1//===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Expr constant evaluator.
10//
11// Constant expression evaluation produces four main results:
12//
13// * A success/failure flag indicating whether constant folding was successful.
14// This is the 'bool' return value used by most of the code in this file. A
15// 'false' return value indicates that constant folding has failed, and any
16// appropriate diagnostic has already been produced.
17//
18// * An evaluated result, valid only if constant folding has not failed.
19//
20// * A flag indicating if evaluation encountered (unevaluated) side-effects.
21// These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
22// where it is possible to determine the evaluated result regardless.
23//
24// * A set of notes indicating why the evaluation was not a constant expression
25// (under the C++11 / C++1y rules only, at the moment), or, if folding failed
26// too, why the expression could not be folded.
27//
28// If we are checking for a potential constant expression, failure to constant
29// fold a potential constant sub-expression will be indicated by a 'false'
30// return value (the expression could not be folded) and no diagnostic (the
31// expression is not necessarily non-constant).
32//
33//===----------------------------------------------------------------------===//
34
35#include "ExprConstShared.h"
36#include "Interp/Context.h"
37#include "Interp/Frame.h"
38#include "Interp/State.h"
39#include "clang/AST/APValue.h"
40#include "clang/AST/ASTContext.h"
41#include "clang/AST/ASTDiagnostic.h"
42#include "clang/AST/ASTLambda.h"
43#include "clang/AST/Attr.h"
44#include "clang/AST/CXXInheritance.h"
45#include "clang/AST/CharUnits.h"
46#include "clang/AST/CurrentSourceLocExprScope.h"
47#include "clang/AST/Expr.h"
48#include "clang/AST/OSLog.h"
49#include "clang/AST/OptionalDiagnostic.h"
50#include "clang/AST/RecordLayout.h"
51#include "clang/AST/StmtVisitor.h"
52#include "clang/AST/TypeLoc.h"
53#include "clang/Basic/Builtins.h"
54#include "clang/Basic/DiagnosticSema.h"
55#include "clang/Basic/TargetInfo.h"
56#include "llvm/ADT/APFixedPoint.h"
57#include "llvm/ADT/SmallBitVector.h"
58#include "llvm/ADT/StringExtras.h"
59#include "llvm/Support/Debug.h"
60#include "llvm/Support/SaveAndRestore.h"
61#include "llvm/Support/TimeProfiler.h"
62#include "llvm/Support/raw_ostream.h"
63#include <cstring>
64#include <functional>
65#include <optional>
66
67#define DEBUG_TYPE "exprconstant"
68
69using namespace clang;
70using llvm::APFixedPoint;
71using llvm::APInt;
72using llvm::APSInt;
73using llvm::APFloat;
74using llvm::FixedPointSemantics;
75
76namespace {
77 struct LValue;
78 class CallStackFrame;
79 class EvalInfo;
80
81 using SourceLocExprScopeGuard =
82 CurrentSourceLocExprScope::SourceLocExprScopeGuard;
83
84 static QualType getType(APValue::LValueBase B) {
85 return B.getType();
86 }
87
88 /// Get an LValue path entry, which is known to not be an array index, as a
89 /// field declaration.
90 static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
91 return dyn_cast_or_null<FieldDecl>(Val: E.getAsBaseOrMember().getPointer());
92 }
93 /// Get an LValue path entry, which is known to not be an array index, as a
94 /// base class declaration.
95 static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
96 return dyn_cast_or_null<CXXRecordDecl>(Val: E.getAsBaseOrMember().getPointer());
97 }
98 /// Determine whether this LValue path entry for a base class names a virtual
99 /// base class.
100 static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
101 return E.getAsBaseOrMember().getInt();
102 }
103
104 /// Given an expression, determine the type used to store the result of
105 /// evaluating that expression.
106 static QualType getStorageType(const ASTContext &Ctx, const Expr *E) {
107 if (E->isPRValue())
108 return E->getType();
109 return Ctx.getLValueReferenceType(T: E->getType());
110 }
111
112 /// Given a CallExpr, try to get the alloc_size attribute. May return null.
113 static const AllocSizeAttr *getAllocSizeAttr(const CallExpr *CE) {
114 if (const FunctionDecl *DirectCallee = CE->getDirectCallee())
115 return DirectCallee->getAttr<AllocSizeAttr>();
116 if (const Decl *IndirectCallee = CE->getCalleeDecl())
117 return IndirectCallee->getAttr<AllocSizeAttr>();
118 return nullptr;
119 }
120
121 /// Attempts to unwrap a CallExpr (with an alloc_size attribute) from an Expr.
122 /// This will look through a single cast.
123 ///
124 /// Returns null if we couldn't unwrap a function with alloc_size.
125 static const CallExpr *tryUnwrapAllocSizeCall(const Expr *E) {
126 if (!E->getType()->isPointerType())
127 return nullptr;
128
129 E = E->IgnoreParens();
130 // If we're doing a variable assignment from e.g. malloc(N), there will
131 // probably be a cast of some kind. In exotic cases, we might also see a
132 // top-level ExprWithCleanups. Ignore them either way.
133 if (const auto *FE = dyn_cast<FullExpr>(Val: E))
134 E = FE->getSubExpr()->IgnoreParens();
135
136 if (const auto *Cast = dyn_cast<CastExpr>(Val: E))
137 E = Cast->getSubExpr()->IgnoreParens();
138
139 if (const auto *CE = dyn_cast<CallExpr>(E))
140 return getAllocSizeAttr(CE) ? CE : nullptr;
141 return nullptr;
142 }
143
144 /// Determines whether or not the given Base contains a call to a function
145 /// with the alloc_size attribute.
146 static bool isBaseAnAllocSizeCall(APValue::LValueBase Base) {
147 const auto *E = Base.dyn_cast<const Expr *>();
148 return E && E->getType()->isPointerType() && tryUnwrapAllocSizeCall(E);
149 }
150
151 /// Determines whether the given kind of constant expression is only ever
152 /// used for name mangling. If so, it's permitted to reference things that we
153 /// can't generate code for (in particular, dllimported functions).
154 static bool isForManglingOnly(ConstantExprKind Kind) {
155 switch (Kind) {
156 case ConstantExprKind::Normal:
157 case ConstantExprKind::ClassTemplateArgument:
158 case ConstantExprKind::ImmediateInvocation:
159 // Note that non-type template arguments of class type are emitted as
160 // template parameter objects.
161 return false;
162
163 case ConstantExprKind::NonClassTemplateArgument:
164 return true;
165 }
166 llvm_unreachable("unknown ConstantExprKind");
167 }
168
169 static bool isTemplateArgument(ConstantExprKind Kind) {
170 switch (Kind) {
171 case ConstantExprKind::Normal:
172 case ConstantExprKind::ImmediateInvocation:
173 return false;
174
175 case ConstantExprKind::ClassTemplateArgument:
176 case ConstantExprKind::NonClassTemplateArgument:
177 return true;
178 }
179 llvm_unreachable("unknown ConstantExprKind");
180 }
181
182 /// The bound to claim that an array of unknown bound has.
183 /// The value in MostDerivedArraySize is undefined in this case. So, set it
184 /// to an arbitrary value that's likely to loudly break things if it's used.
185 static const uint64_t AssumedSizeForUnsizedArray =
186 std::numeric_limits<uint64_t>::max() / 2;
187
188 /// Determines if an LValue with the given LValueBase will have an unsized
189 /// array in its designator.
190 /// Find the path length and type of the most-derived subobject in the given
191 /// path, and find the size of the containing array, if any.
192 static unsigned
193 findMostDerivedSubobject(ASTContext &Ctx, APValue::LValueBase Base,
194 ArrayRef<APValue::LValuePathEntry> Path,
195 uint64_t &ArraySize, QualType &Type, bool &IsArray,
196 bool &FirstEntryIsUnsizedArray) {
197 // This only accepts LValueBases from APValues, and APValues don't support
198 // arrays that lack size info.
199 assert(!isBaseAnAllocSizeCall(Base) &&
200 "Unsized arrays shouldn't appear here");
201 unsigned MostDerivedLength = 0;
202 Type = getType(B: Base);
203
204 for (unsigned I = 0, N = Path.size(); I != N; ++I) {
205 if (Type->isArrayType()) {
206 const ArrayType *AT = Ctx.getAsArrayType(T: Type);
207 Type = AT->getElementType();
208 MostDerivedLength = I + 1;
209 IsArray = true;
210
211 if (auto *CAT = dyn_cast<ConstantArrayType>(Val: AT)) {
212 ArraySize = CAT->getSize().getZExtValue();
213 } else {
214 assert(I == 0 && "unexpected unsized array designator");
215 FirstEntryIsUnsizedArray = true;
216 ArraySize = AssumedSizeForUnsizedArray;
217 }
218 } else if (Type->isAnyComplexType()) {
219 const ComplexType *CT = Type->castAs<ComplexType>();
220 Type = CT->getElementType();
221 ArraySize = 2;
222 MostDerivedLength = I + 1;
223 IsArray = true;
224 } else if (const FieldDecl *FD = getAsField(E: Path[I])) {
225 Type = FD->getType();
226 ArraySize = 0;
227 MostDerivedLength = I + 1;
228 IsArray = false;
229 } else {
230 // Path[I] describes a base class.
231 ArraySize = 0;
232 IsArray = false;
233 }
234 }
235 return MostDerivedLength;
236 }
237
238 /// A path from a glvalue to a subobject of that glvalue.
239 struct SubobjectDesignator {
240 /// True if the subobject was named in a manner not supported by C++11. Such
241 /// lvalues can still be folded, but they are not core constant expressions
242 /// and we cannot perform lvalue-to-rvalue conversions on them.
243 LLVM_PREFERRED_TYPE(bool)
244 unsigned Invalid : 1;
245
246 /// Is this a pointer one past the end of an object?
247 LLVM_PREFERRED_TYPE(bool)
248 unsigned IsOnePastTheEnd : 1;
249
250 /// Indicator of whether the first entry is an unsized array.
251 LLVM_PREFERRED_TYPE(bool)
252 unsigned FirstEntryIsAnUnsizedArray : 1;
253
254 /// Indicator of whether the most-derived object is an array element.
255 LLVM_PREFERRED_TYPE(bool)
256 unsigned MostDerivedIsArrayElement : 1;
257
258 /// The length of the path to the most-derived object of which this is a
259 /// subobject.
260 unsigned MostDerivedPathLength : 28;
261
262 /// The size of the array of which the most-derived object is an element.
263 /// This will always be 0 if the most-derived object is not an array
264 /// element. 0 is not an indicator of whether or not the most-derived object
265 /// is an array, however, because 0-length arrays are allowed.
266 ///
267 /// If the current array is an unsized array, the value of this is
268 /// undefined.
269 uint64_t MostDerivedArraySize;
270
271 /// The type of the most derived object referred to by this address.
272 QualType MostDerivedType;
273
274 typedef APValue::LValuePathEntry PathEntry;
275
276 /// The entries on the path from the glvalue to the designated subobject.
277 SmallVector<PathEntry, 8> Entries;
278
279 SubobjectDesignator() : Invalid(true) {}
280
281 explicit SubobjectDesignator(QualType T)
282 : Invalid(false), IsOnePastTheEnd(false),
283 FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
284 MostDerivedPathLength(0), MostDerivedArraySize(0),
285 MostDerivedType(T) {}
286
287 SubobjectDesignator(ASTContext &Ctx, const APValue &V)
288 : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
289 FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
290 MostDerivedPathLength(0), MostDerivedArraySize(0) {
291 assert(V.isLValue() && "Non-LValue used to make an LValue designator?");
292 if (!Invalid) {
293 IsOnePastTheEnd = V.isLValueOnePastTheEnd();
294 ArrayRef<PathEntry> VEntries = V.getLValuePath();
295 Entries.insert(I: Entries.end(), From: VEntries.begin(), To: VEntries.end());
296 if (V.getLValueBase()) {
297 bool IsArray = false;
298 bool FirstIsUnsizedArray = false;
299 MostDerivedPathLength = findMostDerivedSubobject(
300 Ctx, V.getLValueBase(), V.getLValuePath(), MostDerivedArraySize,
301 MostDerivedType, IsArray, FirstIsUnsizedArray);
302 MostDerivedIsArrayElement = IsArray;
303 FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
304 }
305 }
306 }
307
308 void truncate(ASTContext &Ctx, APValue::LValueBase Base,
309 unsigned NewLength) {
310 if (Invalid)
311 return;
312
313 assert(Base && "cannot truncate path for null pointer");
314 assert(NewLength <= Entries.size() && "not a truncation");
315
316 if (NewLength == Entries.size())
317 return;
318 Entries.resize(N: NewLength);
319
320 bool IsArray = false;
321 bool FirstIsUnsizedArray = false;
322 MostDerivedPathLength = findMostDerivedSubobject(
323 Ctx, Base, Entries, MostDerivedArraySize, MostDerivedType, IsArray,
324 FirstIsUnsizedArray);
325 MostDerivedIsArrayElement = IsArray;
326 FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
327 }
328
329 void setInvalid() {
330 Invalid = true;
331 Entries.clear();
332 }
333
334 /// Determine whether the most derived subobject is an array without a
335 /// known bound.
336 bool isMostDerivedAnUnsizedArray() const {
337 assert(!Invalid && "Calling this makes no sense on invalid designators");
338 return Entries.size() == 1 && FirstEntryIsAnUnsizedArray;
339 }
340
341 /// Determine what the most derived array's size is. Results in an assertion
342 /// failure if the most derived array lacks a size.
343 uint64_t getMostDerivedArraySize() const {
344 assert(!isMostDerivedAnUnsizedArray() && "Unsized array has no size");
345 return MostDerivedArraySize;
346 }
347
348 /// Determine whether this is a one-past-the-end pointer.
349 bool isOnePastTheEnd() const {
350 assert(!Invalid);
351 if (IsOnePastTheEnd)
352 return true;
353 if (!isMostDerivedAnUnsizedArray() && MostDerivedIsArrayElement &&
354 Entries[MostDerivedPathLength - 1].getAsArrayIndex() ==
355 MostDerivedArraySize)
356 return true;
357 return false;
358 }
359
360 /// Get the range of valid index adjustments in the form
361 /// {maximum value that can be subtracted from this pointer,
362 /// maximum value that can be added to this pointer}
363 std::pair<uint64_t, uint64_t> validIndexAdjustments() {
364 if (Invalid || isMostDerivedAnUnsizedArray())
365 return {0, 0};
366
367 // [expr.add]p4: For the purposes of these operators, a pointer to a
368 // nonarray object behaves the same as a pointer to the first element of
369 // an array of length one with the type of the object as its element type.
370 bool IsArray = MostDerivedPathLength == Entries.size() &&
371 MostDerivedIsArrayElement;
372 uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
373 : (uint64_t)IsOnePastTheEnd;
374 uint64_t ArraySize =
375 IsArray ? getMostDerivedArraySize() : (uint64_t)1;
376 return {ArrayIndex, ArraySize - ArrayIndex};
377 }
378
379 /// Check that this refers to a valid subobject.
380 bool isValidSubobject() const {
381 if (Invalid)
382 return false;
383 return !isOnePastTheEnd();
384 }
385 /// Check that this refers to a valid subobject, and if not, produce a
386 /// relevant diagnostic and set the designator as invalid.
387 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
388
389 /// Get the type of the designated object.
390 QualType getType(ASTContext &Ctx) const {
391 assert(!Invalid && "invalid designator has no subobject type");
392 return MostDerivedPathLength == Entries.size()
393 ? MostDerivedType
394 : Ctx.getRecordType(getAsBaseClass(Entries.back()));
395 }
396
397 /// Update this designator to refer to the first element within this array.
398 void addArrayUnchecked(const ConstantArrayType *CAT) {
399 Entries.push_back(Elt: PathEntry::ArrayIndex(Index: 0));
400
401 // This is a most-derived object.
402 MostDerivedType = CAT->getElementType();
403 MostDerivedIsArrayElement = true;
404 MostDerivedArraySize = CAT->getSize().getZExtValue();
405 MostDerivedPathLength = Entries.size();
406 }
407 /// Update this designator to refer to the first element within the array of
408 /// elements of type T. This is an array of unknown size.
409 void addUnsizedArrayUnchecked(QualType ElemTy) {
410 Entries.push_back(Elt: PathEntry::ArrayIndex(Index: 0));
411
412 MostDerivedType = ElemTy;
413 MostDerivedIsArrayElement = true;
414 // The value in MostDerivedArraySize is undefined in this case. So, set it
415 // to an arbitrary value that's likely to loudly break things if it's
416 // used.
417 MostDerivedArraySize = AssumedSizeForUnsizedArray;
418 MostDerivedPathLength = Entries.size();
419 }
420 /// Update this designator to refer to the given base or member of this
421 /// object.
422 void addDeclUnchecked(const Decl *D, bool Virtual = false) {
423 Entries.push_back(Elt: APValue::BaseOrMemberType(D, Virtual));
424
425 // If this isn't a base class, it's a new most-derived object.
426 if (const FieldDecl *FD = dyn_cast<FieldDecl>(Val: D)) {
427 MostDerivedType = FD->getType();
428 MostDerivedIsArrayElement = false;
429 MostDerivedArraySize = 0;
430 MostDerivedPathLength = Entries.size();
431 }
432 }
433 /// Update this designator to refer to the given complex component.
434 void addComplexUnchecked(QualType EltTy, bool Imag) {
435 Entries.push_back(Elt: PathEntry::ArrayIndex(Index: Imag));
436
437 // This is technically a most-derived object, though in practice this
438 // is unlikely to matter.
439 MostDerivedType = EltTy;
440 MostDerivedIsArrayElement = true;
441 MostDerivedArraySize = 2;
442 MostDerivedPathLength = Entries.size();
443 }
444 void diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, const Expr *E);
445 void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E,
446 const APSInt &N);
447 /// Add N to the address of this subobject.
448 void adjustIndex(EvalInfo &Info, const Expr *E, APSInt N) {
449 if (Invalid || !N) return;
450 uint64_t TruncatedN = N.extOrTrunc(width: 64).getZExtValue();
451 if (isMostDerivedAnUnsizedArray()) {
452 diagnoseUnsizedArrayPointerArithmetic(Info, E);
453 // Can't verify -- trust that the user is doing the right thing (or if
454 // not, trust that the caller will catch the bad behavior).
455 // FIXME: Should we reject if this overflows, at least?
456 Entries.back() = PathEntry::ArrayIndex(
457 Index: Entries.back().getAsArrayIndex() + TruncatedN);
458 return;
459 }
460
461 // [expr.add]p4: For the purposes of these operators, a pointer to a
462 // nonarray object behaves the same as a pointer to the first element of
463 // an array of length one with the type of the object as its element type.
464 bool IsArray = MostDerivedPathLength == Entries.size() &&
465 MostDerivedIsArrayElement;
466 uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
467 : (uint64_t)IsOnePastTheEnd;
468 uint64_t ArraySize =
469 IsArray ? getMostDerivedArraySize() : (uint64_t)1;
470
471 if (N < -(int64_t)ArrayIndex || N > ArraySize - ArrayIndex) {
472 // Calculate the actual index in a wide enough type, so we can include
473 // it in the note.
474 N = N.extend(width: std::max<unsigned>(a: N.getBitWidth() + 1, b: 65));
475 (llvm::APInt&)N += ArrayIndex;
476 assert(N.ugt(ArraySize) && "bounds check failed for in-bounds index");
477 diagnosePointerArithmetic(Info, E, N);
478 setInvalid();
479 return;
480 }
481
482 ArrayIndex += TruncatedN;
483 assert(ArrayIndex <= ArraySize &&
484 "bounds check succeeded for out-of-bounds index");
485
486 if (IsArray)
487 Entries.back() = PathEntry::ArrayIndex(Index: ArrayIndex);
488 else
489 IsOnePastTheEnd = (ArrayIndex != 0);
490 }
491 };
492
493 /// A scope at the end of which an object can need to be destroyed.
494 enum class ScopeKind {
495 Block,
496 FullExpression,
497 Call
498 };
499
500 /// A reference to a particular call and its arguments.
501 struct CallRef {
502 CallRef() : OrigCallee(), CallIndex(0), Version() {}
503 CallRef(const FunctionDecl *Callee, unsigned CallIndex, unsigned Version)
504 : OrigCallee(Callee), CallIndex(CallIndex), Version(Version) {}
505
506 explicit operator bool() const { return OrigCallee; }
507
508 /// Get the parameter that the caller initialized, corresponding to the
509 /// given parameter in the callee.
510 const ParmVarDecl *getOrigParam(const ParmVarDecl *PVD) const {
511 return OrigCallee ? OrigCallee->getParamDecl(i: PVD->getFunctionScopeIndex())
512 : PVD;
513 }
514
515 /// The callee at the point where the arguments were evaluated. This might
516 /// be different from the actual callee (a different redeclaration, or a
517 /// virtual override), but this function's parameters are the ones that
518 /// appear in the parameter map.
519 const FunctionDecl *OrigCallee;
520 /// The call index of the frame that holds the argument values.
521 unsigned CallIndex;
522 /// The version of the parameters corresponding to this call.
523 unsigned Version;
524 };
525
526 /// A stack frame in the constexpr call stack.
527 class CallStackFrame : public interp::Frame {
528 public:
529 EvalInfo &Info;
530
531 /// Parent - The caller of this stack frame.
532 CallStackFrame *Caller;
533
534 /// Callee - The function which was called.
535 const FunctionDecl *Callee;
536
537 /// This - The binding for the this pointer in this call, if any.
538 const LValue *This;
539
540 /// CallExpr - The syntactical structure of member function calls
541 const Expr *CallExpr;
542
543 /// Information on how to find the arguments to this call. Our arguments
544 /// are stored in our parent's CallStackFrame, using the ParmVarDecl* as a
545 /// key and this value as the version.
546 CallRef Arguments;
547
548 /// Source location information about the default argument or default
549 /// initializer expression we're evaluating, if any.
550 CurrentSourceLocExprScope CurSourceLocExprScope;
551
552 // Note that we intentionally use std::map here so that references to
553 // values are stable.
554 typedef std::pair<const void *, unsigned> MapKeyTy;
555 typedef std::map<MapKeyTy, APValue> MapTy;
556 /// Temporaries - Temporary lvalues materialized within this stack frame.
557 MapTy Temporaries;
558
559 /// CallRange - The source range of the call expression for this call.
560 SourceRange CallRange;
561
562 /// Index - The call index of this call.
563 unsigned Index;
564
565 /// The stack of integers for tracking version numbers for temporaries.
566 SmallVector<unsigned, 2> TempVersionStack = {1};
567 unsigned CurTempVersion = TempVersionStack.back();
568
569 unsigned getTempVersion() const { return TempVersionStack.back(); }
570
571 void pushTempVersion() {
572 TempVersionStack.push_back(Elt: ++CurTempVersion);
573 }
574
575 void popTempVersion() {
576 TempVersionStack.pop_back();
577 }
578
579 CallRef createCall(const FunctionDecl *Callee) {
580 return {Callee, Index, ++CurTempVersion};
581 }
582
583 // FIXME: Adding this to every 'CallStackFrame' may have a nontrivial impact
584 // on the overall stack usage of deeply-recursing constexpr evaluations.
585 // (We should cache this map rather than recomputing it repeatedly.)
586 // But let's try this and see how it goes; we can look into caching the map
587 // as a later change.
588
589 /// LambdaCaptureFields - Mapping from captured variables/this to
590 /// corresponding data members in the closure class.
591 llvm::DenseMap<const ValueDecl *, FieldDecl *> LambdaCaptureFields;
592 FieldDecl *LambdaThisCaptureField = nullptr;
593
594 CallStackFrame(EvalInfo &Info, SourceRange CallRange,
595 const FunctionDecl *Callee, const LValue *This,
596 const Expr *CallExpr, CallRef Arguments);
597 ~CallStackFrame();
598
599 // Return the temporary for Key whose version number is Version.
600 APValue *getTemporary(const void *Key, unsigned Version) {
601 MapKeyTy KV(Key, Version);
602 auto LB = Temporaries.lower_bound(x: KV);
603 if (LB != Temporaries.end() && LB->first == KV)
604 return &LB->second;
605 return nullptr;
606 }
607
608 // Return the current temporary for Key in the map.
609 APValue *getCurrentTemporary(const void *Key) {
610 auto UB = Temporaries.upper_bound(x: MapKeyTy(Key, UINT_MAX));
611 if (UB != Temporaries.begin() && std::prev(x: UB)->first.first == Key)
612 return &std::prev(x: UB)->second;
613 return nullptr;
614 }
615
616 // Return the version number of the current temporary for Key.
617 unsigned getCurrentTemporaryVersion(const void *Key) const {
618 auto UB = Temporaries.upper_bound(x: MapKeyTy(Key, UINT_MAX));
619 if (UB != Temporaries.begin() && std::prev(x: UB)->first.first == Key)
620 return std::prev(x: UB)->first.second;
621 return 0;
622 }
623
624 /// Allocate storage for an object of type T in this stack frame.
625 /// Populates LV with a handle to the created object. Key identifies
626 /// the temporary within the stack frame, and must not be reused without
627 /// bumping the temporary version number.
628 template<typename KeyT>
629 APValue &createTemporary(const KeyT *Key, QualType T,
630 ScopeKind Scope, LValue &LV);
631
632 /// Allocate storage for a parameter of a function call made in this frame.
633 APValue &createParam(CallRef Args, const ParmVarDecl *PVD, LValue &LV);
634
635 void describe(llvm::raw_ostream &OS) const override;
636
637 Frame *getCaller() const override { return Caller; }
638 SourceRange getCallRange() const override { return CallRange; }
639 const FunctionDecl *getCallee() const override { return Callee; }
640
641 bool isStdFunction() const {
642 for (const DeclContext *DC = Callee; DC; DC = DC->getParent())
643 if (DC->isStdNamespace())
644 return true;
645 return false;
646 }
647
648 /// Whether we're in a context where [[msvc::constexpr]] evaluation is
649 /// permitted. See MSConstexprDocs for description of permitted contexts.
650 bool CanEvalMSConstexpr = false;
651
652 private:
653 APValue &createLocal(APValue::LValueBase Base, const void *Key, QualType T,
654 ScopeKind Scope);
655 };
656
657 /// Temporarily override 'this'.
658 class ThisOverrideRAII {
659 public:
660 ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
661 : Frame(Frame), OldThis(Frame.This) {
662 if (Enable)
663 Frame.This = NewThis;
664 }
665 ~ThisOverrideRAII() {
666 Frame.This = OldThis;
667 }
668 private:
669 CallStackFrame &Frame;
670 const LValue *OldThis;
671 };
672
673 // A shorthand time trace scope struct, prints source range, for example
674 // {"name":"EvaluateAsRValue","args":{"detail":"<test.cc:8:21, col:25>"}}}
675 class ExprTimeTraceScope {
676 public:
677 ExprTimeTraceScope(const Expr *E, const ASTContext &Ctx, StringRef Name)
678 : TimeScope(Name, [E, &Ctx] {
679 return E->getSourceRange().printToString(Ctx.getSourceManager());
680 }) {}
681
682 private:
683 llvm::TimeTraceScope TimeScope;
684 };
685
686 /// RAII object used to change the current ability of
687 /// [[msvc::constexpr]] evaulation.
688 struct MSConstexprContextRAII {
689 CallStackFrame &Frame;
690 bool OldValue;
691 explicit MSConstexprContextRAII(CallStackFrame &Frame, bool Value)
692 : Frame(Frame), OldValue(Frame.CanEvalMSConstexpr) {
693 Frame.CanEvalMSConstexpr = Value;
694 }
695
696 ~MSConstexprContextRAII() { Frame.CanEvalMSConstexpr = OldValue; }
697 };
698}
699
700static bool HandleDestruction(EvalInfo &Info, const Expr *E,
701 const LValue &This, QualType ThisType);
702static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
703 APValue::LValueBase LVBase, APValue &Value,
704 QualType T);
705
706namespace {
707 /// A cleanup, and a flag indicating whether it is lifetime-extended.
708 class Cleanup {
709 llvm::PointerIntPair<APValue*, 2, ScopeKind> Value;
710 APValue::LValueBase Base;
711 QualType T;
712
713 public:
714 Cleanup(APValue *Val, APValue::LValueBase Base, QualType T,
715 ScopeKind Scope)
716 : Value(Val, Scope), Base(Base), T(T) {}
717
718 /// Determine whether this cleanup should be performed at the end of the
719 /// given kind of scope.
720 bool isDestroyedAtEndOf(ScopeKind K) const {
721 return (int)Value.getInt() >= (int)K;
722 }
723 bool endLifetime(EvalInfo &Info, bool RunDestructors) {
724 if (RunDestructors) {
725 SourceLocation Loc;
726 if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>())
727 Loc = VD->getLocation();
728 else if (const Expr *E = Base.dyn_cast<const Expr*>())
729 Loc = E->getExprLoc();
730 return HandleDestruction(Info, Loc, Base, *Value.getPointer(), T);
731 }
732 *Value.getPointer() = APValue();
733 return true;
734 }
735
736 bool hasSideEffect() {
737 return T.isDestructedType();
738 }
739 };
740
741 /// A reference to an object whose construction we are currently evaluating.
742 struct ObjectUnderConstruction {
743 APValue::LValueBase Base;
744 ArrayRef<APValue::LValuePathEntry> Path;
745 friend bool operator==(const ObjectUnderConstruction &LHS,
746 const ObjectUnderConstruction &RHS) {
747 return LHS.Base == RHS.Base && LHS.Path == RHS.Path;
748 }
749 friend llvm::hash_code hash_value(const ObjectUnderConstruction &Obj) {
750 return llvm::hash_combine(args: Obj.Base, args: Obj.Path);
751 }
752 };
753 enum class ConstructionPhase {
754 None,
755 Bases,
756 AfterBases,
757 AfterFields,
758 Destroying,
759 DestroyingBases
760 };
761}
762
763namespace llvm {
764template<> struct DenseMapInfo<ObjectUnderConstruction> {
765 using Base = DenseMapInfo<APValue::LValueBase>;
766 static ObjectUnderConstruction getEmptyKey() {
767 return {.Base: Base::getEmptyKey(), .Path: {}}; }
768 static ObjectUnderConstruction getTombstoneKey() {
769 return {.Base: Base::getTombstoneKey(), .Path: {}};
770 }
771 static unsigned getHashValue(const ObjectUnderConstruction &Object) {
772 return hash_value(Obj: Object);
773 }
774 static bool isEqual(const ObjectUnderConstruction &LHS,
775 const ObjectUnderConstruction &RHS) {
776 return LHS == RHS;
777 }
778};
779}
780
781namespace {
782 /// A dynamically-allocated heap object.
783 struct DynAlloc {
784 /// The value of this heap-allocated object.
785 APValue Value;
786 /// The allocating expression; used for diagnostics. Either a CXXNewExpr
787 /// or a CallExpr (the latter is for direct calls to operator new inside
788 /// std::allocator<T>::allocate).
789 const Expr *AllocExpr = nullptr;
790
791 enum Kind {
792 New,
793 ArrayNew,
794 StdAllocator
795 };
796
797 /// Get the kind of the allocation. This must match between allocation
798 /// and deallocation.
799 Kind getKind() const {
800 if (auto *NE = dyn_cast<CXXNewExpr>(Val: AllocExpr))
801 return NE->isArray() ? ArrayNew : New;
802 assert(isa<CallExpr>(AllocExpr));
803 return StdAllocator;
804 }
805 };
806
807 struct DynAllocOrder {
808 bool operator()(DynamicAllocLValue L, DynamicAllocLValue R) const {
809 return L.getIndex() < R.getIndex();
810 }
811 };
812
813 /// EvalInfo - This is a private struct used by the evaluator to capture
814 /// information about a subexpression as it is folded. It retains information
815 /// about the AST context, but also maintains information about the folded
816 /// expression.
817 ///
818 /// If an expression could be evaluated, it is still possible it is not a C
819 /// "integer constant expression" or constant expression. If not, this struct
820 /// captures information about how and why not.
821 ///
822 /// One bit of information passed *into* the request for constant folding
823 /// indicates whether the subexpression is "evaluated" or not according to C
824 /// rules. For example, the RHS of (0 && foo()) is not evaluated. We can
825 /// evaluate the expression regardless of what the RHS is, but C only allows
826 /// certain things in certain situations.
827 class EvalInfo : public interp::State {
828 public:
829 ASTContext &Ctx;
830
831 /// EvalStatus - Contains information about the evaluation.
832 Expr::EvalStatus &EvalStatus;
833
834 /// CurrentCall - The top of the constexpr call stack.
835 CallStackFrame *CurrentCall;
836
837 /// CallStackDepth - The number of calls in the call stack right now.
838 unsigned CallStackDepth;
839
840 /// NextCallIndex - The next call index to assign.
841 unsigned NextCallIndex;
842
843 /// StepsLeft - The remaining number of evaluation steps we're permitted
844 /// to perform. This is essentially a limit for the number of statements
845 /// we will evaluate.
846 unsigned StepsLeft;
847
848 /// Enable the experimental new constant interpreter. If an expression is
849 /// not supported by the interpreter, an error is triggered.
850 bool EnableNewConstInterp;
851
852 /// BottomFrame - The frame in which evaluation started. This must be
853 /// initialized after CurrentCall and CallStackDepth.
854 CallStackFrame BottomFrame;
855
856 /// A stack of values whose lifetimes end at the end of some surrounding
857 /// evaluation frame.
858 llvm::SmallVector<Cleanup, 16> CleanupStack;
859
860 /// EvaluatingDecl - This is the declaration whose initializer is being
861 /// evaluated, if any.
862 APValue::LValueBase EvaluatingDecl;
863
864 enum class EvaluatingDeclKind {
865 None,
866 /// We're evaluating the construction of EvaluatingDecl.
867 Ctor,
868 /// We're evaluating the destruction of EvaluatingDecl.
869 Dtor,
870 };
871 EvaluatingDeclKind IsEvaluatingDecl = EvaluatingDeclKind::None;
872
873 /// EvaluatingDeclValue - This is the value being constructed for the
874 /// declaration whose initializer is being evaluated, if any.
875 APValue *EvaluatingDeclValue;
876
877 /// Set of objects that are currently being constructed.
878 llvm::DenseMap<ObjectUnderConstruction, ConstructionPhase>
879 ObjectsUnderConstruction;
880
881 /// Current heap allocations, along with the location where each was
882 /// allocated. We use std::map here because we need stable addresses
883 /// for the stored APValues.
884 std::map<DynamicAllocLValue, DynAlloc, DynAllocOrder> HeapAllocs;
885
886 /// The number of heap allocations performed so far in this evaluation.
887 unsigned NumHeapAllocs = 0;
888
889 struct EvaluatingConstructorRAII {
890 EvalInfo &EI;
891 ObjectUnderConstruction Object;
892 bool DidInsert;
893 EvaluatingConstructorRAII(EvalInfo &EI, ObjectUnderConstruction Object,
894 bool HasBases)
895 : EI(EI), Object(Object) {
896 DidInsert =
897 EI.ObjectsUnderConstruction
898 .insert(KV: {Object, HasBases ? ConstructionPhase::Bases
899 : ConstructionPhase::AfterBases})
900 .second;
901 }
902 void finishedConstructingBases() {
903 EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterBases;
904 }
905 void finishedConstructingFields() {
906 EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterFields;
907 }
908 ~EvaluatingConstructorRAII() {
909 if (DidInsert) EI.ObjectsUnderConstruction.erase(Val: Object);
910 }
911 };
912
913 struct EvaluatingDestructorRAII {
914 EvalInfo &EI;
915 ObjectUnderConstruction Object;
916 bool DidInsert;
917 EvaluatingDestructorRAII(EvalInfo &EI, ObjectUnderConstruction Object)
918 : EI(EI), Object(Object) {
919 DidInsert = EI.ObjectsUnderConstruction
920 .insert(KV: {Object, ConstructionPhase::Destroying})
921 .second;
922 }
923 void startedDestroyingBases() {
924 EI.ObjectsUnderConstruction[Object] =
925 ConstructionPhase::DestroyingBases;
926 }
927 ~EvaluatingDestructorRAII() {
928 if (DidInsert)
929 EI.ObjectsUnderConstruction.erase(Val: Object);
930 }
931 };
932
933 ConstructionPhase
934 isEvaluatingCtorDtor(APValue::LValueBase Base,
935 ArrayRef<APValue::LValuePathEntry> Path) {
936 return ObjectsUnderConstruction.lookup(Val: {.Base: Base, .Path: Path});
937 }
938
939 /// If we're currently speculatively evaluating, the outermost call stack
940 /// depth at which we can mutate state, otherwise 0.
941 unsigned SpeculativeEvaluationDepth = 0;
942
943 /// The current array initialization index, if we're performing array
944 /// initialization.
945 uint64_t ArrayInitIndex = -1;
946
947 /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
948 /// notes attached to it will also be stored, otherwise they will not be.
949 bool HasActiveDiagnostic;
950
951 /// Have we emitted a diagnostic explaining why we couldn't constant
952 /// fold (not just why it's not strictly a constant expression)?
953 bool HasFoldFailureDiagnostic;
954
955 /// Whether we're checking that an expression is a potential constant
956 /// expression. If so, do not fail on constructs that could become constant
957 /// later on (such as a use of an undefined global).
958 bool CheckingPotentialConstantExpression = false;
959
960 /// Whether we're checking for an expression that has undefined behavior.
961 /// If so, we will produce warnings if we encounter an operation that is
962 /// always undefined.
963 ///
964 /// Note that we still need to evaluate the expression normally when this
965 /// is set; this is used when evaluating ICEs in C.
966 bool CheckingForUndefinedBehavior = false;
967
968 enum EvaluationMode {
969 /// Evaluate as a constant expression. Stop if we find that the expression
970 /// is not a constant expression.
971 EM_ConstantExpression,
972
973 /// Evaluate as a constant expression. Stop if we find that the expression
974 /// is not a constant expression. Some expressions can be retried in the
975 /// optimizer if we don't constant fold them here, but in an unevaluated
976 /// context we try to fold them immediately since the optimizer never
977 /// gets a chance to look at it.
978 EM_ConstantExpressionUnevaluated,
979
980 /// Fold the expression to a constant. Stop if we hit a side-effect that
981 /// we can't model.
982 EM_ConstantFold,
983
984 /// Evaluate in any way we know how. Don't worry about side-effects that
985 /// can't be modeled.
986 EM_IgnoreSideEffects,
987 } EvalMode;
988
989 /// Are we checking whether the expression is a potential constant
990 /// expression?
991 bool checkingPotentialConstantExpression() const override {
992 return CheckingPotentialConstantExpression;
993 }
994
995 /// Are we checking an expression for overflow?
996 // FIXME: We should check for any kind of undefined or suspicious behavior
997 // in such constructs, not just overflow.
998 bool checkingForUndefinedBehavior() const override {
999 return CheckingForUndefinedBehavior;
1000 }
1001
1002 EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode)
1003 : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr),
1004 CallStackDepth(0), NextCallIndex(1),
1005 StepsLeft(C.getLangOpts().ConstexprStepLimit),
1006 EnableNewConstInterp(C.getLangOpts().EnableNewConstInterp),
1007 BottomFrame(*this, SourceLocation(), /*Callee=*/nullptr,
1008 /*This=*/nullptr,
1009 /*CallExpr=*/nullptr, CallRef()),
1010 EvaluatingDecl((const ValueDecl *)nullptr),
1011 EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
1012 HasFoldFailureDiagnostic(false), EvalMode(Mode) {}
1013
1014 ~EvalInfo() {
1015 discardCleanups();
1016 }
1017
1018 ASTContext &getCtx() const override { return Ctx; }
1019
1020 void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value,
1021 EvaluatingDeclKind EDK = EvaluatingDeclKind::Ctor) {
1022 EvaluatingDecl = Base;
1023 IsEvaluatingDecl = EDK;
1024 EvaluatingDeclValue = &Value;
1025 }
1026
1027 bool CheckCallLimit(SourceLocation Loc) {
1028 // Don't perform any constexpr calls (other than the call we're checking)
1029 // when checking a potential constant expression.
1030 if (checkingPotentialConstantExpression() && CallStackDepth > 1)
1031 return false;
1032 if (NextCallIndex == 0) {
1033 // NextCallIndex has wrapped around.
1034 FFDiag(Loc, diag::note_constexpr_call_limit_exceeded);
1035 return false;
1036 }
1037 if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
1038 return true;
1039 FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded)
1040 << getLangOpts().ConstexprCallDepth;
1041 return false;
1042 }
1043
1044 bool CheckArraySize(SourceLocation Loc, unsigned BitWidth,
1045 uint64_t ElemCount, bool Diag) {
1046 // FIXME: GH63562
1047 // APValue stores array extents as unsigned,
1048 // so anything that is greater that unsigned would overflow when
1049 // constructing the array, we catch this here.
1050 if (BitWidth > ConstantArrayType::getMaxSizeBits(Context: Ctx) ||
1051 ElemCount > uint64_t(std::numeric_limits<unsigned>::max())) {
1052 if (Diag)
1053 FFDiag(Loc, diag::note_constexpr_new_too_large) << ElemCount;
1054 return false;
1055 }
1056
1057 // FIXME: GH63562
1058 // Arrays allocate an APValue per element.
1059 // We use the number of constexpr steps as a proxy for the maximum size
1060 // of arrays to avoid exhausting the system resources, as initialization
1061 // of each element is likely to take some number of steps anyway.
1062 uint64_t Limit = Ctx.getLangOpts().ConstexprStepLimit;
1063 if (ElemCount > Limit) {
1064 if (Diag)
1065 FFDiag(Loc, diag::note_constexpr_new_exceeds_limits)
1066 << ElemCount << Limit;
1067 return false;
1068 }
1069 return true;
1070 }
1071
1072 std::pair<CallStackFrame *, unsigned>
1073 getCallFrameAndDepth(unsigned CallIndex) {
1074 assert(CallIndex && "no call index in getCallFrameAndDepth");
1075 // We will eventually hit BottomFrame, which has Index 1, so Frame can't
1076 // be null in this loop.
1077 unsigned Depth = CallStackDepth;
1078 CallStackFrame *Frame = CurrentCall;
1079 while (Frame->Index > CallIndex) {
1080 Frame = Frame->Caller;
1081 --Depth;
1082 }
1083 if (Frame->Index == CallIndex)
1084 return {Frame, Depth};
1085 return {nullptr, 0};
1086 }
1087
1088 bool nextStep(const Stmt *S) {
1089 if (!StepsLeft) {
1090 FFDiag(S->getBeginLoc(), diag::note_constexpr_step_limit_exceeded);
1091 return false;
1092 }
1093 --StepsLeft;
1094 return true;
1095 }
1096
1097 APValue *createHeapAlloc(const Expr *E, QualType T, LValue &LV);
1098
1099 std::optional<DynAlloc *> lookupDynamicAlloc(DynamicAllocLValue DA) {
1100 std::optional<DynAlloc *> Result;
1101 auto It = HeapAllocs.find(x: DA);
1102 if (It != HeapAllocs.end())
1103 Result = &It->second;
1104 return Result;
1105 }
1106
1107 /// Get the allocated storage for the given parameter of the given call.
1108 APValue *getParamSlot(CallRef Call, const ParmVarDecl *PVD) {
1109 CallStackFrame *Frame = getCallFrameAndDepth(CallIndex: Call.CallIndex).first;
1110 return Frame ? Frame->getTemporary(Key: Call.getOrigParam(PVD), Version: Call.Version)
1111 : nullptr;
1112 }
1113
1114 /// Information about a stack frame for std::allocator<T>::[de]allocate.
1115 struct StdAllocatorCaller {
1116 unsigned FrameIndex;
1117 QualType ElemType;
1118 explicit operator bool() const { return FrameIndex != 0; };
1119 };
1120
1121 StdAllocatorCaller getStdAllocatorCaller(StringRef FnName) const {
1122 for (const CallStackFrame *Call = CurrentCall; Call != &BottomFrame;
1123 Call = Call->Caller) {
1124 const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Val: Call->Callee);
1125 if (!MD)
1126 continue;
1127 const IdentifierInfo *FnII = MD->getIdentifier();
1128 if (!FnII || !FnII->isStr(Str: FnName))
1129 continue;
1130
1131 const auto *CTSD =
1132 dyn_cast<ClassTemplateSpecializationDecl>(Val: MD->getParent());
1133 if (!CTSD)
1134 continue;
1135
1136 const IdentifierInfo *ClassII = CTSD->getIdentifier();
1137 const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
1138 if (CTSD->isInStdNamespace() && ClassII &&
1139 ClassII->isStr(Str: "allocator") && TAL.size() >= 1 &&
1140 TAL[0].getKind() == TemplateArgument::Type)
1141 return {Call->Index, TAL[0].getAsType()};
1142 }
1143
1144 return {};
1145 }
1146
1147 void performLifetimeExtension() {
1148 // Disable the cleanups for lifetime-extended temporaries.
1149 llvm::erase_if(C&: CleanupStack, P: [](Cleanup &C) {
1150 return !C.isDestroyedAtEndOf(K: ScopeKind::FullExpression);
1151 });
1152 }
1153
1154 /// Throw away any remaining cleanups at the end of evaluation. If any
1155 /// cleanups would have had a side-effect, note that as an unmodeled
1156 /// side-effect and return false. Otherwise, return true.
1157 bool discardCleanups() {
1158 for (Cleanup &C : CleanupStack) {
1159 if (C.hasSideEffect() && !noteSideEffect()) {
1160 CleanupStack.clear();
1161 return false;
1162 }
1163 }
1164 CleanupStack.clear();
1165 return true;
1166 }
1167
1168 private:
1169 interp::Frame *getCurrentFrame() override { return CurrentCall; }
1170 const interp::Frame *getBottomFrame() const override { return &BottomFrame; }
1171
1172 bool hasActiveDiagnostic() override { return HasActiveDiagnostic; }
1173 void setActiveDiagnostic(bool Flag) override { HasActiveDiagnostic = Flag; }
1174
1175 void setFoldFailureDiagnostic(bool Flag) override {
1176 HasFoldFailureDiagnostic = Flag;
1177 }
1178
1179 Expr::EvalStatus &getEvalStatus() const override { return EvalStatus; }
1180
1181 // If we have a prior diagnostic, it will be noting that the expression
1182 // isn't a constant expression. This diagnostic is more important,
1183 // unless we require this evaluation to produce a constant expression.
1184 //
1185 // FIXME: We might want to show both diagnostics to the user in
1186 // EM_ConstantFold mode.
1187 bool hasPriorDiagnostic() override {
1188 if (!EvalStatus.Diag->empty()) {
1189 switch (EvalMode) {
1190 case EM_ConstantFold:
1191 case EM_IgnoreSideEffects:
1192 if (!HasFoldFailureDiagnostic)
1193 break;
1194 // We've already failed to fold something. Keep that diagnostic.
1195 [[fallthrough]];
1196 case EM_ConstantExpression:
1197 case EM_ConstantExpressionUnevaluated:
1198 setActiveDiagnostic(false);
1199 return true;
1200 }
1201 }
1202 return false;
1203 }
1204
1205 unsigned getCallStackDepth() override { return CallStackDepth; }
1206
1207 public:
1208 /// Should we continue evaluation after encountering a side-effect that we
1209 /// couldn't model?
1210 bool keepEvaluatingAfterSideEffect() {
1211 switch (EvalMode) {
1212 case EM_IgnoreSideEffects:
1213 return true;
1214
1215 case EM_ConstantExpression:
1216 case EM_ConstantExpressionUnevaluated:
1217 case EM_ConstantFold:
1218 // By default, assume any side effect might be valid in some other
1219 // evaluation of this expression from a different context.
1220 return checkingPotentialConstantExpression() ||
1221 checkingForUndefinedBehavior();
1222 }
1223 llvm_unreachable("Missed EvalMode case");
1224 }
1225
1226 /// Note that we have had a side-effect, and determine whether we should
1227 /// keep evaluating.
1228 bool noteSideEffect() {
1229 EvalStatus.HasSideEffects = true;
1230 return keepEvaluatingAfterSideEffect();
1231 }
1232
1233 /// Should we continue evaluation after encountering undefined behavior?
1234 bool keepEvaluatingAfterUndefinedBehavior() {
1235 switch (EvalMode) {
1236 case EM_IgnoreSideEffects:
1237 case EM_ConstantFold:
1238 return true;
1239
1240 case EM_ConstantExpression:
1241 case EM_ConstantExpressionUnevaluated:
1242 return checkingForUndefinedBehavior();
1243 }
1244 llvm_unreachable("Missed EvalMode case");
1245 }
1246
1247 /// Note that we hit something that was technically undefined behavior, but
1248 /// that we can evaluate past it (such as signed overflow or floating-point
1249 /// division by zero.)
1250 bool noteUndefinedBehavior() override {
1251 EvalStatus.HasUndefinedBehavior = true;
1252 return keepEvaluatingAfterUndefinedBehavior();
1253 }
1254
1255 /// Should we continue evaluation as much as possible after encountering a
1256 /// construct which can't be reduced to a value?
1257 bool keepEvaluatingAfterFailure() const override {
1258 if (!StepsLeft)
1259 return false;
1260
1261 switch (EvalMode) {
1262 case EM_ConstantExpression:
1263 case EM_ConstantExpressionUnevaluated:
1264 case EM_ConstantFold:
1265 case EM_IgnoreSideEffects:
1266 return checkingPotentialConstantExpression() ||
1267 checkingForUndefinedBehavior();
1268 }
1269 llvm_unreachable("Missed EvalMode case");
1270 }
1271
1272 /// Notes that we failed to evaluate an expression that other expressions
1273 /// directly depend on, and determine if we should keep evaluating. This
1274 /// should only be called if we actually intend to keep evaluating.
1275 ///
1276 /// Call noteSideEffect() instead if we may be able to ignore the value that
1277 /// we failed to evaluate, e.g. if we failed to evaluate Foo() in:
1278 ///
1279 /// (Foo(), 1) // use noteSideEffect
1280 /// (Foo() || true) // use noteSideEffect
1281 /// Foo() + 1 // use noteFailure
1282 [[nodiscard]] bool noteFailure() {
1283 // Failure when evaluating some expression often means there is some
1284 // subexpression whose evaluation was skipped. Therefore, (because we
1285 // don't track whether we skipped an expression when unwinding after an
1286 // evaluation failure) every evaluation failure that bubbles up from a
1287 // subexpression implies that a side-effect has potentially happened. We
1288 // skip setting the HasSideEffects flag to true until we decide to
1289 // continue evaluating after that point, which happens here.
1290 bool KeepGoing = keepEvaluatingAfterFailure();
1291 EvalStatus.HasSideEffects |= KeepGoing;
1292 return KeepGoing;
1293 }
1294
1295 class ArrayInitLoopIndex {
1296 EvalInfo &Info;
1297 uint64_t OuterIndex;
1298
1299 public:
1300 ArrayInitLoopIndex(EvalInfo &Info)
1301 : Info(Info), OuterIndex(Info.ArrayInitIndex) {
1302 Info.ArrayInitIndex = 0;
1303 }
1304 ~ArrayInitLoopIndex() { Info.ArrayInitIndex = OuterIndex; }
1305
1306 operator uint64_t&() { return Info.ArrayInitIndex; }
1307 };
1308 };
1309
1310 /// Object used to treat all foldable expressions as constant expressions.
1311 struct FoldConstant {
1312 EvalInfo &Info;
1313 bool Enabled;
1314 bool HadNoPriorDiags;
1315 EvalInfo::EvaluationMode OldMode;
1316
1317 explicit FoldConstant(EvalInfo &Info, bool Enabled)
1318 : Info(Info),
1319 Enabled(Enabled),
1320 HadNoPriorDiags(Info.EvalStatus.Diag &&
1321 Info.EvalStatus.Diag->empty() &&
1322 !Info.EvalStatus.HasSideEffects),
1323 OldMode(Info.EvalMode) {
1324 if (Enabled)
1325 Info.EvalMode = EvalInfo::EM_ConstantFold;
1326 }
1327 void keepDiagnostics() { Enabled = false; }
1328 ~FoldConstant() {
1329 if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() &&
1330 !Info.EvalStatus.HasSideEffects)
1331 Info.EvalStatus.Diag->clear();
1332 Info.EvalMode = OldMode;
1333 }
1334 };
1335
1336 /// RAII object used to set the current evaluation mode to ignore
1337 /// side-effects.
1338 struct IgnoreSideEffectsRAII {
1339 EvalInfo &Info;
1340 EvalInfo::EvaluationMode OldMode;
1341 explicit IgnoreSideEffectsRAII(EvalInfo &Info)
1342 : Info(Info), OldMode(Info.EvalMode) {
1343 Info.EvalMode = EvalInfo::EM_IgnoreSideEffects;
1344 }
1345
1346 ~IgnoreSideEffectsRAII() { Info.EvalMode = OldMode; }
1347 };
1348
1349 /// RAII object used to optionally suppress diagnostics and side-effects from
1350 /// a speculative evaluation.
1351 class SpeculativeEvaluationRAII {
1352 EvalInfo *Info = nullptr;
1353 Expr::EvalStatus OldStatus;
1354 unsigned OldSpeculativeEvaluationDepth = 0;
1355
1356 void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) {
1357 Info = Other.Info;
1358 OldStatus = Other.OldStatus;
1359 OldSpeculativeEvaluationDepth = Other.OldSpeculativeEvaluationDepth;
1360 Other.Info = nullptr;
1361 }
1362
1363 void maybeRestoreState() {
1364 if (!Info)
1365 return;
1366
1367 Info->EvalStatus = OldStatus;
1368 Info->SpeculativeEvaluationDepth = OldSpeculativeEvaluationDepth;
1369 }
1370
1371 public:
1372 SpeculativeEvaluationRAII() = default;
1373
1374 SpeculativeEvaluationRAII(
1375 EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr)
1376 : Info(&Info), OldStatus(Info.EvalStatus),
1377 OldSpeculativeEvaluationDepth(Info.SpeculativeEvaluationDepth) {
1378 Info.EvalStatus.Diag = NewDiag;
1379 Info.SpeculativeEvaluationDepth = Info.CallStackDepth + 1;
1380 }
1381
1382 SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete;
1383 SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) {
1384 moveFromAndCancel(Other: std::move(Other));
1385 }
1386
1387 SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) {
1388 maybeRestoreState();
1389 moveFromAndCancel(Other: std::move(Other));
1390 return *this;
1391 }
1392
1393 ~SpeculativeEvaluationRAII() { maybeRestoreState(); }
1394 };
1395
1396 /// RAII object wrapping a full-expression or block scope, and handling
1397 /// the ending of the lifetime of temporaries created within it.
1398 template<ScopeKind Kind>
1399 class ScopeRAII {
1400 EvalInfo &Info;
1401 unsigned OldStackSize;
1402 public:
1403 ScopeRAII(EvalInfo &Info)
1404 : Info(Info), OldStackSize(Info.CleanupStack.size()) {
1405 // Push a new temporary version. This is needed to distinguish between
1406 // temporaries created in different iterations of a loop.
1407 Info.CurrentCall->pushTempVersion();
1408 }
1409 bool destroy(bool RunDestructors = true) {
1410 bool OK = cleanup(Info, RunDestructors, OldStackSize);
1411 OldStackSize = -1U;
1412 return OK;
1413 }
1414 ~ScopeRAII() {
1415 if (OldStackSize != -1U)
1416 destroy(RunDestructors: false);
1417 // Body moved to a static method to encourage the compiler to inline away
1418 // instances of this class.
1419 Info.CurrentCall->popTempVersion();
1420 }
1421 private:
1422 static bool cleanup(EvalInfo &Info, bool RunDestructors,
1423 unsigned OldStackSize) {
1424 assert(OldStackSize <= Info.CleanupStack.size() &&
1425 "running cleanups out of order?");
1426
1427 // Run all cleanups for a block scope, and non-lifetime-extended cleanups
1428 // for a full-expression scope.
1429 bool Success = true;
1430 for (unsigned I = Info.CleanupStack.size(); I > OldStackSize; --I) {
1431 if (Info.CleanupStack[I - 1].isDestroyedAtEndOf(K: Kind)) {
1432 if (!Info.CleanupStack[I - 1].endLifetime(Info, RunDestructors)) {
1433 Success = false;
1434 break;
1435 }
1436 }
1437 }
1438
1439 // Compact any retained cleanups.
1440 auto NewEnd = Info.CleanupStack.begin() + OldStackSize;
1441 if (Kind != ScopeKind::Block)
1442 NewEnd =
1443 std::remove_if(NewEnd, Info.CleanupStack.end(), [](Cleanup &C) {
1444 return C.isDestroyedAtEndOf(K: Kind);
1445 });
1446 Info.CleanupStack.erase(CS: NewEnd, CE: Info.CleanupStack.end());
1447 return Success;
1448 }
1449 };
1450 typedef ScopeRAII<ScopeKind::Block> BlockScopeRAII;
1451 typedef ScopeRAII<ScopeKind::FullExpression> FullExpressionRAII;
1452 typedef ScopeRAII<ScopeKind::Call> CallScopeRAII;
1453}
1454
1455bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
1456 CheckSubobjectKind CSK) {
1457 if (Invalid)
1458 return false;
1459 if (isOnePastTheEnd()) {
1460 Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
1461 << CSK;
1462 setInvalid();
1463 return false;
1464 }
1465 // Note, we do not diagnose if isMostDerivedAnUnsizedArray(), because there
1466 // must actually be at least one array element; even a VLA cannot have a
1467 // bound of zero. And if our index is nonzero, we already had a CCEDiag.
1468 return true;
1469}
1470
1471void SubobjectDesignator::diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info,
1472 const Expr *E) {
1473 Info.CCEDiag(E, diag::note_constexpr_unsized_array_indexed);
1474 // Do not set the designator as invalid: we can represent this situation,
1475 // and correct handling of __builtin_object_size requires us to do so.
1476}
1477
1478void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
1479 const Expr *E,
1480 const APSInt &N) {
1481 // If we're complaining, we must be able to statically determine the size of
1482 // the most derived array.
1483 if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement)
1484 Info.CCEDiag(E, diag::note_constexpr_array_index)
1485 << N << /*array*/ 0
1486 << static_cast<unsigned>(getMostDerivedArraySize());
1487 else
1488 Info.CCEDiag(E, diag::note_constexpr_array_index)
1489 << N << /*non-array*/ 1;
1490 setInvalid();
1491}
1492
1493CallStackFrame::CallStackFrame(EvalInfo &Info, SourceRange CallRange,
1494 const FunctionDecl *Callee, const LValue *This,
1495 const Expr *CallExpr, CallRef Call)
1496 : Info(Info), Caller(Info.CurrentCall), Callee(Callee), This(This),
1497 CallExpr(CallExpr), Arguments(Call), CallRange(CallRange),
1498 Index(Info.NextCallIndex++) {
1499 Info.CurrentCall = this;
1500 ++Info.CallStackDepth;
1501}
1502
1503CallStackFrame::~CallStackFrame() {
1504 assert(Info.CurrentCall == this && "calls retired out of order");
1505 --Info.CallStackDepth;
1506 Info.CurrentCall = Caller;
1507}
1508
1509static bool isRead(AccessKinds AK) {
1510 return AK == AK_Read || AK == AK_ReadObjectRepresentation;
1511}
1512
1513static bool isModification(AccessKinds AK) {
1514 switch (AK) {
1515 case AK_Read:
1516 case AK_ReadObjectRepresentation:
1517 case AK_MemberCall:
1518 case AK_DynamicCast:
1519 case AK_TypeId:
1520 return false;
1521 case AK_Assign:
1522 case AK_Increment:
1523 case AK_Decrement:
1524 case AK_Construct:
1525 case AK_Destroy:
1526 return true;
1527 }
1528 llvm_unreachable("unknown access kind");
1529}
1530
1531static bool isAnyAccess(AccessKinds AK) {
1532 return isRead(AK) || isModification(AK);
1533}
1534
1535/// Is this an access per the C++ definition?
1536static bool isFormalAccess(AccessKinds AK) {
1537 return isAnyAccess(AK) && AK != AK_Construct && AK != AK_Destroy;
1538}
1539
1540/// Is this kind of axcess valid on an indeterminate object value?
1541static bool isValidIndeterminateAccess(AccessKinds AK) {
1542 switch (AK) {
1543 case AK_Read:
1544 case AK_Increment:
1545 case AK_Decrement:
1546 // These need the object's value.
1547 return false;
1548
1549 case AK_ReadObjectRepresentation:
1550 case AK_Assign:
1551 case AK_Construct:
1552 case AK_Destroy:
1553 // Construction and destruction don't need the value.
1554 return true;
1555
1556 case AK_MemberCall:
1557 case AK_DynamicCast:
1558 case AK_TypeId:
1559 // These aren't really meaningful on scalars.
1560 return true;
1561 }
1562 llvm_unreachable("unknown access kind");
1563}
1564
1565namespace {
1566 struct ComplexValue {
1567 private:
1568 bool IsInt;
1569
1570 public:
1571 APSInt IntReal, IntImag;
1572 APFloat FloatReal, FloatImag;
1573
1574 ComplexValue() : FloatReal(APFloat::Bogus()), FloatImag(APFloat::Bogus()) {}
1575
1576 void makeComplexFloat() { IsInt = false; }
1577 bool isComplexFloat() const { return !IsInt; }
1578 APFloat &getComplexFloatReal() { return FloatReal; }
1579 APFloat &getComplexFloatImag() { return FloatImag; }
1580
1581 void makeComplexInt() { IsInt = true; }
1582 bool isComplexInt() const { return IsInt; }
1583 APSInt &getComplexIntReal() { return IntReal; }
1584 APSInt &getComplexIntImag() { return IntImag; }
1585
1586 void moveInto(APValue &v) const {
1587 if (isComplexFloat())
1588 v = APValue(FloatReal, FloatImag);
1589 else
1590 v = APValue(IntReal, IntImag);
1591 }
1592 void setFrom(const APValue &v) {
1593 assert(v.isComplexFloat() || v.isComplexInt());
1594 if (v.isComplexFloat()) {
1595 makeComplexFloat();
1596 FloatReal = v.getComplexFloatReal();
1597 FloatImag = v.getComplexFloatImag();
1598 } else {
1599 makeComplexInt();
1600 IntReal = v.getComplexIntReal();
1601 IntImag = v.getComplexIntImag();
1602 }
1603 }
1604 };
1605
1606 struct LValue {
1607 APValue::LValueBase Base;
1608 CharUnits Offset;
1609 SubobjectDesignator Designator;
1610 bool IsNullPtr : 1;
1611 bool InvalidBase : 1;
1612
1613 const APValue::LValueBase getLValueBase() const { return Base; }
1614 CharUnits &getLValueOffset() { return Offset; }
1615 const CharUnits &getLValueOffset() const { return Offset; }
1616 SubobjectDesignator &getLValueDesignator() { return Designator; }
1617 const SubobjectDesignator &getLValueDesignator() const { return Designator;}
1618 bool isNullPointer() const { return IsNullPtr;}
1619
1620 unsigned getLValueCallIndex() const { return Base.getCallIndex(); }
1621 unsigned getLValueVersion() const { return Base.getVersion(); }
1622
1623 void moveInto(APValue &V) const {
1624 if (Designator.Invalid)
1625 V = APValue(Base, Offset, APValue::NoLValuePath(), IsNullPtr);
1626 else {
1627 assert(!InvalidBase && "APValues can't handle invalid LValue bases");
1628 V = APValue(Base, Offset, Designator.Entries,
1629 Designator.IsOnePastTheEnd, IsNullPtr);
1630 }
1631 }
1632 void setFrom(ASTContext &Ctx, const APValue &V) {
1633 assert(V.isLValue() && "Setting LValue from a non-LValue?");
1634 Base = V.getLValueBase();
1635 Offset = V.getLValueOffset();
1636 InvalidBase = false;
1637 Designator = SubobjectDesignator(Ctx, V);
1638 IsNullPtr = V.isNullPointer();
1639 }
1640
1641 void set(APValue::LValueBase B, bool BInvalid = false) {
1642#ifndef NDEBUG
1643 // We only allow a few types of invalid bases. Enforce that here.
1644 if (BInvalid) {
1645 const auto *E = B.get<const Expr *>();
1646 assert((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) &&
1647 "Unexpected type of invalid base");
1648 }
1649#endif
1650
1651 Base = B;
1652 Offset = CharUnits::fromQuantity(Quantity: 0);
1653 InvalidBase = BInvalid;
1654 Designator = SubobjectDesignator(getType(B));
1655 IsNullPtr = false;
1656 }
1657
1658 void setNull(ASTContext &Ctx, QualType PointerTy) {
1659 Base = (const ValueDecl *)nullptr;
1660 Offset =
1661 CharUnits::fromQuantity(Quantity: Ctx.getTargetNullPointerValue(QT: PointerTy));
1662 InvalidBase = false;
1663 Designator = SubobjectDesignator(PointerTy->getPointeeType());
1664 IsNullPtr = true;
1665 }
1666
1667 void setInvalid(APValue::LValueBase B, unsigned I = 0) {
1668 set(B, BInvalid: true);
1669 }
1670
1671 std::string toString(ASTContext &Ctx, QualType T) const {
1672 APValue Printable;
1673 moveInto(V&: Printable);
1674 return Printable.getAsString(Ctx, Ty: T);
1675 }
1676
1677 private:
1678 // Check that this LValue is not based on a null pointer. If it is, produce
1679 // a diagnostic and mark the designator as invalid.
1680 template <typename GenDiagType>
1681 bool checkNullPointerDiagnosingWith(const GenDiagType &GenDiag) {
1682 if (Designator.Invalid)
1683 return false;
1684 if (IsNullPtr) {
1685 GenDiag();
1686 Designator.setInvalid();
1687 return false;
1688 }
1689 return true;
1690 }
1691
1692 public:
1693 bool checkNullPointer(EvalInfo &Info, const Expr *E,
1694 CheckSubobjectKind CSK) {
1695 return checkNullPointerDiagnosingWith(GenDiag: [&Info, E, CSK] {
1696 Info.CCEDiag(E, diag::note_constexpr_null_subobject) << CSK;
1697 });
1698 }
1699
1700 bool checkNullPointerForFoldAccess(EvalInfo &Info, const Expr *E,
1701 AccessKinds AK) {
1702 return checkNullPointerDiagnosingWith(GenDiag: [&Info, E, AK] {
1703 Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
1704 });
1705 }
1706
1707 // Check this LValue refers to an object. If not, set the designator to be
1708 // invalid and emit a diagnostic.
1709 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
1710 return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) &&
1711 Designator.checkSubobject(Info, E, CSK);
1712 }
1713
1714 void addDecl(EvalInfo &Info, const Expr *E,
1715 const Decl *D, bool Virtual = false) {
1716 if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
1717 Designator.addDeclUnchecked(D, Virtual);
1718 }
1719 void addUnsizedArray(EvalInfo &Info, const Expr *E, QualType ElemTy) {
1720 if (!Designator.Entries.empty()) {
1721 Info.CCEDiag(E, diag::note_constexpr_unsupported_unsized_array);
1722 Designator.setInvalid();
1723 return;
1724 }
1725 if (checkSubobject(Info, E, CSK: CSK_ArrayToPointer)) {
1726 assert(getType(Base)->isPointerType() || getType(Base)->isArrayType());
1727 Designator.FirstEntryIsAnUnsizedArray = true;
1728 Designator.addUnsizedArrayUnchecked(ElemTy);
1729 }
1730 }
1731 void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
1732 if (checkSubobject(Info, E, CSK_ArrayToPointer))
1733 Designator.addArrayUnchecked(CAT);
1734 }
1735 void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
1736 if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
1737 Designator.addComplexUnchecked(EltTy, Imag);
1738 }
1739 void clearIsNullPointer() {
1740 IsNullPtr = false;
1741 }
1742 void adjustOffsetAndIndex(EvalInfo &Info, const Expr *E,
1743 const APSInt &Index, CharUnits ElementSize) {
1744 // An index of 0 has no effect. (In C, adding 0 to a null pointer is UB,
1745 // but we're not required to diagnose it and it's valid in C++.)
1746 if (!Index)
1747 return;
1748
1749 // Compute the new offset in the appropriate width, wrapping at 64 bits.
1750 // FIXME: When compiling for a 32-bit target, we should use 32-bit
1751 // offsets.
1752 uint64_t Offset64 = Offset.getQuantity();
1753 uint64_t ElemSize64 = ElementSize.getQuantity();
1754 uint64_t Index64 = Index.extOrTrunc(width: 64).getZExtValue();
1755 Offset = CharUnits::fromQuantity(Quantity: Offset64 + ElemSize64 * Index64);
1756
1757 if (checkNullPointer(Info, E, CSK_ArrayIndex))
1758 Designator.adjustIndex(Info, E, Index);
1759 clearIsNullPointer();
1760 }
1761 void adjustOffset(CharUnits N) {
1762 Offset += N;
1763 if (N.getQuantity())
1764 clearIsNullPointer();
1765 }
1766 };
1767
1768 struct MemberPtr {
1769 MemberPtr() {}
1770 explicit MemberPtr(const ValueDecl *Decl)
1771 : DeclAndIsDerivedMember(Decl, false) {}
1772
1773 /// The member or (direct or indirect) field referred to by this member
1774 /// pointer, or 0 if this is a null member pointer.
1775 const ValueDecl *getDecl() const {
1776 return DeclAndIsDerivedMember.getPointer();
1777 }
1778 /// Is this actually a member of some type derived from the relevant class?
1779 bool isDerivedMember() const {
1780 return DeclAndIsDerivedMember.getInt();
1781 }
1782 /// Get the class which the declaration actually lives in.
1783 const CXXRecordDecl *getContainingRecord() const {
1784 return cast<CXXRecordDecl>(
1785 DeclAndIsDerivedMember.getPointer()->getDeclContext());
1786 }
1787
1788 void moveInto(APValue &V) const {
1789 V = APValue(getDecl(), isDerivedMember(), Path);
1790 }
1791 void setFrom(const APValue &V) {
1792 assert(V.isMemberPointer());
1793 DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
1794 DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
1795 Path.clear();
1796 ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
1797 Path.insert(I: Path.end(), From: P.begin(), To: P.end());
1798 }
1799
1800 /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
1801 /// whether the member is a member of some class derived from the class type
1802 /// of the member pointer.
1803 llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
1804 /// Path - The path of base/derived classes from the member declaration's
1805 /// class (exclusive) to the class type of the member pointer (inclusive).
1806 SmallVector<const CXXRecordDecl*, 4> Path;
1807
1808 /// Perform a cast towards the class of the Decl (either up or down the
1809 /// hierarchy).
1810 bool castBack(const CXXRecordDecl *Class) {
1811 assert(!Path.empty());
1812 const CXXRecordDecl *Expected;
1813 if (Path.size() >= 2)
1814 Expected = Path[Path.size() - 2];
1815 else
1816 Expected = getContainingRecord();
1817 if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
1818 // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
1819 // if B does not contain the original member and is not a base or
1820 // derived class of the class containing the original member, the result
1821 // of the cast is undefined.
1822 // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
1823 // (D::*). We consider that to be a language defect.
1824 return false;
1825 }
1826 Path.pop_back();
1827 return true;
1828 }
1829 /// Perform a base-to-derived member pointer cast.
1830 bool castToDerived(const CXXRecordDecl *Derived) {
1831 if (!getDecl())
1832 return true;
1833 if (!isDerivedMember()) {
1834 Path.push_back(Elt: Derived);
1835 return true;
1836 }
1837 if (!castBack(Class: Derived))
1838 return false;
1839 if (Path.empty())
1840 DeclAndIsDerivedMember.setInt(false);
1841 return true;
1842 }
1843 /// Perform a derived-to-base member pointer cast.
1844 bool castToBase(const CXXRecordDecl *Base) {
1845 if (!getDecl())
1846 return true;
1847 if (Path.empty())
1848 DeclAndIsDerivedMember.setInt(true);
1849 if (isDerivedMember()) {
1850 Path.push_back(Elt: Base);
1851 return true;
1852 }
1853 return castBack(Class: Base);
1854 }
1855 };
1856
1857 /// Compare two member pointers, which are assumed to be of the same type.
1858 static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
1859 if (!LHS.getDecl() || !RHS.getDecl())
1860 return !LHS.getDecl() && !RHS.getDecl();
1861 if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
1862 return false;
1863 return LHS.Path == RHS.Path;
1864 }
1865}
1866
1867static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
1868static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
1869 const LValue &This, const Expr *E,
1870 bool AllowNonLiteralTypes = false);
1871static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
1872 bool InvalidBaseOK = false);
1873static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info,
1874 bool InvalidBaseOK = false);
1875static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
1876 EvalInfo &Info);
1877static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
1878static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
1879static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
1880 EvalInfo &Info);
1881static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
1882static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
1883static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
1884 EvalInfo &Info);
1885static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result);
1886static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result,
1887 EvalInfo &Info);
1888
1889/// Evaluate an integer or fixed point expression into an APResult.
1890static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
1891 EvalInfo &Info);
1892
1893/// Evaluate only a fixed point expression into an APResult.
1894static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
1895 EvalInfo &Info);
1896
1897//===----------------------------------------------------------------------===//
1898// Misc utilities
1899//===----------------------------------------------------------------------===//
1900
1901/// Negate an APSInt in place, converting it to a signed form if necessary, and
1902/// preserving its value (by extending by up to one bit as needed).
1903static void negateAsSigned(APSInt &Int) {
1904 if (Int.isUnsigned() || Int.isMinSignedValue()) {
1905 Int = Int.extend(width: Int.getBitWidth() + 1);
1906 Int.setIsSigned(true);
1907 }
1908 Int = -Int;
1909}
1910
1911template<typename KeyT>
1912APValue &CallStackFrame::createTemporary(const KeyT *Key, QualType T,
1913 ScopeKind Scope, LValue &LV) {
1914 unsigned Version = getTempVersion();
1915 APValue::LValueBase Base(Key, Index, Version);
1916 LV.set(B: Base);
1917 return createLocal(Base, Key, T, Scope);
1918}
1919
1920/// Allocate storage for a parameter of a function call made in this frame.
1921APValue &CallStackFrame::createParam(CallRef Args, const ParmVarDecl *PVD,
1922 LValue &LV) {
1923 assert(Args.CallIndex == Index && "creating parameter in wrong frame");
1924 APValue::LValueBase Base(PVD, Index, Args.Version);
1925 LV.set(B: Base);
1926 // We always destroy parameters at the end of the call, even if we'd allow
1927 // them to live to the end of the full-expression at runtime, in order to
1928 // give portable results and match other compilers.
1929 return createLocal(Base, Key: PVD, T: PVD->getType(), Scope: ScopeKind::Call);
1930}
1931
1932APValue &CallStackFrame::createLocal(APValue::LValueBase Base, const void *Key,
1933 QualType T, ScopeKind Scope) {
1934 assert(Base.getCallIndex() == Index && "lvalue for wrong frame");
1935 unsigned Version = Base.getVersion();
1936 APValue &Result = Temporaries[MapKeyTy(Key, Version)];
1937 assert(Result.isAbsent() && "local created multiple times");
1938
1939 // If we're creating a local immediately in the operand of a speculative
1940 // evaluation, don't register a cleanup to be run outside the speculative
1941 // evaluation context, since we won't actually be able to initialize this
1942 // object.
1943 if (Index <= Info.SpeculativeEvaluationDepth) {
1944 if (T.isDestructedType())
1945 Info.noteSideEffect();
1946 } else {
1947 Info.CleanupStack.push_back(Elt: Cleanup(&Result, Base, T, Scope));
1948 }
1949 return Result;
1950}
1951
1952APValue *EvalInfo::createHeapAlloc(const Expr *E, QualType T, LValue &LV) {
1953 if (NumHeapAllocs > DynamicAllocLValue::getMaxIndex()) {
1954 FFDiag(E, diag::note_constexpr_heap_alloc_limit_exceeded);
1955 return nullptr;
1956 }
1957
1958 DynamicAllocLValue DA(NumHeapAllocs++);
1959 LV.set(B: APValue::LValueBase::getDynamicAlloc(LV: DA, Type: T));
1960 auto Result = HeapAllocs.emplace(args: std::piecewise_construct,
1961 args: std::forward_as_tuple(args&: DA), args: std::tuple<>());
1962 assert(Result.second && "reused a heap alloc index?");
1963 Result.first->second.AllocExpr = E;
1964 return &Result.first->second.Value;
1965}
1966
1967/// Produce a string describing the given constexpr call.
1968void CallStackFrame::describe(raw_ostream &Out) const {
1969 unsigned ArgIndex = 0;
1970 bool IsMemberCall =
1971 isa<CXXMethodDecl>(Val: Callee) && !isa<CXXConstructorDecl>(Val: Callee) &&
1972 cast<CXXMethodDecl>(Val: Callee)->isImplicitObjectMemberFunction();
1973
1974 if (!IsMemberCall)
1975 Callee->getNameForDiagnostic(OS&: Out, Policy: Info.Ctx.getPrintingPolicy(),
1976 /*Qualified=*/false);
1977
1978 if (This && IsMemberCall) {
1979 if (const auto *MCE = dyn_cast_if_present<CXXMemberCallExpr>(Val: CallExpr)) {
1980 const Expr *Object = MCE->getImplicitObjectArgument();
1981 Object->printPretty(Out, /*Helper=*/nullptr, Info.Ctx.getPrintingPolicy(),
1982 /*Indentation=*/0);
1983 if (Object->getType()->isPointerType())
1984 Out << "->";
1985 else
1986 Out << ".";
1987 } else if (const auto *OCE =
1988 dyn_cast_if_present<CXXOperatorCallExpr>(Val: CallExpr)) {
1989 OCE->getArg(0)->printPretty(Out, /*Helper=*/nullptr,
1990 Info.Ctx.getPrintingPolicy(),
1991 /*Indentation=*/0);
1992 Out << ".";
1993 } else {
1994 APValue Val;
1995 This->moveInto(V&: Val);
1996 Val.printPretty(
1997 Out, Info.Ctx,
1998 Info.Ctx.getLValueReferenceType(T: This->Designator.MostDerivedType));
1999 Out << ".";
2000 }
2001 Callee->getNameForDiagnostic(OS&: Out, Policy: Info.Ctx.getPrintingPolicy(),
2002 /*Qualified=*/false);
2003 IsMemberCall = false;
2004 }
2005
2006 Out << '(';
2007
2008 for (FunctionDecl::param_const_iterator I = Callee->param_begin(),
2009 E = Callee->param_end(); I != E; ++I, ++ArgIndex) {
2010 if (ArgIndex > (unsigned)IsMemberCall)
2011 Out << ", ";
2012
2013 const ParmVarDecl *Param = *I;
2014 APValue *V = Info.getParamSlot(Call: Arguments, PVD: Param);
2015 if (V)
2016 V->printPretty(Out, Info.Ctx, Param->getType());
2017 else
2018 Out << "<...>";
2019
2020 if (ArgIndex == 0 && IsMemberCall)
2021 Out << "->" << *Callee << '(';
2022 }
2023
2024 Out << ')';
2025}
2026
2027/// Evaluate an expression to see if it had side-effects, and discard its
2028/// result.
2029/// \return \c true if the caller should keep evaluating.
2030static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
2031 assert(!E->isValueDependent());
2032 APValue Scratch;
2033 if (!Evaluate(Result&: Scratch, Info, E))
2034 // We don't need the value, but we might have skipped a side effect here.
2035 return Info.noteSideEffect();
2036 return true;
2037}
2038
2039/// Should this call expression be treated as a no-op?
2040static bool IsNoOpCall(const CallExpr *E) {
2041 unsigned Builtin = E->getBuiltinCallee();
2042 return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
2043 Builtin == Builtin::BI__builtin___NSStringMakeConstantString ||
2044 Builtin == Builtin::BI__builtin_function_start);
2045}
2046
2047static bool IsGlobalLValue(APValue::LValueBase B) {
2048 // C++11 [expr.const]p3 An address constant expression is a prvalue core
2049 // constant expression of pointer type that evaluates to...
2050
2051 // ... a null pointer value, or a prvalue core constant expression of type
2052 // std::nullptr_t.
2053 if (!B)
2054 return true;
2055
2056 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
2057 // ... the address of an object with static storage duration,
2058 if (const VarDecl *VD = dyn_cast<VarDecl>(Val: D))
2059 return VD->hasGlobalStorage();
2060 if (isa<TemplateParamObjectDecl>(Val: D))
2061 return true;
2062 // ... the address of a function,
2063 // ... the address of a GUID [MS extension],
2064 // ... the address of an unnamed global constant
2065 return isa<FunctionDecl, MSGuidDecl, UnnamedGlobalConstantDecl>(Val: D);
2066 }
2067
2068 if (B.is<TypeInfoLValue>() || B.is<DynamicAllocLValue>())
2069 return true;
2070
2071 const Expr *E = B.get<const Expr*>();
2072 switch (E->getStmtClass()) {
2073 default:
2074 return false;
2075 case Expr::CompoundLiteralExprClass: {
2076 const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(Val: E);
2077 return CLE->isFileScope() && CLE->isLValue();
2078 }
2079 case Expr::MaterializeTemporaryExprClass:
2080 // A materialized temporary might have been lifetime-extended to static
2081 // storage duration.
2082 return cast<MaterializeTemporaryExpr>(Val: E)->getStorageDuration() == SD_Static;
2083 // A string literal has static storage duration.
2084 case Expr::StringLiteralClass:
2085 case Expr::PredefinedExprClass:
2086 case Expr::ObjCStringLiteralClass:
2087 case Expr::ObjCEncodeExprClass:
2088 return true;
2089 case Expr::ObjCBoxedExprClass:
2090 return cast<ObjCBoxedExpr>(Val: E)->isExpressibleAsConstantInitializer();
2091 case Expr::CallExprClass:
2092 return IsNoOpCall(E: cast<CallExpr>(Val: E));
2093 // For GCC compatibility, &&label has static storage duration.
2094 case Expr::AddrLabelExprClass:
2095 return true;
2096 // A Block literal expression may be used as the initialization value for
2097 // Block variables at global or local static scope.
2098 case Expr::BlockExprClass:
2099 return !cast<BlockExpr>(Val: E)->getBlockDecl()->hasCaptures();
2100 // The APValue generated from a __builtin_source_location will be emitted as a
2101 // literal.
2102 case Expr::SourceLocExprClass:
2103 return true;
2104 case Expr::ImplicitValueInitExprClass:
2105 // FIXME:
2106 // We can never form an lvalue with an implicit value initialization as its
2107 // base through expression evaluation, so these only appear in one case: the
2108 // implicit variable declaration we invent when checking whether a constexpr
2109 // constructor can produce a constant expression. We must assume that such
2110 // an expression might be a global lvalue.
2111 return true;
2112 }
2113}
2114
2115static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
2116 return LVal.Base.dyn_cast<const ValueDecl*>();
2117}
2118
2119static bool IsLiteralLValue(const LValue &Value) {
2120 if (Value.getLValueCallIndex())
2121 return false;
2122 const Expr *E = Value.Base.dyn_cast<const Expr*>();
2123 return E && !isa<MaterializeTemporaryExpr>(Val: E);
2124}
2125
2126static bool IsWeakLValue(const LValue &Value) {
2127 const ValueDecl *Decl = GetLValueBaseDecl(LVal: Value);
2128 return Decl && Decl->isWeak();
2129}
2130
2131static bool isZeroSized(const LValue &Value) {
2132 const ValueDecl *Decl = GetLValueBaseDecl(LVal: Value);
2133 if (Decl && isa<VarDecl>(Val: Decl)) {
2134 QualType Ty = Decl->getType();
2135 if (Ty->isArrayType())
2136 return Ty->isIncompleteType() ||
2137 Decl->getASTContext().getTypeSize(Ty) == 0;
2138 }
2139 return false;
2140}
2141
2142static bool HasSameBase(const LValue &A, const LValue &B) {
2143 if (!A.getLValueBase())
2144 return !B.getLValueBase();
2145 if (!B.getLValueBase())
2146 return false;
2147
2148 if (A.getLValueBase().getOpaqueValue() !=
2149 B.getLValueBase().getOpaqueValue())
2150 return false;
2151
2152 return A.getLValueCallIndex() == B.getLValueCallIndex() &&
2153 A.getLValueVersion() == B.getLValueVersion();
2154}
2155
2156static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
2157 assert(Base && "no location for a null lvalue");
2158 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
2159
2160 // For a parameter, find the corresponding call stack frame (if it still
2161 // exists), and point at the parameter of the function definition we actually
2162 // invoked.
2163 if (auto *PVD = dyn_cast_or_null<ParmVarDecl>(Val: VD)) {
2164 unsigned Idx = PVD->getFunctionScopeIndex();
2165 for (CallStackFrame *F = Info.CurrentCall; F; F = F->Caller) {
2166 if (F->Arguments.CallIndex == Base.getCallIndex() &&
2167 F->Arguments.Version == Base.getVersion() && F->Callee &&
2168 Idx < F->Callee->getNumParams()) {
2169 VD = F->Callee->getParamDecl(i: Idx);
2170 break;
2171 }
2172 }
2173 }
2174
2175 if (VD)
2176 Info.Note(VD->getLocation(), diag::note_declared_at);
2177 else if (const Expr *E = Base.dyn_cast<const Expr*>())
2178 Info.Note(E->getExprLoc(), diag::note_constexpr_temporary_here);
2179 else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) {
2180 // FIXME: Produce a note for dangling pointers too.
2181 if (std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA))
2182 Info.Note((*Alloc)->AllocExpr->getExprLoc(),
2183 diag::note_constexpr_dynamic_alloc_here);
2184 }
2185
2186 // We have no information to show for a typeid(T) object.
2187}
2188
2189enum class CheckEvaluationResultKind {
2190 ConstantExpression,
2191 FullyInitialized,
2192};
2193
2194/// Materialized temporaries that we've already checked to determine if they're
2195/// initializsed by a constant expression.
2196using CheckedTemporaries =
2197 llvm::SmallPtrSet<const MaterializeTemporaryExpr *, 8>;
2198
2199static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
2200 EvalInfo &Info, SourceLocation DiagLoc,
2201 QualType Type, const APValue &Value,
2202 ConstantExprKind Kind,
2203 const FieldDecl *SubobjectDecl,
2204 CheckedTemporaries &CheckedTemps);
2205
2206/// Check that this reference or pointer core constant expression is a valid
2207/// value for an address or reference constant expression. Return true if we
2208/// can fold this expression, whether or not it's a constant expression.
2209static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
2210 QualType Type, const LValue &LVal,
2211 ConstantExprKind Kind,
2212 CheckedTemporaries &CheckedTemps) {
2213 bool IsReferenceType = Type->isReferenceType();
2214
2215 APValue::LValueBase Base = LVal.getLValueBase();
2216 const SubobjectDesignator &Designator = LVal.getLValueDesignator();
2217
2218 const Expr *BaseE = Base.dyn_cast<const Expr *>();
2219 const ValueDecl *BaseVD = Base.dyn_cast<const ValueDecl*>();
2220
2221 // Additional restrictions apply in a template argument. We only enforce the
2222 // C++20 restrictions here; additional syntactic and semantic restrictions
2223 // are applied elsewhere.
2224 if (isTemplateArgument(Kind)) {
2225 int InvalidBaseKind = -1;
2226 StringRef Ident;
2227 if (Base.is<TypeInfoLValue>())
2228 InvalidBaseKind = 0;
2229 else if (isa_and_nonnull<StringLiteral>(Val: BaseE))
2230 InvalidBaseKind = 1;
2231 else if (isa_and_nonnull<MaterializeTemporaryExpr>(Val: BaseE) ||
2232 isa_and_nonnull<LifetimeExtendedTemporaryDecl>(Val: BaseVD))
2233 InvalidBaseKind = 2;
2234 else if (auto *PE = dyn_cast_or_null<PredefinedExpr>(Val: BaseE)) {
2235 InvalidBaseKind = 3;
2236 Ident = PE->getIdentKindName();
2237 }
2238
2239 if (InvalidBaseKind != -1) {
2240 Info.FFDiag(Loc, diag::note_constexpr_invalid_template_arg)
2241 << IsReferenceType << !Designator.Entries.empty() << InvalidBaseKind
2242 << Ident;
2243 return false;
2244 }
2245 }
2246
2247 if (auto *FD = dyn_cast_or_null<FunctionDecl>(Val: BaseVD);
2248 FD && FD->isImmediateFunction()) {
2249 Info.FFDiag(Loc, diag::note_consteval_address_accessible)
2250 << !Type->isAnyPointerType();
2251 Info.Note(FD->getLocation(), diag::note_declared_at);
2252 return false;
2253 }
2254
2255 // Check that the object is a global. Note that the fake 'this' object we
2256 // manufacture when checking potential constant expressions is conservatively
2257 // assumed to be global here.
2258 if (!IsGlobalLValue(B: Base)) {
2259 if (Info.getLangOpts().CPlusPlus11) {
2260 Info.FFDiag(Loc, diag::note_constexpr_non_global, 1)
2261 << IsReferenceType << !Designator.Entries.empty() << !!BaseVD
2262 << BaseVD;
2263 auto *VarD = dyn_cast_or_null<VarDecl>(Val: BaseVD);
2264 if (VarD && VarD->isConstexpr()) {
2265 // Non-static local constexpr variables have unintuitive semantics:
2266 // constexpr int a = 1;
2267 // constexpr const int *p = &a;
2268 // ... is invalid because the address of 'a' is not constant. Suggest
2269 // adding a 'static' in this case.
2270 Info.Note(VarD->getLocation(), diag::note_constexpr_not_static)
2271 << VarD
2272 << FixItHint::CreateInsertion(VarD->getBeginLoc(), "static ");
2273 } else {
2274 NoteLValueLocation(Info, Base);
2275 }
2276 } else {
2277 Info.FFDiag(Loc);
2278 }
2279 // Don't allow references to temporaries to escape.
2280 return false;
2281 }
2282 assert((Info.checkingPotentialConstantExpression() ||
2283 LVal.getLValueCallIndex() == 0) &&
2284 "have call index for global lvalue");
2285
2286 if (Base.is<DynamicAllocLValue>()) {
2287 Info.FFDiag(Loc, diag::note_constexpr_dynamic_alloc)
2288 << IsReferenceType << !Designator.Entries.empty();
2289 NoteLValueLocation(Info, Base);
2290 return false;
2291 }
2292
2293 if (BaseVD) {
2294 if (const VarDecl *Var = dyn_cast<const VarDecl>(Val: BaseVD)) {
2295 // Check if this is a thread-local variable.
2296 if (Var->getTLSKind())
2297 // FIXME: Diagnostic!
2298 return false;
2299
2300 // A dllimport variable never acts like a constant, unless we're
2301 // evaluating a value for use only in name mangling.
2302 if (!isForManglingOnly(Kind) && Var->hasAttr<DLLImportAttr>())
2303 // FIXME: Diagnostic!
2304 return false;
2305
2306 // In CUDA/HIP device compilation, only device side variables have
2307 // constant addresses.
2308 if (Info.getCtx().getLangOpts().CUDA &&
2309 Info.getCtx().getLangOpts().CUDAIsDevice &&
2310 Info.getCtx().CUDAConstantEvalCtx.NoWrongSidedVars) {
2311 if ((!Var->hasAttr<CUDADeviceAttr>() &&
2312 !Var->hasAttr<CUDAConstantAttr>() &&
2313 !Var->getType()->isCUDADeviceBuiltinSurfaceType() &&
2314 !Var->getType()->isCUDADeviceBuiltinTextureType()) ||
2315 Var->hasAttr<HIPManagedAttr>())
2316 return false;
2317 }
2318 }
2319 if (const auto *FD = dyn_cast<const FunctionDecl>(Val: BaseVD)) {
2320 // __declspec(dllimport) must be handled very carefully:
2321 // We must never initialize an expression with the thunk in C++.
2322 // Doing otherwise would allow the same id-expression to yield
2323 // different addresses for the same function in different translation
2324 // units. However, this means that we must dynamically initialize the
2325 // expression with the contents of the import address table at runtime.
2326 //
2327 // The C language has no notion of ODR; furthermore, it has no notion of
2328 // dynamic initialization. This means that we are permitted to
2329 // perform initialization with the address of the thunk.
2330 if (Info.getLangOpts().CPlusPlus && !isForManglingOnly(Kind) &&
2331 FD->hasAttr<DLLImportAttr>())
2332 // FIXME: Diagnostic!
2333 return false;
2334 }
2335 } else if (const auto *MTE =
2336 dyn_cast_or_null<MaterializeTemporaryExpr>(Val: BaseE)) {
2337 if (CheckedTemps.insert(Ptr: MTE).second) {
2338 QualType TempType = getType(B: Base);
2339 if (TempType.isDestructedType()) {
2340 Info.FFDiag(MTE->getExprLoc(),
2341 diag::note_constexpr_unsupported_temporary_nontrivial_dtor)
2342 << TempType;
2343 return false;
2344 }
2345
2346 APValue *V = MTE->getOrCreateValue(MayCreate: false);
2347 assert(V && "evasluation result refers to uninitialised temporary");
2348 if (!CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
2349 Info, MTE->getExprLoc(), TempType, *V, Kind,
2350 /*SubobjectDecl=*/nullptr, CheckedTemps))
2351 return false;
2352 }
2353 }
2354
2355 // Allow address constant expressions to be past-the-end pointers. This is
2356 // an extension: the standard requires them to point to an object.
2357 if (!IsReferenceType)
2358 return true;
2359
2360 // A reference constant expression must refer to an object.
2361 if (!Base) {
2362 // FIXME: diagnostic
2363 Info.CCEDiag(Loc);
2364 return true;
2365 }
2366
2367 // Does this refer one past the end of some object?
2368 if (!Designator.Invalid && Designator.isOnePastTheEnd()) {
2369 Info.FFDiag(Loc, diag::note_constexpr_past_end, 1)
2370 << !Designator.Entries.empty() << !!BaseVD << BaseVD;
2371 NoteLValueLocation(Info, Base);
2372 }
2373
2374 return true;
2375}
2376
2377/// Member pointers are constant expressions unless they point to a
2378/// non-virtual dllimport member function.
2379static bool CheckMemberPointerConstantExpression(EvalInfo &Info,
2380 SourceLocation Loc,
2381 QualType Type,
2382 const APValue &Value,
2383 ConstantExprKind Kind) {
2384 const ValueDecl *Member = Value.getMemberPointerDecl();
2385 const auto *FD = dyn_cast_or_null<CXXMethodDecl>(Val: Member);
2386 if (!FD)
2387 return true;
2388 if (FD->isImmediateFunction()) {
2389 Info.FFDiag(Loc, diag::note_consteval_address_accessible) << /*pointer*/ 0;
2390 Info.Note(FD->getLocation(), diag::note_declared_at);
2391 return false;
2392 }
2393 return isForManglingOnly(Kind) || FD->isVirtual() ||
2394 !FD->hasAttr<DLLImportAttr>();
2395}
2396
2397/// Check that this core constant expression is of literal type, and if not,
2398/// produce an appropriate diagnostic.
2399static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
2400 const LValue *This = nullptr) {
2401 if (!E->isPRValue() || E->getType()->isLiteralType(Ctx: Info.Ctx))
2402 return true;
2403
2404 // C++1y: A constant initializer for an object o [...] may also invoke
2405 // constexpr constructors for o and its subobjects even if those objects
2406 // are of non-literal class types.
2407 //
2408 // C++11 missed this detail for aggregates, so classes like this:
2409 // struct foo_t { union { int i; volatile int j; } u; };
2410 // are not (obviously) initializable like so:
2411 // __attribute__((__require_constant_initialization__))
2412 // static const foo_t x = {{0}};
2413 // because "i" is a subobject with non-literal initialization (due to the
2414 // volatile member of the union). See:
2415 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677
2416 // Therefore, we use the C++1y behavior.
2417 if (This && Info.EvaluatingDecl == This->getLValueBase())
2418 return true;
2419
2420 // Prvalue constant expressions must be of literal types.
2421 if (Info.getLangOpts().CPlusPlus11)
2422 Info.FFDiag(E, diag::note_constexpr_nonliteral)
2423 << E->getType();
2424 else
2425 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2426 return false;
2427}
2428
2429static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
2430 EvalInfo &Info, SourceLocation DiagLoc,
2431 QualType Type, const APValue &Value,
2432 ConstantExprKind Kind,
2433 const FieldDecl *SubobjectDecl,
2434 CheckedTemporaries &CheckedTemps) {
2435 if (!Value.hasValue()) {
2436 if (SubobjectDecl) {
2437 Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized)
2438 << /*(name)*/ 1 << SubobjectDecl;
2439 Info.Note(SubobjectDecl->getLocation(),
2440 diag::note_constexpr_subobject_declared_here);
2441 } else {
2442 Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized)
2443 << /*of type*/ 0 << Type;
2444 }
2445 return false;
2446 }
2447
2448 // We allow _Atomic(T) to be initialized from anything that T can be
2449 // initialized from.
2450 if (const AtomicType *AT = Type->getAs<AtomicType>())
2451 Type = AT->getValueType();
2452
2453 // Core issue 1454: For a literal constant expression of array or class type,
2454 // each subobject of its value shall have been initialized by a constant
2455 // expression.
2456 if (Value.isArray()) {
2457 QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
2458 for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
2459 if (!CheckEvaluationResult(CERK, Info, DiagLoc, Type: EltTy,
2460 Value: Value.getArrayInitializedElt(I), Kind,
2461 SubobjectDecl, CheckedTemps))
2462 return false;
2463 }
2464 if (!Value.hasArrayFiller())
2465 return true;
2466 return CheckEvaluationResult(CERK, Info, DiagLoc, Type: EltTy,
2467 Value: Value.getArrayFiller(), Kind, SubobjectDecl,
2468 CheckedTemps);
2469 }
2470 if (Value.isUnion() && Value.getUnionField()) {
2471 return CheckEvaluationResult(
2472 CERK, Info, DiagLoc, Value.getUnionField()->getType(),
2473 Value.getUnionValue(), Kind, Value.getUnionField(), CheckedTemps);
2474 }
2475 if (Value.isStruct()) {
2476 RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
2477 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(Val: RD)) {
2478 unsigned BaseIndex = 0;
2479 for (const CXXBaseSpecifier &BS : CD->bases()) {
2480 const APValue &BaseValue = Value.getStructBase(i: BaseIndex);
2481 if (!BaseValue.hasValue()) {
2482 SourceLocation TypeBeginLoc = BS.getBaseTypeLoc();
2483 Info.FFDiag(TypeBeginLoc, diag::note_constexpr_uninitialized_base)
2484 << BS.getType() << SourceRange(TypeBeginLoc, BS.getEndLoc());
2485 return false;
2486 }
2487 if (!CheckEvaluationResult(CERK, Info, DiagLoc, Type: BS.getType(), Value: BaseValue,
2488 Kind, /*SubobjectDecl=*/nullptr,
2489 CheckedTemps))
2490 return false;
2491 ++BaseIndex;
2492 }
2493 }
2494 for (const auto *I : RD->fields()) {
2495 if (I->isUnnamedBitfield())
2496 continue;
2497
2498 if (!CheckEvaluationResult(CERK, Info, DiagLoc, I->getType(),
2499 Value.getStructField(i: I->getFieldIndex()), Kind,
2500 I, CheckedTemps))
2501 return false;
2502 }
2503 }
2504
2505 if (Value.isLValue() &&
2506 CERK == CheckEvaluationResultKind::ConstantExpression) {
2507 LValue LVal;
2508 LVal.setFrom(Ctx&: Info.Ctx, V: Value);
2509 return CheckLValueConstantExpression(Info, Loc: DiagLoc, Type, LVal, Kind,
2510 CheckedTemps);
2511 }
2512
2513 if (Value.isMemberPointer() &&
2514 CERK == CheckEvaluationResultKind::ConstantExpression)
2515 return CheckMemberPointerConstantExpression(Info, Loc: DiagLoc, Type, Value, Kind);
2516
2517 // Everything else is fine.
2518 return true;
2519}
2520
2521/// Check that this core constant expression value is a valid value for a
2522/// constant expression. If not, report an appropriate diagnostic. Does not
2523/// check that the expression is of literal type.
2524static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
2525 QualType Type, const APValue &Value,
2526 ConstantExprKind Kind) {
2527 // Nothing to check for a constant expression of type 'cv void'.
2528 if (Type->isVoidType())
2529 return true;
2530
2531 CheckedTemporaries CheckedTemps;
2532 return CheckEvaluationResult(CERK: CheckEvaluationResultKind::ConstantExpression,
2533 Info, DiagLoc, Type, Value, Kind,
2534 /*SubobjectDecl=*/nullptr, CheckedTemps);
2535}
2536
2537/// Check that this evaluated value is fully-initialized and can be loaded by
2538/// an lvalue-to-rvalue conversion.
2539static bool CheckFullyInitialized(EvalInfo &Info, SourceLocation DiagLoc,
2540 QualType Type, const APValue &Value) {
2541 CheckedTemporaries CheckedTemps;
2542 return CheckEvaluationResult(
2543 CERK: CheckEvaluationResultKind::FullyInitialized, Info, DiagLoc, Type, Value,
2544 Kind: ConstantExprKind::Normal, /*SubobjectDecl=*/nullptr, CheckedTemps);
2545}
2546
2547/// Enforce C++2a [expr.const]/4.17, which disallows new-expressions unless
2548/// "the allocated storage is deallocated within the evaluation".
2549static bool CheckMemoryLeaks(EvalInfo &Info) {
2550 if (!Info.HeapAllocs.empty()) {
2551 // We can still fold to a constant despite a compile-time memory leak,
2552 // so long as the heap allocation isn't referenced in the result (we check
2553 // that in CheckConstantExpression).
2554 Info.CCEDiag(Info.HeapAllocs.begin()->second.AllocExpr,
2555 diag::note_constexpr_memory_leak)
2556 << unsigned(Info.HeapAllocs.size() - 1);
2557 }
2558 return true;
2559}
2560
2561static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
2562 // A null base expression indicates a null pointer. These are always
2563 // evaluatable, and they are false unless the offset is zero.
2564 if (!Value.getLValueBase()) {
2565 // TODO: Should a non-null pointer with an offset of zero evaluate to true?
2566 Result = !Value.getLValueOffset().isZero();
2567 return true;
2568 }
2569
2570 // We have a non-null base. These are generally known to be true, but if it's
2571 // a weak declaration it can be null at runtime.
2572 Result = true;
2573 const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
2574 return !Decl || !Decl->isWeak();
2575}
2576
2577static bool HandleConversionToBool(const APValue &Val, bool &Result) {
2578 // TODO: This function should produce notes if it fails.
2579 switch (Val.getKind()) {
2580 case APValue::None:
2581 case APValue::Indeterminate:
2582 return false;
2583 case APValue::Int:
2584 Result = Val.getInt().getBoolValue();
2585 return true;
2586 case APValue::FixedPoint:
2587 Result = Val.getFixedPoint().getBoolValue();
2588 return true;
2589 case APValue::Float:
2590 Result = !Val.getFloat().isZero();
2591 return true;
2592 case APValue::ComplexInt:
2593 Result = Val.getComplexIntReal().getBoolValue() ||
2594 Val.getComplexIntImag().getBoolValue();
2595 return true;
2596 case APValue::ComplexFloat:
2597 Result = !Val.getComplexFloatReal().isZero() ||
2598 !Val.getComplexFloatImag().isZero();
2599 return true;
2600 case APValue::LValue:
2601 return EvalPointerValueAsBool(Value: Val, Result);
2602 case APValue::MemberPointer:
2603 if (Val.getMemberPointerDecl() && Val.getMemberPointerDecl()->isWeak()) {
2604 return false;
2605 }
2606 Result = Val.getMemberPointerDecl();
2607 return true;
2608 case APValue::Vector:
2609 case APValue::Array:
2610 case APValue::Struct:
2611 case APValue::Union:
2612 case APValue::AddrLabelDiff:
2613 return false;
2614 }
2615
2616 llvm_unreachable("unknown APValue kind");
2617}
2618
2619static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
2620 EvalInfo &Info) {
2621 assert(!E->isValueDependent());
2622 assert(E->isPRValue() && "missing lvalue-to-rvalue conv in bool condition");
2623 APValue Val;
2624 if (!Evaluate(Result&: Val, Info, E))
2625 return false;
2626 return HandleConversionToBool(Val, Result);
2627}
2628
2629template<typename T>
2630static bool HandleOverflow(EvalInfo &Info, const Expr *E,
2631 const T &SrcValue, QualType DestType) {
2632 Info.CCEDiag(E, diag::note_constexpr_overflow)
2633 << SrcValue << DestType;
2634 return Info.noteUndefinedBehavior();
2635}
2636
2637static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
2638 QualType SrcType, const APFloat &Value,
2639 QualType DestType, APSInt &Result) {
2640 unsigned DestWidth = Info.Ctx.getIntWidth(T: DestType);
2641 // Determine whether we are converting to unsigned or signed.
2642 bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
2643
2644 Result = APSInt(DestWidth, !DestSigned);
2645 bool ignored;
2646 if (Value.convertToInteger(Result, RM: llvm::APFloat::rmTowardZero, IsExact: &ignored)
2647 & APFloat::opInvalidOp)
2648 return HandleOverflow(Info, E, SrcValue: Value, DestType);
2649 return true;
2650}
2651
2652/// Get rounding mode to use in evaluation of the specified expression.
2653///
2654/// If rounding mode is unknown at compile time, still try to evaluate the
2655/// expression. If the result is exact, it does not depend on rounding mode.
2656/// So return "tonearest" mode instead of "dynamic".
2657static llvm::RoundingMode getActiveRoundingMode(EvalInfo &Info, const Expr *E) {
2658 llvm::RoundingMode RM =
2659 E->getFPFeaturesInEffect(LO: Info.Ctx.getLangOpts()).getRoundingMode();
2660 if (RM == llvm::RoundingMode::Dynamic)
2661 RM = llvm::RoundingMode::NearestTiesToEven;
2662 return RM;
2663}
2664
2665/// Check if the given evaluation result is allowed for constant evaluation.
2666static bool checkFloatingPointResult(EvalInfo &Info, const Expr *E,
2667 APFloat::opStatus St) {
2668 // In a constant context, assume that any dynamic rounding mode or FP
2669 // exception state matches the default floating-point environment.
2670 if (Info.InConstantContext)
2671 return true;
2672
2673 FPOptions FPO = E->getFPFeaturesInEffect(LO: Info.Ctx.getLangOpts());
2674 if ((St & APFloat::opInexact) &&
2675 FPO.getRoundingMode() == llvm::RoundingMode::Dynamic) {
2676 // Inexact result means that it depends on rounding mode. If the requested
2677 // mode is dynamic, the evaluation cannot be made in compile time.
2678 Info.FFDiag(E, diag::note_constexpr_dynamic_rounding);
2679 return false;
2680 }
2681
2682 if ((St != APFloat::opOK) &&
2683 (FPO.getRoundingMode() == llvm::RoundingMode::Dynamic ||
2684 FPO.getExceptionMode() != LangOptions::FPE_Ignore ||
2685 FPO.getAllowFEnvAccess())) {
2686 Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
2687 return false;
2688 }
2689
2690 if ((St & APFloat::opStatus::opInvalidOp) &&
2691 FPO.getExceptionMode() != LangOptions::FPE_Ignore) {
2692 // There is no usefully definable result.
2693 Info.FFDiag(E);
2694 return false;
2695 }
2696
2697 // FIXME: if:
2698 // - evaluation triggered other FP exception, and
2699 // - exception mode is not "ignore", and
2700 // - the expression being evaluated is not a part of global variable
2701 // initializer,
2702 // the evaluation probably need to be rejected.
2703 return true;
2704}
2705
2706static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
2707 QualType SrcType, QualType DestType,
2708 APFloat &Result) {
2709 assert(isa<CastExpr>(E) || isa<CompoundAssignOperator>(E));
2710 llvm::RoundingMode RM = getActiveRoundingMode(Info, E);
2711 APFloat::opStatus St;
2712 APFloat Value = Result;
2713 bool ignored;
2714 St = Result.convert(ToSemantics: Info.Ctx.getFloatTypeSemantics(T: DestType), RM, losesInfo: &ignored);
2715 return checkFloatingPointResult(Info, E, St);
2716}
2717
2718static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
2719 QualType DestType, QualType SrcType,
2720 const APSInt &Value) {
2721 unsigned DestWidth = Info.Ctx.getIntWidth(T: DestType);
2722 // Figure out if this is a truncate, extend or noop cast.
2723 // If the input is signed, do a sign extend, noop, or truncate.
2724 APSInt Result = Value.extOrTrunc(width: DestWidth);
2725 Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
2726 if (DestType->isBooleanType())
2727 Result = Value.getBoolValue();
2728 return Result;
2729}
2730
2731static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
2732 const FPOptions FPO,
2733 QualType SrcType, const APSInt &Value,
2734 QualType DestType, APFloat &Result) {
2735 Result = APFloat(Info.Ctx.getFloatTypeSemantics(T: DestType), 1);
2736 llvm::RoundingMode RM = getActiveRoundingMode(Info, E);
2737 APFloat::opStatus St = Result.convertFromAPInt(Input: Value, IsSigned: Value.isSigned(), RM);
2738 return checkFloatingPointResult(Info, E, St);
2739}
2740
2741static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
2742 APValue &Value, const FieldDecl *FD) {
2743 assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");
2744
2745 if (!Value.isInt()) {
2746 // Trying to store a pointer-cast-to-integer into a bitfield.
2747 // FIXME: In this case, we should provide the diagnostic for casting
2748 // a pointer to an integer.
2749 assert(Value.isLValue() && "integral value neither int nor lvalue?");
2750 Info.FFDiag(E);
2751 return false;
2752 }
2753
2754 APSInt &Int = Value.getInt();
2755 unsigned OldBitWidth = Int.getBitWidth();
2756 unsigned NewBitWidth = FD->getBitWidthValue(Ctx: Info.Ctx);
2757 if (NewBitWidth < OldBitWidth)
2758 Int = Int.trunc(width: NewBitWidth).extend(width: OldBitWidth);
2759 return true;
2760}
2761
2762/// Perform the given integer operation, which is known to need at most BitWidth
2763/// bits, and check for overflow in the original type (if that type was not an
2764/// unsigned type).
2765template<typename Operation>
2766static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
2767 const APSInt &LHS, const APSInt &RHS,
2768 unsigned BitWidth, Operation Op,
2769 APSInt &Result) {
2770 if (LHS.isUnsigned()) {
2771 Result = Op(LHS, RHS);
2772 return true;
2773 }
2774
2775 APSInt Value(Op(LHS.extend(width: BitWidth), RHS.extend(width: BitWidth)), false);
2776 Result = Value.trunc(width: LHS.getBitWidth());
2777 if (Result.extend(width: BitWidth) != Value) {
2778 if (Info.checkingForUndefinedBehavior())
2779 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
2780 diag::warn_integer_constant_overflow)
2781 << toString(Result, 10) << E->getType() << E->getSourceRange();
2782 return HandleOverflow(Info, E, SrcValue: Value, DestType: E->getType());
2783 }
2784 return true;
2785}
2786
2787/// Perform the given binary integer operation.
2788static bool handleIntIntBinOp(EvalInfo &Info, const BinaryOperator *E,
2789 const APSInt &LHS, BinaryOperatorKind Opcode,
2790 APSInt RHS, APSInt &Result) {
2791 bool HandleOverflowResult = true;
2792 switch (Opcode) {
2793 default:
2794 Info.FFDiag(E);
2795 return false;
2796 case BO_Mul:
2797 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
2798 std::multiplies<APSInt>(), Result);
2799 case BO_Add:
2800 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2801 std::plus<APSInt>(), Result);
2802 case BO_Sub:
2803 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2804 std::minus<APSInt>(), Result);
2805 case BO_And: Result = LHS & RHS; return true;
2806 case BO_Xor: Result = LHS ^ RHS; return true;
2807 case BO_Or: Result = LHS | RHS; return true;
2808 case BO_Div:
2809 case BO_Rem:
2810 if (RHS == 0) {
2811 Info.FFDiag(E, diag::note_expr_divide_by_zero)
2812 << E->getRHS()->getSourceRange();
2813 return false;
2814 }
2815 // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports
2816 // this operation and gives the two's complement result.
2817 if (RHS.isNegative() && RHS.isAllOnes() && LHS.isSigned() &&
2818 LHS.isMinSignedValue())
2819 HandleOverflowResult = HandleOverflow(
2820 Info, E, -LHS.extend(width: LHS.getBitWidth() + 1), E->getType());
2821 Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
2822 return HandleOverflowResult;
2823 case BO_Shl: {
2824 if (Info.getLangOpts().OpenCL)
2825 // OpenCL 6.3j: shift values are effectively % word size of LHS.
2826 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2827 static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2828 RHS.isUnsigned());
2829 else if (RHS.isSigned() && RHS.isNegative()) {
2830 // During constant-folding, a negative shift is an opposite shift. Such
2831 // a shift is not a constant expression.
2832 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2833 RHS = -RHS;
2834 goto shift_right;
2835 }
2836 shift_left:
2837 // C++11 [expr.shift]p1: Shift width must be less than the bit width of
2838 // the shifted type.
2839 unsigned SA = (unsigned) RHS.getLimitedValue(Limit: LHS.getBitWidth()-1);
2840 if (SA != RHS) {
2841 Info.CCEDiag(E, diag::note_constexpr_large_shift)
2842 << RHS << E->getType() << LHS.getBitWidth();
2843 } else if (LHS.isSigned() && !Info.getLangOpts().CPlusPlus20) {
2844 // C++11 [expr.shift]p2: A signed left shift must have a non-negative
2845 // operand, and must not overflow the corresponding unsigned type.
2846 // C++2a [expr.shift]p2: E1 << E2 is the unique value congruent to
2847 // E1 x 2^E2 module 2^N.
2848 if (LHS.isNegative())
2849 Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
2850 else if (LHS.countl_zero() < SA)
2851 Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
2852 }
2853 Result = LHS << SA;
2854 return true;
2855 }
2856 case BO_Shr: {
2857 if (Info.getLangOpts().OpenCL)
2858 // OpenCL 6.3j: shift values are effectively % word size of LHS.
2859 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2860 static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2861 RHS.isUnsigned());
2862 else if (RHS.isSigned() && RHS.isNegative()) {
2863 // During constant-folding, a negative shift is an opposite shift. Such a
2864 // shift is not a constant expression.
2865 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2866 RHS = -RHS;
2867 goto shift_left;
2868 }
2869 shift_right:
2870 // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
2871 // shifted type.
2872 unsigned SA = (unsigned) RHS.getLimitedValue(Limit: LHS.getBitWidth()-1);
2873 if (SA != RHS)
2874 Info.CCEDiag(E, diag::note_constexpr_large_shift)
2875 << RHS << E->getType() << LHS.getBitWidth();
2876 Result = LHS >> SA;
2877 return true;
2878 }
2879
2880 case BO_LT: Result = LHS < RHS; return true;
2881 case BO_GT: Result = LHS > RHS; return true;
2882 case BO_LE: Result = LHS <= RHS; return true;
2883 case BO_GE: Result = LHS >= RHS; return true;
2884 case BO_EQ: Result = LHS == RHS; return true;
2885 case BO_NE: Result = LHS != RHS; return true;
2886 case BO_Cmp:
2887 llvm_unreachable("BO_Cmp should be handled elsewhere");
2888 }
2889}
2890
2891/// Perform the given binary floating-point operation, in-place, on LHS.
2892static bool handleFloatFloatBinOp(EvalInfo &Info, const BinaryOperator *E,
2893 APFloat &LHS, BinaryOperatorKind Opcode,
2894 const APFloat &RHS) {
2895 llvm::RoundingMode RM = getActiveRoundingMode(Info, E);
2896 APFloat::opStatus St;
2897 switch (Opcode) {
2898 default:
2899 Info.FFDiag(E);
2900 return false;
2901 case BO_Mul:
2902 St = LHS.multiply(RHS, RM);
2903 break;
2904 case BO_Add:
2905 St = LHS.add(RHS, RM);
2906 break;
2907 case BO_Sub:
2908 St = LHS.subtract(RHS, RM);
2909 break;
2910 case BO_Div:
2911 // [expr.mul]p4:
2912 // If the second operand of / or % is zero the behavior is undefined.
2913 if (RHS.isZero())
2914 Info.CCEDiag(E, diag::note_expr_divide_by_zero);
2915 St = LHS.divide(RHS, RM);
2916 break;
2917 }
2918
2919 // [expr.pre]p4:
2920 // If during the evaluation of an expression, the result is not
2921 // mathematically defined [...], the behavior is undefined.
2922 // FIXME: C++ rules require us to not conform to IEEE 754 here.
2923 if (LHS.isNaN()) {
2924 Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
2925 return Info.noteUndefinedBehavior();
2926 }
2927
2928 return checkFloatingPointResult(Info, E, St);
2929}
2930
2931static bool handleLogicalOpForVector(const APInt &LHSValue,
2932 BinaryOperatorKind Opcode,
2933 const APInt &RHSValue, APInt &Result) {
2934 bool LHS = (LHSValue != 0);
2935 bool RHS = (RHSValue != 0);
2936
2937 if (Opcode == BO_LAnd)
2938 Result = LHS && RHS;
2939 else
2940 Result = LHS || RHS;
2941 return true;
2942}
2943static bool handleLogicalOpForVector(const APFloat &LHSValue,
2944 BinaryOperatorKind Opcode,
2945 const APFloat &RHSValue, APInt &Result) {
2946 bool LHS = !LHSValue.isZero();
2947 bool RHS = !RHSValue.isZero();
2948
2949 if (Opcode == BO_LAnd)
2950 Result = LHS && RHS;
2951 else
2952 Result = LHS || RHS;
2953 return true;
2954}
2955
2956static bool handleLogicalOpForVector(const APValue &LHSValue,
2957 BinaryOperatorKind Opcode,
2958 const APValue &RHSValue, APInt &Result) {
2959 // The result is always an int type, however operands match the first.
2960 if (LHSValue.getKind() == APValue::Int)
2961 return handleLogicalOpForVector(LHSValue: LHSValue.getInt(), Opcode,
2962 RHSValue: RHSValue.getInt(), Result);
2963 assert(LHSValue.getKind() == APValue::Float && "Should be no other options");
2964 return handleLogicalOpForVector(LHSValue: LHSValue.getFloat(), Opcode,
2965 RHSValue: RHSValue.getFloat(), Result);
2966}
2967
2968template <typename APTy>
2969static bool
2970handleCompareOpForVectorHelper(const APTy &LHSValue, BinaryOperatorKind Opcode,
2971 const APTy &RHSValue, APInt &Result) {
2972 switch (Opcode) {
2973 default:
2974 llvm_unreachable("unsupported binary operator");
2975 case BO_EQ:
2976 Result = (LHSValue == RHSValue);
2977 break;
2978 case BO_NE:
2979 Result = (LHSValue != RHSValue);
2980 break;
2981 case BO_LT:
2982 Result = (LHSValue < RHSValue);
2983 break;
2984 case BO_GT:
2985 Result = (LHSValue > RHSValue);
2986 break;
2987 case BO_LE:
2988 Result = (LHSValue <= RHSValue);
2989 break;
2990 case BO_GE:
2991 Result = (LHSValue >= RHSValue);
2992 break;
2993 }
2994
2995 // The boolean operations on these vector types use an instruction that
2996 // results in a mask of '-1' for the 'truth' value. Ensure that we negate 1
2997 // to -1 to make sure that we produce the correct value.
2998 Result.negate();
2999
3000 return true;
3001}
3002
3003static bool handleCompareOpForVector(const APValue &LHSValue,
3004 BinaryOperatorKind Opcode,
3005 const APValue &RHSValue, APInt &Result) {
3006 // The result is always an int type, however operands match the first.
3007 if (LHSValue.getKind() == APValue::Int)
3008 return handleCompareOpForVectorHelper(LHSValue: LHSValue.getInt(), Opcode,
3009 RHSValue: RHSValue.getInt(), Result);
3010 assert(LHSValue.getKind() == APValue::Float && "Should be no other options");
3011 return handleCompareOpForVectorHelper(LHSValue: LHSValue.getFloat(), Opcode,
3012 RHSValue: RHSValue.getFloat(), Result);
3013}
3014
3015// Perform binary operations for vector types, in place on the LHS.
3016static bool handleVectorVectorBinOp(EvalInfo &Info, const BinaryOperator *E,
3017 BinaryOperatorKind Opcode,
3018 APValue &LHSValue,
3019 const APValue &RHSValue) {
3020 assert(Opcode != BO_PtrMemD && Opcode != BO_PtrMemI &&
3021 "Operation not supported on vector types");
3022
3023 const auto *VT = E->getType()->castAs<VectorType>();
3024 unsigned NumElements = VT->getNumElements();
3025 QualType EltTy = VT->getElementType();
3026
3027 // In the cases (typically C as I've observed) where we aren't evaluating
3028 // constexpr but are checking for cases where the LHS isn't yet evaluatable,
3029 // just give up.
3030 if (!LHSValue.isVector()) {
3031 assert(LHSValue.isLValue() &&
3032 "A vector result that isn't a vector OR uncalculated LValue");
3033 Info.FFDiag(E);
3034 return false;
3035 }
3036
3037 assert(LHSValue.getVectorLength() == NumElements &&
3038 RHSValue.getVectorLength() == NumElements && "Different vector sizes");
3039
3040 SmallVector<APValue, 4> ResultElements;
3041
3042 for (unsigned EltNum = 0; EltNum < NumElements; ++EltNum) {
3043 APValue LHSElt = LHSValue.getVectorElt(I: EltNum);
3044 APValue RHSElt = RHSValue.getVectorElt(I: EltNum);
3045
3046 if (EltTy->isIntegerType()) {
3047 APSInt EltResult{Info.Ctx.getIntWidth(T: EltTy),
3048 EltTy->isUnsignedIntegerType()};
3049 bool Success = true;
3050
3051 if (BinaryOperator::isLogicalOp(Opc: Opcode))
3052 Success = handleLogicalOpForVector(LHSValue: LHSElt, Opcode, RHSValue: RHSElt, Result&: EltResult);
3053 else if (BinaryOperator::isComparisonOp(Opc: Opcode))
3054 Success = handleCompareOpForVector(LHSValue: LHSElt, Opcode, RHSValue: RHSElt, Result&: EltResult);
3055 else
3056 Success = handleIntIntBinOp(Info, E, LHS: LHSElt.getInt(), Opcode,
3057 RHS: RHSElt.getInt(), Result&: EltResult);
3058
3059 if (!Success) {
3060 Info.FFDiag(E);
3061 return false;
3062 }
3063 ResultElements.emplace_back(Args&: EltResult);
3064
3065 } else if (EltTy->isFloatingType()) {
3066 assert(LHSElt.getKind() == APValue::Float &&
3067 RHSElt.getKind() == APValue::Float &&
3068 "Mismatched LHS/RHS/Result Type");
3069 APFloat LHSFloat = LHSElt.getFloat();
3070
3071 if (!handleFloatFloatBinOp(Info, E, LHS&: LHSFloat, Opcode,
3072 RHS: RHSElt.getFloat())) {
3073 Info.FFDiag(E);
3074 return false;
3075 }
3076
3077 ResultElements.emplace_back(Args&: LHSFloat);
3078 }
3079 }
3080
3081 LHSValue = APValue(ResultElements.data(), ResultElements.size());
3082 return true;
3083}
3084
3085/// Cast an lvalue referring to a base subobject to a derived class, by
3086/// truncating the lvalue's path to the given length.
3087static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
3088 const RecordDecl *TruncatedType,
3089 unsigned TruncatedElements) {
3090 SubobjectDesignator &D = Result.Designator;
3091
3092 // Check we actually point to a derived class object.
3093 if (TruncatedElements == D.Entries.size())
3094 return true;
3095 assert(TruncatedElements >= D.MostDerivedPathLength &&
3096 "not casting to a derived class");
3097 if (!Result.checkSubobject(Info, E, CSK: CSK_Derived))
3098 return false;
3099
3100 // Truncate the path to the subobject, and remove any derived-to-base offsets.
3101 const RecordDecl *RD = TruncatedType;
3102 for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
3103 if (RD->isInvalidDecl()) return false;
3104 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(D: RD);
3105 const CXXRecordDecl *Base = getAsBaseClass(E: D.Entries[I]);
3106 if (isVirtualBaseClass(E: D.Entries[I]))
3107 Result.Offset -= Layout.getVBaseClassOffset(VBase: Base);
3108 else
3109 Result.Offset -= Layout.getBaseClassOffset(Base);
3110 RD = Base;
3111 }
3112 D.Entries.resize(N: TruncatedElements);
3113 return true;
3114}
3115
3116static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
3117 const CXXRecordDecl *Derived,
3118 const CXXRecordDecl *Base,
3119 const ASTRecordLayout *RL = nullptr) {
3120 if (!RL) {
3121 if (Derived->isInvalidDecl()) return false;
3122 RL = &Info.Ctx.getASTRecordLayout(Derived);
3123 }
3124
3125 Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
3126 Obj.addDecl(Info, E, Base, /*Virtual*/ false);
3127 return true;
3128}
3129
3130static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
3131 const CXXRecordDecl *DerivedDecl,
3132 const CXXBaseSpecifier *Base) {
3133 const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
3134
3135 if (!Base->isVirtual())
3136 return HandleLValueDirectBase(Info, E, Obj, Derived: DerivedDecl, Base: BaseDecl);
3137
3138 SubobjectDesignator &D = Obj.Designator;
3139 if (D.Invalid)
3140 return false;
3141
3142 // Extract most-derived object and corresponding type.
3143 DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
3144 if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
3145 return false;
3146
3147 // Find the virtual base class.
3148 if (DerivedDecl->isInvalidDecl()) return false;
3149 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
3150 Obj.getLValueOffset() += Layout.getVBaseClassOffset(VBase: BaseDecl);
3151 Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
3152 return true;
3153}
3154
3155static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
3156 QualType Type, LValue &Result) {
3157 for (CastExpr::path_const_iterator PathI = E->path_begin(),
3158 PathE = E->path_end();
3159 PathI != PathE; ++PathI) {
3160 if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
3161 *PathI))
3162 return false;
3163 Type = (*PathI)->getType();
3164 }
3165 return true;
3166}
3167
3168/// Cast an lvalue referring to a derived class to a known base subobject.
3169static bool CastToBaseClass(EvalInfo &Info, const Expr *E, LValue &Result,
3170 const CXXRecordDecl *DerivedRD,
3171 const CXXRecordDecl *BaseRD) {
3172 CXXBasePaths Paths(/*FindAmbiguities=*/false,
3173 /*RecordPaths=*/true, /*DetectVirtual=*/false);
3174 if (!DerivedRD->isDerivedFrom(Base: BaseRD, Paths))
3175 llvm_unreachable("Class must be derived from the passed in base class!");
3176
3177 for (CXXBasePathElement &Elem : Paths.front())
3178 if (!HandleLValueBase(Info, E, Obj&: Result, DerivedDecl: Elem.Class, Base: Elem.Base))
3179 return false;
3180 return true;
3181}
3182
3183/// Update LVal to refer to the given field, which must be a member of the type
3184/// currently described by LVal.
3185static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
3186 const FieldDecl *FD,
3187 const ASTRecordLayout *RL = nullptr) {
3188 if (!RL) {
3189 if (FD->getParent()->isInvalidDecl()) return false;
3190 RL = &Info.Ctx.getASTRecordLayout(D: FD->getParent());
3191 }
3192
3193 unsigned I = FD->getFieldIndex();
3194 LVal.adjustOffset(N: Info.Ctx.toCharUnitsFromBits(BitSize: RL->getFieldOffset(FieldNo: I)));
3195 LVal.addDecl(Info, E, FD);
3196 return true;
3197}
3198
3199/// Update LVal to refer to the given indirect field.
3200static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
3201 LValue &LVal,
3202 const IndirectFieldDecl *IFD) {
3203 for (const auto *C : IFD->chain())
3204 if (!HandleLValueMember(Info, E, LVal, FD: cast<FieldDecl>(Val: C)))
3205 return false;
3206 return true;
3207}
3208
3209enum class SizeOfType {
3210 SizeOf,
3211 DataSizeOf,
3212};
3213
3214/// Get the size of the given type in char units.
3215static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc, QualType Type,
3216 CharUnits &Size, SizeOfType SOT = SizeOfType::SizeOf) {
3217 // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
3218 // extension.
3219 if (Type->isVoidType() || Type->isFunctionType()) {
3220 Size = CharUnits::One();
3221 return true;
3222 }
3223
3224 if (Type->isDependentType()) {
3225 Info.FFDiag(Loc);
3226 return false;
3227 }
3228
3229 if (!Type->isConstantSizeType()) {
3230 // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
3231 // FIXME: Better diagnostic.
3232 Info.FFDiag(Loc);
3233 return false;
3234 }
3235
3236 if (SOT == SizeOfType::SizeOf)
3237 Size = Info.Ctx.getTypeSizeInChars(T: Type);
3238 else
3239 Size = Info.Ctx.getTypeInfoDataSizeInChars(T: Type).Width;
3240 return true;
3241}
3242
3243/// Update a pointer value to model pointer arithmetic.
3244/// \param Info - Information about the ongoing evaluation.
3245/// \param E - The expression being evaluated, for diagnostic purposes.
3246/// \param LVal - The pointer value to be updated.
3247/// \param EltTy - The pointee type represented by LVal.
3248/// \param Adjustment - The adjustment, in objects of type EltTy, to add.
3249static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
3250 LValue &LVal, QualType EltTy,
3251 APSInt Adjustment) {
3252 CharUnits SizeOfPointee;
3253 if (!HandleSizeof(Info, Loc: E->getExprLoc(), Type: EltTy, Size&: SizeOfPointee))
3254 return false;
3255
3256 LVal.adjustOffsetAndIndex(Info, E, Index: Adjustment, ElementSize: SizeOfPointee);
3257 return true;
3258}
3259
3260static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
3261 LValue &LVal, QualType EltTy,
3262 int64_t Adjustment) {
3263 return HandleLValueArrayAdjustment(Info, E, LVal, EltTy,
3264 Adjustment: APSInt::get(X: Adjustment));
3265}
3266
3267/// Update an lvalue to refer to a component of a complex number.
3268/// \param Info - Information about the ongoing evaluation.
3269/// \param LVal - The lvalue to be updated.
3270/// \param EltTy - The complex number's component type.
3271/// \param Imag - False for the real component, true for the imaginary.
3272static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
3273 LValue &LVal, QualType EltTy,
3274 bool Imag) {
3275 if (Imag) {
3276 CharUnits SizeOfComponent;
3277 if (!HandleSizeof(Info, Loc: E->getExprLoc(), Type: EltTy, Size&: SizeOfComponent))
3278 return false;
3279 LVal.Offset += SizeOfComponent;
3280 }
3281 LVal.addComplex(Info, E, EltTy, Imag);
3282 return true;
3283}
3284
3285/// Try to evaluate the initializer for a variable declaration.
3286///
3287/// \param Info Information about the ongoing evaluation.
3288/// \param E An expression to be used when printing diagnostics.
3289/// \param VD The variable whose initializer should be obtained.
3290/// \param Version The version of the variable within the frame.
3291/// \param Frame The frame in which the variable was created. Must be null
3292/// if this variable is not local to the evaluation.
3293/// \param Result Filled in with a pointer to the value of the variable.
3294static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
3295 const VarDecl *VD, CallStackFrame *Frame,
3296 unsigned Version, APValue *&Result) {
3297 APValue::LValueBase Base(VD, Frame ? Frame->Index : 0, Version);
3298
3299 // If this is a local variable, dig out its value.
3300 if (Frame) {
3301 Result = Frame->getTemporary(Key: VD, Version);
3302 if (Result)
3303 return true;
3304
3305 if (!isa<ParmVarDecl>(Val: VD)) {
3306 // Assume variables referenced within a lambda's call operator that were
3307 // not declared within the call operator are captures and during checking
3308 // of a potential constant expression, assume they are unknown constant
3309 // expressions.
3310 assert(isLambdaCallOperator(Frame->Callee) &&
3311 (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) &&
3312 "missing value for local variable");
3313 if (Info.checkingPotentialConstantExpression())
3314 return false;
3315 // FIXME: This diagnostic is bogus; we do support captures. Is this code
3316 // still reachable at all?
3317 Info.FFDiag(E->getBeginLoc(),
3318 diag::note_unimplemented_constexpr_lambda_feature_ast)
3319 << "captures not currently allowed";
3320 return false;
3321 }
3322 }
3323
3324 // If we're currently evaluating the initializer of this declaration, use that
3325 // in-flight value.
3326 if (Info.EvaluatingDecl == Base) {
3327 Result = Info.EvaluatingDeclValue;
3328 return true;
3329 }
3330
3331 if (isa<ParmVarDecl>(Val: VD)) {
3332 // Assume parameters of a potential constant expression are usable in
3333 // constant expressions.
3334 if (!Info.checkingPotentialConstantExpression() ||
3335 !Info.CurrentCall->Callee ||
3336 !Info.CurrentCall->Callee->Equals(DC: VD->getDeclContext())) {
3337 if (Info.getLangOpts().CPlusPlus11) {
3338 Info.FFDiag(E, diag::note_constexpr_function_param_value_unknown)
3339 << VD;
3340 NoteLValueLocation(Info, Base);
3341 } else {
3342 Info.FFDiag(E);
3343 }
3344 }
3345 return false;
3346 }
3347
3348 if (E->isValueDependent())
3349 return false;
3350
3351 // Dig out the initializer, and use the declaration which it's attached to.
3352 // FIXME: We should eventually check whether the variable has a reachable
3353 // initializing declaration.
3354 const Expr *Init = VD->getAnyInitializer(D&: VD);
3355 if (!Init) {
3356 // Don't diagnose during potential constant expression checking; an
3357 // initializer might be added later.
3358 if (!Info.checkingPotentialConstantExpression()) {
3359 Info.FFDiag(E, diag::note_constexpr_var_init_unknown, 1)
3360 << VD;
3361 NoteLValueLocation(Info, Base);
3362 }
3363 return false;
3364 }
3365
3366 if (Init->isValueDependent()) {
3367 // The DeclRefExpr is not value-dependent, but the variable it refers to
3368 // has a value-dependent initializer. This should only happen in
3369 // constant-folding cases, where the variable is not actually of a suitable
3370 // type for use in a constant expression (otherwise the DeclRefExpr would
3371 // have been value-dependent too), so diagnose that.
3372 assert(!VD->mightBeUsableInConstantExpressions(Info.Ctx));
3373 if (!Info.checkingPotentialConstantExpression()) {
3374 Info.FFDiag(E, Info.getLangOpts().CPlusPlus11
3375 ? diag::note_constexpr_ltor_non_constexpr
3376 : diag::note_constexpr_ltor_non_integral, 1)
3377 << VD << VD->getType();
3378 NoteLValueLocation(Info, Base);
3379 }
3380 return false;
3381 }
3382
3383 // Check that we can fold the initializer. In C++, we will have already done
3384 // this in the cases where it matters for conformance.
3385 if (!VD->evaluateValue()) {
3386 Info.FFDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD;
3387 NoteLValueLocation(Info, Base);
3388 return false;
3389 }
3390
3391 // Check that the variable is actually usable in constant expressions. For a
3392 // const integral variable or a reference, we might have a non-constant
3393 // initializer that we can nonetheless evaluate the initializer for. Such
3394 // variables are not usable in constant expressions. In C++98, the
3395 // initializer also syntactically needs to be an ICE.
3396 //
3397 // FIXME: We don't diagnose cases that aren't potentially usable in constant
3398 // expressions here; doing so would regress diagnostics for things like
3399 // reading from a volatile constexpr variable.
3400 if ((Info.getLangOpts().CPlusPlus && !VD->hasConstantInitialization() &&
3401 VD->mightBeUsableInConstantExpressions(C: Info.Ctx)) ||
3402 ((Info.getLangOpts().CPlusPlus || Info.getLangOpts().OpenCL) &&
3403 !Info.getLangOpts().CPlusPlus11 && !VD->hasICEInitializer(Context: Info.Ctx))) {
3404 Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD;
3405 NoteLValueLocation(Info, Base);
3406 }
3407
3408 // Never use the initializer of a weak variable, not even for constant
3409 // folding. We can't be sure that this is the definition that will be used.
3410 if (VD->isWeak()) {
3411 Info.FFDiag(E, diag::note_constexpr_var_init_weak) << VD;
3412 NoteLValueLocation(Info, Base);
3413 return false;
3414 }
3415
3416 Result = VD->getEvaluatedValue();
3417 return true;
3418}
3419
3420/// Get the base index of the given base class within an APValue representing
3421/// the given derived class.
3422static unsigned getBaseIndex(const CXXRecordDecl *Derived,
3423 const CXXRecordDecl *Base) {
3424 Base = Base->getCanonicalDecl();
3425 unsigned Index = 0;
3426 for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
3427 E = Derived->bases_end(); I != E; ++I, ++Index) {
3428 if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
3429 return Index;
3430 }
3431
3432 llvm_unreachable("base class missing from derived class's bases list");
3433}
3434
3435/// Extract the value of a character from a string literal.
3436static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
3437 uint64_t Index) {
3438 assert(!isa<SourceLocExpr>(Lit) &&
3439 "SourceLocExpr should have already been converted to a StringLiteral");
3440
3441 // FIXME: Support MakeStringConstant
3442 if (const auto *ObjCEnc = dyn_cast<ObjCEncodeExpr>(Val: Lit)) {
3443 std::string Str;
3444 Info.Ctx.getObjCEncodingForType(T: ObjCEnc->getEncodedType(), S&: Str);
3445 assert(Index <= Str.size() && "Index too large");
3446 return APSInt::getUnsigned(X: Str.c_str()[Index]);
3447 }
3448
3449 if (auto PE = dyn_cast<PredefinedExpr>(Val: Lit))
3450 Lit = PE->getFunctionName();
3451 const StringLiteral *S = cast<StringLiteral>(Val: Lit);
3452 const ConstantArrayType *CAT =
3453 Info.Ctx.getAsConstantArrayType(T: S->getType());
3454 assert(CAT && "string literal isn't an array");
3455 QualType CharType = CAT->getElementType();
3456 assert(CharType->isIntegerType() && "unexpected character type");
3457 APSInt Value(Info.Ctx.getTypeSize(T: CharType),
3458 CharType->isUnsignedIntegerType());
3459 if (Index < S->getLength())
3460 Value = S->getCodeUnit(i: Index);
3461 return Value;
3462}
3463
3464// Expand a string literal into an array of characters.
3465//
3466// FIXME: This is inefficient; we should probably introduce something similar
3467// to the LLVM ConstantDataArray to make this cheaper.
3468static void expandStringLiteral(EvalInfo &Info, const StringLiteral *S,
3469 APValue &Result,
3470 QualType AllocType = QualType()) {
3471 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
3472 T: AllocType.isNull() ? S->getType() : AllocType);
3473 assert(CAT && "string literal isn't an array");
3474 QualType CharType = CAT->getElementType();
3475 assert(CharType->isIntegerType() && "unexpected character type");
3476
3477 unsigned Elts = CAT->getSize().getZExtValue();
3478 Result = APValue(APValue::UninitArray(),
3479 std::min(a: S->getLength(), b: Elts), Elts);
3480 APSInt Value(Info.Ctx.getTypeSize(T: CharType),
3481 CharType->isUnsignedIntegerType());
3482 if (Result.hasArrayFiller())
3483 Result.getArrayFiller() = APValue(Value);
3484 for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
3485 Value = S->getCodeUnit(i: I);
3486 Result.getArrayInitializedElt(I) = APValue(Value);
3487 }
3488}
3489
3490// Expand an array so that it has more than Index filled elements.
3491static void expandArray(APValue &Array, unsigned Index) {
3492 unsigned Size = Array.getArraySize();
3493 assert(Index < Size);
3494
3495 // Always at least double the number of elements for which we store a value.
3496 unsigned OldElts = Array.getArrayInitializedElts();
3497 unsigned NewElts = std::max(a: Index+1, b: OldElts * 2);
3498 NewElts = std::min(a: Size, b: std::max(a: NewElts, b: 8u));
3499
3500 // Copy the data across.
3501 APValue NewValue(APValue::UninitArray(), NewElts, Size);
3502 for (unsigned I = 0; I != OldElts; ++I)
3503 NewValue.getArrayInitializedElt(I).swap(RHS&: Array.getArrayInitializedElt(I));
3504 for (unsigned I = OldElts; I != NewElts; ++I)
3505 NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
3506 if (NewValue.hasArrayFiller())
3507 NewValue.getArrayFiller() = Array.getArrayFiller();
3508 Array.swap(RHS&: NewValue);
3509}
3510
3511/// Determine whether a type would actually be read by an lvalue-to-rvalue
3512/// conversion. If it's of class type, we may assume that the copy operation
3513/// is trivial. Note that this is never true for a union type with fields
3514/// (because the copy always "reads" the active member) and always true for
3515/// a non-class type.
3516static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD);
3517static bool isReadByLvalueToRvalueConversion(QualType T) {
3518 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3519 return !RD || isReadByLvalueToRvalueConversion(RD);
3520}
3521static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD) {
3522 // FIXME: A trivial copy of a union copies the object representation, even if
3523 // the union is empty.
3524 if (RD->isUnion())
3525 return !RD->field_empty();
3526 if (RD->isEmpty())
3527 return false;
3528
3529 for (auto *Field : RD->fields())
3530 if (!Field->isUnnamedBitfield() &&
3531 isReadByLvalueToRvalueConversion(Field->getType()))
3532 return true;
3533
3534 for (auto &BaseSpec : RD->bases())
3535 if (isReadByLvalueToRvalueConversion(T: BaseSpec.getType()))
3536 return true;
3537
3538 return false;
3539}
3540
3541/// Diagnose an attempt to read from any unreadable field within the specified
3542/// type, which might be a class type.
3543static bool diagnoseMutableFields(EvalInfo &Info, const Expr *E, AccessKinds AK,
3544 QualType T) {
3545 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3546 if (!RD)
3547 return false;
3548
3549 if (!RD->hasMutableFields())
3550 return false;
3551
3552 for (auto *Field : RD->fields()) {
3553 // If we're actually going to read this field in some way, then it can't
3554 // be mutable. If we're in a union, then assigning to a mutable field
3555 // (even an empty one) can change the active member, so that's not OK.
3556 // FIXME: Add core issue number for the union case.
3557 if (Field->isMutable() &&
3558 (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) {
3559 Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) << AK << Field;
3560 Info.Note(Field->getLocation(), diag::note_declared_at);
3561 return true;
3562 }
3563
3564 if (diagnoseMutableFields(Info, E, AK, Field->getType()))
3565 return true;
3566 }
3567
3568 for (auto &BaseSpec : RD->bases())
3569 if (diagnoseMutableFields(Info, E, AK, T: BaseSpec.getType()))
3570 return true;
3571
3572 // All mutable fields were empty, and thus not actually read.
3573 return false;
3574}
3575
3576static bool lifetimeStartedInEvaluation(EvalInfo &Info,
3577 APValue::LValueBase Base,
3578 bool MutableSubobject = false) {
3579 // A temporary or transient heap allocation we created.
3580 if (Base.getCallIndex() || Base.is<DynamicAllocLValue>())
3581 return true;
3582
3583 switch (Info.IsEvaluatingDecl) {
3584 case EvalInfo::EvaluatingDeclKind::None:
3585 return false;
3586
3587 case EvalInfo::EvaluatingDeclKind::Ctor:
3588 // The variable whose initializer we're evaluating.
3589 if (Info.EvaluatingDecl == Base)
3590 return true;
3591
3592 // A temporary lifetime-extended by the variable whose initializer we're
3593 // evaluating.
3594 if (auto *BaseE = Base.dyn_cast<const Expr *>())
3595 if (auto *BaseMTE = dyn_cast<MaterializeTemporaryExpr>(Val: BaseE))
3596 return Info.EvaluatingDecl == BaseMTE->getExtendingDecl();
3597 return false;
3598
3599 case EvalInfo::EvaluatingDeclKind::Dtor:
3600 // C++2a [expr.const]p6:
3601 // [during constant destruction] the lifetime of a and its non-mutable
3602 // subobjects (but not its mutable subobjects) [are] considered to start
3603 // within e.
3604 if (MutableSubobject || Base != Info.EvaluatingDecl)
3605 return false;
3606 // FIXME: We can meaningfully extend this to cover non-const objects, but
3607 // we will need special handling: we should be able to access only
3608 // subobjects of such objects that are themselves declared const.
3609 QualType T = getType(B: Base);
3610 return T.isConstQualified() || T->isReferenceType();
3611 }
3612
3613 llvm_unreachable("unknown evaluating decl kind");
3614}
3615
3616static bool CheckArraySize(EvalInfo &Info, const ConstantArrayType *CAT,
3617 SourceLocation CallLoc = {}) {
3618 return Info.CheckArraySize(
3619 Loc: CAT->getSizeExpr() ? CAT->getSizeExpr()->getBeginLoc() : CallLoc,
3620 BitWidth: CAT->getNumAddressingBits(Context: Info.Ctx), ElemCount: CAT->getSize().getZExtValue(),
3621 /*Diag=*/true);
3622}
3623
3624namespace {
3625/// A handle to a complete object (an object that is not a subobject of
3626/// another object).
3627struct CompleteObject {
3628 /// The identity of the object.
3629 APValue::LValueBase Base;
3630 /// The value of the complete object.
3631 APValue *Value;
3632 /// The type of the complete object.
3633 QualType Type;
3634
3635 CompleteObject() : Value(nullptr) {}
3636 CompleteObject(APValue::LValueBase Base, APValue *Value, QualType Type)
3637 : Base(Base), Value(Value), Type(Type) {}
3638
3639 bool mayAccessMutableMembers(EvalInfo &Info, AccessKinds AK) const {
3640 // If this isn't a "real" access (eg, if it's just accessing the type
3641 // info), allow it. We assume the type doesn't change dynamically for
3642 // subobjects of constexpr objects (even though we'd hit UB here if it
3643 // did). FIXME: Is this right?
3644 if (!isAnyAccess(AK))
3645 return true;
3646
3647 // In C++14 onwards, it is permitted to read a mutable member whose
3648 // lifetime began within the evaluation.
3649 // FIXME: Should we also allow this in C++11?
3650 if (!Info.getLangOpts().CPlusPlus14)
3651 return false;
3652 return lifetimeStartedInEvaluation(Info, Base, /*MutableSubobject*/true);
3653 }
3654
3655 explicit operator bool() const { return !Type.isNull(); }
3656};
3657} // end anonymous namespace
3658
3659static QualType getSubobjectType(QualType ObjType, QualType SubobjType,
3660 bool IsMutable = false) {
3661 // C++ [basic.type.qualifier]p1:
3662 // - A const object is an object of type const T or a non-mutable subobject
3663 // of a const object.
3664 if (ObjType.isConstQualified() && !IsMutable)
3665 SubobjType.addConst();
3666 // - A volatile object is an object of type const T or a subobject of a
3667 // volatile object.
3668 if (ObjType.isVolatileQualified())
3669 SubobjType.addVolatile();
3670 return SubobjType;
3671}
3672
3673/// Find the designated sub-object of an rvalue.
3674template<typename SubobjectHandler>
3675typename SubobjectHandler::result_type
3676findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
3677 const SubobjectDesignator &Sub, SubobjectHandler &handler) {
3678 if (Sub.Invalid)
3679 // A diagnostic will have already been produced.
3680 return handler.failed();
3681 if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()) {
3682 if (Info.getLangOpts().CPlusPlus11)
3683 Info.FFDiag(E, Sub.isOnePastTheEnd()
3684 ? diag::note_constexpr_access_past_end
3685 : diag::note_constexpr_access_unsized_array)
3686 << handler.AccessKind;
3687 else
3688 Info.FFDiag(E);
3689 return handler.failed();
3690 }
3691
3692 APValue *O = Obj.Value;
3693 QualType ObjType = Obj.Type;
3694 const FieldDecl *LastField = nullptr;
3695 const FieldDecl *VolatileField = nullptr;
3696
3697 // Walk the designator's path to find the subobject.
3698 for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
3699 // Reading an indeterminate value is undefined, but assigning over one is OK.
3700 if ((O->isAbsent() && !(handler.AccessKind == AK_Construct && I == N)) ||
3701 (O->isIndeterminate() &&
3702 !isValidIndeterminateAccess(handler.AccessKind))) {
3703 if (!Info.checkingPotentialConstantExpression())
3704 Info.FFDiag(E, diag::note_constexpr_access_uninit)
3705 << handler.AccessKind << O->isIndeterminate()
3706 << E->getSourceRange();
3707 return handler.failed();
3708 }
3709
3710 // C++ [class.ctor]p5, C++ [class.dtor]p5:
3711 // const and volatile semantics are not applied on an object under
3712 // {con,de}struction.
3713 if ((ObjType.isConstQualified() || ObjType.isVolatileQualified()) &&
3714 ObjType->isRecordType() &&
3715 Info.isEvaluatingCtorDtor(
3716 Base: Obj.Base,
3717 Path: llvm::ArrayRef(Sub.Entries.begin(), Sub.Entries.begin() + I)) !=
3718 ConstructionPhase::None) {
3719 ObjType = Info.Ctx.getCanonicalType(T: ObjType);
3720 ObjType.removeLocalConst();
3721 ObjType.removeLocalVolatile();
3722 }
3723
3724 // If this is our last pass, check that the final object type is OK.
3725 if (I == N || (I == N - 1 && ObjType->isAnyComplexType())) {
3726 // Accesses to volatile objects are prohibited.
3727 if (ObjType.isVolatileQualified() && isFormalAccess(handler.AccessKind)) {
3728 if (Info.getLangOpts().CPlusPlus) {
3729 int DiagKind;
3730 SourceLocation Loc;
3731 const NamedDecl *Decl = nullptr;
3732 if (VolatileField) {
3733 DiagKind = 2;
3734 Loc = VolatileField->getLocation();
3735 Decl = VolatileField;
3736 } else if (auto *VD = Obj.Base.dyn_cast<const ValueDecl*>()) {
3737 DiagKind = 1;
3738 Loc = VD->getLocation();
3739 Decl = VD;
3740 } else {
3741 DiagKind = 0;
3742 if (auto *E = Obj.Base.dyn_cast<const Expr *>())
3743 Loc = E->getExprLoc();
3744 }
3745 Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
3746 << handler.AccessKind << DiagKind << Decl;
3747 Info.Note(Loc, diag::note_constexpr_volatile_here) << DiagKind;
3748 } else {
3749 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
3750 }
3751 return handler.failed();
3752 }
3753
3754 // If we are reading an object of class type, there may still be more
3755 // things we need to check: if there are any mutable subobjects, we
3756 // cannot perform this read. (This only happens when performing a trivial
3757 // copy or assignment.)
3758 if (ObjType->isRecordType() &&
3759 !Obj.mayAccessMutableMembers(Info, AK: handler.AccessKind) &&
3760 diagnoseMutableFields(Info, E, handler.AccessKind, ObjType))
3761 return handler.failed();
3762 }
3763
3764 if (I == N) {
3765 if (!handler.found(*O, ObjType))
3766 return false;
3767
3768 // If we modified a bit-field, truncate it to the right width.
3769 if (isModification(handler.AccessKind) &&
3770 LastField && LastField->isBitField() &&
3771 !truncateBitfieldValue(Info, E, Value&: *O, FD: LastField))
3772 return false;
3773
3774 return true;
3775 }
3776
3777 LastField = nullptr;
3778 if (ObjType->isArrayType()) {
3779 // Next subobject is an array element.
3780 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(T: ObjType);
3781 assert(CAT && "vla in literal type?");
3782 uint64_t Index = Sub.Entries[I].getAsArrayIndex();
3783 if (CAT->getSize().ule(RHS: Index)) {
3784 // Note, it should not be possible to form a pointer with a valid
3785 // designator which points more than one past the end of the array.
3786 if (Info.getLangOpts().CPlusPlus11)
3787 Info.FFDiag(E, diag::note_constexpr_access_past_end)
3788 << handler.AccessKind;
3789 else
3790 Info.FFDiag(E);
3791 return handler.failed();
3792 }
3793
3794 ObjType = CAT->getElementType();
3795
3796 if (O->getArrayInitializedElts() > Index)
3797 O = &O->getArrayInitializedElt(I: Index);
3798 else if (!isRead(handler.AccessKind)) {
3799 if (!CheckArraySize(Info, CAT, CallLoc: E->getExprLoc()))
3800 return handler.failed();
3801
3802 expandArray(Array&: *O, Index);
3803 O = &O->getArrayInitializedElt(I: Index);
3804 } else
3805 O = &O->getArrayFiller();
3806 } else if (ObjType->isAnyComplexType()) {
3807 // Next subobject is a complex number.
3808 uint64_t Index = Sub.Entries[I].getAsArrayIndex();
3809 if (Index > 1) {
3810 if (Info.getLangOpts().CPlusPlus11)
3811 Info.FFDiag(E, diag::note_constexpr_access_past_end)
3812 << handler.AccessKind;
3813 else
3814 Info.FFDiag(E);
3815 return handler.failed();
3816 }
3817
3818 ObjType = getSubobjectType(
3819 ObjType, SubobjType: ObjType->castAs<ComplexType>()->getElementType());
3820
3821 assert(I == N - 1 && "extracting subobject of scalar?");
3822 if (O->isComplexInt()) {
3823 return handler.found(Index ? O->getComplexIntImag()
3824 : O->getComplexIntReal(), ObjType);
3825 } else {
3826 assert(O->isComplexFloat());
3827 return handler.found(Index ? O->getComplexFloatImag()
3828 : O->getComplexFloatReal(), ObjType);
3829 }
3830 } else if (const FieldDecl *Field = getAsField(E: Sub.Entries[I])) {
3831 if (Field->isMutable() &&
3832 !Obj.mayAccessMutableMembers(Info, AK: handler.AccessKind)) {
3833 Info.FFDiag(E, diag::note_constexpr_access_mutable, 1)
3834 << handler.AccessKind << Field;
3835 Info.Note(Field->getLocation(), diag::note_declared_at);
3836 return handler.failed();
3837 }
3838
3839 // Next subobject is a class, struct or union field.
3840 RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
3841 if (RD->isUnion()) {
3842 const FieldDecl *UnionField = O->getUnionField();
3843 if (!UnionField ||
3844 UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
3845 if (I == N - 1 && handler.AccessKind == AK_Construct) {
3846 // Placement new onto an inactive union member makes it active.
3847 O->setUnion(Field, Value: APValue());
3848 } else {
3849 // FIXME: If O->getUnionValue() is absent, report that there's no
3850 // active union member rather than reporting the prior active union
3851 // member. We'll need to fix nullptr_t to not use APValue() as its
3852 // representation first.
3853 Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member)
3854 << handler.AccessKind << Field << !UnionField << UnionField;
3855 return handler.failed();
3856 }
3857 }
3858 O = &O->getUnionValue();
3859 } else
3860 O = &O->getStructField(i: Field->getFieldIndex());
3861
3862 ObjType = getSubobjectType(ObjType, Field->getType(), Field->isMutable());
3863 LastField = Field;
3864 if (Field->getType().isVolatileQualified())
3865 VolatileField = Field;
3866 } else {
3867 // Next subobject is a base class.
3868 const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
3869 const CXXRecordDecl *Base = getAsBaseClass(E: Sub.Entries[I]);
3870 O = &O->getStructBase(i: getBaseIndex(Derived, Base));
3871
3872 ObjType = getSubobjectType(ObjType, SubobjType: Info.Ctx.getRecordType(Base));
3873 }
3874 }
3875}
3876
3877namespace {
3878struct ExtractSubobjectHandler {
3879 EvalInfo &Info;
3880 const Expr *E;
3881 APValue &Result;
3882 const AccessKinds AccessKind;
3883
3884 typedef bool result_type;
3885 bool failed() { return false; }
3886 bool found(APValue &Subobj, QualType SubobjType) {
3887 Result = Subobj;
3888 if (AccessKind == AK_ReadObjectRepresentation)
3889 return true;
3890 return CheckFullyInitialized(Info, DiagLoc: E->getExprLoc(), Type: SubobjType, Value: Result);
3891 }
3892 bool found(APSInt &Value, QualType SubobjType) {
3893 Result = APValue(Value);
3894 return true;
3895 }
3896 bool found(APFloat &Value, QualType SubobjType) {
3897 Result = APValue(Value);
3898 return true;
3899 }
3900};
3901} // end anonymous namespace
3902
3903/// Extract the designated sub-object of an rvalue.
3904static bool extractSubobject(EvalInfo &Info, const Expr *E,
3905 const CompleteObject &Obj,
3906 const SubobjectDesignator &Sub, APValue &Result,
3907 AccessKinds AK = AK_Read) {
3908 assert(AK == AK_Read || AK == AK_ReadObjectRepresentation);
3909 ExtractSubobjectHandler Handler = {.Info: Info, .E: E, .Result: Result, .AccessKind: AK};
3910 return findSubobject(Info, E, Obj, Sub, handler&: Handler);
3911}
3912
3913namespace {
3914struct ModifySubobjectHandler {
3915 EvalInfo &Info;
3916 APValue &NewVal;
3917 const Expr *E;
3918
3919 typedef bool result_type;
3920 static const AccessKinds AccessKind = AK_Assign;
3921
3922 bool checkConst(QualType QT) {
3923 // Assigning to a const object has undefined behavior.
3924 if (QT.isConstQualified()) {
3925 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
3926 return false;
3927 }
3928 return true;
3929 }
3930
3931 bool failed() { return false; }
3932 bool found(APValue &Subobj, QualType SubobjType) {
3933 if (!checkConst(QT: SubobjType))
3934 return false;
3935 // We've been given ownership of NewVal, so just swap it in.
3936 Subobj.swap(RHS&: NewVal);
3937 return true;
3938 }
3939 bool found(APSInt &Value, QualType SubobjType) {
3940 if (!checkConst(QT: SubobjType))
3941 return false;
3942 if (!NewVal.isInt()) {
3943 // Maybe trying to write a cast pointer value into a complex?
3944 Info.FFDiag(E);
3945 return false;
3946 }
3947 Value = NewVal.getInt();
3948 return true;
3949 }
3950 bool found(APFloat &Value, QualType SubobjType) {
3951 if (!checkConst(QT: SubobjType))
3952 return false;
3953 Value = NewVal.getFloat();
3954 return true;
3955 }
3956};
3957} // end anonymous namespace
3958
3959const AccessKinds ModifySubobjectHandler::AccessKind;
3960
3961/// Update the designated sub-object of an rvalue to the given value.
3962static bool modifySubobject(EvalInfo &Info, const Expr *E,
3963 const CompleteObject &Obj,
3964 const SubobjectDesignator &Sub,
3965 APValue &NewVal) {
3966 ModifySubobjectHandler Handler = { .Info: Info, .NewVal: NewVal, .E: E };
3967 return findSubobject(Info, E, Obj, Sub, handler&: Handler);
3968}
3969
3970/// Find the position where two subobject designators diverge, or equivalently
3971/// the length of the common initial subsequence.
3972static unsigned FindDesignatorMismatch(QualType ObjType,
3973 const SubobjectDesignator &A,
3974 const SubobjectDesignator &B,
3975 bool &WasArrayIndex) {
3976 unsigned I = 0, N = std::min(a: A.Entries.size(), b: B.Entries.size());
3977 for (/**/; I != N; ++I) {
3978 if (!ObjType.isNull() &&
3979 (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
3980 // Next subobject is an array element.
3981 if (A.Entries[I].getAsArrayIndex() != B.Entries[I].getAsArrayIndex()) {
3982 WasArrayIndex = true;
3983 return I;
3984 }
3985 if (ObjType->isAnyComplexType())
3986 ObjType = ObjType->castAs<ComplexType>()->getElementType();
3987 else
3988 ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
3989 } else {
3990 if (A.Entries[I].getAsBaseOrMember() !=
3991 B.Entries[I].getAsBaseOrMember()) {
3992 WasArrayIndex = false;
3993 return I;
3994 }
3995 if (const FieldDecl *FD = getAsField(E: A.Entries[I]))
3996 // Next subobject is a field.
3997 ObjType = FD->getType();
3998 else
3999 // Next subobject is a base class.
4000 ObjType = QualType();
4001 }
4002 }
4003 WasArrayIndex = false;
4004 return I;
4005}
4006
4007/// Determine whether the given subobject designators refer to elements of the
4008/// same array object.
4009static bool AreElementsOfSameArray(QualType ObjType,
4010 const SubobjectDesignator &A,
4011 const SubobjectDesignator &B) {
4012 if (A.Entries.size() != B.Entries.size())
4013 return false;
4014
4015 bool IsArray = A.MostDerivedIsArrayElement;
4016 if (IsArray && A.MostDerivedPathLength != A.Entries.size())
4017 // A is a subobject of the array element.
4018 return false;
4019
4020 // If A (and B) designates an array element, the last entry will be the array
4021 // index. That doesn't have to match. Otherwise, we're in the 'implicit array
4022 // of length 1' case, and the entire path must match.
4023 bool WasArrayIndex;
4024 unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
4025 return CommonLength >= A.Entries.size() - IsArray;
4026}
4027
4028/// Find the complete object to which an LValue refers.
4029static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E,
4030 AccessKinds AK, const LValue &LVal,
4031 QualType LValType) {
4032 if (LVal.InvalidBase) {
4033 Info.FFDiag(E);
4034 return CompleteObject();
4035 }
4036
4037 if (!LVal.Base) {
4038 Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
4039 return CompleteObject();
4040 }
4041
4042 CallStackFrame *Frame = nullptr;
4043 unsigned Depth = 0;
4044 if (LVal.getLValueCallIndex()) {
4045 std::tie(args&: Frame, args&: Depth) =
4046 Info.getCallFrameAndDepth(CallIndex: LVal.getLValueCallIndex());
4047 if (!Frame) {
4048 Info.FFDiag(E, diag::note_constexpr_lifetime_ended, 1)
4049 << AK << LVal.Base.is<const ValueDecl*>();
4050 NoteLValueLocation(Info, Base: LVal.Base);
4051 return CompleteObject();
4052 }
4053 }
4054
4055 bool IsAccess = isAnyAccess(AK);
4056
4057 // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
4058 // is not a constant expression (even if the object is non-volatile). We also
4059 // apply this rule to C++98, in order to conform to the expected 'volatile'
4060 // semantics.
4061 if (isFormalAccess(AK) && LValType.isVolatileQualified()) {
4062 if (Info.getLangOpts().CPlusPlus)
4063 Info.FFDiag(E, diag::note_constexpr_access_volatile_type)
4064 << AK << LValType;
4065 else
4066 Info.FFDiag(E);
4067 return CompleteObject();
4068 }
4069
4070 // Compute value storage location and type of base object.
4071 APValue *BaseVal = nullptr;
4072 QualType BaseType = getType(B: LVal.Base);
4073
4074 if (Info.getLangOpts().CPlusPlus14 && LVal.Base == Info.EvaluatingDecl &&
4075 lifetimeStartedInEvaluation(Info, Base: LVal.Base)) {
4076 // This is the object whose initializer we're evaluating, so its lifetime
4077 // started in the current evaluation.
4078 BaseVal = Info.EvaluatingDeclValue;
4079 } else if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl *>()) {
4080 // Allow reading from a GUID declaration.
4081 if (auto *GD = dyn_cast<MSGuidDecl>(Val: D)) {
4082 if (isModification(AK)) {
4083 // All the remaining cases do not permit modification of the object.
4084 Info.FFDiag(E, diag::note_constexpr_modify_global);
4085 return CompleteObject();
4086 }
4087 APValue &V = GD->getAsAPValue();
4088 if (V.isAbsent()) {
4089 Info.FFDiag(E, diag::note_constexpr_unsupported_layout)
4090 << GD->getType();
4091 return CompleteObject();
4092 }
4093 return CompleteObject(LVal.Base, &V, GD->getType());
4094 }
4095
4096 // Allow reading the APValue from an UnnamedGlobalConstantDecl.
4097 if (auto *GCD = dyn_cast<UnnamedGlobalConstantDecl>(Val: D)) {
4098 if (isModification(AK)) {
4099 Info.FFDiag(E, diag::note_constexpr_modify_global);
4100 return CompleteObject();
4101 }
4102 return CompleteObject(LVal.Base, const_cast<APValue *>(&GCD->getValue()),
4103 GCD->getType());
4104 }
4105
4106 // Allow reading from template parameter objects.
4107 if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(Val: D)) {
4108 if (isModification(AK)) {
4109 Info.FFDiag(E, diag::note_constexpr_modify_global);
4110 return CompleteObject();
4111 }
4112 return CompleteObject(LVal.Base, const_cast<APValue *>(&TPO->getValue()),
4113 TPO->getType());
4114 }
4115
4116 // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
4117 // In C++11, constexpr, non-volatile variables initialized with constant
4118 // expressions are constant expressions too. Inside constexpr functions,
4119 // parameters are constant expressions even if they're non-const.
4120 // In C++1y, objects local to a constant expression (those with a Frame) are
4121 // both readable and writable inside constant expressions.
4122 // In C, such things can also be folded, although they are not ICEs.
4123 const VarDecl *VD = dyn_cast<VarDecl>(Val: D);
4124 if (VD) {
4125 if (const VarDecl *VDef = VD->getDefinition(C&: Info.Ctx))
4126 VD = VDef;
4127 }
4128 if (!VD || VD->isInvalidDecl()) {
4129 Info.FFDiag(E);
4130 return CompleteObject();
4131 }
4132
4133 bool IsConstant = BaseType.isConstant(Ctx: Info.Ctx);
4134
4135 // Unless we're looking at a local variable or argument in a constexpr call,
4136 // the variable we're reading must be const.
4137 if (!Frame) {
4138 if (IsAccess && isa<ParmVarDecl>(Val: VD)) {
4139 // Access of a parameter that's not associated with a frame isn't going
4140 // to work out, but we can leave it to evaluateVarDeclInit to provide a
4141 // suitable diagnostic.
4142 } else if (Info.getLangOpts().CPlusPlus14 &&
4143 lifetimeStartedInEvaluation(Info, Base: LVal.Base)) {
4144 // OK, we can read and modify an object if we're in the process of
4145 // evaluating its initializer, because its lifetime began in this
4146 // evaluation.
4147 } else if (isModification(AK)) {
4148 // All the remaining cases do not permit modification of the object.
4149 Info.FFDiag(E, diag::note_constexpr_modify_global);
4150 return CompleteObject();
4151 } else if (VD->isConstexpr()) {
4152 // OK, we can read this variable.
4153 } else if (BaseType->isIntegralOrEnumerationType()) {
4154 if (!IsConstant) {
4155 if (!IsAccess)
4156 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4157 if (Info.getLangOpts().CPlusPlus) {
4158 Info.FFDiag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
4159 Info.Note(VD->getLocation(), diag::note_declared_at);
4160 } else {
4161 Info.FFDiag(E);
4162 }
4163 return CompleteObject();
4164 }
4165 } else if (!IsAccess) {
4166 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4167 } else if (IsConstant && Info.checkingPotentialConstantExpression() &&
4168 BaseType->isLiteralType(Ctx: Info.Ctx) && !VD->hasDefinition()) {
4169 // This variable might end up being constexpr. Don't diagnose it yet.
4170 } else if (IsConstant) {
4171 // Keep evaluating to see what we can do. In particular, we support
4172 // folding of const floating-point types, in order to make static const
4173 // data members of such types (supported as an extension) more useful.
4174 if (Info.getLangOpts().CPlusPlus) {
4175 Info.CCEDiag(E, Info.getLangOpts().CPlusPlus11
4176 ? diag::note_constexpr_ltor_non_constexpr
4177 : diag::note_constexpr_ltor_non_integral, 1)
4178 << VD << BaseType;
4179 Info.Note(VD->getLocation(), diag::note_declared_at);
4180 } else {
4181 Info.CCEDiag(E);
4182 }
4183 } else {
4184 // Never allow reading a non-const value.
4185 if (Info.getLangOpts().CPlusPlus) {
4186 Info.FFDiag(E, Info.getLangOpts().CPlusPlus11
4187 ? diag::note_constexpr_ltor_non_constexpr
4188 : diag::note_constexpr_ltor_non_integral, 1)
4189 << VD << BaseType;
4190 Info.Note(VD->getLocation(), diag::note_declared_at);
4191 } else {
4192 Info.FFDiag(E);
4193 }
4194 return CompleteObject();
4195 }
4196 }
4197
4198 if (!evaluateVarDeclInit(Info, E, VD, Frame, Version: LVal.getLValueVersion(), Result&: BaseVal))
4199 return CompleteObject();
4200 } else if (DynamicAllocLValue DA = LVal.Base.dyn_cast<DynamicAllocLValue>()) {
4201 std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA);
4202 if (!Alloc) {
4203 Info.FFDiag(E, diag::note_constexpr_access_deleted_object) << AK;
4204 return CompleteObject();
4205 }
4206 return CompleteObject(LVal.Base, &(*Alloc)->Value,
4207 LVal.Base.getDynamicAllocType());
4208 } else {
4209 const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
4210
4211 if (!Frame) {
4212 if (const MaterializeTemporaryExpr *MTE =
4213 dyn_cast_or_null<MaterializeTemporaryExpr>(Val: Base)) {
4214 assert(MTE->getStorageDuration() == SD_Static &&
4215 "should have a frame for a non-global materialized temporary");
4216
4217 // C++20 [expr.const]p4: [DR2126]
4218 // An object or reference is usable in constant expressions if it is
4219 // - a temporary object of non-volatile const-qualified literal type
4220 // whose lifetime is extended to that of a variable that is usable
4221 // in constant expressions
4222 //
4223 // C++20 [expr.const]p5:
4224 // an lvalue-to-rvalue conversion [is not allowed unless it applies to]
4225 // - a non-volatile glvalue that refers to an object that is usable
4226 // in constant expressions, or
4227 // - a non-volatile glvalue of literal type that refers to a
4228 // non-volatile object whose lifetime began within the evaluation
4229 // of E;
4230 //
4231 // C++11 misses the 'began within the evaluation of e' check and
4232 // instead allows all temporaries, including things like:
4233 // int &&r = 1;
4234 // int x = ++r;
4235 // constexpr int k = r;
4236 // Therefore we use the C++14-onwards rules in C++11 too.
4237 //
4238 // Note that temporaries whose lifetimes began while evaluating a
4239 // variable's constructor are not usable while evaluating the
4240 // corresponding destructor, not even if they're of const-qualified
4241 // types.
4242 if (!MTE->isUsableInConstantExpressions(Context: Info.Ctx) &&
4243 !lifetimeStartedInEvaluation(Info, Base: LVal.Base)) {
4244 if (!IsAccess)
4245 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4246 Info.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
4247 Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
4248 return CompleteObject();
4249 }
4250
4251 BaseVal = MTE->getOrCreateValue(MayCreate: false);
4252 assert(BaseVal && "got reference to unevaluated temporary");
4253 } else {
4254 if (!IsAccess)
4255 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4256 APValue Val;
4257 LVal.moveInto(V&: Val);
4258 Info.FFDiag(E, diag::note_constexpr_access_unreadable_object)
4259 << AK
4260 << Val.getAsString(Info.Ctx,
4261 Info.Ctx.getLValueReferenceType(LValType));
4262 NoteLValueLocation(Info, Base: LVal.Base);
4263 return CompleteObject();
4264 }
4265 } else {
4266 BaseVal = Frame->getTemporary(Key: Base, Version: LVal.Base.getVersion());
4267 assert(BaseVal && "missing value for temporary");
4268 }
4269 }
4270
4271 // In C++14, we can't safely access any mutable state when we might be
4272 // evaluating after an unmodeled side effect. Parameters are modeled as state
4273 // in the caller, but aren't visible once the call returns, so they can be
4274 // modified in a speculatively-evaluated call.
4275 //
4276 // FIXME: Not all local state is mutable. Allow local constant subobjects
4277 // to be read here (but take care with 'mutable' fields).
4278 unsigned VisibleDepth = Depth;
4279 if (llvm::isa_and_nonnull<ParmVarDecl>(
4280 Val: LVal.Base.dyn_cast<const ValueDecl *>()))
4281 ++VisibleDepth;
4282 if ((Frame && Info.getLangOpts().CPlusPlus14 &&
4283 Info.EvalStatus.HasSideEffects) ||
4284 (isModification(AK) && VisibleDepth < Info.SpeculativeEvaluationDepth))
4285 return CompleteObject();
4286
4287 return CompleteObject(LVal.getLValueBase(), BaseVal, BaseType);
4288}
4289
4290/// Perform an lvalue-to-rvalue conversion on the given glvalue. This
4291/// can also be used for 'lvalue-to-lvalue' conversions for looking up the
4292/// glvalue referred to by an entity of reference type.
4293///
4294/// \param Info - Information about the ongoing evaluation.
4295/// \param Conv - The expression for which we are performing the conversion.
4296/// Used for diagnostics.
4297/// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
4298/// case of a non-class type).
4299/// \param LVal - The glvalue on which we are attempting to perform this action.
4300/// \param RVal - The produced value will be placed here.
4301/// \param WantObjectRepresentation - If true, we're looking for the object
4302/// representation rather than the value, and in particular,
4303/// there is no requirement that the result be fully initialized.
4304static bool
4305handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv, QualType Type,
4306 const LValue &LVal, APValue &RVal,
4307 bool WantObjectRepresentation = false) {
4308 if (LVal.Designator.Invalid)
4309 return false;
4310
4311 // Check for special cases where there is no existing APValue to look at.
4312 const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
4313
4314 AccessKinds AK =
4315 WantObjectRepresentation ? AK_ReadObjectRepresentation : AK_Read;
4316
4317 if (Base && !LVal.getLValueCallIndex() && !Type.isVolatileQualified()) {
4318 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Val: Base)) {
4319 // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
4320 // initializer until now for such expressions. Such an expression can't be
4321 // an ICE in C, so this only matters for fold.
4322 if (Type.isVolatileQualified()) {
4323 Info.FFDiag(E: Conv);
4324 return false;
4325 }
4326
4327 APValue Lit;
4328 if (!Evaluate(Result&: Lit, Info, E: CLE->getInitializer()))
4329 return false;
4330
4331 // According to GCC info page:
4332 //
4333 // 6.28 Compound Literals
4334 //
4335 // As an optimization, G++ sometimes gives array compound literals longer
4336 // lifetimes: when the array either appears outside a function or has a
4337 // const-qualified type. If foo and its initializer had elements of type
4338 // char *const rather than char *, or if foo were a global variable, the
4339 // array would have static storage duration. But it is probably safest
4340 // just to avoid the use of array compound literals in C++ code.
4341 //
4342 // Obey that rule by checking constness for converted array types.
4343
4344 QualType CLETy = CLE->getType();
4345 if (CLETy->isArrayType() && !Type->isArrayType()) {
4346 if (!CLETy.isConstant(Ctx: Info.Ctx)) {
4347 Info.FFDiag(E: Conv);
4348 Info.Note(CLE->getExprLoc(), diag::note_declared_at);
4349 return false;
4350 }
4351 }
4352
4353 CompleteObject LitObj(LVal.Base, &Lit, Base->getType());
4354 return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal, AK);
4355 } else if (isa<StringLiteral>(Val: Base) || isa<PredefinedExpr>(Val: Base)) {
4356 // Special-case character extraction so we don't have to construct an
4357 // APValue for the whole string.
4358 assert(LVal.Designator.Entries.size() <= 1 &&
4359 "Can only read characters from string literals");
4360 if (LVal.Designator.Entries.empty()) {
4361 // Fail for now for LValue to RValue conversion of an array.
4362 // (This shouldn't show up in C/C++, but it could be triggered by a
4363 // weird EvaluateAsRValue call from a tool.)
4364 Info.FFDiag(E: Conv);
4365 return false;
4366 }
4367 if (LVal.Designator.isOnePastTheEnd()) {
4368 if (Info.getLangOpts().CPlusPlus11)
4369 Info.FFDiag(Conv, diag::note_constexpr_access_past_end) << AK;
4370 else
4371 Info.FFDiag(E: Conv);
4372 return false;
4373 }
4374 uint64_t CharIndex = LVal.Designator.Entries[0].getAsArrayIndex();
4375 RVal = APValue(extractStringLiteralCharacter(Info, Lit: Base, Index: CharIndex));
4376 return true;
4377 }
4378 }
4379
4380 CompleteObject Obj = findCompleteObject(Info, E: Conv, AK, LVal, LValType: Type);
4381 return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal, AK);
4382}
4383
4384/// Perform an assignment of Val to LVal. Takes ownership of Val.
4385static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
4386 QualType LValType, APValue &Val) {
4387 if (LVal.Designator.Invalid)
4388 return false;
4389
4390 if (!Info.getLangOpts().CPlusPlus14) {
4391 Info.FFDiag(E);
4392 return false;
4393 }
4394
4395 CompleteObject Obj = findCompleteObject(Info, E, AK: AK_Assign, LVal, LValType);
4396 return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
4397}
4398
4399namespace {
4400struct CompoundAssignSubobjectHandler {
4401 EvalInfo &Info;
4402 const CompoundAssignOperator *E;
4403 QualType PromotedLHSType;
4404 BinaryOperatorKind Opcode;
4405 const APValue &RHS;
4406
4407 static const AccessKinds AccessKind = AK_Assign;
4408
4409 typedef bool result_type;
4410
4411 bool checkConst(QualType QT) {
4412 // Assigning to a const object has undefined behavior.
4413 if (QT.isConstQualified()) {
4414 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
4415 return false;
4416 }
4417 return true;
4418 }
4419
4420 bool failed() { return false; }
4421 bool found(APValue &Subobj, QualType SubobjType) {
4422 switch (Subobj.getKind()) {
4423 case APValue::Int:
4424 return found(Value&: Subobj.getInt(), SubobjType);
4425 case APValue::Float:
4426 return found(Value&: Subobj.getFloat(), SubobjType);
4427 case APValue::ComplexInt:
4428 case APValue::ComplexFloat:
4429 // FIXME: Implement complex compound assignment.
4430 Info.FFDiag(E);
4431 return false;
4432 case APValue::LValue:
4433 return foundPointer(Subobj, SubobjType);
4434 case APValue::Vector:
4435 return foundVector(Value&: Subobj, SubobjType);
4436 case APValue::Indeterminate:
4437 Info.FFDiag(E, diag::note_constexpr_access_uninit)
4438 << /*read of=*/0 << /*uninitialized object=*/1
4439 << E->getLHS()->getSourceRange();
4440 return false;
4441 default:
4442 // FIXME: can this happen?
4443 Info.FFDiag(E);
4444 return false;
4445 }
4446 }
4447
4448 bool foundVector(APValue &Value, QualType SubobjType) {
4449 if (!checkConst(QT: SubobjType))
4450 return false;
4451
4452 if (!SubobjType->isVectorType()) {
4453 Info.FFDiag(E);
4454 return false;
4455 }
4456 return handleVectorVectorBinOp(Info, E, Opcode, Value, RHS);
4457 }
4458
4459 bool found(APSInt &Value, QualType SubobjType) {
4460 if (!checkConst(QT: SubobjType))
4461 return false;
4462
4463 if (!SubobjType->isIntegerType()) {
4464 // We don't support compound assignment on integer-cast-to-pointer
4465 // values.
4466 Info.FFDiag(E);
4467 return false;
4468 }
4469
4470 if (RHS.isInt()) {
4471 APSInt LHS =
4472 HandleIntToIntCast(Info, E, PromotedLHSType, SubobjType, Value);
4473 if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
4474 return false;
4475 Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
4476 return true;
4477 } else if (RHS.isFloat()) {
4478 const FPOptions FPO = E->getFPFeaturesInEffect(
4479 Info.Ctx.getLangOpts());
4480 APFloat FValue(0.0);
4481 return HandleIntToFloatCast(Info, E, FPO, SubobjType, Value,
4482 PromotedLHSType, FValue) &&
4483 handleFloatFloatBinOp(Info, E, FValue, Opcode, RHS.getFloat()) &&
4484 HandleFloatToIntCast(Info, E, PromotedLHSType, FValue, SubobjType,
4485 Value);
4486 }
4487
4488 Info.FFDiag(E);
4489 return false;
4490 }
4491 bool found(APFloat &Value, QualType SubobjType) {
4492 return checkConst(SubobjType) &&
4493 HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
4494 Value) &&
4495 handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
4496 HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
4497 }
4498 bool foundPointer(APValue &Subobj, QualType SubobjType) {
4499 if (!checkConst(QT: SubobjType))
4500 return false;
4501
4502 QualType PointeeType;
4503 if (const PointerType *PT = SubobjType->getAs<PointerType>())
4504 PointeeType = PT->getPointeeType();
4505
4506 if (PointeeType.isNull() || !RHS.isInt() ||
4507 (Opcode != BO_Add && Opcode != BO_Sub)) {
4508 Info.FFDiag(E);
4509 return false;
4510 }
4511
4512 APSInt Offset = RHS.getInt();
4513 if (Opcode == BO_Sub)
4514 negateAsSigned(Int&: Offset);
4515
4516 LValue LVal;
4517 LVal.setFrom(Ctx&: Info.Ctx, V: Subobj);
4518 if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
4519 return false;
4520 LVal.moveInto(V&: Subobj);
4521 return true;
4522 }
4523};
4524} // end anonymous namespace
4525
4526const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
4527
4528/// Perform a compound assignment of LVal <op>= RVal.
4529static bool handleCompoundAssignment(EvalInfo &Info,
4530 const CompoundAssignOperator *E,
4531 const LValue &LVal, QualType LValType,
4532 QualType PromotedLValType,
4533 BinaryOperatorKind Opcode,
4534 const APValue &RVal) {
4535 if (LVal.Designator.Invalid)
4536 return false;
4537
4538 if (!Info.getLangOpts().CPlusPlus14) {
4539 Info.FFDiag(E);
4540 return false;
4541 }
4542
4543 CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
4544 CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
4545 RVal };
4546 return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
4547}
4548
4549namespace {
4550struct IncDecSubobjectHandler {
4551 EvalInfo &Info;
4552 const UnaryOperator *E;
4553 AccessKinds AccessKind;
4554 APValue *Old;
4555
4556 typedef bool result_type;
4557
4558 bool checkConst(QualType QT) {
4559 // Assigning to a const object has undefined behavior.
4560 if (QT.isConstQualified()) {
4561 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
4562 return false;
4563 }
4564 return true;
4565 }
4566
4567 bool failed() { return false; }
4568 bool found(APValue &Subobj, QualType SubobjType) {
4569 // Stash the old value. Also clear Old, so we don't clobber it later
4570 // if we're post-incrementing a complex.
4571 if (Old) {
4572 *Old = Subobj;
4573 Old = nullptr;
4574 }
4575
4576 switch (Subobj.getKind()) {
4577 case APValue::Int:
4578 return found(Value&: Subobj.getInt(), SubobjType);
4579 case APValue::Float:
4580 return found(Value&: Subobj.getFloat(), SubobjType);
4581 case APValue::ComplexInt:
4582 return found(Value&: Subobj.getComplexIntReal(),
4583 SubobjType: SubobjType->castAs<ComplexType>()->getElementType()
4584 .withCVRQualifiers(CVR: SubobjType.getCVRQualifiers()));
4585 case APValue::ComplexFloat:
4586 return found(Value&: Subobj.getComplexFloatReal(),
4587 SubobjType: SubobjType->castAs<ComplexType>()->getElementType()
4588 .withCVRQualifiers(CVR: SubobjType.getCVRQualifiers()));
4589 case APValue::LValue:
4590 return foundPointer(Subobj, SubobjType);
4591 default:
4592 // FIXME: can this happen?
4593 Info.FFDiag(E);
4594 return false;
4595 }
4596 }
4597 bool found(APSInt &Value, QualType SubobjType) {
4598 if (!checkConst(QT: SubobjType))
4599 return false;
4600
4601 if (!SubobjType->isIntegerType()) {
4602 // We don't support increment / decrement on integer-cast-to-pointer
4603 // values.
4604 Info.FFDiag(E);
4605 return false;
4606 }
4607
4608 if (Old) *Old = APValue(Value);
4609
4610 // bool arithmetic promotes to int, and the conversion back to bool
4611 // doesn't reduce mod 2^n, so special-case it.
4612 if (SubobjType->isBooleanType()) {
4613 if (AccessKind == AK_Increment)
4614 Value = 1;
4615 else
4616 Value = !Value;
4617 return true;
4618 }
4619
4620 bool WasNegative = Value.isNegative();
4621 if (AccessKind == AK_Increment) {
4622 ++Value;
4623
4624 if (!WasNegative && Value.isNegative() && E->canOverflow()) {
4625 APSInt ActualValue(Value, /*IsUnsigned*/true);
4626 return HandleOverflow(Info, E, ActualValue, SubobjType);
4627 }
4628 } else {
4629 --Value;
4630
4631 if (WasNegative && !Value.isNegative() && E->canOverflow()) {
4632 unsigned BitWidth = Value.getBitWidth();
4633 APSInt ActualValue(Value.sext(width: BitWidth + 1), /*IsUnsigned*/false);
4634 ActualValue.setBit(BitWidth);
4635 return HandleOverflow(Info, E, ActualValue, SubobjType);
4636 }
4637 }
4638 return true;
4639 }
4640 bool found(APFloat &Value, QualType SubobjType) {
4641 if (!checkConst(QT: SubobjType))
4642 return false;
4643
4644 if (Old) *Old = APValue(Value);
4645
4646 APFloat One(Value.getSemantics(), 1);
4647 llvm::RoundingMode RM = getActiveRoundingMode(Info, E);
4648 APFloat::opStatus St;
4649 if (AccessKind == AK_Increment)
4650 St = Value.add(RHS: One, RM);
4651 else
4652 St = Value.subtract(RHS: One, RM);
4653 return checkFloatingPointResult(Info, E, St);
4654 }
4655 bool foundPointer(APValue &Subobj, QualType SubobjType) {
4656 if (!checkConst(QT: SubobjType))
4657 return false;
4658
4659 QualType PointeeType;
4660 if (const PointerType *PT = SubobjType->getAs<PointerType>())
4661 PointeeType = PT->getPointeeType();
4662 else {
4663 Info.FFDiag(E);
4664 return false;
4665 }
4666
4667 LValue LVal;
4668 LVal.setFrom(Ctx&: Info.Ctx, V: Subobj);
4669 if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
4670 AccessKind == AK_Increment ? 1 : -1))
4671 return false;
4672 LVal.moveInto(V&: Subobj);
4673 return true;
4674 }
4675};
4676} // end anonymous namespace
4677
4678/// Perform an increment or decrement on LVal.
4679static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
4680 QualType LValType, bool IsIncrement, APValue *Old) {
4681 if (LVal.Designator.Invalid)
4682 return false;
4683
4684 if (!Info.getLangOpts().CPlusPlus14) {
4685 Info.FFDiag(E);
4686 return false;
4687 }
4688
4689 AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
4690 CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
4691 IncDecSubobjectHandler Handler = {.Info: Info, .E: cast<UnaryOperator>(Val: E), .AccessKind: AK, .Old: Old};
4692 return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
4693}
4694
4695/// Build an lvalue for the object argument of a member function call.
4696static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
4697 LValue &This) {
4698 if (Object->getType()->isPointerType() && Object->isPRValue())
4699 return EvaluatePointer(E: Object, Result&: This, Info);
4700
4701 if (Object->isGLValue())
4702 return EvaluateLValue(E: Object, Result&: This, Info);
4703
4704 if (Object->getType()->isLiteralType(Ctx: Info.Ctx))
4705 return EvaluateTemporary(E: Object, Result&: This, Info);
4706
4707 if (Object->getType()->isRecordType() && Object->isPRValue())
4708 return EvaluateTemporary(E: Object, Result&: This, Info);
4709
4710 Info.FFDiag(Object, diag::note_constexpr_nonliteral) << Object->getType();
4711 return false;
4712}
4713
4714/// HandleMemberPointerAccess - Evaluate a member access operation and build an
4715/// lvalue referring to the result.
4716///
4717/// \param Info - Information about the ongoing evaluation.
4718/// \param LV - An lvalue referring to the base of the member pointer.
4719/// \param RHS - The member pointer expression.
4720/// \param IncludeMember - Specifies whether the member itself is included in
4721/// the resulting LValue subobject designator. This is not possible when
4722/// creating a bound member function.
4723/// \return The field or method declaration to which the member pointer refers,
4724/// or 0 if evaluation fails.
4725static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
4726 QualType LVType,
4727 LValue &LV,
4728 const Expr *RHS,
4729 bool IncludeMember = true) {
4730 MemberPtr MemPtr;
4731 if (!EvaluateMemberPointer(E: RHS, Result&: MemPtr, Info))
4732 return nullptr;
4733
4734 // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
4735 // member value, the behavior is undefined.
4736 if (!MemPtr.getDecl()) {
4737 // FIXME: Specific diagnostic.
4738 Info.FFDiag(E: RHS);
4739 return nullptr;
4740 }
4741
4742 if (MemPtr.isDerivedMember()) {
4743 // This is a member of some derived class. Truncate LV appropriately.
4744 // The end of the derived-to-base path for the base object must match the
4745 // derived-to-base path for the member pointer.
4746 if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
4747 LV.Designator.Entries.size()) {
4748 Info.FFDiag(E: RHS);
4749 return nullptr;
4750 }
4751 unsigned PathLengthToMember =
4752 LV.Designator.Entries.size() - MemPtr.Path.size();
4753 for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
4754 const CXXRecordDecl *LVDecl = getAsBaseClass(
4755 LV.Designator.Entries[PathLengthToMember + I]);
4756 const CXXRecordDecl *MPDecl = MemPtr.Path[I];
4757 if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
4758 Info.FFDiag(E: RHS);
4759 return nullptr;
4760 }
4761 }
4762
4763 // Truncate the lvalue to the appropriate derived class.
4764 if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
4765 PathLengthToMember))
4766 return nullptr;
4767 } else if (!MemPtr.Path.empty()) {
4768 // Extend the LValue path with the member pointer's path.
4769 LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
4770 MemPtr.Path.size() + IncludeMember);
4771
4772 // Walk down to the appropriate base class.
4773 if (const PointerType *PT = LVType->getAs<PointerType>())
4774 LVType = PT->getPointeeType();
4775 const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
4776 assert(RD && "member pointer access on non-class-type expression");
4777 // The first class in the path is that of the lvalue.
4778 for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
4779 const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
4780 if (!HandleLValueDirectBase(Info, E: RHS, Obj&: LV, Derived: RD, Base))
4781 return nullptr;
4782 RD = Base;
4783 }
4784 // Finally cast to the class containing the member.
4785 if (!HandleLValueDirectBase(Info, E: RHS, Obj&: LV, Derived: RD,
4786 Base: MemPtr.getContainingRecord()))
4787 return nullptr;
4788 }
4789
4790 // Add the member. Note that we cannot build bound member functions here.
4791 if (IncludeMember) {
4792 if (const FieldDecl *FD = dyn_cast<FieldDecl>(Val: MemPtr.getDecl())) {
4793 if (!HandleLValueMember(Info, E: RHS, LVal&: LV, FD))
4794 return nullptr;
4795 } else if (const IndirectFieldDecl *IFD =
4796 dyn_cast<IndirectFieldDecl>(Val: MemPtr.getDecl())) {
4797 if (!HandleLValueIndirectMember(Info, E: RHS, LVal&: LV, IFD))
4798 return nullptr;
4799 } else {
4800 llvm_unreachable("can't construct reference to bound member function");
4801 }
4802 }
4803
4804 return MemPtr.getDecl();
4805}
4806
4807static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
4808 const BinaryOperator *BO,
4809 LValue &LV,
4810 bool IncludeMember = true) {
4811 assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
4812
4813 if (!EvaluateObjectArgument(Info, Object: BO->getLHS(), This&: LV)) {
4814 if (Info.noteFailure()) {
4815 MemberPtr MemPtr;
4816 EvaluateMemberPointer(E: BO->getRHS(), Result&: MemPtr, Info);
4817 }
4818 return nullptr;
4819 }
4820
4821 return HandleMemberPointerAccess(Info, LVType: BO->getLHS()->getType(), LV,
4822 RHS: BO->getRHS(), IncludeMember);
4823}
4824
4825/// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
4826/// the provided lvalue, which currently refers to the base object.
4827static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
4828 LValue &Result) {
4829 SubobjectDesignator &D = Result.Designator;
4830 if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
4831 return false;
4832
4833 QualType TargetQT = E->getType();
4834 if (const PointerType *PT = TargetQT->getAs<PointerType>())
4835 TargetQT = PT->getPointeeType();
4836
4837 // Check this cast lands within the final derived-to-base subobject path.
4838 if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
4839 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
4840 << D.MostDerivedType << TargetQT;
4841 return false;
4842 }
4843
4844 // Check the type of the final cast. We don't need to check the path,
4845 // since a cast can only be formed if the path is unique.
4846 unsigned NewEntriesSize = D.Entries.size() - E->path_size();
4847 const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
4848 const CXXRecordDecl *FinalType;
4849 if (NewEntriesSize == D.MostDerivedPathLength)
4850 FinalType = D.MostDerivedType->getAsCXXRecordDecl();
4851 else
4852 FinalType = getAsBaseClass(E: D.Entries[NewEntriesSize - 1]);
4853 if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
4854 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
4855 << D.MostDerivedType << TargetQT;
4856 return false;
4857 }
4858
4859 // Truncate the lvalue to the appropriate derived class.
4860 return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
4861}
4862
4863/// Get the value to use for a default-initialized object of type T.
4864/// Return false if it encounters something invalid.
4865static bool handleDefaultInitValue(QualType T, APValue &Result) {
4866 bool Success = true;
4867
4868 // If there is already a value present don't overwrite it.
4869 if (!Result.isAbsent())
4870 return true;
4871
4872 if (auto *RD = T->getAsCXXRecordDecl()) {
4873 if (RD->isInvalidDecl()) {
4874 Result = APValue();
4875 return false;
4876 }
4877 if (RD->isUnion()) {
4878 Result = APValue((const FieldDecl *)nullptr);
4879 return true;
4880 }
4881 Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
4882 std::distance(RD->field_begin(), RD->field_end()));
4883
4884 unsigned Index = 0;
4885 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
4886 End = RD->bases_end();
4887 I != End; ++I, ++Index)
4888 Success &=
4889 handleDefaultInitValue(T: I->getType(), Result&: Result.getStructBase(i: Index));
4890
4891 for (const auto *I : RD->fields()) {
4892 if (I->isUnnamedBitfield())
4893 continue;
4894 Success &= handleDefaultInitValue(
4895 I->getType(), Result.getStructField(I->getFieldIndex()));
4896 }
4897 return Success;
4898 }
4899
4900 if (auto *AT =
4901 dyn_cast_or_null<ConstantArrayType>(T->getAsArrayTypeUnsafe())) {
4902 Result = APValue(APValue::UninitArray(), 0, AT->getSize().getZExtValue());
4903 if (Result.hasArrayFiller())
4904 Success &=
4905 handleDefaultInitValue(AT->getElementType(), Result.getArrayFiller());
4906
4907 return Success;
4908 }
4909
4910 Result = APValue::IndeterminateValue();
4911 return true;
4912}
4913
4914namespace {
4915enum EvalStmtResult {
4916 /// Evaluation failed.
4917 ESR_Failed,
4918 /// Hit a 'return' statement.
4919 ESR_Returned,
4920 /// Evaluation succeeded.
4921 ESR_Succeeded,
4922 /// Hit a 'continue' statement.
4923 ESR_Continue,
4924 /// Hit a 'break' statement.
4925 ESR_Break,
4926 /// Still scanning for 'case' or 'default' statement.
4927 ESR_CaseNotFound
4928};
4929}
4930
4931static bool EvaluateVarDecl(EvalInfo &Info, const VarDecl *VD) {
4932 if (VD->isInvalidDecl())
4933 return false;
4934 // We don't need to evaluate the initializer for a static local.
4935 if (!VD->hasLocalStorage())
4936 return true;
4937
4938 LValue Result;
4939 APValue &Val = Info.CurrentCall->createTemporary(VD, VD->getType(),
4940 ScopeKind::Block, Result);
4941
4942 const Expr *InitE = VD->getInit();
4943 if (!InitE) {
4944 if (VD->getType()->isDependentType())
4945 return Info.noteSideEffect();
4946 return handleDefaultInitValue(VD->getType(), Val);
4947 }
4948 if (InitE->isValueDependent())
4949 return false;
4950
4951 if (!EvaluateInPlace(Result&: Val, Info, This: Result, E: InitE)) {
4952 // Wipe out any partially-computed value, to allow tracking that this
4953 // evaluation failed.
4954 Val = APValue();
4955 return false;
4956 }
4957
4958 return true;
4959}
4960
4961static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
4962 bool OK = true;
4963
4964 if (const VarDecl *VD = dyn_cast<VarDecl>(Val: D))
4965 OK &= EvaluateVarDecl(Info, VD);
4966
4967 if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(Val: D))
4968 for (auto *BD : DD->bindings())
4969 if (auto *VD = BD->getHoldingVar())
4970 OK &= EvaluateDecl(Info, VD);
4971
4972 return OK;
4973}
4974
4975static bool EvaluateDependentExpr(const Expr *E, EvalInfo &Info) {
4976 assert(E->isValueDependent());
4977 if (Info.noteSideEffect())
4978 return true;
4979 assert(E->containsErrors() && "valid value-dependent expression should never "
4980 "reach invalid code path.");
4981 return false;
4982}
4983
4984/// Evaluate a condition (either a variable declaration or an expression).
4985static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
4986 const Expr *Cond, bool &Result) {
4987 if (Cond->isValueDependent())
4988 return false;
4989 FullExpressionRAII Scope(Info);
4990 if (CondDecl && !EvaluateDecl(Info, CondDecl))
4991 return false;
4992 if (!EvaluateAsBooleanCondition(E: Cond, Result, Info))
4993 return false;
4994 return Scope.destroy();
4995}
4996
4997namespace {
4998/// A location where the result (returned value) of evaluating a
4999/// statement should be stored.
5000struct StmtResult {
5001 /// The APValue that should be filled in with the returned value.
5002 APValue &Value;
5003 /// The location containing the result, if any (used to support RVO).
5004 const LValue *Slot;
5005};
5006
5007struct TempVersionRAII {
5008 CallStackFrame &Frame;
5009
5010 TempVersionRAII(CallStackFrame &Frame) : Frame(Frame) {
5011 Frame.pushTempVersion();
5012 }
5013
5014 ~TempVersionRAII() {
5015 Frame.popTempVersion();
5016 }
5017};
5018
5019}
5020
5021static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
5022 const Stmt *S,
5023 const SwitchCase *SC = nullptr);
5024
5025/// Evaluate the body of a loop, and translate the result as appropriate.
5026static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info,
5027 const Stmt *Body,
5028 const SwitchCase *Case = nullptr) {
5029 BlockScopeRAII Scope(Info);
5030
5031 EvalStmtResult ESR = EvaluateStmt(Result, Info, S: Body, SC: Case);
5032 if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
5033 ESR = ESR_Failed;
5034
5035 switch (ESR) {
5036 case ESR_Break:
5037 return ESR_Succeeded;
5038 case ESR_Succeeded:
5039 case ESR_Continue:
5040 return ESR_Continue;
5041 case ESR_Failed:
5042 case ESR_Returned:
5043 case ESR_CaseNotFound:
5044 return ESR;
5045 }
5046 llvm_unreachable("Invalid EvalStmtResult!");
5047}
5048
5049/// Evaluate a switch statement.
5050static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info,
5051 const SwitchStmt *SS) {
5052 BlockScopeRAII Scope(Info);
5053
5054 // Evaluate the switch condition.
5055 APSInt Value;
5056 {
5057 if (const Stmt *Init = SS->getInit()) {
5058 EvalStmtResult ESR = EvaluateStmt(Result, Info, S: Init);
5059 if (ESR != ESR_Succeeded) {
5060 if (ESR != ESR_Failed && !Scope.destroy())
5061 ESR = ESR_Failed;
5062 return ESR;
5063 }
5064 }
5065
5066 FullExpressionRAII CondScope(Info);
5067 if (SS->getConditionVariable() &&
5068 !EvaluateDecl(Info, SS->getConditionVariable()))
5069 return ESR_Failed;
5070 if (SS->getCond()->isValueDependent()) {
5071 // We don't know what the value is, and which branch should jump to.
5072 EvaluateDependentExpr(E: SS->getCond(), Info);
5073 return ESR_Failed;
5074 }
5075 if (!EvaluateInteger(E: SS->getCond(), Result&: Value, Info))
5076 return ESR_Failed;
5077
5078 if (!CondScope.destroy())
5079 return ESR_Failed;
5080 }
5081
5082 // Find the switch case corresponding to the value of the condition.
5083 // FIXME: Cache this lookup.
5084 const SwitchCase *Found = nullptr;
5085 for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
5086 SC = SC->getNextSwitchCase()) {
5087 if (isa<DefaultStmt>(Val: SC)) {
5088 Found = SC;
5089 continue;
5090 }
5091
5092 const CaseStmt *CS = cast<CaseStmt>(Val: SC);
5093 APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Ctx: Info.Ctx);
5094 APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Ctx: Info.Ctx)
5095 : LHS;
5096 if (LHS <= Value && Value <= RHS) {
5097 Found = SC;
5098 break;
5099 }
5100 }
5101
5102 if (!Found)
5103 return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5104
5105 // Search the switch body for the switch case and evaluate it from there.
5106 EvalStmtResult ESR = EvaluateStmt(Result, Info, S: SS->getBody(), SC: Found);
5107 if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
5108 return ESR_Failed;
5109
5110 switch (ESR) {
5111 case ESR_Break:
5112 return ESR_Succeeded;
5113 case ESR_Succeeded:
5114 case ESR_Continue:
5115 case ESR_Failed:
5116 case ESR_Returned:
5117 return ESR;
5118 case ESR_CaseNotFound:
5119 // This can only happen if the switch case is nested within a statement
5120 // expression. We have no intention of supporting that.
5121 Info.FFDiag(Found->getBeginLoc(),
5122 diag::note_constexpr_stmt_expr_unsupported);
5123 return ESR_Failed;
5124 }
5125 llvm_unreachable("Invalid EvalStmtResult!");
5126}
5127
5128static bool CheckLocalVariableDeclaration(EvalInfo &Info, const VarDecl *VD) {
5129 // An expression E is a core constant expression unless the evaluation of E
5130 // would evaluate one of the following: [C++23] - a control flow that passes
5131 // through a declaration of a variable with static or thread storage duration
5132 // unless that variable is usable in constant expressions.
5133 if (VD->isLocalVarDecl() && VD->isStaticLocal() &&
5134 !VD->isUsableInConstantExpressions(C: Info.Ctx)) {
5135 Info.CCEDiag(VD->getLocation(), diag::note_constexpr_static_local)
5136 << (VD->getTSCSpec() == TSCS_unspecified ? 0 : 1) << VD;
5137 return false;
5138 }
5139 return true;
5140}
5141
5142// Evaluate a statement.
5143static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
5144 const Stmt *S, const SwitchCase *Case) {
5145 if (!Info.nextStep(S))
5146 return ESR_Failed;
5147
5148 // If we're hunting down a 'case' or 'default' label, recurse through
5149 // substatements until we hit the label.
5150 if (Case) {
5151 switch (S->getStmtClass()) {
5152 case Stmt::CompoundStmtClass:
5153 // FIXME: Precompute which substatement of a compound statement we
5154 // would jump to, and go straight there rather than performing a
5155 // linear scan each time.
5156 case Stmt::LabelStmtClass:
5157 case Stmt::AttributedStmtClass:
5158 case Stmt::DoStmtClass:
5159 break;
5160
5161 case Stmt::CaseStmtClass:
5162 case Stmt::DefaultStmtClass:
5163 if (Case == S)
5164 Case = nullptr;
5165 break;
5166
5167 case Stmt::IfStmtClass: {
5168 // FIXME: Precompute which side of an 'if' we would jump to, and go
5169 // straight there rather than scanning both sides.
5170 const IfStmt *IS = cast<IfStmt>(Val: S);
5171
5172 // Wrap the evaluation in a block scope, in case it's a DeclStmt
5173 // preceded by our switch label.
5174 BlockScopeRAII Scope(Info);
5175
5176 // Step into the init statement in case it brings an (uninitialized)
5177 // variable into scope.
5178 if (const Stmt *Init = IS->getInit()) {
5179 EvalStmtResult ESR = EvaluateStmt(Result, Info, S: Init, Case);
5180 if (ESR != ESR_CaseNotFound) {
5181 assert(ESR != ESR_Succeeded);
5182 return ESR;
5183 }
5184 }
5185
5186 // Condition variable must be initialized if it exists.
5187 // FIXME: We can skip evaluating the body if there's a condition
5188 // variable, as there can't be any case labels within it.
5189 // (The same is true for 'for' statements.)
5190
5191 EvalStmtResult ESR = EvaluateStmt(Result, Info, S: IS->getThen(), Case);
5192 if (ESR == ESR_Failed)
5193 return ESR;
5194 if (ESR != ESR_CaseNotFound)
5195 return Scope.destroy() ? ESR : ESR_Failed;
5196 if (!IS->getElse())
5197 return ESR_CaseNotFound;
5198
5199 ESR = EvaluateStmt(Result, Info, S: IS->getElse(), Case);
5200 if (ESR == ESR_Failed)
5201 return ESR;
5202 if (ESR != ESR_CaseNotFound)
5203 return Scope.destroy() ? ESR : ESR_Failed;
5204 return ESR_CaseNotFound;
5205 }
5206
5207 case Stmt::WhileStmtClass: {
5208 EvalStmtResult ESR =
5209 EvaluateLoopBody(Result, Info, Body: cast<WhileStmt>(Val: S)->getBody(), Case);
5210 if (ESR != ESR_Continue)
5211 return ESR;
5212 break;
5213 }
5214
5215 case Stmt::ForStmtClass: {
5216 const ForStmt *FS = cast<ForStmt>(Val: S);
5217 BlockScopeRAII Scope(Info);
5218
5219 // Step into the init statement in case it brings an (uninitialized)
5220 // variable into scope.
5221 if (const Stmt *Init = FS->getInit()) {
5222 EvalStmtResult ESR = EvaluateStmt(Result, Info, S: Init, Case);
5223 if (ESR != ESR_CaseNotFound) {
5224 assert(ESR != ESR_Succeeded);
5225 return ESR;
5226 }
5227 }
5228
5229 EvalStmtResult ESR =
5230 EvaluateLoopBody(Result, Info, Body: FS->getBody(), Case);
5231 if (ESR != ESR_Continue)
5232 return ESR;
5233 if (const auto *Inc = FS->getInc()) {
5234 if (Inc->isValueDependent()) {
5235 if (!EvaluateDependentExpr(E: Inc, Info))
5236 return ESR_Failed;
5237 } else {
5238 FullExpressionRAII IncScope(Info);
5239 if (!EvaluateIgnoredValue(Info, E: Inc) || !IncScope.destroy())
5240 return ESR_Failed;
5241 }
5242 }
5243 break;
5244 }
5245
5246 case Stmt::DeclStmtClass: {
5247 // Start the lifetime of any uninitialized variables we encounter. They
5248 // might be used by the selected branch of the switch.
5249 const DeclStmt *DS = cast<DeclStmt>(Val: S);
5250 for (const auto *D : DS->decls()) {
5251 if (const auto *VD = dyn_cast<VarDecl>(Val: D)) {
5252 if (!CheckLocalVariableDeclaration(Info, VD))
5253 return ESR_Failed;
5254 if (VD->hasLocalStorage() && !VD->getInit())
5255 if (!EvaluateVarDecl(Info, VD))
5256 return ESR_Failed;
5257 // FIXME: If the variable has initialization that can't be jumped
5258 // over, bail out of any immediately-surrounding compound-statement
5259 // too. There can't be any case labels here.
5260 }
5261 }
5262 return ESR_CaseNotFound;
5263 }
5264
5265 default:
5266 return ESR_CaseNotFound;
5267 }
5268 }
5269
5270 switch (S->getStmtClass()) {
5271 default:
5272 if (const Expr *E = dyn_cast<Expr>(Val: S)) {
5273 if (E->isValueDependent()) {
5274 if (!EvaluateDependentExpr(E, Info))
5275 return ESR_Failed;
5276 } else {
5277 // Don't bother evaluating beyond an expression-statement which couldn't
5278 // be evaluated.
5279 // FIXME: Do we need the FullExpressionRAII object here?
5280 // VisitExprWithCleanups should create one when necessary.
5281 FullExpressionRAII Scope(Info);
5282 if (!EvaluateIgnoredValue(Info, E) || !Scope.destroy())
5283 return ESR_Failed;
5284 }
5285 return ESR_Succeeded;
5286 }
5287
5288 Info.FFDiag(Loc: S->getBeginLoc()) << S->getSourceRange();
5289 return ESR_Failed;
5290
5291 case Stmt::NullStmtClass:
5292 return ESR_Succeeded;
5293
5294 case Stmt::DeclStmtClass: {
5295 const DeclStmt *DS = cast<DeclStmt>(Val: S);
5296 for (const auto *D : DS->decls()) {
5297 const VarDecl *VD = dyn_cast_or_null<VarDecl>(Val: D);
5298 if (VD && !CheckLocalVariableDeclaration(Info, VD))
5299 return ESR_Failed;
5300 // Each declaration initialization is its own full-expression.
5301 FullExpressionRAII Scope(Info);
5302 if (!EvaluateDecl(Info, D) && !Info.noteFailure())
5303 return ESR_Failed;
5304 if (!Scope.destroy())
5305 return ESR_Failed;
5306 }
5307 return ESR_Succeeded;
5308 }
5309
5310 case Stmt::ReturnStmtClass: {
5311 const Expr *RetExpr = cast<ReturnStmt>(Val: S)->getRetValue();
5312 FullExpressionRAII Scope(Info);
5313 if (RetExpr && RetExpr->isValueDependent()) {
5314 EvaluateDependentExpr(E: RetExpr, Info);
5315 // We know we returned, but we don't know what the value is.
5316 return ESR_Failed;
5317 }
5318 if (RetExpr &&
5319 !(Result.Slot
5320 ? EvaluateInPlace(Result&: Result.Value, Info, This: *Result.Slot, E: RetExpr)
5321 : Evaluate(Result&: Result.Value, Info, E: RetExpr)))
5322 return ESR_Failed;
5323 return Scope.destroy() ? ESR_Returned : ESR_Failed;
5324 }
5325
5326 case Stmt::CompoundStmtClass: {
5327 BlockScopeRAII Scope(Info);
5328
5329 const CompoundStmt *CS = cast<CompoundStmt>(Val: S);
5330 for (const auto *BI : CS->body()) {
5331 EvalStmtResult ESR = EvaluateStmt(Result, Info, S: BI, Case);
5332 if (ESR == ESR_Succeeded)
5333 Case = nullptr;
5334 else if (ESR != ESR_CaseNotFound) {
5335 if (ESR != ESR_Failed && !Scope.destroy())
5336 return ESR_Failed;
5337 return ESR;
5338 }
5339 }
5340 if (Case)
5341 return ESR_CaseNotFound;
5342 return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5343 }
5344
5345 case Stmt::IfStmtClass: {
5346 const IfStmt *IS = cast<IfStmt>(Val: S);
5347
5348 // Evaluate the condition, as either a var decl or as an expression.
5349 BlockScopeRAII Scope(Info);
5350 if (const Stmt *Init = IS->getInit()) {
5351 EvalStmtResult ESR = EvaluateStmt(Result, Info, S: Init);
5352 if (ESR != ESR_Succeeded) {
5353 if (ESR != ESR_Failed && !Scope.destroy())
5354 return ESR_Failed;
5355 return ESR;
5356 }
5357 }
5358 bool Cond;
5359 if (IS->isConsteval()) {
5360 Cond = IS->isNonNegatedConsteval();
5361 // If we are not in a constant context, if consteval should not evaluate
5362 // to true.
5363 if (!Info.InConstantContext)
5364 Cond = !Cond;
5365 } else if (!EvaluateCond(Info, CondDecl: IS->getConditionVariable(), Cond: IS->getCond(),
5366 Result&: Cond))
5367 return ESR_Failed;
5368
5369 if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
5370 EvalStmtResult ESR = EvaluateStmt(Result, Info, S: SubStmt);
5371 if (ESR != ESR_Succeeded) {
5372 if (ESR != ESR_Failed && !Scope.destroy())
5373 return ESR_Failed;
5374 return ESR;
5375 }
5376 }
5377 return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5378 }
5379
5380 case Stmt::WhileStmtClass: {
5381 const WhileStmt *WS = cast<WhileStmt>(Val: S);
5382 while (true) {
5383 BlockScopeRAII Scope(Info);
5384 bool Continue;
5385 if (!EvaluateCond(Info, CondDecl: WS->getConditionVariable(), Cond: WS->getCond(),
5386 Result&: Continue))
5387 return ESR_Failed;
5388 if (!Continue)
5389 break;
5390
5391 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, Body: WS->getBody());
5392 if (ESR != ESR_Continue) {
5393 if (ESR != ESR_Failed && !Scope.destroy())
5394 return ESR_Failed;
5395 return ESR;
5396 }
5397 if (!Scope.destroy())
5398 return ESR_Failed;
5399 }
5400 return ESR_Succeeded;
5401 }
5402
5403 case Stmt::DoStmtClass: {
5404 const DoStmt *DS = cast<DoStmt>(Val: S);
5405 bool Continue;
5406 do {
5407 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, Body: DS->getBody(), Case);
5408 if (ESR != ESR_Continue)
5409 return ESR;
5410 Case = nullptr;
5411
5412 if (DS->getCond()->isValueDependent()) {
5413 EvaluateDependentExpr(E: DS->getCond(), Info);
5414 // Bailout as we don't know whether to keep going or terminate the loop.
5415 return ESR_Failed;
5416 }
5417 FullExpressionRAII CondScope(Info);
5418 if (!EvaluateAsBooleanCondition(E: DS->getCond(), Result&: Continue, Info) ||
5419 !CondScope.destroy())
5420 return ESR_Failed;
5421 } while (Continue);
5422 return ESR_Succeeded;
5423 }
5424
5425 case Stmt::ForStmtClass: {
5426 const ForStmt *FS = cast<ForStmt>(Val: S);
5427 BlockScopeRAII ForScope(Info);
5428 if (FS->getInit()) {
5429 EvalStmtResult ESR = EvaluateStmt(Result, Info, S: FS->getInit());
5430 if (ESR != ESR_Succeeded) {
5431 if (ESR != ESR_Failed && !ForScope.destroy())
5432 return ESR_Failed;
5433 return ESR;
5434 }
5435 }
5436 while (true) {
5437 BlockScopeRAII IterScope(Info);
5438 bool Continue = true;
5439 if (FS->getCond() && !EvaluateCond(Info, CondDecl: FS->getConditionVariable(),
5440 Cond: FS->getCond(), Result&: Continue))
5441 return ESR_Failed;
5442 if (!Continue)
5443 break;
5444
5445 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, Body: FS->getBody());
5446 if (ESR != ESR_Continue) {
5447 if (ESR != ESR_Failed && (!IterScope.destroy() || !ForScope.destroy()))
5448 return ESR_Failed;
5449 return ESR;
5450 }
5451
5452 if (const auto *Inc = FS->getInc()) {
5453 if (Inc->isValueDependent()) {
5454 if (!EvaluateDependentExpr(E: Inc, Info))
5455 return ESR_Failed;
5456 } else {
5457 FullExpressionRAII IncScope(Info);
5458 if (!EvaluateIgnoredValue(Info, E: Inc) || !IncScope.destroy())
5459 return ESR_Failed;
5460 }
5461 }
5462
5463 if (!IterScope.destroy())
5464 return ESR_Failed;
5465 }
5466 return ForScope.destroy() ? ESR_Succeeded : ESR_Failed;
5467 }
5468
5469 case Stmt::CXXForRangeStmtClass: {
5470 const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(Val: S);
5471 BlockScopeRAII Scope(Info);
5472
5473 // Evaluate the init-statement if present.
5474 if (FS->getInit()) {
5475 EvalStmtResult ESR = EvaluateStmt(Result, Info, S: FS->getInit());
5476 if (ESR != ESR_Succeeded) {
5477 if (ESR != ESR_Failed && !Scope.destroy())
5478 return ESR_Failed;
5479 return ESR;
5480 }
5481 }
5482
5483 // Initialize the __range variable.
5484 EvalStmtResult ESR = EvaluateStmt(Result, Info, S: FS->getRangeStmt());
5485 if (ESR != ESR_Succeeded) {
5486 if (ESR != ESR_Failed && !Scope.destroy())
5487 return ESR_Failed;
5488 return ESR;
5489 }
5490
5491 // In error-recovery cases it's possible to get here even if we failed to
5492 // synthesize the __begin and __end variables.
5493 if (!FS->getBeginStmt() || !FS->getEndStmt() || !FS->getCond())
5494 return ESR_Failed;
5495
5496 // Create the __begin and __end iterators.
5497 ESR = EvaluateStmt(Result, Info, S: FS->getBeginStmt());
5498 if (ESR != ESR_Succeeded) {
5499 if (ESR != ESR_Failed && !Scope.destroy())
5500 return ESR_Failed;
5501 return ESR;
5502 }
5503 ESR = EvaluateStmt(Result, Info, S: FS->getEndStmt());
5504 if (ESR != ESR_Succeeded) {
5505 if (ESR != ESR_Failed && !Scope.destroy())
5506 return ESR_Failed;
5507 return ESR;
5508 }
5509
5510 while (true) {
5511 // Condition: __begin != __end.
5512 {
5513 if (FS->getCond()->isValueDependent()) {
5514 EvaluateDependentExpr(E: FS->getCond(), Info);
5515 // We don't know whether to keep going or terminate the loop.
5516 return ESR_Failed;
5517 }
5518 bool Continue = true;
5519 FullExpressionRAII CondExpr(Info);
5520 if (!EvaluateAsBooleanCondition(E: FS->getCond(), Result&: Continue, Info))
5521 return ESR_Failed;
5522 if (!Continue)
5523 break;
5524 }
5525
5526 // User's variable declaration, initialized by *__begin.
5527 BlockScopeRAII InnerScope(Info);
5528 ESR = EvaluateStmt(Result, Info, S: FS->getLoopVarStmt());
5529 if (ESR != ESR_Succeeded) {
5530 if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
5531 return ESR_Failed;
5532 return ESR;
5533 }
5534
5535 // Loop body.
5536 ESR = EvaluateLoopBody(Result, Info, Body: FS->getBody());
5537 if (ESR != ESR_Continue) {
5538 if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
5539 return ESR_Failed;
5540 return ESR;
5541 }
5542 if (FS->getInc()->isValueDependent()) {
5543 if (!EvaluateDependentExpr(E: FS->getInc(), Info))
5544 return ESR_Failed;
5545 } else {
5546 // Increment: ++__begin
5547 if (!EvaluateIgnoredValue(Info, E: FS->getInc()))
5548 return ESR_Failed;
5549 }
5550
5551 if (!InnerScope.destroy())
5552 return ESR_Failed;
5553 }
5554
5555 return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5556 }
5557
5558 case Stmt::SwitchStmtClass:
5559 return EvaluateSwitch(Result, Info, SS: cast<SwitchStmt>(Val: S));
5560
5561 case Stmt::ContinueStmtClass:
5562 return ESR_Continue;
5563
5564 case Stmt::BreakStmtClass:
5565 return ESR_Break;
5566
5567 case Stmt::LabelStmtClass:
5568 return EvaluateStmt(Result, Info, S: cast<LabelStmt>(Val: S)->getSubStmt(), Case);
5569
5570 case Stmt::AttributedStmtClass: {
5571 const auto *AS = cast<AttributedStmt>(Val: S);
5572 const auto *SS = AS->getSubStmt();
5573 MSConstexprContextRAII ConstexprContext(
5574 *Info.CurrentCall, hasSpecificAttr<MSConstexprAttr>(AS->getAttrs()) &&
5575 isa<ReturnStmt>(SS));
5576 return EvaluateStmt(Result, Info, S: SS, Case);
5577 }
5578
5579 case Stmt::CaseStmtClass:
5580 case Stmt::DefaultStmtClass:
5581 return EvaluateStmt(Result, Info, S: cast<SwitchCase>(Val: S)->getSubStmt(), Case);
5582 case Stmt::CXXTryStmtClass:
5583 // Evaluate try blocks by evaluating all sub statements.
5584 return EvaluateStmt(Result, Info, cast<CXXTryStmt>(Val: S)->getTryBlock(), Case);
5585 }
5586}
5587
5588/// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
5589/// default constructor. If so, we'll fold it whether or not it's marked as
5590/// constexpr. If it is marked as constexpr, we will never implicitly define it,
5591/// so we need special handling.
5592static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
5593 const CXXConstructorDecl *CD,
5594 bool IsValueInitialization) {
5595 if (!CD->isTrivial() || !CD->isDefaultConstructor())
5596 return false;
5597
5598 // Value-initialization does not call a trivial default constructor, so such a
5599 // call is a core constant expression whether or not the constructor is
5600 // constexpr.
5601 if (!CD->isConstexpr() && !IsValueInitialization) {
5602 if (Info.getLangOpts().CPlusPlus11) {
5603 // FIXME: If DiagDecl is an implicitly-declared special member function,
5604 // we should be much more explicit about why it's not constexpr.
5605 Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
5606 << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
5607 Info.Note(CD->getLocation(), diag::note_declared_at);
5608 } else {
5609 Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
5610 }
5611 }
5612 return true;
5613}
5614
5615/// CheckConstexprFunction - Check that a function can be called in a constant
5616/// expression.
5617static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
5618 const FunctionDecl *Declaration,
5619 const FunctionDecl *Definition,
5620 const Stmt *Body) {
5621 // Potential constant expressions can contain calls to declared, but not yet
5622 // defined, constexpr functions.
5623 if (Info.checkingPotentialConstantExpression() && !Definition &&
5624 Declaration->isConstexpr())
5625 return false;
5626
5627 // Bail out if the function declaration itself is invalid. We will
5628 // have produced a relevant diagnostic while parsing it, so just
5629 // note the problematic sub-expression.
5630 if (Declaration->isInvalidDecl()) {
5631 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5632 return false;
5633 }
5634
5635 // DR1872: An instantiated virtual constexpr function can't be called in a
5636 // constant expression (prior to C++20). We can still constant-fold such a
5637 // call.
5638 if (!Info.Ctx.getLangOpts().CPlusPlus20 && isa<CXXMethodDecl>(Declaration) &&
5639 cast<CXXMethodDecl>(Declaration)->isVirtual())
5640 Info.CCEDiag(CallLoc, diag::note_constexpr_virtual_call);
5641
5642 if (Definition && Definition->isInvalidDecl()) {
5643 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5644 return false;
5645 }
5646
5647 // Can we evaluate this function call?
5648 if (Definition && Body &&
5649 (Definition->isConstexpr() || (Info.CurrentCall->CanEvalMSConstexpr &&
5650 Definition->hasAttr<MSConstexprAttr>())))
5651 return true;
5652
5653 if (Info.getLangOpts().CPlusPlus11) {
5654 const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
5655
5656 // If this function is not constexpr because it is an inherited
5657 // non-constexpr constructor, diagnose that directly.
5658 auto *CD = dyn_cast<CXXConstructorDecl>(Val: DiagDecl);
5659 if (CD && CD->isInheritingConstructor()) {
5660 auto *Inherited = CD->getInheritedConstructor().getConstructor();
5661 if (!Inherited->isConstexpr())
5662 DiagDecl = CD = Inherited;
5663 }
5664
5665 // FIXME: If DiagDecl is an implicitly-declared special member function
5666 // or an inheriting constructor, we should be much more explicit about why
5667 // it's not constexpr.
5668 if (CD && CD->isInheritingConstructor())
5669 Info.FFDiag(CallLoc, diag::note_constexpr_invalid_inhctor, 1)
5670 << CD->getInheritedConstructor().getConstructor()->getParent();
5671 else
5672 Info.FFDiag(CallLoc, diag::note_constexpr_invalid_function, 1)
5673 << DiagDecl->isConstexpr() << (bool)CD << DiagDecl;
5674 Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
5675 } else {
5676 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5677 }
5678 return false;
5679}
5680
5681namespace {
5682struct CheckDynamicTypeHandler {
5683 AccessKinds AccessKind;
5684 typedef bool result_type;
5685 bool failed() { return false; }
5686 bool found(APValue &Subobj, QualType SubobjType) { return true; }
5687 bool found(APSInt &Value, QualType SubobjType) { return true; }
5688 bool found(APFloat &Value, QualType SubobjType) { return true; }
5689};
5690} // end anonymous namespace
5691
5692/// Check that we can access the notional vptr of an object / determine its
5693/// dynamic type.
5694static bool checkDynamicType(EvalInfo &Info, const Expr *E, const LValue &This,
5695 AccessKinds AK, bool Polymorphic) {
5696 if (This.Designator.Invalid)
5697 return false;
5698
5699 CompleteObject Obj = findCompleteObject(Info, E, AK, LVal: This, LValType: QualType());
5700
5701 if (!Obj)
5702 return false;
5703
5704 if (!Obj.Value) {
5705 // The object is not usable in constant expressions, so we can't inspect
5706 // its value to see if it's in-lifetime or what the active union members
5707 // are. We can still check for a one-past-the-end lvalue.
5708 if (This.Designator.isOnePastTheEnd() ||
5709 This.Designator.isMostDerivedAnUnsizedArray()) {
5710 Info.FFDiag(E, This.Designator.isOnePastTheEnd()
5711 ? diag::note_constexpr_access_past_end
5712 : diag::note_constexpr_access_unsized_array)
5713 << AK;
5714 return false;
5715 } else if (Polymorphic) {
5716 // Conservatively refuse to perform a polymorphic operation if we would
5717 // not be able to read a notional 'vptr' value.
5718 APValue Val;
5719 This.moveInto(V&: Val);
5720 QualType StarThisType =
5721 Info.Ctx.getLValueReferenceType(T: This.Designator.getType(Info.Ctx));
5722 Info.FFDiag(E, diag::note_constexpr_polymorphic_unknown_dynamic_type)
5723 << AK << Val.getAsString(Info.Ctx, StarThisType);
5724 return false;
5725 }
5726 return true;
5727 }
5728
5729 CheckDynamicTypeHandler Handler{.AccessKind: AK};
5730 return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
5731}
5732
5733/// Check that the pointee of the 'this' pointer in a member function call is
5734/// either within its lifetime or in its period of construction or destruction.
5735static bool
5736checkNonVirtualMemberCallThisPointer(EvalInfo &Info, const Expr *E,
5737 const LValue &This,
5738 const CXXMethodDecl *NamedMember) {
5739 return checkDynamicType(
5740 Info, E, This,
5741 AK: isa<CXXDestructorDecl>(Val: NamedMember) ? AK_Destroy : AK_MemberCall, Polymorphic: false);
5742}
5743
5744struct DynamicType {
5745 /// The dynamic class type of the object.
5746 const CXXRecordDecl *Type;
5747 /// The corresponding path length in the lvalue.
5748 unsigned PathLength;
5749};
5750
5751static const CXXRecordDecl *getBaseClassType(SubobjectDesignator &Designator,
5752 unsigned PathLength) {
5753 assert(PathLength >= Designator.MostDerivedPathLength && PathLength <=
5754 Designator.Entries.size() && "invalid path length");
5755 return (PathLength == Designator.MostDerivedPathLength)
5756 ? Designator.MostDerivedType->getAsCXXRecordDecl()
5757 : getAsBaseClass(E: Designator.Entries[PathLength - 1]);
5758}
5759
5760/// Determine the dynamic type of an object.
5761static std::optional<DynamicType> ComputeDynamicType(EvalInfo &Info,
5762 const Expr *E,
5763 LValue &This,
5764 AccessKinds AK) {
5765 // If we don't have an lvalue denoting an object of class type, there is no
5766 // meaningful dynamic type. (We consider objects of non-class type to have no
5767 // dynamic type.)
5768 if (!checkDynamicType(Info, E, This, AK, Polymorphic: true))
5769 return std::nullopt;
5770
5771 // Refuse to compute a dynamic type in the presence of virtual bases. This
5772 // shouldn't happen other than in constant-folding situations, since literal
5773 // types can't have virtual bases.
5774 //
5775 // Note that consumers of DynamicType assume that the type has no virtual
5776 // bases, and will need modifications if this restriction is relaxed.
5777 const CXXRecordDecl *Class =
5778 This.Designator.MostDerivedType->getAsCXXRecordDecl();
5779 if (!Class || Class->getNumVBases()) {
5780 Info.FFDiag(E);
5781 return std::nullopt;
5782 }
5783
5784 // FIXME: For very deep class hierarchies, it might be beneficial to use a
5785 // binary search here instead. But the overwhelmingly common case is that
5786 // we're not in the middle of a constructor, so it probably doesn't matter
5787 // in practice.
5788 ArrayRef<APValue::LValuePathEntry> Path = This.Designator.Entries;
5789 for (unsigned PathLength = This.Designator.MostDerivedPathLength;
5790 PathLength <= Path.size(); ++PathLength) {
5791 switch (Info.isEvaluatingCtorDtor(Base: This.getLValueBase(),
5792 Path: Path.slice(N: 0, M: PathLength))) {
5793 case ConstructionPhase::Bases:
5794 case ConstructionPhase::DestroyingBases:
5795 // We're constructing or destroying a base class. This is not the dynamic
5796 // type.
5797 break;
5798
5799 case ConstructionPhase::None:
5800 case ConstructionPhase::AfterBases:
5801 case ConstructionPhase::AfterFields:
5802 case ConstructionPhase::Destroying:
5803 // We've finished constructing the base classes and not yet started
5804 // destroying them again, so this is the dynamic type.
5805 return DynamicType{getBaseClassType(This.Designator, PathLength),
5806 PathLength};
5807 }
5808 }
5809
5810 // CWG issue 1517: we're constructing a base class of the object described by
5811 // 'This', so that object has not yet begun its period of construction and
5812 // any polymorphic operation on it results in undefined behavior.
5813 Info.FFDiag(E);
5814 return std::nullopt;
5815}
5816
5817/// Perform virtual dispatch.
5818static const CXXMethodDecl *HandleVirtualDispatch(
5819 EvalInfo &Info, const Expr *E, LValue &This, const CXXMethodDecl *Found,
5820 llvm::SmallVectorImpl<QualType> &CovariantAdjustmentPath) {
5821 std::optional<DynamicType> DynType = ComputeDynamicType(
5822 Info, E, This,
5823 AK: isa<CXXDestructorDecl>(Val: Found) ? AK_Destroy : AK_MemberCall);
5824 if (!DynType)
5825 return nullptr;
5826
5827 // Find the final overrider. It must be declared in one of the classes on the
5828 // path from the dynamic type to the static type.
5829 // FIXME: If we ever allow literal types to have virtual base classes, that
5830 // won't be true.
5831 const CXXMethodDecl *Callee = Found;
5832 unsigned PathLength = DynType->PathLength;
5833 for (/**/; PathLength <= This.Designator.Entries.size(); ++PathLength) {
5834 const CXXRecordDecl *Class = getBaseClassType(This.Designator, PathLength);
5835 const CXXMethodDecl *Overrider =
5836 Found->getCorrespondingMethodDeclaredInClass(RD: Class, MayBeBase: false);
5837 if (Overrider) {
5838 Callee = Overrider;
5839 break;
5840 }
5841 }
5842
5843 // C++2a [class.abstract]p6:
5844 // the effect of making a virtual call to a pure virtual function [...] is
5845 // undefined
5846 if (Callee->isPureVirtual()) {
5847 Info.FFDiag(E, diag::note_constexpr_pure_virtual_call, 1) << Callee;
5848 Info.Note(Callee->getLocation(), diag::note_declared_at);
5849 return nullptr;
5850 }
5851
5852 // If necessary, walk the rest of the path to determine the sequence of
5853 // covariant adjustment steps to apply.
5854 if (!Info.Ctx.hasSameUnqualifiedType(T1: Callee->getReturnType(),
5855 T2: Found->getReturnType())) {
5856 CovariantAdjustmentPath.push_back(Elt: Callee->getReturnType());
5857 for (unsigned CovariantPathLength = PathLength + 1;
5858 CovariantPathLength != This.Designator.Entries.size();
5859 ++CovariantPathLength) {
5860 const CXXRecordDecl *NextClass =
5861 getBaseClassType(This.Designator, CovariantPathLength);
5862 const CXXMethodDecl *Next =
5863 Found->getCorrespondingMethodDeclaredInClass(RD: NextClass, MayBeBase: false);
5864 if (Next && !Info.Ctx.hasSameUnqualifiedType(
5865 T1: Next->getReturnType(), T2: CovariantAdjustmentPath.back()))
5866 CovariantAdjustmentPath.push_back(Elt: Next->getReturnType());
5867 }
5868 if (!Info.Ctx.hasSameUnqualifiedType(T1: Found->getReturnType(),
5869 T2: CovariantAdjustmentPath.back()))
5870 CovariantAdjustmentPath.push_back(Elt: Found->getReturnType());
5871 }
5872
5873 // Perform 'this' adjustment.
5874 if (!CastToDerivedClass(Info, E, This, Callee->getParent(), PathLength))
5875 return nullptr;
5876
5877 return Callee;
5878}
5879
5880/// Perform the adjustment from a value returned by a virtual function to
5881/// a value of the statically expected type, which may be a pointer or
5882/// reference to a base class of the returned type.
5883static bool HandleCovariantReturnAdjustment(EvalInfo &Info, const Expr *E,
5884 APValue &Result,
5885 ArrayRef<QualType> Path) {
5886 assert(Result.isLValue() &&
5887 "unexpected kind of APValue for covariant return");
5888 if (Result.isNullPointer())
5889 return true;
5890
5891 LValue LVal;
5892 LVal.setFrom(Ctx&: Info.Ctx, V: Result);
5893
5894 const CXXRecordDecl *OldClass = Path[0]->getPointeeCXXRecordDecl();
5895 for (unsigned I = 1; I != Path.size(); ++I) {
5896 const CXXRecordDecl *NewClass = Path[I]->getPointeeCXXRecordDecl();
5897 assert(OldClass && NewClass && "unexpected kind of covariant return");
5898 if (OldClass != NewClass &&
5899 !CastToBaseClass(Info, E, Result&: LVal, DerivedRD: OldClass, BaseRD: NewClass))
5900 return false;
5901 OldClass = NewClass;
5902 }
5903
5904 LVal.moveInto(V&: Result);
5905 return true;
5906}
5907
5908/// Determine whether \p Base, which is known to be a direct base class of
5909/// \p Derived, is a public base class.
5910static bool isBaseClassPublic(const CXXRecordDecl *Derived,
5911 const CXXRecordDecl *Base) {
5912 for (const CXXBaseSpecifier &BaseSpec : Derived->bases()) {
5913 auto *BaseClass = BaseSpec.getType()->getAsCXXRecordDecl();
5914 if (BaseClass && declaresSameEntity(BaseClass, Base))
5915 return BaseSpec.getAccessSpecifier() == AS_public;
5916 }
5917 llvm_unreachable("Base is not a direct base of Derived");
5918}
5919
5920/// Apply the given dynamic cast operation on the provided lvalue.
5921///
5922/// This implements the hard case of dynamic_cast, requiring a "runtime check"
5923/// to find a suitable target subobject.
5924static bool HandleDynamicCast(EvalInfo &Info, const ExplicitCastExpr *E,
5925 LValue &Ptr) {
5926 // We can't do anything with a non-symbolic pointer value.
5927 SubobjectDesignator &D = Ptr.Designator;
5928 if (D.Invalid)
5929 return false;
5930
5931 // C++ [expr.dynamic.cast]p6:
5932 // If v is a null pointer value, the result is a null pointer value.
5933 if (Ptr.isNullPointer() && !E->isGLValue())
5934 return true;
5935
5936 // For all the other cases, we need the pointer to point to an object within
5937 // its lifetime / period of construction / destruction, and we need to know
5938 // its dynamic type.
5939 std::optional<DynamicType> DynType =
5940 ComputeDynamicType(Info, E, Ptr, AK_DynamicCast);
5941 if (!DynType)
5942 return false;
5943
5944 // C++ [expr.dynamic.cast]p7:
5945 // If T is "pointer to cv void", then the result is a pointer to the most
5946 // derived object
5947 if (E->getType()->isVoidPointerType())
5948 return CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength);
5949
5950 const CXXRecordDecl *C = E->getTypeAsWritten()->getPointeeCXXRecordDecl();
5951 assert(C && "dynamic_cast target is not void pointer nor class");
5952 CanQualType CQT = Info.Ctx.getCanonicalType(T: Info.Ctx.getRecordType(C));
5953
5954 auto RuntimeCheckFailed = [&] (CXXBasePaths *Paths) {
5955 // C++ [expr.dynamic.cast]p9:
5956 if (!E->isGLValue()) {
5957 // The value of a failed cast to pointer type is the null pointer value
5958 // of the required result type.
5959 Ptr.setNull(Ctx&: Info.Ctx, PointerTy: E->getType());
5960 return true;
5961 }
5962
5963 // A failed cast to reference type throws [...] std::bad_cast.
5964 unsigned DiagKind;
5965 if (!Paths && (declaresSameEntity(DynType->Type, C) ||
5966 DynType->Type->isDerivedFrom(Base: C)))
5967 DiagKind = 0;
5968 else if (!Paths || Paths->begin() == Paths->end())
5969 DiagKind = 1;
5970 else if (Paths->isAmbiguous(BaseType: CQT))
5971 DiagKind = 2;
5972 else {
5973 assert(Paths->front().Access != AS_public && "why did the cast fail?");
5974 DiagKind = 3;
5975 }
5976 Info.FFDiag(E, diag::note_constexpr_dynamic_cast_to_reference_failed)
5977 << DiagKind << Ptr.Designator.getType(Info.Ctx)
5978 << Info.Ctx.getRecordType(DynType->Type)
5979 << E->getType().getUnqualifiedType();
5980 return false;
5981 };
5982
5983 // Runtime check, phase 1:
5984 // Walk from the base subobject towards the derived object looking for the
5985 // target type.
5986 for (int PathLength = Ptr.Designator.Entries.size();
5987 PathLength >= (int)DynType->PathLength; --PathLength) {
5988 const CXXRecordDecl *Class = getBaseClassType(Ptr.Designator, PathLength);
5989 if (declaresSameEntity(Class, C))
5990 return CastToDerivedClass(Info, E, Ptr, Class, PathLength);
5991 // We can only walk across public inheritance edges.
5992 if (PathLength > (int)DynType->PathLength &&
5993 !isBaseClassPublic(getBaseClassType(Ptr.Designator, PathLength - 1),
5994 Class))
5995 return RuntimeCheckFailed(nullptr);
5996 }
5997
5998 // Runtime check, phase 2:
5999 // Search the dynamic type for an unambiguous public base of type C.
6000 CXXBasePaths Paths(/*FindAmbiguities=*/true,
6001 /*RecordPaths=*/true, /*DetectVirtual=*/false);
6002 if (DynType->Type->isDerivedFrom(Base: C, Paths) && !Paths.isAmbiguous(BaseType: CQT) &&
6003 Paths.front().Access == AS_public) {
6004 // Downcast to the dynamic type...
6005 if (!CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength))
6006 return false;
6007 // ... then upcast to the chosen base class subobject.
6008 for (CXXBasePathElement &Elem : Paths.front())
6009 if (!HandleLValueBase(Info, E, Ptr, Elem.Class, Elem.Base))
6010 return false;
6011 return true;
6012 }
6013
6014 // Otherwise, the runtime check fails.
6015 return RuntimeCheckFailed(&Paths);
6016}
6017
6018namespace {
6019struct StartLifetimeOfUnionMemberHandler {
6020 EvalInfo &Info;
6021 const Expr *LHSExpr;
6022 const FieldDecl *Field;
6023 bool DuringInit;
6024 bool Failed = false;
6025 static const AccessKinds AccessKind = AK_Assign;
6026
6027 typedef bool result_type;
6028 bool failed() { return Failed; }
6029 bool found(APValue &Subobj, QualType SubobjType) {
6030 // We are supposed to perform no initialization but begin the lifetime of
6031 // the object. We interpret that as meaning to do what default
6032 // initialization of the object would do if all constructors involved were
6033 // trivial:
6034 // * All base, non-variant member, and array element subobjects' lifetimes
6035 // begin
6036 // * No variant members' lifetimes begin
6037 // * All scalar subobjects whose lifetimes begin have indeterminate values
6038 assert(SubobjType->isUnionType());
6039 if (declaresSameEntity(Subobj.getUnionField(), Field)) {
6040 // This union member is already active. If it's also in-lifetime, there's
6041 // nothing to do.
6042 if (Subobj.getUnionValue().hasValue())
6043 return true;
6044 } else if (DuringInit) {
6045 // We're currently in the process of initializing a different union
6046 // member. If we carried on, that initialization would attempt to
6047 // store to an inactive union member, resulting in undefined behavior.
6048 Info.FFDiag(LHSExpr,
6049 diag::note_constexpr_union_member_change_during_init);
6050 return false;
6051 }
6052 APValue Result;
6053 Failed = !handleDefaultInitValue(Field->getType(), Result);
6054 Subobj.setUnion(Field, Value: Result);
6055 return true;
6056 }
6057 bool found(APSInt &Value, QualType SubobjType) {
6058 llvm_unreachable("wrong value kind for union object");
6059 }
6060 bool found(APFloat &Value, QualType SubobjType) {
6061 llvm_unreachable("wrong value kind for union object");
6062 }
6063};
6064} // end anonymous namespace
6065
6066const AccessKinds StartLifetimeOfUnionMemberHandler::AccessKind;
6067
6068/// Handle a builtin simple-assignment or a call to a trivial assignment
6069/// operator whose left-hand side might involve a union member access. If it
6070/// does, implicitly start the lifetime of any accessed union elements per
6071/// C++20 [class.union]5.
6072static bool MaybeHandleUnionActiveMemberChange(EvalInfo &Info,
6073 const Expr *LHSExpr,
6074 const LValue &LHS) {
6075 if (LHS.InvalidBase || LHS.Designator.Invalid)
6076 return false;
6077
6078 llvm::SmallVector<std::pair<unsigned, const FieldDecl*>, 4> UnionPathLengths;
6079 // C++ [class.union]p5:
6080 // define the set S(E) of subexpressions of E as follows:
6081 unsigned PathLength = LHS.Designator.Entries.size();
6082 for (const Expr *E = LHSExpr; E != nullptr;) {
6083 // -- If E is of the form A.B, S(E) contains the elements of S(A)...
6084 if (auto *ME = dyn_cast<MemberExpr>(Val: E)) {
6085 auto *FD = dyn_cast<FieldDecl>(Val: ME->getMemberDecl());
6086 // Note that we can't implicitly start the lifetime of a reference,
6087 // so we don't need to proceed any further if we reach one.
6088 if (!FD || FD->getType()->isReferenceType())
6089 break;
6090
6091 // ... and also contains A.B if B names a union member ...
6092 if (FD->getParent()->isUnion()) {
6093 // ... of a non-class, non-array type, or of a class type with a
6094 // trivial default constructor that is not deleted, or an array of
6095 // such types.
6096 auto *RD =
6097 FD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
6098 if (!RD || RD->hasTrivialDefaultConstructor())
6099 UnionPathLengths.push_back(Elt: {PathLength - 1, FD});
6100 }
6101
6102 E = ME->getBase();
6103 --PathLength;
6104 assert(declaresSameEntity(FD,
6105 LHS.Designator.Entries[PathLength]
6106 .getAsBaseOrMember().getPointer()));
6107
6108 // -- If E is of the form A[B] and is interpreted as a built-in array
6109 // subscripting operator, S(E) is [S(the array operand, if any)].
6110 } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Val: E)) {
6111 // Step over an ArrayToPointerDecay implicit cast.
6112 auto *Base = ASE->getBase()->IgnoreImplicit();
6113 if (!Base->getType()->isArrayType())
6114 break;
6115
6116 E = Base;
6117 --PathLength;
6118
6119 } else if (auto *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) {
6120 // Step over a derived-to-base conversion.
6121 E = ICE->getSubExpr();
6122 if (ICE->getCastKind() == CK_NoOp)
6123 continue;
6124 if (ICE->getCastKind() != CK_DerivedToBase &&
6125 ICE->getCastKind() != CK_UncheckedDerivedToBase)
6126 break;
6127 // Walk path backwards as we walk up from the base to the derived class.
6128 for (const CXXBaseSpecifier *Elt : llvm::reverse(ICE->path())) {
6129 if (Elt->isVirtual()) {
6130 // A class with virtual base classes never has a trivial default
6131 // constructor, so S(E) is empty in this case.
6132 E = nullptr;
6133 break;
6134 }
6135
6136 --PathLength;
6137 assert(declaresSameEntity(Elt->getType()->getAsCXXRecordDecl(),
6138 LHS.Designator.Entries[PathLength]
6139 .getAsBaseOrMember().getPointer()));
6140 }
6141
6142 // -- Otherwise, S(E) is empty.
6143 } else {
6144 break;
6145 }
6146 }
6147
6148 // Common case: no unions' lifetimes are started.
6149 if (UnionPathLengths.empty())
6150 return true;
6151
6152 // if modification of X [would access an inactive union member], an object
6153 // of the type of X is implicitly created
6154 CompleteObject Obj =
6155 findCompleteObject(Info, E: LHSExpr, AK: AK_Assign, LVal: LHS, LValType: LHSExpr->getType());
6156 if (!Obj)
6157 return false;
6158 for (std::pair<unsigned, const FieldDecl *> LengthAndField :
6159 llvm::reverse(C&: UnionPathLengths)) {
6160 // Form a designator for the union object.
6161 SubobjectDesignator D = LHS.Designator;
6162 D.truncate(Ctx&: Info.Ctx, Base: LHS.Base, NewLength: LengthAndField.first);
6163
6164 bool DuringInit = Info.isEvaluatingCtorDtor(Base: LHS.Base, Path: D.Entries) ==
6165 ConstructionPhase::AfterBases;
6166 StartLifetimeOfUnionMemberHandler StartLifetime{
6167 .Info: Info, .LHSExpr: LHSExpr, .Field: LengthAndField.second, .DuringInit: DuringInit};
6168 if (!findSubobject(Info, E: LHSExpr, Obj, Sub: D, handler&: StartLifetime))
6169 return false;
6170 }
6171
6172 return true;
6173}
6174
6175static bool EvaluateCallArg(const ParmVarDecl *PVD, const Expr *Arg,
6176 CallRef Call, EvalInfo &Info,
6177 bool NonNull = false) {
6178 LValue LV;
6179 // Create the parameter slot and register its destruction. For a vararg
6180 // argument, create a temporary.
6181 // FIXME: For calling conventions that destroy parameters in the callee,
6182 // should we consider performing destruction when the function returns
6183 // instead?
6184 APValue &V = PVD ? Info.CurrentCall->createParam(Args: Call, PVD, LV)
6185 : Info.CurrentCall->createTemporary(Key: Arg, T: Arg->getType(),
6186 Scope: ScopeKind::Call, LV);
6187 if (!EvaluateInPlace(Result&: V, Info, This: LV, E: Arg))
6188 return false;
6189
6190 // Passing a null pointer to an __attribute__((nonnull)) parameter results in
6191 // undefined behavior, so is non-constant.
6192 if (NonNull && V.isLValue() && V.isNullPointer()) {
6193 Info.CCEDiag(Arg, diag::note_non_null_attribute_failed);
6194 return false;
6195 }
6196
6197 return true;
6198}
6199
6200/// Evaluate the arguments to a function call.
6201static bool EvaluateArgs(ArrayRef<const Expr *> Args, CallRef Call,
6202 EvalInfo &Info, const FunctionDecl *Callee,
6203 bool RightToLeft = false) {
6204 bool Success = true;
6205 llvm::SmallBitVector ForbiddenNullArgs;
6206 if (Callee->hasAttr<NonNullAttr>()) {
6207 ForbiddenNullArgs.resize(N: Args.size());
6208 for (const auto *Attr : Callee->specific_attrs<NonNullAttr>()) {
6209 if (!Attr->args_size()) {
6210 ForbiddenNullArgs.set();
6211 break;
6212 } else
6213 for (auto Idx : Attr->args()) {
6214 unsigned ASTIdx = Idx.getASTIndex();
6215 if (ASTIdx >= Args.size())
6216 continue;
6217 ForbiddenNullArgs[ASTIdx] = true;
6218 }
6219 }
6220 }
6221 for (unsigned I = 0; I < Args.size(); I++) {
6222 unsigned Idx = RightToLeft ? Args.size() - I - 1 : I;
6223 const ParmVarDecl *PVD =
6224 Idx < Callee->getNumParams() ? Callee->getParamDecl(i: Idx) : nullptr;
6225 bool NonNull = !ForbiddenNullArgs.empty() && ForbiddenNullArgs[Idx];
6226 if (!EvaluateCallArg(PVD, Arg: Args[Idx], Call, Info, NonNull)) {
6227 // If we're checking for a potential constant expression, evaluate all
6228 // initializers even if some of them fail.
6229 if (!Info.noteFailure())
6230 return false;
6231 Success = false;
6232 }
6233 }
6234 return Success;
6235}
6236
6237/// Perform a trivial copy from Param, which is the parameter of a copy or move
6238/// constructor or assignment operator.
6239static bool handleTrivialCopy(EvalInfo &Info, const ParmVarDecl *Param,
6240 const Expr *E, APValue &Result,
6241 bool CopyObjectRepresentation) {
6242 // Find the reference argument.
6243 CallStackFrame *Frame = Info.CurrentCall;
6244 APValue *RefValue = Info.getParamSlot(Call: Frame->Arguments, PVD: Param);
6245 if (!RefValue) {
6246 Info.FFDiag(E);
6247 return false;
6248 }
6249
6250 // Copy out the contents of the RHS object.
6251 LValue RefLValue;
6252 RefLValue.setFrom(Ctx&: Info.Ctx, V: *RefValue);
6253 return handleLValueToRValueConversion(
6254 Info, E, Param->getType().getNonReferenceType(), RefLValue, Result,
6255 CopyObjectRepresentation);
6256}
6257
6258/// Evaluate a function call.
6259static bool HandleFunctionCall(SourceLocation CallLoc,
6260 const FunctionDecl *Callee, const LValue *This,
6261 const Expr *E, ArrayRef<const Expr *> Args,
6262 CallRef Call, const Stmt *Body, EvalInfo &Info,
6263 APValue &Result, const LValue *ResultSlot) {
6264 if (!Info.CheckCallLimit(Loc: CallLoc))
6265 return false;
6266
6267 CallStackFrame Frame(Info, E->getSourceRange(), Callee, This, E, Call);
6268
6269 // For a trivial copy or move assignment, perform an APValue copy. This is
6270 // essential for unions, where the operations performed by the assignment
6271 // operator cannot be represented as statements.
6272 //
6273 // Skip this for non-union classes with no fields; in that case, the defaulted
6274 // copy/move does not actually read the object.
6275 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: Callee);
6276 if (MD && MD->isDefaulted() &&
6277 (MD->getParent()->isUnion() ||
6278 (MD->isTrivial() &&
6279 isReadByLvalueToRvalueConversion(RD: MD->getParent())))) {
6280 assert(This &&
6281 (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
6282 APValue RHSValue;
6283 if (!handleTrivialCopy(Info, MD->getParamDecl(0), Args[0], RHSValue,
6284 MD->getParent()->isUnion()))
6285 return false;
6286 if (!handleAssignment(Info, E: Args[0], LVal: *This, LValType: MD->getThisType(),
6287 Val&: RHSValue))
6288 return false;
6289 This->moveInto(V&: Result);
6290 return true;
6291 } else if (MD && isLambdaCallOperator(MD)) {
6292 // We're in a lambda; determine the lambda capture field maps unless we're
6293 // just constexpr checking a lambda's call operator. constexpr checking is
6294 // done before the captures have been added to the closure object (unless
6295 // we're inferring constexpr-ness), so we don't have access to them in this
6296 // case. But since we don't need the captures to constexpr check, we can
6297 // just ignore them.
6298 if (!Info.checkingPotentialConstantExpression())
6299 MD->getParent()->getCaptureFields(Captures&: Frame.LambdaCaptureFields,
6300 ThisCapture&: Frame.LambdaThisCaptureField);
6301 }
6302
6303 StmtResult Ret = {.Value: Result, .Slot: ResultSlot};
6304 EvalStmtResult ESR = EvaluateStmt(Result&: Ret, Info, S: Body);
6305 if (ESR == ESR_Succeeded) {
6306 if (Callee->getReturnType()->isVoidType())
6307 return true;
6308 Info.FFDiag(Callee->getEndLoc(), diag::note_constexpr_no_return);
6309 }
6310 return ESR == ESR_Returned;
6311}
6312
6313/// Evaluate a constructor call.
6314static bool HandleConstructorCall(const Expr *E, const LValue &This,
6315 CallRef Call,
6316 const CXXConstructorDecl *Definition,
6317 EvalInfo &Info, APValue &Result) {
6318 SourceLocation CallLoc = E->getExprLoc();
6319 if (!Info.CheckCallLimit(Loc: CallLoc))
6320 return false;
6321
6322 const CXXRecordDecl *RD = Definition->getParent();
6323 if (RD->getNumVBases()) {
6324 Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
6325 return false;
6326 }
6327
6328 EvalInfo::EvaluatingConstructorRAII EvalObj(
6329 Info,
6330 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
6331 RD->getNumBases());
6332 CallStackFrame Frame(Info, E->getSourceRange(), Definition, &This, E, Call);
6333
6334 // FIXME: Creating an APValue just to hold a nonexistent return value is
6335 // wasteful.
6336 APValue RetVal;
6337 StmtResult Ret = {.Value: RetVal, .Slot: nullptr};
6338
6339 // If it's a delegating constructor, delegate.
6340 if (Definition->isDelegatingConstructor()) {
6341 CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
6342 if ((*I)->getInit()->isValueDependent()) {
6343 if (!EvaluateDependentExpr(E: (*I)->getInit(), Info))
6344 return false;
6345 } else {
6346 FullExpressionRAII InitScope(Info);
6347 if (!EvaluateInPlace(Result, Info, This, E: (*I)->getInit()) ||
6348 !InitScope.destroy())
6349 return false;
6350 }
6351 return EvaluateStmt(Result&: Ret, Info, S: Definition->getBody()) != ESR_Failed;
6352 }
6353
6354 // For a trivial copy or move constructor, perform an APValue copy. This is
6355 // essential for unions (or classes with anonymous union members), where the
6356 // operations performed by the constructor cannot be represented by
6357 // ctor-initializers.
6358 //
6359 // Skip this for empty non-union classes; we should not perform an
6360 // lvalue-to-rvalue conversion on them because their copy constructor does not
6361 // actually read them.
6362 if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() &&
6363 (Definition->getParent()->isUnion() ||
6364 (Definition->isTrivial() &&
6365 isReadByLvalueToRvalueConversion(Definition->getParent())))) {
6366 return handleTrivialCopy(Info, Definition->getParamDecl(0), E, Result,
6367 Definition->getParent()->isUnion());
6368 }
6369
6370 // Reserve space for the struct members.
6371 if (!Result.hasValue()) {
6372 if (!RD->isUnion())
6373 Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
6374 std::distance(RD->field_begin(), RD->field_end()));
6375 else
6376 // A union starts with no active member.
6377 Result = APValue((const FieldDecl*)nullptr);
6378 }
6379
6380 if (RD->isInvalidDecl()) return false;
6381 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6382
6383 // A scope for temporaries lifetime-extended by reference members.
6384 BlockScopeRAII LifetimeExtendedScope(Info);
6385
6386 bool Success = true;
6387 unsigned BasesSeen = 0;
6388#ifndef NDEBUG
6389 CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
6390#endif
6391 CXXRecordDecl::field_iterator FieldIt = RD->field_begin();
6392 auto SkipToField = [&](FieldDecl *FD, bool Indirect) {
6393 // We might be initializing the same field again if this is an indirect
6394 // field initialization.
6395 if (FieldIt == RD->field_end() ||
6396 FieldIt->getFieldIndex() > FD->getFieldIndex()) {
6397 assert(Indirect && "fields out of order?");
6398 return;
6399 }
6400
6401 // Default-initialize any fields with no explicit initializer.
6402 for (; !declaresSameEntity(*FieldIt, FD); ++FieldIt) {
6403 assert(FieldIt != RD->field_end() && "missing field?");
6404 if (!FieldIt->isUnnamedBitfield())
6405 Success &= handleDefaultInitValue(
6406 FieldIt->getType(),
6407 Result.getStructField(i: FieldIt->getFieldIndex()));
6408 }
6409 ++FieldIt;
6410 };
6411 for (const auto *I : Definition->inits()) {
6412 LValue Subobject = This;
6413 LValue SubobjectParent = This;
6414 APValue *Value = &Result;
6415
6416 // Determine the subobject to initialize.
6417 FieldDecl *FD = nullptr;
6418 if (I->isBaseInitializer()) {
6419 QualType BaseType(I->getBaseClass(), 0);
6420#ifndef NDEBUG
6421 // Non-virtual base classes are initialized in the order in the class
6422 // definition. We have already checked for virtual base classes.
6423 assert(!BaseIt->isVirtual() && "virtual base for literal type");
6424 assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
6425 "base class initializers not in expected order");
6426 ++BaseIt;
6427#endif
6428 if (!HandleLValueDirectBase(Info, E: I->getInit(), Obj&: Subobject, Derived: RD,
6429 Base: BaseType->getAsCXXRecordDecl(), RL: &Layout))
6430 return false;
6431 Value = &Result.getStructBase(i: BasesSeen++);
6432 } else if ((FD = I->getMember())) {
6433 if (!HandleLValueMember(Info, E: I->getInit(), LVal&: Subobject, FD, RL: &Layout))
6434 return false;
6435 if (RD->isUnion()) {
6436 Result = APValue(FD);
6437 Value = &Result.getUnionValue();
6438 } else {
6439 SkipToField(FD, false);
6440 Value = &Result.getStructField(i: FD->getFieldIndex());
6441 }
6442 } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) {
6443 // Walk the indirect field decl's chain to find the object to initialize,
6444 // and make sure we've initialized every step along it.
6445 auto IndirectFieldChain = IFD->chain();
6446 for (auto *C : IndirectFieldChain) {
6447 FD = cast<FieldDecl>(Val: C);
6448 CXXRecordDecl *CD = cast<CXXRecordDecl>(Val: FD->getParent());
6449 // Switch the union field if it differs. This happens if we had
6450 // preceding zero-initialization, and we're now initializing a union
6451 // subobject other than the first.
6452 // FIXME: In this case, the values of the other subobjects are
6453 // specified, since zero-initialization sets all padding bits to zero.
6454 if (!Value->hasValue() ||
6455 (Value->isUnion() && Value->getUnionField() != FD)) {
6456 if (CD->isUnion())
6457 *Value = APValue(FD);
6458 else
6459 // FIXME: This immediately starts the lifetime of all members of
6460 // an anonymous struct. It would be preferable to strictly start
6461 // member lifetime in initialization order.
6462 Success &=
6463 handleDefaultInitValue(T: Info.Ctx.getRecordType(CD), Result&: *Value);
6464 }
6465 // Store Subobject as its parent before updating it for the last element
6466 // in the chain.
6467 if (C == IndirectFieldChain.back())
6468 SubobjectParent = Subobject;
6469 if (!HandleLValueMember(Info, E: I->getInit(), LVal&: Subobject, FD))
6470 return false;
6471 if (CD->isUnion())
6472 Value = &Value->getUnionValue();
6473 else {
6474 if (C == IndirectFieldChain.front() && !RD->isUnion())
6475 SkipToField(FD, true);
6476 Value = &Value->getStructField(i: FD->getFieldIndex());
6477 }
6478 }
6479 } else {
6480 llvm_unreachable("unknown base initializer kind");
6481 }
6482
6483 // Need to override This for implicit field initializers as in this case
6484 // This refers to innermost anonymous struct/union containing initializer,
6485 // not to currently constructed class.
6486 const Expr *Init = I->getInit();
6487 if (Init->isValueDependent()) {
6488 if (!EvaluateDependentExpr(E: Init, Info))
6489 return false;
6490 } else {
6491 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &SubobjectParent,
6492 isa<CXXDefaultInitExpr>(Val: Init));
6493 FullExpressionRAII InitScope(Info);
6494 if (!EvaluateInPlace(Result&: *Value, Info, This: Subobject, E: Init) ||
6495 (FD && FD->isBitField() &&
6496 !truncateBitfieldValue(Info, E: Init, Value&: *Value, FD))) {
6497 // If we're checking for a potential constant expression, evaluate all
6498 // initializers even if some of them fail.
6499 if (!Info.noteFailure())
6500 return false;
6501 Success = false;
6502 }
6503 }
6504
6505 // This is the point at which the dynamic type of the object becomes this
6506 // class type.
6507 if (I->isBaseInitializer() && BasesSeen == RD->getNumBases())
6508 EvalObj.finishedConstructingBases();
6509 }
6510
6511 // Default-initialize any remaining fields.
6512 if (!RD->isUnion()) {
6513 for (; FieldIt != RD->field_end(); ++FieldIt) {
6514 if (!FieldIt->isUnnamedBitfield())
6515 Success &= handleDefaultInitValue(
6516 FieldIt->getType(),
6517 Result.getStructField(i: FieldIt->getFieldIndex()));
6518 }
6519 }
6520
6521 EvalObj.finishedConstructingFields();
6522
6523 return Success &&
6524 EvaluateStmt(Result&: Ret, Info, S: Definition->getBody()) != ESR_Failed &&
6525 LifetimeExtendedScope.destroy();
6526}
6527
6528static bool HandleConstructorCall(const Expr *E, const LValue &This,
6529 ArrayRef<const Expr*> Args,
6530 const CXXConstructorDecl *Definition,
6531 EvalInfo &Info, APValue &Result) {
6532 CallScopeRAII CallScope(Info);
6533 CallRef Call = Info.CurrentCall->createCall(Definition);
6534 if (!EvaluateArgs(Args, Call, Info, Definition))
6535 return false;
6536
6537 return HandleConstructorCall(E, This, Call, Definition, Info, Result) &&
6538 CallScope.destroy();
6539}
6540
6541static bool HandleDestructionImpl(EvalInfo &Info, SourceRange CallRange,
6542 const LValue &This, APValue &Value,
6543 QualType T) {
6544 // Objects can only be destroyed while they're within their lifetimes.
6545 // FIXME: We have no representation for whether an object of type nullptr_t
6546 // is in its lifetime; it usually doesn't matter. Perhaps we should model it
6547 // as indeterminate instead?
6548 if (Value.isAbsent() && !T->isNullPtrType()) {
6549 APValue Printable;
6550 This.moveInto(V&: Printable);
6551 Info.FFDiag(CallRange.getBegin(),
6552 diag::note_constexpr_destroy_out_of_lifetime)
6553 << Printable.getAsString(Info.Ctx, Info.Ctx.getLValueReferenceType(T));
6554 return false;
6555 }
6556
6557 // Invent an expression for location purposes.
6558 // FIXME: We shouldn't need to do this.
6559 OpaqueValueExpr LocE(CallRange.getBegin(), Info.Ctx.IntTy, VK_PRValue);
6560
6561 // For arrays, destroy elements right-to-left.
6562 if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(T)) {
6563 uint64_t Size = CAT->getSize().getZExtValue();
6564 QualType ElemT = CAT->getElementType();
6565
6566 if (!CheckArraySize(Info, CAT, CallLoc: CallRange.getBegin()))
6567 return false;
6568
6569 LValue ElemLV = This;
6570 ElemLV.addArray(Info, &LocE, CAT);
6571 if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, Size))
6572 return false;
6573
6574 // Ensure that we have actual array elements available to destroy; the
6575 // destructors might mutate the value, so we can't run them on the array
6576 // filler.
6577 if (Size && Size > Value.getArrayInitializedElts())
6578 expandArray(Array&: Value, Index: Value.getArraySize() - 1);
6579
6580 for (; Size != 0; --Size) {
6581 APValue &Elem = Value.getArrayInitializedElt(I: Size - 1);
6582 if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, -1) ||
6583 !HandleDestructionImpl(Info, CallRange, This: ElemLV, Value&: Elem, T: ElemT))
6584 return false;
6585 }
6586
6587 // End the lifetime of this array now.
6588 Value = APValue();
6589 return true;
6590 }
6591
6592 const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
6593 if (!RD) {
6594 if (T.isDestructedType()) {
6595 Info.FFDiag(CallRange.getBegin(),
6596 diag::note_constexpr_unsupported_destruction)
6597 << T;
6598 return false;
6599 }
6600
6601 Value = APValue();
6602 return true;
6603 }
6604
6605 if (RD->getNumVBases()) {
6606 Info.FFDiag(CallRange.getBegin(), diag::note_constexpr_virtual_base) << RD;
6607 return false;
6608 }
6609
6610 const CXXDestructorDecl *DD = RD->getDestructor();
6611 if (!DD && !RD->hasTrivialDestructor()) {
6612 Info.FFDiag(Loc: CallRange.getBegin());
6613 return false;
6614 }
6615
6616 if (!DD || DD->isTrivial() ||
6617 (RD->isAnonymousStructOrUnion() && RD->isUnion())) {
6618 // A trivial destructor just ends the lifetime of the object. Check for
6619 // this case before checking for a body, because we might not bother
6620 // building a body for a trivial destructor. Note that it doesn't matter
6621 // whether the destructor is constexpr in this case; all trivial
6622 // destructors are constexpr.
6623 //
6624 // If an anonymous union would be destroyed, some enclosing destructor must
6625 // have been explicitly defined, and the anonymous union destruction should
6626 // have no effect.
6627 Value = APValue();
6628 return true;
6629 }
6630
6631 if (!Info.CheckCallLimit(Loc: CallRange.getBegin()))
6632 return false;
6633
6634 const FunctionDecl *Definition = nullptr;
6635 const Stmt *Body = DD->getBody(Definition);
6636
6637 if (!CheckConstexprFunction(Info, CallRange.getBegin(), DD, Definition, Body))
6638 return false;
6639
6640 CallStackFrame Frame(Info, CallRange, Definition, &This, /*CallExpr=*/nullptr,
6641 CallRef());
6642
6643 // We're now in the period of destruction of this object.
6644 unsigned BasesLeft = RD->getNumBases();
6645 EvalInfo::EvaluatingDestructorRAII EvalObj(
6646 Info,
6647 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries});
6648 if (!EvalObj.DidInsert) {
6649 // C++2a [class.dtor]p19:
6650 // the behavior is undefined if the destructor is invoked for an object
6651 // whose lifetime has ended
6652 // (Note that formally the lifetime ends when the period of destruction
6653 // begins, even though certain uses of the object remain valid until the
6654 // period of destruction ends.)
6655 Info.FFDiag(CallRange.getBegin(), diag::note_constexpr_double_destroy);
6656 return false;
6657 }
6658
6659 // FIXME: Creating an APValue just to hold a nonexistent return value is
6660 // wasteful.
6661 APValue RetVal;
6662 StmtResult Ret = {.Value: RetVal, .Slot: nullptr};
6663 if (EvaluateStmt(Result&: Ret, Info, S: Definition->getBody()) == ESR_Failed)
6664 return false;
6665
6666 // A union destructor does not implicitly destroy its members.
6667 if (RD->isUnion())
6668 return true;
6669
6670 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6671
6672 // We don't have a good way to iterate fields in reverse, so collect all the
6673 // fields first and then walk them backwards.
6674 SmallVector<FieldDecl*, 16> Fields(RD->fields());
6675 for (const FieldDecl *FD : llvm::reverse(Fields)) {
6676 if (FD->isUnnamedBitfield())
6677 continue;
6678
6679 LValue Subobject = This;
6680 if (!HandleLValueMember(Info, &LocE, Subobject, FD, &Layout))
6681 return false;
6682
6683 APValue *SubobjectValue = &Value.getStructField(FD->getFieldIndex());
6684 if (!HandleDestructionImpl(Info, CallRange, Subobject, *SubobjectValue,
6685 FD->getType()))
6686 return false;
6687 }
6688
6689 if (BasesLeft != 0)
6690 EvalObj.startedDestroyingBases();
6691
6692 // Destroy base classes in reverse order.
6693 for (const CXXBaseSpecifier &Base : llvm::reverse(C: RD->bases())) {
6694 --BasesLeft;
6695
6696 QualType BaseType = Base.getType();
6697 LValue Subobject = This;
6698 if (!HandleLValueDirectBase(Info, &LocE, Subobject, RD,
6699 BaseType->getAsCXXRecordDecl(), &Layout))
6700 return false;
6701
6702 APValue *SubobjectValue = &Value.getStructBase(i: BasesLeft);
6703 if (!HandleDestructionImpl(Info, CallRange, This: Subobject, Value&: *SubobjectValue,
6704 T: BaseType))
6705 return false;
6706 }
6707 assert(BasesLeft == 0 && "NumBases was wrong?");
6708
6709 // The period of destruction ends now. The object is gone.
6710 Value = APValue();
6711 return true;
6712}
6713
6714namespace {
6715struct DestroyObjectHandler {
6716 EvalInfo &Info;
6717 const Expr *E;
6718 const LValue &This;
6719 const AccessKinds AccessKind;
6720
6721 typedef bool result_type;
6722 bool failed() { return false; }
6723 bool found(APValue &Subobj, QualType SubobjType) {
6724 return HandleDestructionImpl(Info, E->getSourceRange(), This, Subobj,
6725 SubobjType);
6726 }
6727 bool found(APSInt &Value, QualType SubobjType) {
6728 Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
6729 return false;
6730 }
6731 bool found(APFloat &Value, QualType SubobjType) {
6732 Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
6733 return false;
6734 }
6735};
6736}
6737
6738/// Perform a destructor or pseudo-destructor call on the given object, which
6739/// might in general not be a complete object.
6740static bool HandleDestruction(EvalInfo &Info, const Expr *E,
6741 const LValue &This, QualType ThisType) {
6742 CompleteObject Obj = findCompleteObject(Info, E, AK: AK_Destroy, LVal: This, LValType: ThisType);
6743 DestroyObjectHandler Handler = {.Info: Info, .E: E, .This: This, .AccessKind: AK_Destroy};
6744 return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
6745}
6746
6747/// Destroy and end the lifetime of the given complete object.
6748static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
6749 APValue::LValueBase LVBase, APValue &Value,
6750 QualType T) {
6751 // If we've had an unmodeled side-effect, we can't rely on mutable state
6752 // (such as the object we're about to destroy) being correct.
6753 if (Info.EvalStatus.HasSideEffects)
6754 return false;
6755
6756 LValue LV;
6757 LV.set(B: {LVBase});
6758 return HandleDestructionImpl(Info, CallRange: Loc, This: LV, Value, T);
6759}
6760
6761/// Perform a call to 'operator new' or to `__builtin_operator_new'.
6762static bool HandleOperatorNewCall(EvalInfo &Info, const CallExpr *E,
6763 LValue &Result) {
6764 if (Info.checkingPotentialConstantExpression() ||
6765 Info.SpeculativeEvaluationDepth)
6766 return false;
6767
6768 // This is permitted only within a call to std::allocator<T>::allocate.
6769 auto Caller = Info.getStdAllocatorCaller(FnName: "allocate");
6770 if (!Caller) {
6771 Info.FFDiag(E->getExprLoc(), Info.getLangOpts().CPlusPlus20
6772 ? diag::note_constexpr_new_untyped
6773 : diag::note_constexpr_new);
6774 return false;
6775 }
6776
6777 QualType ElemType = Caller.ElemType;
6778 if (ElemType->isIncompleteType() || ElemType->isFunctionType()) {
6779 Info.FFDiag(E->getExprLoc(),
6780 diag::note_constexpr_new_not_complete_object_type)
6781 << (ElemType->isIncompleteType() ? 0 : 1) << ElemType;
6782 return false;
6783 }
6784
6785 APSInt ByteSize;
6786 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: ByteSize, Info))
6787 return false;
6788 bool IsNothrow = false;
6789 for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) {
6790 EvaluateIgnoredValue(Info, E: E->getArg(Arg: I));
6791 IsNothrow |= E->getType()->isNothrowT();
6792 }
6793
6794 CharUnits ElemSize;
6795 if (!HandleSizeof(Info, E->getExprLoc(), ElemType, ElemSize))
6796 return false;
6797 APInt Size, Remainder;
6798 APInt ElemSizeAP(ByteSize.getBitWidth(), ElemSize.getQuantity());
6799 APInt::udivrem(LHS: ByteSize, RHS: ElemSizeAP, Quotient&: Size, Remainder);
6800 if (Remainder != 0) {
6801 // This likely indicates a bug in the implementation of 'std::allocator'.
6802 Info.FFDiag(E->getExprLoc(), diag::note_constexpr_operator_new_bad_size)
6803 << ByteSize << APSInt(ElemSizeAP, true) << ElemType;
6804 return false;
6805 }
6806
6807 if (!Info.CheckArraySize(Loc: E->getBeginLoc(), BitWidth: ByteSize.getActiveBits(),
6808 ElemCount: Size.getZExtValue(), /*Diag=*/!IsNothrow)) {
6809 if (IsNothrow) {
6810 Result.setNull(Ctx&: Info.Ctx, PointerTy: E->getType());
6811 return true;
6812 }
6813 return false;
6814 }
6815
6816 QualType AllocType = Info.Ctx.getConstantArrayType(
6817 EltTy: ElemType, ArySize: Size, SizeExpr: nullptr, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0);
6818 APValue *Val = Info.createHeapAlloc(E, AllocType, Result);
6819 *Val = APValue(APValue::UninitArray(), 0, Size.getZExtValue());
6820 Result.addArray(Info, E, cast<ConstantArrayType>(Val&: AllocType));
6821 return true;
6822}
6823
6824static bool hasVirtualDestructor(QualType T) {
6825 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
6826 if (CXXDestructorDecl *DD = RD->getDestructor())
6827 return DD->isVirtual();
6828 return false;
6829}
6830
6831static const FunctionDecl *getVirtualOperatorDelete(QualType T) {
6832 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
6833 if (CXXDestructorDecl *DD = RD->getDestructor())
6834 return DD->isVirtual() ? DD->getOperatorDelete() : nullptr;
6835 return nullptr;
6836}
6837
6838/// Check that the given object is a suitable pointer to a heap allocation that
6839/// still exists and is of the right kind for the purpose of a deletion.
6840///
6841/// On success, returns the heap allocation to deallocate. On failure, produces
6842/// a diagnostic and returns std::nullopt.
6843static std::optional<DynAlloc *> CheckDeleteKind(EvalInfo &Info, const Expr *E,
6844 const LValue &Pointer,
6845 DynAlloc::Kind DeallocKind) {
6846 auto PointerAsString = [&] {
6847 return Pointer.toString(Info.Ctx, Info.Ctx.VoidPtrTy);
6848 };
6849
6850 DynamicAllocLValue DA = Pointer.Base.dyn_cast<DynamicAllocLValue>();
6851 if (!DA) {
6852 Info.FFDiag(E, diag::note_constexpr_delete_not_heap_alloc)
6853 << PointerAsString();
6854 if (Pointer.Base)
6855 NoteLValueLocation(Info, Base: Pointer.Base);
6856 return std::nullopt;
6857 }
6858
6859 std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA);
6860 if (!Alloc) {
6861 Info.FFDiag(E, diag::note_constexpr_double_delete);
6862 return std::nullopt;
6863 }
6864
6865 if (DeallocKind != (*Alloc)->getKind()) {
6866 QualType AllocType = Pointer.Base.getDynamicAllocType();
6867 Info.FFDiag(E, diag::note_constexpr_new_delete_mismatch)
6868 << DeallocKind << (*Alloc)->getKind() << AllocType;
6869 NoteLValueLocation(Info, Base: Pointer.Base);
6870 return std::nullopt;
6871 }
6872
6873 bool Subobject = false;
6874 if (DeallocKind == DynAlloc::New) {
6875 Subobject = Pointer.Designator.MostDerivedPathLength != 0 ||
6876 Pointer.Designator.isOnePastTheEnd();
6877 } else {
6878 Subobject = Pointer.Designator.Entries.size() != 1 ||
6879 Pointer.Designator.Entries[0].getAsArrayIndex() != 0;
6880 }
6881 if (Subobject) {
6882 Info.FFDiag(E, diag::note_constexpr_delete_subobject)
6883 << PointerAsString() << Pointer.Designator.isOnePastTheEnd();
6884 return std::nullopt;
6885 }
6886
6887 return Alloc;
6888}
6889
6890// Perform a call to 'operator delete' or '__builtin_operator_delete'.
6891bool HandleOperatorDeleteCall(EvalInfo &Info, const CallExpr *E) {
6892 if (Info.checkingPotentialConstantExpression() ||
6893 Info.SpeculativeEvaluationDepth)
6894 return false;
6895
6896 // This is permitted only within a call to std::allocator<T>::deallocate.
6897 if (!Info.getStdAllocatorCaller(FnName: "deallocate")) {
6898 Info.FFDiag(E->getExprLoc());
6899 return true;
6900 }
6901
6902 LValue Pointer;
6903 if (!EvaluatePointer(E: E->getArg(Arg: 0), Result&: Pointer, Info))
6904 return false;
6905 for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I)
6906 EvaluateIgnoredValue(Info, E: E->getArg(Arg: I));
6907
6908 if (Pointer.Designator.Invalid)
6909 return false;
6910
6911 // Deleting a null pointer would have no effect, but it's not permitted by
6912 // std::allocator<T>::deallocate's contract.
6913 if (Pointer.isNullPointer()) {
6914 Info.CCEDiag(E->getExprLoc(), diag::note_constexpr_deallocate_null);
6915 return true;
6916 }
6917
6918 if (!CheckDeleteKind(Info, E, Pointer, DynAlloc::StdAllocator))
6919 return false;
6920
6921 Info.HeapAllocs.erase(x: Pointer.Base.get<DynamicAllocLValue>());
6922 return true;
6923}
6924
6925//===----------------------------------------------------------------------===//
6926// Generic Evaluation
6927//===----------------------------------------------------------------------===//
6928namespace {
6929
6930class BitCastBuffer {
6931 // FIXME: We're going to need bit-level granularity when we support
6932 // bit-fields.
6933 // FIXME: Its possible under the C++ standard for 'char' to not be 8 bits, but
6934 // we don't support a host or target where that is the case. Still, we should
6935 // use a more generic type in case we ever do.
6936 SmallVector<std::optional<unsigned char>, 32> Bytes;
6937
6938 static_assert(std::numeric_limits<unsigned char>::digits >= 8,
6939 "Need at least 8 bit unsigned char");
6940
6941 bool TargetIsLittleEndian;
6942
6943public:
6944 BitCastBuffer(CharUnits Width, bool TargetIsLittleEndian)
6945 : Bytes(Width.getQuantity()),
6946 TargetIsLittleEndian(TargetIsLittleEndian) {}
6947
6948 [[nodiscard]] bool readObject(CharUnits Offset, CharUnits Width,
6949 SmallVectorImpl<unsigned char> &Output) const {
6950 for (CharUnits I = Offset, E = Offset + Width; I != E; ++I) {
6951 // If a byte of an integer is uninitialized, then the whole integer is
6952 // uninitialized.
6953 if (!Bytes[I.getQuantity()])
6954 return false;
6955 Output.push_back(Elt: *Bytes[I.getQuantity()]);
6956 }
6957 if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
6958 std::reverse(first: Output.begin(), last: Output.end());
6959 return true;
6960 }
6961
6962 void writeObject(CharUnits Offset, SmallVectorImpl<unsigned char> &Input) {
6963 if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
6964 std::reverse(first: Input.begin(), last: Input.end());
6965
6966 size_t Index = 0;
6967 for (unsigned char Byte : Input) {
6968 assert(!Bytes[Offset.getQuantity() + Index] && "overwriting a byte?");
6969 Bytes[Offset.getQuantity() + Index] = Byte;
6970 ++Index;
6971 }
6972 }
6973
6974 size_t size() { return Bytes.size(); }
6975};
6976
6977/// Traverse an APValue to produce an BitCastBuffer, emulating how the current
6978/// target would represent the value at runtime.
6979class APValueToBufferConverter {
6980 EvalInfo &Info;
6981 BitCastBuffer Buffer;
6982 const CastExpr *BCE;
6983
6984 APValueToBufferConverter(EvalInfo &Info, CharUnits ObjectWidth,
6985 const CastExpr *BCE)
6986 : Info(Info),
6987 Buffer(ObjectWidth, Info.Ctx.getTargetInfo().isLittleEndian()),
6988 BCE(BCE) {}
6989
6990 bool visit(const APValue &Val, QualType Ty) {
6991 return visit(Val, Ty, Offset: CharUnits::fromQuantity(Quantity: 0));
6992 }
6993
6994 // Write out Val with type Ty into Buffer starting at Offset.
6995 bool visit(const APValue &Val, QualType Ty, CharUnits Offset) {
6996 assert((size_t)Offset.getQuantity() <= Buffer.size());
6997
6998 // As a special case, nullptr_t has an indeterminate value.
6999 if (Ty->isNullPtrType())
7000 return true;
7001
7002 // Dig through Src to find the byte at SrcOffset.
7003 switch (Val.getKind()) {
7004 case APValue::Indeterminate:
7005 case APValue::None:
7006 return true;
7007
7008 case APValue::Int:
7009 return visitInt(Val: Val.getInt(), Ty, Offset);
7010 case APValue::Float:
7011 return visitFloat(Val: Val.getFloat(), Ty, Offset);
7012 case APValue::Array:
7013 return visitArray(Val, Ty, Offset);
7014 case APValue::Struct:
7015 return visitRecord(Val, Ty, Offset);
7016 case APValue::Vector:
7017 return visitVector(Val, Ty, Offset);
7018
7019 case APValue::ComplexInt:
7020 case APValue::ComplexFloat:
7021 case APValue::FixedPoint:
7022 // FIXME: We should support these.
7023
7024 case APValue::Union:
7025 case APValue::MemberPointer:
7026 case APValue::AddrLabelDiff: {
7027 Info.FFDiag(BCE->getBeginLoc(),
7028 diag::note_constexpr_bit_cast_unsupported_type)
7029 << Ty;
7030 return false;
7031 }
7032
7033 case APValue::LValue:
7034 llvm_unreachable("LValue subobject in bit_cast?");
7035 }
7036 llvm_unreachable("Unhandled APValue::ValueKind");
7037 }
7038
7039 bool visitRecord(const APValue &Val, QualType Ty, CharUnits Offset) {
7040 const RecordDecl *RD = Ty->getAsRecordDecl();
7041 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(D: RD);
7042
7043 // Visit the base classes.
7044 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) {
7045 for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
7046 const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
7047 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
7048
7049 if (!visitRecord(Val: Val.getStructBase(i: I), Ty: BS.getType(),
7050 Offset: Layout.getBaseClassOffset(Base: BaseDecl) + Offset))
7051 return false;
7052 }
7053 }
7054
7055 // Visit the fields.
7056 unsigned FieldIdx = 0;
7057 for (FieldDecl *FD : RD->fields()) {
7058 if (FD->isBitField()) {
7059 Info.FFDiag(BCE->getBeginLoc(),
7060 diag::note_constexpr_bit_cast_unsupported_bitfield);
7061 return false;
7062 }
7063
7064 uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldNo: FieldIdx);
7065
7066 assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0 &&
7067 "only bit-fields can have sub-char alignment");
7068 CharUnits FieldOffset =
7069 Info.Ctx.toCharUnitsFromBits(BitSize: FieldOffsetBits) + Offset;
7070 QualType FieldTy = FD->getType();
7071 if (!visit(Val: Val.getStructField(i: FieldIdx), Ty: FieldTy, Offset: FieldOffset))
7072 return false;
7073 ++FieldIdx;
7074 }
7075
7076 return true;
7077 }
7078
7079 bool visitArray(const APValue &Val, QualType Ty, CharUnits Offset) {
7080 const auto *CAT =
7081 dyn_cast_or_null<ConstantArrayType>(Ty->getAsArrayTypeUnsafe());
7082 if (!CAT)
7083 return false;
7084
7085 CharUnits ElemWidth = Info.Ctx.getTypeSizeInChars(CAT->getElementType());
7086 unsigned NumInitializedElts = Val.getArrayInitializedElts();
7087 unsigned ArraySize = Val.getArraySize();
7088 // First, initialize the initialized elements.
7089 for (unsigned I = 0; I != NumInitializedElts; ++I) {
7090 const APValue &SubObj = Val.getArrayInitializedElt(I);
7091 if (!visit(SubObj, CAT->getElementType(), Offset + I * ElemWidth))
7092 return false;
7093 }
7094
7095 // Next, initialize the rest of the array using the filler.
7096 if (Val.hasArrayFiller()) {
7097 const APValue &Filler = Val.getArrayFiller();
7098 for (unsigned I = NumInitializedElts; I != ArraySize; ++I) {
7099 if (!visit(Filler, CAT->getElementType(), Offset + I * ElemWidth))
7100 return false;
7101 }
7102 }
7103
7104 return true;
7105 }
7106
7107 bool visitVector(const APValue &Val, QualType Ty, CharUnits Offset) {
7108 const VectorType *VTy = Ty->castAs<VectorType>();
7109 QualType EltTy = VTy->getElementType();
7110 unsigned NElts = VTy->getNumElements();
7111 unsigned EltSize =
7112 VTy->isExtVectorBoolType() ? 1 : Info.Ctx.getTypeSize(T: EltTy);
7113
7114 if ((NElts * EltSize) % Info.Ctx.getCharWidth() != 0) {
7115 // The vector's size in bits is not a multiple of the target's byte size,
7116 // so its layout is unspecified. For now, we'll simply treat these cases
7117 // as unsupported (this should only be possible with OpenCL bool vectors
7118 // whose element count isn't a multiple of the byte size).
7119 Info.FFDiag(BCE->getBeginLoc(),
7120 diag::note_constexpr_bit_cast_invalid_vector)
7121 << Ty.getCanonicalType() << EltSize << NElts
7122 << Info.Ctx.getCharWidth();
7123 return false;
7124 }
7125
7126 if (EltTy->isRealFloatingType() && &Info.Ctx.getFloatTypeSemantics(T: EltTy) ==
7127 &APFloat::x87DoubleExtended()) {
7128 // The layout for x86_fp80 vectors seems to be handled very inconsistently
7129 // by both clang and LLVM, so for now we won't allow bit_casts involving
7130 // it in a constexpr context.
7131 Info.FFDiag(BCE->getBeginLoc(),
7132 diag::note_constexpr_bit_cast_unsupported_type)
7133 << EltTy;
7134 return false;
7135 }
7136
7137 if (VTy->isExtVectorBoolType()) {
7138 // Special handling for OpenCL bool vectors:
7139 // Since these vectors are stored as packed bits, but we can't write
7140 // individual bits to the BitCastBuffer, we'll buffer all of the elements
7141 // together into an appropriately sized APInt and write them all out at
7142 // once. Because we don't accept vectors where NElts * EltSize isn't a
7143 // multiple of the char size, there will be no padding space, so we don't
7144 // have to worry about writing data which should have been left
7145 // uninitialized.
7146 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
7147
7148 llvm::APInt Res = llvm::APInt::getZero(numBits: NElts);
7149 for (unsigned I = 0; I < NElts; ++I) {
7150 const llvm::APSInt &EltAsInt = Val.getVectorElt(I).getInt();
7151 assert(EltAsInt.isUnsigned() && EltAsInt.getBitWidth() == 1 &&
7152 "bool vector element must be 1-bit unsigned integer!");
7153
7154 Res.insertBits(SubBits: EltAsInt, bitPosition: BigEndian ? (NElts - I - 1) : I);
7155 }
7156
7157 SmallVector<uint8_t, 8> Bytes(NElts / 8);
7158 llvm::StoreIntToMemory(IntVal: Res, Dst: &*Bytes.begin(), StoreBytes: NElts / 8);
7159 Buffer.writeObject(Offset, Input&: Bytes);
7160 } else {
7161 // Iterate over each of the elements and write them out to the buffer at
7162 // the appropriate offset.
7163 CharUnits EltSizeChars = Info.Ctx.getTypeSizeInChars(T: EltTy);
7164 for (unsigned I = 0; I < NElts; ++I) {
7165 if (!visit(Val: Val.getVectorElt(I), Ty: EltTy, Offset: Offset + I * EltSizeChars))
7166 return false;
7167 }
7168 }
7169
7170 return true;
7171 }
7172
7173 bool visitInt(const APSInt &Val, QualType Ty, CharUnits Offset) {
7174 APSInt AdjustedVal = Val;
7175 unsigned Width = AdjustedVal.getBitWidth();
7176 if (Ty->isBooleanType()) {
7177 Width = Info.Ctx.getTypeSize(T: Ty);
7178 AdjustedVal = AdjustedVal.extend(width: Width);
7179 }
7180
7181 SmallVector<uint8_t, 8> Bytes(Width / 8);
7182 llvm::StoreIntToMemory(IntVal: AdjustedVal, Dst: &*Bytes.begin(), StoreBytes: Width / 8);
7183 Buffer.writeObject(Offset, Input&: Bytes);
7184 return true;
7185 }
7186
7187 bool visitFloat(const APFloat &Val, QualType Ty, CharUnits Offset) {
7188 APSInt AsInt(Val.bitcastToAPInt());
7189 return visitInt(Val: AsInt, Ty, Offset);
7190 }
7191
7192public:
7193 static std::optional<BitCastBuffer>
7194 convert(EvalInfo &Info, const APValue &Src, const CastExpr *BCE) {
7195 CharUnits DstSize = Info.Ctx.getTypeSizeInChars(BCE->getType());
7196 APValueToBufferConverter Converter(Info, DstSize, BCE);
7197 if (!Converter.visit(Val: Src, Ty: BCE->getSubExpr()->getType()))
7198 return std::nullopt;
7199 return Converter.Buffer;
7200 }
7201};
7202
7203/// Write an BitCastBuffer into an APValue.
7204class BufferToAPValueConverter {
7205 EvalInfo &Info;
7206 const BitCastBuffer &Buffer;
7207 const CastExpr *BCE;
7208
7209 BufferToAPValueConverter(EvalInfo &Info, const BitCastBuffer &Buffer,
7210 const CastExpr *BCE)
7211 : Info(Info), Buffer(Buffer), BCE(BCE) {}
7212
7213 // Emit an unsupported bit_cast type error. Sema refuses to build a bit_cast
7214 // with an invalid type, so anything left is a deficiency on our part (FIXME).
7215 // Ideally this will be unreachable.
7216 std::nullopt_t unsupportedType(QualType Ty) {
7217 Info.FFDiag(BCE->getBeginLoc(),
7218 diag::note_constexpr_bit_cast_unsupported_type)
7219 << Ty;
7220 return std::nullopt;
7221 }
7222
7223 std::nullopt_t unrepresentableValue(QualType Ty, const APSInt &Val) {
7224 Info.FFDiag(BCE->getBeginLoc(),
7225 diag::note_constexpr_bit_cast_unrepresentable_value)
7226 << Ty << toString(Val, /*Radix=*/10);
7227 return std::nullopt;
7228 }
7229
7230 std::optional<APValue> visit(const BuiltinType *T, CharUnits Offset,
7231 const EnumType *EnumSugar = nullptr) {
7232 if (T->isNullPtrType()) {
7233 uint64_t NullValue = Info.Ctx.getTargetNullPointerValue(QT: QualType(T, 0));
7234 return APValue((Expr *)nullptr,
7235 /*Offset=*/CharUnits::fromQuantity(Quantity: NullValue),
7236 APValue::NoLValuePath{}, /*IsNullPtr=*/true);
7237 }
7238
7239 CharUnits SizeOf = Info.Ctx.getTypeSizeInChars(T);
7240
7241 // Work around floating point types that contain unused padding bytes. This
7242 // is really just `long double` on x86, which is the only fundamental type
7243 // with padding bytes.
7244 if (T->isRealFloatingType()) {
7245 const llvm::fltSemantics &Semantics =
7246 Info.Ctx.getFloatTypeSemantics(T: QualType(T, 0));
7247 unsigned NumBits = llvm::APFloatBase::getSizeInBits(Sem: Semantics);
7248 assert(NumBits % 8 == 0);
7249 CharUnits NumBytes = CharUnits::fromQuantity(Quantity: NumBits / 8);
7250 if (NumBytes != SizeOf)
7251 SizeOf = NumBytes;
7252 }
7253
7254 SmallVector<uint8_t, 8> Bytes;
7255 if (!Buffer.readObject(Offset, Width: SizeOf, Output&: Bytes)) {
7256 // If this is std::byte or unsigned char, then its okay to store an
7257 // indeterminate value.
7258 bool IsStdByte = EnumSugar && EnumSugar->isStdByteType();
7259 bool IsUChar =
7260 !EnumSugar && (T->isSpecificBuiltinType(BuiltinType::UChar) ||
7261 T->isSpecificBuiltinType(BuiltinType::Char_U));
7262 if (!IsStdByte && !IsUChar) {
7263 QualType DisplayType(EnumSugar ? (const Type *)EnumSugar : T, 0);
7264 Info.FFDiag(BCE->getExprLoc(),
7265 diag::note_constexpr_bit_cast_indet_dest)
7266 << DisplayType << Info.Ctx.getLangOpts().CharIsSigned;
7267 return std::nullopt;
7268 }
7269
7270 return APValue::IndeterminateValue();
7271 }
7272
7273 APSInt Val(SizeOf.getQuantity() * Info.Ctx.getCharWidth(), true);
7274 llvm::LoadIntFromMemory(IntVal&: Val, Src: &*Bytes.begin(), LoadBytes: Bytes.size());
7275
7276 if (T->isIntegralOrEnumerationType()) {
7277 Val.setIsSigned(T->isSignedIntegerOrEnumerationType());
7278
7279 unsigned IntWidth = Info.Ctx.getIntWidth(T: QualType(T, 0));
7280 if (IntWidth != Val.getBitWidth()) {
7281 APSInt Truncated = Val.trunc(width: IntWidth);
7282 if (Truncated.extend(width: Val.getBitWidth()) != Val)
7283 return unrepresentableValue(Ty: QualType(T, 0), Val);
7284 Val = Truncated;
7285 }
7286
7287 return APValue(Val);
7288 }
7289
7290 if (T->isRealFloatingType()) {
7291 const llvm::fltSemantics &Semantics =
7292 Info.Ctx.getFloatTypeSemantics(T: QualType(T, 0));
7293 return APValue(APFloat(Semantics, Val));
7294 }
7295
7296 return unsupportedType(Ty: QualType(T, 0));
7297 }
7298
7299 std::optional<APValue> visit(const RecordType *RTy, CharUnits Offset) {
7300 const RecordDecl *RD = RTy->getAsRecordDecl();
7301 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(D: RD);
7302
7303 unsigned NumBases = 0;
7304 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7305 NumBases = CXXRD->getNumBases();
7306
7307 APValue ResultVal(APValue::UninitStruct(), NumBases,
7308 std::distance(RD->field_begin(), RD->field_end()));
7309
7310 // Visit the base classes.
7311 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
7312 for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
7313 const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
7314 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
7315 if (BaseDecl->isEmpty() ||
7316 Info.Ctx.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero())
7317 continue;
7318
7319 std::optional<APValue> SubObj = visitType(
7320 BS.getType(), Layout.getBaseClassOffset(BaseDecl) + Offset);
7321 if (!SubObj)
7322 return std::nullopt;
7323 ResultVal.getStructBase(i: I) = *SubObj;
7324 }
7325 }
7326
7327 // Visit the fields.
7328 unsigned FieldIdx = 0;
7329 for (FieldDecl *FD : RD->fields()) {
7330 // FIXME: We don't currently support bit-fields. A lot of the logic for
7331 // this is in CodeGen, so we need to factor it around.
7332 if (FD->isBitField()) {
7333 Info.FFDiag(BCE->getBeginLoc(),
7334 diag::note_constexpr_bit_cast_unsupported_bitfield);
7335 return std::nullopt;
7336 }
7337
7338 uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
7339 assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0);
7340
7341 CharUnits FieldOffset =
7342 CharUnits::fromQuantity(FieldOffsetBits / Info.Ctx.getCharWidth()) +
7343 Offset;
7344 QualType FieldTy = FD->getType();
7345 std::optional<APValue> SubObj = visitType(FieldTy, FieldOffset);
7346 if (!SubObj)
7347 return std::nullopt;
7348 ResultVal.getStructField(FieldIdx) = *SubObj;
7349 ++FieldIdx;
7350 }
7351
7352 return ResultVal;
7353 }
7354
7355 std::optional<APValue> visit(const EnumType *Ty, CharUnits Offset) {
7356 QualType RepresentationType = Ty->getDecl()->getIntegerType();
7357 assert(!RepresentationType.isNull() &&
7358 "enum forward decl should be caught by Sema");
7359 const auto *AsBuiltin =
7360 RepresentationType.getCanonicalType()->castAs<BuiltinType>();
7361 // Recurse into the underlying type. Treat std::byte transparently as
7362 // unsigned char.
7363 return visit(AsBuiltin, Offset, /*EnumTy=*/Ty);
7364 }
7365
7366 std::optional<APValue> visit(const ConstantArrayType *Ty, CharUnits Offset) {
7367 size_t Size = Ty->getSize().getLimitedValue();
7368 CharUnits ElementWidth = Info.Ctx.getTypeSizeInChars(Ty->getElementType());
7369
7370 APValue ArrayValue(APValue::UninitArray(), Size, Size);
7371 for (size_t I = 0; I != Size; ++I) {
7372 std::optional<APValue> ElementValue =
7373 visitType(Ty->getElementType(), Offset + I * ElementWidth);
7374 if (!ElementValue)
7375 return std::nullopt;
7376 ArrayValue.getArrayInitializedElt(I) = std::move(*ElementValue);
7377 }
7378
7379 return ArrayValue;
7380 }
7381
7382 std::optional<APValue> visit(const VectorType *VTy, CharUnits Offset) {
7383 QualType EltTy = VTy->getElementType();
7384 unsigned NElts = VTy->getNumElements();
7385 unsigned EltSize =
7386 VTy->isExtVectorBoolType() ? 1 : Info.Ctx.getTypeSize(T: EltTy);
7387
7388 if ((NElts * EltSize) % Info.Ctx.getCharWidth() != 0) {
7389 // The vector's size in bits is not a multiple of the target's byte size,
7390 // so its layout is unspecified. For now, we'll simply treat these cases
7391 // as unsupported (this should only be possible with OpenCL bool vectors
7392 // whose element count isn't a multiple of the byte size).
7393 Info.FFDiag(BCE->getBeginLoc(),
7394 diag::note_constexpr_bit_cast_invalid_vector)
7395 << QualType(VTy, 0) << EltSize << NElts << Info.Ctx.getCharWidth();
7396 return std::nullopt;
7397 }
7398
7399 if (EltTy->isRealFloatingType() && &Info.Ctx.getFloatTypeSemantics(T: EltTy) ==
7400 &APFloat::x87DoubleExtended()) {
7401 // The layout for x86_fp80 vectors seems to be handled very inconsistently
7402 // by both clang and LLVM, so for now we won't allow bit_casts involving
7403 // it in a constexpr context.
7404 Info.FFDiag(BCE->getBeginLoc(),
7405 diag::note_constexpr_bit_cast_unsupported_type)
7406 << EltTy;
7407 return std::nullopt;
7408 }
7409
7410 SmallVector<APValue, 4> Elts;
7411 Elts.reserve(N: NElts);
7412 if (VTy->isExtVectorBoolType()) {
7413 // Special handling for OpenCL bool vectors:
7414 // Since these vectors are stored as packed bits, but we can't read
7415 // individual bits from the BitCastBuffer, we'll buffer all of the
7416 // elements together into an appropriately sized APInt and write them all
7417 // out at once. Because we don't accept vectors where NElts * EltSize
7418 // isn't a multiple of the char size, there will be no padding space, so
7419 // we don't have to worry about reading any padding data which didn't
7420 // actually need to be accessed.
7421 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
7422
7423 SmallVector<uint8_t, 8> Bytes;
7424 Bytes.reserve(N: NElts / 8);
7425 if (!Buffer.readObject(Offset, Width: CharUnits::fromQuantity(Quantity: NElts / 8), Output&: Bytes))
7426 return std::nullopt;
7427
7428 APSInt SValInt(NElts, true);
7429 llvm::LoadIntFromMemory(IntVal&: SValInt, Src: &*Bytes.begin(), LoadBytes: Bytes.size());
7430
7431 for (unsigned I = 0; I < NElts; ++I) {
7432 llvm::APInt Elt =
7433 SValInt.extractBits(numBits: 1, bitPosition: (BigEndian ? NElts - I - 1 : I) * EltSize);
7434 Elts.emplace_back(
7435 APSInt(std::move(Elt), !EltTy->isSignedIntegerType()));
7436 }
7437 } else {
7438 // Iterate over each of the elements and read them from the buffer at
7439 // the appropriate offset.
7440 CharUnits EltSizeChars = Info.Ctx.getTypeSizeInChars(T: EltTy);
7441 for (unsigned I = 0; I < NElts; ++I) {
7442 std::optional<APValue> EltValue =
7443 visitType(EltTy, Offset + I * EltSizeChars);
7444 if (!EltValue)
7445 return std::nullopt;
7446 Elts.push_back(std::move(*EltValue));
7447 }
7448 }
7449
7450 return APValue(Elts.data(), Elts.size());
7451 }
7452
7453 std::optional<APValue> visit(const Type *Ty, CharUnits Offset) {
7454 return unsupportedType(Ty: QualType(Ty, 0));
7455 }
7456
7457 std::optional<APValue> visitType(QualType Ty, CharUnits Offset) {
7458 QualType Can = Ty.getCanonicalType();
7459
7460 switch (Can->getTypeClass()) {
7461#define TYPE(Class, Base) \
7462 case Type::Class: \
7463 return visit(cast<Class##Type>(Can.getTypePtr()), Offset);
7464#define ABSTRACT_TYPE(Class, Base)
7465#define NON_CANONICAL_TYPE(Class, Base) \
7466 case Type::Class: \
7467 llvm_unreachable("non-canonical type should be impossible!");
7468#define DEPENDENT_TYPE(Class, Base) \
7469 case Type::Class: \
7470 llvm_unreachable( \
7471 "dependent types aren't supported in the constant evaluator!");
7472#define NON_CANONICAL_UNLESS_DEPENDENT(Class, Base) \
7473 case Type::Class: \
7474 llvm_unreachable("either dependent or not canonical!");
7475#include "clang/AST/TypeNodes.inc"
7476 }
7477 llvm_unreachable("Unhandled Type::TypeClass");
7478 }
7479
7480public:
7481 // Pull out a full value of type DstType.
7482 static std::optional<APValue> convert(EvalInfo &Info, BitCastBuffer &Buffer,
7483 const CastExpr *BCE) {
7484 BufferToAPValueConverter Converter(Info, Buffer, BCE);
7485 return Converter.visitType(BCE->getType(), CharUnits::fromQuantity(Quantity: 0));
7486 }
7487};
7488
7489static bool checkBitCastConstexprEligibilityType(SourceLocation Loc,
7490 QualType Ty, EvalInfo *Info,
7491 const ASTContext &Ctx,
7492 bool CheckingDest) {
7493 Ty = Ty.getCanonicalType();
7494
7495 auto diag = [&](int Reason) {
7496 if (Info)
7497 Info->FFDiag(Loc, diag::note_constexpr_bit_cast_invalid_type)
7498 << CheckingDest << (Reason == 4) << Reason;
7499 return false;
7500 };
7501 auto note = [&](int Construct, QualType NoteTy, SourceLocation NoteLoc) {
7502 if (Info)
7503 Info->Note(NoteLoc, diag::note_constexpr_bit_cast_invalid_subtype)
7504 << NoteTy << Construct << Ty;
7505 return false;
7506 };
7507
7508 if (Ty->isUnionType())
7509 return diag(0);
7510 if (Ty->isPointerType())
7511 return diag(1);
7512 if (Ty->isMemberPointerType())
7513 return diag(2);
7514 if (Ty.isVolatileQualified())
7515 return diag(3);
7516
7517 if (RecordDecl *Record = Ty->getAsRecordDecl()) {
7518 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Record)) {
7519 for (CXXBaseSpecifier &BS : CXXRD->bases())
7520 if (!checkBitCastConstexprEligibilityType(Loc, BS.getType(), Info, Ctx,
7521 CheckingDest))
7522 return note(1, BS.getType(), BS.getBeginLoc());
7523 }
7524 for (FieldDecl *FD : Record->fields()) {
7525 if (FD->getType()->isReferenceType())
7526 return diag(4);
7527 if (!checkBitCastConstexprEligibilityType(Loc, FD->getType(), Info, Ctx,
7528 CheckingDest))
7529 return note(0, FD->getType(), FD->getBeginLoc());
7530 }
7531 }
7532
7533 if (Ty->isArrayType() &&
7534 !checkBitCastConstexprEligibilityType(Loc, Ty: Ctx.getBaseElementType(QT: Ty),
7535 Info, Ctx, CheckingDest))
7536 return false;
7537
7538 return true;
7539}
7540
7541static bool checkBitCastConstexprEligibility(EvalInfo *Info,
7542 const ASTContext &Ctx,
7543 const CastExpr *BCE) {
7544 bool DestOK = checkBitCastConstexprEligibilityType(
7545 BCE->getBeginLoc(), BCE->getType(), Info, Ctx, true);
7546 bool SourceOK = DestOK && checkBitCastConstexprEligibilityType(
7547 BCE->getBeginLoc(),
7548 BCE->getSubExpr()->getType(), Info, Ctx, false);
7549 return SourceOK;
7550}
7551
7552static bool handleRValueToRValueBitCast(EvalInfo &Info, APValue &DestValue,
7553 const APValue &SourceRValue,
7554 const CastExpr *BCE) {
7555 assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 &&
7556 "no host or target supports non 8-bit chars");
7557
7558 if (!checkBitCastConstexprEligibility(Info: &Info, Ctx: Info.Ctx, BCE))
7559 return false;
7560
7561 // Read out SourceValue into a char buffer.
7562 std::optional<BitCastBuffer> Buffer =
7563 APValueToBufferConverter::convert(Info, Src: SourceRValue, BCE);
7564 if (!Buffer)
7565 return false;
7566
7567 // Write out the buffer into a new APValue.
7568 std::optional<APValue> MaybeDestValue =
7569 BufferToAPValueConverter::convert(Info, *Buffer, BCE);
7570 if (!MaybeDestValue)
7571 return false;
7572
7573 DestValue = std::move(*MaybeDestValue);
7574 return true;
7575}
7576
7577static bool handleLValueToRValueBitCast(EvalInfo &Info, APValue &DestValue,
7578 APValue &SourceValue,
7579 const CastExpr *BCE) {
7580 assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 &&
7581 "no host or target supports non 8-bit chars");
7582 assert(SourceValue.isLValue() &&
7583 "LValueToRValueBitcast requires an lvalue operand!");
7584
7585 LValue SourceLValue;
7586 APValue SourceRValue;
7587 SourceLValue.setFrom(Ctx&: Info.Ctx, V: SourceValue);
7588 if (!handleLValueToRValueConversion(
7589 Info, BCE, BCE->getSubExpr()->getType().withConst(), SourceLValue,
7590 SourceRValue, /*WantObjectRepresentation=*/true))
7591 return false;
7592
7593 return handleRValueToRValueBitCast(Info, DestValue, SourceRValue, BCE);
7594}
7595
7596template <class Derived>
7597class ExprEvaluatorBase
7598 : public ConstStmtVisitor<Derived, bool> {
7599private:
7600 Derived &getDerived() { return static_cast<Derived&>(*this); }
7601 bool DerivedSuccess(const APValue &V, const Expr *E) {
7602 return getDerived().Success(V, E);
7603 }
7604 bool DerivedZeroInitialization(const Expr *E) {
7605 return getDerived().ZeroInitialization(E);
7606 }
7607
7608 // Check whether a conditional operator with a non-constant condition is a
7609 // potential constant expression. If neither arm is a potential constant
7610 // expression, then the conditional operator is not either.
7611 template<typename ConditionalOperator>
7612 void CheckPotentialConstantConditional(const ConditionalOperator *E) {
7613 assert(Info.checkingPotentialConstantExpression());
7614
7615 // Speculatively evaluate both arms.
7616 SmallVector<PartialDiagnosticAt, 8> Diag;
7617 {
7618 SpeculativeEvaluationRAII Speculate(Info, &Diag);
7619 StmtVisitorTy::Visit(E->getFalseExpr());
7620 if (Diag.empty())
7621 return;
7622 }
7623
7624 {
7625 SpeculativeEvaluationRAII Speculate(Info, &Diag);
7626 Diag.clear();
7627 StmtVisitorTy::Visit(E->getTrueExpr());
7628 if (Diag.empty())
7629 return;
7630 }
7631
7632 Error(E, diag::note_constexpr_conditional_never_const);
7633 }
7634
7635
7636 template<typename ConditionalOperator>
7637 bool HandleConditionalOperator(const ConditionalOperator *E) {
7638 bool BoolResult;
7639 if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
7640 if (Info.checkingPotentialConstantExpression() && Info.noteFailure()) {
7641 CheckPotentialConstantConditional(E);
7642 return false;
7643 }
7644 if (Info.noteFailure()) {
7645 StmtVisitorTy::Visit(E->getTrueExpr());
7646 StmtVisitorTy::Visit(E->getFalseExpr());
7647 }
7648 return false;
7649 }
7650
7651 Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
7652 return StmtVisitorTy::Visit(EvalExpr);
7653 }
7654
7655protected:
7656 EvalInfo &Info;
7657 typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy;
7658 typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
7659
7660 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
7661 return Info.CCEDiag(E, DiagId: D);
7662 }
7663
7664 bool ZeroInitialization(const Expr *E) { return Error(E); }
7665
7666 bool IsConstantEvaluatedBuiltinCall(const CallExpr *E) {
7667 unsigned BuiltinOp = E->getBuiltinCallee();
7668 return BuiltinOp != 0 &&
7669 Info.Ctx.BuiltinInfo.isConstantEvaluated(ID: BuiltinOp);
7670 }
7671
7672public:
7673 ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
7674
7675 EvalInfo &getEvalInfo() { return Info; }
7676
7677 /// Report an evaluation error. This should only be called when an error is
7678 /// first discovered. When propagating an error, just return false.
7679 bool Error(const Expr *E, diag::kind D) {
7680 Info.FFDiag(E, DiagId: D) << E->getSourceRange();
7681 return false;
7682 }
7683 bool Error(const Expr *E) {
7684 return Error(E, diag::note_invalid_subexpr_in_const_expr);
7685 }
7686
7687 bool VisitStmt(const Stmt *) {
7688 llvm_unreachable("Expression evaluator should not be called on stmts");
7689 }
7690 bool VisitExpr(const Expr *E) {
7691 return Error(E);
7692 }
7693
7694 bool VisitPredefinedExpr(const PredefinedExpr *E) {
7695 return StmtVisitorTy::Visit(E->getFunctionName());
7696 }
7697 bool VisitConstantExpr(const ConstantExpr *E) {
7698 if (E->hasAPValueResult())
7699 return DerivedSuccess(V: E->getAPValueResult(), E);
7700
7701 return StmtVisitorTy::Visit(E->getSubExpr());
7702 }
7703
7704 bool VisitParenExpr(const ParenExpr *E)
7705 { return StmtVisitorTy::Visit(E->getSubExpr()); }
7706 bool VisitUnaryExtension(const UnaryOperator *E)
7707 { return StmtVisitorTy::Visit(E->getSubExpr()); }
7708 bool VisitUnaryPlus(const UnaryOperator *E)
7709 { return StmtVisitorTy::Visit(E->getSubExpr()); }
7710 bool VisitChooseExpr(const ChooseExpr *E)
7711 { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
7712 bool VisitGenericSelectionExpr(const GenericSelectionExpr *E)
7713 { return StmtVisitorTy::Visit(E->getResultExpr()); }
7714 bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
7715 { return StmtVisitorTy::Visit(E->getReplacement()); }
7716 bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
7717 TempVersionRAII RAII(*Info.CurrentCall);
7718 SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
7719 return StmtVisitorTy::Visit(E->getExpr());
7720 }
7721 bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
7722 TempVersionRAII RAII(*Info.CurrentCall);
7723 // The initializer may not have been parsed yet, or might be erroneous.
7724 if (!E->getExpr())
7725 return Error(E);
7726 SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
7727 return StmtVisitorTy::Visit(E->getExpr());
7728 }
7729
7730 bool VisitExprWithCleanups(const ExprWithCleanups *E) {
7731 FullExpressionRAII Scope(Info);
7732 return StmtVisitorTy::Visit(E->getSubExpr()) && Scope.destroy();
7733 }
7734
7735 // Temporaries are registered when created, so we don't care about
7736 // CXXBindTemporaryExpr.
7737 bool VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
7738 return StmtVisitorTy::Visit(E->getSubExpr());
7739 }
7740
7741 bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
7742 CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
7743 return static_cast<Derived*>(this)->VisitCastExpr(E);
7744 }
7745 bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
7746 if (!Info.Ctx.getLangOpts().CPlusPlus20)
7747 CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
7748 return static_cast<Derived*>(this)->VisitCastExpr(E);
7749 }
7750 bool VisitBuiltinBitCastExpr(const BuiltinBitCastExpr *E) {
7751 return static_cast<Derived*>(this)->VisitCastExpr(E);
7752 }
7753
7754 bool VisitBinaryOperator(const BinaryOperator *E) {
7755 switch (E->getOpcode()) {
7756 default:
7757 return Error(E);
7758
7759 case BO_Comma:
7760 VisitIgnoredValue(E: E->getLHS());
7761 return StmtVisitorTy::Visit(E->getRHS());
7762
7763 case BO_PtrMemD:
7764 case BO_PtrMemI: {
7765 LValue Obj;
7766 if (!HandleMemberPointerAccess(Info, BO: E, LV&: Obj))
7767 return false;
7768 APValue Result;
7769 if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
7770 return false;
7771 return DerivedSuccess(V: Result, E);
7772 }
7773 }
7774 }
7775
7776 bool VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *E) {
7777 return StmtVisitorTy::Visit(E->getSemanticForm());
7778 }
7779
7780 bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
7781 // Evaluate and cache the common expression. We treat it as a temporary,
7782 // even though it's not quite the same thing.
7783 LValue CommonLV;
7784 if (!Evaluate(Result&: Info.CurrentCall->createTemporary(
7785 E->getOpaqueValue(),
7786 getStorageType(Info.Ctx, E->getOpaqueValue()),
7787 ScopeKind::FullExpression, CommonLV),
7788 Info, E: E->getCommon()))
7789 return false;
7790
7791 return HandleConditionalOperator(E);
7792 }
7793
7794 bool VisitConditionalOperator(const ConditionalOperator *E) {
7795 bool IsBcpCall = false;
7796 // If the condition (ignoring parens) is a __builtin_constant_p call,
7797 // the result is a constant expression if it can be folded without
7798 // side-effects. This is an important GNU extension. See GCC PR38377
7799 // for discussion.
7800 if (const CallExpr *CallCE =
7801 dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
7802 if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
7803 IsBcpCall = true;
7804
7805 // Always assume __builtin_constant_p(...) ? ... : ... is a potential
7806 // constant expression; we can't check whether it's potentially foldable.
7807 // FIXME: We should instead treat __builtin_constant_p as non-constant if
7808 // it would return 'false' in this mode.
7809 if (Info.checkingPotentialConstantExpression() && IsBcpCall)
7810 return false;
7811
7812 FoldConstant Fold(Info, IsBcpCall);
7813 if (!HandleConditionalOperator(E)) {
7814 Fold.keepDiagnostics();
7815 return false;
7816 }
7817
7818 return true;
7819 }
7820
7821 bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
7822 if (APValue *Value = Info.CurrentCall->getCurrentTemporary(Key: E);
7823 Value && !Value->isAbsent())
7824 return DerivedSuccess(V: *Value, E);
7825
7826 const Expr *Source = E->getSourceExpr();
7827 if (!Source)
7828 return Error(E);
7829 if (Source == E) {
7830 assert(0 && "OpaqueValueExpr recursively refers to itself");
7831 return Error(E);
7832 }
7833 return StmtVisitorTy::Visit(Source);
7834 }
7835
7836 bool VisitPseudoObjectExpr(const PseudoObjectExpr *E) {
7837 for (const Expr *SemE : E->semantics()) {
7838 if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) {
7839 // FIXME: We can't handle the case where an OpaqueValueExpr is also the
7840 // result expression: there could be two different LValues that would
7841 // refer to the same object in that case, and we can't model that.
7842 if (SemE == E->getResultExpr())
7843 return Error(E);
7844
7845 // Unique OVEs get evaluated if and when we encounter them when
7846 // emitting the rest of the semantic form, rather than eagerly.
7847 if (OVE->isUnique())
7848 continue;
7849
7850 LValue LV;
7851 if (!Evaluate(Info.CurrentCall->createTemporary(
7852 OVE, getStorageType(Info.Ctx, OVE),
7853 ScopeKind::FullExpression, LV),
7854 Info, OVE->getSourceExpr()))
7855 return false;
7856 } else if (SemE == E->getResultExpr()) {
7857 if (!StmtVisitorTy::Visit(SemE))
7858 return false;
7859 } else {
7860 if (!EvaluateIgnoredValue(Info, E: SemE))
7861 return false;
7862 }
7863 }
7864 return true;
7865 }
7866
7867 bool VisitCallExpr(const CallExpr *E) {
7868 APValue Result;
7869 if (!handleCallExpr(E, Result, ResultSlot: nullptr))
7870 return false;
7871 return DerivedSuccess(V: Result, E);
7872 }
7873
7874 bool handleCallExpr(const CallExpr *E, APValue &Result,
7875 const LValue *ResultSlot) {
7876 CallScopeRAII CallScope(Info);
7877
7878 const Expr *Callee = E->getCallee()->IgnoreParens();
7879 QualType CalleeType = Callee->getType();
7880
7881 const FunctionDecl *FD = nullptr;
7882 LValue *This = nullptr, ThisVal;
7883 auto Args = llvm::ArrayRef(E->getArgs(), E->getNumArgs());
7884 bool HasQualifier = false;
7885
7886 CallRef Call;
7887
7888 // Extract function decl and 'this' pointer from the callee.
7889 if (CalleeType->isSpecificBuiltinType(K: BuiltinType::BoundMember)) {
7890 const CXXMethodDecl *Member = nullptr;
7891 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
7892 // Explicit bound member calls, such as x.f() or p->g();
7893 if (!EvaluateObjectArgument(Info, Object: ME->getBase(), This&: ThisVal))
7894 return false;
7895 Member = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
7896 if (!Member)
7897 return Error(Callee);
7898 This = &ThisVal;
7899 HasQualifier = ME->hasQualifier();
7900 } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
7901 // Indirect bound member calls ('.*' or '->*').
7902 const ValueDecl *D =
7903 HandleMemberPointerAccess(Info, BO: BE, LV&: ThisVal, IncludeMember: false);
7904 if (!D)
7905 return false;
7906 Member = dyn_cast<CXXMethodDecl>(D);
7907 if (!Member)
7908 return Error(Callee);
7909 This = &ThisVal;
7910 } else if (const auto *PDE = dyn_cast<CXXPseudoDestructorExpr>(Callee)) {
7911 if (!Info.getLangOpts().CPlusPlus20)
7912 Info.CCEDiag(PDE, diag::note_constexpr_pseudo_destructor);
7913 return EvaluateObjectArgument(Info, PDE->getBase(), ThisVal) &&
7914 HandleDestruction(Info, PDE, ThisVal, PDE->getDestroyedType());
7915 } else
7916 return Error(Callee);
7917 FD = Member;
7918 } else if (CalleeType->isFunctionPointerType()) {
7919 LValue CalleeLV;
7920 if (!EvaluatePointer(E: Callee, Result&: CalleeLV, Info))
7921 return false;
7922
7923 if (!CalleeLV.getLValueOffset().isZero())
7924 return Error(Callee);
7925 if (CalleeLV.isNullPointer()) {
7926 Info.FFDiag(Callee, diag::note_constexpr_null_callee)
7927 << const_cast<Expr *>(Callee);
7928 return false;
7929 }
7930 FD = dyn_cast_or_null<FunctionDecl>(
7931 CalleeLV.getLValueBase().dyn_cast<const ValueDecl *>());
7932 if (!FD)
7933 return Error(Callee);
7934 // Don't call function pointers which have been cast to some other type.
7935 // Per DR (no number yet), the caller and callee can differ in noexcept.
7936 if (!Info.Ctx.hasSameFunctionTypeIgnoringExceptionSpec(
7937 T: CalleeType->getPointeeType(), U: FD->getType())) {
7938 return Error(E);
7939 }
7940
7941 // For an (overloaded) assignment expression, evaluate the RHS before the
7942 // LHS.
7943 auto *OCE = dyn_cast<CXXOperatorCallExpr>(E);
7944 if (OCE && OCE->isAssignmentOp()) {
7945 assert(Args.size() == 2 && "wrong number of arguments in assignment");
7946 Call = Info.CurrentCall->createCall(Callee: FD);
7947 bool HasThis = false;
7948 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
7949 HasThis = MD->isImplicitObjectMemberFunction();
7950 if (!EvaluateArgs(HasThis ? Args.slice(1) : Args, Call, Info, FD,
7951 /*RightToLeft=*/true))
7952 return false;
7953 }
7954
7955 // Overloaded operator calls to member functions are represented as normal
7956 // calls with '*this' as the first argument.
7957 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
7958 if (MD &&
7959 (MD->isImplicitObjectMemberFunction() || (OCE && MD->isStatic()))) {
7960 // FIXME: When selecting an implicit conversion for an overloaded
7961 // operator delete, we sometimes try to evaluate calls to conversion
7962 // operators without a 'this' parameter!
7963 if (Args.empty())
7964 return Error(E);
7965
7966 if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
7967 return false;
7968
7969 // If we are calling a static operator, the 'this' argument needs to be
7970 // ignored after being evaluated.
7971 if (MD->isInstance())
7972 This = &ThisVal;
7973
7974 // If this is syntactically a simple assignment using a trivial
7975 // assignment operator, start the lifetimes of union members as needed,
7976 // per C++20 [class.union]5.
7977 if (Info.getLangOpts().CPlusPlus20 && OCE &&
7978 OCE->getOperator() == OO_Equal && MD->isTrivial() &&
7979 !MaybeHandleUnionActiveMemberChange(Info, Args[0], ThisVal))
7980 return false;
7981
7982 Args = Args.slice(1);
7983 } else if (MD && MD->isLambdaStaticInvoker()) {
7984 // Map the static invoker for the lambda back to the call operator.
7985 // Conveniently, we don't have to slice out the 'this' argument (as is
7986 // being done for the non-static case), since a static member function
7987 // doesn't have an implicit argument passed in.
7988 const CXXRecordDecl *ClosureClass = MD->getParent();
7989 assert(
7990 ClosureClass->captures_begin() == ClosureClass->captures_end() &&
7991 "Number of captures must be zero for conversion to function-ptr");
7992
7993 const CXXMethodDecl *LambdaCallOp =
7994 ClosureClass->getLambdaCallOperator();
7995
7996 // Set 'FD', the function that will be called below, to the call
7997 // operator. If the closure object represents a generic lambda, find
7998 // the corresponding specialization of the call operator.
7999
8000 if (ClosureClass->isGenericLambda()) {
8001 assert(MD->isFunctionTemplateSpecialization() &&
8002 "A generic lambda's static-invoker function must be a "
8003 "template specialization");
8004 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
8005 FunctionTemplateDecl *CallOpTemplate =
8006 LambdaCallOp->getDescribedFunctionTemplate();
8007 void *InsertPos = nullptr;
8008 FunctionDecl *CorrespondingCallOpSpecialization =
8009 CallOpTemplate->findSpecialization(Args: TAL->asArray(), InsertPos);
8010 assert(CorrespondingCallOpSpecialization &&
8011 "We must always have a function call operator specialization "
8012 "that corresponds to our static invoker specialization");
8013 assert(isa<CXXMethodDecl>(CorrespondingCallOpSpecialization));
8014 FD = CorrespondingCallOpSpecialization;
8015 } else
8016 FD = LambdaCallOp;
8017 } else if (FD->isReplaceableGlobalAllocationFunction()) {
8018 if (FD->getDeclName().getCXXOverloadedOperator() == OO_New ||
8019 FD->getDeclName().getCXXOverloadedOperator() == OO_Array_New) {
8020 LValue Ptr;
8021 if (!HandleOperatorNewCall(Info, E, Result&: Ptr))
8022 return false;
8023 Ptr.moveInto(V&: Result);
8024 return CallScope.destroy();
8025 } else {
8026 return HandleOperatorDeleteCall(Info, E) && CallScope.destroy();
8027 }
8028 }
8029 } else
8030 return Error(E);
8031
8032 // Evaluate the arguments now if we've not already done so.
8033 if (!Call) {
8034 Call = Info.CurrentCall->createCall(Callee: FD);
8035 if (!EvaluateArgs(Args, Call, Info, FD))
8036 return false;
8037 }
8038
8039 SmallVector<QualType, 4> CovariantAdjustmentPath;
8040 if (This) {
8041 auto *NamedMember = dyn_cast<CXXMethodDecl>(FD);
8042 if (NamedMember && NamedMember->isVirtual() && !HasQualifier) {
8043 // Perform virtual dispatch, if necessary.
8044 FD = HandleVirtualDispatch(Info, E, *This, NamedMember,
8045 CovariantAdjustmentPath);
8046 if (!FD)
8047 return false;
8048 } else if (NamedMember && NamedMember->isImplicitObjectMemberFunction()) {
8049 // Check that the 'this' pointer points to an object of the right type.
8050 // FIXME: If this is an assignment operator call, we may need to change
8051 // the active union member before we check this.
8052 if (!checkNonVirtualMemberCallThisPointer(Info, E, *This, NamedMember))
8053 return false;
8054 }
8055 }
8056
8057 // Destructor calls are different enough that they have their own codepath.
8058 if (auto *DD = dyn_cast<CXXDestructorDecl>(FD)) {
8059 assert(This && "no 'this' pointer for destructor call");
8060 return HandleDestruction(Info, E, *This,
8061 Info.Ctx.getRecordType(Decl: DD->getParent())) &&
8062 CallScope.destroy();
8063 }
8064
8065 const FunctionDecl *Definition = nullptr;
8066 Stmt *Body = FD->getBody(Definition);
8067
8068 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body) ||
8069 !HandleFunctionCall(E->getExprLoc(), Definition, This, E, Args, Call,
8070 Body, Info, Result, ResultSlot))
8071 return false;
8072
8073 if (!CovariantAdjustmentPath.empty() &&
8074 !HandleCovariantReturnAdjustment(Info, E, Result,
8075 CovariantAdjustmentPath))
8076 return false;
8077
8078 return CallScope.destroy();
8079 }
8080
8081 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
8082 return StmtVisitorTy::Visit(E->getInitializer());
8083 }
8084 bool VisitInitListExpr(const InitListExpr *E) {
8085 if (E->getNumInits() == 0)
8086 return DerivedZeroInitialization(E);
8087 if (E->getNumInits() == 1)
8088 return StmtVisitorTy::Visit(E->getInit(Init: 0));
8089 return Error(E);
8090 }
8091 bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
8092 return DerivedZeroInitialization(E);
8093 }
8094 bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
8095 return DerivedZeroInitialization(E);
8096 }
8097 bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
8098 return DerivedZeroInitialization(E);
8099 }
8100
8101 /// A member expression where the object is a prvalue is itself a prvalue.
8102 bool VisitMemberExpr(const MemberExpr *E) {
8103 assert(!Info.Ctx.getLangOpts().CPlusPlus11 &&
8104 "missing temporary materialization conversion");
8105 assert(!E->isArrow() && "missing call to bound member function?");
8106
8107 APValue Val;
8108 if (!Evaluate(Result&: Val, Info, E: E->getBase()))
8109 return false;
8110
8111 QualType BaseTy = E->getBase()->getType();
8112
8113 const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
8114 if (!FD) return Error(E);
8115 assert(!FD->getType()->isReferenceType() && "prvalue reference?");
8116 assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
8117 FD->getParent()->getCanonicalDecl() && "record / field mismatch");
8118
8119 // Note: there is no lvalue base here. But this case should only ever
8120 // happen in C or in C++98, where we cannot be evaluating a constexpr
8121 // constructor, which is the only case the base matters.
8122 CompleteObject Obj(APValue::LValueBase(), &Val, BaseTy);
8123 SubobjectDesignator Designator(BaseTy);
8124 Designator.addDeclUnchecked(FD);
8125
8126 APValue Result;
8127 return extractSubobject(Info, E, Obj, Designator, Result) &&
8128 DerivedSuccess(V: Result, E);
8129 }
8130
8131 bool VisitExtVectorElementExpr(const ExtVectorElementExpr *E) {
8132 APValue Val;
8133 if (!Evaluate(Result&: Val, Info, E: E->getBase()))
8134 return false;
8135
8136 if (Val.isVector()) {
8137 SmallVector<uint32_t, 4> Indices;
8138 E->getEncodedElementAccess(Elts&: Indices);
8139 if (Indices.size() == 1) {
8140 // Return scalar.
8141 return DerivedSuccess(V: Val.getVectorElt(I: Indices[0]), E);
8142 } else {
8143 // Construct new APValue vector.
8144 SmallVector<APValue, 4> Elts;
8145 for (unsigned I = 0; I < Indices.size(); ++I) {
8146 Elts.push_back(Elt: Val.getVectorElt(I: Indices[I]));
8147 }
8148 APValue VecResult(Elts.data(), Indices.size());
8149 return DerivedSuccess(V: VecResult, E);
8150 }
8151 }
8152
8153 return false;
8154 }
8155
8156 bool VisitCastExpr(const CastExpr *E) {
8157 switch (E->getCastKind()) {
8158 default:
8159 break;
8160
8161 case CK_AtomicToNonAtomic: {
8162 APValue AtomicVal;
8163 // This does not need to be done in place even for class/array types:
8164 // atomic-to-non-atomic conversion implies copying the object
8165 // representation.
8166 if (!Evaluate(Result&: AtomicVal, Info, E: E->getSubExpr()))
8167 return false;
8168 return DerivedSuccess(V: AtomicVal, E);
8169 }
8170
8171 case CK_NoOp:
8172 case CK_UserDefinedConversion:
8173 return StmtVisitorTy::Visit(E->getSubExpr());
8174
8175 case CK_LValueToRValue: {
8176 LValue LVal;
8177 if (!EvaluateLValue(E: E->getSubExpr(), Result&: LVal, Info))
8178 return false;
8179 APValue RVal;
8180 // Note, we use the subexpression's type in order to retain cv-qualifiers.
8181 if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
8182 LVal, RVal))
8183 return false;
8184 return DerivedSuccess(V: RVal, E);
8185 }
8186 case CK_LValueToRValueBitCast: {
8187 APValue DestValue, SourceValue;
8188 if (!Evaluate(Result&: SourceValue, Info, E: E->getSubExpr()))
8189 return false;
8190 if (!handleLValueToRValueBitCast(Info, DestValue, SourceValue, BCE: E))
8191 return false;
8192 return DerivedSuccess(V: DestValue, E);
8193 }
8194
8195 case CK_AddressSpaceConversion: {
8196 APValue Value;
8197 if (!Evaluate(Result&: Value, Info, E: E->getSubExpr()))
8198 return false;
8199 return DerivedSuccess(V: Value, E);
8200 }
8201 }
8202
8203 return Error(E);
8204 }
8205
8206 bool VisitUnaryPostInc(const UnaryOperator *UO) {
8207 return VisitUnaryPostIncDec(UO);
8208 }
8209 bool VisitUnaryPostDec(const UnaryOperator *UO) {
8210 return VisitUnaryPostIncDec(UO);
8211 }
8212 bool VisitUnaryPostIncDec(const UnaryOperator *UO) {
8213 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8214 return Error(UO);
8215
8216 LValue LVal;
8217 if (!EvaluateLValue(E: UO->getSubExpr(), Result&: LVal, Info))
8218 return false;
8219 APValue RVal;
8220 if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
8221 UO->isIncrementOp(), &RVal))
8222 return false;
8223 return DerivedSuccess(V: RVal, E: UO);
8224 }
8225
8226 bool VisitStmtExpr(const StmtExpr *E) {
8227 // We will have checked the full-expressions inside the statement expression
8228 // when they were completed, and don't need to check them again now.
8229 llvm::SaveAndRestore NotCheckingForUB(Info.CheckingForUndefinedBehavior,
8230 false);
8231
8232 const CompoundStmt *CS = E->getSubStmt();
8233 if (CS->body_empty())
8234 return true;
8235
8236 BlockScopeRAII Scope(Info);
8237 for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
8238 BE = CS->body_end();
8239 /**/; ++BI) {
8240 if (BI + 1 == BE) {
8241 const Expr *FinalExpr = dyn_cast<Expr>(*BI);
8242 if (!FinalExpr) {
8243 Info.FFDiag((*BI)->getBeginLoc(),
8244 diag::note_constexpr_stmt_expr_unsupported);
8245 return false;
8246 }
8247 return this->Visit(FinalExpr) && Scope.destroy();
8248 }
8249
8250 APValue ReturnValue;
8251 StmtResult Result = { .Value: ReturnValue, .Slot: nullptr };
8252 EvalStmtResult ESR = EvaluateStmt(Result, Info, S: *BI);
8253 if (ESR != ESR_Succeeded) {
8254 // FIXME: If the statement-expression terminated due to 'return',
8255 // 'break', or 'continue', it would be nice to propagate that to
8256 // the outer statement evaluation rather than bailing out.
8257 if (ESR != ESR_Failed)
8258 Info.FFDiag((*BI)->getBeginLoc(),
8259 diag::note_constexpr_stmt_expr_unsupported);
8260 return false;
8261 }
8262 }
8263
8264 llvm_unreachable("Return from function from the loop above.");
8265 }
8266
8267 bool VisitPackIndexingExpr(const PackIndexingExpr *E) {
8268 return StmtVisitorTy::Visit(E->getSelectedExpr());
8269 }
8270
8271 /// Visit a value which is evaluated, but whose value is ignored.
8272 void VisitIgnoredValue(const Expr *E) {
8273 EvaluateIgnoredValue(Info, E);
8274 }
8275
8276 /// Potentially visit a MemberExpr's base expression.
8277 void VisitIgnoredBaseExpression(const Expr *E) {
8278 // While MSVC doesn't evaluate the base expression, it does diagnose the
8279 // presence of side-effecting behavior.
8280 if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Ctx: Info.Ctx))
8281 return;
8282 VisitIgnoredValue(E);
8283 }
8284};
8285
8286} // namespace
8287
8288//===----------------------------------------------------------------------===//
8289// Common base class for lvalue and temporary evaluation.
8290//===----------------------------------------------------------------------===//
8291namespace {
8292template<class Derived>
8293class LValueExprEvaluatorBase
8294 : public ExprEvaluatorBase<Derived> {
8295protected:
8296 LValue &Result;
8297 bool InvalidBaseOK;
8298 typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
8299 typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy;
8300
8301 bool Success(APValue::LValueBase B) {
8302 Result.set(B);
8303 return true;
8304 }
8305
8306 bool evaluatePointer(const Expr *E, LValue &Result) {
8307 return EvaluatePointer(E, Result, this->Info, InvalidBaseOK);
8308 }
8309
8310public:
8311 LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result, bool InvalidBaseOK)
8312 : ExprEvaluatorBaseTy(Info), Result(Result),
8313 InvalidBaseOK(InvalidBaseOK) {}
8314
8315 bool Success(const APValue &V, const Expr *E) {
8316 Result.setFrom(Ctx&: this->Info.Ctx, V);
8317 return true;
8318 }
8319
8320 bool VisitMemberExpr(const MemberExpr *E) {
8321 // Handle non-static data members.
8322 QualType BaseTy;
8323 bool EvalOK;
8324 if (E->isArrow()) {
8325 EvalOK = evaluatePointer(E: E->getBase(), Result);
8326 BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
8327 } else if (E->getBase()->isPRValue()) {
8328 assert(E->getBase()->getType()->isRecordType());
8329 EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info);
8330 BaseTy = E->getBase()->getType();
8331 } else {
8332 EvalOK = this->Visit(E->getBase());
8333 BaseTy = E->getBase()->getType();
8334 }
8335 if (!EvalOK) {
8336 if (!InvalidBaseOK)
8337 return false;
8338 Result.setInvalid(E);
8339 return true;
8340 }
8341
8342 const ValueDecl *MD = E->getMemberDecl();
8343 if (const FieldDecl *FD = dyn_cast<FieldDecl>(Val: E->getMemberDecl())) {
8344 assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
8345 FD->getParent()->getCanonicalDecl() && "record / field mismatch");
8346 (void)BaseTy;
8347 if (!HandleLValueMember(this->Info, E, Result, FD))
8348 return false;
8349 } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(Val: MD)) {
8350 if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
8351 return false;
8352 } else
8353 return this->Error(E);
8354
8355 if (MD->getType()->isReferenceType()) {
8356 APValue RefValue;
8357 if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
8358 RefValue))
8359 return false;
8360 return Success(RefValue, E);
8361 }
8362 return true;
8363 }
8364
8365 bool VisitBinaryOperator(const BinaryOperator *E) {
8366 switch (E->getOpcode()) {
8367 default:
8368 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
8369
8370 case BO_PtrMemD:
8371 case BO_PtrMemI:
8372 return HandleMemberPointerAccess(this->Info, E, Result);
8373 }
8374 }
8375
8376 bool VisitCastExpr(const CastExpr *E) {
8377 switch (E->getCastKind()) {
8378 default:
8379 return ExprEvaluatorBaseTy::VisitCastExpr(E);
8380
8381 case CK_DerivedToBase:
8382 case CK_UncheckedDerivedToBase:
8383 if (!this->Visit(E->getSubExpr()))
8384 return false;
8385
8386 // Now figure out the necessary offset to add to the base LV to get from
8387 // the derived class to the base class.
8388 return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
8389 Result);
8390 }
8391 }
8392};
8393}
8394
8395//===----------------------------------------------------------------------===//
8396// LValue Evaluation
8397//
8398// This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
8399// function designators (in C), decl references to void objects (in C), and
8400// temporaries (if building with -Wno-address-of-temporary).
8401//
8402// LValue evaluation produces values comprising a base expression of one of the
8403// following types:
8404// - Declarations
8405// * VarDecl
8406// * FunctionDecl
8407// - Literals
8408// * CompoundLiteralExpr in C (and in global scope in C++)
8409// * StringLiteral
8410// * PredefinedExpr
8411// * ObjCStringLiteralExpr
8412// * ObjCEncodeExpr
8413// * AddrLabelExpr
8414// * BlockExpr
8415// * CallExpr for a MakeStringConstant builtin
8416// - typeid(T) expressions, as TypeInfoLValues
8417// - Locals and temporaries
8418// * MaterializeTemporaryExpr
8419// * Any Expr, with a CallIndex indicating the function in which the temporary
8420// was evaluated, for cases where the MaterializeTemporaryExpr is missing
8421// from the AST (FIXME).
8422// * A MaterializeTemporaryExpr that has static storage duration, with no
8423// CallIndex, for a lifetime-extended temporary.
8424// * The ConstantExpr that is currently being evaluated during evaluation of an
8425// immediate invocation.
8426// plus an offset in bytes.
8427//===----------------------------------------------------------------------===//
8428namespace {
8429class LValueExprEvaluator
8430 : public LValueExprEvaluatorBase<LValueExprEvaluator> {
8431public:
8432 LValueExprEvaluator(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) :
8433 LValueExprEvaluatorBaseTy(Info, Result, InvalidBaseOK) {}
8434
8435 bool VisitVarDecl(const Expr *E, const VarDecl *VD);
8436 bool VisitUnaryPreIncDec(const UnaryOperator *UO);
8437
8438 bool VisitCallExpr(const CallExpr *E);
8439 bool VisitDeclRefExpr(const DeclRefExpr *E);
8440 bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
8441 bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
8442 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
8443 bool VisitMemberExpr(const MemberExpr *E);
8444 bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
8445 bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
8446 bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
8447 bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
8448 bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
8449 bool VisitUnaryDeref(const UnaryOperator *E);
8450 bool VisitUnaryReal(const UnaryOperator *E);
8451 bool VisitUnaryImag(const UnaryOperator *E);
8452 bool VisitUnaryPreInc(const UnaryOperator *UO) {
8453 return VisitUnaryPreIncDec(UO);
8454 }
8455 bool VisitUnaryPreDec(const UnaryOperator *UO) {
8456 return VisitUnaryPreIncDec(UO);
8457 }
8458 bool VisitBinAssign(const BinaryOperator *BO);
8459 bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
8460
8461 bool VisitCastExpr(const CastExpr *E) {
8462 switch (E->getCastKind()) {
8463 default:
8464 return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
8465
8466 case CK_LValueBitCast:
8467 this->CCEDiag(E, diag::note_constexpr_invalid_cast)
8468 << 2 << Info.Ctx.getLangOpts().CPlusPlus;
8469 if (!Visit(E->getSubExpr()))
8470 return false;
8471 Result.Designator.setInvalid();
8472 return true;
8473
8474 case CK_BaseToDerived:
8475 if (!Visit(E->getSubExpr()))
8476 return false;
8477 return HandleBaseToDerivedCast(Info, E, Result);
8478
8479 case CK_Dynamic:
8480 if (!Visit(E->getSubExpr()))
8481 return false;
8482 return HandleDynamicCast(Info, E: cast<ExplicitCastExpr>(Val: E), Ptr&: Result);
8483 }
8484 }
8485};
8486} // end anonymous namespace
8487
8488/// Evaluate an expression as an lvalue. This can be legitimately called on
8489/// expressions which are not glvalues, in three cases:
8490/// * function designators in C, and
8491/// * "extern void" objects
8492/// * @selector() expressions in Objective-C
8493static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
8494 bool InvalidBaseOK) {
8495 assert(!E->isValueDependent());
8496 assert(E->isGLValue() || E->getType()->isFunctionType() ||
8497 E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E->IgnoreParens()));
8498 return LValueExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
8499}
8500
8501bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
8502 const NamedDecl *D = E->getDecl();
8503 if (isa<FunctionDecl, MSGuidDecl, TemplateParamObjectDecl,
8504 UnnamedGlobalConstantDecl>(Val: D))
8505 return Success(B: cast<ValueDecl>(Val: D));
8506 if (const VarDecl *VD = dyn_cast<VarDecl>(Val: D))
8507 return VisitVarDecl(E, VD);
8508 if (const BindingDecl *BD = dyn_cast<BindingDecl>(Val: D))
8509 return Visit(BD->getBinding());
8510 return Error(E);
8511}
8512
8513
8514bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
8515
8516 // If we are within a lambda's call operator, check whether the 'VD' referred
8517 // to within 'E' actually represents a lambda-capture that maps to a
8518 // data-member/field within the closure object, and if so, evaluate to the
8519 // field or what the field refers to.
8520 if (Info.CurrentCall && isLambdaCallOperator(Info.CurrentCall->Callee) &&
8521 isa<DeclRefExpr>(Val: E) &&
8522 cast<DeclRefExpr>(Val: E)->refersToEnclosingVariableOrCapture()) {
8523 // We don't always have a complete capture-map when checking or inferring if
8524 // the function call operator meets the requirements of a constexpr function
8525 // - but we don't need to evaluate the captures to determine constexprness
8526 // (dcl.constexpr C++17).
8527 if (Info.checkingPotentialConstantExpression())
8528 return false;
8529
8530 if (auto *FD = Info.CurrentCall->LambdaCaptureFields.lookup(VD)) {
8531 const auto *MD = cast<CXXMethodDecl>(Val: Info.CurrentCall->Callee);
8532
8533 // Static lambda function call operators can't have captures. We already
8534 // diagnosed this, so bail out here.
8535 if (MD->isStatic()) {
8536 assert(Info.CurrentCall->This == nullptr &&
8537 "This should not be set for a static call operator");
8538 return false;
8539 }
8540
8541 // Start with 'Result' referring to the complete closure object...
8542 if (MD->isExplicitObjectMemberFunction()) {
8543 APValue *RefValue =
8544 Info.getParamSlot(Call: Info.CurrentCall->Arguments, PVD: MD->getParamDecl(0));
8545 Result.setFrom(Ctx&: Info.Ctx, V: *RefValue);
8546 } else
8547 Result = *Info.CurrentCall->This;
8548
8549 // ... then update it to refer to the field of the closure object
8550 // that represents the capture.
8551 if (!HandleLValueMember(Info, E, Result, FD))
8552 return false;
8553 // And if the field is of reference type, update 'Result' to refer to what
8554 // the field refers to.
8555 if (FD->getType()->isReferenceType()) {
8556 APValue RVal;
8557 if (!handleLValueToRValueConversion(Info, E, FD->getType(), Result,
8558 RVal))
8559 return false;
8560 Result.setFrom(Ctx&: Info.Ctx, V: RVal);
8561 }
8562 return true;
8563 }
8564 }
8565
8566 CallStackFrame *Frame = nullptr;
8567 unsigned Version = 0;
8568 if (VD->hasLocalStorage()) {
8569 // Only if a local variable was declared in the function currently being
8570 // evaluated, do we expect to be able to find its value in the current
8571 // frame. (Otherwise it was likely declared in an enclosing context and
8572 // could either have a valid evaluatable value (for e.g. a constexpr
8573 // variable) or be ill-formed (and trigger an appropriate evaluation
8574 // diagnostic)).
8575 CallStackFrame *CurrFrame = Info.CurrentCall;
8576 if (CurrFrame->Callee && CurrFrame->Callee->Equals(DC: VD->getDeclContext())) {
8577 // Function parameters are stored in some caller's frame. (Usually the
8578 // immediate caller, but for an inherited constructor they may be more
8579 // distant.)
8580 if (auto *PVD = dyn_cast<ParmVarDecl>(Val: VD)) {
8581 if (CurrFrame->Arguments) {
8582 VD = CurrFrame->Arguments.getOrigParam(PVD);
8583 Frame =
8584 Info.getCallFrameAndDepth(CallIndex: CurrFrame->Arguments.CallIndex).first;
8585 Version = CurrFrame->Arguments.Version;
8586 }
8587 } else {
8588 Frame = CurrFrame;
8589 Version = CurrFrame->getCurrentTemporaryVersion(Key: VD);
8590 }
8591 }
8592 }
8593
8594 if (!VD->getType()->isReferenceType()) {
8595 if (Frame) {
8596 Result.set({VD, Frame->Index, Version});
8597 return true;
8598 }
8599 return Success(VD);
8600 }
8601
8602 if (!Info.getLangOpts().CPlusPlus11) {
8603 Info.CCEDiag(E, diag::note_constexpr_ltor_non_integral, 1)
8604 << VD << VD->getType();
8605 Info.Note(VD->getLocation(), diag::note_declared_at);
8606 }
8607
8608 APValue *V;
8609 if (!evaluateVarDeclInit(Info, E, VD, Frame, Version, Result&: V))
8610 return false;
8611 if (!V->hasValue()) {
8612 // FIXME: Is it possible for V to be indeterminate here? If so, we should
8613 // adjust the diagnostic to say that.
8614 if (!Info.checkingPotentialConstantExpression())
8615 Info.FFDiag(E, diag::note_constexpr_use_uninit_reference);
8616 return false;
8617 }
8618 return Success(V: *V, E);
8619}
8620
8621bool LValueExprEvaluator::VisitCallExpr(const CallExpr *E) {
8622 if (!IsConstantEvaluatedBuiltinCall(E))
8623 return ExprEvaluatorBaseTy::VisitCallExpr(E);
8624
8625 switch (E->getBuiltinCallee()) {
8626 default:
8627 return false;
8628 case Builtin::BIas_const:
8629 case Builtin::BIforward:
8630 case Builtin::BIforward_like:
8631 case Builtin::BImove:
8632 case Builtin::BImove_if_noexcept:
8633 if (cast<FunctionDecl>(Val: E->getCalleeDecl())->isConstexpr())
8634 return Visit(E->getArg(Arg: 0));
8635 break;
8636 }
8637
8638 return ExprEvaluatorBaseTy::VisitCallExpr(E);
8639}
8640
8641bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
8642 const MaterializeTemporaryExpr *E) {
8643 // Walk through the expression to find the materialized temporary itself.
8644 SmallVector<const Expr *, 2> CommaLHSs;
8645 SmallVector<SubobjectAdjustment, 2> Adjustments;
8646 const Expr *Inner =
8647 E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHS&: CommaLHSs, Adjustments);
8648
8649 // If we passed any comma operators, evaluate their LHSs.
8650 for (const Expr *E : CommaLHSs)
8651 if (!EvaluateIgnoredValue(Info, E))
8652 return false;
8653
8654 // A materialized temporary with static storage duration can appear within the
8655 // result of a constant expression evaluation, so we need to preserve its
8656 // value for use outside this evaluation.
8657 APValue *Value;
8658 if (E->getStorageDuration() == SD_Static) {
8659 if (Info.EvalMode == EvalInfo::EM_ConstantFold)
8660 return false;
8661 // FIXME: What about SD_Thread?
8662 Value = E->getOrCreateValue(MayCreate: true);
8663 *Value = APValue();
8664 Result.set(E);
8665 } else {
8666 Value = &Info.CurrentCall->createTemporary(
8667 Key: E, T: Inner->getType(),
8668 Scope: E->getStorageDuration() == SD_FullExpression ? ScopeKind::FullExpression
8669 : ScopeKind::Block,
8670 LV&: Result);
8671 }
8672
8673 QualType Type = Inner->getType();
8674
8675 // Materialize the temporary itself.
8676 if (!EvaluateInPlace(Result&: *Value, Info, This: Result, E: Inner)) {
8677 *Value = APValue();
8678 return false;
8679 }
8680
8681 // Adjust our lvalue to refer to the desired subobject.
8682 for (unsigned I = Adjustments.size(); I != 0; /**/) {
8683 --I;
8684 switch (Adjustments[I].Kind) {
8685 case SubobjectAdjustment::DerivedToBaseAdjustment:
8686 if (!HandleLValueBasePath(Info, E: Adjustments[I].DerivedToBase.BasePath,
8687 Type, Result))
8688 return false;
8689 Type = Adjustments[I].DerivedToBase.BasePath->getType();
8690 break;
8691
8692 case SubobjectAdjustment::FieldAdjustment:
8693 if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
8694 return false;
8695 Type = Adjustments[I].Field->getType();
8696 break;
8697
8698 case SubobjectAdjustment::MemberPointerAdjustment:
8699 if (!HandleMemberPointerAccess(Info&: this->Info, LVType: Type, LV&: Result,
8700 RHS: Adjustments[I].Ptr.RHS))
8701 return false;
8702 Type = Adjustments[I].Ptr.MPT->getPointeeType();
8703 break;
8704 }
8705 }
8706
8707 return true;
8708}
8709
8710bool
8711LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
8712 assert((!Info.getLangOpts().CPlusPlus || E->isFileScope()) &&
8713 "lvalue compound literal in c++?");
8714 // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
8715 // only see this when folding in C, so there's no standard to follow here.
8716 return Success(E);
8717}
8718
8719bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
8720 TypeInfoLValue TypeInfo;
8721
8722 if (!E->isPotentiallyEvaluated()) {
8723 if (E->isTypeOperand())
8724 TypeInfo = TypeInfoLValue(E->getTypeOperand(Context&: Info.Ctx).getTypePtr());
8725 else
8726 TypeInfo = TypeInfoLValue(E->getExprOperand()->getType().getTypePtr());
8727 } else {
8728 if (!Info.Ctx.getLangOpts().CPlusPlus20) {
8729 Info.CCEDiag(E, diag::note_constexpr_typeid_polymorphic)
8730 << E->getExprOperand()->getType()
8731 << E->getExprOperand()->getSourceRange();
8732 }
8733
8734 if (!Visit(E->getExprOperand()))
8735 return false;
8736
8737 std::optional<DynamicType> DynType =
8738 ComputeDynamicType(Info, E, Result, AK_TypeId);
8739 if (!DynType)
8740 return false;
8741
8742 TypeInfo =
8743 TypeInfoLValue(Info.Ctx.getRecordType(DynType->Type).getTypePtr());
8744 }
8745
8746 return Success(APValue::LValueBase::getTypeInfo(LV: TypeInfo, TypeInfo: E->getType()));
8747}
8748
8749bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
8750 return Success(E->getGuidDecl());
8751}
8752
8753bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
8754 // Handle static data members.
8755 if (const VarDecl *VD = dyn_cast<VarDecl>(Val: E->getMemberDecl())) {
8756 VisitIgnoredBaseExpression(E: E->getBase());
8757 return VisitVarDecl(E, VD);
8758 }
8759
8760 // Handle static member functions.
8761 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: E->getMemberDecl())) {
8762 if (MD->isStatic()) {
8763 VisitIgnoredBaseExpression(E: E->getBase());
8764 return Success(MD);
8765 }
8766 }
8767
8768 // Handle non-static data members.
8769 return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
8770}
8771
8772bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
8773 // FIXME: Deal with vectors as array subscript bases.
8774 if (E->getBase()->getType()->isVectorType() ||
8775 E->getBase()->getType()->isSveVLSBuiltinType())
8776 return Error(E);
8777
8778 APSInt Index;
8779 bool Success = true;
8780
8781 // C++17's rules require us to evaluate the LHS first, regardless of which
8782 // side is the base.
8783 for (const Expr *SubExpr : {E->getLHS(), E->getRHS()}) {
8784 if (SubExpr == E->getBase() ? !evaluatePointer(E: SubExpr, Result)
8785 : !EvaluateInteger(E: SubExpr, Result&: Index, Info)) {
8786 if (!Info.noteFailure())
8787 return false;
8788 Success = false;
8789 }
8790 }
8791
8792 return Success &&
8793 HandleLValueArrayAdjustment(Info, E, Result, E->getType(), Index);
8794}
8795
8796bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
8797 return evaluatePointer(E: E->getSubExpr(), Result);
8798}
8799
8800bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
8801 if (!Visit(E->getSubExpr()))
8802 return false;
8803 // __real is a no-op on scalar lvalues.
8804 if (E->getSubExpr()->getType()->isAnyComplexType())
8805 HandleLValueComplexElement(Info, E, Result, E->getType(), false);
8806 return true;
8807}
8808
8809bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
8810 assert(E->getSubExpr()->getType()->isAnyComplexType() &&
8811 "lvalue __imag__ on scalar?");
8812 if (!Visit(E->getSubExpr()))
8813 return false;
8814 HandleLValueComplexElement(Info, E, Result, E->getType(), true);
8815 return true;
8816}
8817
8818bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
8819 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8820 return Error(UO);
8821
8822 if (!this->Visit(UO->getSubExpr()))
8823 return false;
8824
8825 return handleIncDec(
8826 this->Info, UO, Result, UO->getSubExpr()->getType(),
8827 UO->isIncrementOp(), nullptr);
8828}
8829
8830bool LValueExprEvaluator::VisitCompoundAssignOperator(
8831 const CompoundAssignOperator *CAO) {
8832 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8833 return Error(CAO);
8834
8835 bool Success = true;
8836
8837 // C++17 onwards require that we evaluate the RHS first.
8838 APValue RHS;
8839 if (!Evaluate(RHS, this->Info, CAO->getRHS())) {
8840 if (!Info.noteFailure())
8841 return false;
8842 Success = false;
8843 }
8844
8845 // The overall lvalue result is the result of evaluating the LHS.
8846 if (!this->Visit(CAO->getLHS()) || !Success)
8847 return false;
8848
8849 return handleCompoundAssignment(
8850 this->Info, CAO,
8851 Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
8852 CAO->getOpForCompoundAssignment(Opc: CAO->getOpcode()), RHS);
8853}
8854
8855bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
8856 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8857 return Error(E);
8858
8859 bool Success = true;
8860
8861 // C++17 onwards require that we evaluate the RHS first.
8862 APValue NewVal;
8863 if (!Evaluate(Result&: NewVal, Info&: this->Info, E: E->getRHS())) {
8864 if (!Info.noteFailure())
8865 return false;
8866 Success = false;
8867 }
8868
8869 if (!this->Visit(E->getLHS()) || !Success)
8870 return false;
8871
8872 if (Info.getLangOpts().CPlusPlus20 &&
8873 !MaybeHandleUnionActiveMemberChange(Info, LHSExpr: E->getLHS(), LHS: Result))
8874 return false;
8875
8876 return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
8877 NewVal);
8878}
8879
8880//===----------------------------------------------------------------------===//
8881// Pointer Evaluation
8882//===----------------------------------------------------------------------===//
8883
8884/// Attempts to compute the number of bytes available at the pointer
8885/// returned by a function with the alloc_size attribute. Returns true if we
8886/// were successful. Places an unsigned number into `Result`.
8887///
8888/// This expects the given CallExpr to be a call to a function with an
8889/// alloc_size attribute.
8890static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
8891 const CallExpr *Call,
8892 llvm::APInt &Result) {
8893 const AllocSizeAttr *AllocSize = getAllocSizeAttr(Call);
8894
8895 assert(AllocSize && AllocSize->getElemSizeParam().isValid());
8896 unsigned SizeArgNo = AllocSize->getElemSizeParam().getASTIndex();
8897 unsigned BitsInSizeT = Ctx.getTypeSize(T: Ctx.getSizeType());
8898 if (Call->getNumArgs() <= SizeArgNo)
8899 return false;
8900
8901 auto EvaluateAsSizeT = [&](const Expr *E, APSInt &Into) {
8902 Expr::EvalResult ExprResult;
8903 if (!E->EvaluateAsInt(Result&: ExprResult, Ctx, AllowSideEffects: Expr::SE_AllowSideEffects))
8904 return false;
8905 Into = ExprResult.Val.getInt();
8906 if (Into.isNegative() || !Into.isIntN(N: BitsInSizeT))
8907 return false;
8908 Into = Into.zext(width: BitsInSizeT);
8909 return true;
8910 };
8911
8912 APSInt SizeOfElem;
8913 if (!EvaluateAsSizeT(Call->getArg(Arg: SizeArgNo), SizeOfElem))
8914 return false;
8915
8916 if (!AllocSize->getNumElemsParam().isValid()) {
8917 Result = std::move(SizeOfElem);
8918 return true;
8919 }
8920
8921 APSInt NumberOfElems;
8922 unsigned NumArgNo = AllocSize->getNumElemsParam().getASTIndex();
8923 if (!EvaluateAsSizeT(Call->getArg(Arg: NumArgNo), NumberOfElems))
8924 return false;
8925
8926 bool Overflow;
8927 llvm::APInt BytesAvailable = SizeOfElem.umul_ov(RHS: NumberOfElems, Overflow);
8928 if (Overflow)
8929 return false;
8930
8931 Result = std::move(BytesAvailable);
8932 return true;
8933}
8934
8935/// Convenience function. LVal's base must be a call to an alloc_size
8936/// function.
8937static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
8938 const LValue &LVal,
8939 llvm::APInt &Result) {
8940 assert(isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
8941 "Can't get the size of a non alloc_size function");
8942 const auto *Base = LVal.getLValueBase().get<const Expr *>();
8943 const CallExpr *CE = tryUnwrapAllocSizeCall(E: Base);
8944 return getBytesReturnedByAllocSizeCall(Ctx, Call: CE, Result);
8945}
8946
8947/// Attempts to evaluate the given LValueBase as the result of a call to
8948/// a function with the alloc_size attribute. If it was possible to do so, this
8949/// function will return true, make Result's Base point to said function call,
8950/// and mark Result's Base as invalid.
8951static bool evaluateLValueAsAllocSize(EvalInfo &Info, APValue::LValueBase Base,
8952 LValue &Result) {
8953 if (Base.isNull())
8954 return false;
8955
8956 // Because we do no form of static analysis, we only support const variables.
8957 //
8958 // Additionally, we can't support parameters, nor can we support static
8959 // variables (in the latter case, use-before-assign isn't UB; in the former,
8960 // we have no clue what they'll be assigned to).
8961 const auto *VD =
8962 dyn_cast_or_null<VarDecl>(Val: Base.dyn_cast<const ValueDecl *>());
8963 if (!VD || !VD->isLocalVarDecl() || !VD->getType().isConstQualified())
8964 return false;
8965
8966 const Expr *Init = VD->getAnyInitializer();
8967 if (!Init || Init->getType().isNull())
8968 return false;
8969
8970 const Expr *E = Init->IgnoreParens();
8971 if (!tryUnwrapAllocSizeCall(E))
8972 return false;
8973
8974 // Store E instead of E unwrapped so that the type of the LValue's base is
8975 // what the user wanted.
8976 Result.setInvalid(B: E);
8977
8978 QualType Pointee = E->getType()->castAs<PointerType>()->getPointeeType();
8979 Result.addUnsizedArray(Info, E, ElemTy: Pointee);
8980 return true;
8981}
8982
8983namespace {
8984class PointerExprEvaluator
8985 : public ExprEvaluatorBase<PointerExprEvaluator> {
8986 LValue &Result;
8987 bool InvalidBaseOK;
8988
8989 bool Success(const Expr *E) {
8990 Result.set(B: E);
8991 return true;
8992 }
8993
8994 bool evaluateLValue(const Expr *E, LValue &Result) {
8995 return EvaluateLValue(E, Result, Info, InvalidBaseOK);
8996 }
8997
8998 bool evaluatePointer(const Expr *E, LValue &Result) {
8999 return EvaluatePointer(E, Result, Info, InvalidBaseOK);
9000 }
9001
9002 bool visitNonBuiltinCallExpr(const CallExpr *E);
9003public:
9004
9005 PointerExprEvaluator(EvalInfo &info, LValue &Result, bool InvalidBaseOK)
9006 : ExprEvaluatorBaseTy(info), Result(Result),
9007 InvalidBaseOK(InvalidBaseOK) {}
9008
9009 bool Success(const APValue &V, const Expr *E) {
9010 Result.setFrom(Ctx&: Info.Ctx, V);
9011 return true;
9012 }
9013 bool ZeroInitialization(const Expr *E) {
9014 Result.setNull(Ctx&: Info.Ctx, PointerTy: E->getType());
9015 return true;
9016 }
9017
9018 bool VisitBinaryOperator(const BinaryOperator *E);
9019 bool VisitCastExpr(const CastExpr* E);
9020 bool VisitUnaryAddrOf(const UnaryOperator *E);
9021 bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
9022 { return Success(E); }
9023 bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
9024 if (E->isExpressibleAsConstantInitializer())
9025 return Success(E);
9026 if (Info.noteFailure())
9027 EvaluateIgnoredValue(Info, E: E->getSubExpr());
9028 return Error(E);
9029 }
9030 bool VisitAddrLabelExpr(const AddrLabelExpr *E)
9031 { return Success(E); }
9032 bool VisitCallExpr(const CallExpr *E);
9033 bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
9034 bool VisitBlockExpr(const BlockExpr *E) {
9035 if (!E->getBlockDecl()->hasCaptures())
9036 return Success(E);
9037 return Error(E);
9038 }
9039 bool VisitCXXThisExpr(const CXXThisExpr *E) {
9040 // Can't look at 'this' when checking a potential constant expression.
9041 if (Info.checkingPotentialConstantExpression())
9042 return false;
9043 if (!Info.CurrentCall->This) {
9044 if (Info.getLangOpts().CPlusPlus11)
9045 Info.FFDiag(E, diag::note_constexpr_this) << E->isImplicit();
9046 else
9047 Info.FFDiag(E);
9048 return false;
9049 }
9050 Result = *Info.CurrentCall->This;
9051
9052 if (isLambdaCallOperator(Info.CurrentCall->Callee)) {
9053 // Ensure we actually have captured 'this'. If something was wrong with
9054 // 'this' capture, the error would have been previously reported.
9055 // Otherwise we can be inside of a default initialization of an object
9056 // declared by lambda's body, so no need to return false.
9057 if (!Info.CurrentCall->LambdaThisCaptureField)
9058 return true;
9059
9060 // If we have captured 'this', the 'this' expression refers
9061 // to the enclosing '*this' object (either by value or reference) which is
9062 // either copied into the closure object's field that represents the
9063 // '*this' or refers to '*this'.
9064 // Update 'Result' to refer to the data member/field of the closure object
9065 // that represents the '*this' capture.
9066 if (!HandleLValueMember(Info, E, Result,
9067 Info.CurrentCall->LambdaThisCaptureField))
9068 return false;
9069 // If we captured '*this' by reference, replace the field with its referent.
9070 if (Info.CurrentCall->LambdaThisCaptureField->getType()
9071 ->isPointerType()) {
9072 APValue RVal;
9073 if (!handleLValueToRValueConversion(Info, E, E->getType(), Result,
9074 RVal))
9075 return false;
9076
9077 Result.setFrom(Ctx&: Info.Ctx, V: RVal);
9078 }
9079 }
9080 return true;
9081 }
9082
9083 bool VisitCXXNewExpr(const CXXNewExpr *E);
9084
9085 bool VisitSourceLocExpr(const SourceLocExpr *E) {
9086 assert(!E->isIntType() && "SourceLocExpr isn't a pointer type?");
9087 APValue LValResult = E->EvaluateInContext(
9088 Ctx: Info.Ctx, DefaultExpr: Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
9089 Result.setFrom(Ctx&: Info.Ctx, V: LValResult);
9090 return true;
9091 }
9092
9093 bool VisitSYCLUniqueStableNameExpr(const SYCLUniqueStableNameExpr *E) {
9094 std::string ResultStr = E->ComputeName(Context&: Info.Ctx);
9095
9096 QualType CharTy = Info.Ctx.CharTy.withConst();
9097 APInt Size(Info.Ctx.getTypeSize(T: Info.Ctx.getSizeType()),
9098 ResultStr.size() + 1);
9099 QualType ArrayTy = Info.Ctx.getConstantArrayType(
9100 EltTy: CharTy, ArySize: Size, SizeExpr: nullptr, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0);
9101
9102 StringLiteral *SL =
9103 StringLiteral::Create(Ctx: Info.Ctx, Str: ResultStr, Kind: StringLiteralKind::Ordinary,
9104 /*Pascal*/ false, Ty: ArrayTy, Loc: E->getLocation());
9105
9106 evaluateLValue(SL, Result);
9107 Result.addArray(Info, E, cast<ConstantArrayType>(Val&: ArrayTy));
9108 return true;
9109 }
9110
9111 // FIXME: Missing: @protocol, @selector
9112};
9113} // end anonymous namespace
9114
9115static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info,
9116 bool InvalidBaseOK) {
9117 assert(!E->isValueDependent());
9118 assert(E->isPRValue() && E->getType()->hasPointerRepresentation());
9119 return PointerExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
9120}
9121
9122bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
9123 if (E->getOpcode() != BO_Add &&
9124 E->getOpcode() != BO_Sub)
9125 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
9126
9127 const Expr *PExp = E->getLHS();
9128 const Expr *IExp = E->getRHS();
9129 if (IExp->getType()->isPointerType())
9130 std::swap(a&: PExp, b&: IExp);
9131
9132 bool EvalPtrOK = evaluatePointer(E: PExp, Result);
9133 if (!EvalPtrOK && !Info.noteFailure())
9134 return false;
9135
9136 llvm::APSInt Offset;
9137 if (!EvaluateInteger(E: IExp, Result&: Offset, Info) || !EvalPtrOK)
9138 return false;
9139
9140 if (E->getOpcode() == BO_Sub)
9141 negateAsSigned(Int&: Offset);
9142
9143 QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
9144 return HandleLValueArrayAdjustment(Info, E, Result, Pointee, Offset);
9145}
9146
9147bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
9148 return evaluateLValue(E: E->getSubExpr(), Result);
9149}
9150
9151// Is the provided decl 'std::source_location::current'?
9152static bool IsDeclSourceLocationCurrent(const FunctionDecl *FD) {
9153 if (!FD)
9154 return false;
9155 const IdentifierInfo *FnII = FD->getIdentifier();
9156 if (!FnII || !FnII->isStr(Str: "current"))
9157 return false;
9158
9159 const auto *RD = dyn_cast<RecordDecl>(FD->getParent());
9160 if (!RD)
9161 return false;
9162
9163 const IdentifierInfo *ClassII = RD->getIdentifier();
9164 return RD->isInStdNamespace() && ClassII && ClassII->isStr(Str: "source_location");
9165}
9166
9167bool PointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
9168 const Expr *SubExpr = E->getSubExpr();
9169
9170 switch (E->getCastKind()) {
9171 default:
9172 break;
9173 case CK_BitCast:
9174 case CK_CPointerToObjCPointerCast:
9175 case CK_BlockPointerToObjCPointerCast:
9176 case CK_AnyPointerToBlockPointerCast:
9177 case CK_AddressSpaceConversion:
9178 if (!Visit(SubExpr))
9179 return false;
9180 // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
9181 // permitted in constant expressions in C++11. Bitcasts from cv void* are
9182 // also static_casts, but we disallow them as a resolution to DR1312.
9183 if (!E->getType()->isVoidPointerType()) {
9184 // In some circumstances, we permit casting from void* to cv1 T*, when the
9185 // actual pointee object is actually a cv2 T.
9186 bool HasValidResult = !Result.InvalidBase && !Result.Designator.Invalid &&
9187 !Result.IsNullPtr;
9188 bool VoidPtrCastMaybeOK =
9189 HasValidResult &&
9190 Info.Ctx.hasSameUnqualifiedType(T1: Result.Designator.getType(Info.Ctx),
9191 T2: E->getType()->getPointeeType());
9192 // 1. We'll allow it in std::allocator::allocate, and anything which that
9193 // calls.
9194 // 2. HACK 2022-03-28: Work around an issue with libstdc++'s
9195 // <source_location> header. Fixed in GCC 12 and later (2022-04-??).
9196 // We'll allow it in the body of std::source_location::current. GCC's
9197 // implementation had a parameter of type `void*`, and casts from
9198 // that back to `const __impl*` in its body.
9199 if (VoidPtrCastMaybeOK &&
9200 (Info.getStdAllocatorCaller(FnName: "allocate") ||
9201 IsDeclSourceLocationCurrent(FD: Info.CurrentCall->Callee) ||
9202 Info.getLangOpts().CPlusPlus26)) {
9203 // Permitted.
9204 } else {
9205 if (SubExpr->getType()->isVoidPointerType()) {
9206 if (HasValidResult)
9207 CCEDiag(E, diag::note_constexpr_invalid_void_star_cast)
9208 << SubExpr->getType() << Info.getLangOpts().CPlusPlus26
9209 << Result.Designator.getType(Info.Ctx).getCanonicalType()
9210 << E->getType()->getPointeeType();
9211 else
9212 CCEDiag(E, diag::note_constexpr_invalid_cast)
9213 << 3 << SubExpr->getType();
9214 } else
9215 CCEDiag(E, diag::note_constexpr_invalid_cast)
9216 << 2 << Info.Ctx.getLangOpts().CPlusPlus;
9217 Result.Designator.setInvalid();
9218 }
9219 }
9220 if (E->getCastKind() == CK_AddressSpaceConversion && Result.IsNullPtr)
9221 ZeroInitialization(E);
9222 return true;
9223
9224 case CK_DerivedToBase:
9225 case CK_UncheckedDerivedToBase:
9226 if (!evaluatePointer(E: E->getSubExpr(), Result))
9227 return false;
9228 if (!Result.Base && Result.Offset.isZero())
9229 return true;
9230
9231 // Now figure out the necessary offset to add to the base LV to get from
9232 // the derived class to the base class.
9233 return HandleLValueBasePath(Info, E, Type: E->getSubExpr()->getType()->
9234 castAs<PointerType>()->getPointeeType(),
9235 Result);
9236
9237 case CK_BaseToDerived:
9238 if (!Visit(E->getSubExpr()))
9239 return false;
9240 if (!Result.Base && Result.Offset.isZero())
9241 return true;
9242 return HandleBaseToDerivedCast(Info, E, Result);
9243
9244 case CK_Dynamic:
9245 if (!Visit(E->getSubExpr()))
9246 return false;
9247 return HandleDynamicCast(Info, E: cast<ExplicitCastExpr>(Val: E), Ptr&: Result);
9248
9249 case CK_NullToPointer:
9250 VisitIgnoredValue(E: E->getSubExpr());
9251 return ZeroInitialization(E);
9252
9253 case CK_IntegralToPointer: {
9254 CCEDiag(E, diag::note_constexpr_invalid_cast)
9255 << 2 << Info.Ctx.getLangOpts().CPlusPlus;
9256
9257 APValue Value;
9258 if (!EvaluateIntegerOrLValue(E: SubExpr, Result&: Value, Info))
9259 break;
9260
9261 if (Value.isInt()) {
9262 unsigned Size = Info.Ctx.getTypeSize(E->getType());
9263 uint64_t N = Value.getInt().extOrTrunc(width: Size).getZExtValue();
9264 Result.Base = (Expr*)nullptr;
9265 Result.InvalidBase = false;
9266 Result.Offset = CharUnits::fromQuantity(Quantity: N);
9267 Result.Designator.setInvalid();
9268 Result.IsNullPtr = false;
9269 return true;
9270 } else {
9271 // Cast is of an lvalue, no need to change value.
9272 Result.setFrom(Ctx&: Info.Ctx, V: Value);
9273 return true;
9274 }
9275 }
9276
9277 case CK_ArrayToPointerDecay: {
9278 if (SubExpr->isGLValue()) {
9279 if (!evaluateLValue(E: SubExpr, Result))
9280 return false;
9281 } else {
9282 APValue &Value = Info.CurrentCall->createTemporary(
9283 Key: SubExpr, T: SubExpr->getType(), Scope: ScopeKind::FullExpression, LV&: Result);
9284 if (!EvaluateInPlace(Result&: Value, Info, This: Result, E: SubExpr))
9285 return false;
9286 }
9287 // The result is a pointer to the first element of the array.
9288 auto *AT = Info.Ctx.getAsArrayType(T: SubExpr->getType());
9289 if (auto *CAT = dyn_cast<ConstantArrayType>(Val: AT))
9290 Result.addArray(Info, E, CAT);
9291 else
9292 Result.addUnsizedArray(Info, E, AT->getElementType());
9293 return true;
9294 }
9295
9296 case CK_FunctionToPointerDecay:
9297 return evaluateLValue(E: SubExpr, Result);
9298
9299 case CK_LValueToRValue: {
9300 LValue LVal;
9301 if (!evaluateLValue(E: E->getSubExpr(), Result&: LVal))
9302 return false;
9303
9304 APValue RVal;
9305 // Note, we use the subexpression's type in order to retain cv-qualifiers.
9306 if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
9307 LVal, RVal))
9308 return InvalidBaseOK &&
9309 evaluateLValueAsAllocSize(Info, Base: LVal.Base, Result);
9310 return Success(RVal, E);
9311 }
9312 }
9313
9314 return ExprEvaluatorBaseTy::VisitCastExpr(E);
9315}
9316
9317static CharUnits GetAlignOfType(EvalInfo &Info, QualType T,
9318 UnaryExprOrTypeTrait ExprKind) {
9319 // C++ [expr.alignof]p3:
9320 // When alignof is applied to a reference type, the result is the
9321 // alignment of the referenced type.
9322 T = T.getNonReferenceType();
9323
9324 if (T.getQualifiers().hasUnaligned())
9325 return CharUnits::One();
9326
9327 const bool AlignOfReturnsPreferred =
9328 Info.Ctx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
9329
9330 // __alignof is defined to return the preferred alignment.
9331 // Before 8, clang returned the preferred alignment for alignof and _Alignof
9332 // as well.
9333 if (ExprKind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
9334 return Info.Ctx.toCharUnitsFromBits(
9335 BitSize: Info.Ctx.getPreferredTypeAlign(T: T.getTypePtr()));
9336 // alignof and _Alignof are defined to return the ABI alignment.
9337 else if (ExprKind == UETT_AlignOf)
9338 return Info.Ctx.getTypeAlignInChars(T: T.getTypePtr());
9339 else
9340 llvm_unreachable("GetAlignOfType on a non-alignment ExprKind");
9341}
9342
9343static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E,
9344 UnaryExprOrTypeTrait ExprKind) {
9345 E = E->IgnoreParens();
9346
9347 // The kinds of expressions that we have special-case logic here for
9348 // should be kept up to date with the special checks for those
9349 // expressions in Sema.
9350
9351 // alignof decl is always accepted, even if it doesn't make sense: we default
9352 // to 1 in those cases.
9353 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E))
9354 return Info.Ctx.getDeclAlign(DRE->getDecl(),
9355 /*RefAsPointee*/true);
9356
9357 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Val: E))
9358 return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
9359 /*RefAsPointee*/true);
9360
9361 return GetAlignOfType(Info, T: E->getType(), ExprKind);
9362}
9363
9364static CharUnits getBaseAlignment(EvalInfo &Info, const LValue &Value) {
9365 if (const auto *VD = Value.Base.dyn_cast<const ValueDecl *>())
9366 return Info.Ctx.getDeclAlign(VD);
9367 if (const auto *E = Value.Base.dyn_cast<const Expr *>())
9368 return GetAlignOfExpr(Info, E, ExprKind: UETT_AlignOf);
9369 return GetAlignOfType(Info, T: Value.Base.getTypeInfoType(), ExprKind: UETT_AlignOf);
9370}
9371
9372/// Evaluate the value of the alignment argument to __builtin_align_{up,down},
9373/// __builtin_is_aligned and __builtin_assume_aligned.
9374static bool getAlignmentArgument(const Expr *E, QualType ForType,
9375 EvalInfo &Info, APSInt &Alignment) {
9376 if (!EvaluateInteger(E, Result&: Alignment, Info))
9377 return false;
9378 if (Alignment < 0 || !Alignment.isPowerOf2()) {
9379 Info.FFDiag(E, diag::note_constexpr_invalid_alignment) << Alignment;
9380 return false;
9381 }
9382 unsigned SrcWidth = Info.Ctx.getIntWidth(T: ForType);
9383 APSInt MaxValue(APInt::getOneBitSet(numBits: SrcWidth, BitNo: SrcWidth - 1));
9384 if (APSInt::compareValues(I1: Alignment, I2: MaxValue) > 0) {
9385 Info.FFDiag(E, diag::note_constexpr_alignment_too_big)
9386 << MaxValue << ForType << Alignment;
9387 return false;
9388 }
9389 // Ensure both alignment and source value have the same bit width so that we
9390 // don't assert when computing the resulting value.
9391 APSInt ExtAlignment =
9392 APSInt(Alignment.zextOrTrunc(width: SrcWidth), /*isUnsigned=*/true);
9393 assert(APSInt::compareValues(Alignment, ExtAlignment) == 0 &&
9394 "Alignment should not be changed by ext/trunc");
9395 Alignment = ExtAlignment;
9396 assert(Alignment.getBitWidth() == SrcWidth);
9397 return true;
9398}
9399
9400// To be clear: this happily visits unsupported builtins. Better name welcomed.
9401bool PointerExprEvaluator::visitNonBuiltinCallExpr(const CallExpr *E) {
9402 if (ExprEvaluatorBaseTy::VisitCallExpr(E))
9403 return true;
9404
9405 if (!(InvalidBaseOK && getAllocSizeAttr(E)))
9406 return false;
9407
9408 Result.setInvalid(E);
9409 QualType PointeeTy = E->getType()->castAs<PointerType>()->getPointeeType();
9410 Result.addUnsizedArray(Info, E, PointeeTy);
9411 return true;
9412}
9413
9414bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
9415 if (!IsConstantEvaluatedBuiltinCall(E))
9416 return visitNonBuiltinCallExpr(E);
9417 return VisitBuiltinCallExpr(E, BuiltinOp: E->getBuiltinCallee());
9418}
9419
9420// Determine if T is a character type for which we guarantee that
9421// sizeof(T) == 1.
9422static bool isOneByteCharacterType(QualType T) {
9423 return T->isCharType() || T->isChar8Type();
9424}
9425
9426bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
9427 unsigned BuiltinOp) {
9428 if (IsNoOpCall(E))
9429 return Success(E);
9430
9431 switch (BuiltinOp) {
9432 case Builtin::BIaddressof:
9433 case Builtin::BI__addressof:
9434 case Builtin::BI__builtin_addressof:
9435 return evaluateLValue(E: E->getArg(Arg: 0), Result);
9436 case Builtin::BI__builtin_assume_aligned: {
9437 // We need to be very careful here because: if the pointer does not have the
9438 // asserted alignment, then the behavior is undefined, and undefined
9439 // behavior is non-constant.
9440 if (!evaluatePointer(E: E->getArg(Arg: 0), Result))
9441 return false;
9442
9443 LValue OffsetResult(Result);
9444 APSInt Alignment;
9445 if (!getAlignmentArgument(E: E->getArg(Arg: 1), ForType: E->getArg(Arg: 0)->getType(), Info,
9446 Alignment))
9447 return false;
9448 CharUnits Align = CharUnits::fromQuantity(Quantity: Alignment.getZExtValue());
9449
9450 if (E->getNumArgs() > 2) {
9451 APSInt Offset;
9452 if (!EvaluateInteger(E: E->getArg(Arg: 2), Result&: Offset, Info))
9453 return false;
9454
9455 int64_t AdditionalOffset = -Offset.getZExtValue();
9456 OffsetResult.Offset += CharUnits::fromQuantity(Quantity: AdditionalOffset);
9457 }
9458
9459 // If there is a base object, then it must have the correct alignment.
9460 if (OffsetResult.Base) {
9461 CharUnits BaseAlignment = getBaseAlignment(Info, Value: OffsetResult);
9462
9463 if (BaseAlignment < Align) {
9464 Result.Designator.setInvalid();
9465 // FIXME: Add support to Diagnostic for long / long long.
9466 CCEDiag(E->getArg(0),
9467 diag::note_constexpr_baa_insufficient_alignment) << 0
9468 << (unsigned)BaseAlignment.getQuantity()
9469 << (unsigned)Align.getQuantity();
9470 return false;
9471 }
9472 }
9473
9474 // The offset must also have the correct alignment.
9475 if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) {
9476 Result.Designator.setInvalid();
9477
9478 (OffsetResult.Base
9479 ? CCEDiag(E->getArg(0),
9480 diag::note_constexpr_baa_insufficient_alignment) << 1
9481 : CCEDiag(E->getArg(0),
9482 diag::note_constexpr_baa_value_insufficient_alignment))
9483 << (int)OffsetResult.Offset.getQuantity()
9484 << (unsigned)Align.getQuantity();
9485 return false;
9486 }
9487
9488 return true;
9489 }
9490 case Builtin::BI__builtin_align_up:
9491 case Builtin::BI__builtin_align_down: {
9492 if (!evaluatePointer(E: E->getArg(Arg: 0), Result))
9493 return false;
9494 APSInt Alignment;
9495 if (!getAlignmentArgument(E: E->getArg(Arg: 1), ForType: E->getArg(Arg: 0)->getType(), Info,
9496 Alignment))
9497 return false;
9498 CharUnits BaseAlignment = getBaseAlignment(Info, Value: Result);
9499 CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(offset: Result.Offset);
9500 // For align_up/align_down, we can return the same value if the alignment
9501 // is known to be greater or equal to the requested value.
9502 if (PtrAlign.getQuantity() >= Alignment)
9503 return true;
9504
9505 // The alignment could be greater than the minimum at run-time, so we cannot
9506 // infer much about the resulting pointer value. One case is possible:
9507 // For `_Alignas(32) char buf[N]; __builtin_align_down(&buf[idx], 32)` we
9508 // can infer the correct index if the requested alignment is smaller than
9509 // the base alignment so we can perform the computation on the offset.
9510 if (BaseAlignment.getQuantity() >= Alignment) {
9511 assert(Alignment.getBitWidth() <= 64 &&
9512 "Cannot handle > 64-bit address-space");
9513 uint64_t Alignment64 = Alignment.getZExtValue();
9514 CharUnits NewOffset = CharUnits::fromQuantity(
9515 BuiltinOp == Builtin::BI__builtin_align_down
9516 ? llvm::alignDown(Result.Offset.getQuantity(), Alignment64)
9517 : llvm::alignTo(Result.Offset.getQuantity(), Alignment64));
9518 Result.adjustOffset(N: NewOffset - Result.Offset);
9519 // TODO: diagnose out-of-bounds values/only allow for arrays?
9520 return true;
9521 }
9522 // Otherwise, we cannot constant-evaluate the result.
9523 Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_adjust)
9524 << Alignment;
9525 return false;
9526 }
9527 case Builtin::BI__builtin_operator_new:
9528 return HandleOperatorNewCall(Info, E, Result);
9529 case Builtin::BI__builtin_launder:
9530 return evaluatePointer(E: E->getArg(Arg: 0), Result);
9531 case Builtin::BIstrchr:
9532 case Builtin::BIwcschr:
9533 case Builtin::BImemchr:
9534 case Builtin::BIwmemchr:
9535 if (Info.getLangOpts().CPlusPlus11)
9536 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
9537 << /*isConstexpr*/ 0 << /*isConstructor*/ 0
9538 << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str();
9539 else
9540 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
9541 [[fallthrough]];
9542 case Builtin::BI__builtin_strchr:
9543 case Builtin::BI__builtin_wcschr:
9544 case Builtin::BI__builtin_memchr:
9545 case Builtin::BI__builtin_char_memchr:
9546 case Builtin::BI__builtin_wmemchr: {
9547 if (!Visit(E->getArg(Arg: 0)))
9548 return false;
9549 APSInt Desired;
9550 if (!EvaluateInteger(E: E->getArg(Arg: 1), Result&: Desired, Info))
9551 return false;
9552 uint64_t MaxLength = uint64_t(-1);
9553 if (BuiltinOp != Builtin::BIstrchr &&
9554 BuiltinOp != Builtin::BIwcschr &&
9555 BuiltinOp != Builtin::BI__builtin_strchr &&
9556 BuiltinOp != Builtin::BI__builtin_wcschr) {
9557 APSInt N;
9558 if (!EvaluateInteger(E: E->getArg(Arg: 2), Result&: N, Info))
9559 return false;
9560 MaxLength = N.getZExtValue();
9561 }
9562 // We cannot find the value if there are no candidates to match against.
9563 if (MaxLength == 0u)
9564 return ZeroInitialization(E);
9565 if (!Result.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
9566 Result.Designator.Invalid)
9567 return false;
9568 QualType CharTy = Result.Designator.getType(Info.Ctx);
9569 bool IsRawByte = BuiltinOp == Builtin::BImemchr ||
9570 BuiltinOp == Builtin::BI__builtin_memchr;
9571 assert(IsRawByte ||
9572 Info.Ctx.hasSameUnqualifiedType(
9573 CharTy, E->getArg(0)->getType()->getPointeeType()));
9574 // Pointers to const void may point to objects of incomplete type.
9575 if (IsRawByte && CharTy->isIncompleteType()) {
9576 Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy;
9577 return false;
9578 }
9579 // Give up on byte-oriented matching against multibyte elements.
9580 // FIXME: We can compare the bytes in the correct order.
9581 if (IsRawByte && !isOneByteCharacterType(T: CharTy)) {
9582 Info.FFDiag(E, diag::note_constexpr_memchr_unsupported)
9583 << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str()
9584 << CharTy;
9585 return false;
9586 }
9587 // Figure out what value we're actually looking for (after converting to
9588 // the corresponding unsigned type if necessary).
9589 uint64_t DesiredVal;
9590 bool StopAtNull = false;
9591 switch (BuiltinOp) {
9592 case Builtin::BIstrchr:
9593 case Builtin::BI__builtin_strchr:
9594 // strchr compares directly to the passed integer, and therefore
9595 // always fails if given an int that is not a char.
9596 if (!APSInt::isSameValue(I1: HandleIntToIntCast(Info, E, CharTy,
9597 E->getArg(Arg: 1)->getType(),
9598 Desired),
9599 I2: Desired))
9600 return ZeroInitialization(E);
9601 StopAtNull = true;
9602 [[fallthrough]];
9603 case Builtin::BImemchr:
9604 case Builtin::BI__builtin_memchr:
9605 case Builtin::BI__builtin_char_memchr:
9606 // memchr compares by converting both sides to unsigned char. That's also
9607 // correct for strchr if we get this far (to cope with plain char being
9608 // unsigned in the strchr case).
9609 DesiredVal = Desired.trunc(width: Info.Ctx.getCharWidth()).getZExtValue();
9610 break;
9611
9612 case Builtin::BIwcschr:
9613 case Builtin::BI__builtin_wcschr:
9614 StopAtNull = true;
9615 [[fallthrough]];
9616 case Builtin::BIwmemchr:
9617 case Builtin::BI__builtin_wmemchr:
9618 // wcschr and wmemchr are given a wchar_t to look for. Just use it.
9619 DesiredVal = Desired.getZExtValue();
9620 break;
9621 }
9622
9623 for (; MaxLength; --MaxLength) {
9624 APValue Char;
9625 if (!handleLValueToRValueConversion(Info, E, CharTy, Result, Char) ||
9626 !Char.isInt())
9627 return false;
9628 if (Char.getInt().getZExtValue() == DesiredVal)
9629 return true;
9630 if (StopAtNull && !Char.getInt())
9631 break;
9632 if (!HandleLValueArrayAdjustment(Info, E, Result, CharTy, 1))
9633 return false;
9634 }
9635 // Not found: return nullptr.
9636 return ZeroInitialization(E);
9637 }
9638
9639 case Builtin::BImemcpy:
9640 case Builtin::BImemmove:
9641 case Builtin::BIwmemcpy:
9642 case Builtin::BIwmemmove:
9643 if (Info.getLangOpts().CPlusPlus11)
9644 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
9645 << /*isConstexpr*/ 0 << /*isConstructor*/ 0
9646 << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str();
9647 else
9648 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
9649 [[fallthrough]];
9650 case Builtin::BI__builtin_memcpy:
9651 case Builtin::BI__builtin_memmove:
9652 case Builtin::BI__builtin_wmemcpy:
9653 case Builtin::BI__builtin_wmemmove: {
9654 bool WChar = BuiltinOp == Builtin::BIwmemcpy ||
9655 BuiltinOp == Builtin::BIwmemmove ||
9656 BuiltinOp == Builtin::BI__builtin_wmemcpy ||
9657 BuiltinOp == Builtin::BI__builtin_wmemmove;
9658 bool Move = BuiltinOp == Builtin::BImemmove ||
9659 BuiltinOp == Builtin::BIwmemmove ||
9660 BuiltinOp == Builtin::BI__builtin_memmove ||
9661 BuiltinOp == Builtin::BI__builtin_wmemmove;
9662
9663 // The result of mem* is the first argument.
9664 if (!Visit(E->getArg(Arg: 0)))
9665 return false;
9666 LValue Dest = Result;
9667
9668 LValue Src;
9669 if (!EvaluatePointer(E: E->getArg(Arg: 1), Result&: Src, Info))
9670 return false;
9671
9672 APSInt N;
9673 if (!EvaluateInteger(E: E->getArg(Arg: 2), Result&: N, Info))
9674 return false;
9675 assert(!N.isSigned() && "memcpy and friends take an unsigned size");
9676
9677 // If the size is zero, we treat this as always being a valid no-op.
9678 // (Even if one of the src and dest pointers is null.)
9679 if (!N)
9680 return true;
9681
9682 // Otherwise, if either of the operands is null, we can't proceed. Don't
9683 // try to determine the type of the copied objects, because there aren't
9684 // any.
9685 if (!Src.Base || !Dest.Base) {
9686 APValue Val;
9687 (!Src.Base ? Src : Dest).moveInto(V&: Val);
9688 Info.FFDiag(E, diag::note_constexpr_memcpy_null)
9689 << Move << WChar << !!Src.Base
9690 << Val.getAsString(Info.Ctx, E->getArg(0)->getType());
9691 return false;
9692 }
9693 if (Src.Designator.Invalid || Dest.Designator.Invalid)
9694 return false;
9695
9696 // We require that Src and Dest are both pointers to arrays of
9697 // trivially-copyable type. (For the wide version, the designator will be
9698 // invalid if the designated object is not a wchar_t.)
9699 QualType T = Dest.Designator.getType(Info.Ctx);
9700 QualType SrcT = Src.Designator.getType(Info.Ctx);
9701 if (!Info.Ctx.hasSameUnqualifiedType(T1: T, T2: SrcT)) {
9702 // FIXME: Consider using our bit_cast implementation to support this.
9703 Info.FFDiag(E, diag::note_constexpr_memcpy_type_pun) << Move << SrcT << T;
9704 return false;
9705 }
9706 if (T->isIncompleteType()) {
9707 Info.FFDiag(E, diag::note_constexpr_memcpy_incomplete_type) << Move << T;
9708 return false;
9709 }
9710 if (!T.isTriviallyCopyableType(Context: Info.Ctx)) {
9711 Info.FFDiag(E, diag::note_constexpr_memcpy_nontrivial) << Move << T;
9712 return false;
9713 }
9714
9715 // Figure out how many T's we're copying.
9716 uint64_t TSize = Info.Ctx.getTypeSizeInChars(T).getQuantity();
9717 if (TSize == 0)
9718 return false;
9719 if (!WChar) {
9720 uint64_t Remainder;
9721 llvm::APInt OrigN = N;
9722 llvm::APInt::udivrem(LHS: OrigN, RHS: TSize, Quotient&: N, Remainder);
9723 if (Remainder) {
9724 Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
9725 << Move << WChar << 0 << T << toString(OrigN, 10, /*Signed*/false)
9726 << (unsigned)TSize;
9727 return false;
9728 }
9729 }
9730
9731 // Check that the copying will remain within the arrays, just so that we
9732 // can give a more meaningful diagnostic. This implicitly also checks that
9733 // N fits into 64 bits.
9734 uint64_t RemainingSrcSize = Src.Designator.validIndexAdjustments().second;
9735 uint64_t RemainingDestSize = Dest.Designator.validIndexAdjustments().second;
9736 if (N.ugt(RHS: RemainingSrcSize) || N.ugt(RHS: RemainingDestSize)) {
9737 Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
9738 << Move << WChar << (N.ugt(RemainingSrcSize) ? 1 : 2) << T
9739 << toString(N, 10, /*Signed*/false);
9740 return false;
9741 }
9742 uint64_t NElems = N.getZExtValue();
9743 uint64_t NBytes = NElems * TSize;
9744
9745 // Check for overlap.
9746 int Direction = 1;
9747 if (HasSameBase(A: Src, B: Dest)) {
9748 uint64_t SrcOffset = Src.getLValueOffset().getQuantity();
9749 uint64_t DestOffset = Dest.getLValueOffset().getQuantity();
9750 if (DestOffset >= SrcOffset && DestOffset - SrcOffset < NBytes) {
9751 // Dest is inside the source region.
9752 if (!Move) {
9753 Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
9754 return false;
9755 }
9756 // For memmove and friends, copy backwards.
9757 if (!HandleLValueArrayAdjustment(Info, E, Src, T, NElems - 1) ||
9758 !HandleLValueArrayAdjustment(Info, E, Dest, T, NElems - 1))
9759 return false;
9760 Direction = -1;
9761 } else if (!Move && SrcOffset >= DestOffset &&
9762 SrcOffset - DestOffset < NBytes) {
9763 // Src is inside the destination region for memcpy: invalid.
9764 Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
9765 return false;
9766 }
9767 }
9768
9769 while (true) {
9770 APValue Val;
9771 // FIXME: Set WantObjectRepresentation to true if we're copying a
9772 // char-like type?
9773 if (!handleLValueToRValueConversion(Info, E, T, Src, Val) ||
9774 !handleAssignment(Info, E, Dest, T, Val))
9775 return false;
9776 // Do not iterate past the last element; if we're copying backwards, that
9777 // might take us off the start of the array.
9778 if (--NElems == 0)
9779 return true;
9780 if (!HandleLValueArrayAdjustment(Info, E, Src, T, Direction) ||
9781 !HandleLValueArrayAdjustment(Info, E, Dest, T, Direction))
9782 return false;
9783 }
9784 }
9785
9786 default:
9787 return false;
9788 }
9789}
9790
9791static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
9792 APValue &Result, const InitListExpr *ILE,
9793 QualType AllocType);
9794static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This,
9795 APValue &Result,
9796 const CXXConstructExpr *CCE,
9797 QualType AllocType);
9798
9799bool PointerExprEvaluator::VisitCXXNewExpr(const CXXNewExpr *E) {
9800 if (!Info.getLangOpts().CPlusPlus20)
9801 Info.CCEDiag(E, diag::note_constexpr_new);
9802
9803 // We cannot speculatively evaluate a delete expression.
9804 if (Info.SpeculativeEvaluationDepth)
9805 return false;
9806
9807 FunctionDecl *OperatorNew = E->getOperatorNew();
9808
9809 bool IsNothrow = false;
9810 bool IsPlacement = false;
9811 if (OperatorNew->isReservedGlobalPlacementOperator() &&
9812 Info.CurrentCall->isStdFunction() && !E->isArray()) {
9813 // FIXME Support array placement new.
9814 assert(E->getNumPlacementArgs() == 1);
9815 if (!EvaluatePointer(E: E->getPlacementArg(I: 0), Result, Info))
9816 return false;
9817 if (Result.Designator.Invalid)
9818 return false;
9819 IsPlacement = true;
9820 } else if (!OperatorNew->isReplaceableGlobalAllocationFunction()) {
9821 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
9822 << isa<CXXMethodDecl>(OperatorNew) << OperatorNew;
9823 return false;
9824 } else if (E->getNumPlacementArgs()) {
9825 // The only new-placement list we support is of the form (std::nothrow).
9826 //
9827 // FIXME: There is no restriction on this, but it's not clear that any
9828 // other form makes any sense. We get here for cases such as:
9829 //
9830 // new (std::align_val_t{N}) X(int)
9831 //
9832 // (which should presumably be valid only if N is a multiple of
9833 // alignof(int), and in any case can't be deallocated unless N is
9834 // alignof(X) and X has new-extended alignment).
9835 if (E->getNumPlacementArgs() != 1 ||
9836 !E->getPlacementArg(0)->getType()->isNothrowT())
9837 return Error(E, diag::note_constexpr_new_placement);
9838
9839 LValue Nothrow;
9840 if (!EvaluateLValue(E: E->getPlacementArg(I: 0), Result&: Nothrow, Info))
9841 return false;
9842 IsNothrow = true;
9843 }
9844
9845 const Expr *Init = E->getInitializer();
9846 const InitListExpr *ResizedArrayILE = nullptr;
9847 const CXXConstructExpr *ResizedArrayCCE = nullptr;
9848 bool ValueInit = false;
9849
9850 QualType AllocType = E->getAllocatedType();
9851 if (std::optional<const Expr *> ArraySize = E->getArraySize()) {
9852 const Expr *Stripped = *ArraySize;
9853 for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Val: Stripped);
9854 Stripped = ICE->getSubExpr())
9855 if (ICE->getCastKind() != CK_NoOp &&
9856 ICE->getCastKind() != CK_IntegralCast)
9857 break;
9858
9859 llvm::APSInt ArrayBound;
9860 if (!EvaluateInteger(E: Stripped, Result&: ArrayBound, Info))
9861 return false;
9862
9863 // C++ [expr.new]p9:
9864 // The expression is erroneous if:
9865 // -- [...] its value before converting to size_t [or] applying the
9866 // second standard conversion sequence is less than zero
9867 if (ArrayBound.isSigned() && ArrayBound.isNegative()) {
9868 if (IsNothrow)
9869 return ZeroInitialization(E);
9870
9871 Info.FFDiag(*ArraySize, diag::note_constexpr_new_negative)
9872 << ArrayBound << (*ArraySize)->getSourceRange();
9873 return false;
9874 }
9875
9876 // -- its value is such that the size of the allocated object would
9877 // exceed the implementation-defined limit
9878 if (!Info.CheckArraySize(Loc: ArraySize.value()->getExprLoc(),
9879 BitWidth: ConstantArrayType::getNumAddressingBits(
9880 Context: Info.Ctx, ElementType: AllocType, NumElements: ArrayBound),
9881 ElemCount: ArrayBound.getZExtValue(), /*Diag=*/!IsNothrow)) {
9882 if (IsNothrow)
9883 return ZeroInitialization(E);
9884 return false;
9885 }
9886
9887 // -- the new-initializer is a braced-init-list and the number of
9888 // array elements for which initializers are provided [...]
9889 // exceeds the number of elements to initialize
9890 if (!Init) {
9891 // No initialization is performed.
9892 } else if (isa<CXXScalarValueInitExpr>(Val: Init) ||
9893 isa<ImplicitValueInitExpr>(Val: Init)) {
9894 ValueInit = true;
9895 } else if (auto *CCE = dyn_cast<CXXConstructExpr>(Val: Init)) {
9896 ResizedArrayCCE = CCE;
9897 } else {
9898 auto *CAT = Info.Ctx.getAsConstantArrayType(T: Init->getType());
9899 assert(CAT && "unexpected type for array initializer");
9900
9901 unsigned Bits =
9902 std::max(a: CAT->getSize().getBitWidth(), b: ArrayBound.getBitWidth());
9903 llvm::APInt InitBound = CAT->getSize().zext(width: Bits);
9904 llvm::APInt AllocBound = ArrayBound.zext(width: Bits);
9905 if (InitBound.ugt(RHS: AllocBound)) {
9906 if (IsNothrow)
9907 return ZeroInitialization(E);
9908
9909 Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_small)
9910 << toString(AllocBound, 10, /*Signed=*/false)
9911 << toString(InitBound, 10, /*Signed=*/false)
9912 << (*ArraySize)->getSourceRange();
9913 return false;
9914 }
9915
9916 // If the sizes differ, we must have an initializer list, and we need
9917 // special handling for this case when we initialize.
9918 if (InitBound != AllocBound)
9919 ResizedArrayILE = cast<InitListExpr>(Val: Init);
9920 }
9921
9922 AllocType = Info.Ctx.getConstantArrayType(EltTy: AllocType, ArySize: ArrayBound, SizeExpr: nullptr,
9923 ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0);
9924 } else {
9925 assert(!AllocType->isArrayType() &&
9926 "array allocation with non-array new");
9927 }
9928
9929 APValue *Val;
9930 if (IsPlacement) {
9931 AccessKinds AK = AK_Construct;
9932 struct FindObjectHandler {
9933 EvalInfo &Info;
9934 const Expr *E;
9935 QualType AllocType;
9936 const AccessKinds AccessKind;
9937 APValue *Value;
9938
9939 typedef bool result_type;
9940 bool failed() { return false; }
9941 bool found(APValue &Subobj, QualType SubobjType) {
9942 // FIXME: Reject the cases where [basic.life]p8 would not permit the
9943 // old name of the object to be used to name the new object.
9944 if (!Info.Ctx.hasSameUnqualifiedType(SubobjType, AllocType)) {
9945 Info.FFDiag(E, diag::note_constexpr_placement_new_wrong_type) <<
9946 SubobjType << AllocType;
9947 return false;
9948 }
9949 Value = &Subobj;
9950 return true;
9951 }
9952 bool found(APSInt &Value, QualType SubobjType) {
9953 Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
9954 return false;
9955 }
9956 bool found(APFloat &Value, QualType SubobjType) {
9957 Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
9958 return false;
9959 }
9960 } Handler = {Info, E, AllocType, AK, nullptr};
9961
9962 CompleteObject Obj = findCompleteObject(Info, E, AK, Result, AllocType);
9963 if (!Obj || !findSubobject(Info, E, Obj, Result.Designator, Handler))
9964 return false;
9965
9966 Val = Handler.Value;
9967
9968 // [basic.life]p1:
9969 // The lifetime of an object o of type T ends when [...] the storage
9970 // which the object occupies is [...] reused by an object that is not
9971 // nested within o (6.6.2).
9972 *Val = APValue();
9973 } else {
9974 // Perform the allocation and obtain a pointer to the resulting object.
9975 Val = Info.createHeapAlloc(E, AllocType, Result);
9976 if (!Val)
9977 return false;
9978 }
9979
9980 if (ValueInit) {
9981 ImplicitValueInitExpr VIE(AllocType);
9982 if (!EvaluateInPlace(*Val, Info, Result, &VIE))
9983 return false;
9984 } else if (ResizedArrayILE) {
9985 if (!EvaluateArrayNewInitList(Info, This&: Result, Result&: *Val, ILE: ResizedArrayILE,
9986 AllocType))
9987 return false;
9988 } else if (ResizedArrayCCE) {
9989 if (!EvaluateArrayNewConstructExpr(Info, This&: Result, Result&: *Val, CCE: ResizedArrayCCE,
9990 AllocType))
9991 return false;
9992 } else if (Init) {
9993 if (!EvaluateInPlace(Result&: *Val, Info, This: Result, E: Init))
9994 return false;
9995 } else if (!handleDefaultInitValue(T: AllocType, Result&: *Val)) {
9996 return false;
9997 }
9998
9999 // Array new returns a pointer to the first element, not a pointer to the
10000 // array.
10001 if (auto *AT = AllocType->getAsArrayTypeUnsafe())
10002 Result.addArray(Info, E, CAT: cast<ConstantArrayType>(AT));
10003
10004 return true;
10005}
10006//===----------------------------------------------------------------------===//
10007// Member Pointer Evaluation
10008//===----------------------------------------------------------------------===//
10009
10010namespace {
10011class MemberPointerExprEvaluator
10012 : public ExprEvaluatorBase<MemberPointerExprEvaluator> {
10013 MemberPtr &Result;
10014
10015 bool Success(const ValueDecl *D) {
10016 Result = MemberPtr(D);
10017 return true;
10018 }
10019public:
10020
10021 MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
10022 : ExprEvaluatorBaseTy(Info), Result(Result) {}
10023
10024 bool Success(const APValue &V, const Expr *E) {
10025 Result.setFrom(V);
10026 return true;
10027 }
10028 bool ZeroInitialization(const Expr *E) {
10029 return Success(D: (const ValueDecl*)nullptr);
10030 }
10031
10032 bool VisitCastExpr(const CastExpr *E);
10033 bool VisitUnaryAddrOf(const UnaryOperator *E);
10034};
10035} // end anonymous namespace
10036
10037static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
10038 EvalInfo &Info) {
10039 assert(!E->isValueDependent());
10040 assert(E->isPRValue() && E->getType()->isMemberPointerType());
10041 return MemberPointerExprEvaluator(Info, Result).Visit(E);
10042}
10043
10044bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
10045 switch (E->getCastKind()) {
10046 default:
10047 return ExprEvaluatorBaseTy::VisitCastExpr(E);
10048
10049 case CK_NullToMemberPointer:
10050 VisitIgnoredValue(E: E->getSubExpr());
10051 return ZeroInitialization(E);
10052
10053 case CK_BaseToDerivedMemberPointer: {
10054 if (!Visit(E->getSubExpr()))
10055 return false;
10056 if (E->path_empty())
10057 return true;
10058 // Base-to-derived member pointer casts store the path in derived-to-base
10059 // order, so iterate backwards. The CXXBaseSpecifier also provides us with
10060 // the wrong end of the derived->base arc, so stagger the path by one class.
10061 typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
10062 for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
10063 PathI != PathE; ++PathI) {
10064 assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
10065 const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
10066 if (!Result.castToDerived(Derived))
10067 return Error(E);
10068 }
10069 const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
10070 if (!Result.castToDerived(Derived: FinalTy->getAsCXXRecordDecl()))
10071 return Error(E);
10072 return true;
10073 }
10074
10075 case CK_DerivedToBaseMemberPointer:
10076 if (!Visit(E->getSubExpr()))
10077 return false;
10078 for (CastExpr::path_const_iterator PathI = E->path_begin(),
10079 PathE = E->path_end(); PathI != PathE; ++PathI) {
10080 assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
10081 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
10082 if (!Result.castToBase(Base))
10083 return Error(E);
10084 }
10085 return true;
10086 }
10087}
10088
10089bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
10090 // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
10091 // member can be formed.
10092 return Success(D: cast<DeclRefExpr>(Val: E->getSubExpr())->getDecl());
10093}
10094
10095//===----------------------------------------------------------------------===//
10096// Record Evaluation
10097//===----------------------------------------------------------------------===//
10098
10099namespace {
10100 class RecordExprEvaluator
10101 : public ExprEvaluatorBase<RecordExprEvaluator> {
10102 const LValue &This;
10103 APValue &Result;
10104 public:
10105
10106 RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
10107 : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
10108
10109 bool Success(const APValue &V, const Expr *E) {
10110 Result = V;
10111 return true;
10112 }
10113 bool ZeroInitialization(const Expr *E) {
10114 return ZeroInitialization(E, T: E->getType());
10115 }
10116 bool ZeroInitialization(const Expr *E, QualType T);
10117
10118 bool VisitCallExpr(const CallExpr *E) {
10119 return handleCallExpr(E, Result, ResultSlot: &This);
10120 }
10121 bool VisitCastExpr(const CastExpr *E);
10122 bool VisitInitListExpr(const InitListExpr *E);
10123 bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
10124 return VisitCXXConstructExpr(E, E->getType());
10125 }
10126 bool VisitLambdaExpr(const LambdaExpr *E);
10127 bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
10128 bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T);
10129 bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
10130 bool VisitBinCmp(const BinaryOperator *E);
10131 bool VisitCXXParenListInitExpr(const CXXParenListInitExpr *E);
10132 bool VisitCXXParenListOrInitListExpr(const Expr *ExprToVisit,
10133 ArrayRef<Expr *> Args);
10134 };
10135}
10136
10137/// Perform zero-initialization on an object of non-union class type.
10138/// C++11 [dcl.init]p5:
10139/// To zero-initialize an object or reference of type T means:
10140/// [...]
10141/// -- if T is a (possibly cv-qualified) non-union class type,
10142/// each non-static data member and each base-class subobject is
10143/// zero-initialized
10144static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
10145 const RecordDecl *RD,
10146 const LValue &This, APValue &Result) {
10147 assert(!RD->isUnion() && "Expected non-union class type");
10148 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(Val: RD);
10149 Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
10150 std::distance(first: RD->field_begin(), last: RD->field_end()));
10151
10152 if (RD->isInvalidDecl()) return false;
10153 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(D: RD);
10154
10155 if (CD) {
10156 unsigned Index = 0;
10157 for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
10158 End = CD->bases_end(); I != End; ++I, ++Index) {
10159 const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
10160 LValue Subobject = This;
10161 if (!HandleLValueDirectBase(Info, E, Obj&: Subobject, Derived: CD, Base, RL: &Layout))
10162 return false;
10163 if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
10164 Result.getStructBase(i: Index)))
10165 return false;
10166 }
10167 }
10168
10169 for (const auto *I : RD->fields()) {
10170 // -- if T is a reference type, no initialization is performed.
10171 if (I->isUnnamedBitfield() || I->getType()->isReferenceType())
10172 continue;
10173
10174 LValue Subobject = This;
10175 if (!HandleLValueMember(Info, E, LVal&: Subobject, FD: I, RL: &Layout))
10176 return false;
10177
10178 ImplicitValueInitExpr VIE(I->getType());
10179 if (!EvaluateInPlace(
10180 Result.getStructField(i: I->getFieldIndex()), Info, Subobject, &VIE))
10181 return false;
10182 }
10183
10184 return true;
10185}
10186
10187bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) {
10188 const RecordDecl *RD = T->castAs<RecordType>()->getDecl();
10189 if (RD->isInvalidDecl()) return false;
10190 if (RD->isUnion()) {
10191 // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
10192 // object's first non-static named data member is zero-initialized
10193 RecordDecl::field_iterator I = RD->field_begin();
10194 while (I != RD->field_end() && (*I)->isUnnamedBitfield())
10195 ++I;
10196 if (I == RD->field_end()) {
10197 Result = APValue((const FieldDecl*)nullptr);
10198 return true;
10199 }
10200
10201 LValue Subobject = This;
10202 if (!HandleLValueMember(Info, E, LVal&: Subobject, FD: *I))
10203 return false;
10204 Result = APValue(*I);
10205 ImplicitValueInitExpr VIE(I->getType());
10206 return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
10207 }
10208
10209 if (isa<CXXRecordDecl>(Val: RD) && cast<CXXRecordDecl>(Val: RD)->getNumVBases()) {
10210 Info.FFDiag(E, diag::note_constexpr_virtual_base) << RD;
10211 return false;
10212 }
10213
10214 return HandleClassZeroInitialization(Info, E, RD, This, Result);
10215}
10216
10217bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
10218 switch (E->getCastKind()) {
10219 default:
10220 return ExprEvaluatorBaseTy::VisitCastExpr(E);
10221
10222 case CK_ConstructorConversion:
10223 return Visit(E->getSubExpr());
10224
10225 case CK_DerivedToBase:
10226 case CK_UncheckedDerivedToBase: {
10227 APValue DerivedObject;
10228 if (!Evaluate(Result&: DerivedObject, Info, E: E->getSubExpr()))
10229 return false;
10230 if (!DerivedObject.isStruct())
10231 return Error(E: E->getSubExpr());
10232
10233 // Derived-to-base rvalue conversion: just slice off the derived part.
10234 APValue *Value = &DerivedObject;
10235 const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
10236 for (CastExpr::path_const_iterator PathI = E->path_begin(),
10237 PathE = E->path_end(); PathI != PathE; ++PathI) {
10238 assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
10239 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
10240 Value = &Value->getStructBase(i: getBaseIndex(Derived: RD, Base));
10241 RD = Base;
10242 }
10243 Result = *Value;
10244 return true;
10245 }
10246 }
10247}
10248
10249bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
10250 if (E->isTransparent())
10251 return Visit(E->getInit(Init: 0));
10252 return VisitCXXParenListOrInitListExpr(E, E->inits());
10253}
10254
10255bool RecordExprEvaluator::VisitCXXParenListOrInitListExpr(
10256 const Expr *ExprToVisit, ArrayRef<Expr *> Args) {
10257 const RecordDecl *RD =
10258 ExprToVisit->getType()->castAs<RecordType>()->getDecl();
10259 if (RD->isInvalidDecl()) return false;
10260 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(D: RD);
10261 auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD);
10262
10263 EvalInfo::EvaluatingConstructorRAII EvalObj(
10264 Info,
10265 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
10266 CXXRD && CXXRD->getNumBases());
10267
10268 if (RD->isUnion()) {
10269 const FieldDecl *Field;
10270 if (auto *ILE = dyn_cast<InitListExpr>(Val: ExprToVisit)) {
10271 Field = ILE->getInitializedFieldInUnion();
10272 } else if (auto *PLIE = dyn_cast<CXXParenListInitExpr>(Val: ExprToVisit)) {
10273 Field = PLIE->getInitializedFieldInUnion();
10274 } else {
10275 llvm_unreachable(
10276 "Expression is neither an init list nor a C++ paren list");
10277 }
10278
10279 Result = APValue(Field);
10280 if (!Field)
10281 return true;
10282
10283 // If the initializer list for a union does not contain any elements, the
10284 // first element of the union is value-initialized.
10285 // FIXME: The element should be initialized from an initializer list.
10286 // Is this difference ever observable for initializer lists which
10287 // we don't build?
10288 ImplicitValueInitExpr VIE(Field->getType());
10289 const Expr *InitExpr = Args.empty() ? &VIE : Args[0];
10290
10291 LValue Subobject = This;
10292 if (!HandleLValueMember(Info, E: InitExpr, LVal&: Subobject, FD: Field, RL: &Layout))
10293 return false;
10294
10295 // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
10296 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
10297 isa<CXXDefaultInitExpr>(Val: InitExpr));
10298
10299 if (EvaluateInPlace(Result&: Result.getUnionValue(), Info, This: Subobject, E: InitExpr)) {
10300 if (Field->isBitField())
10301 return truncateBitfieldValue(Info, E: InitExpr, Value&: Result.getUnionValue(),
10302 FD: Field);
10303 return true;
10304 }
10305
10306 return false;
10307 }
10308
10309 if (!Result.hasValue())
10310 Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0,
10311 std::distance(first: RD->field_begin(), last: RD->field_end()));
10312 unsigned ElementNo = 0;
10313 bool Success = true;
10314
10315 // Initialize base classes.
10316 if (CXXRD && CXXRD->getNumBases()) {
10317 for (const auto &Base : CXXRD->bases()) {
10318 assert(ElementNo < Args.size() && "missing init for base class");
10319 const Expr *Init = Args[ElementNo];
10320
10321 LValue Subobject = This;
10322 if (!HandleLValueBase(Info, E: Init, Obj&: Subobject, DerivedDecl: CXXRD, Base: &Base))
10323 return false;
10324
10325 APValue &FieldVal = Result.getStructBase(i: ElementNo);
10326 if (!EvaluateInPlace(Result&: FieldVal, Info, This: Subobject, E: Init)) {
10327 if (!Info.noteFailure())
10328 return false;
10329 Success = false;
10330 }
10331 ++ElementNo;
10332 }
10333
10334 EvalObj.finishedConstructingBases();
10335 }
10336
10337 // Initialize members.
10338 for (const auto *Field : RD->fields()) {
10339 // Anonymous bit-fields are not considered members of the class for
10340 // purposes of aggregate initialization.
10341 if (Field->isUnnamedBitfield())
10342 continue;
10343
10344 LValue Subobject = This;
10345
10346 bool HaveInit = ElementNo < Args.size();
10347
10348 // FIXME: Diagnostics here should point to the end of the initializer
10349 // list, not the start.
10350 if (!HandleLValueMember(Info, E: HaveInit ? Args[ElementNo] : ExprToVisit,
10351 LVal&: Subobject, FD: Field, RL: &Layout))
10352 return false;
10353
10354 // Perform an implicit value-initialization for members beyond the end of
10355 // the initializer list.
10356 ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
10357 const Expr *Init = HaveInit ? Args[ElementNo++] : &VIE;
10358
10359 if (Field->getType()->isIncompleteArrayType()) {
10360 if (auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType())) {
10361 if (!CAT->getSize().isZero()) {
10362 // Bail out for now. This might sort of "work", but the rest of the
10363 // code isn't really prepared to handle it.
10364 Info.FFDiag(Init, diag::note_constexpr_unsupported_flexible_array);
10365 return false;
10366 }
10367 }
10368 }
10369
10370 // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
10371 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
10372 isa<CXXDefaultInitExpr>(Val: Init));
10373
10374 APValue &FieldVal = Result.getStructField(i: Field->getFieldIndex());
10375 if (!EvaluateInPlace(Result&: FieldVal, Info, This: Subobject, E: Init) ||
10376 (Field->isBitField() && !truncateBitfieldValue(Info, E: Init,
10377 Value&: FieldVal, FD: Field))) {
10378 if (!Info.noteFailure())
10379 return false;
10380 Success = false;
10381 }
10382 }
10383
10384 EvalObj.finishedConstructingFields();
10385
10386 return Success;
10387}
10388
10389bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
10390 QualType T) {
10391 // Note that E's type is not necessarily the type of our class here; we might
10392 // be initializing an array element instead.
10393 const CXXConstructorDecl *FD = E->getConstructor();
10394 if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
10395
10396 bool ZeroInit = E->requiresZeroInitialization();
10397 if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
10398 // If we've already performed zero-initialization, we're already done.
10399 if (Result.hasValue())
10400 return true;
10401
10402 if (ZeroInit)
10403 return ZeroInitialization(E, T);
10404
10405 return handleDefaultInitValue(T, Result);
10406 }
10407
10408 const FunctionDecl *Definition = nullptr;
10409 auto Body = FD->getBody(Definition);
10410
10411 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
10412 return false;
10413
10414 // Avoid materializing a temporary for an elidable copy/move constructor.
10415 if (E->isElidable() && !ZeroInit) {
10416 // FIXME: This only handles the simplest case, where the source object
10417 // is passed directly as the first argument to the constructor.
10418 // This should also handle stepping though implicit casts and
10419 // and conversion sequences which involve two steps, with a
10420 // conversion operator followed by a converting constructor.
10421 const Expr *SrcObj = E->getArg(Arg: 0);
10422 assert(SrcObj->isTemporaryObject(Info.Ctx, FD->getParent()));
10423 assert(Info.Ctx.hasSameUnqualifiedType(E->getType(), SrcObj->getType()));
10424 if (const MaterializeTemporaryExpr *ME =
10425 dyn_cast<MaterializeTemporaryExpr>(Val: SrcObj))
10426 return Visit(ME->getSubExpr());
10427 }
10428
10429 if (ZeroInit && !ZeroInitialization(E, T))
10430 return false;
10431
10432 auto Args = llvm::ArrayRef(E->getArgs(), E->getNumArgs());
10433 return HandleConstructorCall(E, This, Args,
10434 cast<CXXConstructorDecl>(Val: Definition), Info,
10435 Result);
10436}
10437
10438bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr(
10439 const CXXInheritedCtorInitExpr *E) {
10440 if (!Info.CurrentCall) {
10441 assert(Info.checkingPotentialConstantExpression());
10442 return false;
10443 }
10444
10445 const CXXConstructorDecl *FD = E->getConstructor();
10446 if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl())
10447 return false;
10448
10449 const FunctionDecl *Definition = nullptr;
10450 auto Body = FD->getBody(Definition);
10451
10452 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
10453 return false;
10454
10455 return HandleConstructorCall(E, This, Info.CurrentCall->Arguments,
10456 cast<CXXConstructorDecl>(Val: Definition), Info,
10457 Result);
10458}
10459
10460bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
10461 const CXXStdInitializerListExpr *E) {
10462 const ConstantArrayType *ArrayType =
10463 Info.Ctx.getAsConstantArrayType(T: E->getSubExpr()->getType());
10464
10465 LValue Array;
10466 if (!EvaluateLValue(E: E->getSubExpr(), Result&: Array, Info))
10467 return false;
10468
10469 assert(ArrayType && "unexpected type for array initializer");
10470
10471 // Get a pointer to the first element of the array.
10472 Array.addArray(Info, E, ArrayType);
10473
10474 auto InvalidType = [&] {
10475 Info.FFDiag(E, diag::note_constexpr_unsupported_layout)
10476 << E->getType();
10477 return false;
10478 };
10479
10480 // FIXME: Perform the checks on the field types in SemaInit.
10481 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
10482 RecordDecl::field_iterator Field = Record->field_begin();
10483 if (Field == Record->field_end())
10484 return InvalidType();
10485
10486 // Start pointer.
10487 if (!Field->getType()->isPointerType() ||
10488 !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
10489 ArrayType->getElementType()))
10490 return InvalidType();
10491
10492 // FIXME: What if the initializer_list type has base classes, etc?
10493 Result = APValue(APValue::UninitStruct(), 0, 2);
10494 Array.moveInto(V&: Result.getStructField(i: 0));
10495
10496 if (++Field == Record->field_end())
10497 return InvalidType();
10498
10499 if (Field->getType()->isPointerType() &&
10500 Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
10501 ArrayType->getElementType())) {
10502 // End pointer.
10503 if (!HandleLValueArrayAdjustment(Info, E, Array,
10504 ArrayType->getElementType(),
10505 ArrayType->getSize().getZExtValue()))
10506 return false;
10507 Array.moveInto(V&: Result.getStructField(i: 1));
10508 } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
10509 // Length.
10510 Result.getStructField(i: 1) = APValue(APSInt(ArrayType->getSize()));
10511 else
10512 return InvalidType();
10513
10514 if (++Field != Record->field_end())
10515 return InvalidType();
10516
10517 return true;
10518}
10519
10520bool RecordExprEvaluator::VisitLambdaExpr(const LambdaExpr *E) {
10521 const CXXRecordDecl *ClosureClass = E->getLambdaClass();
10522 if (ClosureClass->isInvalidDecl())
10523 return false;
10524
10525 const size_t NumFields =
10526 std::distance(ClosureClass->field_begin(), ClosureClass->field_end());
10527
10528 assert(NumFields == (size_t)std::distance(E->capture_init_begin(),
10529 E->capture_init_end()) &&
10530 "The number of lambda capture initializers should equal the number of "
10531 "fields within the closure type");
10532
10533 Result = APValue(APValue::UninitStruct(), /*NumBases*/0, NumFields);
10534 // Iterate through all the lambda's closure object's fields and initialize
10535 // them.
10536 auto *CaptureInitIt = E->capture_init_begin();
10537 bool Success = true;
10538 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(ClosureClass);
10539 for (const auto *Field : ClosureClass->fields()) {
10540 assert(CaptureInitIt != E->capture_init_end());
10541 // Get the initializer for this field
10542 Expr *const CurFieldInit = *CaptureInitIt++;
10543
10544 // If there is no initializer, either this is a VLA or an error has
10545 // occurred.
10546 if (!CurFieldInit)
10547 return Error(E);
10548
10549 LValue Subobject = This;
10550
10551 if (!HandleLValueMember(Info, E, Subobject, Field, &Layout))
10552 return false;
10553
10554 APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
10555 if (!EvaluateInPlace(FieldVal, Info, Subobject, CurFieldInit)) {
10556 if (!Info.keepEvaluatingAfterFailure())
10557 return false;
10558 Success = false;
10559 }
10560 }
10561 return Success;
10562}
10563
10564static bool EvaluateRecord(const Expr *E, const LValue &This,
10565 APValue &Result, EvalInfo &Info) {
10566 assert(!E->isValueDependent());
10567 assert(E->isPRValue() && E->getType()->isRecordType() &&
10568 "can't evaluate expression as a record rvalue");
10569 return RecordExprEvaluator(Info, This, Result).Visit(E);
10570}
10571
10572//===----------------------------------------------------------------------===//
10573// Temporary Evaluation
10574//
10575// Temporaries are represented in the AST as rvalues, but generally behave like
10576// lvalues. The full-object of which the temporary is a subobject is implicitly
10577// materialized so that a reference can bind to it.
10578//===----------------------------------------------------------------------===//
10579namespace {
10580class TemporaryExprEvaluator
10581 : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
10582public:
10583 TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
10584 LValueExprEvaluatorBaseTy(Info, Result, false) {}
10585
10586 /// Visit an expression which constructs the value of this temporary.
10587 bool VisitConstructExpr(const Expr *E) {
10588 APValue &Value = Info.CurrentCall->createTemporary(
10589 Key: E, T: E->getType(), Scope: ScopeKind::FullExpression, LV&: Result);
10590 return EvaluateInPlace(Result&: Value, Info, This: Result, E);
10591 }
10592
10593 bool VisitCastExpr(const CastExpr *E) {
10594 switch (E->getCastKind()) {
10595 default:
10596 return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
10597
10598 case CK_ConstructorConversion:
10599 return VisitConstructExpr(E: E->getSubExpr());
10600 }
10601 }
10602 bool VisitInitListExpr(const InitListExpr *E) {
10603 return VisitConstructExpr(E);
10604 }
10605 bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
10606 return VisitConstructExpr(E);
10607 }
10608 bool VisitCallExpr(const CallExpr *E) {
10609 return VisitConstructExpr(E);
10610 }
10611 bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) {
10612 return VisitConstructExpr(E);
10613 }
10614 bool VisitLambdaExpr(const LambdaExpr *E) {
10615 return VisitConstructExpr(E);
10616 }
10617};
10618} // end anonymous namespace
10619
10620/// Evaluate an expression of record type as a temporary.
10621static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
10622 assert(!E->isValueDependent());
10623 assert(E->isPRValue() && E->getType()->isRecordType());
10624 return TemporaryExprEvaluator(Info, Result).Visit(E);
10625}
10626
10627//===----------------------------------------------------------------------===//
10628// Vector Evaluation
10629//===----------------------------------------------------------------------===//
10630
10631namespace {
10632 class VectorExprEvaluator
10633 : public ExprEvaluatorBase<VectorExprEvaluator> {
10634 APValue &Result;
10635 public:
10636
10637 VectorExprEvaluator(EvalInfo &info, APValue &Result)
10638 : ExprEvaluatorBaseTy(info), Result(Result) {}
10639
10640 bool Success(ArrayRef<APValue> V, const Expr *E) {
10641 assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
10642 // FIXME: remove this APValue copy.
10643 Result = APValue(V.data(), V.size());
10644 return true;
10645 }
10646 bool Success(const APValue &V, const Expr *E) {
10647 assert(V.isVector());
10648 Result = V;
10649 return true;
10650 }
10651 bool ZeroInitialization(const Expr *E);
10652
10653 bool VisitUnaryReal(const UnaryOperator *E)
10654 { return Visit(E->getSubExpr()); }
10655 bool VisitCastExpr(const CastExpr* E);
10656 bool VisitInitListExpr(const InitListExpr *E);
10657 bool VisitUnaryImag(const UnaryOperator *E);
10658 bool VisitBinaryOperator(const BinaryOperator *E);
10659 bool VisitUnaryOperator(const UnaryOperator *E);
10660 // FIXME: Missing: conditional operator (for GNU
10661 // conditional select), shufflevector, ExtVectorElementExpr
10662 };
10663} // end anonymous namespace
10664
10665static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
10666 assert(E->isPRValue() && E->getType()->isVectorType() &&
10667 "not a vector prvalue");
10668 return VectorExprEvaluator(Info, Result).Visit(E);
10669}
10670
10671bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) {
10672 const VectorType *VTy = E->getType()->castAs<VectorType>();
10673 unsigned NElts = VTy->getNumElements();
10674
10675 const Expr *SE = E->getSubExpr();
10676 QualType SETy = SE->getType();
10677
10678 switch (E->getCastKind()) {
10679 case CK_VectorSplat: {
10680 APValue Val = APValue();
10681 if (SETy->isIntegerType()) {
10682 APSInt IntResult;
10683 if (!EvaluateInteger(E: SE, Result&: IntResult, Info))
10684 return false;
10685 Val = APValue(std::move(IntResult));
10686 } else if (SETy->isRealFloatingType()) {
10687 APFloat FloatResult(0.0);
10688 if (!EvaluateFloat(E: SE, Result&: FloatResult, Info))
10689 return false;
10690 Val = APValue(std::move(FloatResult));
10691 } else {
10692 return Error(E);
10693 }
10694
10695 // Splat and create vector APValue.
10696 SmallVector<APValue, 4> Elts(NElts, Val);
10697 return Success(Elts, E);
10698 }
10699 case CK_BitCast: {
10700 APValue SVal;
10701 if (!Evaluate(Result&: SVal, Info, E: SE))
10702 return false;
10703
10704 if (!SVal.isInt() && !SVal.isFloat() && !SVal.isVector()) {
10705 // Give up if the input isn't an int, float, or vector. For example, we
10706 // reject "(v4i16)(intptr_t)&a".
10707 Info.FFDiag(E, diag::note_constexpr_invalid_cast)
10708 << 2 << Info.Ctx.getLangOpts().CPlusPlus;
10709 return false;
10710 }
10711
10712 if (!handleRValueToRValueBitCast(Info, DestValue&: Result, SourceRValue: SVal, BCE: E))
10713 return false;
10714
10715 return true;
10716 }
10717 default:
10718 return ExprEvaluatorBaseTy::VisitCastExpr(E);
10719 }
10720}
10721
10722bool
10723VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
10724 const VectorType *VT = E->getType()->castAs<VectorType>();
10725 unsigned NumInits = E->getNumInits();
10726 unsigned NumElements = VT->getNumElements();
10727
10728 QualType EltTy = VT->getElementType();
10729 SmallVector<APValue, 4> Elements;
10730
10731 // The number of initializers can be less than the number of
10732 // vector elements. For OpenCL, this can be due to nested vector
10733 // initialization. For GCC compatibility, missing trailing elements
10734 // should be initialized with zeroes.
10735 unsigned CountInits = 0, CountElts = 0;
10736 while (CountElts < NumElements) {
10737 // Handle nested vector initialization.
10738 if (CountInits < NumInits
10739 && E->getInit(Init: CountInits)->getType()->isVectorType()) {
10740 APValue v;
10741 if (!EvaluateVector(E: E->getInit(Init: CountInits), Result&: v, Info))
10742 return Error(E);
10743 unsigned vlen = v.getVectorLength();
10744 for (unsigned j = 0; j < vlen; j++)
10745 Elements.push_back(Elt: v.getVectorElt(I: j));
10746 CountElts += vlen;
10747 } else if (EltTy->isIntegerType()) {
10748 llvm::APSInt sInt(32);
10749 if (CountInits < NumInits) {
10750 if (!EvaluateInteger(E: E->getInit(Init: CountInits), Result&: sInt, Info))
10751 return false;
10752 } else // trailing integer zero.
10753 sInt = Info.Ctx.MakeIntValue(Value: 0, Type: EltTy);
10754 Elements.push_back(Elt: APValue(sInt));
10755 CountElts++;
10756 } else {
10757 llvm::APFloat f(0.0);
10758 if (CountInits < NumInits) {
10759 if (!EvaluateFloat(E: E->getInit(Init: CountInits), Result&: f, Info))
10760 return false;
10761 } else // trailing float zero.
10762 f = APFloat::getZero(Sem: Info.Ctx.getFloatTypeSemantics(T: EltTy));
10763 Elements.push_back(Elt: APValue(f));
10764 CountElts++;
10765 }
10766 CountInits++;
10767 }
10768 return Success(Elements, E);
10769}
10770
10771bool
10772VectorExprEvaluator::ZeroInitialization(const Expr *E) {
10773 const auto *VT = E->getType()->castAs<VectorType>();
10774 QualType EltTy = VT->getElementType();
10775 APValue ZeroElement;
10776 if (EltTy->isIntegerType())
10777 ZeroElement = APValue(Info.Ctx.MakeIntValue(Value: 0, Type: EltTy));
10778 else
10779 ZeroElement =
10780 APValue(APFloat::getZero(Sem: Info.Ctx.getFloatTypeSemantics(T: EltTy)));
10781
10782 SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
10783 return Success(V: Elements, E);
10784}
10785
10786bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
10787 VisitIgnoredValue(E: E->getSubExpr());
10788 return ZeroInitialization(E);
10789}
10790
10791bool VectorExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
10792 BinaryOperatorKind Op = E->getOpcode();
10793 assert(Op != BO_PtrMemD && Op != BO_PtrMemI && Op != BO_Cmp &&
10794 "Operation not supported on vector types");
10795
10796 if (Op == BO_Comma)
10797 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
10798
10799 Expr *LHS = E->getLHS();
10800 Expr *RHS = E->getRHS();
10801
10802 assert(LHS->getType()->isVectorType() && RHS->getType()->isVectorType() &&
10803 "Must both be vector types");
10804 // Checking JUST the types are the same would be fine, except shifts don't
10805 // need to have their types be the same (since you always shift by an int).
10806 assert(LHS->getType()->castAs<VectorType>()->getNumElements() ==
10807 E->getType()->castAs<VectorType>()->getNumElements() &&
10808 RHS->getType()->castAs<VectorType>()->getNumElements() ==
10809 E->getType()->castAs<VectorType>()->getNumElements() &&
10810 "All operands must be the same size.");
10811
10812 APValue LHSValue;
10813 APValue RHSValue;
10814 bool LHSOK = Evaluate(Result&: LHSValue, Info, E: LHS);
10815 if (!LHSOK && !Info.noteFailure())
10816 return false;
10817 if (!Evaluate(Result&: RHSValue, Info, E: RHS) || !LHSOK)
10818 return false;
10819
10820 if (!handleVectorVectorBinOp(Info, E, Opcode: Op, LHSValue, RHSValue))
10821 return false;
10822
10823 return Success(LHSValue, E);
10824}
10825
10826static std::optional<APValue> handleVectorUnaryOperator(ASTContext &Ctx,
10827 QualType ResultTy,
10828 UnaryOperatorKind Op,
10829 APValue Elt) {
10830 switch (Op) {
10831 case UO_Plus:
10832 // Nothing to do here.
10833 return Elt;
10834 case UO_Minus:
10835 if (Elt.getKind() == APValue::Int) {
10836 Elt.getInt().negate();
10837 } else {
10838 assert(Elt.getKind() == APValue::Float &&
10839 "Vector can only be int or float type");
10840 Elt.getFloat().changeSign();
10841 }
10842 return Elt;
10843 case UO_Not:
10844 // This is only valid for integral types anyway, so we don't have to handle
10845 // float here.
10846 assert(Elt.getKind() == APValue::Int &&
10847 "Vector operator ~ can only be int");
10848 Elt.getInt().flipAllBits();
10849 return Elt;
10850 case UO_LNot: {
10851 if (Elt.getKind() == APValue::Int) {
10852 Elt.getInt() = !Elt.getInt();
10853 // operator ! on vectors returns -1 for 'truth', so negate it.
10854 Elt.getInt().negate();
10855 return Elt;
10856 }
10857 assert(Elt.getKind() == APValue::Float &&
10858 "Vector can only be int or float type");
10859 // Float types result in an int of the same size, but -1 for true, or 0 for
10860 // false.
10861 APSInt EltResult{Ctx.getIntWidth(T: ResultTy),
10862 ResultTy->isUnsignedIntegerType()};
10863 if (Elt.getFloat().isZero())
10864 EltResult.setAllBits();
10865 else
10866 EltResult.clearAllBits();
10867
10868 return APValue{EltResult};
10869 }
10870 default:
10871 // FIXME: Implement the rest of the unary operators.
10872 return std::nullopt;
10873 }
10874}
10875
10876bool VectorExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
10877 Expr *SubExpr = E->getSubExpr();
10878 const auto *VD = SubExpr->getType()->castAs<VectorType>();
10879 // This result element type differs in the case of negating a floating point
10880 // vector, since the result type is the a vector of the equivilant sized
10881 // integer.
10882 const QualType ResultEltTy = VD->getElementType();
10883 UnaryOperatorKind Op = E->getOpcode();
10884
10885 APValue SubExprValue;
10886 if (!Evaluate(Result&: SubExprValue, Info, E: SubExpr))
10887 return false;
10888
10889 // FIXME: This vector evaluator someday needs to be changed to be LValue
10890 // aware/keep LValue information around, rather than dealing with just vector
10891 // types directly. Until then, we cannot handle cases where the operand to
10892 // these unary operators is an LValue. The only case I've been able to see
10893 // cause this is operator++ assigning to a member expression (only valid in
10894 // altivec compilations) in C mode, so this shouldn't limit us too much.
10895 if (SubExprValue.isLValue())
10896 return false;
10897
10898 assert(SubExprValue.getVectorLength() == VD->getNumElements() &&
10899 "Vector length doesn't match type?");
10900
10901 SmallVector<APValue, 4> ResultElements;
10902 for (unsigned EltNum = 0; EltNum < VD->getNumElements(); ++EltNum) {
10903 std::optional<APValue> Elt = handleVectorUnaryOperator(
10904 Ctx&: Info.Ctx, ResultTy: ResultEltTy, Op, Elt: SubExprValue.getVectorElt(I: EltNum));
10905 if (!Elt)
10906 return false;
10907 ResultElements.push_back(Elt: *Elt);
10908 }
10909 return Success(APValue(ResultElements.data(), ResultElements.size()), E);
10910}
10911
10912//===----------------------------------------------------------------------===//
10913// Array Evaluation
10914//===----------------------------------------------------------------------===//
10915
10916namespace {
10917 class ArrayExprEvaluator
10918 : public ExprEvaluatorBase<ArrayExprEvaluator> {
10919 const LValue &This;
10920 APValue &Result;
10921 public:
10922
10923 ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
10924 : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
10925
10926 bool Success(const APValue &V, const Expr *E) {
10927 assert(V.isArray() && "expected array");
10928 Result = V;
10929 return true;
10930 }
10931
10932 bool ZeroInitialization(const Expr *E) {
10933 const ConstantArrayType *CAT =
10934 Info.Ctx.getAsConstantArrayType(T: E->getType());
10935 if (!CAT) {
10936 if (E->getType()->isIncompleteArrayType()) {
10937 // We can be asked to zero-initialize a flexible array member; this
10938 // is represented as an ImplicitValueInitExpr of incomplete array
10939 // type. In this case, the array has zero elements.
10940 Result = APValue(APValue::UninitArray(), 0, 0);
10941 return true;
10942 }
10943 // FIXME: We could handle VLAs here.
10944 return Error(E);
10945 }
10946
10947 Result = APValue(APValue::UninitArray(), 0,
10948 CAT->getSize().getZExtValue());
10949 if (!Result.hasArrayFiller())
10950 return true;
10951
10952 // Zero-initialize all elements.
10953 LValue Subobject = This;
10954 Subobject.addArray(Info, E, CAT);
10955 ImplicitValueInitExpr VIE(CAT->getElementType());
10956 return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
10957 }
10958
10959 bool VisitCallExpr(const CallExpr *E) {
10960 return handleCallExpr(E, Result, ResultSlot: &This);
10961 }
10962 bool VisitInitListExpr(const InitListExpr *E,
10963 QualType AllocType = QualType());
10964 bool VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E);
10965 bool VisitCXXConstructExpr(const CXXConstructExpr *E);
10966 bool VisitCXXConstructExpr(const CXXConstructExpr *E,
10967 const LValue &Subobject,
10968 APValue *Value, QualType Type);
10969 bool VisitStringLiteral(const StringLiteral *E,
10970 QualType AllocType = QualType()) {
10971 expandStringLiteral(Info, S: E, Result, AllocType);
10972 return true;
10973 }
10974 bool VisitCXXParenListInitExpr(const CXXParenListInitExpr *E);
10975 bool VisitCXXParenListOrInitListExpr(const Expr *ExprToVisit,
10976 ArrayRef<Expr *> Args,
10977 const Expr *ArrayFiller,
10978 QualType AllocType = QualType());
10979 };
10980} // end anonymous namespace
10981
10982static bool EvaluateArray(const Expr *E, const LValue &This,
10983 APValue &Result, EvalInfo &Info) {
10984 assert(!E->isValueDependent());
10985 assert(E->isPRValue() && E->getType()->isArrayType() &&
10986 "not an array prvalue");
10987 return ArrayExprEvaluator(Info, This, Result).Visit(E);
10988}
10989
10990static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
10991 APValue &Result, const InitListExpr *ILE,
10992 QualType AllocType) {
10993 assert(!ILE->isValueDependent());
10994 assert(ILE->isPRValue() && ILE->getType()->isArrayType() &&
10995 "not an array prvalue");
10996 return ArrayExprEvaluator(Info, This, Result)
10997 .VisitInitListExpr(E: ILE, AllocType);
10998}
10999
11000static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This,
11001 APValue &Result,
11002 const CXXConstructExpr *CCE,
11003 QualType AllocType) {
11004 assert(!CCE->isValueDependent());
11005 assert(CCE->isPRValue() && CCE->getType()->isArrayType() &&
11006 "not an array prvalue");
11007 return ArrayExprEvaluator(Info, This, Result)
11008 .VisitCXXConstructExpr(E: CCE, Subobject: This, Value: &Result, Type: AllocType);
11009}
11010
11011// Return true iff the given array filler may depend on the element index.
11012static bool MaybeElementDependentArrayFiller(const Expr *FillerExpr) {
11013 // For now, just allow non-class value-initialization and initialization
11014 // lists comprised of them.
11015 if (isa<ImplicitValueInitExpr>(Val: FillerExpr))
11016 return false;
11017 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Val: FillerExpr)) {
11018 for (unsigned I = 0, E = ILE->getNumInits(); I != E; ++I) {
11019 if (MaybeElementDependentArrayFiller(FillerExpr: ILE->getInit(Init: I)))
11020 return true;
11021 }
11022
11023 if (ILE->hasArrayFiller() &&
11024 MaybeElementDependentArrayFiller(FillerExpr: ILE->getArrayFiller()))
11025 return true;
11026
11027 return false;
11028 }
11029 return true;
11030}
11031
11032bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E,
11033 QualType AllocType) {
11034 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
11035 T: AllocType.isNull() ? E->getType() : AllocType);
11036 if (!CAT)
11037 return Error(E);
11038
11039 // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
11040 // an appropriately-typed string literal enclosed in braces.
11041 if (E->isStringLiteralInit()) {
11042 auto *SL = dyn_cast<StringLiteral>(Val: E->getInit(Init: 0)->IgnoreParenImpCasts());
11043 // FIXME: Support ObjCEncodeExpr here once we support it in
11044 // ArrayExprEvaluator generally.
11045 if (!SL)
11046 return Error(E);
11047 return VisitStringLiteral(E: SL, AllocType);
11048 }
11049 // Any other transparent list init will need proper handling of the
11050 // AllocType; we can't just recurse to the inner initializer.
11051 assert(!E->isTransparent() &&
11052 "transparent array list initialization is not string literal init?");
11053
11054 return VisitCXXParenListOrInitListExpr(E, E->inits(), E->getArrayFiller(),
11055 AllocType);
11056}
11057
11058bool ArrayExprEvaluator::VisitCXXParenListOrInitListExpr(
11059 const Expr *ExprToVisit, ArrayRef<Expr *> Args, const Expr *ArrayFiller,
11060 QualType AllocType) {
11061 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
11062 T: AllocType.isNull() ? ExprToVisit->getType() : AllocType);
11063
11064 bool Success = true;
11065
11066 assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
11067 "zero-initialized array shouldn't have any initialized elts");
11068 APValue Filler;
11069 if (Result.isArray() && Result.hasArrayFiller())
11070 Filler = Result.getArrayFiller();
11071
11072 unsigned NumEltsToInit = Args.size();
11073 unsigned NumElts = CAT->getSize().getZExtValue();
11074
11075 // If the initializer might depend on the array index, run it for each
11076 // array element.
11077 if (NumEltsToInit != NumElts && MaybeElementDependentArrayFiller(FillerExpr: ArrayFiller))
11078 NumEltsToInit = NumElts;
11079
11080 LLVM_DEBUG(llvm::dbgs() << "The number of elements to initialize: "
11081 << NumEltsToInit << ".\n");
11082
11083 Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
11084
11085 // If the array was previously zero-initialized, preserve the
11086 // zero-initialized values.
11087 if (Filler.hasValue()) {
11088 for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
11089 Result.getArrayInitializedElt(I) = Filler;
11090 if (Result.hasArrayFiller())
11091 Result.getArrayFiller() = Filler;
11092 }
11093
11094 LValue Subobject = This;
11095 Subobject.addArray(Info, E: ExprToVisit, CAT);
11096 for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
11097 const Expr *Init = Index < Args.size() ? Args[Index] : ArrayFiller;
11098 if (!EvaluateInPlace(Result&: Result.getArrayInitializedElt(I: Index),
11099 Info, This: Subobject, E: Init) ||
11100 !HandleLValueArrayAdjustment(Info, Init, Subobject,
11101 CAT->getElementType(), 1)) {
11102 if (!Info.noteFailure())
11103 return false;
11104 Success = false;
11105 }
11106 }
11107
11108 if (!Result.hasArrayFiller())
11109 return Success;
11110
11111 // If we get here, we have a trivial filler, which we can just evaluate
11112 // once and splat over the rest of the array elements.
11113 assert(ArrayFiller && "no array filler for incomplete init list");
11114 return EvaluateInPlace(Result&: Result.getArrayFiller(), Info, This: Subobject,
11115 E: ArrayFiller) &&
11116 Success;
11117}
11118
11119bool ArrayExprEvaluator::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
11120 LValue CommonLV;
11121 if (E->getCommonExpr() &&
11122 !Evaluate(Result&: Info.CurrentCall->createTemporary(
11123 Key: E->getCommonExpr(),
11124 T: getStorageType(Info.Ctx, E->getCommonExpr()),
11125 Scope: ScopeKind::FullExpression, LV&: CommonLV),
11126 Info, E: E->getCommonExpr()->getSourceExpr()))
11127 return false;
11128
11129 auto *CAT = cast<ConstantArrayType>(E->getType()->castAsArrayTypeUnsafe());
11130
11131 uint64_t Elements = CAT->getSize().getZExtValue();
11132 Result = APValue(APValue::UninitArray(), Elements, Elements);
11133
11134 LValue Subobject = This;
11135 Subobject.addArray(Info, E, CAT: CAT);
11136
11137 bool Success = true;
11138 for (EvalInfo::ArrayInitLoopIndex Index(Info); Index != Elements; ++Index) {
11139 // C++ [class.temporary]/5
11140 // There are four contexts in which temporaries are destroyed at a different
11141 // point than the end of the full-expression. [...] The second context is
11142 // when a copy constructor is called to copy an element of an array while
11143 // the entire array is copied [...]. In either case, if the constructor has
11144 // one or more default arguments, the destruction of every temporary created
11145 // in a default argument is sequenced before the construction of the next
11146 // array element, if any.
11147 FullExpressionRAII Scope(Info);
11148
11149 if (!EvaluateInPlace(Result&: Result.getArrayInitializedElt(I: Index),
11150 Info, This: Subobject, E: E->getSubExpr()) ||
11151 !HandleLValueArrayAdjustment(Info, E, Subobject,
11152 CAT->getElementType(), 1)) {
11153 if (!Info.noteFailure())
11154 return false;
11155 Success = false;
11156 }
11157
11158 // Make sure we run the destructors too.
11159 Scope.destroy();
11160 }
11161
11162 return Success;
11163}
11164
11165bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
11166 return VisitCXXConstructExpr(E, This, &Result, E->getType());
11167}
11168
11169bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
11170 const LValue &Subobject,
11171 APValue *Value,
11172 QualType Type) {
11173 bool HadZeroInit = Value->hasValue();
11174
11175 if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(T: Type)) {
11176 unsigned FinalSize = CAT->getSize().getZExtValue();
11177
11178 // Preserve the array filler if we had prior zero-initialization.
11179 APValue Filler =
11180 HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
11181 : APValue();
11182
11183 *Value = APValue(APValue::UninitArray(), 0, FinalSize);
11184 if (FinalSize == 0)
11185 return true;
11186
11187 bool HasTrivialConstructor = CheckTrivialDefaultConstructor(
11188 Info, E->getExprLoc(), E->getConstructor(),
11189 E->requiresZeroInitialization());
11190 LValue ArrayElt = Subobject;
11191 ArrayElt.addArray(Info, E, CAT);
11192 // We do the whole initialization in two passes, first for just one element,
11193 // then for the whole array. It's possible we may find out we can't do const
11194 // init in the first pass, in which case we avoid allocating a potentially
11195 // large array. We don't do more passes because expanding array requires
11196 // copying the data, which is wasteful.
11197 for (const unsigned N : {1u, FinalSize}) {
11198 unsigned OldElts = Value->getArrayInitializedElts();
11199 if (OldElts == N)
11200 break;
11201
11202 // Expand the array to appropriate size.
11203 APValue NewValue(APValue::UninitArray(), N, FinalSize);
11204 for (unsigned I = 0; I < OldElts; ++I)
11205 NewValue.getArrayInitializedElt(I).swap(
11206 RHS&: Value->getArrayInitializedElt(I));
11207 Value->swap(RHS&: NewValue);
11208
11209 if (HadZeroInit)
11210 for (unsigned I = OldElts; I < N; ++I)
11211 Value->getArrayInitializedElt(I) = Filler;
11212
11213 if (HasTrivialConstructor && N == FinalSize && FinalSize != 1) {
11214 // If we have a trivial constructor, only evaluate it once and copy
11215 // the result into all the array elements.
11216 APValue &FirstResult = Value->getArrayInitializedElt(I: 0);
11217 for (unsigned I = OldElts; I < FinalSize; ++I)
11218 Value->getArrayInitializedElt(I) = FirstResult;
11219 } else {
11220 for (unsigned I = OldElts; I < N; ++I) {
11221 if (!VisitCXXConstructExpr(E, ArrayElt,
11222 &Value->getArrayInitializedElt(I),
11223 CAT->getElementType()) ||
11224 !HandleLValueArrayAdjustment(Info, E, ArrayElt,
11225 CAT->getElementType(), 1))
11226 return false;
11227 // When checking for const initilization any diagnostic is considered
11228 // an error.
11229 if (Info.EvalStatus.Diag && !Info.EvalStatus.Diag->empty() &&
11230 !Info.keepEvaluatingAfterFailure())
11231 return false;
11232 }
11233 }
11234 }
11235
11236 return true;
11237 }
11238
11239 if (!Type->isRecordType())
11240 return Error(E);
11241
11242 return RecordExprEvaluator(Info, Subobject, *Value)
11243 .VisitCXXConstructExpr(E, T: Type);
11244}
11245
11246bool ArrayExprEvaluator::VisitCXXParenListInitExpr(
11247 const CXXParenListInitExpr *E) {
11248 assert(dyn_cast<ConstantArrayType>(E->getType()) &&
11249 "Expression result is not a constant array type");
11250
11251 return VisitCXXParenListOrInitListExpr(E, E->getInitExprs(),
11252 E->getArrayFiller());
11253}
11254
11255//===----------------------------------------------------------------------===//
11256// Integer Evaluation
11257//
11258// As a GNU extension, we support casting pointers to sufficiently-wide integer
11259// types and back in constant folding. Integer values are thus represented
11260// either as an integer-valued APValue, or as an lvalue-valued APValue.
11261//===----------------------------------------------------------------------===//
11262
11263namespace {
11264class IntExprEvaluator
11265 : public ExprEvaluatorBase<IntExprEvaluator> {
11266 APValue &Result;
11267public:
11268 IntExprEvaluator(EvalInfo &info, APValue &result)
11269 : ExprEvaluatorBaseTy(info), Result(result) {}
11270
11271 bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
11272 assert(E->getType()->isIntegralOrEnumerationType() &&
11273 "Invalid evaluation result.");
11274 assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
11275 "Invalid evaluation result.");
11276 assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
11277 "Invalid evaluation result.");
11278 Result = APValue(SI);
11279 return true;
11280 }
11281 bool Success(const llvm::APSInt &SI, const Expr *E) {
11282 return Success(SI, E, Result);
11283 }
11284
11285 bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
11286 assert(E->getType()->isIntegralOrEnumerationType() &&
11287 "Invalid evaluation result.");
11288 assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
11289 "Invalid evaluation result.");
11290 Result = APValue(APSInt(I));
11291 Result.getInt().setIsUnsigned(
11292 E->getType()->isUnsignedIntegerOrEnumerationType());
11293 return true;
11294 }
11295 bool Success(const llvm::APInt &I, const Expr *E) {
11296 return Success(I, E, Result);
11297 }
11298
11299 bool Success(uint64_t Value, const Expr *E, APValue &Result) {
11300 assert(E->getType()->isIntegralOrEnumerationType() &&
11301 "Invalid evaluation result.");
11302 Result = APValue(Info.Ctx.MakeIntValue(Value, Type: E->getType()));
11303 return true;
11304 }
11305 bool Success(uint64_t Value, const Expr *E) {
11306 return Success(Value, E, Result);
11307 }
11308
11309 bool Success(CharUnits Size, const Expr *E) {
11310 return Success(Value: Size.getQuantity(), E);
11311 }
11312
11313 bool Success(const APValue &V, const Expr *E) {
11314 if (V.isLValue() || V.isAddrLabelDiff() || V.isIndeterminate()) {
11315 Result = V;
11316 return true;
11317 }
11318 return Success(SI: V.getInt(), E);
11319 }
11320
11321 bool ZeroInitialization(const Expr *E) { return Success(Value: 0, E); }
11322
11323 //===--------------------------------------------------------------------===//
11324 // Visitor Methods
11325 //===--------------------------------------------------------------------===//
11326
11327 bool VisitIntegerLiteral(const IntegerLiteral *E) {
11328 return Success(E->getValue(), E);
11329 }
11330 bool VisitCharacterLiteral(const CharacterLiteral *E) {
11331 return Success(E->getValue(), E);
11332 }
11333
11334 bool CheckReferencedDecl(const Expr *E, const Decl *D);
11335 bool VisitDeclRefExpr(const DeclRefExpr *E) {
11336 if (CheckReferencedDecl(E, E->getDecl()))
11337 return true;
11338
11339 return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
11340 }
11341 bool VisitMemberExpr(const MemberExpr *E) {
11342 if (CheckReferencedDecl(E, E->getMemberDecl())) {
11343 VisitIgnoredBaseExpression(E: E->getBase());
11344 return true;
11345 }
11346
11347 return ExprEvaluatorBaseTy::VisitMemberExpr(E);
11348 }
11349
11350 bool VisitCallExpr(const CallExpr *E);
11351 bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
11352 bool VisitBinaryOperator(const BinaryOperator *E);
11353 bool VisitOffsetOfExpr(const OffsetOfExpr *E);
11354 bool VisitUnaryOperator(const UnaryOperator *E);
11355
11356 bool VisitCastExpr(const CastExpr* E);
11357 bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
11358
11359 bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
11360 return Success(E->getValue(), E);
11361 }
11362
11363 bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
11364 return Success(E->getValue(), E);
11365 }
11366
11367 bool VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
11368 if (Info.ArrayInitIndex == uint64_t(-1)) {
11369 // We were asked to evaluate this subexpression independent of the
11370 // enclosing ArrayInitLoopExpr. We can't do that.
11371 Info.FFDiag(E);
11372 return false;
11373 }
11374 return Success(Info.ArrayInitIndex, E);
11375 }
11376
11377 // Note, GNU defines __null as an integer, not a pointer.
11378 bool VisitGNUNullExpr(const GNUNullExpr *E) {
11379 return ZeroInitialization(E);
11380 }
11381
11382 bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
11383 return Success(E->getValue(), E);
11384 }
11385
11386 bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
11387 return Success(E->getValue(), E);
11388 }
11389
11390 bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
11391 return Success(E->getValue(), E);
11392 }
11393
11394 bool VisitUnaryReal(const UnaryOperator *E);
11395 bool VisitUnaryImag(const UnaryOperator *E);
11396
11397 bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
11398 bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
11399 bool VisitSourceLocExpr(const SourceLocExpr *E);
11400 bool VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E);
11401 bool VisitRequiresExpr(const RequiresExpr *E);
11402 // FIXME: Missing: array subscript of vector, member of vector
11403};
11404
11405class FixedPointExprEvaluator
11406 : public ExprEvaluatorBase<FixedPointExprEvaluator> {
11407 APValue &Result;
11408
11409 public:
11410 FixedPointExprEvaluator(EvalInfo &info, APValue &result)
11411 : ExprEvaluatorBaseTy(info), Result(result) {}
11412
11413 bool Success(const llvm::APInt &I, const Expr *E) {
11414 return Success(
11415 V: APFixedPoint(I, Info.Ctx.getFixedPointSemantics(Ty: E->getType())), E);
11416 }
11417
11418 bool Success(uint64_t Value, const Expr *E) {
11419 return Success(
11420 V: APFixedPoint(Value, Info.Ctx.getFixedPointSemantics(Ty: E->getType())), E);
11421 }
11422
11423 bool Success(const APValue &V, const Expr *E) {
11424 return Success(V: V.getFixedPoint(), E);
11425 }
11426
11427 bool Success(const APFixedPoint &V, const Expr *E) {
11428 assert(E->getType()->isFixedPointType() && "Invalid evaluation result.");
11429 assert(V.getWidth() == Info.Ctx.getIntWidth(E->getType()) &&
11430 "Invalid evaluation result.");
11431 Result = APValue(V);
11432 return true;
11433 }
11434
11435 bool ZeroInitialization(const Expr *E) {
11436 return Success(Value: 0, E);
11437 }
11438
11439 //===--------------------------------------------------------------------===//
11440 // Visitor Methods
11441 //===--------------------------------------------------------------------===//
11442
11443 bool VisitFixedPointLiteral(const FixedPointLiteral *E) {
11444 return Success(E->getValue(), E);
11445 }
11446
11447 bool VisitCastExpr(const CastExpr *E);
11448 bool VisitUnaryOperator(const UnaryOperator *E);
11449 bool VisitBinaryOperator(const BinaryOperator *E);
11450};
11451} // end anonymous namespace
11452
11453/// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
11454/// produce either the integer value or a pointer.
11455///
11456/// GCC has a heinous extension which folds casts between pointer types and
11457/// pointer-sized integral types. We support this by allowing the evaluation of
11458/// an integer rvalue to produce a pointer (represented as an lvalue) instead.
11459/// Some simple arithmetic on such values is supported (they are treated much
11460/// like char*).
11461static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
11462 EvalInfo &Info) {
11463 assert(!E->isValueDependent());
11464 assert(E->isPRValue() && E->getType()->isIntegralOrEnumerationType());
11465 return IntExprEvaluator(Info, Result).Visit(E);
11466}
11467
11468static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
11469 assert(!E->isValueDependent());
11470 APValue Val;
11471 if (!EvaluateIntegerOrLValue(E, Result&: Val, Info))
11472 return false;
11473 if (!Val.isInt()) {
11474 // FIXME: It would be better to produce the diagnostic for casting
11475 // a pointer to an integer.
11476 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
11477 return false;
11478 }
11479 Result = Val.getInt();
11480 return true;
11481}
11482
11483bool IntExprEvaluator::VisitSourceLocExpr(const SourceLocExpr *E) {
11484 APValue Evaluated = E->EvaluateInContext(
11485 Ctx: Info.Ctx, DefaultExpr: Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
11486 return Success(Evaluated, E);
11487}
11488
11489static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
11490 EvalInfo &Info) {
11491 assert(!E->isValueDependent());
11492 if (E->getType()->isFixedPointType()) {
11493 APValue Val;
11494 if (!FixedPointExprEvaluator(Info, Val).Visit(E))
11495 return false;
11496 if (!Val.isFixedPoint())
11497 return false;
11498
11499 Result = Val.getFixedPoint();
11500 return true;
11501 }
11502 return false;
11503}
11504
11505static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
11506 EvalInfo &Info) {
11507 assert(!E->isValueDependent());
11508 if (E->getType()->isIntegerType()) {
11509 auto FXSema = Info.Ctx.getFixedPointSemantics(Ty: E->getType());
11510 APSInt Val;
11511 if (!EvaluateInteger(E, Result&: Val, Info))
11512 return false;
11513 Result = APFixedPoint(Val, FXSema);
11514 return true;
11515 } else if (E->getType()->isFixedPointType()) {
11516 return EvaluateFixedPoint(E, Result, Info);
11517 }
11518 return false;
11519}
11520
11521/// Check whether the given declaration can be directly converted to an integral
11522/// rvalue. If not, no diagnostic is produced; there are other things we can
11523/// try.
11524bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
11525 // Enums are integer constant exprs.
11526 if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(Val: D)) {
11527 // Check for signedness/width mismatches between E type and ECD value.
11528 bool SameSign = (ECD->getInitVal().isSigned()
11529 == E->getType()->isSignedIntegerOrEnumerationType());
11530 bool SameWidth = (ECD->getInitVal().getBitWidth()
11531 == Info.Ctx.getIntWidth(T: E->getType()));
11532 if (SameSign && SameWidth)
11533 return Success(SI: ECD->getInitVal(), E);
11534 else {
11535 // Get rid of mismatch (otherwise Success assertions will fail)
11536 // by computing a new value matching the type of E.
11537 llvm::APSInt Val = ECD->getInitVal();
11538 if (!SameSign)
11539 Val.setIsSigned(!ECD->getInitVal().isSigned());
11540 if (!SameWidth)
11541 Val = Val.extOrTrunc(width: Info.Ctx.getIntWidth(T: E->getType()));
11542 return Success(SI: Val, E);
11543 }
11544 }
11545 return false;
11546}
11547
11548/// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
11549/// as GCC.
11550GCCTypeClass EvaluateBuiltinClassifyType(QualType T,
11551 const LangOptions &LangOpts) {
11552 assert(!T->isDependentType() && "unexpected dependent type");
11553
11554 QualType CanTy = T.getCanonicalType();
11555
11556 switch (CanTy->getTypeClass()) {
11557#define TYPE(ID, BASE)
11558#define DEPENDENT_TYPE(ID, BASE) case Type::ID:
11559#define NON_CANONICAL_TYPE(ID, BASE) case Type::ID:
11560#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID:
11561#include "clang/AST/TypeNodes.inc"
11562 case Type::Auto:
11563 case Type::DeducedTemplateSpecialization:
11564 llvm_unreachable("unexpected non-canonical or dependent type");
11565
11566 case Type::Builtin:
11567 switch (cast<BuiltinType>(CanTy)->getKind()) {
11568#define BUILTIN_TYPE(ID, SINGLETON_ID)
11569#define SIGNED_TYPE(ID, SINGLETON_ID) \
11570 case BuiltinType::ID: return GCCTypeClass::Integer;
11571#define FLOATING_TYPE(ID, SINGLETON_ID) \
11572 case BuiltinType::ID: return GCCTypeClass::RealFloat;
11573#define PLACEHOLDER_TYPE(ID, SINGLETON_ID) \
11574 case BuiltinType::ID: break;
11575#include "clang/AST/BuiltinTypes.def"
11576 case BuiltinType::Void:
11577 return GCCTypeClass::Void;
11578
11579 case BuiltinType::Bool:
11580 return GCCTypeClass::Bool;
11581
11582 case BuiltinType::Char_U:
11583 case BuiltinType::UChar:
11584 case BuiltinType::WChar_U:
11585 case BuiltinType::Char8:
11586 case BuiltinType::Char16:
11587 case BuiltinType::Char32:
11588 case BuiltinType::UShort:
11589 case BuiltinType::UInt:
11590 case BuiltinType::ULong:
11591 case BuiltinType::ULongLong:
11592 case BuiltinType::UInt128:
11593 return GCCTypeClass::Integer;
11594
11595 case BuiltinType::UShortAccum:
11596 case BuiltinType::UAccum:
11597 case BuiltinType::ULongAccum:
11598 case BuiltinType::UShortFract:
11599 case BuiltinType::UFract:
11600 case BuiltinType::ULongFract:
11601 case BuiltinType::SatUShortAccum:
11602 case BuiltinType::SatUAccum:
11603 case BuiltinType::SatULongAccum:
11604 case BuiltinType::SatUShortFract:
11605 case BuiltinType::SatUFract:
11606 case BuiltinType::SatULongFract:
11607 return GCCTypeClass::None;
11608
11609 case BuiltinType::NullPtr:
11610
11611 case BuiltinType::ObjCId:
11612 case BuiltinType::ObjCClass:
11613 case BuiltinType::ObjCSel:
11614#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
11615 case BuiltinType::Id:
11616#include "clang/Basic/OpenCLImageTypes.def"
11617#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
11618 case BuiltinType::Id:
11619#include "clang/Basic/OpenCLExtensionTypes.def"
11620 case BuiltinType::OCLSampler:
11621 case BuiltinType::OCLEvent:
11622 case BuiltinType::OCLClkEvent:
11623 case BuiltinType::OCLQueue:
11624 case BuiltinType::OCLReserveID:
11625#define SVE_TYPE(Name, Id, SingletonId) \
11626 case BuiltinType::Id:
11627#include "clang/Basic/AArch64SVEACLETypes.def"
11628#define PPC_VECTOR_TYPE(Name, Id, Size) \
11629 case BuiltinType::Id:
11630#include "clang/Basic/PPCTypes.def"
11631#define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
11632#include "clang/Basic/RISCVVTypes.def"
11633#define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
11634#include "clang/Basic/WebAssemblyReferenceTypes.def"
11635 return GCCTypeClass::None;
11636
11637 case BuiltinType::Dependent:
11638 llvm_unreachable("unexpected dependent type");
11639 };
11640 llvm_unreachable("unexpected placeholder type");
11641
11642 case Type::Enum:
11643 return LangOpts.CPlusPlus ? GCCTypeClass::Enum : GCCTypeClass::Integer;
11644
11645 case Type::Pointer:
11646 case Type::ConstantArray:
11647 case Type::VariableArray:
11648 case Type::IncompleteArray:
11649 case Type::FunctionNoProto:
11650 case Type::FunctionProto:
11651 return GCCTypeClass::Pointer;
11652
11653 case Type::MemberPointer:
11654 return CanTy->isMemberDataPointerType()
11655 ? GCCTypeClass::PointerToDataMember
11656 : GCCTypeClass::PointerToMemberFunction;
11657
11658 case Type::Complex:
11659 return GCCTypeClass::Complex;
11660
11661 case Type::Record:
11662 return CanTy->isUnionType() ? GCCTypeClass::Union
11663 : GCCTypeClass::ClassOrStruct;
11664
11665 case Type::Atomic:
11666 // GCC classifies _Atomic T the same as T.
11667 return EvaluateBuiltinClassifyType(
11668 CanTy->castAs<AtomicType>()->getValueType(), LangOpts);
11669
11670 case Type::Vector:
11671 case Type::ExtVector:
11672 return GCCTypeClass::Vector;
11673
11674 case Type::BlockPointer:
11675 case Type::ConstantMatrix:
11676 case Type::ObjCObject:
11677 case Type::ObjCInterface:
11678 case Type::ObjCObjectPointer:
11679 case Type::Pipe:
11680 // Classify all other types that don't fit into the regular
11681 // classification the same way.
11682 return GCCTypeClass::None;
11683
11684 case Type::BitInt:
11685 return GCCTypeClass::BitInt;
11686
11687 case Type::LValueReference:
11688 case Type::RValueReference:
11689 llvm_unreachable("invalid type for expression");
11690 }
11691
11692 llvm_unreachable("unexpected type class");
11693}
11694
11695/// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
11696/// as GCC.
11697static GCCTypeClass
11698EvaluateBuiltinClassifyType(const CallExpr *E, const LangOptions &LangOpts) {
11699 // If no argument was supplied, default to None. This isn't
11700 // ideal, however it is what gcc does.
11701 if (E->getNumArgs() == 0)
11702 return GCCTypeClass::None;
11703
11704 // FIXME: Bizarrely, GCC treats a call with more than one argument as not
11705 // being an ICE, but still folds it to a constant using the type of the first
11706 // argument.
11707 return EvaluateBuiltinClassifyType(T: E->getArg(Arg: 0)->getType(), LangOpts);
11708}
11709
11710/// EvaluateBuiltinConstantPForLValue - Determine the result of
11711/// __builtin_constant_p when applied to the given pointer.
11712///
11713/// A pointer is only "constant" if it is null (or a pointer cast to integer)
11714/// or it points to the first character of a string literal.
11715static bool EvaluateBuiltinConstantPForLValue(const APValue &LV) {
11716 APValue::LValueBase Base = LV.getLValueBase();
11717 if (Base.isNull()) {
11718 // A null base is acceptable.
11719 return true;
11720 } else if (const Expr *E = Base.dyn_cast<const Expr *>()) {
11721 if (!isa<StringLiteral>(Val: E))
11722 return false;
11723 return LV.getLValueOffset().isZero();
11724 } else if (Base.is<TypeInfoLValue>()) {
11725 // Surprisingly, GCC considers __builtin_constant_p(&typeid(int)) to
11726 // evaluate to true.
11727 return true;
11728 } else {
11729 // Any other base is not constant enough for GCC.
11730 return false;
11731 }
11732}
11733
11734/// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
11735/// GCC as we can manage.
11736static bool EvaluateBuiltinConstantP(EvalInfo &Info, const Expr *Arg) {
11737 // This evaluation is not permitted to have side-effects, so evaluate it in
11738 // a speculative evaluation context.
11739 SpeculativeEvaluationRAII SpeculativeEval(Info);
11740
11741 // Constant-folding is always enabled for the operand of __builtin_constant_p
11742 // (even when the enclosing evaluation context otherwise requires a strict
11743 // language-specific constant expression).
11744 FoldConstant Fold(Info, true);
11745
11746 QualType ArgType = Arg->getType();
11747
11748 // __builtin_constant_p always has one operand. The rules which gcc follows
11749 // are not precisely documented, but are as follows:
11750 //
11751 // - If the operand is of integral, floating, complex or enumeration type,
11752 // and can be folded to a known value of that type, it returns 1.
11753 // - If the operand can be folded to a pointer to the first character
11754 // of a string literal (or such a pointer cast to an integral type)
11755 // or to a null pointer or an integer cast to a pointer, it returns 1.
11756 //
11757 // Otherwise, it returns 0.
11758 //
11759 // FIXME: GCC also intends to return 1 for literals of aggregate types, but
11760 // its support for this did not work prior to GCC 9 and is not yet well
11761 // understood.
11762 if (ArgType->isIntegralOrEnumerationType() || ArgType->isFloatingType() ||
11763 ArgType->isAnyComplexType() || ArgType->isPointerType() ||
11764 ArgType->isNullPtrType()) {
11765 APValue V;
11766 if (!::EvaluateAsRValue(Info, E: Arg, Result&: V) || Info.EvalStatus.HasSideEffects) {
11767 Fold.keepDiagnostics();
11768 return false;
11769 }
11770
11771 // For a pointer (possibly cast to integer), there are special rules.
11772 if (V.getKind() == APValue::LValue)
11773 return EvaluateBuiltinConstantPForLValue(LV: V);
11774
11775 // Otherwise, any constant value is good enough.
11776 return V.hasValue();
11777 }
11778
11779 // Anything else isn't considered to be sufficiently constant.
11780 return false;
11781}
11782
11783/// Retrieves the "underlying object type" of the given expression,
11784/// as used by __builtin_object_size.
11785static QualType getObjectType(APValue::LValueBase B) {
11786 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
11787 if (const VarDecl *VD = dyn_cast<VarDecl>(Val: D))
11788 return VD->getType();
11789 } else if (const Expr *E = B.dyn_cast<const Expr*>()) {
11790 if (isa<CompoundLiteralExpr>(Val: E))
11791 return E->getType();
11792 } else if (B.is<TypeInfoLValue>()) {
11793 return B.getTypeInfoType();
11794 } else if (B.is<DynamicAllocLValue>()) {
11795 return B.getDynamicAllocType();
11796 }
11797
11798 return QualType();
11799}
11800
11801/// A more selective version of E->IgnoreParenCasts for
11802/// tryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only
11803/// to change the type of E.
11804/// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo`
11805///
11806/// Always returns an RValue with a pointer representation.
11807static const Expr *ignorePointerCastsAndParens(const Expr *E) {
11808 assert(E->isPRValue() && E->getType()->hasPointerRepresentation());
11809
11810 auto *NoParens = E->IgnoreParens();
11811 auto *Cast = dyn_cast<CastExpr>(Val: NoParens);
11812 if (Cast == nullptr)
11813 return NoParens;
11814
11815 // We only conservatively allow a few kinds of casts, because this code is
11816 // inherently a simple solution that seeks to support the common case.
11817 auto CastKind = Cast->getCastKind();
11818 if (CastKind != CK_NoOp && CastKind != CK_BitCast &&
11819 CastKind != CK_AddressSpaceConversion)
11820 return NoParens;
11821
11822 auto *SubExpr = Cast->getSubExpr();
11823 if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isPRValue())
11824 return NoParens;
11825 return ignorePointerCastsAndParens(E: SubExpr);
11826}
11827
11828/// Checks to see if the given LValue's Designator is at the end of the LValue's
11829/// record layout. e.g.
11830/// struct { struct { int a, b; } fst, snd; } obj;
11831/// obj.fst // no
11832/// obj.snd // yes
11833/// obj.fst.a // no
11834/// obj.fst.b // no
11835/// obj.snd.a // no
11836/// obj.snd.b // yes
11837///
11838/// Please note: this function is specialized for how __builtin_object_size
11839/// views "objects".
11840///
11841/// If this encounters an invalid RecordDecl or otherwise cannot determine the
11842/// correct result, it will always return true.
11843static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) {
11844 assert(!LVal.Designator.Invalid);
11845
11846 auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD, bool &Invalid) {
11847 const RecordDecl *Parent = FD->getParent();
11848 Invalid = Parent->isInvalidDecl();
11849 if (Invalid || Parent->isUnion())
11850 return true;
11851 const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(D: Parent);
11852 return FD->getFieldIndex() + 1 == Layout.getFieldCount();
11853 };
11854
11855 auto &Base = LVal.getLValueBase();
11856 if (auto *ME = dyn_cast_or_null<MemberExpr>(Val: Base.dyn_cast<const Expr *>())) {
11857 if (auto *FD = dyn_cast<FieldDecl>(Val: ME->getMemberDecl())) {
11858 bool Invalid;
11859 if (!IsLastOrInvalidFieldDecl(FD, Invalid))
11860 return Invalid;
11861 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(Val: ME->getMemberDecl())) {
11862 for (auto *FD : IFD->chain()) {
11863 bool Invalid;
11864 if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(Val: FD), Invalid))
11865 return Invalid;
11866 }
11867 }
11868 }
11869
11870 unsigned I = 0;
11871 QualType BaseType = getType(B: Base);
11872 if (LVal.Designator.FirstEntryIsAnUnsizedArray) {
11873 // If we don't know the array bound, conservatively assume we're looking at
11874 // the final array element.
11875 ++I;
11876 if (BaseType->isIncompleteArrayType())
11877 BaseType = Ctx.getAsArrayType(T: BaseType)->getElementType();
11878 else
11879 BaseType = BaseType->castAs<PointerType>()->getPointeeType();
11880 }
11881
11882 for (unsigned E = LVal.Designator.Entries.size(); I != E; ++I) {
11883 const auto &Entry = LVal.Designator.Entries[I];
11884 if (BaseType->isArrayType()) {
11885 // Because __builtin_object_size treats arrays as objects, we can ignore
11886 // the index iff this is the last array in the Designator.
11887 if (I + 1 == E)
11888 return true;
11889 const auto *CAT = cast<ConstantArrayType>(Val: Ctx.getAsArrayType(T: BaseType));
11890 uint64_t Index = Entry.getAsArrayIndex();
11891 if (Index + 1 != CAT->getSize())
11892 return false;
11893 BaseType = CAT->getElementType();
11894 } else if (BaseType->isAnyComplexType()) {
11895 const auto *CT = BaseType->castAs<ComplexType>();
11896 uint64_t Index = Entry.getAsArrayIndex();
11897 if (Index != 1)
11898 return false;
11899 BaseType = CT->getElementType();
11900 } else if (auto *FD = getAsField(Entry)) {
11901 bool Invalid;
11902 if (!IsLastOrInvalidFieldDecl(FD, Invalid))
11903 return Invalid;
11904 BaseType = FD->getType();
11905 } else {
11906 assert(getAsBaseClass(Entry) && "Expecting cast to a base class");
11907 return false;
11908 }
11909 }
11910 return true;
11911}
11912
11913/// Tests to see if the LValue has a user-specified designator (that isn't
11914/// necessarily valid). Note that this always returns 'true' if the LValue has
11915/// an unsized array as its first designator entry, because there's currently no
11916/// way to tell if the user typed *foo or foo[0].
11917static bool refersToCompleteObject(const LValue &LVal) {
11918 if (LVal.Designator.Invalid)
11919 return false;
11920
11921 if (!LVal.Designator.Entries.empty())
11922 return LVal.Designator.isMostDerivedAnUnsizedArray();
11923
11924 if (!LVal.InvalidBase)
11925 return true;
11926
11927 // If `E` is a MemberExpr, then the first part of the designator is hiding in
11928 // the LValueBase.
11929 const auto *E = LVal.Base.dyn_cast<const Expr *>();
11930 return !E || !isa<MemberExpr>(Val: E);
11931}
11932
11933/// Attempts to detect a user writing into a piece of memory that's impossible
11934/// to figure out the size of by just using types.
11935static bool isUserWritingOffTheEnd(const ASTContext &Ctx, const LValue &LVal) {
11936 const SubobjectDesignator &Designator = LVal.Designator;
11937 // Notes:
11938 // - Users can only write off of the end when we have an invalid base. Invalid
11939 // bases imply we don't know where the memory came from.
11940 // - We used to be a bit more aggressive here; we'd only be conservative if
11941 // the array at the end was flexible, or if it had 0 or 1 elements. This
11942 // broke some common standard library extensions (PR30346), but was
11943 // otherwise seemingly fine. It may be useful to reintroduce this behavior
11944 // with some sort of list. OTOH, it seems that GCC is always
11945 // conservative with the last element in structs (if it's an array), so our
11946 // current behavior is more compatible than an explicit list approach would
11947 // be.
11948 auto isFlexibleArrayMember = [&] {
11949 using FAMKind = LangOptions::StrictFlexArraysLevelKind;
11950 FAMKind StrictFlexArraysLevel =
11951 Ctx.getLangOpts().getStrictFlexArraysLevel();
11952
11953 if (Designator.isMostDerivedAnUnsizedArray())
11954 return true;
11955
11956 if (StrictFlexArraysLevel == FAMKind::Default)
11957 return true;
11958
11959 if (Designator.getMostDerivedArraySize() == 0 &&
11960 StrictFlexArraysLevel != FAMKind::IncompleteOnly)
11961 return true;
11962
11963 if (Designator.getMostDerivedArraySize() == 1 &&
11964 StrictFlexArraysLevel == FAMKind::OneZeroOrIncomplete)
11965 return true;
11966
11967 return false;
11968 };
11969
11970 return LVal.InvalidBase &&
11971 Designator.Entries.size() == Designator.MostDerivedPathLength &&
11972 Designator.MostDerivedIsArrayElement && isFlexibleArrayMember() &&
11973 isDesignatorAtObjectEnd(Ctx, LVal);
11974}
11975
11976/// Converts the given APInt to CharUnits, assuming the APInt is unsigned.
11977/// Fails if the conversion would cause loss of precision.
11978static bool convertUnsignedAPIntToCharUnits(const llvm::APInt &Int,
11979 CharUnits &Result) {
11980 auto CharUnitsMax = std::numeric_limits<CharUnits::QuantityType>::max();
11981 if (Int.ugt(RHS: CharUnitsMax))
11982 return false;
11983 Result = CharUnits::fromQuantity(Quantity: Int.getZExtValue());
11984 return true;
11985}
11986
11987/// If we're evaluating the object size of an instance of a struct that
11988/// contains a flexible array member, add the size of the initializer.
11989static void addFlexibleArrayMemberInitSize(EvalInfo &Info, const QualType &T,
11990 const LValue &LV, CharUnits &Size) {
11991 if (!T.isNull() && T->isStructureType() &&
11992 T->getAsStructureType()->getDecl()->hasFlexibleArrayMember())
11993 if (const auto *V = LV.getLValueBase().dyn_cast<const ValueDecl *>())
11994 if (const auto *VD = dyn_cast<VarDecl>(Val: V))
11995 if (VD->hasInit())
11996 Size += VD->getFlexibleArrayInitChars(Ctx: Info.Ctx);
11997}
11998
11999/// Helper for tryEvaluateBuiltinObjectSize -- Given an LValue, this will
12000/// determine how many bytes exist from the beginning of the object to either
12001/// the end of the current subobject, or the end of the object itself, depending
12002/// on what the LValue looks like + the value of Type.
12003///
12004/// If this returns false, the value of Result is undefined.
12005static bool determineEndOffset(EvalInfo &Info, SourceLocation ExprLoc,
12006 unsigned Type, const LValue &LVal,
12007 CharUnits &EndOffset) {
12008 bool DetermineForCompleteObject = refersToCompleteObject(LVal);
12009
12010 auto CheckedHandleSizeof = [&](QualType Ty, CharUnits &Result) {
12011 if (Ty.isNull() || Ty->isIncompleteType() || Ty->isFunctionType())
12012 return false;
12013 return HandleSizeof(Info, Loc: ExprLoc, Type: Ty, Size&: Result);
12014 };
12015
12016 // We want to evaluate the size of the entire object. This is a valid fallback
12017 // for when Type=1 and the designator is invalid, because we're asked for an
12018 // upper-bound.
12019 if (!(Type & 1) || LVal.Designator.Invalid || DetermineForCompleteObject) {
12020 // Type=3 wants a lower bound, so we can't fall back to this.
12021 if (Type == 3 && !DetermineForCompleteObject)
12022 return false;
12023
12024 llvm::APInt APEndOffset;
12025 if (isBaseAnAllocSizeCall(Base: LVal.getLValueBase()) &&
12026 getBytesReturnedByAllocSizeCall(Ctx: Info.Ctx, LVal, Result&: APEndOffset))
12027 return convertUnsignedAPIntToCharUnits(Int: APEndOffset, Result&: EndOffset);
12028
12029 if (LVal.InvalidBase)
12030 return false;
12031
12032 QualType BaseTy = getObjectType(B: LVal.getLValueBase());
12033 const bool Ret = CheckedHandleSizeof(BaseTy, EndOffset);
12034 addFlexibleArrayMemberInitSize(Info, T: BaseTy, LV: LVal, Size&: EndOffset);
12035 return Ret;
12036 }
12037
12038 // We want to evaluate the size of a subobject.
12039 const SubobjectDesignator &Designator = LVal.Designator;
12040
12041 // The following is a moderately common idiom in C:
12042 //
12043 // struct Foo { int a; char c[1]; };
12044 // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar));
12045 // strcpy(&F->c[0], Bar);
12046 //
12047 // In order to not break too much legacy code, we need to support it.
12048 if (isUserWritingOffTheEnd(Ctx: Info.Ctx, LVal)) {
12049 // If we can resolve this to an alloc_size call, we can hand that back,
12050 // because we know for certain how many bytes there are to write to.
12051 llvm::APInt APEndOffset;
12052 if (isBaseAnAllocSizeCall(Base: LVal.getLValueBase()) &&
12053 getBytesReturnedByAllocSizeCall(Ctx: Info.Ctx, LVal, Result&: APEndOffset))
12054 return convertUnsignedAPIntToCharUnits(Int: APEndOffset, Result&: EndOffset);
12055
12056 // If we cannot determine the size of the initial allocation, then we can't
12057 // given an accurate upper-bound. However, we are still able to give
12058 // conservative lower-bounds for Type=3.
12059 if (Type == 1)
12060 return false;
12061 }
12062
12063 CharUnits BytesPerElem;
12064 if (!CheckedHandleSizeof(Designator.MostDerivedType, BytesPerElem))
12065 return false;
12066
12067 // According to the GCC documentation, we want the size of the subobject
12068 // denoted by the pointer. But that's not quite right -- what we actually
12069 // want is the size of the immediately-enclosing array, if there is one.
12070 int64_t ElemsRemaining;
12071 if (Designator.MostDerivedIsArrayElement &&
12072 Designator.Entries.size() == Designator.MostDerivedPathLength) {
12073 uint64_t ArraySize = Designator.getMostDerivedArraySize();
12074 uint64_t ArrayIndex = Designator.Entries.back().getAsArrayIndex();
12075 ElemsRemaining = ArraySize <= ArrayIndex ? 0 : ArraySize - ArrayIndex;
12076 } else {
12077 ElemsRemaining = Designator.isOnePastTheEnd() ? 0 : 1;
12078 }
12079
12080 EndOffset = LVal.getLValueOffset() + BytesPerElem * ElemsRemaining;
12081 return true;
12082}
12083
12084/// Tries to evaluate the __builtin_object_size for @p E. If successful,
12085/// returns true and stores the result in @p Size.
12086///
12087/// If @p WasError is non-null, this will report whether the failure to evaluate
12088/// is to be treated as an Error in IntExprEvaluator.
12089static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type,
12090 EvalInfo &Info, uint64_t &Size) {
12091 // Determine the denoted object.
12092 LValue LVal;
12093 {
12094 // The operand of __builtin_object_size is never evaluated for side-effects.
12095 // If there are any, but we can determine the pointed-to object anyway, then
12096 // ignore the side-effects.
12097 SpeculativeEvaluationRAII SpeculativeEval(Info);
12098 IgnoreSideEffectsRAII Fold(Info);
12099
12100 if (E->isGLValue()) {
12101 // It's possible for us to be given GLValues if we're called via
12102 // Expr::tryEvaluateObjectSize.
12103 APValue RVal;
12104 if (!EvaluateAsRValue(Info, E, Result&: RVal))
12105 return false;
12106 LVal.setFrom(Ctx&: Info.Ctx, V: RVal);
12107 } else if (!EvaluatePointer(E: ignorePointerCastsAndParens(E), Result&: LVal, Info,
12108 /*InvalidBaseOK=*/true))
12109 return false;
12110 }
12111
12112 // If we point to before the start of the object, there are no accessible
12113 // bytes.
12114 if (LVal.getLValueOffset().isNegative()) {
12115 Size = 0;
12116 return true;
12117 }
12118
12119 CharUnits EndOffset;
12120 if (!determineEndOffset(Info, ExprLoc: E->getExprLoc(), Type, LVal, EndOffset))
12121 return false;
12122
12123 // If we've fallen outside of the end offset, just pretend there's nothing to
12124 // write to/read from.
12125 if (EndOffset <= LVal.getLValueOffset())
12126 Size = 0;
12127 else
12128 Size = (EndOffset - LVal.getLValueOffset()).getQuantity();
12129 return true;
12130}
12131
12132bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
12133 if (!IsConstantEvaluatedBuiltinCall(E))
12134 return ExprEvaluatorBaseTy::VisitCallExpr(E);
12135 return VisitBuiltinCallExpr(E, BuiltinOp: E->getBuiltinCallee());
12136}
12137
12138static bool getBuiltinAlignArguments(const CallExpr *E, EvalInfo &Info,
12139 APValue &Val, APSInt &Alignment) {
12140 QualType SrcTy = E->getArg(Arg: 0)->getType();
12141 if (!getAlignmentArgument(E: E->getArg(Arg: 1), ForType: SrcTy, Info, Alignment))
12142 return false;
12143 // Even though we are evaluating integer expressions we could get a pointer
12144 // argument for the __builtin_is_aligned() case.
12145 if (SrcTy->isPointerType()) {
12146 LValue Ptr;
12147 if (!EvaluatePointer(E: E->getArg(Arg: 0), Result&: Ptr, Info))
12148 return false;
12149 Ptr.moveInto(V&: Val);
12150 } else if (!SrcTy->isIntegralOrEnumerationType()) {
12151 Info.FFDiag(E: E->getArg(Arg: 0));
12152 return false;
12153 } else {
12154 APSInt SrcInt;
12155 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: SrcInt, Info))
12156 return false;
12157 assert(SrcInt.getBitWidth() >= Alignment.getBitWidth() &&
12158 "Bit widths must be the same");
12159 Val = APValue(SrcInt);
12160 }
12161 assert(Val.hasValue());
12162 return true;
12163}
12164
12165bool IntExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
12166 unsigned BuiltinOp) {
12167 switch (BuiltinOp) {
12168 default:
12169 return false;
12170
12171 case Builtin::BI__builtin_dynamic_object_size:
12172 case Builtin::BI__builtin_object_size: {
12173 // The type was checked when we built the expression.
12174 unsigned Type =
12175 E->getArg(Arg: 1)->EvaluateKnownConstInt(Ctx: Info.Ctx).getZExtValue();
12176 assert(Type <= 3 && "unexpected type");
12177
12178 uint64_t Size;
12179 if (tryEvaluateBuiltinObjectSize(E: E->getArg(Arg: 0), Type, Info, Size))
12180 return Success(Size, E);
12181
12182 if (E->getArg(Arg: 0)->HasSideEffects(Ctx: Info.Ctx))
12183 return Success((Type & 2) ? 0 : -1, E);
12184
12185 // Expression had no side effects, but we couldn't statically determine the
12186 // size of the referenced object.
12187 switch (Info.EvalMode) {
12188 case EvalInfo::EM_ConstantExpression:
12189 case EvalInfo::EM_ConstantFold:
12190 case EvalInfo::EM_IgnoreSideEffects:
12191 // Leave it to IR generation.
12192 return Error(E);
12193 case EvalInfo::EM_ConstantExpressionUnevaluated:
12194 // Reduce it to a constant now.
12195 return Success((Type & 2) ? 0 : -1, E);
12196 }
12197
12198 llvm_unreachable("unexpected EvalMode");
12199 }
12200
12201 case Builtin::BI__builtin_os_log_format_buffer_size: {
12202 analyze_os_log::OSLogBufferLayout Layout;
12203 analyze_os_log::computeOSLogBufferLayout(Ctx&: Info.Ctx, E, layout&: Layout);
12204 return Success(Layout.size().getQuantity(), E);
12205 }
12206
12207 case Builtin::BI__builtin_is_aligned: {
12208 APValue Src;
12209 APSInt Alignment;
12210 if (!getBuiltinAlignArguments(E, Info, Val&: Src, Alignment))
12211 return false;
12212 if (Src.isLValue()) {
12213 // If we evaluated a pointer, check the minimum known alignment.
12214 LValue Ptr;
12215 Ptr.setFrom(Ctx&: Info.Ctx, V: Src);
12216 CharUnits BaseAlignment = getBaseAlignment(Info, Value: Ptr);
12217 CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(offset: Ptr.Offset);
12218 // We can return true if the known alignment at the computed offset is
12219 // greater than the requested alignment.
12220 assert(PtrAlign.isPowerOfTwo());
12221 assert(Alignment.isPowerOf2());
12222 if (PtrAlign.getQuantity() >= Alignment)
12223 return Success(1, E);
12224 // If the alignment is not known to be sufficient, some cases could still
12225 // be aligned at run time. However, if the requested alignment is less or
12226 // equal to the base alignment and the offset is not aligned, we know that
12227 // the run-time value can never be aligned.
12228 if (BaseAlignment.getQuantity() >= Alignment &&
12229 PtrAlign.getQuantity() < Alignment)
12230 return Success(0, E);
12231 // Otherwise we can't infer whether the value is sufficiently aligned.
12232 // TODO: __builtin_is_aligned(__builtin_align_{down,up{(expr, N), N)
12233 // in cases where we can't fully evaluate the pointer.
12234 Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_compute)
12235 << Alignment;
12236 return false;
12237 }
12238 assert(Src.isInt());
12239 return Success((Src.getInt() & (Alignment - 1)) == 0 ? 1 : 0, E);
12240 }
12241 case Builtin::BI__builtin_align_up: {
12242 APValue Src;
12243 APSInt Alignment;
12244 if (!getBuiltinAlignArguments(E, Info, Val&: Src, Alignment))
12245 return false;
12246 if (!Src.isInt())
12247 return Error(E);
12248 APSInt AlignedVal =
12249 APSInt((Src.getInt() + (Alignment - 1)) & ~(Alignment - 1),
12250 Src.getInt().isUnsigned());
12251 assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth());
12252 return Success(AlignedVal, E);
12253 }
12254 case Builtin::BI__builtin_align_down: {
12255 APValue Src;
12256 APSInt Alignment;
12257 if (!getBuiltinAlignArguments(E, Info, Val&: Src, Alignment))
12258 return false;
12259 if (!Src.isInt())
12260 return Error(E);
12261 APSInt AlignedVal =
12262 APSInt(Src.getInt() & ~(Alignment - 1), Src.getInt().isUnsigned());
12263 assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth());
12264 return Success(AlignedVal, E);
12265 }
12266
12267 case Builtin::BI__builtin_bitreverse8:
12268 case Builtin::BI__builtin_bitreverse16:
12269 case Builtin::BI__builtin_bitreverse32:
12270 case Builtin::BI__builtin_bitreverse64: {
12271 APSInt Val;
12272 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info))
12273 return false;
12274
12275 return Success(Val.reverseBits(), E);
12276 }
12277
12278 case Builtin::BI__builtin_bswap16:
12279 case Builtin::BI__builtin_bswap32:
12280 case Builtin::BI__builtin_bswap64: {
12281 APSInt Val;
12282 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info))
12283 return false;
12284
12285 return Success(Val.byteSwap(), E);
12286 }
12287
12288 case Builtin::BI__builtin_classify_type:
12289 return Success((int)EvaluateBuiltinClassifyType(E, LangOpts: Info.getLangOpts()), E);
12290
12291 case Builtin::BI__builtin_clrsb:
12292 case Builtin::BI__builtin_clrsbl:
12293 case Builtin::BI__builtin_clrsbll: {
12294 APSInt Val;
12295 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info))
12296 return false;
12297
12298 return Success(Val.getBitWidth() - Val.getSignificantBits(), E);
12299 }
12300
12301 case Builtin::BI__builtin_clz:
12302 case Builtin::BI__builtin_clzl:
12303 case Builtin::BI__builtin_clzll:
12304 case Builtin::BI__builtin_clzs:
12305 case Builtin::BI__lzcnt16: // Microsoft variants of count leading-zeroes
12306 case Builtin::BI__lzcnt:
12307 case Builtin::BI__lzcnt64: {
12308 APSInt Val;
12309 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info))
12310 return false;
12311
12312 // When the argument is 0, the result of GCC builtins is undefined, whereas
12313 // for Microsoft intrinsics, the result is the bit-width of the argument.
12314 bool ZeroIsUndefined = BuiltinOp != Builtin::BI__lzcnt16 &&
12315 BuiltinOp != Builtin::BI__lzcnt &&
12316 BuiltinOp != Builtin::BI__lzcnt64;
12317
12318 if (ZeroIsUndefined && !Val)
12319 return Error(E);
12320
12321 return Success(Val.countl_zero(), E);
12322 }
12323
12324 case Builtin::BI__builtin_constant_p: {
12325 const Expr *Arg = E->getArg(Arg: 0);
12326 if (EvaluateBuiltinConstantP(Info, Arg))
12327 return Success(true, E);
12328 if (Info.InConstantContext || Arg->HasSideEffects(Ctx: Info.Ctx)) {
12329 // Outside a constant context, eagerly evaluate to false in the presence
12330 // of side-effects in order to avoid -Wunsequenced false-positives in
12331 // a branch on __builtin_constant_p(expr).
12332 return Success(false, E);
12333 }
12334 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
12335 return false;
12336 }
12337
12338 case Builtin::BI__builtin_is_constant_evaluated: {
12339 const auto *Callee = Info.CurrentCall->getCallee();
12340 if (Info.InConstantContext && !Info.CheckingPotentialConstantExpression &&
12341 (Info.CallStackDepth == 1 ||
12342 (Info.CallStackDepth == 2 && Callee->isInStdNamespace() &&
12343 Callee->getIdentifier() &&
12344 Callee->getIdentifier()->isStr("is_constant_evaluated")))) {
12345 // FIXME: Find a better way to avoid duplicated diagnostics.
12346 if (Info.EvalStatus.Diag)
12347 Info.report((Info.CallStackDepth == 1)
12348 ? E->getExprLoc()
12349 : Info.CurrentCall->getCallRange().getBegin(),
12350 diag::warn_is_constant_evaluated_always_true_constexpr)
12351 << (Info.CallStackDepth == 1 ? "__builtin_is_constant_evaluated"
12352 : "std::is_constant_evaluated");
12353 }
12354
12355 return Success(Info.InConstantContext, E);
12356 }
12357
12358 case Builtin::BI__builtin_ctz:
12359 case Builtin::BI__builtin_ctzl:
12360 case Builtin::BI__builtin_ctzll:
12361 case Builtin::BI__builtin_ctzs: {
12362 APSInt Val;
12363 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info))
12364 return false;
12365 if (!Val)
12366 return Error(E);
12367
12368 return Success(Val.countr_zero(), E);
12369 }
12370
12371 case Builtin::BI__builtin_eh_return_data_regno: {
12372 int Operand = E->getArg(Arg: 0)->EvaluateKnownConstInt(Ctx: Info.Ctx).getZExtValue();
12373 Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(RegNo: Operand);
12374 return Success(Operand, E);
12375 }
12376
12377 case Builtin::BI__builtin_expect:
12378 case Builtin::BI__builtin_expect_with_probability:
12379 return Visit(E->getArg(Arg: 0));
12380
12381 case Builtin::BI__builtin_ffs:
12382 case Builtin::BI__builtin_ffsl:
12383 case Builtin::BI__builtin_ffsll: {
12384 APSInt Val;
12385 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info))
12386 return false;
12387
12388 unsigned N = Val.countr_zero();
12389 return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
12390 }
12391
12392 case Builtin::BI__builtin_fpclassify: {
12393 APFloat Val(0.0);
12394 if (!EvaluateFloat(E: E->getArg(Arg: 5), Result&: Val, Info))
12395 return false;
12396 unsigned Arg;
12397 switch (Val.getCategory()) {
12398 case APFloat::fcNaN: Arg = 0; break;
12399 case APFloat::fcInfinity: Arg = 1; break;
12400 case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
12401 case APFloat::fcZero: Arg = 4; break;
12402 }
12403 return Visit(E->getArg(Arg));
12404 }
12405
12406 case Builtin::BI__builtin_isinf_sign: {
12407 APFloat Val(0.0);
12408 return EvaluateFloat(E: E->getArg(Arg: 0), Result&: Val, Info) &&
12409 Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
12410 }
12411
12412 case Builtin::BI__builtin_isinf: {
12413 APFloat Val(0.0);
12414 return EvaluateFloat(E: E->getArg(Arg: 0), Result&: Val, Info) &&
12415 Success(Val.isInfinity() ? 1 : 0, E);
12416 }
12417
12418 case Builtin::BI__builtin_isfinite: {
12419 APFloat Val(0.0);
12420 return EvaluateFloat(E: E->getArg(Arg: 0), Result&: Val, Info) &&
12421 Success(Val.isFinite() ? 1 : 0, E);
12422 }
12423
12424 case Builtin::BI__builtin_isnan: {
12425 APFloat Val(0.0);
12426 return EvaluateFloat(E: E->getArg(Arg: 0), Result&: Val, Info) &&
12427 Success(Val.isNaN() ? 1 : 0, E);
12428 }
12429
12430 case Builtin::BI__builtin_isnormal: {
12431 APFloat Val(0.0);
12432 return EvaluateFloat(E: E->getArg(Arg: 0), Result&: Val, Info) &&
12433 Success(Val.isNormal() ? 1 : 0, E);
12434 }
12435
12436 case Builtin::BI__builtin_issubnormal: {
12437 APFloat Val(0.0);
12438 return EvaluateFloat(E: E->getArg(Arg: 0), Result&: Val, Info) &&
12439 Success(Val.isDenormal() ? 1 : 0, E);
12440 }
12441
12442 case Builtin::BI__builtin_iszero: {
12443 APFloat Val(0.0);
12444 return EvaluateFloat(E: E->getArg(Arg: 0), Result&: Val, Info) &&
12445 Success(Val.isZero() ? 1 : 0, E);
12446 }
12447
12448 case Builtin::BI__builtin_issignaling: {
12449 APFloat Val(0.0);
12450 return EvaluateFloat(E: E->getArg(Arg: 0), Result&: Val, Info) &&
12451 Success(Val.isSignaling() ? 1 : 0, E);
12452 }
12453
12454 case Builtin::BI__builtin_isfpclass: {
12455 APSInt MaskVal;
12456 if (!EvaluateInteger(E: E->getArg(Arg: 1), Result&: MaskVal, Info))
12457 return false;
12458 unsigned Test = static_cast<llvm::FPClassTest>(MaskVal.getZExtValue());
12459 APFloat Val(0.0);
12460 return EvaluateFloat(E: E->getArg(Arg: 0), Result&: Val, Info) &&
12461 Success((Val.classify() & Test) ? 1 : 0, E);
12462 }
12463
12464 case Builtin::BI__builtin_parity:
12465 case Builtin::BI__builtin_parityl:
12466 case Builtin::BI__builtin_parityll: {
12467 APSInt Val;
12468 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info))
12469 return false;
12470
12471 return Success(Val.popcount() % 2, E);
12472 }
12473
12474 case Builtin::BI__builtin_popcount:
12475 case Builtin::BI__builtin_popcountl:
12476 case Builtin::BI__builtin_popcountll:
12477 case Builtin::BI__popcnt16: // Microsoft variants of popcount
12478 case Builtin::BI__popcnt:
12479 case Builtin::BI__popcnt64: {
12480 APSInt Val;
12481 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info))
12482 return false;
12483
12484 return Success(Val.popcount(), E);
12485 }
12486
12487 case Builtin::BI__builtin_rotateleft8:
12488 case Builtin::BI__builtin_rotateleft16:
12489 case Builtin::BI__builtin_rotateleft32:
12490 case Builtin::BI__builtin_rotateleft64:
12491 case Builtin::BI_rotl8: // Microsoft variants of rotate right
12492 case Builtin::BI_rotl16:
12493 case Builtin::BI_rotl:
12494 case Builtin::BI_lrotl:
12495 case Builtin::BI_rotl64: {
12496 APSInt Val, Amt;
12497 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info) ||
12498 !EvaluateInteger(E: E->getArg(Arg: 1), Result&: Amt, Info))
12499 return false;
12500
12501 return Success(Val.rotl(rotateAmt: Amt.urem(RHS: Val.getBitWidth())), E);
12502 }
12503
12504 case Builtin::BI__builtin_rotateright8:
12505 case Builtin::BI__builtin_rotateright16:
12506 case Builtin::BI__builtin_rotateright32:
12507 case Builtin::BI__builtin_rotateright64:
12508 case Builtin::BI_rotr8: // Microsoft variants of rotate right
12509 case Builtin::BI_rotr16:
12510 case Builtin::BI_rotr:
12511 case Builtin::BI_lrotr:
12512 case Builtin::BI_rotr64: {
12513 APSInt Val, Amt;
12514 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info) ||
12515 !EvaluateInteger(E: E->getArg(Arg: 1), Result&: Amt, Info))
12516 return false;
12517
12518 return Success(Val.rotr(rotateAmt: Amt.urem(RHS: Val.getBitWidth())), E);
12519 }
12520
12521 case Builtin::BIstrlen:
12522 case Builtin::BIwcslen:
12523 // A call to strlen is not a constant expression.
12524 if (Info.getLangOpts().CPlusPlus11)
12525 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
12526 << /*isConstexpr*/ 0 << /*isConstructor*/ 0
12527 << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str();
12528 else
12529 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
12530 [[fallthrough]];
12531 case Builtin::BI__builtin_strlen:
12532 case Builtin::BI__builtin_wcslen: {
12533 // As an extension, we support __builtin_strlen() as a constant expression,
12534 // and support folding strlen() to a constant.
12535 uint64_t StrLen;
12536 if (EvaluateBuiltinStrLen(E: E->getArg(Arg: 0), Result&: StrLen, Info))
12537 return Success(StrLen, E);
12538 return false;
12539 }
12540
12541 case Builtin::BIstrcmp:
12542 case Builtin::BIwcscmp:
12543 case Builtin::BIstrncmp:
12544 case Builtin::BIwcsncmp:
12545 case Builtin::BImemcmp:
12546 case Builtin::BIbcmp:
12547 case Builtin::BIwmemcmp:
12548 // A call to strlen is not a constant expression.
12549 if (Info.getLangOpts().CPlusPlus11)
12550 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
12551 << /*isConstexpr*/ 0 << /*isConstructor*/ 0
12552 << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str();
12553 else
12554 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
12555 [[fallthrough]];
12556 case Builtin::BI__builtin_strcmp:
12557 case Builtin::BI__builtin_wcscmp:
12558 case Builtin::BI__builtin_strncmp:
12559 case Builtin::BI__builtin_wcsncmp:
12560 case Builtin::BI__builtin_memcmp:
12561 case Builtin::BI__builtin_bcmp:
12562 case Builtin::BI__builtin_wmemcmp: {
12563 LValue String1, String2;
12564 if (!EvaluatePointer(E: E->getArg(Arg: 0), Result&: String1, Info) ||
12565 !EvaluatePointer(E: E->getArg(Arg: 1), Result&: String2, Info))
12566 return false;
12567
12568 uint64_t MaxLength = uint64_t(-1);
12569 if (BuiltinOp != Builtin::BIstrcmp &&
12570 BuiltinOp != Builtin::BIwcscmp &&
12571 BuiltinOp != Builtin::BI__builtin_strcmp &&
12572 BuiltinOp != Builtin::BI__builtin_wcscmp) {
12573 APSInt N;
12574 if (!EvaluateInteger(E: E->getArg(Arg: 2), Result&: N, Info))
12575 return false;
12576 MaxLength = N.getZExtValue();
12577 }
12578
12579 // Empty substrings compare equal by definition.
12580 if (MaxLength == 0u)
12581 return Success(0, E);
12582
12583 if (!String1.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
12584 !String2.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
12585 String1.Designator.Invalid || String2.Designator.Invalid)
12586 return false;
12587
12588 QualType CharTy1 = String1.Designator.getType(Info.Ctx);
12589 QualType CharTy2 = String2.Designator.getType(Info.Ctx);
12590
12591 bool IsRawByte = BuiltinOp == Builtin::BImemcmp ||
12592 BuiltinOp == Builtin::BIbcmp ||
12593 BuiltinOp == Builtin::BI__builtin_memcmp ||
12594 BuiltinOp == Builtin::BI__builtin_bcmp;
12595
12596 assert(IsRawByte ||
12597 (Info.Ctx.hasSameUnqualifiedType(
12598 CharTy1, E->getArg(0)->getType()->getPointeeType()) &&
12599 Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2)));
12600
12601 // For memcmp, allow comparing any arrays of '[[un]signed] char' or
12602 // 'char8_t', but no other types.
12603 if (IsRawByte &&
12604 !(isOneByteCharacterType(T: CharTy1) && isOneByteCharacterType(T: CharTy2))) {
12605 // FIXME: Consider using our bit_cast implementation to support this.
12606 Info.FFDiag(E, diag::note_constexpr_memcmp_unsupported)
12607 << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str()
12608 << CharTy1 << CharTy2;
12609 return false;
12610 }
12611
12612 const auto &ReadCurElems = [&](APValue &Char1, APValue &Char2) {
12613 return handleLValueToRValueConversion(Info, E, CharTy1, String1, Char1) &&
12614 handleLValueToRValueConversion(Info, E, CharTy2, String2, Char2) &&
12615 Char1.isInt() && Char2.isInt();
12616 };
12617 const auto &AdvanceElems = [&] {
12618 return HandleLValueArrayAdjustment(Info, E, String1, CharTy1, 1) &&
12619 HandleLValueArrayAdjustment(Info, E, String2, CharTy2, 1);
12620 };
12621
12622 bool StopAtNull =
12623 (BuiltinOp != Builtin::BImemcmp && BuiltinOp != Builtin::BIbcmp &&
12624 BuiltinOp != Builtin::BIwmemcmp &&
12625 BuiltinOp != Builtin::BI__builtin_memcmp &&
12626 BuiltinOp != Builtin::BI__builtin_bcmp &&
12627 BuiltinOp != Builtin::BI__builtin_wmemcmp);
12628 bool IsWide = BuiltinOp == Builtin::BIwcscmp ||
12629 BuiltinOp == Builtin::BIwcsncmp ||
12630 BuiltinOp == Builtin::BIwmemcmp ||
12631 BuiltinOp == Builtin::BI__builtin_wcscmp ||
12632 BuiltinOp == Builtin::BI__builtin_wcsncmp ||
12633 BuiltinOp == Builtin::BI__builtin_wmemcmp;
12634
12635 for (; MaxLength; --MaxLength) {
12636 APValue Char1, Char2;
12637 if (!ReadCurElems(Char1, Char2))
12638 return false;
12639 if (Char1.getInt().ne(RHS: Char2.getInt())) {
12640 if (IsWide) // wmemcmp compares with wchar_t signedness.
12641 return Success(Char1.getInt() < Char2.getInt() ? -1 : 1, E);
12642 // memcmp always compares unsigned chars.
12643 return Success(Char1.getInt().ult(RHS: Char2.getInt()) ? -1 : 1, E);
12644 }
12645 if (StopAtNull && !Char1.getInt())
12646 return Success(0, E);
12647 assert(!(StopAtNull && !Char2.getInt()));
12648 if (!AdvanceElems())
12649 return false;
12650 }
12651 // We hit the strncmp / memcmp limit.
12652 return Success(0, E);
12653 }
12654
12655 case Builtin::BI__atomic_always_lock_free:
12656 case Builtin::BI__atomic_is_lock_free:
12657 case Builtin::BI__c11_atomic_is_lock_free: {
12658 APSInt SizeVal;
12659 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: SizeVal, Info))
12660 return false;
12661
12662 // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
12663 // of two less than or equal to the maximum inline atomic width, we know it
12664 // is lock-free. If the size isn't a power of two, or greater than the
12665 // maximum alignment where we promote atomics, we know it is not lock-free
12666 // (at least not in the sense of atomic_is_lock_free). Otherwise,
12667 // the answer can only be determined at runtime; for example, 16-byte
12668 // atomics have lock-free implementations on some, but not all,
12669 // x86-64 processors.
12670
12671 // Check power-of-two.
12672 CharUnits Size = CharUnits::fromQuantity(Quantity: SizeVal.getZExtValue());
12673 if (Size.isPowerOfTwo()) {
12674 // Check against inlining width.
12675 unsigned InlineWidthBits =
12676 Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
12677 if (Size <= Info.Ctx.toCharUnitsFromBits(BitSize: InlineWidthBits)) {
12678 if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
12679 Size == CharUnits::One() ||
12680 E->getArg(1)->isNullPointerConstant(Info.Ctx,
12681 Expr::NPC_NeverValueDependent))
12682 // OK, we will inline appropriately-aligned operations of this size,
12683 // and _Atomic(T) is appropriately-aligned.
12684 return Success(1, E);
12685
12686 QualType PointeeType = E->getArg(Arg: 1)->IgnoreImpCasts()->getType()->
12687 castAs<PointerType>()->getPointeeType();
12688 if (!PointeeType->isIncompleteType() &&
12689 Info.Ctx.getTypeAlignInChars(T: PointeeType) >= Size) {
12690 // OK, we will inline operations on this object.
12691 return Success(1, E);
12692 }
12693 }
12694 }
12695
12696 return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
12697 Success(0, E) : Error(E);
12698 }
12699 case Builtin::BI__builtin_add_overflow:
12700 case Builtin::BI__builtin_sub_overflow:
12701 case Builtin::BI__builtin_mul_overflow:
12702 case Builtin::BI__builtin_sadd_overflow:
12703 case Builtin::BI__builtin_uadd_overflow:
12704 case Builtin::BI__builtin_uaddl_overflow:
12705 case Builtin::BI__builtin_uaddll_overflow:
12706 case Builtin::BI__builtin_usub_overflow:
12707 case Builtin::BI__builtin_usubl_overflow:
12708 case Builtin::BI__builtin_usubll_overflow:
12709 case Builtin::BI__builtin_umul_overflow:
12710 case Builtin::BI__builtin_umull_overflow:
12711 case Builtin::BI__builtin_umulll_overflow:
12712 case Builtin::BI__builtin_saddl_overflow:
12713 case Builtin::BI__builtin_saddll_overflow:
12714 case Builtin::BI__builtin_ssub_overflow:
12715 case Builtin::BI__builtin_ssubl_overflow:
12716 case Builtin::BI__builtin_ssubll_overflow:
12717 case Builtin::BI__builtin_smul_overflow:
12718 case Builtin::BI__builtin_smull_overflow:
12719 case Builtin::BI__builtin_smulll_overflow: {
12720 LValue ResultLValue;
12721 APSInt LHS, RHS;
12722
12723 QualType ResultType = E->getArg(Arg: 2)->getType()->getPointeeType();
12724 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: LHS, Info) ||
12725 !EvaluateInteger(E: E->getArg(Arg: 1), Result&: RHS, Info) ||
12726 !EvaluatePointer(E: E->getArg(Arg: 2), Result&: ResultLValue, Info))
12727 return false;
12728
12729 APSInt Result;
12730 bool DidOverflow = false;
12731
12732 // If the types don't have to match, enlarge all 3 to the largest of them.
12733 if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
12734 BuiltinOp == Builtin::BI__builtin_sub_overflow ||
12735 BuiltinOp == Builtin::BI__builtin_mul_overflow) {
12736 bool IsSigned = LHS.isSigned() || RHS.isSigned() ||
12737 ResultType->isSignedIntegerOrEnumerationType();
12738 bool AllSigned = LHS.isSigned() && RHS.isSigned() &&
12739 ResultType->isSignedIntegerOrEnumerationType();
12740 uint64_t LHSSize = LHS.getBitWidth();
12741 uint64_t RHSSize = RHS.getBitWidth();
12742 uint64_t ResultSize = Info.Ctx.getTypeSize(T: ResultType);
12743 uint64_t MaxBits = std::max(a: std::max(a: LHSSize, b: RHSSize), b: ResultSize);
12744
12745 // Add an additional bit if the signedness isn't uniformly agreed to. We
12746 // could do this ONLY if there is a signed and an unsigned that both have
12747 // MaxBits, but the code to check that is pretty nasty. The issue will be
12748 // caught in the shrink-to-result later anyway.
12749 if (IsSigned && !AllSigned)
12750 ++MaxBits;
12751
12752 LHS = APSInt(LHS.extOrTrunc(width: MaxBits), !IsSigned);
12753 RHS = APSInt(RHS.extOrTrunc(width: MaxBits), !IsSigned);
12754 Result = APSInt(MaxBits, !IsSigned);
12755 }
12756
12757 // Find largest int.
12758 switch (BuiltinOp) {
12759 default:
12760 llvm_unreachable("Invalid value for BuiltinOp");
12761 case Builtin::BI__builtin_add_overflow:
12762 case Builtin::BI__builtin_sadd_overflow:
12763 case Builtin::BI__builtin_saddl_overflow:
12764 case Builtin::BI__builtin_saddll_overflow:
12765 case Builtin::BI__builtin_uadd_overflow:
12766 case Builtin::BI__builtin_uaddl_overflow:
12767 case Builtin::BI__builtin_uaddll_overflow:
12768 Result = LHS.isSigned() ? LHS.sadd_ov(RHS, Overflow&: DidOverflow)
12769 : LHS.uadd_ov(RHS, Overflow&: DidOverflow);
12770 break;
12771 case Builtin::BI__builtin_sub_overflow:
12772 case Builtin::BI__builtin_ssub_overflow:
12773 case Builtin::BI__builtin_ssubl_overflow:
12774 case Builtin::BI__builtin_ssubll_overflow:
12775 case Builtin::BI__builtin_usub_overflow:
12776 case Builtin::BI__builtin_usubl_overflow:
12777 case Builtin::BI__builtin_usubll_overflow:
12778 Result = LHS.isSigned() ? LHS.ssub_ov(RHS, Overflow&: DidOverflow)
12779 : LHS.usub_ov(RHS, Overflow&: DidOverflow);
12780 break;
12781 case Builtin::BI__builtin_mul_overflow:
12782 case Builtin::BI__builtin_smul_overflow:
12783 case Builtin::BI__builtin_smull_overflow:
12784 case Builtin::BI__builtin_smulll_overflow:
12785 case Builtin::BI__builtin_umul_overflow:
12786 case Builtin::BI__builtin_umull_overflow:
12787 case Builtin::BI__builtin_umulll_overflow:
12788 Result = LHS.isSigned() ? LHS.smul_ov(RHS, Overflow&: DidOverflow)
12789 : LHS.umul_ov(RHS, Overflow&: DidOverflow);
12790 break;
12791 }
12792
12793 // In the case where multiple sizes are allowed, truncate and see if
12794 // the values are the same.
12795 if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
12796 BuiltinOp == Builtin::BI__builtin_sub_overflow ||
12797 BuiltinOp == Builtin::BI__builtin_mul_overflow) {
12798 // APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead,
12799 // since it will give us the behavior of a TruncOrSelf in the case where
12800 // its parameter <= its size. We previously set Result to be at least the
12801 // type-size of the result, so getTypeSize(ResultType) <= Result.BitWidth
12802 // will work exactly like TruncOrSelf.
12803 APSInt Temp = Result.extOrTrunc(width: Info.Ctx.getTypeSize(T: ResultType));
12804 Temp.setIsSigned(ResultType->isSignedIntegerOrEnumerationType());
12805
12806 if (!APSInt::isSameValue(I1: Temp, I2: Result))
12807 DidOverflow = true;
12808 Result = Temp;
12809 }
12810
12811 APValue APV{Result};
12812 if (!handleAssignment(Info, E, ResultLValue, ResultType, APV))
12813 return false;
12814 return Success(DidOverflow, E);
12815 }
12816 }
12817}
12818
12819/// Determine whether this is a pointer past the end of the complete
12820/// object referred to by the lvalue.
12821static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx,
12822 const LValue &LV) {
12823 // A null pointer can be viewed as being "past the end" but we don't
12824 // choose to look at it that way here.
12825 if (!LV.getLValueBase())
12826 return false;
12827
12828 // If the designator is valid and refers to a subobject, we're not pointing
12829 // past the end.
12830 if (!LV.getLValueDesignator().Invalid &&
12831 !LV.getLValueDesignator().isOnePastTheEnd())
12832 return false;
12833
12834 // A pointer to an incomplete type might be past-the-end if the type's size is
12835 // zero. We cannot tell because the type is incomplete.
12836 QualType Ty = getType(B: LV.getLValueBase());
12837 if (Ty->isIncompleteType())
12838 return true;
12839
12840 // We're a past-the-end pointer if we point to the byte after the object,
12841 // no matter what our type or path is.
12842 auto Size = Ctx.getTypeSizeInChars(T: Ty);
12843 return LV.getLValueOffset() == Size;
12844}
12845
12846namespace {
12847
12848/// Data recursive integer evaluator of certain binary operators.
12849///
12850/// We use a data recursive algorithm for binary operators so that we are able
12851/// to handle extreme cases of chained binary operators without causing stack
12852/// overflow.
12853class DataRecursiveIntBinOpEvaluator {
12854 struct EvalResult {
12855 APValue Val;
12856 bool Failed = false;
12857
12858 EvalResult() = default;
12859
12860 void swap(EvalResult &RHS) {
12861 Val.swap(RHS&: RHS.Val);
12862 Failed = RHS.Failed;
12863 RHS.Failed = false;
12864 }
12865 };
12866
12867 struct Job {
12868 const Expr *E;
12869 EvalResult LHSResult; // meaningful only for binary operator expression.
12870 enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
12871
12872 Job() = default;
12873 Job(Job &&) = default;
12874
12875 void startSpeculativeEval(EvalInfo &Info) {
12876 SpecEvalRAII = SpeculativeEvaluationRAII(Info);
12877 }
12878
12879 private:
12880 SpeculativeEvaluationRAII SpecEvalRAII;
12881 };
12882
12883 SmallVector<Job, 16> Queue;
12884
12885 IntExprEvaluator &IntEval;
12886 EvalInfo &Info;
12887 APValue &FinalResult;
12888
12889public:
12890 DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
12891 : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
12892
12893 /// True if \param E is a binary operator that we are going to handle
12894 /// data recursively.
12895 /// We handle binary operators that are comma, logical, or that have operands
12896 /// with integral or enumeration type.
12897 static bool shouldEnqueue(const BinaryOperator *E) {
12898 return E->getOpcode() == BO_Comma || E->isLogicalOp() ||
12899 (E->isPRValue() && E->getType()->isIntegralOrEnumerationType() &&
12900 E->getLHS()->getType()->isIntegralOrEnumerationType() &&
12901 E->getRHS()->getType()->isIntegralOrEnumerationType());
12902 }
12903
12904 bool Traverse(const BinaryOperator *E) {
12905 enqueue(E);
12906 EvalResult PrevResult;
12907 while (!Queue.empty())
12908 process(Result&: PrevResult);
12909
12910 if (PrevResult.Failed) return false;
12911
12912 FinalResult.swap(RHS&: PrevResult.Val);
12913 return true;
12914 }
12915
12916private:
12917 bool Success(uint64_t Value, const Expr *E, APValue &Result) {
12918 return IntEval.Success(Value, E, Result);
12919 }
12920 bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
12921 return IntEval.Success(SI: Value, E, Result);
12922 }
12923 bool Error(const Expr *E) {
12924 return IntEval.Error(E);
12925 }
12926 bool Error(const Expr *E, diag::kind D) {
12927 return IntEval.Error(E, D);
12928 }
12929
12930 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
12931 return Info.CCEDiag(E, DiagId: D);
12932 }
12933
12934 // Returns true if visiting the RHS is necessary, false otherwise.
12935 bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
12936 bool &SuppressRHSDiags);
12937
12938 bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
12939 const BinaryOperator *E, APValue &Result);
12940
12941 void EvaluateExpr(const Expr *E, EvalResult &Result) {
12942 Result.Failed = !Evaluate(Result&: Result.Val, Info, E);
12943 if (Result.Failed)
12944 Result.Val = APValue();
12945 }
12946
12947 void process(EvalResult &Result);
12948
12949 void enqueue(const Expr *E) {
12950 E = E->IgnoreParens();
12951 Queue.resize(N: Queue.size()+1);
12952 Queue.back().E = E;
12953 Queue.back().Kind = Job::AnyExprKind;
12954 }
12955};
12956
12957}
12958
12959bool DataRecursiveIntBinOpEvaluator::
12960 VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
12961 bool &SuppressRHSDiags) {
12962 if (E->getOpcode() == BO_Comma) {
12963 // Ignore LHS but note if we could not evaluate it.
12964 if (LHSResult.Failed)
12965 return Info.noteSideEffect();
12966 return true;
12967 }
12968
12969 if (E->isLogicalOp()) {
12970 bool LHSAsBool;
12971 if (!LHSResult.Failed && HandleConversionToBool(Val: LHSResult.Val, Result&: LHSAsBool)) {
12972 // We were able to evaluate the LHS, see if we can get away with not
12973 // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
12974 if (LHSAsBool == (E->getOpcode() == BO_LOr)) {
12975 Success(LHSAsBool, E, LHSResult.Val);
12976 return false; // Ignore RHS
12977 }
12978 } else {
12979 LHSResult.Failed = true;
12980
12981 // Since we weren't able to evaluate the left hand side, it
12982 // might have had side effects.
12983 if (!Info.noteSideEffect())
12984 return false;
12985
12986 // We can't evaluate the LHS; however, sometimes the result
12987 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
12988 // Don't ignore RHS and suppress diagnostics from this arm.
12989 SuppressRHSDiags = true;
12990 }
12991
12992 return true;
12993 }
12994
12995 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
12996 E->getRHS()->getType()->isIntegralOrEnumerationType());
12997
12998 if (LHSResult.Failed && !Info.noteFailure())
12999 return false; // Ignore RHS;
13000
13001 return true;
13002}
13003
13004static void addOrSubLValueAsInteger(APValue &LVal, const APSInt &Index,
13005 bool IsSub) {
13006 // Compute the new offset in the appropriate width, wrapping at 64 bits.
13007 // FIXME: When compiling for a 32-bit target, we should use 32-bit
13008 // offsets.
13009 assert(!LVal.hasLValuePath() && "have designator for integer lvalue");
13010 CharUnits &Offset = LVal.getLValueOffset();
13011 uint64_t Offset64 = Offset.getQuantity();
13012 uint64_t Index64 = Index.extOrTrunc(width: 64).getZExtValue();
13013 Offset = CharUnits::fromQuantity(Quantity: IsSub ? Offset64 - Index64
13014 : Offset64 + Index64);
13015}
13016
13017bool DataRecursiveIntBinOpEvaluator::
13018 VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
13019 const BinaryOperator *E, APValue &Result) {
13020 if (E->getOpcode() == BO_Comma) {
13021 if (RHSResult.Failed)
13022 return false;
13023 Result = RHSResult.Val;
13024 return true;
13025 }
13026
13027 if (E->isLogicalOp()) {
13028 bool lhsResult, rhsResult;
13029 bool LHSIsOK = HandleConversionToBool(Val: LHSResult.Val, Result&: lhsResult);
13030 bool RHSIsOK = HandleConversionToBool(Val: RHSResult.Val, Result&: rhsResult);
13031
13032 if (LHSIsOK) {
13033 if (RHSIsOK) {
13034 if (E->getOpcode() == BO_LOr)
13035 return Success(lhsResult || rhsResult, E, Result);
13036 else
13037 return Success(lhsResult && rhsResult, E, Result);
13038 }
13039 } else {
13040 if (RHSIsOK) {
13041 // We can't evaluate the LHS; however, sometimes the result
13042 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
13043 if (rhsResult == (E->getOpcode() == BO_LOr))
13044 return Success(rhsResult, E, Result);
13045 }
13046 }
13047
13048 return false;
13049 }
13050
13051 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
13052 E->getRHS()->getType()->isIntegralOrEnumerationType());
13053
13054 if (LHSResult.Failed || RHSResult.Failed)
13055 return false;
13056
13057 const APValue &LHSVal = LHSResult.Val;
13058 const APValue &RHSVal = RHSResult.Val;
13059
13060 // Handle cases like (unsigned long)&a + 4.
13061 if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
13062 Result = LHSVal;
13063 addOrSubLValueAsInteger(LVal&: Result, Index: RHSVal.getInt(), IsSub: E->getOpcode() == BO_Sub);
13064 return true;
13065 }
13066
13067 // Handle cases like 4 + (unsigned long)&a
13068 if (E->getOpcode() == BO_Add &&
13069 RHSVal.isLValue() && LHSVal.isInt()) {
13070 Result = RHSVal;
13071 addOrSubLValueAsInteger(LVal&: Result, Index: LHSVal.getInt(), /*IsSub*/false);
13072 return true;
13073 }
13074
13075 if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
13076 // Handle (intptr_t)&&A - (intptr_t)&&B.
13077 if (!LHSVal.getLValueOffset().isZero() ||
13078 !RHSVal.getLValueOffset().isZero())
13079 return false;
13080 const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
13081 const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
13082 if (!LHSExpr || !RHSExpr)
13083 return false;
13084 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(Val: LHSExpr);
13085 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(Val: RHSExpr);
13086 if (!LHSAddrExpr || !RHSAddrExpr)
13087 return false;
13088 // Make sure both labels come from the same function.
13089 if (LHSAddrExpr->getLabel()->getDeclContext() !=
13090 RHSAddrExpr->getLabel()->getDeclContext())
13091 return false;
13092 Result = APValue(LHSAddrExpr, RHSAddrExpr);
13093 return true;
13094 }
13095
13096 // All the remaining cases expect both operands to be an integer
13097 if (!LHSVal.isInt() || !RHSVal.isInt())
13098 return Error(E);
13099
13100 // Set up the width and signedness manually, in case it can't be deduced
13101 // from the operation we're performing.
13102 // FIXME: Don't do this in the cases where we can deduce it.
13103 APSInt Value(Info.Ctx.getIntWidth(T: E->getType()),
13104 E->getType()->isUnsignedIntegerOrEnumerationType());
13105 if (!handleIntIntBinOp(Info, E, LHS: LHSVal.getInt(), Opcode: E->getOpcode(),
13106 RHS: RHSVal.getInt(), Result&: Value))
13107 return false;
13108 return Success(Value, E, Result);
13109}
13110
13111void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
13112 Job &job = Queue.back();
13113
13114 switch (job.Kind) {
13115 case Job::AnyExprKind: {
13116 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(Val: job.E)) {
13117 if (shouldEnqueue(E: Bop)) {
13118 job.Kind = Job::BinOpKind;
13119 enqueue(E: Bop->getLHS());
13120 return;
13121 }
13122 }
13123
13124 EvaluateExpr(E: job.E, Result);
13125 Queue.pop_back();
13126 return;
13127 }
13128
13129 case Job::BinOpKind: {
13130 const BinaryOperator *Bop = cast<BinaryOperator>(Val: job.E);
13131 bool SuppressRHSDiags = false;
13132 if (!VisitBinOpLHSOnly(LHSResult&: Result, E: Bop, SuppressRHSDiags)) {
13133 Queue.pop_back();
13134 return;
13135 }
13136 if (SuppressRHSDiags)
13137 job.startSpeculativeEval(Info);
13138 job.LHSResult.swap(RHS&: Result);
13139 job.Kind = Job::BinOpVisitedLHSKind;
13140 enqueue(E: Bop->getRHS());
13141 return;
13142 }
13143
13144 case Job::BinOpVisitedLHSKind: {
13145 const BinaryOperator *Bop = cast<BinaryOperator>(Val: job.E);
13146 EvalResult RHS;
13147 RHS.swap(RHS&: Result);
13148 Result.Failed = !VisitBinOp(LHSResult: job.LHSResult, RHSResult: RHS, E: Bop, Result&: Result.Val);
13149 Queue.pop_back();
13150 return;
13151 }
13152 }
13153
13154 llvm_unreachable("Invalid Job::Kind!");
13155}
13156
13157namespace {
13158enum class CmpResult {
13159 Unequal,
13160 Less,
13161 Equal,
13162 Greater,
13163 Unordered,
13164};
13165}
13166
13167template <class SuccessCB, class AfterCB>
13168static bool
13169EvaluateComparisonBinaryOperator(EvalInfo &Info, const BinaryOperator *E,
13170 SuccessCB &&Success, AfterCB &&DoAfter) {
13171 assert(!E->isValueDependent());
13172 assert(E->isComparisonOp() && "expected comparison operator");
13173 assert((E->getOpcode() == BO_Cmp ||
13174 E->getType()->isIntegralOrEnumerationType()) &&
13175 "unsupported binary expression evaluation");
13176 auto Error = [&](const Expr *E) {
13177 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
13178 return false;
13179 };
13180
13181 bool IsRelational = E->isRelationalOp() || E->getOpcode() == BO_Cmp;
13182 bool IsEquality = E->isEqualityOp();
13183
13184 QualType LHSTy = E->getLHS()->getType();
13185 QualType RHSTy = E->getRHS()->getType();
13186
13187 if (LHSTy->isIntegralOrEnumerationType() &&
13188 RHSTy->isIntegralOrEnumerationType()) {
13189 APSInt LHS, RHS;
13190 bool LHSOK = EvaluateInteger(E: E->getLHS(), Result&: LHS, Info);
13191 if (!LHSOK && !Info.noteFailure())
13192 return false;
13193 if (!EvaluateInteger(E: E->getRHS(), Result&: RHS, Info) || !LHSOK)
13194 return false;
13195 if (LHS < RHS)
13196 return Success(CmpResult::Less, E);
13197 if (LHS > RHS)
13198 return Success(CmpResult::Greater, E);
13199 return Success(CmpResult::Equal, E);
13200 }
13201
13202 if (LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) {
13203 APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(Ty: LHSTy));
13204 APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(Ty: RHSTy));
13205
13206 bool LHSOK = EvaluateFixedPointOrInteger(E: E->getLHS(), Result&: LHSFX, Info);
13207 if (!LHSOK && !Info.noteFailure())
13208 return false;
13209 if (!EvaluateFixedPointOrInteger(E: E->getRHS(), Result&: RHSFX, Info) || !LHSOK)
13210 return false;
13211 if (LHSFX < RHSFX)
13212 return Success(CmpResult::Less, E);
13213 if (LHSFX > RHSFX)
13214 return Success(CmpResult::Greater, E);
13215 return Success(CmpResult::Equal, E);
13216 }
13217
13218 if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) {
13219 ComplexValue LHS, RHS;
13220 bool LHSOK;
13221 if (E->isAssignmentOp()) {
13222 LValue LV;
13223 EvaluateLValue(E: E->getLHS(), Result&: LV, Info);
13224 LHSOK = false;
13225 } else if (LHSTy->isRealFloatingType()) {
13226 LHSOK = EvaluateFloat(E: E->getLHS(), Result&: LHS.FloatReal, Info);
13227 if (LHSOK) {
13228 LHS.makeComplexFloat();
13229 LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics());
13230 }
13231 } else {
13232 LHSOK = EvaluateComplex(E: E->getLHS(), Res&: LHS, Info);
13233 }
13234 if (!LHSOK && !Info.noteFailure())
13235 return false;
13236
13237 if (E->getRHS()->getType()->isRealFloatingType()) {
13238 if (!EvaluateFloat(E: E->getRHS(), Result&: RHS.FloatReal, Info) || !LHSOK)
13239 return false;
13240 RHS.makeComplexFloat();
13241 RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics());
13242 } else if (!EvaluateComplex(E: E->getRHS(), Res&: RHS, Info) || !LHSOK)
13243 return false;
13244
13245 if (LHS.isComplexFloat()) {
13246 APFloat::cmpResult CR_r =
13247 LHS.getComplexFloatReal().compare(RHS: RHS.getComplexFloatReal());
13248 APFloat::cmpResult CR_i =
13249 LHS.getComplexFloatImag().compare(RHS: RHS.getComplexFloatImag());
13250 bool IsEqual = CR_r == APFloat::cmpEqual && CR_i == APFloat::cmpEqual;
13251 return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E);
13252 } else {
13253 assert(IsEquality && "invalid complex comparison");
13254 bool IsEqual = LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
13255 LHS.getComplexIntImag() == RHS.getComplexIntImag();
13256 return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E);
13257 }
13258 }
13259
13260 if (LHSTy->isRealFloatingType() &&
13261 RHSTy->isRealFloatingType()) {
13262 APFloat RHS(0.0), LHS(0.0);
13263
13264 bool LHSOK = EvaluateFloat(E: E->getRHS(), Result&: RHS, Info);
13265 if (!LHSOK && !Info.noteFailure())
13266 return false;
13267
13268 if (!EvaluateFloat(E: E->getLHS(), Result&: LHS, Info) || !LHSOK)
13269 return false;
13270
13271 assert(E->isComparisonOp() && "Invalid binary operator!");
13272 llvm::APFloatBase::cmpResult APFloatCmpResult = LHS.compare(RHS);
13273 if (!Info.InConstantContext &&
13274 APFloatCmpResult == APFloat::cmpUnordered &&
13275 E->getFPFeaturesInEffect(LO: Info.Ctx.getLangOpts()).isFPConstrained()) {
13276 // Note: Compares may raise invalid in some cases involving NaN or sNaN.
13277 Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
13278 return false;
13279 }
13280 auto GetCmpRes = [&]() {
13281 switch (APFloatCmpResult) {
13282 case APFloat::cmpEqual:
13283 return CmpResult::Equal;
13284 case APFloat::cmpLessThan:
13285 return CmpResult::Less;
13286 case APFloat::cmpGreaterThan:
13287 return CmpResult::Greater;
13288 case APFloat::cmpUnordered:
13289 return CmpResult::Unordered;
13290 }
13291 llvm_unreachable("Unrecognised APFloat::cmpResult enum");
13292 };
13293 return Success(GetCmpRes(), E);
13294 }
13295
13296 if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
13297 LValue LHSValue, RHSValue;
13298
13299 bool LHSOK = EvaluatePointer(E: E->getLHS(), Result&: LHSValue, Info);
13300 if (!LHSOK && !Info.noteFailure())
13301 return false;
13302
13303 if (!EvaluatePointer(E: E->getRHS(), Result&: RHSValue, Info) || !LHSOK)
13304 return false;
13305
13306 // Reject differing bases from the normal codepath; we special-case
13307 // comparisons to null.
13308 if (!HasSameBase(A: LHSValue, B: RHSValue)) {
13309 auto DiagComparison = [&] (unsigned DiagID, bool Reversed = false) {
13310 std::string LHS = LHSValue.toString(Ctx&: Info.Ctx, T: E->getLHS()->getType());
13311 std::string RHS = RHSValue.toString(Ctx&: Info.Ctx, T: E->getRHS()->getType());
13312 Info.FFDiag(E, DiagID)
13313 << (Reversed ? RHS : LHS) << (Reversed ? LHS : RHS);
13314 return false;
13315 };
13316 // Inequalities and subtractions between unrelated pointers have
13317 // unspecified or undefined behavior.
13318 if (!IsEquality)
13319 return DiagComparison(
13320 diag::note_constexpr_pointer_comparison_unspecified);
13321 // A constant address may compare equal to the address of a symbol.
13322 // The one exception is that address of an object cannot compare equal
13323 // to a null pointer constant.
13324 // TODO: Should we restrict this to actual null pointers, and exclude the
13325 // case of zero cast to pointer type?
13326 if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
13327 (!RHSValue.Base && !RHSValue.Offset.isZero()))
13328 return DiagComparison(diag::note_constexpr_pointer_constant_comparison,
13329 !RHSValue.Base);
13330 // It's implementation-defined whether distinct literals will have
13331 // distinct addresses. In clang, the result of such a comparison is
13332 // unspecified, so it is not a constant expression. However, we do know
13333 // that the address of a literal will be non-null.
13334 if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
13335 LHSValue.Base && RHSValue.Base)
13336 return DiagComparison(diag::note_constexpr_literal_comparison);
13337 // We can't tell whether weak symbols will end up pointing to the same
13338 // object.
13339 if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
13340 return DiagComparison(diag::note_constexpr_pointer_weak_comparison,
13341 !IsWeakLValue(LHSValue));
13342 // We can't compare the address of the start of one object with the
13343 // past-the-end address of another object, per C++ DR1652.
13344 if (LHSValue.Base && LHSValue.Offset.isZero() &&
13345 isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue))
13346 return DiagComparison(diag::note_constexpr_pointer_comparison_past_end,
13347 true);
13348 if (RHSValue.Base && RHSValue.Offset.isZero() &&
13349 isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue))
13350 return DiagComparison(diag::note_constexpr_pointer_comparison_past_end,
13351 false);
13352 // We can't tell whether an object is at the same address as another
13353 // zero sized object.
13354 if ((RHSValue.Base && isZeroSized(LHSValue)) ||
13355 (LHSValue.Base && isZeroSized(RHSValue)))
13356 return DiagComparison(
13357 diag::note_constexpr_pointer_comparison_zero_sized);
13358 return Success(CmpResult::Unequal, E);
13359 }
13360
13361 const CharUnits &LHSOffset = LHSValue.getLValueOffset();
13362 const CharUnits &RHSOffset = RHSValue.getLValueOffset();
13363
13364 SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
13365 SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
13366
13367 // C++11 [expr.rel]p3:
13368 // Pointers to void (after pointer conversions) can be compared, with a
13369 // result defined as follows: If both pointers represent the same
13370 // address or are both the null pointer value, the result is true if the
13371 // operator is <= or >= and false otherwise; otherwise the result is
13372 // unspecified.
13373 // We interpret this as applying to pointers to *cv* void.
13374 if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset && IsRelational)
13375 Info.CCEDiag(E, diag::note_constexpr_void_comparison);
13376
13377 // C++11 [expr.rel]p2:
13378 // - If two pointers point to non-static data members of the same object,
13379 // or to subobjects or array elements fo such members, recursively, the
13380 // pointer to the later declared member compares greater provided the
13381 // two members have the same access control and provided their class is
13382 // not a union.
13383 // [...]
13384 // - Otherwise pointer comparisons are unspecified.
13385 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && IsRelational) {
13386 bool WasArrayIndex;
13387 unsigned Mismatch = FindDesignatorMismatch(
13388 ObjType: getType(B: LHSValue.Base), A: LHSDesignator, B: RHSDesignator, WasArrayIndex);
13389 // At the point where the designators diverge, the comparison has a
13390 // specified value if:
13391 // - we are comparing array indices
13392 // - we are comparing fields of a union, or fields with the same access
13393 // Otherwise, the result is unspecified and thus the comparison is not a
13394 // constant expression.
13395 if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
13396 Mismatch < RHSDesignator.Entries.size()) {
13397 const FieldDecl *LF = getAsField(E: LHSDesignator.Entries[Mismatch]);
13398 const FieldDecl *RF = getAsField(E: RHSDesignator.Entries[Mismatch]);
13399 if (!LF && !RF)
13400 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
13401 else if (!LF)
13402 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
13403 << getAsBaseClass(LHSDesignator.Entries[Mismatch])
13404 << RF->getParent() << RF;
13405 else if (!RF)
13406 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
13407 << getAsBaseClass(RHSDesignator.Entries[Mismatch])
13408 << LF->getParent() << LF;
13409 else if (!LF->getParent()->isUnion() &&
13410 LF->getAccess() != RF->getAccess())
13411 Info.CCEDiag(E,
13412 diag::note_constexpr_pointer_comparison_differing_access)
13413 << LF << LF->getAccess() << RF << RF->getAccess()
13414 << LF->getParent();
13415 }
13416 }
13417
13418 // The comparison here must be unsigned, and performed with the same
13419 // width as the pointer.
13420 unsigned PtrSize = Info.Ctx.getTypeSize(T: LHSTy);
13421 uint64_t CompareLHS = LHSOffset.getQuantity();
13422 uint64_t CompareRHS = RHSOffset.getQuantity();
13423 assert(PtrSize <= 64 && "Unexpected pointer width");
13424 uint64_t Mask = ~0ULL >> (64 - PtrSize);
13425 CompareLHS &= Mask;
13426 CompareRHS &= Mask;
13427
13428 // If there is a base and this is a relational operator, we can only
13429 // compare pointers within the object in question; otherwise, the result
13430 // depends on where the object is located in memory.
13431 if (!LHSValue.Base.isNull() && IsRelational) {
13432 QualType BaseTy = getType(B: LHSValue.Base);
13433 if (BaseTy->isIncompleteType())
13434 return Error(E);
13435 CharUnits Size = Info.Ctx.getTypeSizeInChars(T: BaseTy);
13436 uint64_t OffsetLimit = Size.getQuantity();
13437 if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
13438 return Error(E);
13439 }
13440
13441 if (CompareLHS < CompareRHS)
13442 return Success(CmpResult::Less, E);
13443 if (CompareLHS > CompareRHS)
13444 return Success(CmpResult::Greater, E);
13445 return Success(CmpResult::Equal, E);
13446 }
13447
13448 if (LHSTy->isMemberPointerType()) {
13449 assert(IsEquality && "unexpected member pointer operation");
13450 assert(RHSTy->isMemberPointerType() && "invalid comparison");
13451
13452 MemberPtr LHSValue, RHSValue;
13453
13454 bool LHSOK = EvaluateMemberPointer(E: E->getLHS(), Result&: LHSValue, Info);
13455 if (!LHSOK && !Info.noteFailure())
13456 return false;
13457
13458 if (!EvaluateMemberPointer(E: E->getRHS(), Result&: RHSValue, Info) || !LHSOK)
13459 return false;
13460
13461 // If either operand is a pointer to a weak function, the comparison is not
13462 // constant.
13463 if (LHSValue.getDecl() && LHSValue.getDecl()->isWeak()) {
13464 Info.FFDiag(E, diag::note_constexpr_mem_pointer_weak_comparison)
13465 << LHSValue.getDecl();
13466 return false;
13467 }
13468 if (RHSValue.getDecl() && RHSValue.getDecl()->isWeak()) {
13469 Info.FFDiag(E, diag::note_constexpr_mem_pointer_weak_comparison)
13470 << RHSValue.getDecl();
13471 return false;
13472 }
13473
13474 // C++11 [expr.eq]p2:
13475 // If both operands are null, they compare equal. Otherwise if only one is
13476 // null, they compare unequal.
13477 if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
13478 bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
13479 return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E);
13480 }
13481
13482 // Otherwise if either is a pointer to a virtual member function, the
13483 // result is unspecified.
13484 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
13485 if (MD->isVirtual())
13486 Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
13487 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
13488 if (MD->isVirtual())
13489 Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
13490
13491 // Otherwise they compare equal if and only if they would refer to the
13492 // same member of the same most derived object or the same subobject if
13493 // they were dereferenced with a hypothetical object of the associated
13494 // class type.
13495 bool Equal = LHSValue == RHSValue;
13496 return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E);
13497 }
13498
13499 if (LHSTy->isNullPtrType()) {
13500 assert(E->isComparisonOp() && "unexpected nullptr operation");
13501 assert(RHSTy->isNullPtrType() && "missing pointer conversion");
13502 // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
13503 // are compared, the result is true of the operator is <=, >= or ==, and
13504 // false otherwise.
13505 LValue Res;
13506 if (!EvaluatePointer(E: E->getLHS(), Result&: Res, Info) ||
13507 !EvaluatePointer(E: E->getRHS(), Result&: Res, Info))
13508 return false;
13509 return Success(CmpResult::Equal, E);
13510 }
13511
13512 return DoAfter();
13513}
13514
13515bool RecordExprEvaluator::VisitBinCmp(const BinaryOperator *E) {
13516 if (!CheckLiteralType(Info, E))
13517 return false;
13518
13519 auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) {
13520 ComparisonCategoryResult CCR;
13521 switch (CR) {
13522 case CmpResult::Unequal:
13523 llvm_unreachable("should never produce Unequal for three-way comparison");
13524 case CmpResult::Less:
13525 CCR = ComparisonCategoryResult::Less;
13526 break;
13527 case CmpResult::Equal:
13528 CCR = ComparisonCategoryResult::Equal;
13529 break;
13530 case CmpResult::Greater:
13531 CCR = ComparisonCategoryResult::Greater;
13532 break;
13533 case CmpResult::Unordered:
13534 CCR = ComparisonCategoryResult::Unordered;
13535 break;
13536 }
13537 // Evaluation succeeded. Lookup the information for the comparison category
13538 // type and fetch the VarDecl for the result.
13539 const ComparisonCategoryInfo &CmpInfo =
13540 Info.Ctx.CompCategories.getInfoForType(Ty: E->getType());
13541 const VarDecl *VD = CmpInfo.getValueInfo(ValueKind: CmpInfo.makeWeakResult(Res: CCR))->VD;
13542 // Check and evaluate the result as a constant expression.
13543 LValue LV;
13544 LV.set(VD);
13545 if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
13546 return false;
13547 return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result,
13548 ConstantExprKind::Normal);
13549 };
13550 return EvaluateComparisonBinaryOperator(Info, E, Success&: OnSuccess, DoAfter: [&]() {
13551 return ExprEvaluatorBaseTy::VisitBinCmp(E);
13552 });
13553}
13554
13555bool RecordExprEvaluator::VisitCXXParenListInitExpr(
13556 const CXXParenListInitExpr *E) {
13557 return VisitCXXParenListOrInitListExpr(E, E->getInitExprs());
13558}
13559
13560bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
13561 // We don't support assignment in C. C++ assignments don't get here because
13562 // assignment is an lvalue in C++.
13563 if (E->isAssignmentOp()) {
13564 Error(E);
13565 if (!Info.noteFailure())
13566 return false;
13567 }
13568
13569 if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
13570 return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
13571
13572 assert((!E->getLHS()->getType()->isIntegralOrEnumerationType() ||
13573 !E->getRHS()->getType()->isIntegralOrEnumerationType()) &&
13574 "DataRecursiveIntBinOpEvaluator should have handled integral types");
13575
13576 if (E->isComparisonOp()) {
13577 // Evaluate builtin binary comparisons by evaluating them as three-way
13578 // comparisons and then translating the result.
13579 auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) {
13580 assert((CR != CmpResult::Unequal || E->isEqualityOp()) &&
13581 "should only produce Unequal for equality comparisons");
13582 bool IsEqual = CR == CmpResult::Equal,
13583 IsLess = CR == CmpResult::Less,
13584 IsGreater = CR == CmpResult::Greater;
13585 auto Op = E->getOpcode();
13586 switch (Op) {
13587 default:
13588 llvm_unreachable("unsupported binary operator");
13589 case BO_EQ:
13590 case BO_NE:
13591 return Success(IsEqual == (Op == BO_EQ), E);
13592 case BO_LT:
13593 return Success(IsLess, E);
13594 case BO_GT:
13595 return Success(IsGreater, E);
13596 case BO_LE:
13597 return Success(IsEqual || IsLess, E);
13598 case BO_GE:
13599 return Success(IsEqual || IsGreater, E);
13600 }
13601 };
13602 return EvaluateComparisonBinaryOperator(Info, E, Success&: OnSuccess, DoAfter: [&]() {
13603 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13604 });
13605 }
13606
13607 QualType LHSTy = E->getLHS()->getType();
13608 QualType RHSTy = E->getRHS()->getType();
13609
13610 if (LHSTy->isPointerType() && RHSTy->isPointerType() &&
13611 E->getOpcode() == BO_Sub) {
13612 LValue LHSValue, RHSValue;
13613
13614 bool LHSOK = EvaluatePointer(E: E->getLHS(), Result&: LHSValue, Info);
13615 if (!LHSOK && !Info.noteFailure())
13616 return false;
13617
13618 if (!EvaluatePointer(E: E->getRHS(), Result&: RHSValue, Info) || !LHSOK)
13619 return false;
13620
13621 // Reject differing bases from the normal codepath; we special-case
13622 // comparisons to null.
13623 if (!HasSameBase(A: LHSValue, B: RHSValue)) {
13624 // Handle &&A - &&B.
13625 if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
13626 return Error(E);
13627 const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr *>();
13628 const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr *>();
13629 if (!LHSExpr || !RHSExpr)
13630 return Error(E);
13631 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(Val: LHSExpr);
13632 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(Val: RHSExpr);
13633 if (!LHSAddrExpr || !RHSAddrExpr)
13634 return Error(E);
13635 // Make sure both labels come from the same function.
13636 if (LHSAddrExpr->getLabel()->getDeclContext() !=
13637 RHSAddrExpr->getLabel()->getDeclContext())
13638 return Error(E);
13639 return Success(APValue(LHSAddrExpr, RHSAddrExpr), E);
13640 }
13641 const CharUnits &LHSOffset = LHSValue.getLValueOffset();
13642 const CharUnits &RHSOffset = RHSValue.getLValueOffset();
13643
13644 SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
13645 SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
13646
13647 // C++11 [expr.add]p6:
13648 // Unless both pointers point to elements of the same array object, or
13649 // one past the last element of the array object, the behavior is
13650 // undefined.
13651 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
13652 !AreElementsOfSameArray(getType(LHSValue.Base), LHSDesignator,
13653 RHSDesignator))
13654 Info.CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
13655
13656 QualType Type = E->getLHS()->getType();
13657 QualType ElementType = Type->castAs<PointerType>()->getPointeeType();
13658
13659 CharUnits ElementSize;
13660 if (!HandleSizeof(Info, Loc: E->getExprLoc(), Type: ElementType, Size&: ElementSize))
13661 return false;
13662
13663 // As an extension, a type may have zero size (empty struct or union in
13664 // C, array of zero length). Pointer subtraction in such cases has
13665 // undefined behavior, so is not constant.
13666 if (ElementSize.isZero()) {
13667 Info.FFDiag(E, diag::note_constexpr_pointer_subtraction_zero_size)
13668 << ElementType;
13669 return false;
13670 }
13671
13672 // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
13673 // and produce incorrect results when it overflows. Such behavior
13674 // appears to be non-conforming, but is common, so perhaps we should
13675 // assume the standard intended for such cases to be undefined behavior
13676 // and check for them.
13677
13678 // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
13679 // overflow in the final conversion to ptrdiff_t.
13680 APSInt LHS(llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
13681 APSInt RHS(llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
13682 APSInt ElemSize(llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true),
13683 false);
13684 APSInt TrueResult = (LHS - RHS) / ElemSize;
13685 APSInt Result = TrueResult.trunc(width: Info.Ctx.getIntWidth(T: E->getType()));
13686
13687 if (Result.extend(width: 65) != TrueResult &&
13688 !HandleOverflow(Info, E, TrueResult, E->getType()))
13689 return false;
13690 return Success(Result, E);
13691 }
13692
13693 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13694}
13695
13696/// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
13697/// a result as the expression's type.
13698bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
13699 const UnaryExprOrTypeTraitExpr *E) {
13700 switch(E->getKind()) {
13701 case UETT_PreferredAlignOf:
13702 case UETT_AlignOf: {
13703 if (E->isArgumentType())
13704 return Success(GetAlignOfType(Info, T: E->getArgumentType(), ExprKind: E->getKind()),
13705 E);
13706 else
13707 return Success(GetAlignOfExpr(Info, E: E->getArgumentExpr(), ExprKind: E->getKind()),
13708 E);
13709 }
13710
13711 case UETT_VecStep: {
13712 QualType Ty = E->getTypeOfArgument();
13713
13714 if (Ty->isVectorType()) {
13715 unsigned n = Ty->castAs<VectorType>()->getNumElements();
13716
13717 // The vec_step built-in functions that take a 3-component
13718 // vector return 4. (OpenCL 1.1 spec 6.11.12)
13719 if (n == 3)
13720 n = 4;
13721
13722 return Success(n, E);
13723 } else
13724 return Success(1, E);
13725 }
13726
13727 case UETT_DataSizeOf:
13728 case UETT_SizeOf: {
13729 QualType SrcTy = E->getTypeOfArgument();
13730 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
13731 // the result is the size of the referenced type."
13732 if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
13733 SrcTy = Ref->getPointeeType();
13734
13735 CharUnits Sizeof;
13736 if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof,
13737 E->getKind() == UETT_DataSizeOf ? SizeOfType::DataSizeOf
13738 : SizeOfType::SizeOf)) {
13739 return false;
13740 }
13741 return Success(Sizeof, E);
13742 }
13743 case UETT_OpenMPRequiredSimdAlign:
13744 assert(E->isArgumentType());
13745 return Success(
13746 Info.Ctx.toCharUnitsFromBits(
13747 BitSize: Info.Ctx.getOpenMPDefaultSimdAlign(T: E->getArgumentType()))
13748 .getQuantity(),
13749 E);
13750 case UETT_VectorElements: {
13751 QualType Ty = E->getTypeOfArgument();
13752 // If the vector has a fixed size, we can determine the number of elements
13753 // at compile time.
13754 if (Ty->isVectorType())
13755 return Success(Ty->castAs<VectorType>()->getNumElements(), E);
13756
13757 assert(Ty->isSizelessVectorType());
13758 if (Info.InConstantContext)
13759 Info.CCEDiag(E, diag::note_constexpr_non_const_vectorelements)
13760 << E->getSourceRange();
13761
13762 return false;
13763 }
13764 }
13765
13766 llvm_unreachable("unknown expr/type trait");
13767}
13768
13769bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
13770 CharUnits Result;
13771 unsigned n = OOE->getNumComponents();
13772 if (n == 0)
13773 return Error(OOE);
13774 QualType CurrentType = OOE->getTypeSourceInfo()->getType();
13775 for (unsigned i = 0; i != n; ++i) {
13776 OffsetOfNode ON = OOE->getComponent(Idx: i);
13777 switch (ON.getKind()) {
13778 case OffsetOfNode::Array: {
13779 const Expr *Idx = OOE->getIndexExpr(Idx: ON.getArrayExprIndex());
13780 APSInt IdxResult;
13781 if (!EvaluateInteger(E: Idx, Result&: IdxResult, Info))
13782 return false;
13783 const ArrayType *AT = Info.Ctx.getAsArrayType(T: CurrentType);
13784 if (!AT)
13785 return Error(OOE);
13786 CurrentType = AT->getElementType();
13787 CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(T: CurrentType);
13788 Result += IdxResult.getSExtValue() * ElementSize;
13789 break;
13790 }
13791
13792 case OffsetOfNode::Field: {
13793 FieldDecl *MemberDecl = ON.getField();
13794 const RecordType *RT = CurrentType->getAs<RecordType>();
13795 if (!RT)
13796 return Error(OOE);
13797 RecordDecl *RD = RT->getDecl();
13798 if (RD->isInvalidDecl()) return false;
13799 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(D: RD);
13800 unsigned i = MemberDecl->getFieldIndex();
13801 assert(i < RL.getFieldCount() && "offsetof field in wrong type");
13802 Result += Info.Ctx.toCharUnitsFromBits(BitSize: RL.getFieldOffset(FieldNo: i));
13803 CurrentType = MemberDecl->getType().getNonReferenceType();
13804 break;
13805 }
13806
13807 case OffsetOfNode::Identifier:
13808 llvm_unreachable("dependent __builtin_offsetof");
13809
13810 case OffsetOfNode::Base: {
13811 CXXBaseSpecifier *BaseSpec = ON.getBase();
13812 if (BaseSpec->isVirtual())
13813 return Error(OOE);
13814
13815 // Find the layout of the class whose base we are looking into.
13816 const RecordType *RT = CurrentType->getAs<RecordType>();
13817 if (!RT)
13818 return Error(OOE);
13819 RecordDecl *RD = RT->getDecl();
13820 if (RD->isInvalidDecl()) return false;
13821 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(D: RD);
13822
13823 // Find the base class itself.
13824 CurrentType = BaseSpec->getType();
13825 const RecordType *BaseRT = CurrentType->getAs<RecordType>();
13826 if (!BaseRT)
13827 return Error(OOE);
13828
13829 // Add the offset to the base.
13830 Result += RL.getBaseClassOffset(Base: cast<CXXRecordDecl>(Val: BaseRT->getDecl()));
13831 break;
13832 }
13833 }
13834 }
13835 return Success(Result, OOE);
13836}
13837
13838bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
13839 switch (E->getOpcode()) {
13840 default:
13841 // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
13842 // See C99 6.6p3.
13843 return Error(E);
13844 case UO_Extension:
13845 // FIXME: Should extension allow i-c-e extension expressions in its scope?
13846 // If so, we could clear the diagnostic ID.
13847 return Visit(E->getSubExpr());
13848 case UO_Plus:
13849 // The result is just the value.
13850 return Visit(E->getSubExpr());
13851 case UO_Minus: {
13852 if (!Visit(E->getSubExpr()))
13853 return false;
13854 if (!Result.isInt()) return Error(E);
13855 const APSInt &Value = Result.getInt();
13856 if (Value.isSigned() && Value.isMinSignedValue() && E->canOverflow()) {
13857 if (Info.checkingForUndefinedBehavior())
13858 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13859 diag::warn_integer_constant_overflow)
13860 << toString(Value, 10) << E->getType() << E->getSourceRange();
13861
13862 if (!HandleOverflow(Info, E, -Value.extend(width: Value.getBitWidth() + 1),
13863 E->getType()))
13864 return false;
13865 }
13866 return Success(-Value, E);
13867 }
13868 case UO_Not: {
13869 if (!Visit(E->getSubExpr()))
13870 return false;
13871 if (!Result.isInt()) return Error(E);
13872 return Success(~Result.getInt(), E);
13873 }
13874 case UO_LNot: {
13875 bool bres;
13876 if (!EvaluateAsBooleanCondition(E: E->getSubExpr(), Result&: bres, Info))
13877 return false;
13878 return Success(!bres, E);
13879 }
13880 }
13881}
13882
13883/// HandleCast - This is used to evaluate implicit or explicit casts where the
13884/// result type is integer.
13885bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
13886 const Expr *SubExpr = E->getSubExpr();
13887 QualType DestType = E->getType();
13888 QualType SrcType = SubExpr->getType();
13889
13890 switch (E->getCastKind()) {
13891 case CK_BaseToDerived:
13892 case CK_DerivedToBase:
13893 case CK_UncheckedDerivedToBase:
13894 case CK_Dynamic:
13895 case CK_ToUnion:
13896 case CK_ArrayToPointerDecay:
13897 case CK_FunctionToPointerDecay:
13898 case CK_NullToPointer:
13899 case CK_NullToMemberPointer:
13900 case CK_BaseToDerivedMemberPointer:
13901 case CK_DerivedToBaseMemberPointer:
13902 case CK_ReinterpretMemberPointer:
13903 case CK_ConstructorConversion:
13904 case CK_IntegralToPointer:
13905 case CK_ToVoid:
13906 case CK_VectorSplat:
13907 case CK_IntegralToFloating:
13908 case CK_FloatingCast:
13909 case CK_CPointerToObjCPointerCast:
13910 case CK_BlockPointerToObjCPointerCast:
13911 case CK_AnyPointerToBlockPointerCast:
13912 case CK_ObjCObjectLValueCast:
13913 case CK_FloatingRealToComplex:
13914 case CK_FloatingComplexToReal:
13915 case CK_FloatingComplexCast:
13916 case CK_FloatingComplexToIntegralComplex:
13917 case CK_IntegralRealToComplex:
13918 case CK_IntegralComplexCast:
13919 case CK_IntegralComplexToFloatingComplex:
13920 case CK_BuiltinFnToFnPtr:
13921 case CK_ZeroToOCLOpaqueType:
13922 case CK_NonAtomicToAtomic:
13923 case CK_AddressSpaceConversion:
13924 case CK_IntToOCLSampler:
13925 case CK_FloatingToFixedPoint:
13926 case CK_FixedPointToFloating:
13927 case CK_FixedPointCast:
13928 case CK_IntegralToFixedPoint:
13929 case CK_MatrixCast:
13930 llvm_unreachable("invalid cast kind for integral value");
13931
13932 case CK_BitCast:
13933 case CK_Dependent:
13934 case CK_LValueBitCast:
13935 case CK_ARCProduceObject:
13936 case CK_ARCConsumeObject:
13937 case CK_ARCReclaimReturnedObject:
13938 case CK_ARCExtendBlockObject:
13939 case CK_CopyAndAutoreleaseBlockObject:
13940 return Error(E);
13941
13942 case CK_UserDefinedConversion:
13943 case CK_LValueToRValue:
13944 case CK_AtomicToNonAtomic:
13945 case CK_NoOp:
13946 case CK_LValueToRValueBitCast:
13947 return ExprEvaluatorBaseTy::VisitCastExpr(E);
13948
13949 case CK_MemberPointerToBoolean:
13950 case CK_PointerToBoolean:
13951 case CK_IntegralToBoolean:
13952 case CK_FloatingToBoolean:
13953 case CK_BooleanToSignedIntegral:
13954 case CK_FloatingComplexToBoolean:
13955 case CK_IntegralComplexToBoolean: {
13956 bool BoolResult;
13957 if (!EvaluateAsBooleanCondition(E: SubExpr, Result&: BoolResult, Info))
13958 return false;
13959 uint64_t IntResult = BoolResult;
13960 if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral)
13961 IntResult = (uint64_t)-1;
13962 return Success(IntResult, E);
13963 }
13964
13965 case CK_FixedPointToIntegral: {
13966 APFixedPoint Src(Info.Ctx.getFixedPointSemantics(Ty: SrcType));
13967 if (!EvaluateFixedPoint(E: SubExpr, Result&: Src, Info))
13968 return false;
13969 bool Overflowed;
13970 llvm::APSInt Result = Src.convertToInt(
13971 DstWidth: Info.Ctx.getIntWidth(T: DestType),
13972 DstSign: DestType->isSignedIntegerOrEnumerationType(), Overflow: &Overflowed);
13973 if (Overflowed && !HandleOverflow(Info, E, Result, DestType))
13974 return false;
13975 return Success(Result, E);
13976 }
13977
13978 case CK_FixedPointToBoolean: {
13979 // Unsigned padding does not affect this.
13980 APValue Val;
13981 if (!Evaluate(Result&: Val, Info, E: SubExpr))
13982 return false;
13983 return Success(Val.getFixedPoint().getBoolValue(), E);
13984 }
13985
13986 case CK_IntegralCast: {
13987 if (!Visit(SubExpr))
13988 return false;
13989
13990 if (!Result.isInt()) {
13991 // Allow casts of address-of-label differences if they are no-ops
13992 // or narrowing. (The narrowing case isn't actually guaranteed to
13993 // be constant-evaluatable except in some narrow cases which are hard
13994 // to detect here. We let it through on the assumption the user knows
13995 // what they are doing.)
13996 if (Result.isAddrLabelDiff())
13997 return Info.Ctx.getTypeSize(T: DestType) <= Info.Ctx.getTypeSize(T: SrcType);
13998 // Only allow casts of lvalues if they are lossless.
13999 return Info.Ctx.getTypeSize(T: DestType) == Info.Ctx.getTypeSize(T: SrcType);
14000 }
14001
14002 if (Info.Ctx.getLangOpts().CPlusPlus && Info.InConstantContext &&
14003 Info.EvalMode == EvalInfo::EM_ConstantExpression &&
14004 DestType->isEnumeralType()) {
14005
14006 bool ConstexprVar = true;
14007
14008 // We know if we are here that we are in a context that we might require
14009 // a constant expression or a context that requires a constant
14010 // value. But if we are initializing a value we don't know if it is a
14011 // constexpr variable or not. We can check the EvaluatingDecl to determine
14012 // if it constexpr or not. If not then we don't want to emit a diagnostic.
14013 if (const auto *VD = dyn_cast_or_null<VarDecl>(
14014 Val: Info.EvaluatingDecl.dyn_cast<const ValueDecl *>()))
14015 ConstexprVar = VD->isConstexpr();
14016
14017 const EnumType *ET = dyn_cast<EnumType>(Val: DestType.getCanonicalType());
14018 const EnumDecl *ED = ET->getDecl();
14019 // Check that the value is within the range of the enumeration values.
14020 //
14021 // This corressponds to [expr.static.cast]p10 which says:
14022 // A value of integral or enumeration type can be explicitly converted
14023 // to a complete enumeration type ... If the enumeration type does not
14024 // have a fixed underlying type, the value is unchanged if the original
14025 // value is within the range of the enumeration values ([dcl.enum]), and
14026 // otherwise, the behavior is undefined.
14027 //
14028 // This was resolved as part of DR2338 which has CD5 status.
14029 if (!ED->isFixed()) {
14030 llvm::APInt Min;
14031 llvm::APInt Max;
14032
14033 ED->getValueRange(Max, Min);
14034 --Max;
14035
14036 if (ED->getNumNegativeBits() && ConstexprVar &&
14037 (Max.slt(Result.getInt().getSExtValue()) ||
14038 Min.sgt(Result.getInt().getSExtValue())))
14039 Info.Ctx.getDiagnostics().Report(
14040 E->getExprLoc(), diag::warn_constexpr_unscoped_enum_out_of_range)
14041 << llvm::toString(Result.getInt(), 10) << Min.getSExtValue()
14042 << Max.getSExtValue() << ED;
14043 else if (!ED->getNumNegativeBits() && ConstexprVar &&
14044 Max.ult(Result.getInt().getZExtValue()))
14045 Info.Ctx.getDiagnostics().Report(
14046 E->getExprLoc(), diag::warn_constexpr_unscoped_enum_out_of_range)
14047 << llvm::toString(Result.getInt(), 10) << Min.getZExtValue()
14048 << Max.getZExtValue() << ED;
14049 }
14050 }
14051
14052 return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
14053 Result.getInt()), E);
14054 }
14055
14056 case CK_PointerToIntegral: {
14057 CCEDiag(E, diag::note_constexpr_invalid_cast)
14058 << 2 << Info.Ctx.getLangOpts().CPlusPlus << E->getSourceRange();
14059
14060 LValue LV;
14061 if (!EvaluatePointer(E: SubExpr, Result&: LV, Info))
14062 return false;
14063
14064 if (LV.getLValueBase()) {
14065 // Only allow based lvalue casts if they are lossless.
14066 // FIXME: Allow a larger integer size than the pointer size, and allow
14067 // narrowing back down to pointer width in subsequent integral casts.
14068 // FIXME: Check integer type's active bits, not its type size.
14069 if (Info.Ctx.getTypeSize(T: DestType) != Info.Ctx.getTypeSize(T: SrcType))
14070 return Error(E);
14071
14072 LV.Designator.setInvalid();
14073 LV.moveInto(V&: Result);
14074 return true;
14075 }
14076
14077 APSInt AsInt;
14078 APValue V;
14079 LV.moveInto(V);
14080 if (!V.toIntegralConstant(Result&: AsInt, SrcTy: SrcType, Ctx: Info.Ctx))
14081 llvm_unreachable("Can't cast this!");
14082
14083 return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
14084 }
14085
14086 case CK_IntegralComplexToReal: {
14087 ComplexValue C;
14088 if (!EvaluateComplex(E: SubExpr, Res&: C, Info))
14089 return false;
14090 return Success(C.getComplexIntReal(), E);
14091 }
14092
14093 case CK_FloatingToIntegral: {
14094 APFloat F(0.0);
14095 if (!EvaluateFloat(E: SubExpr, Result&: F, Info))
14096 return false;
14097
14098 APSInt Value;
14099 if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
14100 return false;
14101 return Success(Value, E);
14102 }
14103 }
14104
14105 llvm_unreachable("unknown cast resulting in integral value");
14106}
14107
14108bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
14109 if (E->getSubExpr()->getType()->isAnyComplexType()) {
14110 ComplexValue LV;
14111 if (!EvaluateComplex(E: E->getSubExpr(), Res&: LV, Info))
14112 return false;
14113 if (!LV.isComplexInt())
14114 return Error(E);
14115 return Success(LV.getComplexIntReal(), E);
14116 }
14117
14118 return Visit(E->getSubExpr());
14119}
14120
14121bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
14122 if (E->getSubExpr()->getType()->isComplexIntegerType()) {
14123 ComplexValue LV;
14124 if (!EvaluateComplex(E: E->getSubExpr(), Res&: LV, Info))
14125 return false;
14126 if (!LV.isComplexInt())
14127 return Error(E);
14128 return Success(LV.getComplexIntImag(), E);
14129 }
14130
14131 VisitIgnoredValue(E: E->getSubExpr());
14132 return Success(0, E);
14133}
14134
14135bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
14136 return Success(E->getPackLength(), E);
14137}
14138
14139bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
14140 return Success(E->getValue(), E);
14141}
14142
14143bool IntExprEvaluator::VisitConceptSpecializationExpr(
14144 const ConceptSpecializationExpr *E) {
14145 return Success(E->isSatisfied(), E);
14146}
14147
14148bool IntExprEvaluator::VisitRequiresExpr(const RequiresExpr *E) {
14149 return Success(E->isSatisfied(), E);
14150}
14151
14152bool FixedPointExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
14153 switch (E->getOpcode()) {
14154 default:
14155 // Invalid unary operators
14156 return Error(E);
14157 case UO_Plus:
14158 // The result is just the value.
14159 return Visit(E->getSubExpr());
14160 case UO_Minus: {
14161 if (!Visit(E->getSubExpr())) return false;
14162 if (!Result.isFixedPoint())
14163 return Error(E);
14164 bool Overflowed;
14165 APFixedPoint Negated = Result.getFixedPoint().negate(Overflow: &Overflowed);
14166 if (Overflowed && !HandleOverflow(Info, E, Negated, E->getType()))
14167 return false;
14168 return Success(Negated, E);
14169 }
14170 case UO_LNot: {
14171 bool bres;
14172 if (!EvaluateAsBooleanCondition(E: E->getSubExpr(), Result&: bres, Info))
14173 return false;
14174 return Success(!bres, E);
14175 }
14176 }
14177}
14178
14179bool FixedPointExprEvaluator::VisitCastExpr(const CastExpr *E) {
14180 const Expr *SubExpr = E->getSubExpr();
14181 QualType DestType = E->getType();
14182 assert(DestType->isFixedPointType() &&
14183 "Expected destination type to be a fixed point type");
14184 auto DestFXSema = Info.Ctx.getFixedPointSemantics(Ty: DestType);
14185
14186 switch (E->getCastKind()) {
14187 case CK_FixedPointCast: {
14188 APFixedPoint Src(Info.Ctx.getFixedPointSemantics(Ty: SubExpr->getType()));
14189 if (!EvaluateFixedPoint(E: SubExpr, Result&: Src, Info))
14190 return false;
14191 bool Overflowed;
14192 APFixedPoint Result = Src.convert(DstSema: DestFXSema, Overflow: &Overflowed);
14193 if (Overflowed) {
14194 if (Info.checkingForUndefinedBehavior())
14195 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
14196 diag::warn_fixedpoint_constant_overflow)
14197 << Result.toString() << E->getType();
14198 if (!HandleOverflow(Info, E, Result, E->getType()))
14199 return false;
14200 }
14201 return Success(Result, E);
14202 }
14203 case CK_IntegralToFixedPoint: {
14204 APSInt Src;
14205 if (!EvaluateInteger(E: SubExpr, Result&: Src, Info))
14206 return false;
14207
14208 bool Overflowed;
14209 APFixedPoint IntResult = APFixedPoint::getFromIntValue(
14210 Value: Src, DstFXSema: Info.Ctx.getFixedPointSemantics(Ty: DestType), Overflow: &Overflowed);
14211
14212 if (Overflowed) {
14213 if (Info.checkingForUndefinedBehavior())
14214 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
14215 diag::warn_fixedpoint_constant_overflow)
14216 << IntResult.toString() << E->getType();
14217 if (!HandleOverflow(Info, E, IntResult, E->getType()))
14218 return false;
14219 }
14220
14221 return Success(IntResult, E);
14222 }
14223 case CK_FloatingToFixedPoint: {
14224 APFloat Src(0.0);
14225 if (!EvaluateFloat(E: SubExpr, Result&: Src, Info))
14226 return false;
14227
14228 bool Overflowed;
14229 APFixedPoint Result = APFixedPoint::getFromFloatValue(
14230 Value: Src, DstFXSema: Info.Ctx.getFixedPointSemantics(Ty: DestType), Overflow: &Overflowed);
14231
14232 if (Overflowed) {
14233 if (Info.checkingForUndefinedBehavior())
14234 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
14235 diag::warn_fixedpoint_constant_overflow)
14236 << Result.toString() << E->getType();
14237 if (!HandleOverflow(Info, E, Result, E->getType()))
14238 return false;
14239 }
14240
14241 return Success(Result, E);
14242 }
14243 case CK_NoOp:
14244 case CK_LValueToRValue:
14245 return ExprEvaluatorBaseTy::VisitCastExpr(E);
14246 default:
14247 return Error(E);
14248 }
14249}
14250
14251bool FixedPointExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
14252 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
14253 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
14254
14255 const Expr *LHS = E->getLHS();
14256 const Expr *RHS = E->getRHS();
14257 FixedPointSemantics ResultFXSema =
14258 Info.Ctx.getFixedPointSemantics(Ty: E->getType());
14259
14260 APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(Ty: LHS->getType()));
14261 if (!EvaluateFixedPointOrInteger(E: LHS, Result&: LHSFX, Info))
14262 return false;
14263 APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(Ty: RHS->getType()));
14264 if (!EvaluateFixedPointOrInteger(E: RHS, Result&: RHSFX, Info))
14265 return false;
14266
14267 bool OpOverflow = false, ConversionOverflow = false;
14268 APFixedPoint Result(LHSFX.getSemantics());
14269 switch (E->getOpcode()) {
14270 case BO_Add: {
14271 Result = LHSFX.add(Other: RHSFX, Overflow: &OpOverflow)
14272 .convert(DstSema: ResultFXSema, Overflow: &ConversionOverflow);
14273 break;
14274 }
14275 case BO_Sub: {
14276 Result = LHSFX.sub(Other: RHSFX, Overflow: &OpOverflow)
14277 .convert(DstSema: ResultFXSema, Overflow: &ConversionOverflow);
14278 break;
14279 }
14280 case BO_Mul: {
14281 Result = LHSFX.mul(Other: RHSFX, Overflow: &OpOverflow)
14282 .convert(DstSema: ResultFXSema, Overflow: &ConversionOverflow);
14283 break;
14284 }
14285 case BO_Div: {
14286 if (RHSFX.getValue() == 0) {
14287 Info.FFDiag(E, diag::note_expr_divide_by_zero);
14288 return false;
14289 }
14290 Result = LHSFX.div(Other: RHSFX, Overflow: &OpOverflow)
14291 .convert(DstSema: ResultFXSema, Overflow: &ConversionOverflow);
14292 break;
14293 }
14294 case BO_Shl:
14295 case BO_Shr: {
14296 FixedPointSemantics LHSSema = LHSFX.getSemantics();
14297 llvm::APSInt RHSVal = RHSFX.getValue();
14298
14299 unsigned ShiftBW =
14300 LHSSema.getWidth() - (unsigned)LHSSema.hasUnsignedPadding();
14301 unsigned Amt = RHSVal.getLimitedValue(Limit: ShiftBW - 1);
14302 // Embedded-C 4.1.6.2.2:
14303 // The right operand must be nonnegative and less than the total number
14304 // of (nonpadding) bits of the fixed-point operand ...
14305 if (RHSVal.isNegative())
14306 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHSVal;
14307 else if (Amt != RHSVal)
14308 Info.CCEDiag(E, diag::note_constexpr_large_shift)
14309 << RHSVal << E->getType() << ShiftBW;
14310
14311 if (E->getOpcode() == BO_Shl)
14312 Result = LHSFX.shl(Amt, Overflow: &OpOverflow);
14313 else
14314 Result = LHSFX.shr(Amt, Overflow: &OpOverflow);
14315 break;
14316 }
14317 default:
14318 return false;
14319 }
14320 if (OpOverflow || ConversionOverflow) {
14321 if (Info.checkingForUndefinedBehavior())
14322 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
14323 diag::warn_fixedpoint_constant_overflow)
14324 << Result.toString() << E->getType();
14325 if (!HandleOverflow(Info, E, Result, E->getType()))
14326 return false;
14327 }
14328 return Success(Result, E);
14329}
14330
14331//===----------------------------------------------------------------------===//
14332// Float Evaluation
14333//===----------------------------------------------------------------------===//
14334
14335namespace {
14336class FloatExprEvaluator
14337 : public ExprEvaluatorBase<FloatExprEvaluator> {
14338 APFloat &Result;
14339public:
14340 FloatExprEvaluator(EvalInfo &info, APFloat &result)
14341 : ExprEvaluatorBaseTy(info), Result(result) {}
14342
14343 bool Success(const APValue &V, const Expr *e) {
14344 Result = V.getFloat();
14345 return true;
14346 }
14347
14348 bool ZeroInitialization(const Expr *E) {
14349 Result = APFloat::getZero(Sem: Info.Ctx.getFloatTypeSemantics(T: E->getType()));
14350 return true;
14351 }
14352
14353 bool VisitCallExpr(const CallExpr *E);
14354
14355 bool VisitUnaryOperator(const UnaryOperator *E);
14356 bool VisitBinaryOperator(const BinaryOperator *E);
14357 bool VisitFloatingLiteral(const FloatingLiteral *E);
14358 bool VisitCastExpr(const CastExpr *E);
14359
14360 bool VisitUnaryReal(const UnaryOperator *E);
14361 bool VisitUnaryImag(const UnaryOperator *E);
14362
14363 // FIXME: Missing: array subscript of vector, member of vector
14364};
14365} // end anonymous namespace
14366
14367static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
14368 assert(!E->isValueDependent());
14369 assert(E->isPRValue() && E->getType()->isRealFloatingType());
14370 return FloatExprEvaluator(Info, Result).Visit(E);
14371}
14372
14373static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
14374 QualType ResultTy,
14375 const Expr *Arg,
14376 bool SNaN,
14377 llvm::APFloat &Result) {
14378 const StringLiteral *S = dyn_cast<StringLiteral>(Val: Arg->IgnoreParenCasts());
14379 if (!S) return false;
14380
14381 const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(T: ResultTy);
14382
14383 llvm::APInt fill;
14384
14385 // Treat empty strings as if they were zero.
14386 if (S->getString().empty())
14387 fill = llvm::APInt(32, 0);
14388 else if (S->getString().getAsInteger(Radix: 0, Result&: fill))
14389 return false;
14390
14391 if (Context.getTargetInfo().isNan2008()) {
14392 if (SNaN)
14393 Result = llvm::APFloat::getSNaN(Sem, Negative: false, payload: &fill);
14394 else
14395 Result = llvm::APFloat::getQNaN(Sem, Negative: false, payload: &fill);
14396 } else {
14397 // Prior to IEEE 754-2008, architectures were allowed to choose whether
14398 // the first bit of their significand was set for qNaN or sNaN. MIPS chose
14399 // a different encoding to what became a standard in 2008, and for pre-
14400 // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as
14401 // sNaN. This is now known as "legacy NaN" encoding.
14402 if (SNaN)
14403 Result = llvm::APFloat::getQNaN(Sem, Negative: false, payload: &fill);
14404 else
14405 Result = llvm::APFloat::getSNaN(Sem, Negative: false, payload: &fill);
14406 }
14407
14408 return true;
14409}
14410
14411bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
14412 if (!IsConstantEvaluatedBuiltinCall(E))
14413 return ExprEvaluatorBaseTy::VisitCallExpr(E);
14414
14415 switch (E->getBuiltinCallee()) {
14416 default:
14417 return false;
14418
14419 case Builtin::BI__builtin_huge_val:
14420 case Builtin::BI__builtin_huge_valf:
14421 case Builtin::BI__builtin_huge_vall:
14422 case Builtin::BI__builtin_huge_valf16:
14423 case Builtin::BI__builtin_huge_valf128:
14424 case Builtin::BI__builtin_inf:
14425 case Builtin::BI__builtin_inff:
14426 case Builtin::BI__builtin_infl:
14427 case Builtin::BI__builtin_inff16:
14428 case Builtin::BI__builtin_inff128: {
14429 const llvm::fltSemantics &Sem =
14430 Info.Ctx.getFloatTypeSemantics(T: E->getType());
14431 Result = llvm::APFloat::getInf(Sem);
14432 return true;
14433 }
14434
14435 case Builtin::BI__builtin_nans:
14436 case Builtin::BI__builtin_nansf:
14437 case Builtin::BI__builtin_nansl:
14438 case Builtin::BI__builtin_nansf16:
14439 case Builtin::BI__builtin_nansf128:
14440 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(Arg: 0),
14441 true, Result))
14442 return Error(E);
14443 return true;
14444
14445 case Builtin::BI__builtin_nan:
14446 case Builtin::BI__builtin_nanf:
14447 case Builtin::BI__builtin_nanl:
14448 case Builtin::BI__builtin_nanf16:
14449 case Builtin::BI__builtin_nanf128:
14450 // If this is __builtin_nan() turn this into a nan, otherwise we
14451 // can't constant fold it.
14452 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(Arg: 0),
14453 false, Result))
14454 return Error(E);
14455 return true;
14456
14457 case Builtin::BI__builtin_fabs:
14458 case Builtin::BI__builtin_fabsf:
14459 case Builtin::BI__builtin_fabsl:
14460 case Builtin::BI__builtin_fabsf128:
14461 // The C standard says "fabs raises no floating-point exceptions,
14462 // even if x is a signaling NaN. The returned value is independent of
14463 // the current rounding direction mode." Therefore constant folding can
14464 // proceed without regard to the floating point settings.
14465 // Reference, WG14 N2478 F.10.4.3
14466 if (!EvaluateFloat(E: E->getArg(Arg: 0), Result, Info))
14467 return false;
14468
14469 if (Result.isNegative())
14470 Result.changeSign();
14471 return true;
14472
14473 case Builtin::BI__arithmetic_fence:
14474 return EvaluateFloat(E: E->getArg(Arg: 0), Result, Info);
14475
14476 // FIXME: Builtin::BI__builtin_powi
14477 // FIXME: Builtin::BI__builtin_powif
14478 // FIXME: Builtin::BI__builtin_powil
14479
14480 case Builtin::BI__builtin_copysign:
14481 case Builtin::BI__builtin_copysignf:
14482 case Builtin::BI__builtin_copysignl:
14483 case Builtin::BI__builtin_copysignf128: {
14484 APFloat RHS(0.);
14485 if (!EvaluateFloat(E: E->getArg(Arg: 0), Result, Info) ||
14486 !EvaluateFloat(E: E->getArg(Arg: 1), Result&: RHS, Info))
14487 return false;
14488 Result.copySign(RHS);
14489 return true;
14490 }
14491
14492 case Builtin::BI__builtin_fmax:
14493 case Builtin::BI__builtin_fmaxf:
14494 case Builtin::BI__builtin_fmaxl:
14495 case Builtin::BI__builtin_fmaxf16:
14496 case Builtin::BI__builtin_fmaxf128: {
14497 // TODO: Handle sNaN.
14498 APFloat RHS(0.);
14499 if (!EvaluateFloat(E: E->getArg(Arg: 0), Result, Info) ||
14500 !EvaluateFloat(E: E->getArg(Arg: 1), Result&: RHS, Info))
14501 return false;
14502 // When comparing zeroes, return +0.0 if one of the zeroes is positive.
14503 if (Result.isZero() && RHS.isZero() && Result.isNegative())
14504 Result = RHS;
14505 else if (Result.isNaN() || RHS > Result)
14506 Result = RHS;
14507 return true;
14508 }
14509
14510 case Builtin::BI__builtin_fmin:
14511 case Builtin::BI__builtin_fminf:
14512 case Builtin::BI__builtin_fminl:
14513 case Builtin::BI__builtin_fminf16:
14514 case Builtin::BI__builtin_fminf128: {
14515 // TODO: Handle sNaN.
14516 APFloat RHS(0.);
14517 if (!EvaluateFloat(E: E->getArg(Arg: 0), Result, Info) ||
14518 !EvaluateFloat(E: E->getArg(Arg: 1), Result&: RHS, Info))
14519 return false;
14520 // When comparing zeroes, return -0.0 if one of the zeroes is negative.
14521 if (Result.isZero() && RHS.isZero() && RHS.isNegative())
14522 Result = RHS;
14523 else if (Result.isNaN() || RHS < Result)
14524 Result = RHS;
14525 return true;
14526 }
14527 }
14528}
14529
14530bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
14531 if (E->getSubExpr()->getType()->isAnyComplexType()) {
14532 ComplexValue CV;
14533 if (!EvaluateComplex(E: E->getSubExpr(), Res&: CV, Info))
14534 return false;
14535 Result = CV.FloatReal;
14536 return true;
14537 }
14538
14539 return Visit(E->getSubExpr());
14540}
14541
14542bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
14543 if (E->getSubExpr()->getType()->isAnyComplexType()) {
14544 ComplexValue CV;
14545 if (!EvaluateComplex(E: E->getSubExpr(), Res&: CV, Info))
14546 return false;
14547 Result = CV.FloatImag;
14548 return true;
14549 }
14550
14551 VisitIgnoredValue(E: E->getSubExpr());
14552 const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(T: E->getType());
14553 Result = llvm::APFloat::getZero(Sem);
14554 return true;
14555}
14556
14557bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
14558 switch (E->getOpcode()) {
14559 default: return Error(E);
14560 case UO_Plus:
14561 return EvaluateFloat(E: E->getSubExpr(), Result, Info);
14562 case UO_Minus:
14563 // In C standard, WG14 N2478 F.3 p4
14564 // "the unary - raises no floating point exceptions,
14565 // even if the operand is signalling."
14566 if (!EvaluateFloat(E: E->getSubExpr(), Result, Info))
14567 return false;
14568 Result.changeSign();
14569 return true;
14570 }
14571}
14572
14573bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
14574 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
14575 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
14576
14577 APFloat RHS(0.0);
14578 bool LHSOK = EvaluateFloat(E: E->getLHS(), Result, Info);
14579 if (!LHSOK && !Info.noteFailure())
14580 return false;
14581 return EvaluateFloat(E: E->getRHS(), Result&: RHS, Info) && LHSOK &&
14582 handleFloatFloatBinOp(Info, E, LHS&: Result, Opcode: E->getOpcode(), RHS);
14583}
14584
14585bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
14586 Result = E->getValue();
14587 return true;
14588}
14589
14590bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
14591 const Expr* SubExpr = E->getSubExpr();
14592
14593 switch (E->getCastKind()) {
14594 default:
14595 return ExprEvaluatorBaseTy::VisitCastExpr(E);
14596
14597 case CK_IntegralToFloating: {
14598 APSInt IntResult;
14599 const FPOptions FPO = E->getFPFeaturesInEffect(
14600 LO: Info.Ctx.getLangOpts());
14601 return EvaluateInteger(E: SubExpr, Result&: IntResult, Info) &&
14602 HandleIntToFloatCast(Info, E, FPO, SubExpr->getType(),
14603 IntResult, E->getType(), Result);
14604 }
14605
14606 case CK_FixedPointToFloating: {
14607 APFixedPoint FixResult(Info.Ctx.getFixedPointSemantics(Ty: SubExpr->getType()));
14608 if (!EvaluateFixedPoint(E: SubExpr, Result&: FixResult, Info))
14609 return false;
14610 Result =
14611 FixResult.convertToFloat(FloatSema: Info.Ctx.getFloatTypeSemantics(T: E->getType()));
14612 return true;
14613 }
14614
14615 case CK_FloatingCast: {
14616 if (!Visit(SubExpr))
14617 return false;
14618 return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
14619 Result);
14620 }
14621
14622 case CK_FloatingComplexToReal: {
14623 ComplexValue V;
14624 if (!EvaluateComplex(E: SubExpr, Res&: V, Info))
14625 return false;
14626 Result = V.getComplexFloatReal();
14627 return true;
14628 }
14629 }
14630}
14631
14632//===----------------------------------------------------------------------===//
14633// Complex Evaluation (for float and integer)
14634//===----------------------------------------------------------------------===//
14635
14636namespace {
14637class ComplexExprEvaluator
14638 : public ExprEvaluatorBase<ComplexExprEvaluator> {
14639 ComplexValue &Result;
14640
14641public:
14642 ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
14643 : ExprEvaluatorBaseTy(info), Result(Result) {}
14644
14645 bool Success(const APValue &V, const Expr *e) {
14646 Result.setFrom(V);
14647 return true;
14648 }
14649
14650 bool ZeroInitialization(const Expr *E);
14651
14652 //===--------------------------------------------------------------------===//
14653 // Visitor Methods
14654 //===--------------------------------------------------------------------===//
14655
14656 bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
14657 bool VisitCastExpr(const CastExpr *E);
14658 bool VisitBinaryOperator(const BinaryOperator *E);
14659 bool VisitUnaryOperator(const UnaryOperator *E);
14660 bool VisitInitListExpr(const InitListExpr *E);
14661 bool VisitCallExpr(const CallExpr *E);
14662};
14663} // end anonymous namespace
14664
14665static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
14666 EvalInfo &Info) {
14667 assert(!E->isValueDependent());
14668 assert(E->isPRValue() && E->getType()->isAnyComplexType());
14669 return ComplexExprEvaluator(Info, Result).Visit(E);
14670}
14671
14672bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
14673 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
14674 if (ElemTy->isRealFloatingType()) {
14675 Result.makeComplexFloat();
14676 APFloat Zero = APFloat::getZero(Sem: Info.Ctx.getFloatTypeSemantics(T: ElemTy));
14677 Result.FloatReal = Zero;
14678 Result.FloatImag = Zero;
14679 } else {
14680 Result.makeComplexInt();
14681 APSInt Zero = Info.Ctx.MakeIntValue(Value: 0, Type: ElemTy);
14682 Result.IntReal = Zero;
14683 Result.IntImag = Zero;
14684 }
14685 return true;
14686}
14687
14688bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
14689 const Expr* SubExpr = E->getSubExpr();
14690
14691 if (SubExpr->getType()->isRealFloatingType()) {
14692 Result.makeComplexFloat();
14693 APFloat &Imag = Result.FloatImag;
14694 if (!EvaluateFloat(E: SubExpr, Result&: Imag, Info))
14695 return false;
14696
14697 Result.FloatReal = APFloat(Imag.getSemantics());
14698 return true;
14699 } else {
14700 assert(SubExpr->getType()->isIntegerType() &&
14701 "Unexpected imaginary literal.");
14702
14703 Result.makeComplexInt();
14704 APSInt &Imag = Result.IntImag;
14705 if (!EvaluateInteger(E: SubExpr, Result&: Imag, Info))
14706 return false;
14707
14708 Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
14709 return true;
14710 }
14711}
14712
14713bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
14714
14715 switch (E->getCastKind()) {
14716 case CK_BitCast:
14717 case CK_BaseToDerived:
14718 case CK_DerivedToBase:
14719 case CK_UncheckedDerivedToBase:
14720 case CK_Dynamic:
14721 case CK_ToUnion:
14722 case CK_ArrayToPointerDecay:
14723 case CK_FunctionToPointerDecay:
14724 case CK_NullToPointer:
14725 case CK_NullToMemberPointer:
14726 case CK_BaseToDerivedMemberPointer:
14727 case CK_DerivedToBaseMemberPointer:
14728 case CK_MemberPointerToBoolean:
14729 case CK_ReinterpretMemberPointer:
14730 case CK_ConstructorConversion:
14731 case CK_IntegralToPointer:
14732 case CK_PointerToIntegral:
14733 case CK_PointerToBoolean:
14734 case CK_ToVoid:
14735 case CK_VectorSplat:
14736 case CK_IntegralCast:
14737 case CK_BooleanToSignedIntegral:
14738 case CK_IntegralToBoolean:
14739 case CK_IntegralToFloating:
14740 case CK_FloatingToIntegral:
14741 case CK_FloatingToBoolean:
14742 case CK_FloatingCast:
14743 case CK_CPointerToObjCPointerCast:
14744 case CK_BlockPointerToObjCPointerCast:
14745 case CK_AnyPointerToBlockPointerCast:
14746 case CK_ObjCObjectLValueCast:
14747 case CK_FloatingComplexToReal:
14748 case CK_FloatingComplexToBoolean:
14749 case CK_IntegralComplexToReal:
14750 case CK_IntegralComplexToBoolean:
14751 case CK_ARCProduceObject:
14752 case CK_ARCConsumeObject:
14753 case CK_ARCReclaimReturnedObject:
14754 case CK_ARCExtendBlockObject:
14755 case CK_CopyAndAutoreleaseBlockObject:
14756 case CK_BuiltinFnToFnPtr:
14757 case CK_ZeroToOCLOpaqueType:
14758 case CK_NonAtomicToAtomic:
14759 case CK_AddressSpaceConversion:
14760 case CK_IntToOCLSampler:
14761 case CK_FloatingToFixedPoint:
14762 case CK_FixedPointToFloating:
14763 case CK_FixedPointCast:
14764 case CK_FixedPointToBoolean:
14765 case CK_FixedPointToIntegral:
14766 case CK_IntegralToFixedPoint:
14767 case CK_MatrixCast:
14768 llvm_unreachable("invalid cast kind for complex value");
14769
14770 case CK_LValueToRValue:
14771 case CK_AtomicToNonAtomic:
14772 case CK_NoOp:
14773 case CK_LValueToRValueBitCast:
14774 return ExprEvaluatorBaseTy::VisitCastExpr(E);
14775
14776 case CK_Dependent:
14777 case CK_LValueBitCast:
14778 case CK_UserDefinedConversion:
14779 return Error(E);
14780
14781 case CK_FloatingRealToComplex: {
14782 APFloat &Real = Result.FloatReal;
14783 if (!EvaluateFloat(E: E->getSubExpr(), Result&: Real, Info))
14784 return false;
14785
14786 Result.makeComplexFloat();
14787 Result.FloatImag = APFloat(Real.getSemantics());
14788 return true;
14789 }
14790
14791 case CK_FloatingComplexCast: {
14792 if (!Visit(E->getSubExpr()))
14793 return false;
14794
14795 QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14796 QualType From
14797 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14798
14799 return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
14800 HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
14801 }
14802
14803 case CK_FloatingComplexToIntegralComplex: {
14804 if (!Visit(E->getSubExpr()))
14805 return false;
14806
14807 QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14808 QualType From
14809 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14810 Result.makeComplexInt();
14811 return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
14812 To, Result.IntReal) &&
14813 HandleFloatToIntCast(Info, E, From, Result.FloatImag,
14814 To, Result.IntImag);
14815 }
14816
14817 case CK_IntegralRealToComplex: {
14818 APSInt &Real = Result.IntReal;
14819 if (!EvaluateInteger(E: E->getSubExpr(), Result&: Real, Info))
14820 return false;
14821
14822 Result.makeComplexInt();
14823 Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
14824 return true;
14825 }
14826
14827 case CK_IntegralComplexCast: {
14828 if (!Visit(E->getSubExpr()))
14829 return false;
14830
14831 QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14832 QualType From
14833 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14834
14835 Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
14836 Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
14837 return true;
14838 }
14839
14840 case CK_IntegralComplexToFloatingComplex: {
14841 if (!Visit(E->getSubExpr()))
14842 return false;
14843
14844 const FPOptions FPO = E->getFPFeaturesInEffect(
14845 LO: Info.Ctx.getLangOpts());
14846 QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14847 QualType From
14848 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14849 Result.makeComplexFloat();
14850 return HandleIntToFloatCast(Info, E, FPO, From, Result.IntReal,
14851 To, Result.FloatReal) &&
14852 HandleIntToFloatCast(Info, E, FPO, From, Result.IntImag,
14853 To, Result.FloatImag);
14854 }
14855 }
14856
14857 llvm_unreachable("unknown cast resulting in complex value");
14858}
14859
14860bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
14861 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
14862 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
14863
14864 // Track whether the LHS or RHS is real at the type system level. When this is
14865 // the case we can simplify our evaluation strategy.
14866 bool LHSReal = false, RHSReal = false;
14867
14868 bool LHSOK;
14869 if (E->getLHS()->getType()->isRealFloatingType()) {
14870 LHSReal = true;
14871 APFloat &Real = Result.FloatReal;
14872 LHSOK = EvaluateFloat(E: E->getLHS(), Result&: Real, Info);
14873 if (LHSOK) {
14874 Result.makeComplexFloat();
14875 Result.FloatImag = APFloat(Real.getSemantics());
14876 }
14877 } else {
14878 LHSOK = Visit(E->getLHS());
14879 }
14880 if (!LHSOK && !Info.noteFailure())
14881 return false;
14882
14883 ComplexValue RHS;
14884 if (E->getRHS()->getType()->isRealFloatingType()) {
14885 RHSReal = true;
14886 APFloat &Real = RHS.FloatReal;
14887 if (!EvaluateFloat(E: E->getRHS(), Result&: Real, Info) || !LHSOK)
14888 return false;
14889 RHS.makeComplexFloat();
14890 RHS.FloatImag = APFloat(Real.getSemantics());
14891 } else if (!EvaluateComplex(E: E->getRHS(), Result&: RHS, Info) || !LHSOK)
14892 return false;
14893
14894 assert(!(LHSReal && RHSReal) &&
14895 "Cannot have both operands of a complex operation be real.");
14896 switch (E->getOpcode()) {
14897 default: return Error(E);
14898 case BO_Add:
14899 if (Result.isComplexFloat()) {
14900 Result.getComplexFloatReal().add(RHS: RHS.getComplexFloatReal(),
14901 RM: APFloat::rmNearestTiesToEven);
14902 if (LHSReal)
14903 Result.getComplexFloatImag() = RHS.getComplexFloatImag();
14904 else if (!RHSReal)
14905 Result.getComplexFloatImag().add(RHS: RHS.getComplexFloatImag(),
14906 RM: APFloat::rmNearestTiesToEven);
14907 } else {
14908 Result.getComplexIntReal() += RHS.getComplexIntReal();
14909 Result.getComplexIntImag() += RHS.getComplexIntImag();
14910 }
14911 break;
14912 case BO_Sub:
14913 if (Result.isComplexFloat()) {
14914 Result.getComplexFloatReal().subtract(RHS: RHS.getComplexFloatReal(),
14915 RM: APFloat::rmNearestTiesToEven);
14916 if (LHSReal) {
14917 Result.getComplexFloatImag() = RHS.getComplexFloatImag();
14918 Result.getComplexFloatImag().changeSign();
14919 } else if (!RHSReal) {
14920 Result.getComplexFloatImag().subtract(RHS: RHS.getComplexFloatImag(),
14921 RM: APFloat::rmNearestTiesToEven);
14922 }
14923 } else {
14924 Result.getComplexIntReal() -= RHS.getComplexIntReal();
14925 Result.getComplexIntImag() -= RHS.getComplexIntImag();
14926 }
14927 break;
14928 case BO_Mul:
14929 if (Result.isComplexFloat()) {
14930 // This is an implementation of complex multiplication according to the
14931 // constraints laid out in C11 Annex G. The implementation uses the
14932 // following naming scheme:
14933 // (a + ib) * (c + id)
14934 ComplexValue LHS = Result;
14935 APFloat &A = LHS.getComplexFloatReal();
14936 APFloat &B = LHS.getComplexFloatImag();
14937 APFloat &C = RHS.getComplexFloatReal();
14938 APFloat &D = RHS.getComplexFloatImag();
14939 APFloat &ResR = Result.getComplexFloatReal();
14940 APFloat &ResI = Result.getComplexFloatImag();
14941 if (LHSReal) {
14942 assert(!RHSReal && "Cannot have two real operands for a complex op!");
14943 ResR = A * C;
14944 ResI = A * D;
14945 } else if (RHSReal) {
14946 ResR = C * A;
14947 ResI = C * B;
14948 } else {
14949 // In the fully general case, we need to handle NaNs and infinities
14950 // robustly.
14951 APFloat AC = A * C;
14952 APFloat BD = B * D;
14953 APFloat AD = A * D;
14954 APFloat BC = B * C;
14955 ResR = AC - BD;
14956 ResI = AD + BC;
14957 if (ResR.isNaN() && ResI.isNaN()) {
14958 bool Recalc = false;
14959 if (A.isInfinity() || B.isInfinity()) {
14960 A = APFloat::copySign(
14961 Value: APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), Sign: A);
14962 B = APFloat::copySign(
14963 Value: APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), Sign: B);
14964 if (C.isNaN())
14965 C = APFloat::copySign(Value: APFloat(C.getSemantics()), Sign: C);
14966 if (D.isNaN())
14967 D = APFloat::copySign(Value: APFloat(D.getSemantics()), Sign: D);
14968 Recalc = true;
14969 }
14970 if (C.isInfinity() || D.isInfinity()) {
14971 C = APFloat::copySign(
14972 Value: APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), Sign: C);
14973 D = APFloat::copySign(
14974 Value: APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), Sign: D);
14975 if (A.isNaN())
14976 A = APFloat::copySign(Value: APFloat(A.getSemantics()), Sign: A);
14977 if (B.isNaN())
14978 B = APFloat::copySign(Value: APFloat(B.getSemantics()), Sign: B);
14979 Recalc = true;
14980 }
14981 if (!Recalc && (AC.isInfinity() || BD.isInfinity() ||
14982 AD.isInfinity() || BC.isInfinity())) {
14983 if (A.isNaN())
14984 A = APFloat::copySign(Value: APFloat(A.getSemantics()), Sign: A);
14985 if (B.isNaN())
14986 B = APFloat::copySign(Value: APFloat(B.getSemantics()), Sign: B);
14987 if (C.isNaN())
14988 C = APFloat::copySign(Value: APFloat(C.getSemantics()), Sign: C);
14989 if (D.isNaN())
14990 D = APFloat::copySign(Value: APFloat(D.getSemantics()), Sign: D);
14991 Recalc = true;
14992 }
14993 if (Recalc) {
14994 ResR = APFloat::getInf(Sem: A.getSemantics()) * (A * C - B * D);
14995 ResI = APFloat::getInf(Sem: A.getSemantics()) * (A * D + B * C);
14996 }
14997 }
14998 }
14999 } else {
15000 ComplexValue LHS = Result;
15001 Result.getComplexIntReal() =
15002 (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
15003 LHS.getComplexIntImag() * RHS.getComplexIntImag());
15004 Result.getComplexIntImag() =
15005 (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
15006 LHS.getComplexIntImag() * RHS.getComplexIntReal());
15007 }
15008 break;
15009 case BO_Div:
15010 if (Result.isComplexFloat()) {
15011 // This is an implementation of complex division according to the
15012 // constraints laid out in C11 Annex G. The implementation uses the
15013 // following naming scheme:
15014 // (a + ib) / (c + id)
15015 ComplexValue LHS = Result;
15016 APFloat &A = LHS.getComplexFloatReal();
15017 APFloat &B = LHS.getComplexFloatImag();
15018 APFloat &C = RHS.getComplexFloatReal();
15019 APFloat &D = RHS.getComplexFloatImag();
15020 APFloat &ResR = Result.getComplexFloatReal();
15021 APFloat &ResI = Result.getComplexFloatImag();
15022 if (RHSReal) {
15023 ResR = A / C;
15024 ResI = B / C;
15025 } else {
15026 if (LHSReal) {
15027 // No real optimizations we can do here, stub out with zero.
15028 B = APFloat::getZero(Sem: A.getSemantics());
15029 }
15030 int DenomLogB = 0;
15031 APFloat MaxCD = maxnum(A: abs(X: C), B: abs(X: D));
15032 if (MaxCD.isFinite()) {
15033 DenomLogB = ilogb(Arg: MaxCD);
15034 C = scalbn(X: C, Exp: -DenomLogB, RM: APFloat::rmNearestTiesToEven);
15035 D = scalbn(X: D, Exp: -DenomLogB, RM: APFloat::rmNearestTiesToEven);
15036 }
15037 APFloat Denom = C * C + D * D;
15038 ResR = scalbn(X: (A * C + B * D) / Denom, Exp: -DenomLogB,
15039 RM: APFloat::rmNearestTiesToEven);
15040 ResI = scalbn(X: (B * C - A * D) / Denom, Exp: -DenomLogB,
15041 RM: APFloat::rmNearestTiesToEven);
15042 if (ResR.isNaN() && ResI.isNaN()) {
15043 if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) {
15044 ResR = APFloat::getInf(Sem: ResR.getSemantics(), Negative: C.isNegative()) * A;
15045 ResI = APFloat::getInf(Sem: ResR.getSemantics(), Negative: C.isNegative()) * B;
15046 } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() &&
15047 D.isFinite()) {
15048 A = APFloat::copySign(
15049 Value: APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), Sign: A);
15050 B = APFloat::copySign(
15051 Value: APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), Sign: B);
15052 ResR = APFloat::getInf(Sem: ResR.getSemantics()) * (A * C + B * D);
15053 ResI = APFloat::getInf(Sem: ResI.getSemantics()) * (B * C - A * D);
15054 } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) {
15055 C = APFloat::copySign(
15056 Value: APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), Sign: C);
15057 D = APFloat::copySign(
15058 Value: APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), Sign: D);
15059 ResR = APFloat::getZero(Sem: ResR.getSemantics()) * (A * C + B * D);
15060 ResI = APFloat::getZero(Sem: ResI.getSemantics()) * (B * C - A * D);
15061 }
15062 }
15063 }
15064 } else {
15065 if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
15066 return Error(E, diag::note_expr_divide_by_zero);
15067
15068 ComplexValue LHS = Result;
15069 APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
15070 RHS.getComplexIntImag() * RHS.getComplexIntImag();
15071 Result.getComplexIntReal() =
15072 (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
15073 LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
15074 Result.getComplexIntImag() =
15075 (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
15076 LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
15077 }
15078 break;
15079 }
15080
15081 return true;
15082}
15083
15084bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
15085 // Get the operand value into 'Result'.
15086 if (!Visit(E->getSubExpr()))
15087 return false;
15088
15089 switch (E->getOpcode()) {
15090 default:
15091 return Error(E);
15092 case UO_Extension:
15093 return true;
15094 case UO_Plus:
15095 // The result is always just the subexpr.
15096 return true;
15097 case UO_Minus:
15098 if (Result.isComplexFloat()) {
15099 Result.getComplexFloatReal().changeSign();
15100 Result.getComplexFloatImag().changeSign();
15101 }
15102 else {
15103 Result.getComplexIntReal() = -Result.getComplexIntReal();
15104 Result.getComplexIntImag() = -Result.getComplexIntImag();
15105 }
15106 return true;
15107 case UO_Not:
15108 if (Result.isComplexFloat())
15109 Result.getComplexFloatImag().changeSign();
15110 else
15111 Result.getComplexIntImag() = -Result.getComplexIntImag();
15112 return true;
15113 }
15114}
15115
15116bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
15117 if (E->getNumInits() == 2) {
15118 if (E->getType()->isComplexType()) {
15119 Result.makeComplexFloat();
15120 if (!EvaluateFloat(E: E->getInit(Init: 0), Result&: Result.FloatReal, Info))
15121 return false;
15122 if (!EvaluateFloat(E: E->getInit(Init: 1), Result&: Result.FloatImag, Info))
15123 return false;
15124 } else {
15125 Result.makeComplexInt();
15126 if (!EvaluateInteger(E: E->getInit(Init: 0), Result&: Result.IntReal, Info))
15127 return false;
15128 if (!EvaluateInteger(E: E->getInit(Init: 1), Result&: Result.IntImag, Info))
15129 return false;
15130 }
15131 return true;
15132 }
15133 return ExprEvaluatorBaseTy::VisitInitListExpr(E);
15134}
15135
15136bool ComplexExprEvaluator::VisitCallExpr(const CallExpr *E) {
15137 if (!IsConstantEvaluatedBuiltinCall(E))
15138 return ExprEvaluatorBaseTy::VisitCallExpr(E);
15139
15140 switch (E->getBuiltinCallee()) {
15141 case Builtin::BI__builtin_complex:
15142 Result.makeComplexFloat();
15143 if (!EvaluateFloat(E: E->getArg(Arg: 0), Result&: Result.FloatReal, Info))
15144 return false;
15145 if (!EvaluateFloat(E: E->getArg(Arg: 1), Result&: Result.FloatImag, Info))
15146 return false;
15147 return true;
15148
15149 default:
15150 return false;
15151 }
15152}
15153
15154//===----------------------------------------------------------------------===//
15155// Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
15156// implicit conversion.
15157//===----------------------------------------------------------------------===//
15158
15159namespace {
15160class AtomicExprEvaluator :
15161 public ExprEvaluatorBase<AtomicExprEvaluator> {
15162 const LValue *This;
15163 APValue &Result;
15164public:
15165 AtomicExprEvaluator(EvalInfo &Info, const LValue *This, APValue &Result)
15166 : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
15167
15168 bool Success(const APValue &V, const Expr *E) {
15169 Result = V;
15170 return true;
15171 }
15172
15173 bool ZeroInitialization(const Expr *E) {
15174 ImplicitValueInitExpr VIE(
15175 E->getType()->castAs<AtomicType>()->getValueType());
15176 // For atomic-qualified class (and array) types in C++, initialize the
15177 // _Atomic-wrapped subobject directly, in-place.
15178 return This ? EvaluateInPlace(Result, Info, *This, &VIE)
15179 : Evaluate(Result, Info, &VIE);
15180 }
15181
15182 bool VisitCastExpr(const CastExpr *E) {
15183 switch (E->getCastKind()) {
15184 default:
15185 return ExprEvaluatorBaseTy::VisitCastExpr(E);
15186 case CK_NullToPointer:
15187 VisitIgnoredValue(E: E->getSubExpr());
15188 return ZeroInitialization(E);
15189 case CK_NonAtomicToAtomic:
15190 return This ? EvaluateInPlace(Result, Info, This: *This, E: E->getSubExpr())
15191 : Evaluate(Result, Info, E: E->getSubExpr());
15192 }
15193 }
15194};
15195} // end anonymous namespace
15196
15197static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
15198 EvalInfo &Info) {
15199 assert(!E->isValueDependent());
15200 assert(E->isPRValue() && E->getType()->isAtomicType());
15201 return AtomicExprEvaluator(Info, This, Result).Visit(E);
15202}
15203
15204//===----------------------------------------------------------------------===//
15205// Void expression evaluation, primarily for a cast to void on the LHS of a
15206// comma operator
15207//===----------------------------------------------------------------------===//
15208
15209namespace {
15210class VoidExprEvaluator
15211 : public ExprEvaluatorBase<VoidExprEvaluator> {
15212public:
15213 VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
15214
15215 bool Success(const APValue &V, const Expr *e) { return true; }
15216
15217 bool ZeroInitialization(const Expr *E) { return true; }
15218
15219 bool VisitCastExpr(const CastExpr *E) {
15220 switch (E->getCastKind()) {
15221 default:
15222 return ExprEvaluatorBaseTy::VisitCastExpr(E);
15223 case CK_ToVoid:
15224 VisitIgnoredValue(E: E->getSubExpr());
15225 return true;
15226 }
15227 }
15228
15229 bool VisitCallExpr(const CallExpr *E) {
15230 if (!IsConstantEvaluatedBuiltinCall(E))
15231 return ExprEvaluatorBaseTy::VisitCallExpr(E);
15232
15233 switch (E->getBuiltinCallee()) {
15234 case Builtin::BI__assume:
15235 case Builtin::BI__builtin_assume:
15236 // The argument is not evaluated!
15237 return true;
15238
15239 case Builtin::BI__builtin_operator_delete:
15240 return HandleOperatorDeleteCall(Info, E);
15241
15242 default:
15243 return false;
15244 }
15245 }
15246
15247 bool VisitCXXDeleteExpr(const CXXDeleteExpr *E);
15248};
15249} // end anonymous namespace
15250
15251bool VoidExprEvaluator::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
15252 // We cannot speculatively evaluate a delete expression.
15253 if (Info.SpeculativeEvaluationDepth)
15254 return false;
15255
15256 FunctionDecl *OperatorDelete = E->getOperatorDelete();
15257 if (!OperatorDelete->isReplaceableGlobalAllocationFunction()) {
15258 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
15259 << isa<CXXMethodDecl>(OperatorDelete) << OperatorDelete;
15260 return false;
15261 }
15262
15263 const Expr *Arg = E->getArgument();
15264
15265 LValue Pointer;
15266 if (!EvaluatePointer(E: Arg, Result&: Pointer, Info))
15267 return false;
15268 if (Pointer.Designator.Invalid)
15269 return false;
15270
15271 // Deleting a null pointer has no effect.
15272 if (Pointer.isNullPointer()) {
15273 // This is the only case where we need to produce an extension warning:
15274 // the only other way we can succeed is if we find a dynamic allocation,
15275 // and we will have warned when we allocated it in that case.
15276 if (!Info.getLangOpts().CPlusPlus20)
15277 Info.CCEDiag(E, diag::note_constexpr_new);
15278 return true;
15279 }
15280
15281 std::optional<DynAlloc *> Alloc = CheckDeleteKind(
15282 Info, E, Pointer, E->isArrayForm() ? DynAlloc::ArrayNew : DynAlloc::New);
15283 if (!Alloc)
15284 return false;
15285 QualType AllocType = Pointer.Base.getDynamicAllocType();
15286
15287 // For the non-array case, the designator must be empty if the static type
15288 // does not have a virtual destructor.
15289 if (!E->isArrayForm() && Pointer.Designator.Entries.size() != 0 &&
15290 !hasVirtualDestructor(T: Arg->getType()->getPointeeType())) {
15291 Info.FFDiag(E, diag::note_constexpr_delete_base_nonvirt_dtor)
15292 << Arg->getType()->getPointeeType() << AllocType;
15293 return false;
15294 }
15295
15296 // For a class type with a virtual destructor, the selected operator delete
15297 // is the one looked up when building the destructor.
15298 if (!E->isArrayForm() && !E->isGlobalDelete()) {
15299 const FunctionDecl *VirtualDelete = getVirtualOperatorDelete(T: AllocType);
15300 if (VirtualDelete &&
15301 !VirtualDelete->isReplaceableGlobalAllocationFunction()) {
15302 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
15303 << isa<CXXMethodDecl>(VirtualDelete) << VirtualDelete;
15304 return false;
15305 }
15306 }
15307
15308 if (!HandleDestruction(Info, E->getExprLoc(), Pointer.getLValueBase(),
15309 (*Alloc)->Value, AllocType))
15310 return false;
15311
15312 if (!Info.HeapAllocs.erase(x: Pointer.Base.dyn_cast<DynamicAllocLValue>())) {
15313 // The element was already erased. This means the destructor call also
15314 // deleted the object.
15315 // FIXME: This probably results in undefined behavior before we get this
15316 // far, and should be diagnosed elsewhere first.
15317 Info.FFDiag(E, diag::note_constexpr_double_delete);
15318 return false;
15319 }
15320
15321 return true;
15322}
15323
15324static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
15325 assert(!E->isValueDependent());
15326 assert(E->isPRValue() && E->getType()->isVoidType());
15327 return VoidExprEvaluator(Info).Visit(E);
15328}
15329
15330//===----------------------------------------------------------------------===//
15331// Top level Expr::EvaluateAsRValue method.
15332//===----------------------------------------------------------------------===//
15333
15334static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
15335 assert(!E->isValueDependent());
15336 // In C, function designators are not lvalues, but we evaluate them as if they
15337 // are.
15338 QualType T = E->getType();
15339 if (E->isGLValue() || T->isFunctionType()) {
15340 LValue LV;
15341 if (!EvaluateLValue(E, Result&: LV, Info))
15342 return false;
15343 LV.moveInto(V&: Result);
15344 } else if (T->isVectorType()) {
15345 if (!EvaluateVector(E, Result, Info))
15346 return false;
15347 } else if (T->isIntegralOrEnumerationType()) {
15348 if (!IntExprEvaluator(Info, Result).Visit(E))
15349 return false;
15350 } else if (T->hasPointerRepresentation()) {
15351 LValue LV;
15352 if (!EvaluatePointer(E, Result&: LV, Info))
15353 return false;
15354 LV.moveInto(V&: Result);
15355 } else if (T->isRealFloatingType()) {
15356 llvm::APFloat F(0.0);
15357 if (!EvaluateFloat(E, Result&: F, Info))
15358 return false;
15359 Result = APValue(F);
15360 } else if (T->isAnyComplexType()) {
15361 ComplexValue C;
15362 if (!EvaluateComplex(E, Result&: C, Info))
15363 return false;
15364 C.moveInto(v&: Result);
15365 } else if (T->isFixedPointType()) {
15366 if (!FixedPointExprEvaluator(Info, Result).Visit(E)) return false;
15367 } else if (T->isMemberPointerType()) {
15368 MemberPtr P;
15369 if (!EvaluateMemberPointer(E, Result&: P, Info))
15370 return false;
15371 P.moveInto(V&: Result);
15372 return true;
15373 } else if (T->isArrayType()) {
15374 LValue LV;
15375 APValue &Value =
15376 Info.CurrentCall->createTemporary(Key: E, T, Scope: ScopeKind::FullExpression, LV);
15377 if (!EvaluateArray(E, This: LV, Result&: Value, Info))
15378 return false;
15379 Result = Value;
15380 } else if (T->isRecordType()) {
15381 LValue LV;
15382 APValue &Value =
15383 Info.CurrentCall->createTemporary(Key: E, T, Scope: ScopeKind::FullExpression, LV);
15384 if (!EvaluateRecord(E, This: LV, Result&: Value, Info))
15385 return false;
15386 Result = Value;
15387 } else if (T->isVoidType()) {
15388 if (!Info.getLangOpts().CPlusPlus11)
15389 Info.CCEDiag(E, diag::note_constexpr_nonliteral)
15390 << E->getType();
15391 if (!EvaluateVoid(E, Info))
15392 return false;
15393 } else if (T->isAtomicType()) {
15394 QualType Unqual = T.getAtomicUnqualifiedType();
15395 if (Unqual->isArrayType() || Unqual->isRecordType()) {
15396 LValue LV;
15397 APValue &Value = Info.CurrentCall->createTemporary(
15398 Key: E, T: Unqual, Scope: ScopeKind::FullExpression, LV);
15399 if (!EvaluateAtomic(E, This: &LV, Result&: Value, Info))
15400 return false;
15401 Result = Value;
15402 } else {
15403 if (!EvaluateAtomic(E, This: nullptr, Result, Info))
15404 return false;
15405 }
15406 } else if (Info.getLangOpts().CPlusPlus11) {
15407 Info.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType();
15408 return false;
15409 } else {
15410 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
15411 return false;
15412 }
15413
15414 return true;
15415}
15416
15417/// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
15418/// cases, the in-place evaluation is essential, since later initializers for
15419/// an object can indirectly refer to subobjects which were initialized earlier.
15420static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
15421 const Expr *E, bool AllowNonLiteralTypes) {
15422 assert(!E->isValueDependent());
15423
15424 if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, This: &This))
15425 return false;
15426
15427 if (E->isPRValue()) {
15428 // Evaluate arrays and record types in-place, so that later initializers can
15429 // refer to earlier-initialized members of the object.
15430 QualType T = E->getType();
15431 if (T->isArrayType())
15432 return EvaluateArray(E, This, Result, Info);
15433 else if (T->isRecordType())
15434 return EvaluateRecord(E, This, Result, Info);
15435 else if (T->isAtomicType()) {
15436 QualType Unqual = T.getAtomicUnqualifiedType();
15437 if (Unqual->isArrayType() || Unqual->isRecordType())
15438 return EvaluateAtomic(E, This: &This, Result, Info);
15439 }
15440 }
15441
15442 // For any other type, in-place evaluation is unimportant.
15443 return Evaluate(Result, Info, E);
15444}
15445
15446/// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
15447/// lvalue-to-rvalue cast if it is an lvalue.
15448static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
15449 assert(!E->isValueDependent());
15450
15451 if (E->getType().isNull())
15452 return false;
15453
15454 if (!CheckLiteralType(Info, E))
15455 return false;
15456
15457 if (Info.EnableNewConstInterp) {
15458 if (!Info.Ctx.getInterpContext().evaluateAsRValue(Parent&: Info, E, Result))
15459 return false;
15460 return CheckConstantExpression(Info, DiagLoc: E->getExprLoc(), Type: E->getType(), Value: Result,
15461 Kind: ConstantExprKind::Normal);
15462 }
15463
15464 if (!::Evaluate(Result, Info, E))
15465 return false;
15466
15467 // Implicit lvalue-to-rvalue cast.
15468 if (E->isGLValue()) {
15469 LValue LV;
15470 LV.setFrom(Ctx&: Info.Ctx, V: Result);
15471 if (!handleLValueToRValueConversion(Info, Conv: E, Type: E->getType(), LVal: LV, RVal&: Result))
15472 return false;
15473 }
15474
15475 // Check this core constant expression is a constant expression.
15476 return CheckConstantExpression(Info, DiagLoc: E->getExprLoc(), Type: E->getType(), Value: Result,
15477 Kind: ConstantExprKind::Normal) &&
15478 CheckMemoryLeaks(Info);
15479}
15480
15481static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
15482 const ASTContext &Ctx, bool &IsConst) {
15483 // Fast-path evaluations of integer literals, since we sometimes see files
15484 // containing vast quantities of these.
15485 if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Val: Exp)) {
15486 Result.Val = APValue(APSInt(L->getValue(),
15487 L->getType()->isUnsignedIntegerType()));
15488 IsConst = true;
15489 return true;
15490 }
15491
15492 if (const auto *L = dyn_cast<CXXBoolLiteralExpr>(Val: Exp)) {
15493 Result.Val = APValue(APSInt(APInt(1, L->getValue())));
15494 IsConst = true;
15495 return true;
15496 }
15497
15498 if (const auto *CE = dyn_cast<ConstantExpr>(Val: Exp)) {
15499 if (CE->hasAPValueResult()) {
15500 Result.Val = CE->getAPValueResult();
15501 IsConst = true;
15502 return true;
15503 }
15504
15505 // The SubExpr is usually just an IntegerLiteral.
15506 return FastEvaluateAsRValue(CE->getSubExpr(), Result, Ctx, IsConst);
15507 }
15508
15509 // This case should be rare, but we need to check it before we check on
15510 // the type below.
15511 if (Exp->getType().isNull()) {
15512 IsConst = false;
15513 return true;
15514 }
15515
15516 return false;
15517}
15518
15519static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result,
15520 Expr::SideEffectsKind SEK) {
15521 return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) ||
15522 (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior);
15523}
15524
15525static bool EvaluateAsRValue(const Expr *E, Expr::EvalResult &Result,
15526 const ASTContext &Ctx, EvalInfo &Info) {
15527 assert(!E->isValueDependent());
15528 bool IsConst;
15529 if (FastEvaluateAsRValue(Exp: E, Result, Ctx, IsConst))
15530 return IsConst;
15531
15532 return EvaluateAsRValue(Info, E, Result&: Result.Val);
15533}
15534
15535static bool EvaluateAsInt(const Expr *E, Expr::EvalResult &ExprResult,
15536 const ASTContext &Ctx,
15537 Expr::SideEffectsKind AllowSideEffects,
15538 EvalInfo &Info) {
15539 assert(!E->isValueDependent());
15540 if (!E->getType()->isIntegralOrEnumerationType())
15541 return false;
15542
15543 if (!::EvaluateAsRValue(E, Result&: ExprResult, Ctx, Info) ||
15544 !ExprResult.Val.isInt() ||
15545 hasUnacceptableSideEffect(Result&: ExprResult, SEK: AllowSideEffects))
15546 return false;
15547
15548 return true;
15549}
15550
15551static bool EvaluateAsFixedPoint(const Expr *E, Expr::EvalResult &ExprResult,
15552 const ASTContext &Ctx,
15553 Expr::SideEffectsKind AllowSideEffects,
15554 EvalInfo &Info) {
15555 assert(!E->isValueDependent());
15556 if (!E->getType()->isFixedPointType())
15557 return false;
15558
15559 if (!::EvaluateAsRValue(E, Result&: ExprResult, Ctx, Info))
15560 return false;
15561
15562 if (!ExprResult.Val.isFixedPoint() ||
15563 hasUnacceptableSideEffect(Result&: ExprResult, SEK: AllowSideEffects))
15564 return false;
15565
15566 return true;
15567}
15568
15569/// EvaluateAsRValue - Return true if this is a constant which we can fold using
15570/// any crazy technique (that has nothing to do with language standards) that
15571/// we want to. If this function returns true, it returns the folded constant
15572/// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
15573/// will be applied to the result.
15574bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx,
15575 bool InConstantContext) const {
15576 assert(!isValueDependent() &&
15577 "Expression evaluator can't be called on a dependent expression.");
15578 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsRValue");
15579 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
15580 Info.InConstantContext = InConstantContext;
15581 return ::EvaluateAsRValue(E: this, Result, Ctx, Info);
15582}
15583
15584bool Expr::EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx,
15585 bool InConstantContext) const {
15586 assert(!isValueDependent() &&
15587 "Expression evaluator can't be called on a dependent expression.");
15588 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsBooleanCondition");
15589 EvalResult Scratch;
15590 return EvaluateAsRValue(Result&: Scratch, Ctx, InConstantContext) &&
15591 HandleConversionToBool(Val: Scratch.Val, Result);
15592}
15593
15594bool Expr::EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx,
15595 SideEffectsKind AllowSideEffects,
15596 bool InConstantContext) const {
15597 assert(!isValueDependent() &&
15598 "Expression evaluator can't be called on a dependent expression.");
15599 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsInt");
15600 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
15601 Info.InConstantContext = InConstantContext;
15602 return ::EvaluateAsInt(E: this, ExprResult&: Result, Ctx, AllowSideEffects, Info);
15603}
15604
15605bool Expr::EvaluateAsFixedPoint(EvalResult &Result, const ASTContext &Ctx,
15606 SideEffectsKind AllowSideEffects,
15607 bool InConstantContext) const {
15608 assert(!isValueDependent() &&
15609 "Expression evaluator can't be called on a dependent expression.");
15610 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsFixedPoint");
15611 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
15612 Info.InConstantContext = InConstantContext;
15613 return ::EvaluateAsFixedPoint(E: this, ExprResult&: Result, Ctx, AllowSideEffects, Info);
15614}
15615
15616bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx,
15617 SideEffectsKind AllowSideEffects,
15618 bool InConstantContext) const {
15619 assert(!isValueDependent() &&
15620 "Expression evaluator can't be called on a dependent expression.");
15621
15622 if (!getType()->isRealFloatingType())
15623 return false;
15624
15625 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsFloat");
15626 EvalResult ExprResult;
15627 if (!EvaluateAsRValue(Result&: ExprResult, Ctx, InConstantContext) ||
15628 !ExprResult.Val.isFloat() ||
15629 hasUnacceptableSideEffect(Result&: ExprResult, SEK: AllowSideEffects))
15630 return false;
15631
15632 Result = ExprResult.Val.getFloat();
15633 return true;
15634}
15635
15636bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx,
15637 bool InConstantContext) const {
15638 assert(!isValueDependent() &&
15639 "Expression evaluator can't be called on a dependent expression.");
15640
15641 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsLValue");
15642 EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold);
15643 Info.InConstantContext = InConstantContext;
15644 LValue LV;
15645 CheckedTemporaries CheckedTemps;
15646 if (!EvaluateLValue(E: this, Result&: LV, Info) || !Info.discardCleanups() ||
15647 Result.HasSideEffects ||
15648 !CheckLValueConstantExpression(Info, Loc: getExprLoc(),
15649 Type: Ctx.getLValueReferenceType(T: getType()), LVal: LV,
15650 Kind: ConstantExprKind::Normal, CheckedTemps))
15651 return false;
15652
15653 LV.moveInto(V&: Result.Val);
15654 return true;
15655}
15656
15657static bool EvaluateDestruction(const ASTContext &Ctx, APValue::LValueBase Base,
15658 APValue DestroyedValue, QualType Type,
15659 SourceLocation Loc, Expr::EvalStatus &EStatus,
15660 bool IsConstantDestruction) {
15661 EvalInfo Info(Ctx, EStatus,
15662 IsConstantDestruction ? EvalInfo::EM_ConstantExpression
15663 : EvalInfo::EM_ConstantFold);
15664 Info.setEvaluatingDecl(Base, Value&: DestroyedValue,
15665 EDK: EvalInfo::EvaluatingDeclKind::Dtor);
15666 Info.InConstantContext = IsConstantDestruction;
15667
15668 LValue LVal;
15669 LVal.set(B: Base);
15670
15671 if (!HandleDestruction(Info, Loc, LVBase: Base, Value&: DestroyedValue, T: Type) ||
15672 EStatus.HasSideEffects)
15673 return false;
15674
15675 if (!Info.discardCleanups())
15676 llvm_unreachable("Unhandled cleanup; missing full expression marker?");
15677
15678 return true;
15679}
15680
15681bool Expr::EvaluateAsConstantExpr(EvalResult &Result, const ASTContext &Ctx,
15682 ConstantExprKind Kind) const {
15683 assert(!isValueDependent() &&
15684 "Expression evaluator can't be called on a dependent expression.");
15685 bool IsConst;
15686 if (FastEvaluateAsRValue(Exp: this, Result, Ctx, IsConst) && Result.Val.hasValue())
15687 return true;
15688
15689 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsConstantExpr");
15690 EvalInfo::EvaluationMode EM = EvalInfo::EM_ConstantExpression;
15691 EvalInfo Info(Ctx, Result, EM);
15692 Info.InConstantContext = true;
15693
15694 if (Info.EnableNewConstInterp) {
15695 if (!Info.Ctx.getInterpContext().evaluate(Parent&: Info, E: this, Result&: Result.Val))
15696 return false;
15697 return CheckConstantExpression(Info, DiagLoc: getExprLoc(),
15698 Type: getStorageType(Ctx, E: this), Value: Result.Val, Kind);
15699 }
15700
15701 // The type of the object we're initializing is 'const T' for a class NTTP.
15702 QualType T = getType();
15703 if (Kind == ConstantExprKind::ClassTemplateArgument)
15704 T.addConst();
15705
15706 // If we're evaluating a prvalue, fake up a MaterializeTemporaryExpr to
15707 // represent the result of the evaluation. CheckConstantExpression ensures
15708 // this doesn't escape.
15709 MaterializeTemporaryExpr BaseMTE(T, const_cast<Expr*>(this), true);
15710 APValue::LValueBase Base(&BaseMTE);
15711 Info.setEvaluatingDecl(Base, Value&: Result.Val);
15712
15713 if (Info.EnableNewConstInterp) {
15714 if (!Info.Ctx.getInterpContext().evaluateAsRValue(Parent&: Info, E: this, Result&: Result.Val))
15715 return false;
15716 } else {
15717 LValue LVal;
15718 LVal.set(B: Base);
15719 // C++23 [intro.execution]/p5
15720 // A full-expression is [...] a constant-expression
15721 // So we need to make sure temporary objects are destroyed after having
15722 // evaluating the expression (per C++23 [class.temporary]/p4).
15723 FullExpressionRAII Scope(Info);
15724 if (!::EvaluateInPlace(Result&: Result.Val, Info, This: LVal, E: this) ||
15725 Result.HasSideEffects || !Scope.destroy())
15726 return false;
15727
15728 if (!Info.discardCleanups())
15729 llvm_unreachable("Unhandled cleanup; missing full expression marker?");
15730 }
15731
15732 if (!CheckConstantExpression(Info, DiagLoc: getExprLoc(), Type: getStorageType(Ctx, E: this),
15733 Value: Result.Val, Kind))
15734 return false;
15735 if (!CheckMemoryLeaks(Info))
15736 return false;
15737
15738 // If this is a class template argument, it's required to have constant
15739 // destruction too.
15740 if (Kind == ConstantExprKind::ClassTemplateArgument &&
15741 (!EvaluateDestruction(Ctx, Base, Result.Val, T, getBeginLoc(), Result,
15742 true) ||
15743 Result.HasSideEffects)) {
15744 // FIXME: Prefix a note to indicate that the problem is lack of constant
15745 // destruction.
15746 return false;
15747 }
15748
15749 return true;
15750}
15751
15752bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
15753 const VarDecl *VD,
15754 SmallVectorImpl<PartialDiagnosticAt> &Notes,
15755 bool IsConstantInitialization) const {
15756 assert(!isValueDependent() &&
15757 "Expression evaluator can't be called on a dependent expression.");
15758
15759 llvm::TimeTraceScope TimeScope("EvaluateAsInitializer", [&] {
15760 std::string Name;
15761 llvm::raw_string_ostream OS(Name);
15762 VD->printQualifiedName(OS);
15763 return Name;
15764 });
15765
15766 Expr::EvalStatus EStatus;
15767 EStatus.Diag = &Notes;
15768
15769 EvalInfo Info(Ctx, EStatus,
15770 (IsConstantInitialization && Ctx.getLangOpts().CPlusPlus)
15771 ? EvalInfo::EM_ConstantExpression
15772 : EvalInfo::EM_ConstantFold);
15773 Info.setEvaluatingDecl(VD, Value);
15774 Info.InConstantContext = IsConstantInitialization;
15775
15776 SourceLocation DeclLoc = VD->getLocation();
15777 QualType DeclTy = VD->getType();
15778
15779 if (Info.EnableNewConstInterp) {
15780 auto &InterpCtx = const_cast<ASTContext &>(Ctx).getInterpContext();
15781 if (!InterpCtx.evaluateAsInitializer(Parent&: Info, VD, Result&: Value))
15782 return false;
15783
15784 return CheckConstantExpression(Info, DiagLoc: DeclLoc, Type: DeclTy, Value,
15785 Kind: ConstantExprKind::Normal);
15786 } else {
15787 LValue LVal;
15788 LVal.set(VD);
15789
15790 {
15791 // C++23 [intro.execution]/p5
15792 // A full-expression is ... an init-declarator ([dcl.decl]) or a
15793 // mem-initializer.
15794 // So we need to make sure temporary objects are destroyed after having
15795 // evaluated the expression (per C++23 [class.temporary]/p4).
15796 //
15797 // FIXME: Otherwise this may break test/Modules/pr68702.cpp because the
15798 // serialization code calls ParmVarDecl::getDefaultArg() which strips the
15799 // outermost FullExpr, such as ExprWithCleanups.
15800 FullExpressionRAII Scope(Info);
15801 if (!EvaluateInPlace(Result&: Value, Info, This: LVal, E: this,
15802 /*AllowNonLiteralTypes=*/true) ||
15803 EStatus.HasSideEffects)
15804 return false;
15805 }
15806
15807 // At this point, any lifetime-extended temporaries are completely
15808 // initialized.
15809 Info.performLifetimeExtension();
15810
15811 if (!Info.discardCleanups())
15812 llvm_unreachable("Unhandled cleanup; missing full expression marker?");
15813 }
15814
15815 return CheckConstantExpression(Info, DiagLoc: DeclLoc, Type: DeclTy, Value,
15816 Kind: ConstantExprKind::Normal) &&
15817 CheckMemoryLeaks(Info);
15818}
15819
15820bool VarDecl::evaluateDestruction(
15821 SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
15822 Expr::EvalStatus EStatus;
15823 EStatus.Diag = &Notes;
15824
15825 // Only treat the destruction as constant destruction if we formally have
15826 // constant initialization (or are usable in a constant expression).
15827 bool IsConstantDestruction = hasConstantInitialization();
15828
15829 // Make a copy of the value for the destructor to mutate, if we know it.
15830 // Otherwise, treat the value as default-initialized; if the destructor works
15831 // anyway, then the destruction is constant (and must be essentially empty).
15832 APValue DestroyedValue;
15833 if (getEvaluatedValue() && !getEvaluatedValue()->isAbsent())
15834 DestroyedValue = *getEvaluatedValue();
15835 else if (!handleDefaultInitValue(getType(), DestroyedValue))
15836 return false;
15837
15838 if (!EvaluateDestruction(getASTContext(), this, std::move(DestroyedValue),
15839 getType(), getLocation(), EStatus,
15840 IsConstantDestruction) ||
15841 EStatus.HasSideEffects)
15842 return false;
15843
15844 ensureEvaluatedStmt()->HasConstantDestruction = true;
15845 return true;
15846}
15847
15848/// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
15849/// constant folded, but discard the result.
15850bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const {
15851 assert(!isValueDependent() &&
15852 "Expression evaluator can't be called on a dependent expression.");
15853
15854 EvalResult Result;
15855 return EvaluateAsRValue(Result, Ctx, /* in constant context */ InConstantContext: true) &&
15856 !hasUnacceptableSideEffect(Result, SEK);
15857}
15858
15859APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
15860 SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
15861 assert(!isValueDependent() &&
15862 "Expression evaluator can't be called on a dependent expression.");
15863
15864 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateKnownConstInt");
15865 EvalResult EVResult;
15866 EVResult.Diag = Diag;
15867 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
15868 Info.InConstantContext = true;
15869
15870 bool Result = ::EvaluateAsRValue(E: this, Result&: EVResult, Ctx, Info);
15871 (void)Result;
15872 assert(Result && "Could not evaluate expression");
15873 assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
15874
15875 return EVResult.Val.getInt();
15876}
15877
15878APSInt Expr::EvaluateKnownConstIntCheckOverflow(
15879 const ASTContext &Ctx, SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
15880 assert(!isValueDependent() &&
15881 "Expression evaluator can't be called on a dependent expression.");
15882
15883 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateKnownConstIntCheckOverflow");
15884 EvalResult EVResult;
15885 EVResult.Diag = Diag;
15886 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
15887 Info.InConstantContext = true;
15888 Info.CheckingForUndefinedBehavior = true;
15889
15890 bool Result = ::EvaluateAsRValue(Info, E: this, Result&: EVResult.Val);
15891 (void)Result;
15892 assert(Result && "Could not evaluate expression");
15893 assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
15894
15895 return EVResult.Val.getInt();
15896}
15897
15898void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
15899 assert(!isValueDependent() &&
15900 "Expression evaluator can't be called on a dependent expression.");
15901
15902 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateForOverflow");
15903 bool IsConst;
15904 EvalResult EVResult;
15905 if (!FastEvaluateAsRValue(Exp: this, Result&: EVResult, Ctx, IsConst)) {
15906 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
15907 Info.CheckingForUndefinedBehavior = true;
15908 (void)::EvaluateAsRValue(Info, E: this, Result&: EVResult.Val);
15909 }
15910}
15911
15912bool Expr::EvalResult::isGlobalLValue() const {
15913 assert(Val.isLValue());
15914 return IsGlobalLValue(B: Val.getLValueBase());
15915}
15916
15917/// isIntegerConstantExpr - this recursive routine will test if an expression is
15918/// an integer constant expression.
15919
15920/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
15921/// comma, etc
15922
15923// CheckICE - This function does the fundamental ICE checking: the returned
15924// ICEDiag contains an ICEKind indicating whether the expression is an ICE,
15925// and a (possibly null) SourceLocation indicating the location of the problem.
15926//
15927// Note that to reduce code duplication, this helper does no evaluation
15928// itself; the caller checks whether the expression is evaluatable, and
15929// in the rare cases where CheckICE actually cares about the evaluated
15930// value, it calls into Evaluate.
15931
15932namespace {
15933
15934enum ICEKind {
15935 /// This expression is an ICE.
15936 IK_ICE,
15937 /// This expression is not an ICE, but if it isn't evaluated, it's
15938 /// a legal subexpression for an ICE. This return value is used to handle
15939 /// the comma operator in C99 mode, and non-constant subexpressions.
15940 IK_ICEIfUnevaluated,
15941 /// This expression is not an ICE, and is not a legal subexpression for one.
15942 IK_NotICE
15943};
15944
15945struct ICEDiag {
15946 ICEKind Kind;
15947 SourceLocation Loc;
15948
15949 ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
15950};
15951
15952}
15953
15954static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
15955
15956static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
15957
15958static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
15959 Expr::EvalResult EVResult;
15960 Expr::EvalStatus Status;
15961 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
15962
15963 Info.InConstantContext = true;
15964 if (!::EvaluateAsRValue(E, Result&: EVResult, Ctx, Info) || EVResult.HasSideEffects ||
15965 !EVResult.Val.isInt())
15966 return ICEDiag(IK_NotICE, E->getBeginLoc());
15967
15968 return NoDiag();
15969}
15970
15971static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) {
15972 assert(!E->isValueDependent() && "Should not see value dependent exprs!");
15973 if (!E->getType()->isIntegralOrEnumerationType())
15974 return ICEDiag(IK_NotICE, E->getBeginLoc());
15975
15976 switch (E->getStmtClass()) {
15977#define ABSTRACT_STMT(Node)
15978#define STMT(Node, Base) case Expr::Node##Class:
15979#define EXPR(Node, Base)
15980#include "clang/AST/StmtNodes.inc"
15981 case Expr::PredefinedExprClass:
15982 case Expr::FloatingLiteralClass:
15983 case Expr::ImaginaryLiteralClass:
15984 case Expr::StringLiteralClass:
15985 case Expr::ArraySubscriptExprClass:
15986 case Expr::MatrixSubscriptExprClass:
15987 case Expr::OMPArraySectionExprClass:
15988 case Expr::OMPArrayShapingExprClass:
15989 case Expr::OMPIteratorExprClass:
15990 case Expr::MemberExprClass:
15991 case Expr::CompoundAssignOperatorClass:
15992 case Expr::CompoundLiteralExprClass:
15993 case Expr::ExtVectorElementExprClass:
15994 case Expr::DesignatedInitExprClass:
15995 case Expr::ArrayInitLoopExprClass:
15996 case Expr::ArrayInitIndexExprClass:
15997 case Expr::NoInitExprClass:
15998 case Expr::DesignatedInitUpdateExprClass:
15999 case Expr::ImplicitValueInitExprClass:
16000 case Expr::ParenListExprClass:
16001 case Expr::VAArgExprClass:
16002 case Expr::AddrLabelExprClass:
16003 case Expr::StmtExprClass:
16004 case Expr::CXXMemberCallExprClass:
16005 case Expr::CUDAKernelCallExprClass:
16006 case Expr::CXXAddrspaceCastExprClass:
16007 case Expr::CXXDynamicCastExprClass:
16008 case Expr::CXXTypeidExprClass:
16009 case Expr::CXXUuidofExprClass:
16010 case Expr::MSPropertyRefExprClass:
16011 case Expr::MSPropertySubscriptExprClass:
16012 case Expr::CXXNullPtrLiteralExprClass:
16013 case Expr::UserDefinedLiteralClass:
16014 case Expr::CXXThisExprClass:
16015 case Expr::CXXThrowExprClass:
16016 case Expr::CXXNewExprClass:
16017 case Expr::CXXDeleteExprClass:
16018 case Expr::CXXPseudoDestructorExprClass:
16019 case Expr::UnresolvedLookupExprClass:
16020 case Expr::TypoExprClass:
16021 case Expr::RecoveryExprClass:
16022 case Expr::DependentScopeDeclRefExprClass:
16023 case Expr::CXXConstructExprClass:
16024 case Expr::CXXInheritedCtorInitExprClass:
16025 case Expr::CXXStdInitializerListExprClass:
16026 case Expr::CXXBindTemporaryExprClass:
16027 case Expr::ExprWithCleanupsClass:
16028 case Expr::CXXTemporaryObjectExprClass:
16029 case Expr::CXXUnresolvedConstructExprClass:
16030 case Expr::CXXDependentScopeMemberExprClass:
16031 case Expr::UnresolvedMemberExprClass:
16032 case Expr::ObjCStringLiteralClass:
16033 case Expr::ObjCBoxedExprClass:
16034 case Expr::ObjCArrayLiteralClass:
16035 case Expr::ObjCDictionaryLiteralClass:
16036 case Expr::ObjCEncodeExprClass:
16037 case Expr::ObjCMessageExprClass:
16038 case Expr::ObjCSelectorExprClass:
16039 case Expr::ObjCProtocolExprClass:
16040 case Expr::ObjCIvarRefExprClass:
16041 case Expr::ObjCPropertyRefExprClass:
16042 case Expr::ObjCSubscriptRefExprClass:
16043 case Expr::ObjCIsaExprClass:
16044 case Expr::ObjCAvailabilityCheckExprClass:
16045 case Expr::ShuffleVectorExprClass:
16046 case Expr::ConvertVectorExprClass:
16047 case Expr::BlockExprClass:
16048 case Expr::NoStmtClass:
16049 case Expr::OpaqueValueExprClass:
16050 case Expr::PackExpansionExprClass:
16051 case Expr::SubstNonTypeTemplateParmPackExprClass:
16052 case Expr::FunctionParmPackExprClass:
16053 case Expr::AsTypeExprClass:
16054 case Expr::ObjCIndirectCopyRestoreExprClass:
16055 case Expr::MaterializeTemporaryExprClass:
16056 case Expr::PseudoObjectExprClass:
16057 case Expr::AtomicExprClass:
16058 case Expr::LambdaExprClass:
16059 case Expr::CXXFoldExprClass:
16060 case Expr::CoawaitExprClass:
16061 case Expr::DependentCoawaitExprClass:
16062 case Expr::CoyieldExprClass:
16063 case Expr::SYCLUniqueStableNameExprClass:
16064 case Expr::CXXParenListInitExprClass:
16065 return ICEDiag(IK_NotICE, E->getBeginLoc());
16066
16067 case Expr::InitListExprClass: {
16068 // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the
16069 // form "T x = { a };" is equivalent to "T x = a;".
16070 // Unless we're initializing a reference, T is a scalar as it is known to be
16071 // of integral or enumeration type.
16072 if (E->isPRValue())
16073 if (cast<InitListExpr>(E)->getNumInits() == 1)
16074 return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx);
16075 return ICEDiag(IK_NotICE, E->getBeginLoc());
16076 }
16077
16078 case Expr::SizeOfPackExprClass:
16079 case Expr::GNUNullExprClass:
16080 case Expr::SourceLocExprClass:
16081 return NoDiag();
16082
16083 case Expr::PackIndexingExprClass:
16084 return CheckICE(cast<PackIndexingExpr>(E)->getSelectedExpr(), Ctx);
16085
16086 case Expr::SubstNonTypeTemplateParmExprClass:
16087 return
16088 CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
16089
16090 case Expr::ConstantExprClass:
16091 return CheckICE(cast<ConstantExpr>(E)->getSubExpr(), Ctx);
16092
16093 case Expr::ParenExprClass:
16094 return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
16095 case Expr::GenericSelectionExprClass:
16096 return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
16097 case Expr::IntegerLiteralClass:
16098 case Expr::FixedPointLiteralClass:
16099 case Expr::CharacterLiteralClass:
16100 case Expr::ObjCBoolLiteralExprClass:
16101 case Expr::CXXBoolLiteralExprClass:
16102 case Expr::CXXScalarValueInitExprClass:
16103 case Expr::TypeTraitExprClass:
16104 case Expr::ConceptSpecializationExprClass:
16105 case Expr::RequiresExprClass:
16106 case Expr::ArrayTypeTraitExprClass:
16107 case Expr::ExpressionTraitExprClass:
16108 case Expr::CXXNoexceptExprClass:
16109 return NoDiag();
16110 case Expr::CallExprClass:
16111 case Expr::CXXOperatorCallExprClass: {
16112 // C99 6.6/3 allows function calls within unevaluated subexpressions of
16113 // constant expressions, but they can never be ICEs because an ICE cannot
16114 // contain an operand of (pointer to) function type.
16115 const CallExpr *CE = cast<CallExpr>(E);
16116 if (CE->getBuiltinCallee())
16117 return CheckEvalInICE(E, Ctx);
16118 return ICEDiag(IK_NotICE, E->getBeginLoc());
16119 }
16120 case Expr::CXXRewrittenBinaryOperatorClass:
16121 return CheckICE(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm(),
16122 Ctx);
16123 case Expr::DeclRefExprClass: {
16124 const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
16125 if (isa<EnumConstantDecl>(D))
16126 return NoDiag();
16127
16128 // C++ and OpenCL (FIXME: spec reference?) allow reading const-qualified
16129 // integer variables in constant expressions:
16130 //
16131 // C++ 7.1.5.1p2
16132 // A variable of non-volatile const-qualified integral or enumeration
16133 // type initialized by an ICE can be used in ICEs.
16134 //
16135 // We sometimes use CheckICE to check the C++98 rules in C++11 mode. In
16136 // that mode, use of reference variables should not be allowed.
16137 const VarDecl *VD = dyn_cast<VarDecl>(D);
16138 if (VD && VD->isUsableInConstantExpressions(C: Ctx) &&
16139 !VD->getType()->isReferenceType())
16140 return NoDiag();
16141
16142 return ICEDiag(IK_NotICE, E->getBeginLoc());
16143 }
16144 case Expr::UnaryOperatorClass: {
16145 const UnaryOperator *Exp = cast<UnaryOperator>(E);
16146 switch (Exp->getOpcode()) {
16147 case UO_PostInc:
16148 case UO_PostDec:
16149 case UO_PreInc:
16150 case UO_PreDec:
16151 case UO_AddrOf:
16152 case UO_Deref:
16153 case UO_Coawait:
16154 // C99 6.6/3 allows increment and decrement within unevaluated
16155 // subexpressions of constant expressions, but they can never be ICEs
16156 // because an ICE cannot contain an lvalue operand.
16157 return ICEDiag(IK_NotICE, E->getBeginLoc());
16158 case UO_Extension:
16159 case UO_LNot:
16160 case UO_Plus:
16161 case UO_Minus:
16162 case UO_Not:
16163 case UO_Real:
16164 case UO_Imag:
16165 return CheckICE(E: Exp->getSubExpr(), Ctx);
16166 }
16167 llvm_unreachable("invalid unary operator class");
16168 }
16169 case Expr::OffsetOfExprClass: {
16170 // Note that per C99, offsetof must be an ICE. And AFAIK, using
16171 // EvaluateAsRValue matches the proposed gcc behavior for cases like
16172 // "offsetof(struct s{int x[4];}, x[1.0])". This doesn't affect
16173 // compliance: we should warn earlier for offsetof expressions with
16174 // array subscripts that aren't ICEs, and if the array subscripts
16175 // are ICEs, the value of the offsetof must be an integer constant.
16176 return CheckEvalInICE(E, Ctx);
16177 }
16178 case Expr::UnaryExprOrTypeTraitExprClass: {
16179 const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
16180 if ((Exp->getKind() == UETT_SizeOf) &&
16181 Exp->getTypeOfArgument()->isVariableArrayType())
16182 return ICEDiag(IK_NotICE, E->getBeginLoc());
16183 return NoDiag();
16184 }
16185 case Expr::BinaryOperatorClass: {
16186 const BinaryOperator *Exp = cast<BinaryOperator>(E);
16187 switch (Exp->getOpcode()) {
16188 case BO_PtrMemD:
16189 case BO_PtrMemI:
16190 case BO_Assign:
16191 case BO_MulAssign:
16192 case BO_DivAssign:
16193 case BO_RemAssign:
16194 case BO_AddAssign:
16195 case BO_SubAssign:
16196 case BO_ShlAssign:
16197 case BO_ShrAssign:
16198 case BO_AndAssign:
16199 case BO_XorAssign:
16200 case BO_OrAssign:
16201 // C99 6.6/3 allows assignments within unevaluated subexpressions of
16202 // constant expressions, but they can never be ICEs because an ICE cannot
16203 // contain an lvalue operand.
16204 return ICEDiag(IK_NotICE, E->getBeginLoc());
16205
16206 case BO_Mul:
16207 case BO_Div:
16208 case BO_Rem:
16209 case BO_Add:
16210 case BO_Sub:
16211 case BO_Shl:
16212 case BO_Shr:
16213 case BO_LT:
16214 case BO_GT:
16215 case BO_LE:
16216 case BO_GE:
16217 case BO_EQ:
16218 case BO_NE:
16219 case BO_And:
16220 case BO_Xor:
16221 case BO_Or:
16222 case BO_Comma:
16223 case BO_Cmp: {
16224 ICEDiag LHSResult = CheckICE(E: Exp->getLHS(), Ctx);
16225 ICEDiag RHSResult = CheckICE(E: Exp->getRHS(), Ctx);
16226 if (Exp->getOpcode() == BO_Div ||
16227 Exp->getOpcode() == BO_Rem) {
16228 // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
16229 // we don't evaluate one.
16230 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
16231 llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
16232 if (REval == 0)
16233 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
16234 if (REval.isSigned() && REval.isAllOnes()) {
16235 llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
16236 if (LEval.isMinSignedValue())
16237 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
16238 }
16239 }
16240 }
16241 if (Exp->getOpcode() == BO_Comma) {
16242 if (Ctx.getLangOpts().C99) {
16243 // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
16244 // if it isn't evaluated.
16245 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
16246 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
16247 } else {
16248 // In both C89 and C++, commas in ICEs are illegal.
16249 return ICEDiag(IK_NotICE, E->getBeginLoc());
16250 }
16251 }
16252 return Worst(A: LHSResult, B: RHSResult);
16253 }
16254 case BO_LAnd:
16255 case BO_LOr: {
16256 ICEDiag LHSResult = CheckICE(E: Exp->getLHS(), Ctx);
16257 ICEDiag RHSResult = CheckICE(E: Exp->getRHS(), Ctx);
16258 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
16259 // Rare case where the RHS has a comma "side-effect"; we need
16260 // to actually check the condition to see whether the side
16261 // with the comma is evaluated.
16262 if ((Exp->getOpcode() == BO_LAnd) !=
16263 (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
16264 return RHSResult;
16265 return NoDiag();
16266 }
16267
16268 return Worst(A: LHSResult, B: RHSResult);
16269 }
16270 }
16271 llvm_unreachable("invalid binary operator kind");
16272 }
16273 case Expr::ImplicitCastExprClass:
16274 case Expr::CStyleCastExprClass:
16275 case Expr::CXXFunctionalCastExprClass:
16276 case Expr::CXXStaticCastExprClass:
16277 case Expr::CXXReinterpretCastExprClass:
16278 case Expr::CXXConstCastExprClass:
16279 case Expr::ObjCBridgedCastExprClass: {
16280 const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
16281 if (isa<ExplicitCastExpr>(E)) {
16282 if (const FloatingLiteral *FL
16283 = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
16284 unsigned DestWidth = Ctx.getIntWidth(T: E->getType());
16285 bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
16286 APSInt IgnoredVal(DestWidth, !DestSigned);
16287 bool Ignored;
16288 // If the value does not fit in the destination type, the behavior is
16289 // undefined, so we are not required to treat it as a constant
16290 // expression.
16291 if (FL->getValue().convertToInteger(Result&: IgnoredVal,
16292 RM: llvm::APFloat::rmTowardZero,
16293 IsExact: &Ignored) & APFloat::opInvalidOp)
16294 return ICEDiag(IK_NotICE, E->getBeginLoc());
16295 return NoDiag();
16296 }
16297 }
16298 switch (cast<CastExpr>(E)->getCastKind()) {
16299 case CK_LValueToRValue:
16300 case CK_AtomicToNonAtomic:
16301 case CK_NonAtomicToAtomic:
16302 case CK_NoOp:
16303 case CK_IntegralToBoolean:
16304 case CK_IntegralCast:
16305 return CheckICE(E: SubExpr, Ctx);
16306 default:
16307 return ICEDiag(IK_NotICE, E->getBeginLoc());
16308 }
16309 }
16310 case Expr::BinaryConditionalOperatorClass: {
16311 const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
16312 ICEDiag CommonResult = CheckICE(E: Exp->getCommon(), Ctx);
16313 if (CommonResult.Kind == IK_NotICE) return CommonResult;
16314 ICEDiag FalseResult = CheckICE(E: Exp->getFalseExpr(), Ctx);
16315 if (FalseResult.Kind == IK_NotICE) return FalseResult;
16316 if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
16317 if (FalseResult.Kind == IK_ICEIfUnevaluated &&
16318 Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
16319 return FalseResult;
16320 }
16321 case Expr::ConditionalOperatorClass: {
16322 const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
16323 // If the condition (ignoring parens) is a __builtin_constant_p call,
16324 // then only the true side is actually considered in an integer constant
16325 // expression, and it is fully evaluated. This is an important GNU
16326 // extension. See GCC PR38377 for discussion.
16327 if (const CallExpr *CallCE
16328 = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
16329 if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
16330 return CheckEvalInICE(E, Ctx);
16331 ICEDiag CondResult = CheckICE(E: Exp->getCond(), Ctx);
16332 if (CondResult.Kind == IK_NotICE)
16333 return CondResult;
16334
16335 ICEDiag TrueResult = CheckICE(E: Exp->getTrueExpr(), Ctx);
16336 ICEDiag FalseResult = CheckICE(E: Exp->getFalseExpr(), Ctx);
16337
16338 if (TrueResult.Kind == IK_NotICE)
16339 return TrueResult;
16340 if (FalseResult.Kind == IK_NotICE)
16341 return FalseResult;
16342 if (CondResult.Kind == IK_ICEIfUnevaluated)
16343 return CondResult;
16344 if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
16345 return NoDiag();
16346 // Rare case where the diagnostics depend on which side is evaluated
16347 // Note that if we get here, CondResult is 0, and at least one of
16348 // TrueResult and FalseResult is non-zero.
16349 if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
16350 return FalseResult;
16351 return TrueResult;
16352 }
16353 case Expr::CXXDefaultArgExprClass:
16354 return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
16355 case Expr::CXXDefaultInitExprClass:
16356 return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
16357 case Expr::ChooseExprClass: {
16358 return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
16359 }
16360 case Expr::BuiltinBitCastExprClass: {
16361 if (!checkBitCastConstexprEligibility(nullptr, Ctx, cast<CastExpr>(E)))
16362 return ICEDiag(IK_NotICE, E->getBeginLoc());
16363 return CheckICE(cast<CastExpr>(E)->getSubExpr(), Ctx);
16364 }
16365 }
16366
16367 llvm_unreachable("Invalid StmtClass!");
16368}
16369
16370/// Evaluate an expression as a C++11 integral constant expression.
16371static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx,
16372 const Expr *E,
16373 llvm::APSInt *Value,
16374 SourceLocation *Loc) {
16375 if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
16376 if (Loc) *Loc = E->getExprLoc();
16377 return false;
16378 }
16379
16380 APValue Result;
16381 if (!E->isCXX11ConstantExpr(Ctx, Result: &Result, Loc))
16382 return false;
16383
16384 if (!Result.isInt()) {
16385 if (Loc) *Loc = E->getExprLoc();
16386 return false;
16387 }
16388
16389 if (Value) *Value = Result.getInt();
16390 return true;
16391}
16392
16393bool Expr::isIntegerConstantExpr(const ASTContext &Ctx,
16394 SourceLocation *Loc) const {
16395 assert(!isValueDependent() &&
16396 "Expression evaluator can't be called on a dependent expression.");
16397
16398 ExprTimeTraceScope TimeScope(this, Ctx, "isIntegerConstantExpr");
16399
16400 if (Ctx.getLangOpts().CPlusPlus11)
16401 return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, E: this, Value: nullptr, Loc);
16402
16403 ICEDiag D = CheckICE(E: this, Ctx);
16404 if (D.Kind != IK_ICE) {
16405 if (Loc) *Loc = D.Loc;
16406 return false;
16407 }
16408 return true;
16409}
16410
16411std::optional<llvm::APSInt>
16412Expr::getIntegerConstantExpr(const ASTContext &Ctx, SourceLocation *Loc) const {
16413 if (isValueDependent()) {
16414 // Expression evaluator can't succeed on a dependent expression.
16415 return std::nullopt;
16416 }
16417
16418 APSInt Value;
16419
16420 if (Ctx.getLangOpts().CPlusPlus11) {
16421 if (EvaluateCPlusPlus11IntegralConstantExpr(Ctx, E: this, Value: &Value, Loc))
16422 return Value;
16423 return std::nullopt;
16424 }
16425
16426 if (!isIntegerConstantExpr(Ctx, Loc))
16427 return std::nullopt;
16428
16429 // The only possible side-effects here are due to UB discovered in the
16430 // evaluation (for instance, INT_MAX + 1). In such a case, we are still
16431 // required to treat the expression as an ICE, so we produce the folded
16432 // value.
16433 EvalResult ExprResult;
16434 Expr::EvalStatus Status;
16435 EvalInfo Info(Ctx, Status, EvalInfo::EM_IgnoreSideEffects);
16436 Info.InConstantContext = true;
16437
16438 if (!::EvaluateAsInt(E: this, ExprResult, Ctx, AllowSideEffects: SE_AllowSideEffects, Info))
16439 llvm_unreachable("ICE cannot be evaluated!");
16440
16441 return ExprResult.Val.getInt();
16442}
16443
16444bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const {
16445 assert(!isValueDependent() &&
16446 "Expression evaluator can't be called on a dependent expression.");
16447
16448 return CheckICE(E: this, Ctx).Kind == IK_ICE;
16449}
16450
16451bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
16452 SourceLocation *Loc) const {
16453 assert(!isValueDependent() &&
16454 "Expression evaluator can't be called on a dependent expression.");
16455
16456 // We support this checking in C++98 mode in order to diagnose compatibility
16457 // issues.
16458 assert(Ctx.getLangOpts().CPlusPlus);
16459
16460 // Build evaluation settings.
16461 Expr::EvalStatus Status;
16462 SmallVector<PartialDiagnosticAt, 8> Diags;
16463 Status.Diag = &Diags;
16464 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
16465
16466 APValue Scratch;
16467 bool IsConstExpr =
16468 ::EvaluateAsRValue(Info, E: this, Result&: Result ? *Result : Scratch) &&
16469 // FIXME: We don't produce a diagnostic for this, but the callers that
16470 // call us on arbitrary full-expressions should generally not care.
16471 Info.discardCleanups() && !Status.HasSideEffects;
16472
16473 if (!Diags.empty()) {
16474 IsConstExpr = false;
16475 if (Loc) *Loc = Diags[0].first;
16476 } else if (!IsConstExpr) {
16477 // FIXME: This shouldn't happen.
16478 if (Loc) *Loc = getExprLoc();
16479 }
16480
16481 return IsConstExpr;
16482}
16483
16484bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
16485 const FunctionDecl *Callee,
16486 ArrayRef<const Expr*> Args,
16487 const Expr *This) const {
16488 assert(!isValueDependent() &&
16489 "Expression evaluator can't be called on a dependent expression.");
16490
16491 llvm::TimeTraceScope TimeScope("EvaluateWithSubstitution", [&] {
16492 std::string Name;
16493 llvm::raw_string_ostream OS(Name);
16494 Callee->getNameForDiagnostic(OS, Policy: Ctx.getPrintingPolicy(),
16495 /*Qualified=*/true);
16496 return Name;
16497 });
16498
16499 Expr::EvalStatus Status;
16500 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated);
16501 Info.InConstantContext = true;
16502
16503 LValue ThisVal;
16504 const LValue *ThisPtr = nullptr;
16505 if (This) {
16506#ifndef NDEBUG
16507 auto *MD = dyn_cast<CXXMethodDecl>(Val: Callee);
16508 assert(MD && "Don't provide `this` for non-methods.");
16509 assert(MD->isImplicitObjectMemberFunction() &&
16510 "Don't provide `this` for methods without an implicit object.");
16511#endif
16512 if (!This->isValueDependent() &&
16513 EvaluateObjectArgument(Info, Object: This, This&: ThisVal) &&
16514 !Info.EvalStatus.HasSideEffects)
16515 ThisPtr = &ThisVal;
16516
16517 // Ignore any side-effects from a failed evaluation. This is safe because
16518 // they can't interfere with any other argument evaluation.
16519 Info.EvalStatus.HasSideEffects = false;
16520 }
16521
16522 CallRef Call = Info.CurrentCall->createCall(Callee);
16523 for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
16524 I != E; ++I) {
16525 unsigned Idx = I - Args.begin();
16526 if (Idx >= Callee->getNumParams())
16527 break;
16528 const ParmVarDecl *PVD = Callee->getParamDecl(i: Idx);
16529 if ((*I)->isValueDependent() ||
16530 !EvaluateCallArg(PVD, Arg: *I, Call, Info) ||
16531 Info.EvalStatus.HasSideEffects) {
16532 // If evaluation fails, throw away the argument entirely.
16533 if (APValue *Slot = Info.getParamSlot(Call, PVD))
16534 *Slot = APValue();
16535 }
16536
16537 // Ignore any side-effects from a failed evaluation. This is safe because
16538 // they can't interfere with any other argument evaluation.
16539 Info.EvalStatus.HasSideEffects = false;
16540 }
16541
16542 // Parameter cleanups happen in the caller and are not part of this
16543 // evaluation.
16544 Info.discardCleanups();
16545 Info.EvalStatus.HasSideEffects = false;
16546
16547 // Build fake call to Callee.
16548 CallStackFrame Frame(Info, Callee->getLocation(), Callee, ThisPtr, This,
16549 Call);
16550 // FIXME: Missing ExprWithCleanups in enable_if conditions?
16551 FullExpressionRAII Scope(Info);
16552 return Evaluate(Result&: Value, Info, E: this) && Scope.destroy() &&
16553 !Info.EvalStatus.HasSideEffects;
16554}
16555
16556bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
16557 SmallVectorImpl<
16558 PartialDiagnosticAt> &Diags) {
16559 // FIXME: It would be useful to check constexpr function templates, but at the
16560 // moment the constant expression evaluator cannot cope with the non-rigorous
16561 // ASTs which we build for dependent expressions.
16562 if (FD->isDependentContext())
16563 return true;
16564
16565 llvm::TimeTraceScope TimeScope("isPotentialConstantExpr", [&] {
16566 std::string Name;
16567 llvm::raw_string_ostream OS(Name);
16568 FD->getNameForDiagnostic(OS, Policy: FD->getASTContext().getPrintingPolicy(),
16569 /*Qualified=*/true);
16570 return Name;
16571 });
16572
16573 Expr::EvalStatus Status;
16574 Status.Diag = &Diags;
16575
16576 EvalInfo Info(FD->getASTContext(), Status, EvalInfo::EM_ConstantExpression);
16577 Info.InConstantContext = true;
16578 Info.CheckingPotentialConstantExpression = true;
16579
16580 // The constexpr VM attempts to compile all methods to bytecode here.
16581 if (Info.EnableNewConstInterp) {
16582 Info.Ctx.getInterpContext().isPotentialConstantExpr(Parent&: Info, FnDecl: FD);
16583 return Diags.empty();
16584 }
16585
16586 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: FD);
16587 const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr;
16588
16589 // Fabricate an arbitrary expression on the stack and pretend that it
16590 // is a temporary being used as the 'this' pointer.
16591 LValue This;
16592 ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
16593 This.set({&VIE, Info.CurrentCall->Index});
16594
16595 ArrayRef<const Expr*> Args;
16596
16597 APValue Scratch;
16598 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Val: FD)) {
16599 // Evaluate the call as a constant initializer, to allow the construction
16600 // of objects of non-literal types.
16601 Info.setEvaluatingDecl(Base: This.getLValueBase(), Value&: Scratch);
16602 HandleConstructorCall(&VIE, This, Args, CD, Info, Scratch);
16603 } else {
16604 SourceLocation Loc = FD->getLocation();
16605 HandleFunctionCall(
16606 Loc, FD, (MD && MD->isImplicitObjectMemberFunction()) ? &This : nullptr,
16607 &VIE, Args, CallRef(), FD->getBody(), Info, Scratch,
16608 /*ResultSlot=*/nullptr);
16609 }
16610
16611 return Diags.empty();
16612}
16613
16614bool Expr::isPotentialConstantExprUnevaluated(Expr *E,
16615 const FunctionDecl *FD,
16616 SmallVectorImpl<
16617 PartialDiagnosticAt> &Diags) {
16618 assert(!E->isValueDependent() &&
16619 "Expression evaluator can't be called on a dependent expression.");
16620
16621 Expr::EvalStatus Status;
16622 Status.Diag = &Diags;
16623
16624 EvalInfo Info(FD->getASTContext(), Status,
16625 EvalInfo::EM_ConstantExpressionUnevaluated);
16626 Info.InConstantContext = true;
16627 Info.CheckingPotentialConstantExpression = true;
16628
16629 // Fabricate a call stack frame to give the arguments a plausible cover story.
16630 CallStackFrame Frame(Info, SourceLocation(), FD, /*This=*/nullptr,
16631 /*CallExpr=*/nullptr, CallRef());
16632
16633 APValue ResultScratch;
16634 Evaluate(Result&: ResultScratch, Info, E);
16635 return Diags.empty();
16636}
16637
16638bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
16639 unsigned Type) const {
16640 if (!getType()->isPointerType())
16641 return false;
16642
16643 Expr::EvalStatus Status;
16644 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
16645 return tryEvaluateBuiltinObjectSize(E: this, Type, Info, Size&: Result);
16646}
16647
16648static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result,
16649 EvalInfo &Info) {
16650 if (!E->getType()->hasPointerRepresentation() || !E->isPRValue())
16651 return false;
16652
16653 LValue String;
16654
16655 if (!EvaluatePointer(E, Result&: String, Info))
16656 return false;
16657
16658 QualType CharTy = E->getType()->getPointeeType();
16659
16660 // Fast path: if it's a string literal, search the string value.
16661 if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>(
16662 Val: String.getLValueBase().dyn_cast<const Expr *>())) {
16663 StringRef Str = S->getBytes();
16664 int64_t Off = String.Offset.getQuantity();
16665 if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() &&
16666 S->getCharByteWidth() == 1 &&
16667 // FIXME: Add fast-path for wchar_t too.
16668 Info.Ctx.hasSameUnqualifiedType(T1: CharTy, T2: Info.Ctx.CharTy)) {
16669 Str = Str.substr(Start: Off);
16670
16671 StringRef::size_type Pos = Str.find(C: 0);
16672 if (Pos != StringRef::npos)
16673 Str = Str.substr(Start: 0, N: Pos);
16674
16675 Result = Str.size();
16676 return true;
16677 }
16678
16679 // Fall through to slow path.
16680 }
16681
16682 // Slow path: scan the bytes of the string looking for the terminating 0.
16683 for (uint64_t Strlen = 0; /**/; ++Strlen) {
16684 APValue Char;
16685 if (!handleLValueToRValueConversion(Info, Conv: E, Type: CharTy, LVal: String, RVal&: Char) ||
16686 !Char.isInt())
16687 return false;
16688 if (!Char.getInt()) {
16689 Result = Strlen;
16690 return true;
16691 }
16692 if (!HandleLValueArrayAdjustment(Info, E, LVal&: String, EltTy: CharTy, Adjustment: 1))
16693 return false;
16694 }
16695}
16696
16697bool Expr::EvaluateCharRangeAsString(std::string &Result,
16698 const Expr *SizeExpression,
16699 const Expr *PtrExpression, ASTContext &Ctx,
16700 EvalResult &Status) const {
16701 LValue String;
16702 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
16703 Info.InConstantContext = true;
16704
16705 FullExpressionRAII Scope(Info);
16706 APSInt SizeValue;
16707 if (!::EvaluateInteger(E: SizeExpression, Result&: SizeValue, Info))
16708 return false;
16709
16710 int64_t Size = SizeValue.getExtValue();
16711
16712 if (!::EvaluatePointer(E: PtrExpression, Result&: String, Info))
16713 return false;
16714
16715 QualType CharTy = PtrExpression->getType()->getPointeeType();
16716 for (int64_t I = 0; I < Size; ++I) {
16717 APValue Char;
16718 if (!handleLValueToRValueConversion(Info, Conv: PtrExpression, Type: CharTy, LVal: String,
16719 RVal&: Char))
16720 return false;
16721
16722 APSInt C = Char.getInt();
16723 Result.push_back(c: static_cast<char>(C.getExtValue()));
16724 if (!HandleLValueArrayAdjustment(Info, E: PtrExpression, LVal&: String, EltTy: CharTy, Adjustment: 1))
16725 return false;
16726 }
16727 if (!Scope.destroy())
16728 return false;
16729
16730 if (!CheckMemoryLeaks(Info))
16731 return false;
16732
16733 return true;
16734}
16735
16736bool Expr::tryEvaluateStrLen(uint64_t &Result, ASTContext &Ctx) const {
16737 Expr::EvalStatus Status;
16738 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
16739 return EvaluateBuiltinStrLen(E: this, Result, Info);
16740}
16741

source code of clang/lib/AST/ExprConstant.cpp