
3388 }
3389 }
3390 return true;
3391 }
3392
3393 break;
3394 }
3395 case ImplicitValueInitExprClass:
3396 case NoInitExprClass:
3397 return true;
3398 case ParenExprClass:
3399 return cast<ParenExpr>(Val: this)->getSubExpr()
3400 ->isConstantInitializer(Ctx, IsForRef, Culprit);
3401 case GenericSelectionExprClass:
3402 return cast<GenericSelectionExpr>(Val: this)->getResultExpr()
3403 ->isConstantInitializer(Ctx, IsForRef, Culprit);
3404 case ChooseExprClass:
3405 if (cast<ChooseExpr>(Val: this)->isConditionDependent()) {
3406 if (Culprit)
3407 *Culprit = this;
3408 return false;
3409 }
3410 return cast<ChooseExpr>(Val: this)->getChosenSubExpr()
3411 ->isConstantInitializer(Ctx, IsForRef, Culprit);
3412 case UnaryOperatorClass: {
3413 const UnaryOperator* Exp = cast<UnaryOperator>(Val: this);
3414 if (Exp->getOpcode() == UO_Extension)
3415 return Exp->getSubExpr()->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3416 break;
3417 }
3418 case PackIndexingExprClass: {
3419 return cast<PackIndexingExpr>(Val: this)
3420 ->getSelectedExpr()
3421 ->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3422 }
3423 case CXXFunctionalCastExprClass:
3424 case CXXStaticCastExprClass:
3425 case ImplicitCastExprClass:
3426 case CStyleCastExprClass:
3427 case ObjCBridgedCastExprClass:
3428 case CXXDynamicCastExprClass:
3429 case CXXReinterpretCastExprClass:
3430 case CXXAddrspaceCastExprClass:
3431 case CXXConstCastExprClass: {
3432 const CastExpr *CE = cast<CastExpr>(Val: this);
3433
3434 // Handle misc casts we want to ignore.
3435 if (CE->getCastKind() == CK_NoOp ||
3436 CE->getCastKind() == CK_LValueToRValue ||
3437 CE->getCastKind() == CK_ToUnion ||
3438 CE->getCastKind() == CK_ConstructorConversion ||
3439 CE->getCastKind() == CK_NonAtomicToAtomic ||
3440 CE->getCastKind() == CK_AtomicToNonAtomic ||
3441 CE->getCastKind() == CK_NullToPointer ||
3442 CE->getCastKind() == CK_IntToOCLSampler)
3443 return CE->getSubExpr()->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3444
3445 break;
3446 }
3447 case MaterializeTemporaryExprClass:
3448 return cast<MaterializeTemporaryExpr>(Val: this)
3449 ->getSubExpr()
3450 ->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3451
3452 case SubstNonTypeTemplateParmExprClass:
3453 return cast<SubstNonTypeTemplateParmExpr>(Val: this)->getReplacement()
3454 ->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3455 case CXXDefaultArgExprClass:
3456 return cast<CXXDefaultArgExpr>(Val: this)->getExpr()
3457 ->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3458 case CXXDefaultInitExprClass:
3459 return cast<CXXDefaultInitExpr>(Val: this)->getExpr()
3460 ->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3461 }
3462 // Allow certain forms of UB in constant initializers: signed integer
3463 // overflow and floating-point division by zero. We'll give a warning on
3464 // these, but they're common enough that we have to accept them.
3465 if (isEvaluatable(Ctx, AllowSideEffects: SE_AllowUndefinedBehavior))
3466 return true;
3467 if (Culprit)
3468 *Culprit = this;
3469 return false;
3470}
3471
3472bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const {
3473 unsigned BuiltinID = getBuiltinCallee();
3474 if (BuiltinID != Builtin::BI__assume &&
3475 BuiltinID != Builtin::BI__builtin_assume)
3476 return false;
3477
3478 const Expr* Arg = getArg(Arg: 0);
3479 bool ArgVal;
3480 return !Arg->isValueDependent() &&
3481 Arg->EvaluateAsBooleanCondition(Result&: ArgVal, Ctx) && !ArgVal;
3482}
3483
3484bool CallExpr::isCallToStdMove() const {
3485 return getBuiltinCallee() == Builtin::BImove;
3486}
3487
3488namespace {
3489 /// Look for any side effects within a Stmt.
3490 class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
3491 typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited;
3492 const bool IncludePossibleEffects;
3493 bool HasSideEffects;
3494
3495 public:
3496 explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
3497 : Inherited(Context),
3498 IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }
3499
3500 bool hasSideEffects() const { return HasSideEffects; }
3501
3502 void VisitDecl(const Decl *D) {
3503 if (!D)
3504 return;
3505
3506 // We assume the caller checks subexpressions (eg, the initializer, VLA
3507 // bounds) for side-effects on our behalf.
3508 if (auto *VD = dyn_cast<VarDecl>(Val: D)) {
3509 // Registering a destructor is a side-effect.
3510 if (IncludePossibleEffects && VD->isThisDeclarationADefinition() &&
3511 VD->needsDestruction(Ctx: Context))
3512 HasSideEffects = true;
3513 }
3514 }
3515
3516 void VisitDeclStmt(const DeclStmt *DS) {
3517 for (auto *D : DS->decls())
3518 VisitDecl(D);
3519 Inherited::VisitDeclStmt(DS);
3520 }
3521
3522 void VisitExpr(const Expr *E) {
3523 if (!HasSideEffects &&
3524 E->HasSideEffects(Ctx: Context, IncludePossibleEffects))
3525 HasSideEffects = true;
3526 }
3527 };
3528}
3529
3530bool Expr::HasSideEffects(const ASTContext &Ctx,
3531 bool IncludePossibleEffects) const {
3532 // In circumstances where we care about definite side effects instead of
3533 // potential side effects, we want to ignore expressions that are part of a
3534 // macro expansion as a potential side effect.
3535 if (!IncludePossibleEffects && getExprLoc().isMacroID())
3536 return false;
3537
3538 switch (getStmtClass()) {
3539 case NoStmtClass:
3540 #define ABSTRACT_STMT(Type)
3541 #define STMT(Type, Base) case Type##Class:
3542 #define EXPR(Type, Base)
3543 #include "clang/AST/StmtNodes.inc"
3544 llvm_unreachable("unexpected Expr kind");
3545
3546 case DependentScopeDeclRefExprClass:
3547 case CXXUnresolvedConstructExprClass:
3548 case CXXDependentScopeMemberExprClass:
3549 case UnresolvedLookupExprClass:
3550 case UnresolvedMemberExprClass:
3551 case PackExpansionExprClass:
3552 case SubstNonTypeTemplateParmPackExprClass:
3553 case FunctionParmPackExprClass:
3554 case TypoExprClass:
3555 case RecoveryExprClass:
3556 case CXXFoldExprClass:
3557 // Make a conservative assumption for dependent nodes.
3558 return IncludePossibleEffects;
3559
3560 case DeclRefExprClass:
3561 case ObjCIvarRefExprClass:
3562 case PredefinedExprClass:
3563 case IntegerLiteralClass:
3564 case FixedPointLiteralClass:
3565 case FloatingLiteralClass:
3566 case ImaginaryLiteralClass:
3567 case StringLiteralClass:
3568 case CharacterLiteralClass:
3569 case OffsetOfExprClass:
3570 case ImplicitValueInitExprClass:
3571 case UnaryExprOrTypeTraitExprClass:
3572 case AddrLabelExprClass:
3573 case GNUNullExprClass:
3574 case ArrayInitIndexExprClass:
3575 case NoInitExprClass:
3576 case CXXBoolLiteralExprClass:
3577 case CXXNullPtrLiteralExprClass:
3578 case CXXThisExprClass:
3579 case CXXScalarValueInitExprClass:
3580 case TypeTraitExprClass:
3581 case ArrayTypeTraitExprClass:
3582 case ExpressionTraitExprClass:
3583 case CXXNoexceptExprClass:
3584 case SizeOfPackExprClass:
3585 case ObjCStringLiteralClass:
3586 case ObjCEncodeExprClass:
3587 case ObjCBoolLiteralExprClass:
3588 case ObjCAvailabilityCheckExprClass:
3589 case CXXUuidofExprClass:
3590 case OpaqueValueExprClass:
3591 case SourceLocExprClass:
3592 case ConceptSpecializationExprClass:
3593 case RequiresExprClass:
3594 case SYCLUniqueStableNameExprClass:
3595 // These never have a side-effect.
3596 return false;
3597
3598 case PackIndexingExprClass:
3599 return cast<PackIndexingExpr>(this)->getSelectedExpr()->HasSideEffects(
3600 Ctx, IncludePossibleEffects);
3601 case ConstantExprClass:
3602 // FIXME: Move this into the "return false;" block above.
3603 return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects(
3604 Ctx, IncludePossibleEffects);
3605
3606 case CallExprClass:
3607 case CXXOperatorCallExprClass:
3608 case CXXMemberCallExprClass:
3609 case CUDAKernelCallExprClass:
3610 case UserDefinedLiteralClass: {
3611 // We don't know a call definitely has side effects, except for calls
3612 // to pure/const functions that definitely don't.
3613 // If the call itself is considered side-effect free, check the operands.
3614 const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
3615 bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
3616 if (IsPure || !IncludePossibleEffects)
3617 break;
3618 return true;
3619 }
3620
3621 case BlockExprClass:
3622 case CXXBindTemporaryExprClass:
3623 if (!IncludePossibleEffects)
3624 break;
3625 return true;
3626
3627 case MSPropertyRefExprClass:
3628 case MSPropertySubscriptExprClass:
3629 case CompoundAssignOperatorClass:
3630 case VAArgExprClass:
3631 case AtomicExprClass:
3632 case CXXThrowExprClass:
3633 case CXXNewExprClass:
3634 case CXXDeleteExprClass:
3635 case CoawaitExprClass:
3636 case DependentCoawaitExprClass:
3637 case CoyieldExprClass:
3638 // These always have a side-effect.
3639 return true;
3640
3641 case StmtExprClass: {
3642 // StmtExprs have a side-effect if any substatement does.
3643 SideEffectFinder Finder(Ctx, IncludePossibleEffects);
3644 Finder.Visit(S: cast<StmtExpr>(this)->getSubStmt());
3645 return Finder.hasSideEffects();
3646 }
3647
3648 case ExprWithCleanupsClass:
3649 if (IncludePossibleEffects)
3650 if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects())
3651 return true;
3652 break;
3653
3654 case ParenExprClass:
3655 case ArraySubscriptExprClass:
3656 case MatrixSubscriptExprClass:
3657 case OMPArraySectionExprClass:
3658 case OMPArrayShapingExprClass:
3659 case OMPIteratorExprClass:
3660 case MemberExprClass:
3661 case ConditionalOperatorClass:
3662 case BinaryConditionalOperatorClass:
3663 case CompoundLiteralExprClass:
3664 case ExtVectorElementExprClass:
3665 case DesignatedInitExprClass:
3666 case DesignatedInitUpdateExprClass:
3667 case ArrayInitLoopExprClass:
3668 case ParenListExprClass:
3669 case CXXPseudoDestructorExprClass:
3670 case CXXRewrittenBinaryOperatorClass:
3671 case CXXStdInitializerListExprClass:
3672 case SubstNonTypeTemplateParmExprClass:
3673 case MaterializeTemporaryExprClass:
3674 case ShuffleVectorExprClass:
3675 case ConvertVectorExprClass:
3676 case AsTypeExprClass:
3677 case CXXParenListInitExprClass:
3678 // These have a side-effect if any subexpression does.
3679 break;
3680
3681 case UnaryOperatorClass:
3682 if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
3683 return true;
3684 break;
3685
3686 case BinaryOperatorClass:
3687 if (cast<BinaryOperator>(this)->isAssignmentOp())
3688 return true;
3689 break;
3690
3691 case InitListExprClass:
3692 // FIXME: The children for an InitListExpr doesn't include the array filler.
3693 if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
3694 if (E->HasSideEffects(Ctx, IncludePossibleEffects))
3695 return true;
3696 break;
3697
3698 case GenericSelectionExprClass:
3699 return cast<GenericSelectionExpr>(this)->getResultExpr()->
3700 HasSideEffects(Ctx, IncludePossibleEffects);
3701
3702 case ChooseExprClass:
3703 return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
3704 Ctx, IncludePossibleEffects);
3705
3706 case CXXDefaultArgExprClass:
3707 return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
3708 Ctx, IncludePossibleEffects);
3709
3710 case CXXDefaultInitExprClass: {
3711 const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
3712 if (const Expr *E = FD->getInClassInitializer())
3713 return E->HasSideEffects(Ctx, IncludePossibleEffects);
3714 // If we've not yet parsed the initializer, assume it has side-effects.
3715 return true;
3716 }
3717
3718 case CXXDynamicCastExprClass: {
3719 // A dynamic_cast expression has side-effects if it can throw.
3720 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
3721 if (DCE->getTypeAsWritten()->isReferenceType() &&
3722 DCE->getCastKind() == CK_Dynamic)
3723 return true;
3724 }
3725 [[fallthrough]];
3726 case ImplicitCastExprClass:
3727 case CStyleCastExprClass:
3728 case CXXStaticCastExprClass:
3729 case CXXReinterpretCastExprClass:
3730 case CXXConstCastExprClass:
3731 case CXXAddrspaceCastExprClass:
3732 case CXXFunctionalCastExprClass:
3733 case BuiltinBitCastExprClass: {
3734 // While volatile reads are side-effecting in both C and C++, we treat them
3735 // as having possible (not definite) side-effects. This allows idiomatic
3736 // code to behave without warning, such as sizeof(*v) for a volatile-
3737 // qualified pointer.
3738 if (!IncludePossibleEffects)
3739 break;
3740
3741 const CastExpr *CE = cast<CastExpr>(this);
3742 if (CE->getCastKind() == CK_LValueToRValue &&
3743 CE->getSubExpr()->getType().isVolatileQualified())
3744 return true;
3745 break;
3746 }
3747
3748 case CXXTypeidExprClass:
3749 // typeid might throw if its subexpression is potentially-evaluated, so has
3750 // side-effects in that case whether or not its subexpression does.
3751 return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
3752
3753 case CXXConstructExprClass:
3754 case CXXTemporaryObjectExprClass: {
3755 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3756 if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
3757 return true;
3758 // A trivial constructor does not add any side-effects of its own. Just look
3759 // at its arguments.
3760 break;
3761 }
3762
3763 case CXXInheritedCtorInitExprClass: {
3764 const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this);
3765 if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects)
3766 return true;
3767 break;
3768 }
3769
3770 case LambdaExprClass: {
3771 const LambdaExpr *LE = cast<LambdaExpr>(this);
3772 for (Expr *E : LE->capture_inits())
3773 if (E && E->HasSideEffects(Ctx, IncludePossibleEffects))
3774 return true;
3775 return false;
3776 }
3777
3778 case PseudoObjectExprClass: {
3779 // Only look for side-effects in the semantic form, and look past
3780 // OpaqueValueExpr bindings in that form.
3781 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
3782 for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
3783 E = PO->semantics_end();
3784 I != E; ++I) {
3785 const Expr *Subexpr = *I;
3786 if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
3787 Subexpr = OVE->getSourceExpr();
3788 if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
3789 return true;
3790 }
3791 return false;
3792 }
3793
3794 case ObjCBoxedExprClass:
3795 case ObjCArrayLiteralClass:
3796 case ObjCDictionaryLiteralClass:
3797 case ObjCSelectorExprClass:
3798 case ObjCProtocolExprClass:
3799 case ObjCIsaExprClass:
3800 case ObjCIndirectCopyRestoreExprClass:
3801 case ObjCSubscriptRefExprClass:
3802 case ObjCBridgedCastExprClass:
3803 case ObjCMessageExprClass:
3804 case ObjCPropertyRefExprClass:
3805 // FIXME: Classify these cases better.
3806 if (IncludePossibleEffects)
3807 return true;
3808 break;
3809 }
3810
3811 // Recurse to children.
3812 for (const Stmt *SubStmt : children())
3813 if (SubStmt &&
3814 cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
3815 return true;
3816
3817 return false;
3818}
3819
3820FPOptions Expr::getFPFeaturesInEffect(const LangOptions &LO) const {
3821 if (auto Call = dyn_cast<CallExpr>(Val: this))
3822 return Call->getFPFeaturesInEffect(LO);
3823 if (auto UO = dyn_cast<UnaryOperator>(Val: this))
3824 return UO->getFPFeaturesInEffect(LO);
3825 if (auto BO = dyn_cast<BinaryOperator>(Val: this))
3826 return BO->getFPFeaturesInEffect(LO);
3827 if (auto Cast = dyn_cast<CastExpr>(Val: this))
3828 return Cast->getFPFeaturesInEffect(LO);
3829 return FPOptions::defaultWithoutTrailingStorage(LO);
3830}
3831
3832namespace {
3833 /// Look for a call to a non-trivial function within an expression.
3834 class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
3835 {
3836 typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
3837
3838 bool NonTrivial;
3839
3840 public:
3841 explicit NonTrivialCallFinder(const ASTContext &Context)
3842 : Inherited(Context), NonTrivial(false) { }
3843
3844 bool hasNonTrivialCall() const { return NonTrivial; }
3845
3846 void VisitCallExpr(const CallExpr *E) {
3847 if (const CXXMethodDecl *Method
3848 = dyn_cast_or_null<const CXXMethodDecl>(Val: E->getCalleeDecl())) {
3849 if (Method->isTrivial()) {
3850 // Recurse to children of the call.
3851 Inherited::VisitStmt(E);
3852 return;
3853 }
3854 }
3855
3856 NonTrivial = true;
3857 }
3858
3859 void VisitCXXConstructExpr(const CXXConstructExpr *E) {
3860 if (E->getConstructor()->isTrivial()) {
3861 // Recurse to children of the call.
3862 Inherited::VisitStmt(E);
3863 return;
3864 }
3865
3866 NonTrivial = true;
3867 }
3868
3869 void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
3870 if (E->getTemporary()->getDestructor()->isTrivial()) {
3871 Inherited::VisitStmt(E);
3872 return;
3873 }
3874
3875 NonTrivial = true;
3876 }
3877 };
3878}
3879
3880bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
3881 NonTrivialCallFinder Finder(Ctx);
3882 Finder.Visit(this);
3883 return Finder.hasNonTrivialCall();
3884}
3885
3886/// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
3887/// pointer constant or not, as well as the specific kind of constant detected.
3888/// Null pointer constants can be integer constant expressions with the
3889/// value zero, casts of zero to void*, nullptr (C++0X), or __null
3890/// (a GNU extension).
3891Expr::NullPointerConstantKind
3892Expr::isNullPointerConstant(ASTContext &Ctx,
3893 NullPointerConstantValueDependence NPC) const {
3894 if (isValueDependent() &&
3895 (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
3896 // Error-dependent expr should never be a null pointer.
3897 if (containsErrors())
3898 return NPCK_NotNull;
3899 switch (NPC) {
3900 case NPC_NeverValueDependent:
3901 llvm_unreachable("Unexpected value dependent expression!");
3902 case NPC_ValueDependentIsNull:
3903 if (isTypeDependent() || getType()->isIntegralType(Ctx))
3904 return NPCK_ZeroExpression;
3905 else
3906 return NPCK_NotNull;
3907
3908 case NPC_ValueDependentIsNotNull:
3909 return NPCK_NotNull;
3910 }
3911 }
3912
3913 // Strip off a cast to void*, if it exists. Except in C++.
3914 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(Val: this)) {
3915 if (!Ctx.getLangOpts().CPlusPlus) {
3916 // Check that it is a cast to void*.
3917 if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
3918 QualType Pointee = PT->getPointeeType();
3919 Qualifiers Qs = Pointee.getQualifiers();
3920 // Only (void*)0 or equivalent are treated as nullptr. If pointee type
3921 // has non-default address space it is not treated as nullptr.
3922 // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr
3923 // since it cannot be assigned to a pointer to constant address space.
3924 if (Ctx.getLangOpts().OpenCL &&
3925 Pointee.getAddressSpace() == Ctx.getDefaultOpenCLPointeeAddrSpace())
3926 Qs.removeAddressSpace();
3927
3928 if (Pointee->isVoidType() && Qs.empty() && // to void*
3929 CE->getSubExpr()->getType()->isIntegerType()) // from int
3930 return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3931 }
3932 }
3933 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: this)) {
3934 // Ignore the ImplicitCastExpr type entirely.
3935 return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3936 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Val: this)) {
3937 // Accept ((void*)0) as a null pointer constant, as many other
3938 // implementations do.
3939 return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3940 } else if (const GenericSelectionExpr *GE =
3941 dyn_cast<GenericSelectionExpr>(Val: this)) {
3942 if (GE->isResultDependent())
3943 return NPCK_NotNull;
3944 return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
3945 } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(Val: this)) {
3946 if (CE->isConditionDependent())
3947 return NPCK_NotNull;
3948 return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
3949 } else if (const CXXDefaultArgExpr *DefaultArg
3950 = dyn_cast<CXXDefaultArgExpr>(Val: this)) {
3951 // See through default argument expressions.
3952 return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
3953 } else if (const CXXDefaultInitExpr *DefaultInit
3954 = dyn_cast<CXXDefaultInitExpr>(Val: this)) {
3955 // See through default initializer expressions.
3956 return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
3957 } else if (isa<GNUNullExpr>(Val: this)) {
3958 // The GNU __null extension is always a null pointer constant.
3959 return NPCK_GNUNull;
3960 } else if (const MaterializeTemporaryExpr *M
3961 = dyn_cast<MaterializeTemporaryExpr>(Val: this)) {
3962 return M->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3963 } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Val: this)) {
3964 if (const Expr *Source = OVE->getSourceExpr())
3965 return Source->isNullPointerConstant(Ctx, NPC);
3966 }
3967
3968 // If the expression has no type information, it cannot be a null pointer
3969 // constant.
3970 if (getType().isNull())
3971 return NPCK_NotNull;
3972
3973 // C++11/C23 nullptr_t is always a null pointer constant.
3974 if (getType()->isNullPtrType())
3975 return NPCK_CXX11_nullptr;
3976
3977 if (const RecordType *UT = getType()->getAsUnionType())
3978 if (!Ctx.getLangOpts().CPlusPlus11 &&
3979 UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
3980 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Val: this)){
3981 const Expr *InitExpr = CLE->getInitializer();
3982 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Val: InitExpr))
3983 return ILE->getInit(Init: 0)->isNullPointerConstant(Ctx, NPC);
3984 }
3985 // This expression must be an integer type.
3986 if (!getType()->isIntegerType() ||
3987 (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
3988 return NPCK_NotNull;
3989
3990 if (Ctx.getLangOpts().CPlusPlus11) {
3991 // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
3992 // value zero or a prvalue of type std::nullptr_t.
3993 // Microsoft mode permits C++98 rules reflecting MSVC behavior.
3994 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(Val: this);
3995 if (Lit && !Lit->getValue())
3996 return NPCK_ZeroLiteral;
3997 if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
3998 return NPCK_NotNull;
3999 } else {
4000 // If we have an integer constant expression, we need to *evaluate* it and
4001 // test for the value 0.
4002 if (!isIntegerConstantExpr(Ctx))
4003 return NPCK_NotNull;
4004 }
4005
4006 if (EvaluateKnownConstInt(Ctx) != 0)
4007 return NPCK_NotNull;
4008
4009 if (isa<IntegerLiteral>(Val: this))
4010 return NPCK_ZeroLiteral;
4011 return NPCK_ZeroExpression;
4012}
4013
4014/// If this expression is an l-value for an Objective C
4015/// property, find the underlying property reference expression.
4016const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
4017 const Expr *E = this;
4018 while (true) {
4019 assert((E->isLValue() && E->getObjectKind() == OK_ObjCProperty) &&
4020 "expression is not a property reference");
4021 E = E->IgnoreParenCasts();
4022 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: E)) {
4023 if (BO->getOpcode() == BO_Comma) {
4024 E = BO->getRHS();
4025 continue;
4026 }
4027 }
4028
4029 break;
4030 }
4031
4032 return cast<ObjCPropertyRefExpr>(Val: E);
4033}
4034
4035bool Expr::isObjCSelfExpr() const {
4036 const Expr *E = IgnoreParenImpCasts();
4037
4038 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E);
4039 if (!DRE)
4040 return false;
4041
4042 const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(Val: DRE->getDecl());
4043 if (!Param)
4044 return false;
4045
4046 const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
4047 if (!M)
4048 return false;
4049
4050 return M->getSelfDecl() == Param;
4051}
4052
4053FieldDecl *Expr::getSourceBitField() {
4054 Expr *E = this->IgnoreParens();
4055
4056 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) {
4057 if (ICE->getCastKind() == CK_LValueToRValue ||
4058 (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp))
4059 E = ICE->getSubExpr()->IgnoreParens();
4060 else
4061 break;
4062 }
4063
4064 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(Val: E))
4065 if (FieldDecl *Field = dyn_cast<FieldDecl>(Val: MemRef->getMemberDecl()))
4066 if (Field->isBitField())
4067 return Field;
4068
4069 if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(Val: E)) {
4070 FieldDecl *Ivar = IvarRef->getDecl();
4071 if (Ivar->isBitField())
4072 return Ivar;
4073 }
4074
4075 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(Val: E)) {
4076 if (FieldDecl *Field = dyn_cast<FieldDecl>(Val: DeclRef->getDecl()))
4077 if (Field->isBitField())
4078 return Field;
4079
4080 if (BindingDecl *BD = dyn_cast<BindingDecl>(Val: DeclRef->getDecl()))
4081 if (Expr *E = BD->getBinding())
4082 return E->getSourceBitField();
4083 }
4084
4085 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val: E)) {
4086 if (BinOp->isAssignmentOp() && BinOp->getLHS())
4087 return BinOp->getLHS()->getSourceBitField();
4088
4089 if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
4090 return BinOp->getRHS()->getSourceBitField();
4091 }
4092
4093 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Val: E))
4094 if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
4095 return UnOp->getSubExpr()->getSourceBitField();
4096
4097 return nullptr;
4098}
4099
4100bool Expr::refersToVectorElement() const {
4101 // FIXME: Why do we not just look at the ObjectKind here?
4102 const Expr *E = this->IgnoreParens();
4103
4104 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) {
4105 if (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp)
4106 E = ICE->getSubExpr()->IgnoreParens();
4107 else
4108 break;
4109 }
4110
4111 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(Val: E))
4112 return ASE->getBase()->getType()->isVectorType();
4113
4114 if (isa<ExtVectorElementExpr>(Val: E))
4115 return true;
4116
4117 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: E))
4118 if (auto *BD = dyn_cast<BindingDecl>(Val: DRE->getDecl()))
4119 if (auto *E = BD->getBinding())
4120 return E->refersToVectorElement();
4121
4122 return false;
4123}
4124
4125bool Expr::refersToGlobalRegisterVar() const {
4126 const Expr *E = this->IgnoreParenImpCasts();
4127
4128 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E))
4129 if (const auto *VD = dyn_cast<VarDecl>(Val: DRE->getDecl()))
4130 if (VD->getStorageClass() == SC_Register &&
4131 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
4132 return true;
4133
4134 return false;
4135}
4136
4137bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) {
4138 E1 = E1->IgnoreParens();
4139 E2 = E2->IgnoreParens();
4140
4141 if (E1->getStmtClass() != E2->getStmtClass())
4142 return false;
4143
4144 switch (E1->getStmtClass()) {
4145 default:
4146 return false;
4147 case CXXThisExprClass:
4148 return true;
4149 case DeclRefExprClass: {
4150 // DeclRefExpr without an ImplicitCastExpr can happen for integral
4151 // template parameters.
4152 const auto *DRE1 = cast<DeclRefExpr>(Val: E1);
4153 const auto *DRE2 = cast<DeclRefExpr>(Val: E2);
4154 return DRE1->isPRValue() && DRE2->isPRValue() &&
4155 DRE1->getDecl() == DRE2->getDecl();
4156 }
4157 case ImplicitCastExprClass: {
4158 // Peel off implicit casts.
4159 while (true) {
4160 const auto *ICE1 = dyn_cast<ImplicitCastExpr>(Val: E1);
4161 const auto *ICE2 = dyn_cast<ImplicitCastExpr>(Val: E2);
4162 if (!ICE1 || !ICE2)
4163 return false;
4164 if (ICE1->getCastKind() != ICE2->getCastKind())
4165 return false;
4166 E1 = ICE1->getSubExpr()->IgnoreParens();
4167 E2 = ICE2->getSubExpr()->IgnoreParens();
4168 // The final cast must be one of these types.
4169 if (ICE1->getCastKind() == CK_LValueToRValue ||
4170 ICE1->getCastKind() == CK_ArrayToPointerDecay ||
4171 ICE1->getCastKind() == CK_FunctionToPointerDecay) {
4172 break;
4173 }
4174 }
4175
4176 const auto *DRE1 = dyn_cast<DeclRefExpr>(Val: E1);
4177 const auto *DRE2 = dyn_cast<DeclRefExpr>(Val: E2);
4178 if (DRE1 && DRE2)
4179 return declaresSameEntity(DRE1->getDecl(), DRE2->getDecl());
4180
4181 const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(Val: E1);
4182 const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(Val: E2);
4183 if (Ivar1 && Ivar2) {
4184 return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() &&
4185 declaresSameEntity(Ivar1->getDecl(), Ivar2->getDecl());
4186 }
4187
4188 const auto *Array1 = dyn_cast<ArraySubscriptExpr>(Val: E1);
4189 const auto *Array2 = dyn_cast<ArraySubscriptExpr>(Val: E2);
4190 if (Array1 && Array2) {
4191 if (!isSameComparisonOperand(E1: Array1->getBase(), E2: Array2->getBase()))
4192 return false;
4193
4194 auto Idx1 = Array1->getIdx();
4195 auto Idx2 = Array2->getIdx();
4196 const auto Integer1 = dyn_cast<IntegerLiteral>(Val: Idx1);
4197 const auto Integer2 = dyn_cast<IntegerLiteral>(Val: Idx2);
4198 if (Integer1 && Integer2) {
4199 if (!llvm::APInt::isSameValue(I1: Integer1->getValue(),
4200 I2: Integer2->getValue()))
4201 return false;
4202 } else {
4203 if (!isSameComparisonOperand(E1: Idx1, E2: Idx2))
4204 return false;
4205 }
4206
4207 return true;
4208 }
4209
4210 // Walk the MemberExpr chain.
4211 while (isa<MemberExpr>(Val: E1) && isa<MemberExpr>(Val: E2)) {
4212 const auto *ME1 = cast<MemberExpr>(Val: E1);
4213 const auto *ME2 = cast<MemberExpr>(Val: E2);
4214 if (!declaresSameEntity(ME1->getMemberDecl(), ME2->getMemberDecl()))
4215 return false;
4216 if (const auto *D = dyn_cast<VarDecl>(Val: ME1->getMemberDecl()))
4217 if (D->isStaticDataMember())
4218 return true;
4219 E1 = ME1->getBase()->IgnoreParenImpCasts();
4220 E2 = ME2->getBase()->IgnoreParenImpCasts();
4221 }
4222
4223 if (isa<CXXThisExpr>(Val: E1) && isa<CXXThisExpr>(Val: E2))
4224 return true;
4225
4226 // A static member variable can end the MemberExpr chain with either
4227 // a MemberExpr or a DeclRefExpr.
4228 auto getAnyDecl = [](const Expr *E) -> const ValueDecl * {
4229 if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: E))
4230 return DRE->getDecl();
4231 if (const auto *ME = dyn_cast<MemberExpr>(Val: E))
4232 return ME->getMemberDecl();
4233 return nullptr;
4234 };
4235
4236 const ValueDecl *VD1 = getAnyDecl(E1);
4237 const ValueDecl *VD2 = getAnyDecl(E2);
4238 return declaresSameEntity(VD1, VD2);
4239 }
4240 }
4241}
4242
4243/// isArrow - Return true if the base expression is a pointer to vector,
4244/// return false if the base expression is a vector.
4245bool ExtVectorElementExpr::isArrow() const {
4246 return getBase()->getType()->isPointerType();
4247}
4248
4249unsigned ExtVectorElementExpr::getNumElements() const {
4250 if (const VectorType *VT = getType()->getAs<VectorType>())
4251 return VT->getNumElements();
4252 return 1;
4253}
4254
4255/// containsDuplicateElements - Return true if any element access is repeated.
4256bool ExtVectorElementExpr::containsDuplicateElements() const {
4257 // FIXME: Refactor this code to an accessor on the AST node which returns the
4258 // "type" of component access, and share with code below and in Sema.
4259 StringRef Comp = Accessor->getName();
4260
4261 // Halving swizzles do not contain duplicate elements.
4262 if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
4263 return false;
4264
4265 // Advance past s-char prefix on hex swizzles.
4266 if (Comp[0] == 's' || Comp[0] == 'S')
4267 Comp = Comp.substr(Start: 1);
4268
4269 for (unsigned i = 0, e = Comp.size(); i != e; ++i)
4270 if (Comp.substr(Start: i + 1).contains(C: Comp[i]))
4271 return true;
4272
4273 return false;
4274}
4275
4276/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
4277void ExtVectorElementExpr::getEncodedElementAccess(
4278 SmallVectorImpl<uint32_t> &Elts) const {
4279 StringRef Comp = Accessor->getName();
4280 bool isNumericAccessor = false;
4281 if (Comp[0] == 's' || Comp[0] == 'S') {
4282 Comp = Comp.substr(Start: 1);
4283 isNumericAccessor = true;
4284 }
4285
4286 bool isHi = Comp == "hi";
4287 bool isLo = Comp == "lo";
4288 bool isEven = Comp == "even";
4289 bool isOdd = Comp == "odd";
4290
4291 for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
4292 uint64_t Index;
4293
4294 if (isHi)
4295 Index = e + i;
4296 else if (isLo)
4297 Index = i;
4298 else if (isEven)
4299 Index = 2 * i;
4300 else if (isOdd)
4301 Index = 2 * i + 1;
4302 else
4303 Index = ExtVectorType::getAccessorIdx(c: Comp[i], isNumericAccessor);
4304
4305 Elts.push_back(Elt: Index);
4306 }
4307}
4308
4309ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr *> args,
4310 QualType Type, SourceLocation BLoc,
4311 SourceLocation RP)
4312 : Expr(ShuffleVectorExprClass, Type, VK_PRValue, OK_Ordinary),
4313 BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size()) {
4314 SubExprs = new (C) Stmt*[args.size()];
4315 for (unsigned i = 0; i != args.size(); i++)
4316 SubExprs[i] = args[i];
4317
4318 setDependence(computeDependence(E: this));
4319}
4320
4321void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
4322 if (SubExprs) C.Deallocate(Ptr: SubExprs);
4323
4324 this->NumExprs = Exprs.size();
4325 SubExprs = new (C) Stmt*[NumExprs];
4326 memcpy(dest: SubExprs, src: Exprs.data(), n: sizeof(Expr *) * Exprs.size());
4327}
4328
4329GenericSelectionExpr::GenericSelectionExpr(
4330 const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr,
4331 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4332 SourceLocation DefaultLoc, SourceLocation RParenLoc,
4333 bool ContainsUnexpandedParameterPack, unsigned ResultIndex)
4334 : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(),
4335 AssocExprs[ResultIndex]->getValueKind(),
4336 AssocExprs[ResultIndex]->getObjectKind()),
4337 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
4338 IsExprPredicate(true), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4339 assert(AssocTypes.size() == AssocExprs.size() &&
4340 "Must have the same number of association expressions"
4341 " and TypeSourceInfo!");
4342 assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!");
4343
4344 GenericSelectionExprBits.GenericLoc = GenericLoc;
4345 getTrailingObjects<Stmt *>()[getIndexOfControllingExpression()] =
4346 ControllingExpr;
4347 std::copy(AssocExprs.begin(), AssocExprs.end(),
4348 getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs());
4349 std::copy(AssocTypes.begin(), AssocTypes.end(),
4350 getTrailingObjects<TypeSourceInfo *>() +
4351 getIndexOfStartOfAssociatedTypes());
4352
4353 setDependence(computeDependence(E: this, ContainsUnexpandedPack: ContainsUnexpandedParameterPack));
4354}
4355
4356GenericSelectionExpr::GenericSelectionExpr(
4357 const ASTContext &, SourceLocation GenericLoc,
4358 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes,
4359 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
4360 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack,
4361 unsigned ResultIndex)
4362 : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(),
4363 AssocExprs[ResultIndex]->getValueKind(),
4364 AssocExprs[ResultIndex]->getObjectKind()),
4365 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
4366 IsExprPredicate(false), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4367 assert(AssocTypes.size() == AssocExprs.size() &&
4368 "Must have the same number of association expressions"
4369 " and TypeSourceInfo!");
4370 assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!");
4371
4372 GenericSelectionExprBits.GenericLoc = GenericLoc;
4373 getTrailingObjects<TypeSourceInfo *>()[getIndexOfControllingType()] =
4374 ControllingType;
4375 std::copy(AssocExprs.begin(), AssocExprs.end(),
4376 getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs());
4377 std::copy(AssocTypes.begin(), AssocTypes.end(),
4378 getTrailingObjects<TypeSourceInfo *>() +
4379 getIndexOfStartOfAssociatedTypes());
4380
4381 setDependence(computeDependence(E: this, ContainsUnexpandedPack: ContainsUnexpandedParameterPack));
4382}
4383
4384GenericSelectionExpr::GenericSelectionExpr(
4385 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4386 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4387 SourceLocation DefaultLoc, SourceLocation RParenLoc,
4388 bool ContainsUnexpandedParameterPack)
4389 : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue,
4390 OK_Ordinary),
4391 NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex),
4392 IsExprPredicate(true), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4393 assert(AssocTypes.size() == AssocExprs.size() &&
4394 "Must have the same number of association expressions"
4395 " and TypeSourceInfo!");
4396
4397 GenericSelectionExprBits.GenericLoc = GenericLoc;
4398 getTrailingObjects<Stmt *>()[getIndexOfControllingExpression()] =
4399 ControllingExpr;
4400 std::copy(AssocExprs.begin(), AssocExprs.end(),
4401 getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs());
4402 std::copy(AssocTypes.begin(), AssocTypes.end(),
4403 getTrailingObjects<TypeSourceInfo *>() +
4404 getIndexOfStartOfAssociatedTypes());
4405
4406 setDependence(computeDependence(E: this, ContainsUnexpandedPack: ContainsUnexpandedParameterPack));
4407}
4408
4409GenericSelectionExpr::GenericSelectionExpr(
4410 const ASTContext &Context, SourceLocation GenericLoc,
4411 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes,
4412 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
4413 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack)
4414 : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue,
4415 OK_Ordinary),
4416 NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex),
4417 IsExprPredicate(false), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4418 assert(AssocTypes.size() == AssocExprs.size() &&
4419 "Must have the same number of association expressions"
4420 " and TypeSourceInfo!");
4421
4422 GenericSelectionExprBits.GenericLoc = GenericLoc;
4423 getTrailingObjects<TypeSourceInfo *>()[getIndexOfControllingType()] =
4424 ControllingType;
4425 std::copy(AssocExprs.begin(), AssocExprs.end(),
4426 getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs());
4427 std::copy(AssocTypes.begin(), AssocTypes.end(),
4428 getTrailingObjects<TypeSourceInfo *>() +
4429 getIndexOfStartOfAssociatedTypes());
4430
4431 setDependence(computeDependence(E: this, ContainsUnexpandedPack: ContainsUnexpandedParameterPack));
4432}
4433
4434GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs)
4435 : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {}
4436
4437GenericSelectionExpr *GenericSelectionExpr::Create(
4438 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4439 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4440 SourceLocation DefaultLoc, SourceLocation RParenLoc,
4441 bool ContainsUnexpandedParameterPack, unsigned ResultIndex) {
4442 unsigned NumAssocs = AssocExprs.size();
4443 void *Mem = Context.Allocate(
4444 Size: totalSizeToAlloc<Stmt *, TypeSourceInfo *>(Counts: 1 + NumAssocs, Counts: NumAssocs),
4445 Align: alignof(GenericSelectionExpr));
4446 return new (Mem) GenericSelectionExpr(
4447 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4448 RParenLoc, ContainsUnexpandedParameterPack, ResultIndex);
4449}
4450
4451GenericSelectionExpr *GenericSelectionExpr::Create(
4452 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4453 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4454 SourceLocation DefaultLoc, SourceLocation RParenLoc,
4455 bool ContainsUnexpandedParameterPack) {
4456 unsigned NumAssocs = AssocExprs.size();
4457 void *Mem = Context.Allocate(
4458 Size: totalSizeToAlloc<Stmt *, TypeSourceInfo *>(Counts: 1 + NumAssocs, Counts: NumAssocs),
4459 Align: alignof(GenericSelectionExpr));
4460 return new (Mem) GenericSelectionExpr(
4461 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4462 RParenLoc, ContainsUnexpandedParameterPack);
4463}
4464
4465GenericSelectionExpr *GenericSelectionExpr::Create(
4466 const ASTContext &Context, SourceLocation GenericLoc,
4467 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes,
4468 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
4469 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack,
4470 unsigned ResultIndex) {
4471 unsigned NumAssocs = AssocExprs.size();
4472 void *Mem = Context.Allocate(
4473 Size: totalSizeToAlloc<Stmt *, TypeSourceInfo *>(Counts: 1 + NumAssocs, Counts: NumAssocs),
4474 Align: alignof(GenericSelectionExpr));
4475 return new (Mem) GenericSelectionExpr(
4476 Context, GenericLoc, ControllingType, AssocTypes, AssocExprs, DefaultLoc,
4477 RParenLoc, ContainsUnexpandedParameterPack, ResultIndex);
4478}
4479
4480GenericSelectionExpr *GenericSelectionExpr::Create(
4481 const ASTContext &Context, SourceLocation GenericLoc,
4482 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes,
4483 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
4484 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack) {
4485 unsigned NumAssocs = AssocExprs.size();
4486 void *Mem = Context.Allocate(
4487 Size: totalSizeToAlloc<Stmt *, TypeSourceInfo *>(Counts: 1 + NumAssocs, Counts: NumAssocs),
4488 Align: alignof(GenericSelectionExpr));
4489 return new (Mem) GenericSelectionExpr(
4490 Context, GenericLoc, ControllingType, AssocTypes, AssocExprs, DefaultLoc,
4491 RParenLoc, ContainsUnexpandedParameterPack);
4492}
4493
4494GenericSelectionExpr *
4495GenericSelectionExpr::CreateEmpty(const ASTContext &Context,
4496 unsigned NumAssocs) {
4497 void *Mem = Context.Allocate(
4498 Size: totalSizeToAlloc<Stmt *, TypeSourceInfo *>(Counts: 1 + NumAssocs, Counts: NumAssocs),
4499 Align: alignof(GenericSelectionExpr));
4500 return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs);
4501}
4502
4503//===----------------------------------------------------------------------===//
4504// DesignatedInitExpr
4505//===----------------------------------------------------------------------===//
4506
4507const IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
4508 assert(isFieldDesignator() && "Only valid on a field designator");
4509 if (FieldInfo.NameOrField & 0x01)
4510 return reinterpret_cast<IdentifierInfo *>(FieldInfo.NameOrField & ~0x01);
4511 return getFieldDecl()->getIdentifier();
4512}
4513
4514DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
4515 llvm::ArrayRef<Designator> Designators,
4516 SourceLocation EqualOrColonLoc,
4517 bool GNUSyntax,
4518 ArrayRef<Expr *> IndexExprs, Expr *Init)
4519 : Expr(DesignatedInitExprClass, Ty, Init->getValueKind(),
4520 Init->getObjectKind()),
4521 EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
4522 NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) {
4523 this->Designators = new (C) Designator[NumDesignators];
4524
4525 // Record the initializer itself.
4526 child_iterator Child = child_begin();
4527 *Child++ = Init;
4528
4529 // Copy the designators and their subexpressions, computing
4530 // value-dependence along the way.
4531 unsigned IndexIdx = 0;
4532 for (unsigned I = 0; I != NumDesignators; ++I) {
4533 this->Designators[I] = Designators[I];
4534 if (this->Designators[I].isArrayDesignator()) {
4535 // Copy the index expressions into permanent storage.
4536 *Child++ = IndexExprs[IndexIdx++];
4537 } else if (this->Designators[I].isArrayRangeDesignator()) {
4538 // Copy the start/end expressions into permanent storage.
4539 *Child++ = IndexExprs[IndexIdx++];
4540 *Child++ = IndexExprs[IndexIdx++];
4541 }
4542 }
4543
4544 assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
4545 setDependence(computeDependence(E: this));
4546}
4547
4548DesignatedInitExpr *
4549DesignatedInitExpr::Create(const ASTContext &C,
4550 llvm::ArrayRef<Designator> Designators,
4551 ArrayRef<Expr*> IndexExprs,
4552 SourceLocation ColonOrEqualLoc,
4553 bool UsesColonSyntax, Expr *Init) {
4554 void *Mem = C.Allocate(Size: totalSizeToAlloc<Stmt *>(Counts: IndexExprs.size() + 1),
4555 Align: alignof(DesignatedInitExpr));
4556 return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators,
4557 ColonOrEqualLoc, UsesColonSyntax,
4558 IndexExprs, Init);
4559}
4560
4561DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
4562 unsigned NumIndexExprs) {
4563 void *Mem = C.Allocate(Size: totalSizeToAlloc<Stmt *>(Counts: NumIndexExprs + 1),
4564 Align: alignof(DesignatedInitExpr));
4565 return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
4566}
4567
4568void DesignatedInitExpr::setDesignators(const ASTContext &C,
4569 const Designator *Desigs,
4570 unsigned NumDesigs) {
4571 Designators = new (C) Designator[NumDesigs];
4572 NumDesignators = NumDesigs;
4573 for (unsigned I = 0; I != NumDesigs; ++I)
4574 Designators[I] = Desigs[I];
4575}
4576
4577SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
4578 DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
4579 if (size() == 1)
4580 return DIE->getDesignator(Idx: 0)->getSourceRange();
4581 return SourceRange(DIE->getDesignator(Idx: 0)->getBeginLoc(),
4582 DIE->getDesignator(Idx: size() - 1)->getEndLoc());
4583}
4584
4585SourceLocation DesignatedInitExpr::getBeginLoc() const {
4586 auto *DIE = const_cast<DesignatedInitExpr *>(this);
4587 Designator &First = *DIE->getDesignator(Idx: 0);
4588 if (First.isFieldDesignator())
4589 return GNUSyntax ? First.getFieldLoc() : First.getDotLoc();
4590 return First.getLBracketLoc();
4591}
4592
4593SourceLocation DesignatedInitExpr::getEndLoc() const {
4594 return getInit()->getEndLoc();
4595}
4596
4597Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
4598 assert(D.isArrayDesignator() && "Requires array designator");
4599 return getSubExpr(Idx: D.getArrayIndex() + 1);
4600}
4601
4602Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
4603 assert(D.isArrayRangeDesignator() && "Requires array range designator");
4604 return getSubExpr(Idx: D.getArrayIndex() + 1);
4605}
4606
4607Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
4608 assert(D.isArrayRangeDesignator() && "Requires array range designator");
4609 return getSubExpr(Idx: D.getArrayIndex() + 2);
4610}
4611
4612/// Replaces the designator at index @p Idx with the series
4613/// of designators in [First, Last).
4614void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
4615 const Designator *First,
4616 const Designator *Last) {
4617 unsigned NumNewDesignators = Last - First;
4618 if (NumNewDesignators == 0) {
4619 std::copy_backward(first: Designators + Idx + 1,
4620 last: Designators + NumDesignators,
4621 result: Designators + Idx);
4622 --NumNewDesignators;
4623 return;
4624 }
4625 if (NumNewDesignators == 1) {
4626 Designators[Idx] = *First;
4627 return;
4628 }
4629
4630 Designator *NewDesignators
4631 = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
4632 std::copy(first: Designators, last: Designators + Idx, result: NewDesignators);
4633 std::copy(first: First, last: Last, result: NewDesignators + Idx);
4634 std::copy(first: Designators + Idx + 1, last: Designators + NumDesignators,
4635 result: NewDesignators + Idx + NumNewDesignators);
4636 Designators = NewDesignators;
4637 NumDesignators = NumDesignators - 1 + NumNewDesignators;
4638}
4639
4640DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C,
4641 SourceLocation lBraceLoc,
4642 Expr *baseExpr,
4643 SourceLocation rBraceLoc)
4644 : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_PRValue,
4645 OK_Ordinary) {
4646 BaseAndUpdaterExprs[0] = baseExpr;
4647
4648 InitListExpr *ILE =
4649 new (C) InitListExpr(C, lBraceLoc, std::nullopt, rBraceLoc);
4650 ILE->setType(baseExpr->getType());
4651 BaseAndUpdaterExprs[1] = ILE;
4652
4653 // FIXME: this is wrong, set it correctly.
4654 setDependence(ExprDependence::None);
4655}
4656
4657SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const {
4658 return getBase()->getBeginLoc();
4659}
4660
4661SourceLocation DesignatedInitUpdateExpr::getEndLoc() const {
4662 return getBase()->getEndLoc();
4663}
4664
4665ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs,
4666 SourceLocation RParenLoc)
4667 : Expr(ParenListExprClass, QualType(), VK_PRValue, OK_Ordinary),
4668 LParenLoc(LParenLoc), RParenLoc(RParenLoc) {
4669 ParenListExprBits.NumExprs = Exprs.size();
4670
4671 for (unsigned I = 0, N = Exprs.size(); I != N; ++I)
4672 getTrailingObjects<Stmt *>()[I] = Exprs[I];
4673 setDependence(computeDependence(E: this));
4674}
4675
4676ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs)
4677 : Expr(ParenListExprClass, Empty) {
4678 ParenListExprBits.NumExprs = NumExprs;
4679}
4680
4681ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx,
4682 SourceLocation LParenLoc,
4683 ArrayRef<Expr *> Exprs,
4684 SourceLocation RParenLoc) {
4685 void *Mem = Ctx.Allocate(Size: totalSizeToAlloc<Stmt *>(Counts: Exprs.size()),
4686 Align: alignof(ParenListExpr));
4687 return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc);
4688}
4689
4690ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx,
4691 unsigned NumExprs) {
4692 void *Mem =
4693 Ctx.Allocate(Size: totalSizeToAlloc<Stmt *>(Counts: NumExprs), Align: alignof(ParenListExpr));
4694 return new (Mem) ParenListExpr(EmptyShell(), NumExprs);
4695}
4696
4697BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs,
4698 Opcode opc, QualType ResTy, ExprValueKind VK,
4699 ExprObjectKind OK, SourceLocation opLoc,
4700 FPOptionsOverride FPFeatures)
4701 : Expr(BinaryOperatorClass, ResTy, VK, OK) {
4702 BinaryOperatorBits.Opc = opc;
4703 assert(!isCompoundAssignmentOp() &&
4704 "Use CompoundAssignOperator for compound assignments");
4705 BinaryOperatorBits.OpLoc = opLoc;
4706 SubExprs[LHS] = lhs;
4707 SubExprs[RHS] = rhs;
4708 BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4709 if (hasStoredFPFeatures())
4710 setStoredFPFeatures(FPFeatures);
4711 setDependence(computeDependence(E: this));
4712}
4713
4714BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs,
4715 Opcode opc, QualType ResTy, ExprValueKind VK,
4716 ExprObjectKind OK, SourceLocation opLoc,
4717 FPOptionsOverride FPFeatures, bool dead2)
4718 : Expr(CompoundAssignOperatorClass, ResTy, VK, OK) {
4719 BinaryOperatorBits.Opc = opc;
4720 assert(isCompoundAssignmentOp() &&
4721 "Use CompoundAssignOperator for compound assignments");
4722 BinaryOperatorBits.OpLoc = opLoc;
4723 SubExprs[LHS] = lhs;
4724 SubExprs[RHS] = rhs;
4725 BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4726 if (hasStoredFPFeatures())
4727 setStoredFPFeatures(FPFeatures);
4728 setDependence(computeDependence(E: this));
4729}
4730
4731BinaryOperator *BinaryOperator::CreateEmpty(const ASTContext &C,
4732 bool HasFPFeatures) {
4733 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4734 void *Mem =
4735 C.Allocate(Size: sizeof(BinaryOperator) + Extra, Align: alignof(BinaryOperator));
4736 return new (Mem) BinaryOperator(EmptyShell());
4737}
4738
4739BinaryOperator *BinaryOperator::Create(const ASTContext &C, Expr *lhs,
4740 Expr *rhs, Opcode opc, QualType ResTy,
4741 ExprValueKind VK, ExprObjectKind OK,
4742 SourceLocation opLoc,
4743 FPOptionsOverride FPFeatures) {
4744 bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4745 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4746 void *Mem =
4747 C.Allocate(Size: sizeof(BinaryOperator) + Extra, Align: alignof(BinaryOperator));
4748 return new (Mem)
4749 BinaryOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures);
4750}
4751
4752CompoundAssignOperator *
4753CompoundAssignOperator::CreateEmpty(const ASTContext &C, bool HasFPFeatures) {
4754 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4755 void *Mem = C.Allocate(Size: sizeof(CompoundAssignOperator) + Extra,
4756 Align: alignof(CompoundAssignOperator));
4757 return new (Mem) CompoundAssignOperator(C, EmptyShell(), HasFPFeatures);
4758}
4759
4760CompoundAssignOperator *
4761CompoundAssignOperator::Create(const ASTContext &C, Expr *lhs, Expr *rhs,
4762 Opcode opc, QualType ResTy, ExprValueKind VK,
4763 ExprObjectKind OK, SourceLocation opLoc,
4764 FPOptionsOverride FPFeatures,
4765 QualType CompLHSType, QualType CompResultType) {
4766 bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4767 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4768 void *Mem = C.Allocate(Size: sizeof(CompoundAssignOperator) + Extra,
4769 Align: alignof(CompoundAssignOperator));
4770 return new (Mem)
4771 CompoundAssignOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures,
4772 CompLHSType, CompResultType);
4773}
4774
4775UnaryOperator *UnaryOperator::CreateEmpty(const ASTContext &C,
4776 bool hasFPFeatures) {
4777 void *Mem = C.Allocate(Size: totalSizeToAlloc<FPOptionsOverride>(Counts: hasFPFeatures),
4778 Align: alignof(UnaryOperator));
4779 return new (Mem) UnaryOperator(hasFPFeatures, EmptyShell());
4780}
4781
4782UnaryOperator::UnaryOperator(const ASTContext &Ctx, Expr *input, Opcode opc,
4783 QualType type, ExprValueKind VK, ExprObjectKind OK,
4784 SourceLocation l, bool CanOverflow,
4785 FPOptionsOverride FPFeatures)
4786 : Expr(UnaryOperatorClass, type, VK, OK), Val(input) {
4787 UnaryOperatorBits.Opc = opc;
4788 UnaryOperatorBits.CanOverflow = CanOverflow;
4789 UnaryOperatorBits.Loc = l;
4790 UnaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4791 if (hasStoredFPFeatures())
4792 setStoredFPFeatures(FPFeatures);
4793 setDependence(computeDependence(E: this, Ctx));
4794}
4795
4796UnaryOperator *UnaryOperator::Create(const ASTContext &C, Expr *input,
4797 Opcode opc, QualType type,
4798 ExprValueKind VK, ExprObjectKind OK,
4799 SourceLocation l, bool CanOverflow,
4800 FPOptionsOverride FPFeatures) {
4801 bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4802 unsigned Size = totalSizeToAlloc<FPOptionsOverride>(Counts: HasFPFeatures);
4803 void *Mem = C.Allocate(Size, Align: alignof(UnaryOperator));
4804 return new (Mem)
4805 UnaryOperator(C, input, opc, type, VK, OK, l, CanOverflow, FPFeatures);
4806}
4807
4808const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
4809 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(Val: e))
4810 e = ewc->getSubExpr();
4811 if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(Val: e))
4812 e = m->getSubExpr();
4813 e = cast<CXXConstructExpr>(Val: e)->getArg(Arg: 0);
4814 while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(Val: e))
4815 e = ice->getSubExpr();
4816 return cast<OpaqueValueExpr>(Val: e);
4817}
4818
4819PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
4820 EmptyShell sh,
4821 unsigned numSemanticExprs) {
4822 void *buffer =
4823 Context.Allocate(Size: totalSizeToAlloc<Expr *>(Counts: 1 + numSemanticExprs),
4824 Align: alignof(PseudoObjectExpr));
4825 return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
4826}
4827
4828PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
4829 : Expr(PseudoObjectExprClass, shell) {
4830 PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
4831}
4832
4833PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
4834 ArrayRef<Expr*> semantics,
4835 unsigned resultIndex) {
4836 assert(syntax && "no syntactic expression!");
4837 assert(semantics.size() && "no semantic expressions!");
4838
4839 QualType type;
4840 ExprValueKind VK;
4841 if (resultIndex == NoResult) {
4842 type = C.VoidTy;
4843 VK = VK_PRValue;
4844 } else {
4845 assert(resultIndex < semantics.size());
4846 type = semantics[resultIndex]->getType();
4847 VK = semantics[resultIndex]->getValueKind();
4848 assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
4849 }
4850
4851 void *buffer = C.Allocate(Size: totalSizeToAlloc<Expr *>(Counts: semantics.size() + 1),
4852 Align: alignof(PseudoObjectExpr));
4853 return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
4854 resultIndex);
4855}
4856
4857PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
4858 Expr *syntax, ArrayRef<Expr *> semantics,
4859 unsigned resultIndex)
4860 : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary) {
4861 PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
4862 PseudoObjectExprBits.ResultIndex = resultIndex + 1;
4863
4864 for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
4865 Expr *E = (i == 0 ? syntax : semantics[i-1]);
4866 getSubExprsBuffer()[i] = E;
4867
4868 if (isa<OpaqueValueExpr>(Val: E))
4869 assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
4870 "opaque-value semantic expressions for pseudo-object "
4871 "operations must have sources");
4872 }
4873
4874 setDependence(computeDependence(E: this));
4875}
4876
4877//===----------------------------------------------------------------------===//
4878// Child Iterators for iterating over subexpressions/substatements
4879//===----------------------------------------------------------------------===//
4880
4881// UnaryExprOrTypeTraitExpr
4882Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
4883 const_child_range CCR =
4884 const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children();
4885 return child_range(cast_away_const(RHS: CCR.begin()), cast_away_const(RHS: CCR.end()));
4886}
4887
4888Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const {
4889 // If this is of a type and the type is a VLA type (and not a typedef), the
4890 // size expression of the VLA needs to be treated as an executable expression.
4891 // Why isn't this weirdness documented better in StmtIterator?
4892 if (isArgumentType()) {
4893 if (const VariableArrayType *T =
4894 dyn_cast<VariableArrayType>(Val: getArgumentType().getTypePtr()))
4895 return const_child_range(const_child_iterator(T), const_child_iterator());
4896 return const_child_range(const_child_iterator(), const_child_iterator());
4897 }
4898 return const_child_range(&Argument.Ex, &Argument.Ex + 1);
4899}
4900
4901AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr *> args, QualType t,
4902 AtomicOp op, SourceLocation RP)
4903 : Expr(AtomicExprClass, t, VK_PRValue, OK_Ordinary),
4904 NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) {
4905 assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
4906 for (unsigned i = 0; i != args.size(); i++)
4907 SubExprs[i] = args[i];
4908 setDependence(computeDependence(E: this));
4909}
4910
4911unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
4912 switch (Op) {
4913 case AO__c11_atomic_init:
4914 case AO__opencl_atomic_init:
4915 case AO__c11_atomic_load:
4916 case AO__atomic_load_n:
4917 return 2;
4918
4919 case AO__scoped_atomic_load_n:
4920 case AO__opencl_atomic_load:
4921 case AO__hip_atomic_load:
4922 case AO__c11_atomic_store:
4923 case AO__c11_atomic_exchange:
4924 case AO__atomic_load:
4925 case AO__atomic_store:
4926 case AO__atomic_store_n:
4927 case AO__atomic_exchange_n:
4928 case AO__c11_atomic_fetch_add:
4929 case AO__c11_atomic_fetch_sub:
4930 case AO__c11_atomic_fetch_and:
4931 case AO__c11_atomic_fetch_or:
4932 case AO__c11_atomic_fetch_xor:
4933 case AO__c11_atomic_fetch_nand:
4934 case AO__c11_atomic_fetch_max:
4935 case AO__c11_atomic_fetch_min:
4936 case AO__atomic_fetch_add:
4937 case AO__atomic_fetch_sub:
4938 case AO__atomic_fetch_and:
4939 case AO__atomic_fetch_or:
4940 case AO__atomic_fetch_xor:
4941 case AO__atomic_fetch_nand:
4942 case AO__atomic_add_fetch:
4943 case AO__atomic_sub_fetch:
4944 case AO__atomic_and_fetch:
4945 case AO__atomic_or_fetch:
4946 case AO__atomic_xor_fetch:
4947 case AO__atomic_nand_fetch:
4948 case AO__atomic_min_fetch:
4949 case AO__atomic_max_fetch:
4950 case AO__atomic_fetch_min:
4951 case AO__atomic_fetch_max:
4952 return 3;
4953
4954 case AO__scoped_atomic_load:
4955 case AO__scoped_atomic_store:
4956 case AO__scoped_atomic_store_n:
4957 case AO__scoped_atomic_fetch_add:
4958 case AO__scoped_atomic_fetch_sub:
4959 case AO__scoped_atomic_fetch_and:
4960 case AO__scoped_atomic_fetch_or:
4961 case AO__scoped_atomic_fetch_xor:
4962 case AO__scoped_atomic_fetch_nand:
4963 case AO__scoped_atomic_add_fetch:
4964 case AO__scoped_atomic_sub_fetch:
4965 case AO__scoped_atomic_and_fetch:
4966 case AO__scoped_atomic_or_fetch:
4967 case AO__scoped_atomic_xor_fetch:
4968 case AO__scoped_atomic_nand_fetch:
4969 case AO__scoped_atomic_min_fetch:
4970 case AO__scoped_atomic_max_fetch:
4971 case AO__scoped_atomic_fetch_min:
4972 case AO__scoped_atomic_fetch_max:
4973 case AO__scoped_atomic_exchange_n:
4974 case AO__hip_atomic_exchange:
4975 case AO__hip_atomic_fetch_add:
4976 case AO__hip_atomic_fetch_sub:
4977 case AO__hip_atomic_fetch_and:
4978 case AO__hip_atomic_fetch_or:
4979 case AO__hip_atomic_fetch_xor:
4980 case AO__hip_atomic_fetch_min:
4981 case AO__hip_atomic_fetch_max:
4982 case AO__opencl_atomic_store:
4983 case AO__hip_atomic_store:
4984 case AO__opencl_atomic_exchange:
4985 case AO__opencl_atomic_fetch_add:
4986 case AO__opencl_atomic_fetch_sub:
4987 case AO__opencl_atomic_fetch_and:
4988 case AO__opencl_atomic_fetch_or:
4989 case AO__opencl_atomic_fetch_xor:
4990 case AO__opencl_atomic_fetch_min:
4991 case AO__opencl_atomic_fetch_max:
4992 case AO__atomic_exchange:
4993 return 4;
4994
4995 case AO__scoped_atomic_exchange:
4996 case AO__c11_atomic_compare_exchange_strong:
4997 case AO__c11_atomic_compare_exchange_weak:
4998 return 5;
4999 case AO__hip_atomic_compare_exchange_strong:
5000 case AO__opencl_atomic_compare_exchange_strong:
5001 case AO__opencl_atomic_compare_exchange_weak:
5002 case AO__hip_atomic_compare_exchange_weak:
5003 case AO__atomic_compare_exchange:
5004 case AO__atomic_compare_exchange_n:
5005 return 6;
5006
5007 case AO__scoped_atomic_compare_exchange:
5008 case AO__scoped_atomic_compare_exchange_n:
5009 return 7;
5010 }
5011 llvm_unreachable("unknown atomic op");
5012}
5013
5014QualType AtomicExpr::getValueType() const {
5015 auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType();
5016 if (auto AT = T->getAs<AtomicType>())
5017 return AT->getValueType();
5018 return T;
5019}
5020
5021QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) {
5022 unsigned ArraySectionCount = 0;
5023 while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Val: Base->IgnoreParens())) {
5024 Base = OASE->getBase();
5025 ++ArraySectionCount;
5026 }
5027 while (auto *ASE =
5028 dyn_cast<ArraySubscriptExpr>(Val: Base->IgnoreParenImpCasts())) {
5029 Base = ASE->getBase();
5030 ++ArraySectionCount;
5031 }
5032 Base = Base->IgnoreParenImpCasts();
5033 auto OriginalTy = Base->getType();
5034 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: Base))
5035 if (auto *PVD = dyn_cast<ParmVarDecl>(Val: DRE->getDecl()))
5036 OriginalTy = PVD->getOriginalType().getNonReferenceType();
5037
5038 for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) {
5039 if (OriginalTy->isAnyPointerType())
5040 OriginalTy = OriginalTy->getPointeeType();
5041 else if (OriginalTy->isArrayType())
5042 OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType();
5043 else
5044 return {};
5045 }
5046 return OriginalTy;
5047}
5048
5049RecoveryExpr::RecoveryExpr(ASTContext &Ctx, QualType T, SourceLocation BeginLoc,
5050 SourceLocation EndLoc, ArrayRef<Expr *> SubExprs)
5051 : Expr(RecoveryExprClass, T.getNonReferenceType(),
5052 T->isDependentType() ? VK_LValue : getValueKindForType(T),
5053 OK_Ordinary),
5054 BeginLoc(BeginLoc), EndLoc(EndLoc), NumExprs(SubExprs.size()) {
5055 assert(!T.isNull());
5056 assert(!llvm::is_contained(SubExprs, nullptr));
5057
5058 llvm::copy(SubExprs, getTrailingObjects<Expr *>());
5059 setDependence(computeDependence(E: this));
5060}
5061
5062RecoveryExpr *RecoveryExpr::Create(ASTContext &Ctx, QualType T,
5063 SourceLocation BeginLoc,
5064 SourceLocation EndLoc,
5065 ArrayRef<Expr *> SubExprs) {
5066 void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(SubExprs.size()),
5067 alignof(RecoveryExpr));
5068 return new (Mem) RecoveryExpr(Ctx, T, BeginLoc, EndLoc, SubExprs);
5069}
5070
5071RecoveryExpr *RecoveryExpr::CreateEmpty(ASTContext &Ctx, unsigned NumSubExprs) {
5072 void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(NumSubExprs),
5073 alignof(RecoveryExpr));
5074 return new (Mem) RecoveryExpr(EmptyShell(), NumSubExprs);
5075}
5076
5077void OMPArrayShapingExpr::setDimensions(ArrayRef<Expr *> Dims) {
5078 assert(
5079 NumDims == Dims.size() &&
5080 "Preallocated number of dimensions is different from the provided one.");
5081 llvm::copy(Dims, getTrailingObjects<Expr *>());
5082}
5083
5084void OMPArrayShapingExpr::setBracketsRanges(ArrayRef<SourceRange> BR) {
5085 assert(
5086 NumDims == BR.size() &&
5087 "Preallocated number of dimensions is different from the provided one.");
5088 llvm::copy(BR, getTrailingObjects<SourceRange>());
5089}
5090
5091OMPArrayShapingExpr::OMPArrayShapingExpr(QualType ExprTy, Expr *Op,
5092 SourceLocation L, SourceLocation R,
5093 ArrayRef<Expr *> Dims)
5094 : Expr(OMPArrayShapingExprClass, ExprTy, VK_LValue, OK_Ordinary), LPLoc(L),
5095 RPLoc(R), NumDims(Dims.size()) {
5096 setBase(Op);
5097 setDimensions(Dims);
5098 setDependence(computeDependence(E: this));
5099}
5100
5101OMPArrayShapingExpr *
5102OMPArrayShapingExpr::Create(const ASTContext &Context, QualType T, Expr *Op,
5103 SourceLocation L, SourceLocation R,
5104 ArrayRef<Expr *> Dims,
5105 ArrayRef<SourceRange> BracketRanges) {
5106 assert(Dims.size() == BracketRanges.size() &&
5107 "Different number of dimensions and brackets ranges.");
5108 void *Mem = Context.Allocate(
5109 Size: totalSizeToAlloc<Expr *, SourceRange>(Counts: Dims.size() + 1, Counts: Dims.size()),
5110 Align: alignof(OMPArrayShapingExpr));
5111 auto *E = new (Mem) OMPArrayShapingExpr(T, Op, L, R, Dims);
5112 E->setBracketsRanges(BracketRanges);
5113 return E;
5114}
5115
5116OMPArrayShapingExpr *OMPArrayShapingExpr::CreateEmpty(const ASTContext &Context,
5117 unsigned NumDims) {
5118 void *Mem = Context.Allocate(
5119 Size: totalSizeToAlloc<Expr *, SourceRange>(Counts: NumDims + 1, Counts: NumDims),
5120 Align: alignof(OMPArrayShapingExpr));
5121 return new (Mem) OMPArrayShapingExpr(EmptyShell(), NumDims);
5122}
5123
5124void OMPIteratorExpr::setIteratorDeclaration(unsigned I, Decl *D) {
5125 assert(I < NumIterators &&
5126 "Idx is greater or equal the number of iterators definitions.");
5127 getTrailingObjects<Decl *>()[I] = D;
5128}
5129
5130void OMPIteratorExpr::setAssignmentLoc(unsigned I, SourceLocation Loc) {
5131 assert(I < NumIterators &&
5132 "Idx is greater or equal the number of iterators definitions.");
5133 getTrailingObjects<
5134 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5135 static_cast<int>(RangeLocOffset::AssignLoc)] = Loc;
5136}
5137
5138void OMPIteratorExpr::setIteratorRange(unsigned I, Expr *Begin,
5139 SourceLocation ColonLoc, Expr *End,
5140 SourceLocation SecondColonLoc,
5141 Expr *Step) {
5142 assert(I < NumIterators &&
5143 "Idx is greater or equal the number of iterators definitions.");
5144 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
5145 static_cast<int>(RangeExprOffset::Begin)] =
5146 Begin;
5147 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
5148 static_cast<int>(RangeExprOffset::End)] = End;
5149 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
5150 static_cast<int>(RangeExprOffset::Step)] = Step;
5151 getTrailingObjects<
5152 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5153 static_cast<int>(RangeLocOffset::FirstColonLoc)] =
5154 ColonLoc;
5155 getTrailingObjects<
5156 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5157 static_cast<int>(RangeLocOffset::SecondColonLoc)] =
5158 SecondColonLoc;
5159}
5160
5161Decl *OMPIteratorExpr::getIteratorDecl(unsigned I) {
5162 return getTrailingObjects<Decl *>()[I];
5163}
5164
5165OMPIteratorExpr::IteratorRange OMPIteratorExpr::getIteratorRange(unsigned I) {
5166 IteratorRange Res;
5167 Res.Begin =
5168 getTrailingObjects<Expr *>()[I * static_cast<int>(
5169 RangeExprOffset::Total) +
5170 static_cast<int>(RangeExprOffset::Begin)];
5171 Res.End =
5172 getTrailingObjects<Expr *>()[I * static_cast<int>(
5173 RangeExprOffset::Total) +
5174 static_cast<int>(RangeExprOffset::End)];
5175 Res.Step =
5176 getTrailingObjects<Expr *>()[I * static_cast<int>(
5177 RangeExprOffset::Total) +
5178 static_cast<int>(RangeExprOffset::Step)];
5179 return Res;
5180}
5181
5182SourceLocation OMPIteratorExpr::getAssignLoc(unsigned I) const {
5183 return getTrailingObjects<
5184 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5185 static_cast<int>(RangeLocOffset::AssignLoc)];
5186}
5187
5188SourceLocation OMPIteratorExpr::getColonLoc(unsigned I) const {
5189 return getTrailingObjects<
5190 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5191 static_cast<int>(RangeLocOffset::FirstColonLoc)];
5192}
5193
5194SourceLocation OMPIteratorExpr::getSecondColonLoc(unsigned I) const {
5195 return getTrailingObjects<
5196 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5197 static_cast<int>(RangeLocOffset::SecondColonLoc)];
5198}
5199
5200void OMPIteratorExpr::setHelper(unsigned I, const OMPIteratorHelperData &D) {
5201 getTrailingObjects<OMPIteratorHelperData>()[I] = D;
5202}
5203
5204OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) {
5205 return getTrailingObjects<OMPIteratorHelperData>()[I];
5206}
5207
5208const OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) const {
5209 return getTrailingObjects<OMPIteratorHelperData>()[I];
5210}
5211
5212OMPIteratorExpr::OMPIteratorExpr(
5213 QualType ExprTy, SourceLocation IteratorKwLoc, SourceLocation L,
5214 SourceLocation R, ArrayRef<OMPIteratorExpr::IteratorDefinition> Data,
5215 ArrayRef<OMPIteratorHelperData> Helpers)
5216 : Expr(OMPIteratorExprClass, ExprTy, VK_LValue, OK_Ordinary),
5217 IteratorKwLoc(IteratorKwLoc), LPLoc(L), RPLoc(R),
5218 NumIterators(Data.size()) {
5219 for (unsigned I = 0, E = Data.size(); I < E; ++I) {
5220 const IteratorDefinition &D = Data[I];
5221 setIteratorDeclaration(I, D: D.IteratorDecl);
5222 setAssignmentLoc(I, Loc: D.AssignmentLoc);
5223 setIteratorRange(I, Begin: D.Range.Begin, ColonLoc: D.ColonLoc, End: D.Range.End,
5224 SecondColonLoc: D.SecondColonLoc, Step: D.Range.Step);
5225 setHelper(I, D: Helpers[I]);
5226 }
5227 setDependence(computeDependence(E: this));
5228}
5229
5230OMPIteratorExpr *
5231OMPIteratorExpr::Create(const ASTContext &Context, QualType T,
5232 SourceLocation IteratorKwLoc, SourceLocation L,
5233 SourceLocation R,
5234 ArrayRef<OMPIteratorExpr::IteratorDefinition> Data,
5235 ArrayRef<OMPIteratorHelperData> Helpers) {
5236 assert(Data.size() == Helpers.size() &&
5237 "Data and helpers must have the same size.");
5238 void *Mem = Context.Allocate(
5239 Size: totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>(
5240 Counts: Data.size(), Counts: Data.size() * static_cast<int>(RangeExprOffset::Total),
5241 Counts: Data.size() * static_cast<int>(RangeLocOffset::Total),
5242 Counts: Helpers.size()),
5243 Align: alignof(OMPIteratorExpr));
5244 return new (Mem) OMPIteratorExpr(T, IteratorKwLoc, L, R, Data, Helpers);
5245}
5246
5247OMPIteratorExpr *OMPIteratorExpr::CreateEmpty(const ASTContext &Context,
5248 unsigned NumIterators) {
5249 void *Mem = Context.Allocate(
5250 Size: totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>(
5251 Counts: NumIterators, Counts: NumIterators * static_cast<int>(RangeExprOffset::Total),
5252 Counts: NumIterators * static_cast<int>(RangeLocOffset::Total), Counts: NumIterators),
5253 Align: alignof(OMPIteratorExpr));
5254 return new (Mem) OMPIteratorExpr(EmptyShell(), NumIterators);
5255}
5256

source code of clang/lib/AST/Expr.cpp