1//===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code dealing with code generation of C++ expressions
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGCUDARuntime.h"
14#include "CGCXXABI.h"
15#include "CGDebugInfo.h"
16#include "CGObjCRuntime.h"
17#include "CodeGenFunction.h"
18#include "ConstantEmitter.h"
19#include "TargetInfo.h"
20#include "clang/Basic/CodeGenOptions.h"
21#include "clang/CodeGen/CGFunctionInfo.h"
22#include "llvm/IR/Intrinsics.h"
23
24using namespace clang;
25using namespace CodeGen;
26
27namespace {
28struct MemberCallInfo {
29 RequiredArgs ReqArgs;
30 // Number of prefix arguments for the call. Ignores the `this` pointer.
31 unsigned PrefixSize;
32};
33}
34
35static MemberCallInfo
36commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, GlobalDecl GD,
37 llvm::Value *This, llvm::Value *ImplicitParam,
38 QualType ImplicitParamTy, const CallExpr *CE,
39 CallArgList &Args, CallArgList *RtlArgs) {
40 auto *MD = cast<CXXMethodDecl>(Val: GD.getDecl());
41
42 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
43 isa<CXXOperatorCallExpr>(CE));
44 assert(MD->isImplicitObjectMemberFunction() &&
45 "Trying to emit a member or operator call expr on a static method!");
46
47 // Push the this ptr.
48 const CXXRecordDecl *RD =
49 CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(GD);
50 Args.add(rvalue: RValue::get(V: This), type: CGF.getTypes().DeriveThisType(RD, MD));
51
52 // If there is an implicit parameter (e.g. VTT), emit it.
53 if (ImplicitParam) {
54 Args.add(rvalue: RValue::get(V: ImplicitParam), type: ImplicitParamTy);
55 }
56
57 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
58 RequiredArgs required = RequiredArgs::forPrototypePlus(prototype: FPT, additional: Args.size());
59 unsigned PrefixSize = Args.size() - 1;
60
61 // And the rest of the call args.
62 if (RtlArgs) {
63 // Special case: if the caller emitted the arguments right-to-left already
64 // (prior to emitting the *this argument), we're done. This happens for
65 // assignment operators.
66 Args.addFrom(other: *RtlArgs);
67 } else if (CE) {
68 // Special case: skip first argument of CXXOperatorCall (it is "this").
69 unsigned ArgsToSkip = 0;
70 if (const auto *Op = dyn_cast<CXXOperatorCallExpr>(Val: CE)) {
71 if (const auto *M = dyn_cast<CXXMethodDecl>(Op->getCalleeDecl()))
72 ArgsToSkip =
73 static_cast<unsigned>(!M->isExplicitObjectMemberFunction());
74 }
75 CGF.EmitCallArgs(Args, Prototype: FPT, ArgRange: drop_begin(RangeOrContainer: CE->arguments(), N: ArgsToSkip),
76 AC: CE->getDirectCallee());
77 } else {
78 assert(
79 FPT->getNumParams() == 0 &&
80 "No CallExpr specified for function with non-zero number of arguments");
81 }
82 return {.ReqArgs: required, .PrefixSize: PrefixSize};
83}
84
85RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
86 const CXXMethodDecl *MD, const CGCallee &Callee,
87 ReturnValueSlot ReturnValue,
88 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
89 const CallExpr *CE, CallArgList *RtlArgs) {
90 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
91 CallArgList Args;
92 MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
93 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
94 auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
95 args: Args, type: FPT, required: CallInfo.ReqArgs, numPrefixArgs: CallInfo.PrefixSize);
96 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
97 CE && CE == MustTailCall,
98 CE ? CE->getExprLoc() : SourceLocation());
99}
100
101RValue CodeGenFunction::EmitCXXDestructorCall(
102 GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This, QualType ThisTy,
103 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE) {
104 const CXXMethodDecl *DtorDecl = cast<CXXMethodDecl>(Val: Dtor.getDecl());
105
106 assert(!ThisTy.isNull());
107 assert(ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() &&
108 "Pointer/Object mixup");
109
110 LangAS SrcAS = ThisTy.getAddressSpace();
111 LangAS DstAS = DtorDecl->getMethodQualifiers().getAddressSpace();
112 if (SrcAS != DstAS) {
113 QualType DstTy = DtorDecl->getThisType();
114 llvm::Type *NewType = CGM.getTypes().ConvertType(T: DstTy);
115 This = getTargetHooks().performAddrSpaceCast(CGF&: *this, V: This, SrcAddr: SrcAS, DestAddr: DstAS,
116 DestTy: NewType);
117 }
118
119 CallArgList Args;
120 commonEmitCXXMemberOrOperatorCall(CGF&: *this, GD: Dtor, This, ImplicitParam,
121 ImplicitParamTy, CE, Args, RtlArgs: nullptr);
122 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(GD: Dtor), Callee,
123 ReturnValueSlot(), Args, nullptr, CE && CE == MustTailCall,
124 CE ? CE->getExprLoc() : SourceLocation{});
125}
126
127RValue CodeGenFunction::EmitCXXPseudoDestructorExpr(
128 const CXXPseudoDestructorExpr *E) {
129 QualType DestroyedType = E->getDestroyedType();
130 if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
131 // Automatic Reference Counting:
132 // If the pseudo-expression names a retainable object with weak or
133 // strong lifetime, the object shall be released.
134 Expr *BaseExpr = E->getBase();
135 Address BaseValue = Address::invalid();
136 Qualifiers BaseQuals;
137
138 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
139 if (E->isArrow()) {
140 BaseValue = EmitPointerWithAlignment(Addr: BaseExpr);
141 const auto *PTy = BaseExpr->getType()->castAs<PointerType>();
142 BaseQuals = PTy->getPointeeType().getQualifiers();
143 } else {
144 LValue BaseLV = EmitLValue(E: BaseExpr);
145 BaseValue = BaseLV.getAddress(CGF&: *this);
146 QualType BaseTy = BaseExpr->getType();
147 BaseQuals = BaseTy.getQualifiers();
148 }
149
150 switch (DestroyedType.getObjCLifetime()) {
151 case Qualifiers::OCL_None:
152 case Qualifiers::OCL_ExplicitNone:
153 case Qualifiers::OCL_Autoreleasing:
154 break;
155
156 case Qualifiers::OCL_Strong:
157 EmitARCRelease(value: Builder.CreateLoad(Addr: BaseValue,
158 IsVolatile: DestroyedType.isVolatileQualified()),
159 precise: ARCPreciseLifetime);
160 break;
161
162 case Qualifiers::OCL_Weak:
163 EmitARCDestroyWeak(addr: BaseValue);
164 break;
165 }
166 } else {
167 // C++ [expr.pseudo]p1:
168 // The result shall only be used as the operand for the function call
169 // operator (), and the result of such a call has type void. The only
170 // effect is the evaluation of the postfix-expression before the dot or
171 // arrow.
172 EmitIgnoredExpr(E: E->getBase());
173 }
174
175 return RValue::get(V: nullptr);
176}
177
178static CXXRecordDecl *getCXXRecord(const Expr *E) {
179 QualType T = E->getType();
180 if (const PointerType *PTy = T->getAs<PointerType>())
181 T = PTy->getPointeeType();
182 const RecordType *Ty = T->castAs<RecordType>();
183 return cast<CXXRecordDecl>(Val: Ty->getDecl());
184}
185
186// Note: This function also emit constructor calls to support a MSVC
187// extensions allowing explicit constructor function call.
188RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
189 ReturnValueSlot ReturnValue) {
190 const Expr *callee = CE->getCallee()->IgnoreParens();
191
192 if (isa<BinaryOperator>(Val: callee))
193 return EmitCXXMemberPointerCallExpr(E: CE, ReturnValue);
194
195 const MemberExpr *ME = cast<MemberExpr>(Val: callee);
196 const CXXMethodDecl *MD = cast<CXXMethodDecl>(Val: ME->getMemberDecl());
197
198 if (MD->isStatic()) {
199 // The method is static, emit it as we would a regular call.
200 CGCallee callee =
201 CGCallee::forDirect(functionPtr: CGM.GetAddrOfFunction(MD), abstractInfo: GlobalDecl(MD));
202 return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
203 ReturnValue);
204 }
205
206 bool HasQualifier = ME->hasQualifier();
207 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
208 bool IsArrow = ME->isArrow();
209 const Expr *Base = ME->getBase();
210
211 return EmitCXXMemberOrOperatorMemberCallExpr(
212 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
213}
214
215RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
216 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
217 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
218 const Expr *Base) {
219 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
220
221 // Compute the object pointer.
222 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
223
224 const CXXMethodDecl *DevirtualizedMethod = nullptr;
225 if (CanUseVirtualCall &&
226 MD->getDevirtualizedMethod(Base, IsAppleKext: getLangOpts().AppleKext)) {
227 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
228 DevirtualizedMethod = MD->getCorrespondingMethodInClass(RD: BestDynamicDecl);
229 assert(DevirtualizedMethod);
230 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
231 const Expr *Inner = Base->IgnoreParenBaseCasts();
232 if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
233 MD->getReturnType().getCanonicalType())
234 // If the return types are not the same, this might be a case where more
235 // code needs to run to compensate for it. For example, the derived
236 // method might return a type that inherits form from the return
237 // type of MD and has a prefix.
238 // For now we just avoid devirtualizing these covariant cases.
239 DevirtualizedMethod = nullptr;
240 else if (getCXXRecord(E: Inner) == DevirtualizedClass)
241 // If the class of the Inner expression is where the dynamic method
242 // is defined, build the this pointer from it.
243 Base = Inner;
244 else if (getCXXRecord(E: Base) != DevirtualizedClass) {
245 // If the method is defined in a class that is not the best dynamic
246 // one or the one of the full expression, we would have to build
247 // a derived-to-base cast to compute the correct this pointer, but
248 // we don't have support for that yet, so do a virtual call.
249 DevirtualizedMethod = nullptr;
250 }
251 }
252
253 bool TrivialForCodegen =
254 MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion());
255 bool TrivialAssignment =
256 TrivialForCodegen &&
257 (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) &&
258 !MD->getParent()->mayInsertExtraPadding();
259
260 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
261 // operator before the LHS.
262 CallArgList RtlArgStorage;
263 CallArgList *RtlArgs = nullptr;
264 LValue TrivialAssignmentRHS;
265 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(Val: CE)) {
266 if (OCE->isAssignmentOp()) {
267 if (TrivialAssignment) {
268 TrivialAssignmentRHS = EmitLValue(E: CE->getArg(Arg: 1));
269 } else {
270 RtlArgs = &RtlArgStorage;
271 EmitCallArgs(Args&: *RtlArgs, Prototype: MD->getType()->castAs<FunctionProtoType>(),
272 ArgRange: drop_begin(RangeOrContainer: CE->arguments(), N: 1), AC: CE->getDirectCallee(),
273 /*ParamsToSkip*/0, Order: EvaluationOrder::ForceRightToLeft);
274 }
275 }
276 }
277
278 LValue This;
279 if (IsArrow) {
280 LValueBaseInfo BaseInfo;
281 TBAAAccessInfo TBAAInfo;
282 Address ThisValue = EmitPointerWithAlignment(Addr: Base, BaseInfo: &BaseInfo, TBAAInfo: &TBAAInfo);
283 This = MakeAddrLValue(Addr: ThisValue, T: Base->getType(), BaseInfo, TBAAInfo);
284 } else {
285 This = EmitLValue(E: Base);
286 }
287
288 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Val: MD)) {
289 // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
290 // constructing a new complete object of type Ctor.
291 assert(!RtlArgs);
292 assert(ReturnValue.isNull() && "Constructor shouldn't have return value");
293 CallArgList Args;
294 commonEmitCXXMemberOrOperatorCall(
295 CGF&: *this, GD: {Ctor, Ctor_Complete}, This: This.getPointer(CGF&: *this),
296 /*ImplicitParam=*/nullptr,
297 /*ImplicitParamTy=*/QualType(), CE, Args, RtlArgs: nullptr);
298
299 EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false,
300 /*Delegating=*/false, This.getAddress(CGF&: *this), Args,
301 AggValueSlot::DoesNotOverlap, CE->getExprLoc(),
302 /*NewPointerIsChecked=*/false);
303 return RValue::get(V: nullptr);
304 }
305
306 if (TrivialForCodegen) {
307 if (isa<CXXDestructorDecl>(Val: MD))
308 return RValue::get(V: nullptr);
309
310 if (TrivialAssignment) {
311 // We don't like to generate the trivial copy/move assignment operator
312 // when it isn't necessary; just produce the proper effect here.
313 // It's important that we use the result of EmitLValue here rather than
314 // emitting call arguments, in order to preserve TBAA information from
315 // the RHS.
316 LValue RHS = isa<CXXOperatorCallExpr>(Val: CE)
317 ? TrivialAssignmentRHS
318 : EmitLValue(*CE->arg_begin());
319 EmitAggregateAssign(Dest: This, Src: RHS, EltTy: CE->getType());
320 return RValue::get(V: This.getPointer(CGF&: *this));
321 }
322
323 assert(MD->getParent()->mayInsertExtraPadding() &&
324 "unknown trivial member function");
325 }
326
327 // Compute the function type we're calling.
328 const CXXMethodDecl *CalleeDecl =
329 DevirtualizedMethod ? DevirtualizedMethod : MD;
330 const CGFunctionInfo *FInfo = nullptr;
331 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(Val: CalleeDecl))
332 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
333 GD: GlobalDecl(Dtor, Dtor_Complete));
334 else
335 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(MD: CalleeDecl);
336
337 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(Info: *FInfo);
338
339 // C++11 [class.mfct.non-static]p2:
340 // If a non-static member function of a class X is called for an object that
341 // is not of type X, or of a type derived from X, the behavior is undefined.
342 SourceLocation CallLoc;
343 ASTContext &C = getContext();
344 if (CE)
345 CallLoc = CE->getExprLoc();
346
347 SanitizerSet SkippedChecks;
348 if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(Val: CE)) {
349 auto *IOA = CMCE->getImplicitObjectArgument();
350 bool IsImplicitObjectCXXThis = IsWrappedCXXThis(E: IOA);
351 if (IsImplicitObjectCXXThis)
352 SkippedChecks.set(K: SanitizerKind::Alignment, Value: true);
353 if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(Val: IOA))
354 SkippedChecks.set(K: SanitizerKind::Null, Value: true);
355 }
356 EmitTypeCheck(TCK: CodeGenFunction::TCK_MemberCall, Loc: CallLoc,
357 V: This.getPointer(CGF&: *this),
358 Type: C.getRecordType(CalleeDecl->getParent()),
359 /*Alignment=*/CharUnits::Zero(), SkippedChecks);
360
361 // C++ [class.virtual]p12:
362 // Explicit qualification with the scope operator (5.1) suppresses the
363 // virtual call mechanism.
364 //
365 // We also don't emit a virtual call if the base expression has a record type
366 // because then we know what the type is.
367 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
368
369 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(Val: CalleeDecl)) {
370 assert(CE->arg_begin() == CE->arg_end() &&
371 "Destructor shouldn't have explicit parameters");
372 assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
373 if (UseVirtualCall) {
374 CGM.getCXXABI().EmitVirtualDestructorCall(CGF&: *this, Dtor, DtorType: Dtor_Complete,
375 This: This.getAddress(CGF&: *this),
376 E: cast<CXXMemberCallExpr>(Val: CE));
377 } else {
378 GlobalDecl GD(Dtor, Dtor_Complete);
379 CGCallee Callee;
380 if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier)
381 Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty);
382 else if (!DevirtualizedMethod)
383 Callee =
384 CGCallee::forDirect(functionPtr: CGM.getAddrOfCXXStructor(GD, FnInfo: FInfo, FnType: Ty), abstractInfo: GD);
385 else {
386 Callee = CGCallee::forDirect(functionPtr: CGM.GetAddrOfFunction(GD, Ty), abstractInfo: GD);
387 }
388
389 QualType ThisTy =
390 IsArrow ? Base->getType()->getPointeeType() : Base->getType();
391 EmitCXXDestructorCall(Dtor: GD, Callee, This: This.getPointer(CGF&: *this), ThisTy,
392 /*ImplicitParam=*/nullptr,
393 /*ImplicitParamTy=*/QualType(), CE);
394 }
395 return RValue::get(V: nullptr);
396 }
397
398 // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
399 // 'CalleeDecl' instead.
400
401 CGCallee Callee;
402 if (UseVirtualCall) {
403 Callee = CGCallee::forVirtual(CE, MD, This.getAddress(CGF&: *this), Ty);
404 } else {
405 if (SanOpts.has(K: SanitizerKind::CFINVCall) &&
406 MD->getParent()->isDynamicClass()) {
407 llvm::Value *VTable;
408 const CXXRecordDecl *RD;
409 std::tie(args&: VTable, args&: RD) = CGM.getCXXABI().LoadVTablePtr(
410 CGF&: *this, This: This.getAddress(CGF&: *this), RD: CalleeDecl->getParent());
411 EmitVTablePtrCheckForCall(RD, VTable, TCK: CFITCK_NVCall, Loc: CE->getBeginLoc());
412 }
413
414 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
415 Callee = BuildAppleKextVirtualCall(MD, Qual: Qualifier, Ty);
416 else if (!DevirtualizedMethod)
417 Callee =
418 CGCallee::forDirect(functionPtr: CGM.GetAddrOfFunction(MD, Ty), abstractInfo: GlobalDecl(MD));
419 else {
420 Callee =
421 CGCallee::forDirect(functionPtr: CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
422 abstractInfo: GlobalDecl(DevirtualizedMethod));
423 }
424 }
425
426 if (MD->isVirtual()) {
427 Address NewThisAddr =
428 CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
429 *this, CalleeDecl, This.getAddress(CGF&: *this), UseVirtualCall);
430 This.setAddress(NewThisAddr);
431 }
432
433 return EmitCXXMemberOrOperatorCall(
434 MD: CalleeDecl, Callee, ReturnValue, This: This.getPointer(CGF&: *this),
435 /*ImplicitParam=*/nullptr, ImplicitParamTy: QualType(), CE, RtlArgs);
436}
437
438RValue
439CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
440 ReturnValueSlot ReturnValue) {
441 const BinaryOperator *BO =
442 cast<BinaryOperator>(E->getCallee()->IgnoreParens());
443 const Expr *BaseExpr = BO->getLHS();
444 const Expr *MemFnExpr = BO->getRHS();
445
446 const auto *MPT = MemFnExpr->getType()->castAs<MemberPointerType>();
447 const auto *FPT = MPT->getPointeeType()->castAs<FunctionProtoType>();
448 const auto *RD =
449 cast<CXXRecordDecl>(MPT->getClass()->castAs<RecordType>()->getDecl());
450
451 // Emit the 'this' pointer.
452 Address This = Address::invalid();
453 if (BO->getOpcode() == BO_PtrMemI)
454 This = EmitPointerWithAlignment(Addr: BaseExpr, BaseInfo: nullptr, TBAAInfo: nullptr, IsKnownNonNull: KnownNonNull);
455 else
456 This = EmitLValue(E: BaseExpr, IsKnownNonNull: KnownNonNull).getAddress(CGF&: *this);
457
458 EmitTypeCheck(TCK: TCK_MemberCall, Loc: E->getExprLoc(), V: This.getPointer(),
459 Type: QualType(MPT->getClass(), 0));
460
461 // Get the member function pointer.
462 llvm::Value *MemFnPtr = EmitScalarExpr(E: MemFnExpr);
463
464 // Ask the ABI to load the callee. Note that This is modified.
465 llvm::Value *ThisPtrForCall = nullptr;
466 CGCallee Callee =
467 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(CGF&: *this, E: BO, This,
468 ThisPtrForCall, MemPtr: MemFnPtr, MPT: MPT);
469
470 CallArgList Args;
471
472 QualType ThisType =
473 getContext().getPointerType(getContext().getTagDeclType(Decl: RD));
474
475 // Push the this ptr.
476 Args.add(rvalue: RValue::get(V: ThisPtrForCall), type: ThisType);
477
478 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
479
480 // And the rest of the call args
481 EmitCallArgs(Args, Prototype: FPT, ArgRange: E->arguments());
482 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(args: Args, type: FPT, required,
483 /*PrefixSize=*/numPrefixArgs: 0),
484 Callee, ReturnValue, Args, nullptr, E == MustTailCall,
485 E->getExprLoc());
486}
487
488RValue
489CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
490 const CXXMethodDecl *MD,
491 ReturnValueSlot ReturnValue) {
492 assert(MD->isImplicitObjectMemberFunction() &&
493 "Trying to emit a member call expr on a static method!");
494 return EmitCXXMemberOrOperatorMemberCallExpr(
495 CE: E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
496 /*IsArrow=*/false, Base: E->getArg(0));
497}
498
499RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
500 ReturnValueSlot ReturnValue) {
501 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(CGF&: *this, E, ReturnValue);
502}
503
504static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
505 Address DestPtr,
506 const CXXRecordDecl *Base) {
507 if (Base->isEmpty())
508 return;
509
510 DestPtr = DestPtr.withElementType(ElemTy: CGF.Int8Ty);
511
512 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
513 CharUnits NVSize = Layout.getNonVirtualSize();
514
515 // We cannot simply zero-initialize the entire base sub-object if vbptrs are
516 // present, they are initialized by the most derived class before calling the
517 // constructor.
518 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
519 Stores.emplace_back(Args: CharUnits::Zero(), Args&: NVSize);
520
521 // Each store is split by the existence of a vbptr.
522 CharUnits VBPtrWidth = CGF.getPointerSize();
523 std::vector<CharUnits> VBPtrOffsets =
524 CGF.CGM.getCXXABI().getVBPtrOffsets(RD: Base);
525 for (CharUnits VBPtrOffset : VBPtrOffsets) {
526 // Stop before we hit any virtual base pointers located in virtual bases.
527 if (VBPtrOffset >= NVSize)
528 break;
529 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
530 CharUnits LastStoreOffset = LastStore.first;
531 CharUnits LastStoreSize = LastStore.second;
532
533 CharUnits SplitBeforeOffset = LastStoreOffset;
534 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
535 assert(!SplitBeforeSize.isNegative() && "negative store size!");
536 if (!SplitBeforeSize.isZero())
537 Stores.emplace_back(Args&: SplitBeforeOffset, Args&: SplitBeforeSize);
538
539 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
540 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
541 assert(!SplitAfterSize.isNegative() && "negative store size!");
542 if (!SplitAfterSize.isZero())
543 Stores.emplace_back(Args&: SplitAfterOffset, Args&: SplitAfterSize);
544 }
545
546 // If the type contains a pointer to data member we can't memset it to zero.
547 // Instead, create a null constant and copy it to the destination.
548 // TODO: there are other patterns besides zero that we can usefully memset,
549 // like -1, which happens to be the pattern used by member-pointers.
550 // TODO: isZeroInitializable can be over-conservative in the case where a
551 // virtual base contains a member pointer.
552 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Record: Base);
553 if (!NullConstantForBase->isNullValue()) {
554 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
555 CGF.CGM.getModule(), NullConstantForBase->getType(),
556 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
557 NullConstantForBase, Twine());
558
559 CharUnits Align =
560 std::max(a: Layout.getNonVirtualAlignment(), b: DestPtr.getAlignment());
561 NullVariable->setAlignment(Align.getAsAlign());
562
563 Address SrcPtr(NullVariable, CGF.Int8Ty, Align);
564
565 // Get and call the appropriate llvm.memcpy overload.
566 for (std::pair<CharUnits, CharUnits> Store : Stores) {
567 CharUnits StoreOffset = Store.first;
568 CharUnits StoreSize = Store.second;
569 llvm::Value *StoreSizeVal = CGF.CGM.getSize(numChars: StoreSize);
570 CGF.Builder.CreateMemCpy(
571 Dest: CGF.Builder.CreateConstInBoundsByteGEP(Addr: DestPtr, Offset: StoreOffset),
572 Src: CGF.Builder.CreateConstInBoundsByteGEP(Addr: SrcPtr, Offset: StoreOffset),
573 Size: StoreSizeVal);
574 }
575
576 // Otherwise, just memset the whole thing to zero. This is legal
577 // because in LLVM, all default initializers (other than the ones we just
578 // handled above) are guaranteed to have a bit pattern of all zeros.
579 } else {
580 for (std::pair<CharUnits, CharUnits> Store : Stores) {
581 CharUnits StoreOffset = Store.first;
582 CharUnits StoreSize = Store.second;
583 llvm::Value *StoreSizeVal = CGF.CGM.getSize(numChars: StoreSize);
584 CGF.Builder.CreateMemSet(
585 Dest: CGF.Builder.CreateConstInBoundsByteGEP(Addr: DestPtr, Offset: StoreOffset),
586 Value: CGF.Builder.getInt8(C: 0), Size: StoreSizeVal);
587 }
588 }
589}
590
591void
592CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
593 AggValueSlot Dest) {
594 assert(!Dest.isIgnored() && "Must have a destination!");
595 const CXXConstructorDecl *CD = E->getConstructor();
596
597 // If we require zero initialization before (or instead of) calling the
598 // constructor, as can be the case with a non-user-provided default
599 // constructor, emit the zero initialization now, unless destination is
600 // already zeroed.
601 if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
602 switch (E->getConstructionKind()) {
603 case CXXConstructionKind::Delegating:
604 case CXXConstructionKind::Complete:
605 EmitNullInitialization(DestPtr: Dest.getAddress(), Ty: E->getType());
606 break;
607 case CXXConstructionKind::VirtualBase:
608 case CXXConstructionKind::NonVirtualBase:
609 EmitNullBaseClassInitialization(*this, Dest.getAddress(),
610 CD->getParent());
611 break;
612 }
613 }
614
615 // If this is a call to a trivial default constructor, do nothing.
616 if (CD->isTrivial() && CD->isDefaultConstructor())
617 return;
618
619 // Elide the constructor if we're constructing from a temporary.
620 if (getLangOpts().ElideConstructors && E->isElidable()) {
621 // FIXME: This only handles the simplest case, where the source object
622 // is passed directly as the first argument to the constructor.
623 // This should also handle stepping though implicit casts and
624 // conversion sequences which involve two steps, with a
625 // conversion operator followed by a converting constructor.
626 const Expr *SrcObj = E->getArg(Arg: 0);
627 assert(SrcObj->isTemporaryObject(getContext(), CD->getParent()));
628 assert(
629 getContext().hasSameUnqualifiedType(E->getType(), SrcObj->getType()));
630 EmitAggExpr(E: SrcObj, AS: Dest);
631 return;
632 }
633
634 if (const ArrayType *arrayType
635 = getContext().getAsArrayType(T: E->getType())) {
636 EmitCXXAggrConstructorCall(D: CD, ArrayTy: arrayType, ArrayPtr: Dest.getAddress(), E,
637 NewPointerIsChecked: Dest.isSanitizerChecked());
638 } else {
639 CXXCtorType Type = Ctor_Complete;
640 bool ForVirtualBase = false;
641 bool Delegating = false;
642
643 switch (E->getConstructionKind()) {
644 case CXXConstructionKind::Delegating:
645 // We should be emitting a constructor; GlobalDecl will assert this
646 Type = CurGD.getCtorType();
647 Delegating = true;
648 break;
649
650 case CXXConstructionKind::Complete:
651 Type = Ctor_Complete;
652 break;
653
654 case CXXConstructionKind::VirtualBase:
655 ForVirtualBase = true;
656 [[fallthrough]];
657
658 case CXXConstructionKind::NonVirtualBase:
659 Type = Ctor_Base;
660 }
661
662 // Call the constructor.
663 EmitCXXConstructorCall(D: CD, Type, ForVirtualBase, Delegating, ThisAVS: Dest, E);
664 }
665}
666
667void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
668 const Expr *Exp) {
669 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Val: Exp))
670 Exp = E->getSubExpr();
671 assert(isa<CXXConstructExpr>(Exp) &&
672 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
673 const CXXConstructExpr* E = cast<CXXConstructExpr>(Val: Exp);
674 const CXXConstructorDecl *CD = E->getConstructor();
675 RunCleanupsScope Scope(*this);
676
677 // If we require zero initialization before (or instead of) calling the
678 // constructor, as can be the case with a non-user-provided default
679 // constructor, emit the zero initialization now.
680 // FIXME. Do I still need this for a copy ctor synthesis?
681 if (E->requiresZeroInitialization())
682 EmitNullInitialization(DestPtr: Dest, Ty: E->getType());
683
684 assert(!getContext().getAsConstantArrayType(E->getType())
685 && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
686 EmitSynthesizedCXXCopyCtorCall(D: CD, This: Dest, Src, E);
687}
688
689static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
690 const CXXNewExpr *E) {
691 if (!E->isArray())
692 return CharUnits::Zero();
693
694 // No cookie is required if the operator new[] being used is the
695 // reserved placement operator new[].
696 if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
697 return CharUnits::Zero();
698
699 return CGF.CGM.getCXXABI().GetArrayCookieSize(expr: E);
700}
701
702static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
703 const CXXNewExpr *e,
704 unsigned minElements,
705 llvm::Value *&numElements,
706 llvm::Value *&sizeWithoutCookie) {
707 QualType type = e->getAllocatedType();
708
709 if (!e->isArray()) {
710 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(T: type);
711 sizeWithoutCookie
712 = llvm::ConstantInt::get(Ty: CGF.SizeTy, V: typeSize.getQuantity());
713 return sizeWithoutCookie;
714 }
715
716 // The width of size_t.
717 unsigned sizeWidth = CGF.SizeTy->getBitWidth();
718
719 // Figure out the cookie size.
720 llvm::APInt cookieSize(sizeWidth,
721 CalculateCookiePadding(CGF, E: e).getQuantity());
722
723 // Emit the array size expression.
724 // We multiply the size of all dimensions for NumElements.
725 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
726 numElements =
727 ConstantEmitter(CGF).tryEmitAbstract(*e->getArraySize(), e->getType());
728 if (!numElements)
729 numElements = CGF.EmitScalarExpr(E: *e->getArraySize());
730 assert(isa<llvm::IntegerType>(numElements->getType()));
731
732 // The number of elements can be have an arbitrary integer type;
733 // essentially, we need to multiply it by a constant factor, add a
734 // cookie size, and verify that the result is representable as a
735 // size_t. That's just a gloss, though, and it's wrong in one
736 // important way: if the count is negative, it's an error even if
737 // the cookie size would bring the total size >= 0.
738 bool isSigned
739 = (*e->getArraySize())->getType()->isSignedIntegerOrEnumerationType();
740 llvm::IntegerType *numElementsType
741 = cast<llvm::IntegerType>(Val: numElements->getType());
742 unsigned numElementsWidth = numElementsType->getBitWidth();
743
744 // Compute the constant factor.
745 llvm::APInt arraySizeMultiplier(sizeWidth, 1);
746 while (const ConstantArrayType *CAT
747 = CGF.getContext().getAsConstantArrayType(T: type)) {
748 type = CAT->getElementType();
749 arraySizeMultiplier *= CAT->getSize();
750 }
751
752 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(T: type);
753 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
754 typeSizeMultiplier *= arraySizeMultiplier;
755
756 // This will be a size_t.
757 llvm::Value *size;
758
759 // If someone is doing 'new int[42]' there is no need to do a dynamic check.
760 // Don't bloat the -O0 code.
761 if (llvm::ConstantInt *numElementsC =
762 dyn_cast<llvm::ConstantInt>(Val: numElements)) {
763 const llvm::APInt &count = numElementsC->getValue();
764
765 bool hasAnyOverflow = false;
766
767 // If 'count' was a negative number, it's an overflow.
768 if (isSigned && count.isNegative())
769 hasAnyOverflow = true;
770
771 // We want to do all this arithmetic in size_t. If numElements is
772 // wider than that, check whether it's already too big, and if so,
773 // overflow.
774 else if (numElementsWidth > sizeWidth &&
775 numElementsWidth - sizeWidth > count.countl_zero())
776 hasAnyOverflow = true;
777
778 // Okay, compute a count at the right width.
779 llvm::APInt adjustedCount = count.zextOrTrunc(width: sizeWidth);
780
781 // If there is a brace-initializer, we cannot allocate fewer elements than
782 // there are initializers. If we do, that's treated like an overflow.
783 if (adjustedCount.ult(RHS: minElements))
784 hasAnyOverflow = true;
785
786 // Scale numElements by that. This might overflow, but we don't
787 // care because it only overflows if allocationSize does, too, and
788 // if that overflows then we shouldn't use this.
789 numElements = llvm::ConstantInt::get(Ty: CGF.SizeTy,
790 V: adjustedCount * arraySizeMultiplier);
791
792 // Compute the size before cookie, and track whether it overflowed.
793 bool overflow;
794 llvm::APInt allocationSize
795 = adjustedCount.umul_ov(RHS: typeSizeMultiplier, Overflow&: overflow);
796 hasAnyOverflow |= overflow;
797
798 // Add in the cookie, and check whether it's overflowed.
799 if (cookieSize != 0) {
800 // Save the current size without a cookie. This shouldn't be
801 // used if there was overflow.
802 sizeWithoutCookie = llvm::ConstantInt::get(Ty: CGF.SizeTy, V: allocationSize);
803
804 allocationSize = allocationSize.uadd_ov(RHS: cookieSize, Overflow&: overflow);
805 hasAnyOverflow |= overflow;
806 }
807
808 // On overflow, produce a -1 so operator new will fail.
809 if (hasAnyOverflow) {
810 size = llvm::Constant::getAllOnesValue(Ty: CGF.SizeTy);
811 } else {
812 size = llvm::ConstantInt::get(Ty: CGF.SizeTy, V: allocationSize);
813 }
814
815 // Otherwise, we might need to use the overflow intrinsics.
816 } else {
817 // There are up to five conditions we need to test for:
818 // 1) if isSigned, we need to check whether numElements is negative;
819 // 2) if numElementsWidth > sizeWidth, we need to check whether
820 // numElements is larger than something representable in size_t;
821 // 3) if minElements > 0, we need to check whether numElements is smaller
822 // than that.
823 // 4) we need to compute
824 // sizeWithoutCookie := numElements * typeSizeMultiplier
825 // and check whether it overflows; and
826 // 5) if we need a cookie, we need to compute
827 // size := sizeWithoutCookie + cookieSize
828 // and check whether it overflows.
829
830 llvm::Value *hasOverflow = nullptr;
831
832 // If numElementsWidth > sizeWidth, then one way or another, we're
833 // going to have to do a comparison for (2), and this happens to
834 // take care of (1), too.
835 if (numElementsWidth > sizeWidth) {
836 llvm::APInt threshold =
837 llvm::APInt::getOneBitSet(numBits: numElementsWidth, BitNo: sizeWidth);
838
839 llvm::Value *thresholdV
840 = llvm::ConstantInt::get(Ty: numElementsType, V: threshold);
841
842 hasOverflow = CGF.Builder.CreateICmpUGE(LHS: numElements, RHS: thresholdV);
843 numElements = CGF.Builder.CreateTrunc(V: numElements, DestTy: CGF.SizeTy);
844
845 // Otherwise, if we're signed, we want to sext up to size_t.
846 } else if (isSigned) {
847 if (numElementsWidth < sizeWidth)
848 numElements = CGF.Builder.CreateSExt(V: numElements, DestTy: CGF.SizeTy);
849
850 // If there's a non-1 type size multiplier, then we can do the
851 // signedness check at the same time as we do the multiply
852 // because a negative number times anything will cause an
853 // unsigned overflow. Otherwise, we have to do it here. But at least
854 // in this case, we can subsume the >= minElements check.
855 if (typeSizeMultiplier == 1)
856 hasOverflow = CGF.Builder.CreateICmpSLT(LHS: numElements,
857 RHS: llvm::ConstantInt::get(Ty: CGF.SizeTy, V: minElements));
858
859 // Otherwise, zext up to size_t if necessary.
860 } else if (numElementsWidth < sizeWidth) {
861 numElements = CGF.Builder.CreateZExt(V: numElements, DestTy: CGF.SizeTy);
862 }
863
864 assert(numElements->getType() == CGF.SizeTy);
865
866 if (minElements) {
867 // Don't allow allocation of fewer elements than we have initializers.
868 if (!hasOverflow) {
869 hasOverflow = CGF.Builder.CreateICmpULT(LHS: numElements,
870 RHS: llvm::ConstantInt::get(Ty: CGF.SizeTy, V: minElements));
871 } else if (numElementsWidth > sizeWidth) {
872 // The other existing overflow subsumes this check.
873 // We do an unsigned comparison, since any signed value < -1 is
874 // taken care of either above or below.
875 hasOverflow = CGF.Builder.CreateOr(LHS: hasOverflow,
876 RHS: CGF.Builder.CreateICmpULT(LHS: numElements,
877 RHS: llvm::ConstantInt::get(Ty: CGF.SizeTy, V: minElements)));
878 }
879 }
880
881 size = numElements;
882
883 // Multiply by the type size if necessary. This multiplier
884 // includes all the factors for nested arrays.
885 //
886 // This step also causes numElements to be scaled up by the
887 // nested-array factor if necessary. Overflow on this computation
888 // can be ignored because the result shouldn't be used if
889 // allocation fails.
890 if (typeSizeMultiplier != 1) {
891 llvm::Function *umul_with_overflow
892 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
893
894 llvm::Value *tsmV =
895 llvm::ConstantInt::get(Ty: CGF.SizeTy, V: typeSizeMultiplier);
896 llvm::Value *result =
897 CGF.Builder.CreateCall(Callee: umul_with_overflow, Args: {size, tsmV});
898
899 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(Agg: result, Idxs: 1);
900 if (hasOverflow)
901 hasOverflow = CGF.Builder.CreateOr(LHS: hasOverflow, RHS: overflowed);
902 else
903 hasOverflow = overflowed;
904
905 size = CGF.Builder.CreateExtractValue(Agg: result, Idxs: 0);
906
907 // Also scale up numElements by the array size multiplier.
908 if (arraySizeMultiplier != 1) {
909 // If the base element type size is 1, then we can re-use the
910 // multiply we just did.
911 if (typeSize.isOne()) {
912 assert(arraySizeMultiplier == typeSizeMultiplier);
913 numElements = size;
914
915 // Otherwise we need a separate multiply.
916 } else {
917 llvm::Value *asmV =
918 llvm::ConstantInt::get(Ty: CGF.SizeTy, V: arraySizeMultiplier);
919 numElements = CGF.Builder.CreateMul(LHS: numElements, RHS: asmV);
920 }
921 }
922 } else {
923 // numElements doesn't need to be scaled.
924 assert(arraySizeMultiplier == 1);
925 }
926
927 // Add in the cookie size if necessary.
928 if (cookieSize != 0) {
929 sizeWithoutCookie = size;
930
931 llvm::Function *uadd_with_overflow
932 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
933
934 llvm::Value *cookieSizeV = llvm::ConstantInt::get(Ty: CGF.SizeTy, V: cookieSize);
935 llvm::Value *result =
936 CGF.Builder.CreateCall(Callee: uadd_with_overflow, Args: {size, cookieSizeV});
937
938 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(Agg: result, Idxs: 1);
939 if (hasOverflow)
940 hasOverflow = CGF.Builder.CreateOr(LHS: hasOverflow, RHS: overflowed);
941 else
942 hasOverflow = overflowed;
943
944 size = CGF.Builder.CreateExtractValue(Agg: result, Idxs: 0);
945 }
946
947 // If we had any possibility of dynamic overflow, make a select to
948 // overwrite 'size' with an all-ones value, which should cause
949 // operator new to throw.
950 if (hasOverflow)
951 size = CGF.Builder.CreateSelect(C: hasOverflow,
952 True: llvm::Constant::getAllOnesValue(Ty: CGF.SizeTy),
953 False: size);
954 }
955
956 if (cookieSize == 0)
957 sizeWithoutCookie = size;
958 else
959 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
960
961 return size;
962}
963
964static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
965 QualType AllocType, Address NewPtr,
966 AggValueSlot::Overlap_t MayOverlap) {
967 // FIXME: Refactor with EmitExprAsInit.
968 switch (CGF.getEvaluationKind(T: AllocType)) {
969 case TEK_Scalar:
970 CGF.EmitScalarInit(init: Init, D: nullptr,
971 lvalue: CGF.MakeAddrLValue(Addr: NewPtr, T: AllocType), capturedByInit: false);
972 return;
973 case TEK_Complex:
974 CGF.EmitComplexExprIntoLValue(E: Init, dest: CGF.MakeAddrLValue(Addr: NewPtr, T: AllocType),
975 /*isInit*/ true);
976 return;
977 case TEK_Aggregate: {
978 AggValueSlot Slot
979 = AggValueSlot::forAddr(addr: NewPtr, quals: AllocType.getQualifiers(),
980 isDestructed: AggValueSlot::IsDestructed,
981 needsGC: AggValueSlot::DoesNotNeedGCBarriers,
982 isAliased: AggValueSlot::IsNotAliased,
983 mayOverlap: MayOverlap, isZeroed: AggValueSlot::IsNotZeroed,
984 isChecked: AggValueSlot::IsSanitizerChecked);
985 CGF.EmitAggExpr(E: Init, AS: Slot);
986 return;
987 }
988 }
989 llvm_unreachable("bad evaluation kind");
990}
991
992void CodeGenFunction::EmitNewArrayInitializer(
993 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
994 Address BeginPtr, llvm::Value *NumElements,
995 llvm::Value *AllocSizeWithoutCookie) {
996 // If we have a type with trivial initialization and no initializer,
997 // there's nothing to do.
998 if (!E->hasInitializer())
999 return;
1000
1001 Address CurPtr = BeginPtr;
1002
1003 unsigned InitListElements = 0;
1004
1005 const Expr *Init = E->getInitializer();
1006 Address EndOfInit = Address::invalid();
1007 QualType::DestructionKind DtorKind = ElementType.isDestructedType();
1008 EHScopeStack::stable_iterator Cleanup;
1009 llvm::Instruction *CleanupDominator = nullptr;
1010
1011 CharUnits ElementSize = getContext().getTypeSizeInChars(T: ElementType);
1012 CharUnits ElementAlign =
1013 BeginPtr.getAlignment().alignmentOfArrayElement(elementSize: ElementSize);
1014
1015 // Attempt to perform zero-initialization using memset.
1016 auto TryMemsetInitialization = [&]() -> bool {
1017 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
1018 // we can initialize with a memset to -1.
1019 if (!CGM.getTypes().isZeroInitializable(T: ElementType))
1020 return false;
1021
1022 // Optimization: since zero initialization will just set the memory
1023 // to all zeroes, generate a single memset to do it in one shot.
1024
1025 // Subtract out the size of any elements we've already initialized.
1026 auto *RemainingSize = AllocSizeWithoutCookie;
1027 if (InitListElements) {
1028 // We know this can't overflow; we check this when doing the allocation.
1029 auto *InitializedSize = llvm::ConstantInt::get(
1030 Ty: RemainingSize->getType(),
1031 V: getContext().getTypeSizeInChars(T: ElementType).getQuantity() *
1032 InitListElements);
1033 RemainingSize = Builder.CreateSub(LHS: RemainingSize, RHS: InitializedSize);
1034 }
1035
1036 // Create the memset.
1037 Builder.CreateMemSet(Dest: CurPtr, Value: Builder.getInt8(C: 0), Size: RemainingSize, IsVolatile: false);
1038 return true;
1039 };
1040
1041 const InitListExpr *ILE = dyn_cast<InitListExpr>(Val: Init);
1042 const CXXParenListInitExpr *CPLIE = nullptr;
1043 const StringLiteral *SL = nullptr;
1044 const ObjCEncodeExpr *OCEE = nullptr;
1045 const Expr *IgnoreParen = nullptr;
1046 if (!ILE) {
1047 IgnoreParen = Init->IgnoreParenImpCasts();
1048 CPLIE = dyn_cast<CXXParenListInitExpr>(Val: IgnoreParen);
1049 SL = dyn_cast<StringLiteral>(Val: IgnoreParen);
1050 OCEE = dyn_cast<ObjCEncodeExpr>(Val: IgnoreParen);
1051 }
1052
1053 // If the initializer is an initializer list, first do the explicit elements.
1054 if (ILE || CPLIE || SL || OCEE) {
1055 // Initializing from a (braced) string literal is a special case; the init
1056 // list element does not initialize a (single) array element.
1057 if ((ILE && ILE->isStringLiteralInit()) || SL || OCEE) {
1058 if (!ILE)
1059 Init = IgnoreParen;
1060 // Initialize the initial portion of length equal to that of the string
1061 // literal. The allocation must be for at least this much; we emitted a
1062 // check for that earlier.
1063 AggValueSlot Slot =
1064 AggValueSlot::forAddr(addr: CurPtr, quals: ElementType.getQualifiers(),
1065 isDestructed: AggValueSlot::IsDestructed,
1066 needsGC: AggValueSlot::DoesNotNeedGCBarriers,
1067 isAliased: AggValueSlot::IsNotAliased,
1068 mayOverlap: AggValueSlot::DoesNotOverlap,
1069 isZeroed: AggValueSlot::IsNotZeroed,
1070 isChecked: AggValueSlot::IsSanitizerChecked);
1071 EmitAggExpr(E: ILE ? ILE->getInit(Init: 0) : Init, AS: Slot);
1072
1073 // Move past these elements.
1074 InitListElements =
1075 cast<ConstantArrayType>(Init->getType()->getAsArrayTypeUnsafe())
1076 ->getSize()
1077 .getZExtValue();
1078 CurPtr = Builder.CreateConstInBoundsGEP(
1079 Addr: CurPtr, Index: InitListElements, Name: "string.init.end");
1080
1081 // Zero out the rest, if any remain.
1082 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(Val: NumElements);
1083 if (!ConstNum || !ConstNum->equalsInt(V: InitListElements)) {
1084 bool OK = TryMemsetInitialization();
1085 (void)OK;
1086 assert(OK && "couldn't memset character type?");
1087 }
1088 return;
1089 }
1090
1091 ArrayRef<const Expr *> InitExprs =
1092 ILE ? ILE->inits() : CPLIE->getInitExprs();
1093 InitListElements = InitExprs.size();
1094
1095 // If this is a multi-dimensional array new, we will initialize multiple
1096 // elements with each init list element.
1097 QualType AllocType = E->getAllocatedType();
1098 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1099 AllocType->getAsArrayTypeUnsafe())) {
1100 ElementTy = ConvertTypeForMem(T: AllocType);
1101 CurPtr = CurPtr.withElementType(ElemTy: ElementTy);
1102 InitListElements *= getContext().getConstantArrayElementCount(CA: CAT);
1103 }
1104
1105 // Enter a partial-destruction Cleanup if necessary.
1106 if (needsEHCleanup(kind: DtorKind)) {
1107 // In principle we could tell the Cleanup where we are more
1108 // directly, but the control flow can get so varied here that it
1109 // would actually be quite complex. Therefore we go through an
1110 // alloca.
1111 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1112 "array.init.end");
1113 CleanupDominator = Builder.CreateStore(Val: BeginPtr.getPointer(), Addr: EndOfInit);
1114 pushIrregularPartialArrayCleanup(arrayBegin: BeginPtr.getPointer(), arrayEndPointer: EndOfInit,
1115 elementType: ElementType, elementAlignment: ElementAlign,
1116 destroyer: getDestroyer(destructionKind: DtorKind));
1117 Cleanup = EHStack.stable_begin();
1118 }
1119
1120 CharUnits StartAlign = CurPtr.getAlignment();
1121 unsigned i = 0;
1122 for (const Expr *IE : InitExprs) {
1123 // Tell the cleanup that it needs to destroy up to this
1124 // element. TODO: some of these stores can be trivially
1125 // observed to be unnecessary.
1126 if (EndOfInit.isValid()) {
1127 Builder.CreateStore(Val: CurPtr.getPointer(), Addr: EndOfInit);
1128 }
1129 // FIXME: If the last initializer is an incomplete initializer list for
1130 // an array, and we have an array filler, we can fold together the two
1131 // initialization loops.
1132 StoreAnyExprIntoOneUnit(CGF&: *this, Init: IE, AllocType: IE->getType(), NewPtr: CurPtr,
1133 MayOverlap: AggValueSlot::DoesNotOverlap);
1134 CurPtr = Address(Builder.CreateInBoundsGEP(
1135 Ty: CurPtr.getElementType(), Ptr: CurPtr.getPointer(),
1136 IdxList: Builder.getSize(N: 1), Name: "array.exp.next"),
1137 CurPtr.getElementType(),
1138 StartAlign.alignmentAtOffset(offset: (++i) * ElementSize));
1139 }
1140
1141 // The remaining elements are filled with the array filler expression.
1142 Init = ILE ? ILE->getArrayFiller() : CPLIE->getArrayFiller();
1143
1144 // Extract the initializer for the individual array elements by pulling
1145 // out the array filler from all the nested initializer lists. This avoids
1146 // generating a nested loop for the initialization.
1147 while (Init && Init->getType()->isConstantArrayType()) {
1148 auto *SubILE = dyn_cast<InitListExpr>(Val: Init);
1149 if (!SubILE)
1150 break;
1151 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
1152 Init = SubILE->getArrayFiller();
1153 }
1154
1155 // Switch back to initializing one base element at a time.
1156 CurPtr = CurPtr.withElementType(ElemTy: BeginPtr.getElementType());
1157 }
1158
1159 // If all elements have already been initialized, skip any further
1160 // initialization.
1161 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(Val: NumElements);
1162 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1163 // If there was a Cleanup, deactivate it.
1164 if (CleanupDominator)
1165 DeactivateCleanupBlock(Cleanup, DominatingIP: CleanupDominator);
1166 return;
1167 }
1168
1169 assert(Init && "have trailing elements to initialize but no initializer");
1170
1171 // If this is a constructor call, try to optimize it out, and failing that
1172 // emit a single loop to initialize all remaining elements.
1173 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Val: Init)) {
1174 CXXConstructorDecl *Ctor = CCE->getConstructor();
1175 if (Ctor->isTrivial()) {
1176 // If new expression did not specify value-initialization, then there
1177 // is no initialization.
1178 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1179 return;
1180
1181 if (TryMemsetInitialization())
1182 return;
1183 }
1184
1185 // Store the new Cleanup position for irregular Cleanups.
1186 //
1187 // FIXME: Share this cleanup with the constructor call emission rather than
1188 // having it create a cleanup of its own.
1189 if (EndOfInit.isValid())
1190 Builder.CreateStore(Val: CurPtr.getPointer(), Addr: EndOfInit);
1191
1192 // Emit a constructor call loop to initialize the remaining elements.
1193 if (InitListElements)
1194 NumElements = Builder.CreateSub(
1195 LHS: NumElements,
1196 RHS: llvm::ConstantInt::get(Ty: NumElements->getType(), V: InitListElements));
1197 EmitCXXAggrConstructorCall(D: Ctor, NumElements, ArrayPtr: CurPtr, E: CCE,
1198 /*NewPointerIsChecked*/true,
1199 ZeroInitialization: CCE->requiresZeroInitialization());
1200 return;
1201 }
1202
1203 // If this is value-initialization, we can usually use memset.
1204 ImplicitValueInitExpr IVIE(ElementType);
1205 if (isa<ImplicitValueInitExpr>(Val: Init)) {
1206 if (TryMemsetInitialization())
1207 return;
1208
1209 // Switch to an ImplicitValueInitExpr for the element type. This handles
1210 // only one case: multidimensional array new of pointers to members. In
1211 // all other cases, we already have an initializer for the array element.
1212 Init = &IVIE;
1213 }
1214
1215 // At this point we should have found an initializer for the individual
1216 // elements of the array.
1217 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1218 "got wrong type of element to initialize");
1219
1220 // If we have an empty initializer list, we can usually use memset.
1221 if (auto *ILE = dyn_cast<InitListExpr>(Val: Init))
1222 if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1223 return;
1224
1225 // If we have a struct whose every field is value-initialized, we can
1226 // usually use memset.
1227 if (auto *ILE = dyn_cast<InitListExpr>(Val: Init)) {
1228 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1229 if (RType->getDecl()->isStruct()) {
1230 unsigned NumElements = 0;
1231 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1232 NumElements = CXXRD->getNumBases();
1233 for (auto *Field : RType->getDecl()->fields())
1234 if (!Field->isUnnamedBitfield())
1235 ++NumElements;
1236 // FIXME: Recurse into nested InitListExprs.
1237 if (ILE->getNumInits() == NumElements)
1238 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1239 if (!isa<ImplicitValueInitExpr>(Val: ILE->getInit(Init: i)))
1240 --NumElements;
1241 if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1242 return;
1243 }
1244 }
1245 }
1246
1247 // Create the loop blocks.
1248 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1249 llvm::BasicBlock *LoopBB = createBasicBlock(name: "new.loop");
1250 llvm::BasicBlock *ContBB = createBasicBlock(name: "new.loop.end");
1251
1252 // Find the end of the array, hoisted out of the loop.
1253 llvm::Value *EndPtr =
1254 Builder.CreateInBoundsGEP(Ty: BeginPtr.getElementType(), Ptr: BeginPtr.getPointer(),
1255 IdxList: NumElements, Name: "array.end");
1256
1257 // If the number of elements isn't constant, we have to now check if there is
1258 // anything left to initialize.
1259 if (!ConstNum) {
1260 llvm::Value *IsEmpty =
1261 Builder.CreateICmpEQ(LHS: CurPtr.getPointer(), RHS: EndPtr, Name: "array.isempty");
1262 Builder.CreateCondBr(Cond: IsEmpty, True: ContBB, False: LoopBB);
1263 }
1264
1265 // Enter the loop.
1266 EmitBlock(BB: LoopBB);
1267
1268 // Set up the current-element phi.
1269 llvm::PHINode *CurPtrPhi =
1270 Builder.CreatePHI(Ty: CurPtr.getType(), NumReservedValues: 2, Name: "array.cur");
1271 CurPtrPhi->addIncoming(V: CurPtr.getPointer(), BB: EntryBB);
1272
1273 CurPtr = Address(CurPtrPhi, CurPtr.getElementType(), ElementAlign);
1274
1275 // Store the new Cleanup position for irregular Cleanups.
1276 if (EndOfInit.isValid())
1277 Builder.CreateStore(Val: CurPtr.getPointer(), Addr: EndOfInit);
1278
1279 // Enter a partial-destruction Cleanup if necessary.
1280 if (!CleanupDominator && needsEHCleanup(kind: DtorKind)) {
1281 pushRegularPartialArrayCleanup(arrayBegin: BeginPtr.getPointer(), arrayEnd: CurPtr.getPointer(),
1282 elementType: ElementType, elementAlignment: ElementAlign,
1283 destroyer: getDestroyer(destructionKind: DtorKind));
1284 Cleanup = EHStack.stable_begin();
1285 CleanupDominator = Builder.CreateUnreachable();
1286 }
1287
1288 // Emit the initializer into this element.
1289 StoreAnyExprIntoOneUnit(CGF&: *this, Init, AllocType: Init->getType(), NewPtr: CurPtr,
1290 MayOverlap: AggValueSlot::DoesNotOverlap);
1291
1292 // Leave the Cleanup if we entered one.
1293 if (CleanupDominator) {
1294 DeactivateCleanupBlock(Cleanup, DominatingIP: CleanupDominator);
1295 CleanupDominator->eraseFromParent();
1296 }
1297
1298 // Advance to the next element by adjusting the pointer type as necessary.
1299 llvm::Value *NextPtr =
1300 Builder.CreateConstInBoundsGEP1_32(Ty: ElementTy, Ptr: CurPtr.getPointer(), Idx0: 1,
1301 Name: "array.next");
1302
1303 // Check whether we've gotten to the end of the array and, if so,
1304 // exit the loop.
1305 llvm::Value *IsEnd = Builder.CreateICmpEQ(LHS: NextPtr, RHS: EndPtr, Name: "array.atend");
1306 Builder.CreateCondBr(Cond: IsEnd, True: ContBB, False: LoopBB);
1307 CurPtrPhi->addIncoming(V: NextPtr, BB: Builder.GetInsertBlock());
1308
1309 EmitBlock(BB: ContBB);
1310}
1311
1312static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1313 QualType ElementType, llvm::Type *ElementTy,
1314 Address NewPtr, llvm::Value *NumElements,
1315 llvm::Value *AllocSizeWithoutCookie) {
1316 ApplyDebugLocation DL(CGF, E);
1317 if (E->isArray())
1318 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, BeginPtr: NewPtr, NumElements,
1319 AllocSizeWithoutCookie);
1320 else if (const Expr *Init = E->getInitializer())
1321 StoreAnyExprIntoOneUnit(CGF, Init, AllocType: E->getAllocatedType(), NewPtr,
1322 MayOverlap: AggValueSlot::DoesNotOverlap);
1323}
1324
1325/// Emit a call to an operator new or operator delete function, as implicitly
1326/// created by new-expressions and delete-expressions.
1327static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1328 const FunctionDecl *CalleeDecl,
1329 const FunctionProtoType *CalleeType,
1330 const CallArgList &Args) {
1331 llvm::CallBase *CallOrInvoke;
1332 llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(GD: CalleeDecl);
1333 CGCallee Callee = CGCallee::forDirect(functionPtr: CalleePtr, abstractInfo: GlobalDecl(CalleeDecl));
1334 RValue RV =
1335 CGF.EmitCall(CallInfo: CGF.CGM.getTypes().arrangeFreeFunctionCall(
1336 Args, CalleeType, /*ChainCall=*/false),
1337 Callee, ReturnValue: ReturnValueSlot(), Args, callOrInvoke: &CallOrInvoke);
1338
1339 /// C++1y [expr.new]p10:
1340 /// [In a new-expression,] an implementation is allowed to omit a call
1341 /// to a replaceable global allocation function.
1342 ///
1343 /// We model such elidable calls with the 'builtin' attribute.
1344 llvm::Function *Fn = dyn_cast<llvm::Function>(Val: CalleePtr);
1345 if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1346 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1347 CallOrInvoke->addFnAttr(llvm::Attribute::Builtin);
1348 }
1349
1350 return RV;
1351}
1352
1353RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1354 const CallExpr *TheCall,
1355 bool IsDelete) {
1356 CallArgList Args;
1357 EmitCallArgs(Args, Prototype: Type, ArgRange: TheCall->arguments());
1358 // Find the allocation or deallocation function that we're calling.
1359 ASTContext &Ctx = getContext();
1360 DeclarationName Name = Ctx.DeclarationNames
1361 .getCXXOperatorName(Op: IsDelete ? OO_Delete : OO_New);
1362
1363 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1364 if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1365 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1366 return EmitNewDeleteCall(*this, FD, Type, Args);
1367 llvm_unreachable("predeclared global operator new/delete is missing");
1368}
1369
1370namespace {
1371/// The parameters to pass to a usual operator delete.
1372struct UsualDeleteParams {
1373 bool DestroyingDelete = false;
1374 bool Size = false;
1375 bool Alignment = false;
1376};
1377}
1378
1379static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
1380 UsualDeleteParams Params;
1381
1382 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1383 auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1384
1385 // The first argument is always a void*.
1386 ++AI;
1387
1388 // The next parameter may be a std::destroying_delete_t.
1389 if (FD->isDestroyingOperatorDelete()) {
1390 Params.DestroyingDelete = true;
1391 assert(AI != AE);
1392 ++AI;
1393 }
1394
1395 // Figure out what other parameters we should be implicitly passing.
1396 if (AI != AE && (*AI)->isIntegerType()) {
1397 Params.Size = true;
1398 ++AI;
1399 }
1400
1401 if (AI != AE && (*AI)->isAlignValT()) {
1402 Params.Alignment = true;
1403 ++AI;
1404 }
1405
1406 assert(AI == AE && "unexpected usual deallocation function parameter");
1407 return Params;
1408}
1409
1410namespace {
1411 /// A cleanup to call the given 'operator delete' function upon abnormal
1412 /// exit from a new expression. Templated on a traits type that deals with
1413 /// ensuring that the arguments dominate the cleanup if necessary.
1414 template<typename Traits>
1415 class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1416 /// Type used to hold llvm::Value*s.
1417 typedef typename Traits::ValueTy ValueTy;
1418 /// Type used to hold RValues.
1419 typedef typename Traits::RValueTy RValueTy;
1420 struct PlacementArg {
1421 RValueTy ArgValue;
1422 QualType ArgType;
1423 };
1424
1425 unsigned NumPlacementArgs : 31;
1426 LLVM_PREFERRED_TYPE(bool)
1427 unsigned PassAlignmentToPlacementDelete : 1;
1428 const FunctionDecl *OperatorDelete;
1429 ValueTy Ptr;
1430 ValueTy AllocSize;
1431 CharUnits AllocAlign;
1432
1433 PlacementArg *getPlacementArgs() {
1434 return reinterpret_cast<PlacementArg *>(this + 1);
1435 }
1436
1437 public:
1438 static size_t getExtraSize(size_t NumPlacementArgs) {
1439 return NumPlacementArgs * sizeof(PlacementArg);
1440 }
1441
1442 CallDeleteDuringNew(size_t NumPlacementArgs,
1443 const FunctionDecl *OperatorDelete, ValueTy Ptr,
1444 ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1445 CharUnits AllocAlign)
1446 : NumPlacementArgs(NumPlacementArgs),
1447 PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1448 OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1449 AllocAlign(AllocAlign) {}
1450
1451 void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1452 assert(I < NumPlacementArgs && "index out of range");
1453 getPlacementArgs()[I] = {Arg, Type};
1454 }
1455
1456 void Emit(CodeGenFunction &CGF, Flags flags) override {
1457 const auto *FPT = OperatorDelete->getType()->castAs<FunctionProtoType>();
1458 CallArgList DeleteArgs;
1459
1460 // The first argument is always a void* (or C* for a destroying operator
1461 // delete for class type C).
1462 DeleteArgs.add(rvalue: Traits::get(CGF, Ptr), type: FPT->getParamType(0));
1463
1464 // Figure out what other parameters we should be implicitly passing.
1465 UsualDeleteParams Params;
1466 if (NumPlacementArgs) {
1467 // A placement deallocation function is implicitly passed an alignment
1468 // if the placement allocation function was, but is never passed a size.
1469 Params.Alignment = PassAlignmentToPlacementDelete;
1470 } else {
1471 // For a non-placement new-expression, 'operator delete' can take a
1472 // size and/or an alignment if it has the right parameters.
1473 Params = getUsualDeleteParams(FD: OperatorDelete);
1474 }
1475
1476 assert(!Params.DestroyingDelete &&
1477 "should not call destroying delete in a new-expression");
1478
1479 // The second argument can be a std::size_t (for non-placement delete).
1480 if (Params.Size)
1481 DeleteArgs.add(rvalue: Traits::get(CGF, AllocSize),
1482 type: CGF.getContext().getSizeType());
1483
1484 // The next (second or third) argument can be a std::align_val_t, which
1485 // is an enum whose underlying type is std::size_t.
1486 // FIXME: Use the right type as the parameter type. Note that in a call
1487 // to operator delete(size_t, ...), we may not have it available.
1488 if (Params.Alignment)
1489 DeleteArgs.add(rvalue: RValue::get(V: llvm::ConstantInt::get(
1490 Ty: CGF.SizeTy, V: AllocAlign.getQuantity())),
1491 type: CGF.getContext().getSizeType());
1492
1493 // Pass the rest of the arguments, which must match exactly.
1494 for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1495 auto Arg = getPlacementArgs()[I];
1496 DeleteArgs.add(rvalue: Traits::get(CGF, Arg.ArgValue), type: Arg.ArgType);
1497 }
1498
1499 // Call 'operator delete'.
1500 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1501 }
1502 };
1503}
1504
1505/// Enter a cleanup to call 'operator delete' if the initializer in a
1506/// new-expression throws.
1507static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1508 const CXXNewExpr *E,
1509 Address NewPtr,
1510 llvm::Value *AllocSize,
1511 CharUnits AllocAlign,
1512 const CallArgList &NewArgs) {
1513 unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1514
1515 // If we're not inside a conditional branch, then the cleanup will
1516 // dominate and we can do the easier (and more efficient) thing.
1517 if (!CGF.isInConditionalBranch()) {
1518 struct DirectCleanupTraits {
1519 typedef llvm::Value *ValueTy;
1520 typedef RValue RValueTy;
1521 static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1522 static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1523 };
1524
1525 typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1526
1527 DirectCleanup *Cleanup = CGF.EHStack
1528 .pushCleanupWithExtra<DirectCleanup>(Kind: EHCleanup,
1529 N: E->getNumPlacementArgs(),
1530 A: E->getOperatorDelete(),
1531 A: NewPtr.getPointer(),
1532 A: AllocSize,
1533 A: E->passAlignment(),
1534 A: AllocAlign);
1535 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1536 auto &Arg = NewArgs[I + NumNonPlacementArgs];
1537 Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
1538 }
1539
1540 return;
1541 }
1542
1543 // Otherwise, we need to save all this stuff.
1544 DominatingValue<RValue>::saved_type SavedNewPtr =
1545 DominatingValue<RValue>::save(CGF, value: RValue::get(V: NewPtr.getPointer()));
1546 DominatingValue<RValue>::saved_type SavedAllocSize =
1547 DominatingValue<RValue>::save(CGF, value: RValue::get(V: AllocSize));
1548
1549 struct ConditionalCleanupTraits {
1550 typedef DominatingValue<RValue>::saved_type ValueTy;
1551 typedef DominatingValue<RValue>::saved_type RValueTy;
1552 static RValue get(CodeGenFunction &CGF, ValueTy V) {
1553 return V.restore(CGF);
1554 }
1555 };
1556 typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1557
1558 ConditionalCleanup *Cleanup = CGF.EHStack
1559 .pushCleanupWithExtra<ConditionalCleanup>(Kind: EHCleanup,
1560 N: E->getNumPlacementArgs(),
1561 A: E->getOperatorDelete(),
1562 A: SavedNewPtr,
1563 A: SavedAllocSize,
1564 A: E->passAlignment(),
1565 A: AllocAlign);
1566 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1567 auto &Arg = NewArgs[I + NumNonPlacementArgs];
1568 Cleanup->setPlacementArg(
1569 I, DominatingValue<RValue>::save(CGF, value: Arg.getRValue(CGF)), Arg.Ty);
1570 }
1571
1572 CGF.initFullExprCleanup();
1573}
1574
1575llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1576 // The element type being allocated.
1577 QualType allocType = getContext().getBaseElementType(QT: E->getAllocatedType());
1578
1579 // 1. Build a call to the allocation function.
1580 FunctionDecl *allocator = E->getOperatorNew();
1581
1582 // If there is a brace-initializer or C++20 parenthesized initializer, cannot
1583 // allocate fewer elements than inits.
1584 unsigned minElements = 0;
1585 if (E->isArray() && E->hasInitializer()) {
1586 const Expr *Init = E->getInitializer();
1587 const InitListExpr *ILE = dyn_cast<InitListExpr>(Val: Init);
1588 const CXXParenListInitExpr *CPLIE = dyn_cast<CXXParenListInitExpr>(Val: Init);
1589 const Expr *IgnoreParen = Init->IgnoreParenImpCasts();
1590 if ((ILE && ILE->isStringLiteralInit()) ||
1591 isa<StringLiteral>(Val: IgnoreParen) || isa<ObjCEncodeExpr>(Val: IgnoreParen)) {
1592 minElements =
1593 cast<ConstantArrayType>(Init->getType()->getAsArrayTypeUnsafe())
1594 ->getSize()
1595 .getZExtValue();
1596 } else if (ILE || CPLIE) {
1597 minElements = ILE ? ILE->getNumInits() : CPLIE->getInitExprs().size();
1598 }
1599 }
1600
1601 llvm::Value *numElements = nullptr;
1602 llvm::Value *allocSizeWithoutCookie = nullptr;
1603 llvm::Value *allocSize =
1604 EmitCXXNewAllocSize(CGF&: *this, e: E, minElements, numElements,
1605 sizeWithoutCookie&: allocSizeWithoutCookie);
1606 CharUnits allocAlign = getContext().getTypeAlignInChars(T: allocType);
1607
1608 // Emit the allocation call. If the allocator is a global placement
1609 // operator, just "inline" it directly.
1610 Address allocation = Address::invalid();
1611 CallArgList allocatorArgs;
1612 if (allocator->isReservedGlobalPlacementOperator()) {
1613 assert(E->getNumPlacementArgs() == 1);
1614 const Expr *arg = *E->placement_arguments().begin();
1615
1616 LValueBaseInfo BaseInfo;
1617 allocation = EmitPointerWithAlignment(Addr: arg, BaseInfo: &BaseInfo);
1618
1619 // The pointer expression will, in many cases, be an opaque void*.
1620 // In these cases, discard the computed alignment and use the
1621 // formal alignment of the allocated type.
1622 if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1623 allocation = allocation.withAlignment(NewAlignment: allocAlign);
1624
1625 // Set up allocatorArgs for the call to operator delete if it's not
1626 // the reserved global operator.
1627 if (E->getOperatorDelete() &&
1628 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1629 allocatorArgs.add(rvalue: RValue::get(V: allocSize), type: getContext().getSizeType());
1630 allocatorArgs.add(rvalue: RValue::get(V: allocation.getPointer()), type: arg->getType());
1631 }
1632
1633 } else {
1634 const FunctionProtoType *allocatorType =
1635 allocator->getType()->castAs<FunctionProtoType>();
1636 unsigned ParamsToSkip = 0;
1637
1638 // The allocation size is the first argument.
1639 QualType sizeType = getContext().getSizeType();
1640 allocatorArgs.add(rvalue: RValue::get(V: allocSize), type: sizeType);
1641 ++ParamsToSkip;
1642
1643 if (allocSize != allocSizeWithoutCookie) {
1644 CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1645 allocAlign = std::max(a: allocAlign, b: cookieAlign);
1646 }
1647
1648 // The allocation alignment may be passed as the second argument.
1649 if (E->passAlignment()) {
1650 QualType AlignValT = sizeType;
1651 if (allocatorType->getNumParams() > 1) {
1652 AlignValT = allocatorType->getParamType(i: 1);
1653 assert(getContext().hasSameUnqualifiedType(
1654 AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
1655 sizeType) &&
1656 "wrong type for alignment parameter");
1657 ++ParamsToSkip;
1658 } else {
1659 // Corner case, passing alignment to 'operator new(size_t, ...)'.
1660 assert(allocator->isVariadic() && "can't pass alignment to allocator");
1661 }
1662 allocatorArgs.add(
1663 rvalue: RValue::get(V: llvm::ConstantInt::get(Ty: SizeTy, V: allocAlign.getQuantity())),
1664 type: AlignValT);
1665 }
1666
1667 // FIXME: Why do we not pass a CalleeDecl here?
1668 EmitCallArgs(Args&: allocatorArgs, Prototype: allocatorType, ArgRange: E->placement_arguments(),
1669 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1670
1671 RValue RV =
1672 EmitNewDeleteCall(CGF&: *this, CalleeDecl: allocator, CalleeType: allocatorType, Args: allocatorArgs);
1673
1674 // Set !heapallocsite metadata on the call to operator new.
1675 if (getDebugInfo())
1676 if (auto *newCall = dyn_cast<llvm::CallBase>(RV.getScalarVal()))
1677 getDebugInfo()->addHeapAllocSiteMetadata(CallSite: newCall, AllocatedTy: allocType,
1678 Loc: E->getExprLoc());
1679
1680 // If this was a call to a global replaceable allocation function that does
1681 // not take an alignment argument, the allocator is known to produce
1682 // storage that's suitably aligned for any object that fits, up to a known
1683 // threshold. Otherwise assume it's suitably aligned for the allocated type.
1684 CharUnits allocationAlign = allocAlign;
1685 if (!E->passAlignment() &&
1686 allocator->isReplaceableGlobalAllocationFunction()) {
1687 unsigned AllocatorAlign = llvm::bit_floor(Value: std::min<uint64_t>(
1688 a: Target.getNewAlign(), b: getContext().getTypeSize(T: allocType)));
1689 allocationAlign = std::max(
1690 a: allocationAlign, b: getContext().toCharUnitsFromBits(BitSize: AllocatorAlign));
1691 }
1692
1693 allocation = Address(RV.getScalarVal(), Int8Ty, allocationAlign);
1694 }
1695
1696 // Emit a null check on the allocation result if the allocation
1697 // function is allowed to return null (because it has a non-throwing
1698 // exception spec or is the reserved placement new) and we have an
1699 // interesting initializer will be running sanitizers on the initialization.
1700 bool nullCheck = E->shouldNullCheckAllocation() &&
1701 (!allocType.isPODType(Context: getContext()) || E->hasInitializer() ||
1702 sanitizePerformTypeCheck());
1703
1704 llvm::BasicBlock *nullCheckBB = nullptr;
1705 llvm::BasicBlock *contBB = nullptr;
1706
1707 // The null-check means that the initializer is conditionally
1708 // evaluated.
1709 ConditionalEvaluation conditional(*this);
1710
1711 if (nullCheck) {
1712 conditional.begin(CGF&: *this);
1713
1714 nullCheckBB = Builder.GetInsertBlock();
1715 llvm::BasicBlock *notNullBB = createBasicBlock(name: "new.notnull");
1716 contBB = createBasicBlock(name: "new.cont");
1717
1718 llvm::Value *isNull =
1719 Builder.CreateIsNull(Arg: allocation.getPointer(), Name: "new.isnull");
1720 Builder.CreateCondBr(Cond: isNull, True: contBB, False: notNullBB);
1721 EmitBlock(BB: notNullBB);
1722 }
1723
1724 // If there's an operator delete, enter a cleanup to call it if an
1725 // exception is thrown.
1726 EHScopeStack::stable_iterator operatorDeleteCleanup;
1727 llvm::Instruction *cleanupDominator = nullptr;
1728 if (E->getOperatorDelete() &&
1729 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1730 EnterNewDeleteCleanup(CGF&: *this, E, NewPtr: allocation, AllocSize: allocSize, AllocAlign: allocAlign,
1731 NewArgs: allocatorArgs);
1732 operatorDeleteCleanup = EHStack.stable_begin();
1733 cleanupDominator = Builder.CreateUnreachable();
1734 }
1735
1736 assert((allocSize == allocSizeWithoutCookie) ==
1737 CalculateCookiePadding(*this, E).isZero());
1738 if (allocSize != allocSizeWithoutCookie) {
1739 assert(E->isArray());
1740 allocation = CGM.getCXXABI().InitializeArrayCookie(CGF&: *this, NewPtr: allocation,
1741 NumElements: numElements,
1742 expr: E, ElementType: allocType);
1743 }
1744
1745 llvm::Type *elementTy = ConvertTypeForMem(T: allocType);
1746 Address result = allocation.withElementType(ElemTy: elementTy);
1747
1748 // Passing pointer through launder.invariant.group to avoid propagation of
1749 // vptrs information which may be included in previous type.
1750 // To not break LTO with different optimizations levels, we do it regardless
1751 // of optimization level.
1752 if (CGM.getCodeGenOpts().StrictVTablePointers &&
1753 allocator->isReservedGlobalPlacementOperator())
1754 result = Builder.CreateLaunderInvariantGroup(Addr: result);
1755
1756 // Emit sanitizer checks for pointer value now, so that in the case of an
1757 // array it was checked only once and not at each constructor call. We may
1758 // have already checked that the pointer is non-null.
1759 // FIXME: If we have an array cookie and a potentially-throwing allocator,
1760 // we'll null check the wrong pointer here.
1761 SanitizerSet SkippedChecks;
1762 SkippedChecks.set(K: SanitizerKind::Null, Value: nullCheck);
1763 EmitTypeCheck(TCK: CodeGenFunction::TCK_ConstructorCall,
1764 Loc: E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1765 V: result.getPointer(), Type: allocType, Alignment: result.getAlignment(),
1766 SkippedChecks, ArraySize: numElements);
1767
1768 EmitNewInitializer(CGF&: *this, E, ElementType: allocType, ElementTy: elementTy, NewPtr: result, NumElements: numElements,
1769 AllocSizeWithoutCookie: allocSizeWithoutCookie);
1770 llvm::Value *resultPtr = result.getPointer();
1771 if (E->isArray()) {
1772 // NewPtr is a pointer to the base element type. If we're
1773 // allocating an array of arrays, we'll need to cast back to the
1774 // array pointer type.
1775 llvm::Type *resultType = ConvertTypeForMem(T: E->getType());
1776 if (resultPtr->getType() != resultType)
1777 resultPtr = Builder.CreateBitCast(V: resultPtr, DestTy: resultType);
1778 }
1779
1780 // Deactivate the 'operator delete' cleanup if we finished
1781 // initialization.
1782 if (operatorDeleteCleanup.isValid()) {
1783 DeactivateCleanupBlock(Cleanup: operatorDeleteCleanup, DominatingIP: cleanupDominator);
1784 cleanupDominator->eraseFromParent();
1785 }
1786
1787 if (nullCheck) {
1788 conditional.end(CGF&: *this);
1789
1790 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1791 EmitBlock(BB: contBB);
1792
1793 llvm::PHINode *PHI = Builder.CreatePHI(Ty: resultPtr->getType(), NumReservedValues: 2);
1794 PHI->addIncoming(V: resultPtr, BB: notNullBB);
1795 PHI->addIncoming(V: llvm::Constant::getNullValue(Ty: resultPtr->getType()),
1796 BB: nullCheckBB);
1797
1798 resultPtr = PHI;
1799 }
1800
1801 return resultPtr;
1802}
1803
1804void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1805 llvm::Value *Ptr, QualType DeleteTy,
1806 llvm::Value *NumElements,
1807 CharUnits CookieSize) {
1808 assert((!NumElements && CookieSize.isZero()) ||
1809 DeleteFD->getOverloadedOperator() == OO_Array_Delete);
1810
1811 const auto *DeleteFTy = DeleteFD->getType()->castAs<FunctionProtoType>();
1812 CallArgList DeleteArgs;
1813
1814 auto Params = getUsualDeleteParams(FD: DeleteFD);
1815 auto ParamTypeIt = DeleteFTy->param_type_begin();
1816
1817 // Pass the pointer itself.
1818 QualType ArgTy = *ParamTypeIt++;
1819 llvm::Value *DeletePtr = Builder.CreateBitCast(V: Ptr, DestTy: ConvertType(T: ArgTy));
1820 DeleteArgs.add(rvalue: RValue::get(V: DeletePtr), type: ArgTy);
1821
1822 // Pass the std::destroying_delete tag if present.
1823 llvm::AllocaInst *DestroyingDeleteTag = nullptr;
1824 if (Params.DestroyingDelete) {
1825 QualType DDTag = *ParamTypeIt++;
1826 llvm::Type *Ty = getTypes().ConvertType(T: DDTag);
1827 CharUnits Align = CGM.getNaturalTypeAlignment(T: DDTag);
1828 DestroyingDeleteTag = CreateTempAlloca(Ty, Name: "destroying.delete.tag");
1829 DestroyingDeleteTag->setAlignment(Align.getAsAlign());
1830 DeleteArgs.add(
1831 rvalue: RValue::getAggregate(addr: Address(DestroyingDeleteTag, Ty, Align)), type: DDTag);
1832 }
1833
1834 // Pass the size if the delete function has a size_t parameter.
1835 if (Params.Size) {
1836 QualType SizeType = *ParamTypeIt++;
1837 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(T: DeleteTy);
1838 llvm::Value *Size = llvm::ConstantInt::get(Ty: ConvertType(T: SizeType),
1839 V: DeleteTypeSize.getQuantity());
1840
1841 // For array new, multiply by the number of elements.
1842 if (NumElements)
1843 Size = Builder.CreateMul(LHS: Size, RHS: NumElements);
1844
1845 // If there is a cookie, add the cookie size.
1846 if (!CookieSize.isZero())
1847 Size = Builder.CreateAdd(
1848 LHS: Size, RHS: llvm::ConstantInt::get(Ty: SizeTy, V: CookieSize.getQuantity()));
1849
1850 DeleteArgs.add(rvalue: RValue::get(V: Size), type: SizeType);
1851 }
1852
1853 // Pass the alignment if the delete function has an align_val_t parameter.
1854 if (Params.Alignment) {
1855 QualType AlignValType = *ParamTypeIt++;
1856 CharUnits DeleteTypeAlign =
1857 getContext().toCharUnitsFromBits(BitSize: getContext().getTypeAlignIfKnown(
1858 T: DeleteTy, NeedsPreferredAlignment: true /* NeedsPreferredAlignment */));
1859 llvm::Value *Align = llvm::ConstantInt::get(Ty: ConvertType(T: AlignValType),
1860 V: DeleteTypeAlign.getQuantity());
1861 DeleteArgs.add(rvalue: RValue::get(V: Align), type: AlignValType);
1862 }
1863
1864 assert(ParamTypeIt == DeleteFTy->param_type_end() &&
1865 "unknown parameter to usual delete function");
1866
1867 // Emit the call to delete.
1868 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1869
1870 // If call argument lowering didn't use the destroying_delete_t alloca,
1871 // remove it again.
1872 if (DestroyingDeleteTag && DestroyingDeleteTag->use_empty())
1873 DestroyingDeleteTag->eraseFromParent();
1874}
1875
1876namespace {
1877 /// Calls the given 'operator delete' on a single object.
1878 struct CallObjectDelete final : EHScopeStack::Cleanup {
1879 llvm::Value *Ptr;
1880 const FunctionDecl *OperatorDelete;
1881 QualType ElementType;
1882
1883 CallObjectDelete(llvm::Value *Ptr,
1884 const FunctionDecl *OperatorDelete,
1885 QualType ElementType)
1886 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1887
1888 void Emit(CodeGenFunction &CGF, Flags flags) override {
1889 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1890 }
1891 };
1892}
1893
1894void
1895CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1896 llvm::Value *CompletePtr,
1897 QualType ElementType) {
1898 EHStack.pushCleanup<CallObjectDelete>(Kind: NormalAndEHCleanup, A: CompletePtr,
1899 A: OperatorDelete, A: ElementType);
1900}
1901
1902/// Emit the code for deleting a single object with a destroying operator
1903/// delete. If the element type has a non-virtual destructor, Ptr has already
1904/// been converted to the type of the parameter of 'operator delete'. Otherwise
1905/// Ptr points to an object of the static type.
1906static void EmitDestroyingObjectDelete(CodeGenFunction &CGF,
1907 const CXXDeleteExpr *DE, Address Ptr,
1908 QualType ElementType) {
1909 auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1910 if (Dtor && Dtor->isVirtual())
1911 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1912 Dtor);
1913 else
1914 CGF.EmitDeleteCall(DeleteFD: DE->getOperatorDelete(), Ptr: Ptr.getPointer(), DeleteTy: ElementType);
1915}
1916
1917/// Emit the code for deleting a single object.
1918/// \return \c true if we started emitting UnconditionalDeleteBlock, \c false
1919/// if not.
1920static bool EmitObjectDelete(CodeGenFunction &CGF,
1921 const CXXDeleteExpr *DE,
1922 Address Ptr,
1923 QualType ElementType,
1924 llvm::BasicBlock *UnconditionalDeleteBlock) {
1925 // C++11 [expr.delete]p3:
1926 // If the static type of the object to be deleted is different from its
1927 // dynamic type, the static type shall be a base class of the dynamic type
1928 // of the object to be deleted and the static type shall have a virtual
1929 // destructor or the behavior is undefined.
1930 CGF.EmitTypeCheck(TCK: CodeGenFunction::TCK_MemberCall,
1931 Loc: DE->getExprLoc(), V: Ptr.getPointer(),
1932 Type: ElementType);
1933
1934 const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1935 assert(!OperatorDelete->isDestroyingOperatorDelete());
1936
1937 // Find the destructor for the type, if applicable. If the
1938 // destructor is virtual, we'll just emit the vcall and return.
1939 const CXXDestructorDecl *Dtor = nullptr;
1940 if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1941 CXXRecordDecl *RD = cast<CXXRecordDecl>(Val: RT->getDecl());
1942 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1943 Dtor = RD->getDestructor();
1944
1945 if (Dtor->isVirtual()) {
1946 bool UseVirtualCall = true;
1947 const Expr *Base = DE->getArgument();
1948 if (auto *DevirtualizedDtor =
1949 dyn_cast_or_null<const CXXDestructorDecl>(
1950 Dtor->getDevirtualizedMethod(
1951 Base, CGF.CGM.getLangOpts().AppleKext))) {
1952 UseVirtualCall = false;
1953 const CXXRecordDecl *DevirtualizedClass =
1954 DevirtualizedDtor->getParent();
1955 if (declaresSameEntity(getCXXRecord(E: Base), DevirtualizedClass)) {
1956 // Devirtualized to the class of the base type (the type of the
1957 // whole expression).
1958 Dtor = DevirtualizedDtor;
1959 } else {
1960 // Devirtualized to some other type. Would need to cast the this
1961 // pointer to that type but we don't have support for that yet, so
1962 // do a virtual call. FIXME: handle the case where it is
1963 // devirtualized to the derived type (the type of the inner
1964 // expression) as in EmitCXXMemberOrOperatorMemberCallExpr.
1965 UseVirtualCall = true;
1966 }
1967 }
1968 if (UseVirtualCall) {
1969 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1970 Dtor);
1971 return false;
1972 }
1973 }
1974 }
1975 }
1976
1977 // Make sure that we call delete even if the dtor throws.
1978 // This doesn't have to a conditional cleanup because we're going
1979 // to pop it off in a second.
1980 CGF.EHStack.pushCleanup<CallObjectDelete>(Kind: NormalAndEHCleanup,
1981 A: Ptr.getPointer(),
1982 A: OperatorDelete, A: ElementType);
1983
1984 if (Dtor)
1985 CGF.EmitCXXDestructorCall(D: Dtor, Type: Dtor_Complete,
1986 /*ForVirtualBase=*/false,
1987 /*Delegating=*/false,
1988 This: Ptr, ThisTy: ElementType);
1989 else if (auto Lifetime = ElementType.getObjCLifetime()) {
1990 switch (Lifetime) {
1991 case Qualifiers::OCL_None:
1992 case Qualifiers::OCL_ExplicitNone:
1993 case Qualifiers::OCL_Autoreleasing:
1994 break;
1995
1996 case Qualifiers::OCL_Strong:
1997 CGF.EmitARCDestroyStrong(addr: Ptr, precise: ARCPreciseLifetime);
1998 break;
1999
2000 case Qualifiers::OCL_Weak:
2001 CGF.EmitARCDestroyWeak(addr: Ptr);
2002 break;
2003 }
2004 }
2005
2006 // When optimizing for size, call 'operator delete' unconditionally.
2007 if (CGF.CGM.getCodeGenOpts().OptimizeSize > 1) {
2008 CGF.EmitBlock(BB: UnconditionalDeleteBlock);
2009 CGF.PopCleanupBlock();
2010 return true;
2011 }
2012
2013 CGF.PopCleanupBlock();
2014 return false;
2015}
2016
2017namespace {
2018 /// Calls the given 'operator delete' on an array of objects.
2019 struct CallArrayDelete final : EHScopeStack::Cleanup {
2020 llvm::Value *Ptr;
2021 const FunctionDecl *OperatorDelete;
2022 llvm::Value *NumElements;
2023 QualType ElementType;
2024 CharUnits CookieSize;
2025
2026 CallArrayDelete(llvm::Value *Ptr,
2027 const FunctionDecl *OperatorDelete,
2028 llvm::Value *NumElements,
2029 QualType ElementType,
2030 CharUnits CookieSize)
2031 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
2032 ElementType(ElementType), CookieSize(CookieSize) {}
2033
2034 void Emit(CodeGenFunction &CGF, Flags flags) override {
2035 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
2036 CookieSize);
2037 }
2038 };
2039}
2040
2041/// Emit the code for deleting an array of objects.
2042static void EmitArrayDelete(CodeGenFunction &CGF,
2043 const CXXDeleteExpr *E,
2044 Address deletedPtr,
2045 QualType elementType) {
2046 llvm::Value *numElements = nullptr;
2047 llvm::Value *allocatedPtr = nullptr;
2048 CharUnits cookieSize;
2049 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, Ptr: deletedPtr, expr: E, ElementType: elementType,
2050 NumElements&: numElements, AllocPtr&: allocatedPtr, CookieSize&: cookieSize);
2051
2052 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
2053
2054 // Make sure that we call delete even if one of the dtors throws.
2055 const FunctionDecl *operatorDelete = E->getOperatorDelete();
2056 CGF.EHStack.pushCleanup<CallArrayDelete>(Kind: NormalAndEHCleanup,
2057 A: allocatedPtr, A: operatorDelete,
2058 A: numElements, A: elementType,
2059 A: cookieSize);
2060
2061 // Destroy the elements.
2062 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
2063 assert(numElements && "no element count for a type with a destructor!");
2064
2065 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(T: elementType);
2066 CharUnits elementAlign =
2067 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
2068
2069 llvm::Value *arrayBegin = deletedPtr.getPointer();
2070 llvm::Value *arrayEnd = CGF.Builder.CreateInBoundsGEP(
2071 Ty: deletedPtr.getElementType(), Ptr: arrayBegin, IdxList: numElements, Name: "delete.end");
2072
2073 // Note that it is legal to allocate a zero-length array, and we
2074 // can never fold the check away because the length should always
2075 // come from a cookie.
2076 CGF.emitArrayDestroy(begin: arrayBegin, end: arrayEnd, elementType, elementAlign,
2077 destroyer: CGF.getDestroyer(destructionKind: dtorKind),
2078 /*checkZeroLength*/ true,
2079 useEHCleanup: CGF.needsEHCleanup(kind: dtorKind));
2080 }
2081
2082 // Pop the cleanup block.
2083 CGF.PopCleanupBlock();
2084}
2085
2086void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
2087 const Expr *Arg = E->getArgument();
2088 Address Ptr = EmitPointerWithAlignment(Addr: Arg);
2089
2090 // Null check the pointer.
2091 //
2092 // We could avoid this null check if we can determine that the object
2093 // destruction is trivial and doesn't require an array cookie; we can
2094 // unconditionally perform the operator delete call in that case. For now, we
2095 // assume that deleted pointers are null rarely enough that it's better to
2096 // keep the branch. This might be worth revisiting for a -O0 code size win.
2097 llvm::BasicBlock *DeleteNotNull = createBasicBlock(name: "delete.notnull");
2098 llvm::BasicBlock *DeleteEnd = createBasicBlock(name: "delete.end");
2099
2100 llvm::Value *IsNull = Builder.CreateIsNull(Arg: Ptr.getPointer(), Name: "isnull");
2101
2102 Builder.CreateCondBr(Cond: IsNull, True: DeleteEnd, False: DeleteNotNull);
2103 EmitBlock(BB: DeleteNotNull);
2104 Ptr.setKnownNonNull();
2105
2106 QualType DeleteTy = E->getDestroyedType();
2107
2108 // A destroying operator delete overrides the entire operation of the
2109 // delete expression.
2110 if (E->getOperatorDelete()->isDestroyingOperatorDelete()) {
2111 EmitDestroyingObjectDelete(CGF&: *this, DE: E, Ptr, ElementType: DeleteTy);
2112 EmitBlock(BB: DeleteEnd);
2113 return;
2114 }
2115
2116 // We might be deleting a pointer to array. If so, GEP down to the
2117 // first non-array element.
2118 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
2119 if (DeleteTy->isConstantArrayType()) {
2120 llvm::Value *Zero = Builder.getInt32(C: 0);
2121 SmallVector<llvm::Value*,8> GEP;
2122
2123 GEP.push_back(Elt: Zero); // point at the outermost array
2124
2125 // For each layer of array type we're pointing at:
2126 while (const ConstantArrayType *Arr
2127 = getContext().getAsConstantArrayType(T: DeleteTy)) {
2128 // 1. Unpeel the array type.
2129 DeleteTy = Arr->getElementType();
2130
2131 // 2. GEP to the first element of the array.
2132 GEP.push_back(Elt: Zero);
2133 }
2134
2135 Ptr = Address(Builder.CreateInBoundsGEP(Ty: Ptr.getElementType(),
2136 Ptr: Ptr.getPointer(), IdxList: GEP, Name: "del.first"),
2137 ConvertTypeForMem(T: DeleteTy), Ptr.getAlignment(),
2138 Ptr.isKnownNonNull());
2139 }
2140
2141 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
2142
2143 if (E->isArrayForm()) {
2144 EmitArrayDelete(CGF&: *this, E, deletedPtr: Ptr, elementType: DeleteTy);
2145 EmitBlock(BB: DeleteEnd);
2146 } else {
2147 if (!EmitObjectDelete(CGF&: *this, DE: E, Ptr, ElementType: DeleteTy, UnconditionalDeleteBlock: DeleteEnd))
2148 EmitBlock(BB: DeleteEnd);
2149 }
2150}
2151
2152static bool isGLValueFromPointerDeref(const Expr *E) {
2153 E = E->IgnoreParens();
2154
2155 if (const auto *CE = dyn_cast<CastExpr>(Val: E)) {
2156 if (!CE->getSubExpr()->isGLValue())
2157 return false;
2158 return isGLValueFromPointerDeref(E: CE->getSubExpr());
2159 }
2160
2161 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Val: E))
2162 return isGLValueFromPointerDeref(E: OVE->getSourceExpr());
2163
2164 if (const auto *BO = dyn_cast<BinaryOperator>(Val: E))
2165 if (BO->getOpcode() == BO_Comma)
2166 return isGLValueFromPointerDeref(E: BO->getRHS());
2167
2168 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(Val: E))
2169 return isGLValueFromPointerDeref(E: ACO->getTrueExpr()) ||
2170 isGLValueFromPointerDeref(E: ACO->getFalseExpr());
2171
2172 // C++11 [expr.sub]p1:
2173 // The expression E1[E2] is identical (by definition) to *((E1)+(E2))
2174 if (isa<ArraySubscriptExpr>(Val: E))
2175 return true;
2176
2177 if (const auto *UO = dyn_cast<UnaryOperator>(Val: E))
2178 if (UO->getOpcode() == UO_Deref)
2179 return true;
2180
2181 return false;
2182}
2183
2184static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
2185 llvm::Type *StdTypeInfoPtrTy) {
2186 // Get the vtable pointer.
2187 Address ThisPtr = CGF.EmitLValue(E).getAddress(CGF);
2188
2189 QualType SrcRecordTy = E->getType();
2190
2191 // C++ [class.cdtor]p4:
2192 // If the operand of typeid refers to the object under construction or
2193 // destruction and the static type of the operand is neither the constructor
2194 // or destructor’s class nor one of its bases, the behavior is undefined.
2195 CGF.EmitTypeCheck(TCK: CodeGenFunction::TCK_DynamicOperation, Loc: E->getExprLoc(),
2196 V: ThisPtr.getPointer(), Type: SrcRecordTy);
2197
2198 // C++ [expr.typeid]p2:
2199 // If the glvalue expression is obtained by applying the unary * operator to
2200 // a pointer and the pointer is a null pointer value, the typeid expression
2201 // throws the std::bad_typeid exception.
2202 //
2203 // However, this paragraph's intent is not clear. We choose a very generous
2204 // interpretation which implores us to consider comma operators, conditional
2205 // operators, parentheses and other such constructs.
2206 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
2207 IsDeref: isGLValueFromPointerDeref(E), SrcRecordTy)) {
2208 llvm::BasicBlock *BadTypeidBlock =
2209 CGF.createBasicBlock(name: "typeid.bad_typeid");
2210 llvm::BasicBlock *EndBlock = CGF.createBasicBlock(name: "typeid.end");
2211
2212 llvm::Value *IsNull = CGF.Builder.CreateIsNull(Arg: ThisPtr.getPointer());
2213 CGF.Builder.CreateCondBr(Cond: IsNull, True: BadTypeidBlock, False: EndBlock);
2214
2215 CGF.EmitBlock(BB: BadTypeidBlock);
2216 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2217 CGF.EmitBlock(BB: EndBlock);
2218 }
2219
2220 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2221 StdTypeInfoPtrTy);
2222}
2223
2224llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
2225 llvm::Type *PtrTy = llvm::PointerType::getUnqual(C&: getLLVMContext());
2226 LangAS GlobAS = CGM.GetGlobalVarAddressSpace(D: nullptr);
2227
2228 auto MaybeASCast = [=](auto &&TypeInfo) {
2229 if (GlobAS == LangAS::Default)
2230 return TypeInfo;
2231 return getTargetHooks().performAddrSpaceCast(CGM,TypeInfo, GlobAS,
2232 LangAS::Default, PtrTy);
2233 };
2234
2235 if (E->isTypeOperand()) {
2236 llvm::Constant *TypeInfo =
2237 CGM.GetAddrOfRTTIDescriptor(Ty: E->getTypeOperand(Context&: getContext()));
2238 return MaybeASCast(TypeInfo);
2239 }
2240
2241 // C++ [expr.typeid]p2:
2242 // When typeid is applied to a glvalue expression whose type is a
2243 // polymorphic class type, the result refers to a std::type_info object
2244 // representing the type of the most derived object (that is, the dynamic
2245 // type) to which the glvalue refers.
2246 // If the operand is already most derived object, no need to look up vtable.
2247 if (E->isPotentiallyEvaluated() && !E->isMostDerived(Context&: getContext()))
2248 return EmitTypeidFromVTable(CGF&: *this, E: E->getExprOperand(), StdTypeInfoPtrTy: PtrTy);
2249
2250 QualType OperandTy = E->getExprOperand()->getType();
2251 return MaybeASCast(CGM.GetAddrOfRTTIDescriptor(Ty: OperandTy));
2252}
2253
2254static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
2255 QualType DestTy) {
2256 llvm::Type *DestLTy = CGF.ConvertType(T: DestTy);
2257 if (DestTy->isPointerType())
2258 return llvm::Constant::getNullValue(Ty: DestLTy);
2259
2260 /// C++ [expr.dynamic.cast]p9:
2261 /// A failed cast to reference type throws std::bad_cast
2262 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2263 return nullptr;
2264
2265 CGF.Builder.ClearInsertionPoint();
2266 return llvm::PoisonValue::get(T: DestLTy);
2267}
2268
2269llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
2270 const CXXDynamicCastExpr *DCE) {
2271 CGM.EmitExplicitCastExprType(DCE, this);
2272 QualType DestTy = DCE->getTypeAsWritten();
2273
2274 QualType SrcTy = DCE->getSubExpr()->getType();
2275
2276 // C++ [expr.dynamic.cast]p7:
2277 // If T is "pointer to cv void," then the result is a pointer to the most
2278 // derived object pointed to by v.
2279 bool IsDynamicCastToVoid = DestTy->isVoidPointerType();
2280 QualType SrcRecordTy;
2281 QualType DestRecordTy;
2282 if (IsDynamicCastToVoid) {
2283 SrcRecordTy = SrcTy->getPointeeType();
2284 // No DestRecordTy.
2285 } else if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) {
2286 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2287 DestRecordTy = DestPTy->getPointeeType();
2288 } else {
2289 SrcRecordTy = SrcTy;
2290 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2291 }
2292
2293 // C++ [class.cdtor]p5:
2294 // If the operand of the dynamic_cast refers to the object under
2295 // construction or destruction and the static type of the operand is not a
2296 // pointer to or object of the constructor or destructor’s own class or one
2297 // of its bases, the dynamic_cast results in undefined behavior.
2298 EmitTypeCheck(TCK: TCK_DynamicOperation, Loc: DCE->getExprLoc(), V: ThisAddr.getPointer(),
2299 Type: SrcRecordTy);
2300
2301 if (DCE->isAlwaysNull()) {
2302 if (llvm::Value *T = EmitDynamicCastToNull(CGF&: *this, DestTy)) {
2303 // Expression emission is expected to retain a valid insertion point.
2304 if (!Builder.GetInsertBlock())
2305 EmitBlock(BB: createBasicBlock(name: "dynamic_cast.unreachable"));
2306 return T;
2307 }
2308 }
2309
2310 assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
2311
2312 // If the destination is effectively final, the cast succeeds if and only
2313 // if the dynamic type of the pointer is exactly the destination type.
2314 bool IsExact = !IsDynamicCastToVoid &&
2315 CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2316 DestRecordTy->getAsCXXRecordDecl()->isEffectivelyFinal() &&
2317 CGM.getCXXABI().shouldEmitExactDynamicCast(DestRecordTy);
2318
2319 // C++ [expr.dynamic.cast]p4:
2320 // If the value of v is a null pointer value in the pointer case, the result
2321 // is the null pointer value of type T.
2322 bool ShouldNullCheckSrcValue =
2323 IsExact || CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(
2324 SrcIsPtr: SrcTy->isPointerType(), SrcRecordTy);
2325
2326 llvm::BasicBlock *CastNull = nullptr;
2327 llvm::BasicBlock *CastNotNull = nullptr;
2328 llvm::BasicBlock *CastEnd = createBasicBlock(name: "dynamic_cast.end");
2329
2330 if (ShouldNullCheckSrcValue) {
2331 CastNull = createBasicBlock(name: "dynamic_cast.null");
2332 CastNotNull = createBasicBlock(name: "dynamic_cast.notnull");
2333
2334 llvm::Value *IsNull = Builder.CreateIsNull(Arg: ThisAddr.getPointer());
2335 Builder.CreateCondBr(Cond: IsNull, True: CastNull, False: CastNotNull);
2336 EmitBlock(BB: CastNotNull);
2337 }
2338
2339 llvm::Value *Value;
2340 if (IsDynamicCastToVoid) {
2341 Value = CGM.getCXXABI().emitDynamicCastToVoid(CGF&: *this, Value: ThisAddr, SrcRecordTy);
2342 } else if (IsExact) {
2343 // If the destination type is effectively final, this pointer points to the
2344 // right type if and only if its vptr has the right value.
2345 Value = CGM.getCXXABI().emitExactDynamicCast(
2346 CGF&: *this, Value: ThisAddr, SrcRecordTy, DestTy, DestRecordTy, CastSuccess: CastEnd, CastFail: CastNull);
2347 } else {
2348 assert(DestRecordTy->isRecordType() &&
2349 "destination type must be a record type!");
2350 Value = CGM.getCXXABI().emitDynamicCastCall(CGF&: *this, Value: ThisAddr, SrcRecordTy,
2351 DestTy, DestRecordTy, CastEnd);
2352 }
2353 CastNotNull = Builder.GetInsertBlock();
2354
2355 llvm::Value *NullValue = nullptr;
2356 if (ShouldNullCheckSrcValue) {
2357 EmitBranch(Block: CastEnd);
2358
2359 EmitBlock(BB: CastNull);
2360 NullValue = EmitDynamicCastToNull(CGF&: *this, DestTy);
2361 CastNull = Builder.GetInsertBlock();
2362
2363 EmitBranch(Block: CastEnd);
2364 }
2365
2366 EmitBlock(BB: CastEnd);
2367
2368 if (CastNull) {
2369 llvm::PHINode *PHI = Builder.CreatePHI(Ty: Value->getType(), NumReservedValues: 2);
2370 PHI->addIncoming(V: Value, BB: CastNotNull);
2371 PHI->addIncoming(V: NullValue, BB: CastNull);
2372
2373 Value = PHI;
2374 }
2375
2376 return Value;
2377}
2378

source code of clang/lib/CodeGen/CGExprCXX.cpp