1//===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Objective-C code as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGDebugInfo.h"
14#include "CGObjCRuntime.h"
15#include "CodeGenFunction.h"
16#include "CodeGenModule.h"
17#include "ConstantEmitter.h"
18#include "TargetInfo.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/Attr.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/StmtObjC.h"
23#include "clang/Basic/Diagnostic.h"
24#include "clang/CodeGen/CGFunctionInfo.h"
25#include "clang/CodeGen/CodeGenABITypes.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/Analysis/ObjCARCUtil.h"
28#include "llvm/BinaryFormat/MachO.h"
29#include "llvm/IR/Constants.h"
30#include "llvm/IR/DataLayout.h"
31#include "llvm/IR/InlineAsm.h"
32#include <optional>
33using namespace clang;
34using namespace CodeGen;
35
36typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
37static TryEmitResult
38tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
39static RValue AdjustObjCObjectType(CodeGenFunction &CGF,
40 QualType ET,
41 RValue Result);
42
43/// Given the address of a variable of pointer type, find the correct
44/// null to store into it.
45static llvm::Constant *getNullForVariable(Address addr) {
46 llvm::Type *type = addr.getElementType();
47 return llvm::ConstantPointerNull::get(T: cast<llvm::PointerType>(Val: type));
48}
49
50/// Emits an instance of NSConstantString representing the object.
51llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
52{
53 llvm::Constant *C =
54 CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer();
55 return C;
56}
57
58/// EmitObjCBoxedExpr - This routine generates code to call
59/// the appropriate expression boxing method. This will either be
60/// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
61/// or [NSValue valueWithBytes:objCType:].
62///
63llvm::Value *
64CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
65 // Generate the correct selector for this literal's concrete type.
66 // Get the method.
67 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
68 const Expr *SubExpr = E->getSubExpr();
69
70 if (E->isExpressibleAsConstantInitializer()) {
71 ConstantEmitter ConstEmitter(CGM);
72 return ConstEmitter.tryEmitAbstract(E, E->getType());
73 }
74
75 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
76 Selector Sel = BoxingMethod->getSelector();
77
78 // Generate a reference to the class pointer, which will be the receiver.
79 // Assumes that the method was introduced in the class that should be
80 // messaged (avoids pulling it out of the result type).
81 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
82 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
83 llvm::Value *Receiver = Runtime.GetClass(CGF&: *this, OID: ClassDecl);
84
85 CallArgList Args;
86 const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
87 QualType ArgQT = ArgDecl->getType().getUnqualifiedType();
88
89 // ObjCBoxedExpr supports boxing of structs and unions
90 // via [NSValue valueWithBytes:objCType:]
91 const QualType ValueType(SubExpr->getType().getCanonicalType());
92 if (ValueType->isObjCBoxableRecordType()) {
93 // Emit CodeGen for first parameter
94 // and cast value to correct type
95 Address Temporary = CreateMemTemp(T: SubExpr->getType());
96 EmitAnyExprToMem(E: SubExpr, Location: Temporary, Quals: Qualifiers(), /*isInit*/ IsInitializer: true);
97 llvm::Value *BitCast =
98 Builder.CreateBitCast(V: Temporary.getPointer(), DestTy: ConvertType(T: ArgQT));
99 Args.add(rvalue: RValue::get(V: BitCast), type: ArgQT);
100
101 // Create char array to store type encoding
102 std::string Str;
103 getContext().getObjCEncodingForType(T: ValueType, S&: Str);
104 llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer();
105
106 // Cast type encoding to correct type
107 const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
108 QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
109 llvm::Value *Cast = Builder.CreateBitCast(V: GV, DestTy: ConvertType(T: EncodingQT));
110
111 Args.add(rvalue: RValue::get(V: Cast), type: EncodingQT);
112 } else {
113 Args.add(rvalue: EmitAnyExpr(E: SubExpr), type: ArgQT);
114 }
115
116 RValue result = Runtime.GenerateMessageSend(
117 CGF&: *this, ReturnSlot: ReturnValueSlot(), ResultType: BoxingMethod->getReturnType(), Sel, Receiver,
118 CallArgs: Args, Class: ClassDecl, Method: BoxingMethod);
119 return Builder.CreateBitCast(V: result.getScalarVal(),
120 DestTy: ConvertType(E->getType()));
121}
122
123llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
124 const ObjCMethodDecl *MethodWithObjects) {
125 ASTContext &Context = CGM.getContext();
126 const ObjCDictionaryLiteral *DLE = nullptr;
127 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(Val: E);
128 if (!ALE)
129 DLE = cast<ObjCDictionaryLiteral>(Val: E);
130
131 // Optimize empty collections by referencing constants, when available.
132 uint64_t NumElements =
133 ALE ? ALE->getNumElements() : DLE->getNumElements();
134 if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) {
135 StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__";
136 QualType IdTy(CGM.getContext().getObjCIdType());
137 llvm::Constant *Constant =
138 CGM.CreateRuntimeVariable(Ty: ConvertType(T: IdTy), Name: ConstantName);
139 LValue LV = MakeNaturalAlignAddrLValue(V: Constant, T: IdTy);
140 llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc());
141 cast<llvm::LoadInst>(Val: Ptr)->setMetadata(
142 KindID: llvm::LLVMContext::MD_invariant_load,
143 Node: llvm::MDNode::get(Context&: getLLVMContext(), MDs: std::nullopt));
144 return Builder.CreateBitCast(V: Ptr, DestTy: ConvertType(T: E->getType()));
145 }
146
147 // Compute the type of the array we're initializing.
148 llvm::APInt APNumElements(Context.getTypeSize(T: Context.getSizeType()),
149 NumElements);
150 QualType ElementType = Context.getObjCIdType().withConst();
151 QualType ElementArrayType = Context.getConstantArrayType(
152 EltTy: ElementType, ArySize: APNumElements, SizeExpr: nullptr, ASM: ArraySizeModifier::Normal,
153 /*IndexTypeQuals=*/0);
154
155 // Allocate the temporary array(s).
156 Address Objects = CreateMemTemp(T: ElementArrayType, Name: "objects");
157 Address Keys = Address::invalid();
158 if (DLE)
159 Keys = CreateMemTemp(T: ElementArrayType, Name: "keys");
160
161 // In ARC, we may need to do extra work to keep all the keys and
162 // values alive until after the call.
163 SmallVector<llvm::Value *, 16> NeededObjects;
164 bool TrackNeededObjects =
165 (getLangOpts().ObjCAutoRefCount &&
166 CGM.getCodeGenOpts().OptimizationLevel != 0);
167
168 // Perform the actual initialialization of the array(s).
169 for (uint64_t i = 0; i < NumElements; i++) {
170 if (ALE) {
171 // Emit the element and store it to the appropriate array slot.
172 const Expr *Rhs = ALE->getElement(Index: i);
173 LValue LV = MakeAddrLValue(Addr: Builder.CreateConstArrayGEP(Addr: Objects, Index: i),
174 T: ElementType, Source: AlignmentSource::Decl);
175
176 llvm::Value *value = EmitScalarExpr(E: Rhs);
177 EmitStoreThroughLValue(Src: RValue::get(V: value), Dst: LV, isInit: true);
178 if (TrackNeededObjects) {
179 NeededObjects.push_back(Elt: value);
180 }
181 } else {
182 // Emit the key and store it to the appropriate array slot.
183 const Expr *Key = DLE->getKeyValueElement(Index: i).Key;
184 LValue KeyLV = MakeAddrLValue(Addr: Builder.CreateConstArrayGEP(Addr: Keys, Index: i),
185 T: ElementType, Source: AlignmentSource::Decl);
186 llvm::Value *keyValue = EmitScalarExpr(E: Key);
187 EmitStoreThroughLValue(Src: RValue::get(V: keyValue), Dst: KeyLV, /*isInit=*/true);
188
189 // Emit the value and store it to the appropriate array slot.
190 const Expr *Value = DLE->getKeyValueElement(Index: i).Value;
191 LValue ValueLV = MakeAddrLValue(Addr: Builder.CreateConstArrayGEP(Addr: Objects, Index: i),
192 T: ElementType, Source: AlignmentSource::Decl);
193 llvm::Value *valueValue = EmitScalarExpr(E: Value);
194 EmitStoreThroughLValue(Src: RValue::get(V: valueValue), Dst: ValueLV, /*isInit=*/true);
195 if (TrackNeededObjects) {
196 NeededObjects.push_back(Elt: keyValue);
197 NeededObjects.push_back(Elt: valueValue);
198 }
199 }
200 }
201
202 // Generate the argument list.
203 CallArgList Args;
204 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
205 const ParmVarDecl *argDecl = *PI++;
206 QualType ArgQT = argDecl->getType().getUnqualifiedType();
207 Args.add(rvalue: RValue::get(V: Objects.getPointer()), type: ArgQT);
208 if (DLE) {
209 argDecl = *PI++;
210 ArgQT = argDecl->getType().getUnqualifiedType();
211 Args.add(rvalue: RValue::get(V: Keys.getPointer()), type: ArgQT);
212 }
213 argDecl = *PI;
214 ArgQT = argDecl->getType().getUnqualifiedType();
215 llvm::Value *Count =
216 llvm::ConstantInt::get(Ty: CGM.getTypes().ConvertType(T: ArgQT), V: NumElements);
217 Args.add(rvalue: RValue::get(V: Count), type: ArgQT);
218
219 // Generate a reference to the class pointer, which will be the receiver.
220 Selector Sel = MethodWithObjects->getSelector();
221 QualType ResultType = E->getType();
222 const ObjCObjectPointerType *InterfacePointerType
223 = ResultType->getAsObjCInterfacePointerType();
224 assert(InterfacePointerType && "Unexpected InterfacePointerType - null");
225 ObjCInterfaceDecl *Class
226 = InterfacePointerType->getObjectType()->getInterface();
227 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
228 llvm::Value *Receiver = Runtime.GetClass(CGF&: *this, OID: Class);
229
230 // Generate the message send.
231 RValue result = Runtime.GenerateMessageSend(
232 CGF&: *this, ReturnSlot: ReturnValueSlot(), ResultType: MethodWithObjects->getReturnType(), Sel,
233 Receiver, CallArgs: Args, Class, Method: MethodWithObjects);
234
235 // The above message send needs these objects, but in ARC they are
236 // passed in a buffer that is essentially __unsafe_unretained.
237 // Therefore we must prevent the optimizer from releasing them until
238 // after the call.
239 if (TrackNeededObjects) {
240 EmitARCIntrinsicUse(values: NeededObjects);
241 }
242
243 return Builder.CreateBitCast(V: result.getScalarVal(),
244 DestTy: ConvertType(T: E->getType()));
245}
246
247llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
248 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
249}
250
251llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
252 const ObjCDictionaryLiteral *E) {
253 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
254}
255
256/// Emit a selector.
257llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
258 // Untyped selector.
259 // Note that this implementation allows for non-constant strings to be passed
260 // as arguments to @selector(). Currently, the only thing preventing this
261 // behaviour is the type checking in the front end.
262 return CGM.getObjCRuntime().GetSelector(CGF&: *this, Sel: E->getSelector());
263}
264
265llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
266 // FIXME: This should pass the Decl not the name.
267 return CGM.getObjCRuntime().GenerateProtocolRef(CGF&: *this, OPD: E->getProtocol());
268}
269
270/// Adjust the type of an Objective-C object that doesn't match up due
271/// to type erasure at various points, e.g., related result types or the use
272/// of parameterized classes.
273static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT,
274 RValue Result) {
275 if (!ExpT->isObjCRetainableType())
276 return Result;
277
278 // If the converted types are the same, we're done.
279 llvm::Type *ExpLLVMTy = CGF.ConvertType(T: ExpT);
280 if (ExpLLVMTy == Result.getScalarVal()->getType())
281 return Result;
282
283 // We have applied a substitution. Cast the rvalue appropriately.
284 return RValue::get(V: CGF.Builder.CreateBitCast(V: Result.getScalarVal(),
285 DestTy: ExpLLVMTy));
286}
287
288/// Decide whether to extend the lifetime of the receiver of a
289/// returns-inner-pointer message.
290static bool
291shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
292 switch (message->getReceiverKind()) {
293
294 // For a normal instance message, we should extend unless the
295 // receiver is loaded from a variable with precise lifetime.
296 case ObjCMessageExpr::Instance: {
297 const Expr *receiver = message->getInstanceReceiver();
298
299 // Look through OVEs.
300 if (auto opaque = dyn_cast<OpaqueValueExpr>(Val: receiver)) {
301 if (opaque->getSourceExpr())
302 receiver = opaque->getSourceExpr()->IgnoreParens();
303 }
304
305 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(Val: receiver);
306 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
307 receiver = ice->getSubExpr()->IgnoreParens();
308
309 // Look through OVEs.
310 if (auto opaque = dyn_cast<OpaqueValueExpr>(Val: receiver)) {
311 if (opaque->getSourceExpr())
312 receiver = opaque->getSourceExpr()->IgnoreParens();
313 }
314
315 // Only __strong variables.
316 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
317 return true;
318
319 // All ivars and fields have precise lifetime.
320 if (isa<MemberExpr>(Val: receiver) || isa<ObjCIvarRefExpr>(Val: receiver))
321 return false;
322
323 // Otherwise, check for variables.
324 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
325 if (!declRef) return true;
326 const VarDecl *var = dyn_cast<VarDecl>(Val: declRef->getDecl());
327 if (!var) return true;
328
329 // All variables have precise lifetime except local variables with
330 // automatic storage duration that aren't specially marked.
331 return (var->hasLocalStorage() &&
332 !var->hasAttr<ObjCPreciseLifetimeAttr>());
333 }
334
335 case ObjCMessageExpr::Class:
336 case ObjCMessageExpr::SuperClass:
337 // It's never necessary for class objects.
338 return false;
339
340 case ObjCMessageExpr::SuperInstance:
341 // We generally assume that 'self' lives throughout a method call.
342 return false;
343 }
344
345 llvm_unreachable("invalid receiver kind");
346}
347
348/// Given an expression of ObjC pointer type, check whether it was
349/// immediately loaded from an ARC __weak l-value.
350static const Expr *findWeakLValue(const Expr *E) {
351 assert(E->getType()->isObjCRetainableType());
352 E = E->IgnoreParens();
353 if (auto CE = dyn_cast<CastExpr>(Val: E)) {
354 if (CE->getCastKind() == CK_LValueToRValue) {
355 if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
356 return CE->getSubExpr();
357 }
358 }
359
360 return nullptr;
361}
362
363/// The ObjC runtime may provide entrypoints that are likely to be faster
364/// than an ordinary message send of the appropriate selector.
365///
366/// The entrypoints are guaranteed to be equivalent to just sending the
367/// corresponding message. If the entrypoint is implemented naively as just a
368/// message send, using it is a trade-off: it sacrifices a few cycles of
369/// overhead to save a small amount of code. However, it's possible for
370/// runtimes to detect and special-case classes that use "standard"
371/// behavior; if that's dynamically a large proportion of all objects, using
372/// the entrypoint will also be faster than using a message send.
373///
374/// If the runtime does support a required entrypoint, then this method will
375/// generate a call and return the resulting value. Otherwise it will return
376/// std::nullopt and the caller can generate a msgSend instead.
377static std::optional<llvm::Value *> tryGenerateSpecializedMessageSend(
378 CodeGenFunction &CGF, QualType ResultType, llvm::Value *Receiver,
379 const CallArgList &Args, Selector Sel, const ObjCMethodDecl *method,
380 bool isClassMessage) {
381 auto &CGM = CGF.CGM;
382 if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls)
383 return std::nullopt;
384
385 auto &Runtime = CGM.getLangOpts().ObjCRuntime;
386 switch (Sel.getMethodFamily()) {
387 case OMF_alloc:
388 if (isClassMessage &&
389 Runtime.shouldUseRuntimeFunctionsForAlloc() &&
390 ResultType->isObjCObjectPointerType()) {
391 // [Foo alloc] -> objc_alloc(Foo) or
392 // [self alloc] -> objc_alloc(self)
393 if (Sel.isUnarySelector() && Sel.getNameForSlot(argIndex: 0) == "alloc")
394 return CGF.EmitObjCAlloc(value: Receiver, returnType: CGF.ConvertType(T: ResultType));
395 // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or
396 // [self allocWithZone:nil] -> objc_allocWithZone(self)
397 if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 &&
398 Args.size() == 1 && Args.front().getType()->isPointerType() &&
399 Sel.getNameForSlot(argIndex: 0) == "allocWithZone") {
400 const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal();
401 if (isa<llvm::ConstantPointerNull>(Val: arg))
402 return CGF.EmitObjCAllocWithZone(value: Receiver,
403 returnType: CGF.ConvertType(T: ResultType));
404 return std::nullopt;
405 }
406 }
407 break;
408
409 case OMF_autorelease:
410 if (ResultType->isObjCObjectPointerType() &&
411 CGM.getLangOpts().getGC() == LangOptions::NonGC &&
412 Runtime.shouldUseARCFunctionsForRetainRelease())
413 return CGF.EmitObjCAutorelease(value: Receiver, returnType: CGF.ConvertType(T: ResultType));
414 break;
415
416 case OMF_retain:
417 if (ResultType->isObjCObjectPointerType() &&
418 CGM.getLangOpts().getGC() == LangOptions::NonGC &&
419 Runtime.shouldUseARCFunctionsForRetainRelease())
420 return CGF.EmitObjCRetainNonBlock(value: Receiver, returnType: CGF.ConvertType(T: ResultType));
421 break;
422
423 case OMF_release:
424 if (ResultType->isVoidType() &&
425 CGM.getLangOpts().getGC() == LangOptions::NonGC &&
426 Runtime.shouldUseARCFunctionsForRetainRelease()) {
427 CGF.EmitObjCRelease(value: Receiver, precise: ARCPreciseLifetime);
428 return nullptr;
429 }
430 break;
431
432 default:
433 break;
434 }
435 return std::nullopt;
436}
437
438CodeGen::RValue CGObjCRuntime::GeneratePossiblySpecializedMessageSend(
439 CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType,
440 Selector Sel, llvm::Value *Receiver, const CallArgList &Args,
441 const ObjCInterfaceDecl *OID, const ObjCMethodDecl *Method,
442 bool isClassMessage) {
443 if (std::optional<llvm::Value *> SpecializedResult =
444 tryGenerateSpecializedMessageSend(CGF, ResultType, Receiver, Args,
445 Sel, method: Method, isClassMessage)) {
446 return RValue::get(V: *SpecializedResult);
447 }
448 return GenerateMessageSend(CGF, ReturnSlot: Return, ResultType, Sel, Receiver, CallArgs: Args, Class: OID,
449 Method);
450}
451
452static void AppendFirstImpliedRuntimeProtocols(
453 const ObjCProtocolDecl *PD,
454 llvm::UniqueVector<const ObjCProtocolDecl *> &PDs) {
455 if (!PD->isNonRuntimeProtocol()) {
456 const auto *Can = PD->getCanonicalDecl();
457 PDs.insert(Entry: Can);
458 return;
459 }
460
461 for (const auto *ParentPD : PD->protocols())
462 AppendFirstImpliedRuntimeProtocols(PD: ParentPD, PDs);
463}
464
465std::vector<const ObjCProtocolDecl *>
466CGObjCRuntime::GetRuntimeProtocolList(ObjCProtocolDecl::protocol_iterator begin,
467 ObjCProtocolDecl::protocol_iterator end) {
468 std::vector<const ObjCProtocolDecl *> RuntimePds;
469 llvm::DenseSet<const ObjCProtocolDecl *> NonRuntimePDs;
470
471 for (; begin != end; ++begin) {
472 const auto *It = *begin;
473 const auto *Can = It->getCanonicalDecl();
474 if (Can->isNonRuntimeProtocol())
475 NonRuntimePDs.insert(V: Can);
476 else
477 RuntimePds.push_back(x: Can);
478 }
479
480 // If there are no non-runtime protocols then we can just stop now.
481 if (NonRuntimePDs.empty())
482 return RuntimePds;
483
484 // Else we have to search through the non-runtime protocol's inheritancy
485 // hierarchy DAG stopping whenever a branch either finds a runtime protocol or
486 // a non-runtime protocol without any parents. These are the "first-implied"
487 // protocols from a non-runtime protocol.
488 llvm::UniqueVector<const ObjCProtocolDecl *> FirstImpliedProtos;
489 for (const auto *PD : NonRuntimePDs)
490 AppendFirstImpliedRuntimeProtocols(PD, PDs&: FirstImpliedProtos);
491
492 // Walk the Runtime list to get all protocols implied via the inclusion of
493 // this protocol, e.g. all protocols it inherits from including itself.
494 llvm::DenseSet<const ObjCProtocolDecl *> AllImpliedProtocols;
495 for (const auto *PD : RuntimePds) {
496 const auto *Can = PD->getCanonicalDecl();
497 AllImpliedProtocols.insert(V: Can);
498 Can->getImpliedProtocols(IPs&: AllImpliedProtocols);
499 }
500
501 // Similar to above, walk the list of first-implied protocols to find the set
502 // all the protocols implied excluding the listed protocols themselves since
503 // they are not yet a part of the `RuntimePds` list.
504 for (const auto *PD : FirstImpliedProtos) {
505 PD->getImpliedProtocols(IPs&: AllImpliedProtocols);
506 }
507
508 // From the first-implied list we have to finish building the final protocol
509 // list. If a protocol in the first-implied list was already implied via some
510 // inheritance path through some other protocols then it would be redundant to
511 // add it here and so we skip over it.
512 for (const auto *PD : FirstImpliedProtos) {
513 if (!AllImpliedProtocols.contains(V: PD)) {
514 RuntimePds.push_back(x: PD);
515 }
516 }
517
518 return RuntimePds;
519}
520
521/// Instead of '[[MyClass alloc] init]', try to generate
522/// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the
523/// caller side, as well as the optimized objc_alloc.
524static std::optional<llvm::Value *>
525tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) {
526 auto &Runtime = CGF.getLangOpts().ObjCRuntime;
527 if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit())
528 return std::nullopt;
529
530 // Match the exact pattern '[[MyClass alloc] init]'.
531 Selector Sel = OME->getSelector();
532 if (OME->getReceiverKind() != ObjCMessageExpr::Instance ||
533 !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() ||
534 Sel.getNameForSlot(argIndex: 0) != "init")
535 return std::nullopt;
536
537 // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]'
538 // with 'cls' a Class.
539 auto *SubOME =
540 dyn_cast<ObjCMessageExpr>(Val: OME->getInstanceReceiver()->IgnoreParenCasts());
541 if (!SubOME)
542 return std::nullopt;
543 Selector SubSel = SubOME->getSelector();
544
545 if (!SubOME->getType()->isObjCObjectPointerType() ||
546 !SubSel.isUnarySelector() || SubSel.getNameForSlot(argIndex: 0) != "alloc")
547 return std::nullopt;
548
549 llvm::Value *Receiver = nullptr;
550 switch (SubOME->getReceiverKind()) {
551 case ObjCMessageExpr::Instance:
552 if (!SubOME->getInstanceReceiver()->getType()->isObjCClassType())
553 return std::nullopt;
554 Receiver = CGF.EmitScalarExpr(E: SubOME->getInstanceReceiver());
555 break;
556
557 case ObjCMessageExpr::Class: {
558 QualType ReceiverType = SubOME->getClassReceiver();
559 const ObjCObjectType *ObjTy = ReceiverType->castAs<ObjCObjectType>();
560 const ObjCInterfaceDecl *ID = ObjTy->getInterface();
561 assert(ID && "null interface should be impossible here");
562 Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, OID: ID);
563 break;
564 }
565 case ObjCMessageExpr::SuperInstance:
566 case ObjCMessageExpr::SuperClass:
567 return std::nullopt;
568 }
569
570 return CGF.EmitObjCAllocInit(value: Receiver, resultType: CGF.ConvertType(OME->getType()));
571}
572
573RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
574 ReturnValueSlot Return) {
575 // Only the lookup mechanism and first two arguments of the method
576 // implementation vary between runtimes. We can get the receiver and
577 // arguments in generic code.
578
579 bool isDelegateInit = E->isDelegateInitCall();
580
581 const ObjCMethodDecl *method = E->getMethodDecl();
582
583 // If the method is -retain, and the receiver's being loaded from
584 // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
585 if (method && E->getReceiverKind() == ObjCMessageExpr::Instance &&
586 method->getMethodFamily() == OMF_retain) {
587 if (auto lvalueExpr = findWeakLValue(E: E->getInstanceReceiver())) {
588 LValue lvalue = EmitLValue(E: lvalueExpr);
589 llvm::Value *result = EmitARCLoadWeakRetained(addr: lvalue.getAddress(CGF&: *this));
590 return AdjustObjCObjectType(*this, E->getType(), RValue::get(V: result));
591 }
592 }
593
594 if (std::optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(CGF&: *this, OME: E))
595 return AdjustObjCObjectType(*this, E->getType(), RValue::get(V: *Val));
596
597 // We don't retain the receiver in delegate init calls, and this is
598 // safe because the receiver value is always loaded from 'self',
599 // which we zero out. We don't want to Block_copy block receivers,
600 // though.
601 bool retainSelf =
602 (!isDelegateInit &&
603 CGM.getLangOpts().ObjCAutoRefCount &&
604 method &&
605 method->hasAttr<NSConsumesSelfAttr>());
606
607 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
608 bool isSuperMessage = false;
609 bool isClassMessage = false;
610 ObjCInterfaceDecl *OID = nullptr;
611 // Find the receiver
612 QualType ReceiverType;
613 llvm::Value *Receiver = nullptr;
614 switch (E->getReceiverKind()) {
615 case ObjCMessageExpr::Instance:
616 ReceiverType = E->getInstanceReceiver()->getType();
617 isClassMessage = ReceiverType->isObjCClassType();
618 if (retainSelf) {
619 TryEmitResult ter = tryEmitARCRetainScalarExpr(CGF&: *this,
620 e: E->getInstanceReceiver());
621 Receiver = ter.getPointer();
622 if (ter.getInt()) retainSelf = false;
623 } else
624 Receiver = EmitScalarExpr(E: E->getInstanceReceiver());
625 break;
626
627 case ObjCMessageExpr::Class: {
628 ReceiverType = E->getClassReceiver();
629 OID = ReceiverType->castAs<ObjCObjectType>()->getInterface();
630 assert(OID && "Invalid Objective-C class message send");
631 Receiver = Runtime.GetClass(CGF&: *this, OID);
632 isClassMessage = true;
633 break;
634 }
635
636 case ObjCMessageExpr::SuperInstance:
637 ReceiverType = E->getSuperType();
638 Receiver = LoadObjCSelf();
639 isSuperMessage = true;
640 break;
641
642 case ObjCMessageExpr::SuperClass:
643 ReceiverType = E->getSuperType();
644 Receiver = LoadObjCSelf();
645 isSuperMessage = true;
646 isClassMessage = true;
647 break;
648 }
649
650 if (retainSelf)
651 Receiver = EmitARCRetainNonBlock(value: Receiver);
652
653 // In ARC, we sometimes want to "extend the lifetime"
654 // (i.e. retain+autorelease) of receivers of returns-inner-pointer
655 // messages.
656 if (getLangOpts().ObjCAutoRefCount && method &&
657 method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
658 shouldExtendReceiverForInnerPointerMessage(E))
659 Receiver = EmitARCRetainAutorelease(type: ReceiverType, value: Receiver);
660
661 QualType ResultType = method ? method->getReturnType() : E->getType();
662
663 CallArgList Args;
664 EmitCallArgs(Args, Prototype: method, ArgRange: E->arguments(), /*AC*/AbstractCallee(method));
665
666 // For delegate init calls in ARC, do an unsafe store of null into
667 // self. This represents the call taking direct ownership of that
668 // value. We have to do this after emitting the other call
669 // arguments because they might also reference self, but we don't
670 // have to worry about any of them modifying self because that would
671 // be an undefined read and write of an object in unordered
672 // expressions.
673 if (isDelegateInit) {
674 assert(getLangOpts().ObjCAutoRefCount &&
675 "delegate init calls should only be marked in ARC");
676
677 // Do an unsafe store of null into self.
678 Address selfAddr =
679 GetAddrOfLocalVar(cast<ObjCMethodDecl>(Val: CurCodeDecl)->getSelfDecl());
680 Builder.CreateStore(Val: getNullForVariable(addr: selfAddr), Addr: selfAddr);
681 }
682
683 RValue result;
684 if (isSuperMessage) {
685 // super is only valid in an Objective-C method
686 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(Val: CurFuncDecl);
687 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
688 result = Runtime.GenerateMessageSendSuper(CGF&: *this, ReturnSlot: Return, ResultType,
689 Sel: E->getSelector(),
690 Class: OMD->getClassInterface(),
691 isCategoryImpl,
692 Self: Receiver,
693 IsClassMessage: isClassMessage,
694 CallArgs: Args,
695 Method: method);
696 } else {
697 // Call runtime methods directly if we can.
698 result = Runtime.GeneratePossiblySpecializedMessageSend(
699 CGF&: *this, Return, ResultType, Sel: E->getSelector(), Receiver, Args, OID,
700 Method: method, isClassMessage);
701 }
702
703 // For delegate init calls in ARC, implicitly store the result of
704 // the call back into self. This takes ownership of the value.
705 if (isDelegateInit) {
706 Address selfAddr =
707 GetAddrOfLocalVar(cast<ObjCMethodDecl>(Val: CurCodeDecl)->getSelfDecl());
708 llvm::Value *newSelf = result.getScalarVal();
709
710 // The delegate return type isn't necessarily a matching type; in
711 // fact, it's quite likely to be 'id'.
712 llvm::Type *selfTy = selfAddr.getElementType();
713 newSelf = Builder.CreateBitCast(V: newSelf, DestTy: selfTy);
714
715 Builder.CreateStore(Val: newSelf, Addr: selfAddr);
716 }
717
718 return AdjustObjCObjectType(*this, E->getType(), result);
719}
720
721namespace {
722struct FinishARCDealloc final : EHScopeStack::Cleanup {
723 void Emit(CodeGenFunction &CGF, Flags flags) override {
724 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(Val: CGF.CurCodeDecl);
725
726 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
727 const ObjCInterfaceDecl *iface = impl->getClassInterface();
728 if (!iface->getSuperClass()) return;
729
730 bool isCategory = isa<ObjCCategoryImplDecl>(Val: impl);
731
732 // Call [super dealloc] if we have a superclass.
733 llvm::Value *self = CGF.LoadObjCSelf();
734
735 CallArgList args;
736 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnSlot: ReturnValueSlot(),
737 ResultType: CGF.getContext().VoidTy,
738 Sel: method->getSelector(),
739 Class: iface,
740 isCategoryImpl: isCategory,
741 Self: self,
742 /*is class msg*/ IsClassMessage: false,
743 CallArgs: args,
744 Method: method);
745 }
746};
747}
748
749/// StartObjCMethod - Begin emission of an ObjCMethod. This generates
750/// the LLVM function and sets the other context used by
751/// CodeGenFunction.
752void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
753 const ObjCContainerDecl *CD) {
754 SourceLocation StartLoc = OMD->getBeginLoc();
755 FunctionArgList args;
756 // Check if we should generate debug info for this method.
757 if (OMD->hasAttr<NoDebugAttr>())
758 DebugInfo = nullptr; // disable debug info indefinitely for this function
759
760 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
761
762 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(MD: OMD);
763 if (OMD->isDirectMethod()) {
764 Fn->setVisibility(llvm::Function::HiddenVisibility);
765 CGM.SetLLVMFunctionAttributes(GD: OMD, Info: FI, F: Fn, /*IsThunk=*/false);
766 CGM.SetLLVMFunctionAttributesForDefinition(OMD, Fn);
767 } else {
768 CGM.SetInternalFunctionAttributes(GD: OMD, F: Fn, FI);
769 }
770
771 args.push_back(OMD->getSelfDecl());
772 if (!OMD->isDirectMethod())
773 args.push_back(OMD->getCmdDecl());
774
775 args.append(in_start: OMD->param_begin(), in_end: OMD->param_end());
776
777 CurGD = OMD;
778 CurEHLocation = OMD->getEndLoc();
779
780 StartFunction(GD: OMD, RetTy: OMD->getReturnType(), Fn, FnInfo: FI, Args: args,
781 Loc: OMD->getLocation(), StartLoc);
782
783 if (OMD->isDirectMethod()) {
784 // This function is a direct call, it has to implement a nil check
785 // on entry.
786 //
787 // TODO: possibly have several entry points to elide the check
788 CGM.getObjCRuntime().GenerateDirectMethodPrologue(CGF&: *this, Fn, OMD, CD);
789 }
790
791 // In ARC, certain methods get an extra cleanup.
792 if (CGM.getLangOpts().ObjCAutoRefCount &&
793 OMD->isInstanceMethod() &&
794 OMD->getSelector().isUnarySelector()) {
795 const IdentifierInfo *ident =
796 OMD->getSelector().getIdentifierInfoForSlot(argIndex: 0);
797 if (ident->isStr(Str: "dealloc"))
798 EHStack.pushCleanup<FinishARCDealloc>(Kind: getARCCleanupKind());
799 }
800}
801
802static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
803 LValue lvalue, QualType type);
804
805/// Generate an Objective-C method. An Objective-C method is a C function with
806/// its pointer, name, and types registered in the class structure.
807void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
808 StartObjCMethod(OMD, OMD->getClassInterface());
809 PGO.assignRegionCounters(GD: GlobalDecl(OMD), Fn: CurFn);
810 assert(isa<CompoundStmt>(OMD->getBody()));
811 incrementProfileCounter(S: OMD->getBody());
812 EmitCompoundStmtWithoutScope(S: *cast<CompoundStmt>(Val: OMD->getBody()));
813 FinishFunction(EndLoc: OMD->getBodyRBrace());
814}
815
816/// emitStructGetterCall - Call the runtime function to load a property
817/// into the return value slot.
818static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
819 bool isAtomic, bool hasStrong) {
820 ASTContext &Context = CGF.getContext();
821
822 llvm::Value *src =
823 CGF.EmitLValueForIvar(ObjectTy: CGF.TypeOfSelfObject(), Base: CGF.LoadObjCSelf(), Ivar: ivar, CVRQualifiers: 0)
824 .getPointer(CGF);
825
826 // objc_copyStruct (ReturnValue, &structIvar,
827 // sizeof (Type of Ivar), isAtomic, false);
828 CallArgList args;
829
830 llvm::Value *dest = CGF.ReturnValue.getPointer();
831 args.add(rvalue: RValue::get(V: dest), type: Context.VoidPtrTy);
832 args.add(rvalue: RValue::get(V: src), type: Context.VoidPtrTy);
833
834 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
835 args.add(rvalue: RValue::get(V: CGF.CGM.getSize(numChars: size)), type: Context.getSizeType());
836 args.add(rvalue: RValue::get(V: CGF.Builder.getInt1(V: isAtomic)), type: Context.BoolTy);
837 args.add(rvalue: RValue::get(V: CGF.Builder.getInt1(V: hasStrong)), type: Context.BoolTy);
838
839 llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
840 CGCallee callee = CGCallee::forDirect(functionPtr: fn);
841 CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(resultType: Context.VoidTy, args),
842 callee, ReturnValueSlot(), args);
843}
844
845/// Determine whether the given architecture supports unaligned atomic
846/// accesses. They don't have to be fast, just faster than a function
847/// call and a mutex.
848static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
849 // FIXME: Allow unaligned atomic load/store on x86. (It is not
850 // currently supported by the backend.)
851 return false;
852}
853
854/// Return the maximum size that permits atomic accesses for the given
855/// architecture.
856static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
857 llvm::Triple::ArchType arch) {
858 // ARM has 8-byte atomic accesses, but it's not clear whether we
859 // want to rely on them here.
860
861 // In the default case, just assume that any size up to a pointer is
862 // fine given adequate alignment.
863 return CharUnits::fromQuantity(Quantity: CGM.PointerSizeInBytes);
864}
865
866namespace {
867 class PropertyImplStrategy {
868 public:
869 enum StrategyKind {
870 /// The 'native' strategy is to use the architecture's provided
871 /// reads and writes.
872 Native,
873
874 /// Use objc_setProperty and objc_getProperty.
875 GetSetProperty,
876
877 /// Use objc_setProperty for the setter, but use expression
878 /// evaluation for the getter.
879 SetPropertyAndExpressionGet,
880
881 /// Use objc_copyStruct.
882 CopyStruct,
883
884 /// The 'expression' strategy is to emit normal assignment or
885 /// lvalue-to-rvalue expressions.
886 Expression
887 };
888
889 StrategyKind getKind() const { return StrategyKind(Kind); }
890
891 bool hasStrongMember() const { return HasStrong; }
892 bool isAtomic() const { return IsAtomic; }
893 bool isCopy() const { return IsCopy; }
894
895 CharUnits getIvarSize() const { return IvarSize; }
896 CharUnits getIvarAlignment() const { return IvarAlignment; }
897
898 PropertyImplStrategy(CodeGenModule &CGM,
899 const ObjCPropertyImplDecl *propImpl);
900
901 private:
902 LLVM_PREFERRED_TYPE(StrategyKind)
903 unsigned Kind : 8;
904 LLVM_PREFERRED_TYPE(bool)
905 unsigned IsAtomic : 1;
906 LLVM_PREFERRED_TYPE(bool)
907 unsigned IsCopy : 1;
908 LLVM_PREFERRED_TYPE(bool)
909 unsigned HasStrong : 1;
910
911 CharUnits IvarSize;
912 CharUnits IvarAlignment;
913 };
914}
915
916/// Pick an implementation strategy for the given property synthesis.
917PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
918 const ObjCPropertyImplDecl *propImpl) {
919 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
920 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
921
922 IsCopy = (setterKind == ObjCPropertyDecl::Copy);
923 IsAtomic = prop->isAtomic();
924 HasStrong = false; // doesn't matter here.
925
926 // Evaluate the ivar's size and alignment.
927 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
928 QualType ivarType = ivar->getType();
929 auto TInfo = CGM.getContext().getTypeInfoInChars(T: ivarType);
930 IvarSize = TInfo.Width;
931 IvarAlignment = TInfo.Align;
932
933 // If we have a copy property, we always have to use setProperty.
934 // If the property is atomic we need to use getProperty, but in
935 // the nonatomic case we can just use expression.
936 if (IsCopy) {
937 Kind = IsAtomic ? GetSetProperty : SetPropertyAndExpressionGet;
938 return;
939 }
940
941 // Handle retain.
942 if (setterKind == ObjCPropertyDecl::Retain) {
943 // In GC-only, there's nothing special that needs to be done.
944 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
945 // fallthrough
946
947 // In ARC, if the property is non-atomic, use expression emission,
948 // which translates to objc_storeStrong. This isn't required, but
949 // it's slightly nicer.
950 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
951 // Using standard expression emission for the setter is only
952 // acceptable if the ivar is __strong, which won't be true if
953 // the property is annotated with __attribute__((NSObject)).
954 // TODO: falling all the way back to objc_setProperty here is
955 // just laziness, though; we could still use objc_storeStrong
956 // if we hacked it right.
957 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
958 Kind = Expression;
959 else
960 Kind = SetPropertyAndExpressionGet;
961 return;
962
963 // Otherwise, we need to at least use setProperty. However, if
964 // the property isn't atomic, we can use normal expression
965 // emission for the getter.
966 } else if (!IsAtomic) {
967 Kind = SetPropertyAndExpressionGet;
968 return;
969
970 // Otherwise, we have to use both setProperty and getProperty.
971 } else {
972 Kind = GetSetProperty;
973 return;
974 }
975 }
976
977 // If we're not atomic, just use expression accesses.
978 if (!IsAtomic) {
979 Kind = Expression;
980 return;
981 }
982
983 // Properties on bitfield ivars need to be emitted using expression
984 // accesses even if they're nominally atomic.
985 if (ivar->isBitField()) {
986 Kind = Expression;
987 return;
988 }
989
990 // GC-qualified or ARC-qualified ivars need to be emitted as
991 // expressions. This actually works out to being atomic anyway,
992 // except for ARC __strong, but that should trigger the above code.
993 if (ivarType.hasNonTrivialObjCLifetime() ||
994 (CGM.getLangOpts().getGC() &&
995 CGM.getContext().getObjCGCAttrKind(Ty: ivarType))) {
996 Kind = Expression;
997 return;
998 }
999
1000 // Compute whether the ivar has strong members.
1001 if (CGM.getLangOpts().getGC())
1002 if (const RecordType *recordType = ivarType->getAs<RecordType>())
1003 HasStrong = recordType->getDecl()->hasObjectMember();
1004
1005 // We can never access structs with object members with a native
1006 // access, because we need to use write barriers. This is what
1007 // objc_copyStruct is for.
1008 if (HasStrong) {
1009 Kind = CopyStruct;
1010 return;
1011 }
1012
1013 // Otherwise, this is target-dependent and based on the size and
1014 // alignment of the ivar.
1015
1016 // If the size of the ivar is not a power of two, give up. We don't
1017 // want to get into the business of doing compare-and-swaps.
1018 if (!IvarSize.isPowerOfTwo()) {
1019 Kind = CopyStruct;
1020 return;
1021 }
1022
1023 llvm::Triple::ArchType arch =
1024 CGM.getTarget().getTriple().getArch();
1025
1026 // Most architectures require memory to fit within a single cache
1027 // line, so the alignment has to be at least the size of the access.
1028 // Otherwise we have to grab a lock.
1029 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
1030 Kind = CopyStruct;
1031 return;
1032 }
1033
1034 // If the ivar's size exceeds the architecture's maximum atomic
1035 // access size, we have to use CopyStruct.
1036 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
1037 Kind = CopyStruct;
1038 return;
1039 }
1040
1041 // Otherwise, we can use native loads and stores.
1042 Kind = Native;
1043}
1044
1045/// Generate an Objective-C property getter function.
1046///
1047/// The given Decl must be an ObjCImplementationDecl. \@synthesize
1048/// is illegal within a category.
1049void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
1050 const ObjCPropertyImplDecl *PID) {
1051 llvm::Constant *AtomicHelperFn =
1052 CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID);
1053 ObjCMethodDecl *OMD = PID->getGetterMethodDecl();
1054 assert(OMD && "Invalid call to generate getter (empty method)");
1055 StartObjCMethod(OMD, CD: IMP->getClassInterface());
1056
1057 generateObjCGetterBody(classImpl: IMP, propImpl: PID, GetterMothodDecl: OMD, AtomicHelperFn);
1058
1059 FinishFunction(EndLoc: OMD->getEndLoc());
1060}
1061
1062static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
1063 const Expr *getter = propImpl->getGetterCXXConstructor();
1064 if (!getter) return true;
1065
1066 // Sema only makes only of these when the ivar has a C++ class type,
1067 // so the form is pretty constrained.
1068
1069 // If the property has a reference type, we might just be binding a
1070 // reference, in which case the result will be a gl-value. We should
1071 // treat this as a non-trivial operation.
1072 if (getter->isGLValue())
1073 return false;
1074
1075 // If we selected a trivial copy-constructor, we're okay.
1076 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(Val: getter))
1077 return (construct->getConstructor()->isTrivial());
1078
1079 // The constructor might require cleanups (in which case it's never
1080 // trivial).
1081 assert(isa<ExprWithCleanups>(getter));
1082 return false;
1083}
1084
1085/// emitCPPObjectAtomicGetterCall - Call the runtime function to
1086/// copy the ivar into the resturn slot.
1087static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
1088 llvm::Value *returnAddr,
1089 ObjCIvarDecl *ivar,
1090 llvm::Constant *AtomicHelperFn) {
1091 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
1092 // AtomicHelperFn);
1093 CallArgList args;
1094
1095 // The 1st argument is the return Slot.
1096 args.add(rvalue: RValue::get(V: returnAddr), type: CGF.getContext().VoidPtrTy);
1097
1098 // The 2nd argument is the address of the ivar.
1099 llvm::Value *ivarAddr =
1100 CGF.EmitLValueForIvar(ObjectTy: CGF.TypeOfSelfObject(), Base: CGF.LoadObjCSelf(), Ivar: ivar, CVRQualifiers: 0)
1101 .getPointer(CGF);
1102 args.add(rvalue: RValue::get(V: ivarAddr), type: CGF.getContext().VoidPtrTy);
1103
1104 // Third argument is the helper function.
1105 args.add(rvalue: RValue::get(V: AtomicHelperFn), type: CGF.getContext().VoidPtrTy);
1106
1107 llvm::FunctionCallee copyCppAtomicObjectFn =
1108 CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
1109 CGCallee callee = CGCallee::forDirect(functionPtr: copyCppAtomicObjectFn);
1110 CGF.EmitCall(
1111 CGF.getTypes().arrangeBuiltinFunctionCall(resultType: CGF.getContext().VoidTy, args),
1112 callee, ReturnValueSlot(), args);
1113}
1114
1115// emitCmdValueForGetterSetterBody - Handle emitting the load necessary for
1116// the `_cmd` selector argument for getter/setter bodies. For direct methods,
1117// this returns an undefined/poison value; this matches behavior prior to `_cmd`
1118// being removed from the direct method ABI as the getter/setter caller would
1119// never load one. For non-direct methods, this emits a load of the implicit
1120// `_cmd` storage.
1121static llvm::Value *emitCmdValueForGetterSetterBody(CodeGenFunction &CGF,
1122 ObjCMethodDecl *MD) {
1123 if (MD->isDirectMethod()) {
1124 // Direct methods do not have a `_cmd` argument. Emit an undefined/poison
1125 // value. This will be passed to objc_getProperty/objc_setProperty, which
1126 // has not appeared bothered by the `_cmd` argument being undefined before.
1127 llvm::Type *selType = CGF.ConvertType(T: CGF.getContext().getObjCSelType());
1128 return llvm::PoisonValue::get(T: selType);
1129 }
1130
1131 return CGF.Builder.CreateLoad(Addr: CGF.GetAddrOfLocalVar(MD->getCmdDecl()), Name: "cmd");
1132}
1133
1134void
1135CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1136 const ObjCPropertyImplDecl *propImpl,
1137 const ObjCMethodDecl *GetterMethodDecl,
1138 llvm::Constant *AtomicHelperFn) {
1139
1140 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1141
1142 if (ivar->getType().isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
1143 if (!AtomicHelperFn) {
1144 LValue Src =
1145 EmitLValueForIvar(ObjectTy: TypeOfSelfObject(), Base: LoadObjCSelf(), Ivar: ivar, CVRQualifiers: 0);
1146 LValue Dst = MakeAddrLValue(ReturnValue, ivar->getType());
1147 callCStructCopyConstructor(Dst, Src);
1148 } else {
1149 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1150 emitCPPObjectAtomicGetterCall(CGF&: *this, returnAddr: ReturnValue.getPointer(), ivar,
1151 AtomicHelperFn);
1152 }
1153 return;
1154 }
1155
1156 // If there's a non-trivial 'get' expression, we just have to emit that.
1157 if (!hasTrivialGetExpr(propImpl)) {
1158 if (!AtomicHelperFn) {
1159 auto *ret = ReturnStmt::Create(Ctx: getContext(), RL: SourceLocation(),
1160 E: propImpl->getGetterCXXConstructor(),
1161 /* NRVOCandidate=*/nullptr);
1162 EmitReturnStmt(S: *ret);
1163 }
1164 else {
1165 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1166 emitCPPObjectAtomicGetterCall(CGF&: *this, returnAddr: ReturnValue.getPointer(),
1167 ivar, AtomicHelperFn);
1168 }
1169 return;
1170 }
1171
1172 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1173 QualType propType = prop->getType();
1174 ObjCMethodDecl *getterMethod = propImpl->getGetterMethodDecl();
1175
1176 // Pick an implementation strategy.
1177 PropertyImplStrategy strategy(CGM, propImpl);
1178 switch (strategy.getKind()) {
1179 case PropertyImplStrategy::Native: {
1180 // We don't need to do anything for a zero-size struct.
1181 if (strategy.getIvarSize().isZero())
1182 return;
1183
1184 LValue LV = EmitLValueForIvar(ObjectTy: TypeOfSelfObject(), Base: LoadObjCSelf(), Ivar: ivar, CVRQualifiers: 0);
1185
1186 // Currently, all atomic accesses have to be through integer
1187 // types, so there's no point in trying to pick a prettier type.
1188 uint64_t ivarSize = getContext().toBits(CharSize: strategy.getIvarSize());
1189 llvm::Type *bitcastType = llvm::Type::getIntNTy(C&: getLLVMContext(), N: ivarSize);
1190
1191 // Perform an atomic load. This does not impose ordering constraints.
1192 Address ivarAddr = LV.getAddress(CGF&: *this);
1193 ivarAddr = ivarAddr.withElementType(ElemTy: bitcastType);
1194 llvm::LoadInst *load = Builder.CreateLoad(Addr: ivarAddr, Name: "load");
1195 load->setAtomic(Ordering: llvm::AtomicOrdering::Unordered);
1196
1197 // Store that value into the return address. Doing this with a
1198 // bitcast is likely to produce some pretty ugly IR, but it's not
1199 // the *most* terrible thing in the world.
1200 llvm::Type *retTy = ConvertType(T: getterMethod->getReturnType());
1201 uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(Ty: retTy);
1202 llvm::Value *ivarVal = load;
1203 if (ivarSize > retTySize) {
1204 bitcastType = llvm::Type::getIntNTy(C&: getLLVMContext(), N: retTySize);
1205 ivarVal = Builder.CreateTrunc(V: load, DestTy: bitcastType);
1206 }
1207 Builder.CreateStore(Val: ivarVal, Addr: ReturnValue.withElementType(ElemTy: bitcastType));
1208
1209 // Make sure we don't do an autorelease.
1210 AutoreleaseResult = false;
1211 return;
1212 }
1213
1214 case PropertyImplStrategy::GetSetProperty: {
1215 llvm::FunctionCallee getPropertyFn =
1216 CGM.getObjCRuntime().GetPropertyGetFunction();
1217 if (!getPropertyFn) {
1218 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
1219 return;
1220 }
1221 CGCallee callee = CGCallee::forDirect(functionPtr: getPropertyFn);
1222
1223 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
1224 // FIXME: Can't this be simpler? This might even be worse than the
1225 // corresponding gcc code.
1226 llvm::Value *cmd = emitCmdValueForGetterSetterBody(CGF&: *this, MD: getterMethod);
1227 llvm::Value *self = Builder.CreateBitCast(V: LoadObjCSelf(), DestTy: VoidPtrTy);
1228 llvm::Value *ivarOffset =
1229 EmitIvarOffsetAsPointerDiff(Interface: classImpl->getClassInterface(), Ivar: ivar);
1230
1231 CallArgList args;
1232 args.add(rvalue: RValue::get(V: self), type: getContext().getObjCIdType());
1233 args.add(rvalue: RValue::get(V: cmd), type: getContext().getObjCSelType());
1234 args.add(rvalue: RValue::get(V: ivarOffset), type: getContext().getPointerDiffType());
1235 args.add(rvalue: RValue::get(V: Builder.getInt1(V: strategy.isAtomic())),
1236 type: getContext().BoolTy);
1237
1238 // FIXME: We shouldn't need to get the function info here, the
1239 // runtime already should have computed it to build the function.
1240 llvm::CallBase *CallInstruction;
1241 RValue RV = EmitCall(CallInfo: getTypes().arrangeBuiltinFunctionCall(
1242 resultType: getContext().getObjCIdType(), args),
1243 Callee: callee, ReturnValue: ReturnValueSlot(), Args: args, callOrInvoke: &CallInstruction);
1244 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(Val: CallInstruction))
1245 call->setTailCall();
1246
1247 // We need to fix the type here. Ivars with copy & retain are
1248 // always objects so we don't need to worry about complex or
1249 // aggregates.
1250 RV = RValue::get(V: Builder.CreateBitCast(
1251 V: RV.getScalarVal(),
1252 DestTy: getTypes().ConvertType(T: getterMethod->getReturnType())));
1253
1254 EmitReturnOfRValue(RV, Ty: propType);
1255
1256 // objc_getProperty does an autorelease, so we should suppress ours.
1257 AutoreleaseResult = false;
1258
1259 return;
1260 }
1261
1262 case PropertyImplStrategy::CopyStruct:
1263 emitStructGetterCall(CGF&: *this, ivar, isAtomic: strategy.isAtomic(),
1264 hasStrong: strategy.hasStrongMember());
1265 return;
1266
1267 case PropertyImplStrategy::Expression:
1268 case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1269 LValue LV = EmitLValueForIvar(ObjectTy: TypeOfSelfObject(), Base: LoadObjCSelf(), Ivar: ivar, CVRQualifiers: 0);
1270
1271 QualType ivarType = ivar->getType();
1272 switch (getEvaluationKind(T: ivarType)) {
1273 case TEK_Complex: {
1274 ComplexPairTy pair = EmitLoadOfComplex(src: LV, loc: SourceLocation());
1275 EmitStoreOfComplex(V: pair, dest: MakeAddrLValue(Addr: ReturnValue, T: ivarType),
1276 /*init*/ isInit: true);
1277 return;
1278 }
1279 case TEK_Aggregate: {
1280 // The return value slot is guaranteed to not be aliased, but
1281 // that's not necessarily the same as "on the stack", so
1282 // we still potentially need objc_memmove_collectable.
1283 EmitAggregateCopy(/* Dest= */ MakeAddrLValue(Addr: ReturnValue, T: ivarType),
1284 /* Src= */ LV, EltTy: ivarType, MayOverlap: getOverlapForReturnValue());
1285 return;
1286 }
1287 case TEK_Scalar: {
1288 llvm::Value *value;
1289 if (propType->isReferenceType()) {
1290 value = LV.getAddress(CGF&: *this).getPointer();
1291 } else {
1292 // We want to load and autoreleaseReturnValue ARC __weak ivars.
1293 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1294 if (getLangOpts().ObjCAutoRefCount) {
1295 value = emitARCRetainLoadOfScalar(CGF&: *this, lvalue: LV, type: ivarType);
1296 } else {
1297 value = EmitARCLoadWeak(addr: LV.getAddress(CGF&: *this));
1298 }
1299
1300 // Otherwise we want to do a simple load, suppressing the
1301 // final autorelease.
1302 } else {
1303 value = EmitLoadOfLValue(V: LV, Loc: SourceLocation()).getScalarVal();
1304 AutoreleaseResult = false;
1305 }
1306
1307 value = Builder.CreateBitCast(
1308 V: value, DestTy: ConvertType(T: GetterMethodDecl->getReturnType()));
1309 }
1310
1311 EmitReturnOfRValue(RV: RValue::get(V: value), Ty: propType);
1312 return;
1313 }
1314 }
1315 llvm_unreachable("bad evaluation kind");
1316 }
1317
1318 }
1319 llvm_unreachable("bad @property implementation strategy!");
1320}
1321
1322/// emitStructSetterCall - Call the runtime function to store the value
1323/// from the first formal parameter into the given ivar.
1324static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
1325 ObjCIvarDecl *ivar) {
1326 // objc_copyStruct (&structIvar, &Arg,
1327 // sizeof (struct something), true, false);
1328 CallArgList args;
1329
1330 // The first argument is the address of the ivar.
1331 llvm::Value *ivarAddr =
1332 CGF.EmitLValueForIvar(ObjectTy: CGF.TypeOfSelfObject(), Base: CGF.LoadObjCSelf(), Ivar: ivar, CVRQualifiers: 0)
1333 .getPointer(CGF);
1334 ivarAddr = CGF.Builder.CreateBitCast(V: ivarAddr, DestTy: CGF.Int8PtrTy);
1335 args.add(rvalue: RValue::get(V: ivarAddr), type: CGF.getContext().VoidPtrTy);
1336
1337 // The second argument is the address of the parameter variable.
1338 ParmVarDecl *argVar = *OMD->param_begin();
1339 DeclRefExpr argRef(CGF.getContext(), argVar, false,
1340 argVar->getType().getNonReferenceType(), VK_LValue,
1341 SourceLocation());
1342 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1343 args.add(rvalue: RValue::get(V: argAddr), type: CGF.getContext().VoidPtrTy);
1344
1345 // The third argument is the sizeof the type.
1346 llvm::Value *size =
1347 CGF.CGM.getSize(numChars: CGF.getContext().getTypeSizeInChars(ivar->getType()));
1348 args.add(rvalue: RValue::get(V: size), type: CGF.getContext().getSizeType());
1349
1350 // The fourth argument is the 'isAtomic' flag.
1351 args.add(rvalue: RValue::get(V: CGF.Builder.getTrue()), type: CGF.getContext().BoolTy);
1352
1353 // The fifth argument is the 'hasStrong' flag.
1354 // FIXME: should this really always be false?
1355 args.add(rvalue: RValue::get(V: CGF.Builder.getFalse()), type: CGF.getContext().BoolTy);
1356
1357 llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1358 CGCallee callee = CGCallee::forDirect(functionPtr: fn);
1359 CGF.EmitCall(
1360 CGF.getTypes().arrangeBuiltinFunctionCall(resultType: CGF.getContext().VoidTy, args),
1361 callee, ReturnValueSlot(), args);
1362}
1363
1364/// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1365/// the value from the first formal parameter into the given ivar, using
1366/// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1367static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1368 ObjCMethodDecl *OMD,
1369 ObjCIvarDecl *ivar,
1370 llvm::Constant *AtomicHelperFn) {
1371 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1372 // AtomicHelperFn);
1373 CallArgList args;
1374
1375 // The first argument is the address of the ivar.
1376 llvm::Value *ivarAddr =
1377 CGF.EmitLValueForIvar(ObjectTy: CGF.TypeOfSelfObject(), Base: CGF.LoadObjCSelf(), Ivar: ivar, CVRQualifiers: 0)
1378 .getPointer(CGF);
1379 args.add(rvalue: RValue::get(V: ivarAddr), type: CGF.getContext().VoidPtrTy);
1380
1381 // The second argument is the address of the parameter variable.
1382 ParmVarDecl *argVar = *OMD->param_begin();
1383 DeclRefExpr argRef(CGF.getContext(), argVar, false,
1384 argVar->getType().getNonReferenceType(), VK_LValue,
1385 SourceLocation());
1386 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1387 args.add(rvalue: RValue::get(V: argAddr), type: CGF.getContext().VoidPtrTy);
1388
1389 // Third argument is the helper function.
1390 args.add(rvalue: RValue::get(V: AtomicHelperFn), type: CGF.getContext().VoidPtrTy);
1391
1392 llvm::FunctionCallee fn =
1393 CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1394 CGCallee callee = CGCallee::forDirect(functionPtr: fn);
1395 CGF.EmitCall(
1396 CGF.getTypes().arrangeBuiltinFunctionCall(resultType: CGF.getContext().VoidTy, args),
1397 callee, ReturnValueSlot(), args);
1398}
1399
1400
1401static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1402 Expr *setter = PID->getSetterCXXAssignment();
1403 if (!setter) return true;
1404
1405 // Sema only makes only of these when the ivar has a C++ class type,
1406 // so the form is pretty constrained.
1407
1408 // An operator call is trivial if the function it calls is trivial.
1409 // This also implies that there's nothing non-trivial going on with
1410 // the arguments, because operator= can only be trivial if it's a
1411 // synthesized assignment operator and therefore both parameters are
1412 // references.
1413 if (CallExpr *call = dyn_cast<CallExpr>(Val: setter)) {
1414 if (const FunctionDecl *callee
1415 = dyn_cast_or_null<FunctionDecl>(Val: call->getCalleeDecl()))
1416 if (callee->isTrivial())
1417 return true;
1418 return false;
1419 }
1420
1421 assert(isa<ExprWithCleanups>(setter));
1422 return false;
1423}
1424
1425static bool UseOptimizedSetter(CodeGenModule &CGM) {
1426 if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1427 return false;
1428 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1429}
1430
1431void
1432CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1433 const ObjCPropertyImplDecl *propImpl,
1434 llvm::Constant *AtomicHelperFn) {
1435 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1436 ObjCMethodDecl *setterMethod = propImpl->getSetterMethodDecl();
1437
1438 if (ivar->getType().isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
1439 ParmVarDecl *PVD = *setterMethod->param_begin();
1440 if (!AtomicHelperFn) {
1441 // Call the move assignment operator instead of calling the copy
1442 // assignment operator and destructor.
1443 LValue Dst = EmitLValueForIvar(ObjectTy: TypeOfSelfObject(), Base: LoadObjCSelf(), Ivar: ivar,
1444 /*quals*/ CVRQualifiers: 0);
1445 LValue Src = MakeAddrLValue(GetAddrOfLocalVar(PVD), ivar->getType());
1446 callCStructMoveAssignmentOperator(Dst, Src);
1447 } else {
1448 // If atomic, assignment is called via a locking api.
1449 emitCPPObjectAtomicSetterCall(CGF&: *this, OMD: setterMethod, ivar, AtomicHelperFn);
1450 }
1451 // Decativate the destructor for the setter parameter.
1452 DeactivateCleanupBlock(Cleanup: CalleeDestructedParamCleanups[PVD], DominatingIP: AllocaInsertPt);
1453 return;
1454 }
1455
1456 // Just use the setter expression if Sema gave us one and it's
1457 // non-trivial.
1458 if (!hasTrivialSetExpr(PID: propImpl)) {
1459 if (!AtomicHelperFn)
1460 // If non-atomic, assignment is called directly.
1461 EmitStmt(propImpl->getSetterCXXAssignment());
1462 else
1463 // If atomic, assignment is called via a locking api.
1464 emitCPPObjectAtomicSetterCall(CGF&: *this, OMD: setterMethod, ivar,
1465 AtomicHelperFn);
1466 return;
1467 }
1468
1469 PropertyImplStrategy strategy(CGM, propImpl);
1470 switch (strategy.getKind()) {
1471 case PropertyImplStrategy::Native: {
1472 // We don't need to do anything for a zero-size struct.
1473 if (strategy.getIvarSize().isZero())
1474 return;
1475
1476 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1477
1478 LValue ivarLValue =
1479 EmitLValueForIvar(ObjectTy: TypeOfSelfObject(), Base: LoadObjCSelf(), Ivar: ivar, /*quals*/ CVRQualifiers: 0);
1480 Address ivarAddr = ivarLValue.getAddress(CGF&: *this);
1481
1482 // Currently, all atomic accesses have to be through integer
1483 // types, so there's no point in trying to pick a prettier type.
1484 llvm::Type *castType = llvm::Type::getIntNTy(
1485 C&: getLLVMContext(), N: getContext().toBits(CharSize: strategy.getIvarSize()));
1486
1487 // Cast both arguments to the chosen operation type.
1488 argAddr = argAddr.withElementType(ElemTy: castType);
1489 ivarAddr = ivarAddr.withElementType(ElemTy: castType);
1490
1491 llvm::Value *load = Builder.CreateLoad(Addr: argAddr);
1492
1493 // Perform an atomic store. There are no memory ordering requirements.
1494 llvm::StoreInst *store = Builder.CreateStore(Val: load, Addr: ivarAddr);
1495 store->setAtomic(Ordering: llvm::AtomicOrdering::Unordered);
1496 return;
1497 }
1498
1499 case PropertyImplStrategy::GetSetProperty:
1500 case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1501
1502 llvm::FunctionCallee setOptimizedPropertyFn = nullptr;
1503 llvm::FunctionCallee setPropertyFn = nullptr;
1504 if (UseOptimizedSetter(CGM)) {
1505 // 10.8 and iOS 6.0 code and GC is off
1506 setOptimizedPropertyFn =
1507 CGM.getObjCRuntime().GetOptimizedPropertySetFunction(
1508 atomic: strategy.isAtomic(), copy: strategy.isCopy());
1509 if (!setOptimizedPropertyFn) {
1510 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1511 return;
1512 }
1513 }
1514 else {
1515 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1516 if (!setPropertyFn) {
1517 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1518 return;
1519 }
1520 }
1521
1522 // Emit objc_setProperty((id) self, _cmd, offset, arg,
1523 // <is-atomic>, <is-copy>).
1524 llvm::Value *cmd = emitCmdValueForGetterSetterBody(CGF&: *this, MD: setterMethod);
1525 llvm::Value *self =
1526 Builder.CreateBitCast(V: LoadObjCSelf(), DestTy: VoidPtrTy);
1527 llvm::Value *ivarOffset =
1528 EmitIvarOffsetAsPointerDiff(Interface: classImpl->getClassInterface(), Ivar: ivar);
1529 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1530 llvm::Value *arg = Builder.CreateLoad(Addr: argAddr, Name: "arg");
1531 arg = Builder.CreateBitCast(V: arg, DestTy: VoidPtrTy);
1532
1533 CallArgList args;
1534 args.add(rvalue: RValue::get(V: self), type: getContext().getObjCIdType());
1535 args.add(rvalue: RValue::get(V: cmd), type: getContext().getObjCSelType());
1536 if (setOptimizedPropertyFn) {
1537 args.add(rvalue: RValue::get(V: arg), type: getContext().getObjCIdType());
1538 args.add(rvalue: RValue::get(V: ivarOffset), type: getContext().getPointerDiffType());
1539 CGCallee callee = CGCallee::forDirect(functionPtr: setOptimizedPropertyFn);
1540 EmitCall(getTypes().arrangeBuiltinFunctionCall(resultType: getContext().VoidTy, args),
1541 callee, ReturnValueSlot(), args);
1542 } else {
1543 args.add(rvalue: RValue::get(V: ivarOffset), type: getContext().getPointerDiffType());
1544 args.add(rvalue: RValue::get(V: arg), type: getContext().getObjCIdType());
1545 args.add(rvalue: RValue::get(V: Builder.getInt1(V: strategy.isAtomic())),
1546 type: getContext().BoolTy);
1547 args.add(rvalue: RValue::get(V: Builder.getInt1(V: strategy.isCopy())),
1548 type: getContext().BoolTy);
1549 // FIXME: We shouldn't need to get the function info here, the runtime
1550 // already should have computed it to build the function.
1551 CGCallee callee = CGCallee::forDirect(functionPtr: setPropertyFn);
1552 EmitCall(getTypes().arrangeBuiltinFunctionCall(resultType: getContext().VoidTy, args),
1553 callee, ReturnValueSlot(), args);
1554 }
1555
1556 return;
1557 }
1558
1559 case PropertyImplStrategy::CopyStruct:
1560 emitStructSetterCall(CGF&: *this, OMD: setterMethod, ivar);
1561 return;
1562
1563 case PropertyImplStrategy::Expression:
1564 break;
1565 }
1566
1567 // Otherwise, fake up some ASTs and emit a normal assignment.
1568 ValueDecl *selfDecl = setterMethod->getSelfDecl();
1569 DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(),
1570 VK_LValue, SourceLocation());
1571 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, selfDecl->getType(),
1572 CK_LValueToRValue, &self, VK_PRValue,
1573 FPOptionsOverride());
1574 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1575 SourceLocation(), SourceLocation(),
1576 &selfLoad, true, true);
1577
1578 ParmVarDecl *argDecl = *setterMethod->param_begin();
1579 QualType argType = argDecl->getType().getNonReferenceType();
1580 DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue,
1581 SourceLocation());
1582 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1583 argType.getUnqualifiedType(), CK_LValueToRValue,
1584 &arg, VK_PRValue, FPOptionsOverride());
1585
1586 // The property type can differ from the ivar type in some situations with
1587 // Objective-C pointer types, we can always bit cast the RHS in these cases.
1588 // The following absurdity is just to ensure well-formed IR.
1589 CastKind argCK = CK_NoOp;
1590 if (ivarRef.getType()->isObjCObjectPointerType()) {
1591 if (argLoad.getType()->isObjCObjectPointerType())
1592 argCK = CK_BitCast;
1593 else if (argLoad.getType()->isBlockPointerType())
1594 argCK = CK_BlockPointerToObjCPointerCast;
1595 else
1596 argCK = CK_CPointerToObjCPointerCast;
1597 } else if (ivarRef.getType()->isBlockPointerType()) {
1598 if (argLoad.getType()->isBlockPointerType())
1599 argCK = CK_BitCast;
1600 else
1601 argCK = CK_AnyPointerToBlockPointerCast;
1602 } else if (ivarRef.getType()->isPointerType()) {
1603 argCK = CK_BitCast;
1604 } else if (argLoad.getType()->isAtomicType() &&
1605 !ivarRef.getType()->isAtomicType()) {
1606 argCK = CK_AtomicToNonAtomic;
1607 } else if (!argLoad.getType()->isAtomicType() &&
1608 ivarRef.getType()->isAtomicType()) {
1609 argCK = CK_NonAtomicToAtomic;
1610 }
1611 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, ivarRef.getType(), argCK,
1612 &argLoad, VK_PRValue, FPOptionsOverride());
1613 Expr *finalArg = &argLoad;
1614 if (!getContext().hasSameUnqualifiedType(T1: ivarRef.getType(),
1615 T2: argLoad.getType()))
1616 finalArg = &argCast;
1617
1618 BinaryOperator *assign = BinaryOperator::Create(
1619 C: getContext(), lhs: &ivarRef, rhs: finalArg, opc: BO_Assign, ResTy: ivarRef.getType(),
1620 VK: VK_PRValue, OK: OK_Ordinary, opLoc: SourceLocation(), FPFeatures: FPOptionsOverride());
1621 EmitStmt(assign);
1622}
1623
1624/// Generate an Objective-C property setter function.
1625///
1626/// The given Decl must be an ObjCImplementationDecl. \@synthesize
1627/// is illegal within a category.
1628void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1629 const ObjCPropertyImplDecl *PID) {
1630 llvm::Constant *AtomicHelperFn =
1631 CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID);
1632 ObjCMethodDecl *OMD = PID->getSetterMethodDecl();
1633 assert(OMD && "Invalid call to generate setter (empty method)");
1634 StartObjCMethod(OMD, CD: IMP->getClassInterface());
1635
1636 generateObjCSetterBody(classImpl: IMP, propImpl: PID, AtomicHelperFn);
1637
1638 FinishFunction(EndLoc: OMD->getEndLoc());
1639}
1640
1641namespace {
1642 struct DestroyIvar final : EHScopeStack::Cleanup {
1643 private:
1644 llvm::Value *addr;
1645 const ObjCIvarDecl *ivar;
1646 CodeGenFunction::Destroyer *destroyer;
1647 bool useEHCleanupForArray;
1648 public:
1649 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1650 CodeGenFunction::Destroyer *destroyer,
1651 bool useEHCleanupForArray)
1652 : addr(addr), ivar(ivar), destroyer(destroyer),
1653 useEHCleanupForArray(useEHCleanupForArray) {}
1654
1655 void Emit(CodeGenFunction &CGF, Flags flags) override {
1656 LValue lvalue
1657 = CGF.EmitLValueForIvar(ObjectTy: CGF.TypeOfSelfObject(), Base: addr, Ivar: ivar, /*CVR*/ CVRQualifiers: 0);
1658 CGF.emitDestroy(addr: lvalue.getAddress(CGF), type: ivar->getType(), destroyer,
1659 useEHCleanupForArray: flags.isForNormalCleanup() && useEHCleanupForArray);
1660 }
1661 };
1662}
1663
1664/// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1665static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1666 Address addr,
1667 QualType type) {
1668 llvm::Value *null = getNullForVariable(addr);
1669 CGF.EmitARCStoreStrongCall(addr, value: null, /*ignored*/ resultIgnored: true);
1670}
1671
1672static void emitCXXDestructMethod(CodeGenFunction &CGF,
1673 ObjCImplementationDecl *impl) {
1674 CodeGenFunction::RunCleanupsScope scope(CGF);
1675
1676 llvm::Value *self = CGF.LoadObjCSelf();
1677
1678 const ObjCInterfaceDecl *iface = impl->getClassInterface();
1679 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1680 ivar; ivar = ivar->getNextIvar()) {
1681 QualType type = ivar->getType();
1682
1683 // Check whether the ivar is a destructible type.
1684 QualType::DestructionKind dtorKind = type.isDestructedType();
1685 if (!dtorKind) continue;
1686
1687 CodeGenFunction::Destroyer *destroyer = nullptr;
1688
1689 // Use a call to objc_storeStrong to destroy strong ivars, for the
1690 // general benefit of the tools.
1691 if (dtorKind == QualType::DK_objc_strong_lifetime) {
1692 destroyer = destroyARCStrongWithStore;
1693
1694 // Otherwise use the default for the destruction kind.
1695 } else {
1696 destroyer = CGF.getDestroyer(destructionKind: dtorKind);
1697 }
1698
1699 CleanupKind cleanupKind = CGF.getCleanupKind(kind: dtorKind);
1700
1701 CGF.EHStack.pushCleanup<DestroyIvar>(Kind: cleanupKind, A: self, A: ivar, A: destroyer,
1702 A: cleanupKind & EHCleanup);
1703 }
1704
1705 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1706}
1707
1708void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1709 ObjCMethodDecl *MD,
1710 bool ctor) {
1711 MD->createImplicitParams(Context&: CGM.getContext(), ID: IMP->getClassInterface());
1712 StartObjCMethod(OMD: MD, CD: IMP->getClassInterface());
1713
1714 // Emit .cxx_construct.
1715 if (ctor) {
1716 // Suppress the final autorelease in ARC.
1717 AutoreleaseResult = false;
1718
1719 for (const auto *IvarInit : IMP->inits()) {
1720 FieldDecl *Field = IvarInit->getAnyMember();
1721 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Val: Field);
1722 LValue LV = EmitLValueForIvar(ObjectTy: TypeOfSelfObject(),
1723 Base: LoadObjCSelf(), Ivar, CVRQualifiers: 0);
1724 EmitAggExpr(E: IvarInit->getInit(),
1725 AS: AggValueSlot::forLValue(LV, CGF&: *this, isDestructed: AggValueSlot::IsDestructed,
1726 needsGC: AggValueSlot::DoesNotNeedGCBarriers,
1727 isAliased: AggValueSlot::IsNotAliased,
1728 mayOverlap: AggValueSlot::DoesNotOverlap));
1729 }
1730 // constructor returns 'self'.
1731 CodeGenTypes &Types = CGM.getTypes();
1732 QualType IdTy(CGM.getContext().getObjCIdType());
1733 llvm::Value *SelfAsId =
1734 Builder.CreateBitCast(V: LoadObjCSelf(), DestTy: Types.ConvertType(T: IdTy));
1735 EmitReturnOfRValue(RV: RValue::get(V: SelfAsId), Ty: IdTy);
1736
1737 // Emit .cxx_destruct.
1738 } else {
1739 emitCXXDestructMethod(CGF&: *this, impl: IMP);
1740 }
1741 FinishFunction();
1742}
1743
1744llvm::Value *CodeGenFunction::LoadObjCSelf() {
1745 VarDecl *Self = cast<ObjCMethodDecl>(Val: CurFuncDecl)->getSelfDecl();
1746 DeclRefExpr DRE(getContext(), Self,
1747 /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1748 Self->getType(), VK_LValue, SourceLocation());
1749 return EmitLoadOfScalar(lvalue: EmitDeclRefLValue(E: &DRE), Loc: SourceLocation());
1750}
1751
1752QualType CodeGenFunction::TypeOfSelfObject() {
1753 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(Val: CurFuncDecl);
1754 ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1755 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1756 getContext().getCanonicalType(selfDecl->getType()));
1757 return PTy->getPointeeType();
1758}
1759
1760void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1761 llvm::FunctionCallee EnumerationMutationFnPtr =
1762 CGM.getObjCRuntime().EnumerationMutationFunction();
1763 if (!EnumerationMutationFnPtr) {
1764 CGM.ErrorUnsupported(S: &S, Type: "Obj-C fast enumeration for this runtime");
1765 return;
1766 }
1767 CGCallee EnumerationMutationFn =
1768 CGCallee::forDirect(functionPtr: EnumerationMutationFnPtr);
1769
1770 CGDebugInfo *DI = getDebugInfo();
1771 if (DI)
1772 DI->EmitLexicalBlockStart(Builder, Loc: S.getSourceRange().getBegin());
1773
1774 RunCleanupsScope ForScope(*this);
1775
1776 // The local variable comes into scope immediately.
1777 AutoVarEmission variable = AutoVarEmission::invalid();
1778 if (const DeclStmt *SD = dyn_cast<DeclStmt>(Val: S.getElement()))
1779 variable = EmitAutoVarAlloca(var: *cast<VarDecl>(Val: SD->getSingleDecl()));
1780
1781 JumpDest LoopEnd = getJumpDestInCurrentScope(Name: "forcoll.end");
1782
1783 // Fast enumeration state.
1784 QualType StateTy = CGM.getObjCFastEnumerationStateType();
1785 Address StatePtr = CreateMemTemp(T: StateTy, Name: "state.ptr");
1786 EmitNullInitialization(DestPtr: StatePtr, Ty: StateTy);
1787
1788 // Number of elements in the items array.
1789 static const unsigned NumItems = 16;
1790
1791 // Fetch the countByEnumeratingWithState:objects:count: selector.
1792 IdentifierInfo *II[] = {
1793 &CGM.getContext().Idents.get(Name: "countByEnumeratingWithState"),
1794 &CGM.getContext().Idents.get(Name: "objects"),
1795 &CGM.getContext().Idents.get(Name: "count")
1796 };
1797 Selector FastEnumSel =
1798 CGM.getContext().Selectors.getSelector(NumArgs: std::size(II), IIV: &II[0]);
1799
1800 QualType ItemsTy = getContext().getConstantArrayType(
1801 EltTy: getContext().getObjCIdType(), ArySize: llvm::APInt(32, NumItems), SizeExpr: nullptr,
1802 ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0);
1803 Address ItemsPtr = CreateMemTemp(T: ItemsTy, Name: "items.ptr");
1804
1805 // Emit the collection pointer. In ARC, we do a retain.
1806 llvm::Value *Collection;
1807 if (getLangOpts().ObjCAutoRefCount) {
1808 Collection = EmitARCRetainScalarExpr(expr: S.getCollection());
1809
1810 // Enter a cleanup to do the release.
1811 EmitObjCConsumeObject(T: S.getCollection()->getType(), Ptr: Collection);
1812 } else {
1813 Collection = EmitScalarExpr(E: S.getCollection());
1814 }
1815
1816 // The 'continue' label needs to appear within the cleanup for the
1817 // collection object.
1818 JumpDest AfterBody = getJumpDestInCurrentScope(Name: "forcoll.next");
1819
1820 // Send it our message:
1821 CallArgList Args;
1822
1823 // The first argument is a temporary of the enumeration-state type.
1824 Args.add(rvalue: RValue::get(V: StatePtr.getPointer()),
1825 type: getContext().getPointerType(T: StateTy));
1826
1827 // The second argument is a temporary array with space for NumItems
1828 // pointers. We'll actually be loading elements from the array
1829 // pointer written into the control state; this buffer is so that
1830 // collections that *aren't* backed by arrays can still queue up
1831 // batches of elements.
1832 Args.add(rvalue: RValue::get(V: ItemsPtr.getPointer()),
1833 type: getContext().getPointerType(T: ItemsTy));
1834
1835 // The third argument is the capacity of that temporary array.
1836 llvm::Type *NSUIntegerTy = ConvertType(T: getContext().getNSUIntegerType());
1837 llvm::Constant *Count = llvm::ConstantInt::get(Ty: NSUIntegerTy, V: NumItems);
1838 Args.add(rvalue: RValue::get(V: Count), type: getContext().getNSUIntegerType());
1839
1840 // Start the enumeration.
1841 RValue CountRV =
1842 CGM.getObjCRuntime().GenerateMessageSend(CGF&: *this, ReturnSlot: ReturnValueSlot(),
1843 ResultType: getContext().getNSUIntegerType(),
1844 Sel: FastEnumSel, Receiver: Collection, CallArgs: Args);
1845
1846 // The initial number of objects that were returned in the buffer.
1847 llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1848
1849 llvm::BasicBlock *EmptyBB = createBasicBlock(name: "forcoll.empty");
1850 llvm::BasicBlock *LoopInitBB = createBasicBlock(name: "forcoll.loopinit");
1851
1852 llvm::Value *zero = llvm::Constant::getNullValue(Ty: NSUIntegerTy);
1853
1854 // If the limit pointer was zero to begin with, the collection is
1855 // empty; skip all this. Set the branch weight assuming this has the same
1856 // probability of exiting the loop as any other loop exit.
1857 uint64_t EntryCount = getCurrentProfileCount();
1858 Builder.CreateCondBr(
1859 Cond: Builder.CreateICmpEQ(LHS: initialBufferLimit, RHS: zero, Name: "iszero"), True: EmptyBB,
1860 False: LoopInitBB,
1861 BranchWeights: createProfileWeights(TrueCount: EntryCount, FalseCount: getProfileCount(S: S.getBody())));
1862
1863 // Otherwise, initialize the loop.
1864 EmitBlock(BB: LoopInitBB);
1865
1866 // Save the initial mutations value. This is the value at an
1867 // address that was written into the state object by
1868 // countByEnumeratingWithState:objects:count:.
1869 Address StateMutationsPtrPtr =
1870 Builder.CreateStructGEP(Addr: StatePtr, Index: 2, Name: "mutationsptr.ptr");
1871 llvm::Value *StateMutationsPtr
1872 = Builder.CreateLoad(Addr: StateMutationsPtrPtr, Name: "mutationsptr");
1873
1874 llvm::Type *UnsignedLongTy = ConvertType(getContext().UnsignedLongTy);
1875 llvm::Value *initialMutations =
1876 Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr,
1877 getPointerAlign(), "forcoll.initial-mutations");
1878
1879 // Start looping. This is the point we return to whenever we have a
1880 // fresh, non-empty batch of objects.
1881 llvm::BasicBlock *LoopBodyBB = createBasicBlock(name: "forcoll.loopbody");
1882 EmitBlock(BB: LoopBodyBB);
1883
1884 // The current index into the buffer.
1885 llvm::PHINode *index = Builder.CreatePHI(Ty: NSUIntegerTy, NumReservedValues: 3, Name: "forcoll.index");
1886 index->addIncoming(V: zero, BB: LoopInitBB);
1887
1888 // The current buffer size.
1889 llvm::PHINode *count = Builder.CreatePHI(Ty: NSUIntegerTy, NumReservedValues: 3, Name: "forcoll.count");
1890 count->addIncoming(V: initialBufferLimit, BB: LoopInitBB);
1891
1892 incrementProfileCounter(S: &S);
1893
1894 // Check whether the mutations value has changed from where it was
1895 // at start. StateMutationsPtr should actually be invariant between
1896 // refreshes.
1897 StateMutationsPtr = Builder.CreateLoad(Addr: StateMutationsPtrPtr, Name: "mutationsptr");
1898 llvm::Value *currentMutations
1899 = Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr,
1900 getPointerAlign(), "statemutations");
1901
1902 llvm::BasicBlock *WasMutatedBB = createBasicBlock(name: "forcoll.mutated");
1903 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock(name: "forcoll.notmutated");
1904
1905 Builder.CreateCondBr(Cond: Builder.CreateICmpEQ(LHS: currentMutations, RHS: initialMutations),
1906 True: WasNotMutatedBB, False: WasMutatedBB);
1907
1908 // If so, call the enumeration-mutation function.
1909 EmitBlock(BB: WasMutatedBB);
1910 llvm::Type *ObjCIdType = ConvertType(T: getContext().getObjCIdType());
1911 llvm::Value *V =
1912 Builder.CreateBitCast(V: Collection, DestTy: ObjCIdType);
1913 CallArgList Args2;
1914 Args2.add(rvalue: RValue::get(V), type: getContext().getObjCIdType());
1915 // FIXME: We shouldn't need to get the function info here, the runtime already
1916 // should have computed it to build the function.
1917 EmitCall(
1918 CGM.getTypes().arrangeBuiltinFunctionCall(resultType: getContext().VoidTy, args: Args2),
1919 EnumerationMutationFn, ReturnValueSlot(), Args2);
1920
1921 // Otherwise, or if the mutation function returns, just continue.
1922 EmitBlock(BB: WasNotMutatedBB);
1923
1924 // Initialize the element variable.
1925 RunCleanupsScope elementVariableScope(*this);
1926 bool elementIsVariable;
1927 LValue elementLValue;
1928 QualType elementType;
1929 if (const DeclStmt *SD = dyn_cast<DeclStmt>(Val: S.getElement())) {
1930 // Initialize the variable, in case it's a __block variable or something.
1931 EmitAutoVarInit(emission: variable);
1932
1933 const VarDecl *D = cast<VarDecl>(Val: SD->getSingleDecl());
1934 DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false,
1935 D->getType(), VK_LValue, SourceLocation());
1936 elementLValue = EmitLValue(&tempDRE);
1937 elementType = D->getType();
1938 elementIsVariable = true;
1939
1940 if (D->isARCPseudoStrong())
1941 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1942 } else {
1943 elementLValue = LValue(); // suppress warning
1944 elementType = cast<Expr>(Val: S.getElement())->getType();
1945 elementIsVariable = false;
1946 }
1947 llvm::Type *convertedElementType = ConvertType(T: elementType);
1948
1949 // Fetch the buffer out of the enumeration state.
1950 // TODO: this pointer should actually be invariant between
1951 // refreshes, which would help us do certain loop optimizations.
1952 Address StateItemsPtr =
1953 Builder.CreateStructGEP(Addr: StatePtr, Index: 1, Name: "stateitems.ptr");
1954 llvm::Value *EnumStateItems =
1955 Builder.CreateLoad(Addr: StateItemsPtr, Name: "stateitems");
1956
1957 // Fetch the value at the current index from the buffer.
1958 llvm::Value *CurrentItemPtr = Builder.CreateGEP(
1959 Ty: ObjCIdType, Ptr: EnumStateItems, IdxList: index, Name: "currentitem.ptr");
1960 llvm::Value *CurrentItem =
1961 Builder.CreateAlignedLoad(ObjCIdType, CurrentItemPtr, getPointerAlign());
1962
1963 if (SanOpts.has(K: SanitizerKind::ObjCCast)) {
1964 // Before using an item from the collection, check that the implicit cast
1965 // from id to the element type is valid. This is done with instrumentation
1966 // roughly corresponding to:
1967 //
1968 // if (![item isKindOfClass:expectedCls]) { /* emit diagnostic */ }
1969 const ObjCObjectPointerType *ObjPtrTy =
1970 elementType->getAsObjCInterfacePointerType();
1971 const ObjCInterfaceType *InterfaceTy =
1972 ObjPtrTy ? ObjPtrTy->getInterfaceType() : nullptr;
1973 if (InterfaceTy) {
1974 SanitizerScope SanScope(this);
1975 auto &C = CGM.getContext();
1976 assert(InterfaceTy->getDecl() && "No decl for ObjC interface type");
1977 Selector IsKindOfClassSel = GetUnarySelector(name: "isKindOfClass", Ctx&: C);
1978 CallArgList IsKindOfClassArgs;
1979 llvm::Value *Cls =
1980 CGM.getObjCRuntime().GetClass(CGF&: *this, OID: InterfaceTy->getDecl());
1981 IsKindOfClassArgs.add(rvalue: RValue::get(V: Cls), type: C.getObjCClassType());
1982 llvm::Value *IsClass =
1983 CGM.getObjCRuntime()
1984 .GenerateMessageSend(CGF&: *this, ReturnSlot: ReturnValueSlot(), ResultType: C.BoolTy,
1985 Sel: IsKindOfClassSel, Receiver: CurrentItem,
1986 CallArgs: IsKindOfClassArgs)
1987 .getScalarVal();
1988 llvm::Constant *StaticData[] = {
1989 EmitCheckSourceLocation(Loc: S.getBeginLoc()),
1990 EmitCheckTypeDescriptor(T: QualType(InterfaceTy, 0))};
1991 EmitCheck(Checked: {{IsClass, SanitizerKind::ObjCCast}},
1992 Check: SanitizerHandler::InvalidObjCCast,
1993 StaticArgs: ArrayRef<llvm::Constant *>(StaticData), DynamicArgs: CurrentItem);
1994 }
1995 }
1996
1997 // Cast that value to the right type.
1998 CurrentItem = Builder.CreateBitCast(V: CurrentItem, DestTy: convertedElementType,
1999 Name: "currentitem");
2000
2001 // Make sure we have an l-value. Yes, this gets evaluated every
2002 // time through the loop.
2003 if (!elementIsVariable) {
2004 elementLValue = EmitLValue(E: cast<Expr>(Val: S.getElement()));
2005 EmitStoreThroughLValue(Src: RValue::get(V: CurrentItem), Dst: elementLValue);
2006 } else {
2007 EmitStoreThroughLValue(Src: RValue::get(V: CurrentItem), Dst: elementLValue,
2008 /*isInit*/ true);
2009 }
2010
2011 // If we do have an element variable, this assignment is the end of
2012 // its initialization.
2013 if (elementIsVariable)
2014 EmitAutoVarCleanups(emission: variable);
2015
2016 // Perform the loop body, setting up break and continue labels.
2017 BreakContinueStack.push_back(Elt: BreakContinue(LoopEnd, AfterBody));
2018 {
2019 RunCleanupsScope Scope(*this);
2020 EmitStmt(S: S.getBody());
2021 }
2022 BreakContinueStack.pop_back();
2023
2024 // Destroy the element variable now.
2025 elementVariableScope.ForceCleanup();
2026
2027 // Check whether there are more elements.
2028 EmitBlock(BB: AfterBody.getBlock());
2029
2030 llvm::BasicBlock *FetchMoreBB = createBasicBlock(name: "forcoll.refetch");
2031
2032 // First we check in the local buffer.
2033 llvm::Value *indexPlusOne =
2034 Builder.CreateAdd(LHS: index, RHS: llvm::ConstantInt::get(Ty: NSUIntegerTy, V: 1));
2035
2036 // If we haven't overrun the buffer yet, we can continue.
2037 // Set the branch weights based on the simplifying assumption that this is
2038 // like a while-loop, i.e., ignoring that the false branch fetches more
2039 // elements and then returns to the loop.
2040 Builder.CreateCondBr(
2041 Cond: Builder.CreateICmpULT(LHS: indexPlusOne, RHS: count), True: LoopBodyBB, False: FetchMoreBB,
2042 BranchWeights: createProfileWeights(TrueCount: getProfileCount(S: S.getBody()), FalseCount: EntryCount));
2043
2044 index->addIncoming(V: indexPlusOne, BB: AfterBody.getBlock());
2045 count->addIncoming(V: count, BB: AfterBody.getBlock());
2046
2047 // Otherwise, we have to fetch more elements.
2048 EmitBlock(BB: FetchMoreBB);
2049
2050 CountRV =
2051 CGM.getObjCRuntime().GenerateMessageSend(CGF&: *this, ReturnSlot: ReturnValueSlot(),
2052 ResultType: getContext().getNSUIntegerType(),
2053 Sel: FastEnumSel, Receiver: Collection, CallArgs: Args);
2054
2055 // If we got a zero count, we're done.
2056 llvm::Value *refetchCount = CountRV.getScalarVal();
2057
2058 // (note that the message send might split FetchMoreBB)
2059 index->addIncoming(V: zero, BB: Builder.GetInsertBlock());
2060 count->addIncoming(V: refetchCount, BB: Builder.GetInsertBlock());
2061
2062 Builder.CreateCondBr(Cond: Builder.CreateICmpEQ(LHS: refetchCount, RHS: zero),
2063 True: EmptyBB, False: LoopBodyBB);
2064
2065 // No more elements.
2066 EmitBlock(BB: EmptyBB);
2067
2068 if (!elementIsVariable) {
2069 // If the element was not a declaration, set it to be null.
2070
2071 llvm::Value *null = llvm::Constant::getNullValue(Ty: convertedElementType);
2072 elementLValue = EmitLValue(E: cast<Expr>(Val: S.getElement()));
2073 EmitStoreThroughLValue(Src: RValue::get(V: null), Dst: elementLValue);
2074 }
2075
2076 if (DI)
2077 DI->EmitLexicalBlockEnd(Builder, Loc: S.getSourceRange().getEnd());
2078
2079 ForScope.ForceCleanup();
2080 EmitBlock(BB: LoopEnd.getBlock());
2081}
2082
2083void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
2084 CGM.getObjCRuntime().EmitTryStmt(CGF&: *this, S);
2085}
2086
2087void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
2088 CGM.getObjCRuntime().EmitThrowStmt(CGF&: *this, S);
2089}
2090
2091void CodeGenFunction::EmitObjCAtSynchronizedStmt(
2092 const ObjCAtSynchronizedStmt &S) {
2093 CGM.getObjCRuntime().EmitSynchronizedStmt(CGF&: *this, S);
2094}
2095
2096namespace {
2097 struct CallObjCRelease final : EHScopeStack::Cleanup {
2098 CallObjCRelease(llvm::Value *object) : object(object) {}
2099 llvm::Value *object;
2100
2101 void Emit(CodeGenFunction &CGF, Flags flags) override {
2102 // Releases at the end of the full-expression are imprecise.
2103 CGF.EmitARCRelease(value: object, precise: ARCImpreciseLifetime);
2104 }
2105 };
2106}
2107
2108/// Produce the code for a CK_ARCConsumeObject. Does a primitive
2109/// release at the end of the full-expression.
2110llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
2111 llvm::Value *object) {
2112 // If we're in a conditional branch, we need to make the cleanup
2113 // conditional.
2114 pushFullExprCleanup<CallObjCRelease>(kind: getARCCleanupKind(), A: object);
2115 return object;
2116}
2117
2118llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
2119 llvm::Value *value) {
2120 return EmitARCRetainAutorelease(type, value);
2121}
2122
2123/// Given a number of pointers, inform the optimizer that they're
2124/// being intrinsically used up until this point in the program.
2125void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
2126 llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use;
2127 if (!fn)
2128 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use);
2129
2130 // This isn't really a "runtime" function, but as an intrinsic it
2131 // doesn't really matter as long as we align things up.
2132 EmitNounwindRuntimeCall(callee: fn, args: values);
2133}
2134
2135/// Emit a call to "clang.arc.noop.use", which consumes the result of a call
2136/// that has operand bundle "clang.arc.attachedcall".
2137void CodeGenFunction::EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values) {
2138 llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_noop_use;
2139 if (!fn)
2140 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_noop_use);
2141 EmitNounwindRuntimeCall(callee: fn, args: values);
2142}
2143
2144static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) {
2145 if (auto *F = dyn_cast<llvm::Function>(Val: RTF)) {
2146 // If the target runtime doesn't naturally support ARC, emit weak
2147 // references to the runtime support library. We don't really
2148 // permit this to fail, but we need a particular relocation style.
2149 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() &&
2150 !CGM.getTriple().isOSBinFormatCOFF()) {
2151 F->setLinkage(llvm::Function::ExternalWeakLinkage);
2152 }
2153 }
2154}
2155
2156static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM,
2157 llvm::FunctionCallee RTF) {
2158 setARCRuntimeFunctionLinkage(CGM, RTF: RTF.getCallee());
2159}
2160
2161static llvm::Function *getARCIntrinsic(llvm::Intrinsic::ID IntID,
2162 CodeGenModule &CGM) {
2163 llvm::Function *fn = CGM.getIntrinsic(IID: IntID);
2164 setARCRuntimeFunctionLinkage(CGM, RTF: fn);
2165 return fn;
2166}
2167
2168/// Perform an operation having the signature
2169/// i8* (i8*)
2170/// where a null input causes a no-op and returns null.
2171static llvm::Value *emitARCValueOperation(
2172 CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType,
2173 llvm::Function *&fn, llvm::Intrinsic::ID IntID,
2174 llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) {
2175 if (isa<llvm::ConstantPointerNull>(Val: value))
2176 return value;
2177
2178 if (!fn)
2179 fn = getARCIntrinsic(IntID, CGM&: CGF.CGM);
2180
2181 // Cast the argument to 'id'.
2182 llvm::Type *origType = returnType ? returnType : value->getType();
2183 value = CGF.Builder.CreateBitCast(V: value, DestTy: CGF.Int8PtrTy);
2184
2185 // Call the function.
2186 llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(callee: fn, args: value);
2187 call->setTailCallKind(tailKind);
2188
2189 // Cast the result back to the original type.
2190 return CGF.Builder.CreateBitCast(V: call, DestTy: origType);
2191}
2192
2193/// Perform an operation having the following signature:
2194/// i8* (i8**)
2195static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr,
2196 llvm::Function *&fn,
2197 llvm::Intrinsic::ID IntID) {
2198 if (!fn)
2199 fn = getARCIntrinsic(IntID, CGM&: CGF.CGM);
2200
2201 return CGF.EmitNounwindRuntimeCall(callee: fn, args: addr.getPointer());
2202}
2203
2204/// Perform an operation having the following signature:
2205/// i8* (i8**, i8*)
2206static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr,
2207 llvm::Value *value,
2208 llvm::Function *&fn,
2209 llvm::Intrinsic::ID IntID,
2210 bool ignored) {
2211 assert(addr.getElementType() == value->getType());
2212
2213 if (!fn)
2214 fn = getARCIntrinsic(IntID, CGM&: CGF.CGM);
2215
2216 llvm::Type *origType = value->getType();
2217
2218 llvm::Value *args[] = {
2219 CGF.Builder.CreateBitCast(V: addr.getPointer(), DestTy: CGF.Int8PtrPtrTy),
2220 CGF.Builder.CreateBitCast(V: value, DestTy: CGF.Int8PtrTy)
2221 };
2222 llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(callee: fn, args);
2223
2224 if (ignored) return nullptr;
2225
2226 return CGF.Builder.CreateBitCast(V: result, DestTy: origType);
2227}
2228
2229/// Perform an operation having the following signature:
2230/// void (i8**, i8**)
2231static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src,
2232 llvm::Function *&fn,
2233 llvm::Intrinsic::ID IntID) {
2234 assert(dst.getType() == src.getType());
2235
2236 if (!fn)
2237 fn = getARCIntrinsic(IntID, CGM&: CGF.CGM);
2238
2239 llvm::Value *args[] = {
2240 CGF.Builder.CreateBitCast(V: dst.getPointer(), DestTy: CGF.Int8PtrPtrTy),
2241 CGF.Builder.CreateBitCast(V: src.getPointer(), DestTy: CGF.Int8PtrPtrTy)
2242 };
2243 CGF.EmitNounwindRuntimeCall(callee: fn, args);
2244}
2245
2246/// Perform an operation having the signature
2247/// i8* (i8*)
2248/// where a null input causes a no-op and returns null.
2249static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF,
2250 llvm::Value *value,
2251 llvm::Type *returnType,
2252 llvm::FunctionCallee &fn,
2253 StringRef fnName) {
2254 if (isa<llvm::ConstantPointerNull>(Val: value))
2255 return value;
2256
2257 if (!fn) {
2258 llvm::FunctionType *fnType =
2259 llvm::FunctionType::get(Result: CGF.Int8PtrTy, Params: CGF.Int8PtrTy, isVarArg: false);
2260 fn = CGF.CGM.CreateRuntimeFunction(Ty: fnType, Name: fnName);
2261
2262 // We have Native ARC, so set nonlazybind attribute for performance
2263 if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2264 if (fnName == "objc_retain")
2265 f->addFnAttr(llvm::Attribute::NonLazyBind);
2266 }
2267
2268 // Cast the argument to 'id'.
2269 llvm::Type *origType = returnType ? returnType : value->getType();
2270 value = CGF.Builder.CreateBitCast(V: value, DestTy: CGF.Int8PtrTy);
2271
2272 // Call the function.
2273 llvm::CallBase *Inst = CGF.EmitCallOrInvoke(Callee: fn, Args: value);
2274
2275 // Mark calls to objc_autorelease as tail on the assumption that methods
2276 // overriding autorelease do not touch anything on the stack.
2277 if (fnName == "objc_autorelease")
2278 if (auto *Call = dyn_cast<llvm::CallInst>(Val: Inst))
2279 Call->setTailCall();
2280
2281 // Cast the result back to the original type.
2282 return CGF.Builder.CreateBitCast(V: Inst, DestTy: origType);
2283}
2284
2285/// Produce the code to do a retain. Based on the type, calls one of:
2286/// call i8* \@objc_retain(i8* %value)
2287/// call i8* \@objc_retainBlock(i8* %value)
2288llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
2289 if (type->isBlockPointerType())
2290 return EmitARCRetainBlock(value, /*mandatory*/ false);
2291 else
2292 return EmitARCRetainNonBlock(value);
2293}
2294
2295/// Retain the given object, with normal retain semantics.
2296/// call i8* \@objc_retain(i8* %value)
2297llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
2298 return emitARCValueOperation(*this, value, nullptr,
2299 CGM.getObjCEntrypoints().objc_retain,
2300 llvm::Intrinsic::objc_retain);
2301}
2302
2303/// Retain the given block, with _Block_copy semantics.
2304/// call i8* \@objc_retainBlock(i8* %value)
2305///
2306/// \param mandatory - If false, emit the call with metadata
2307/// indicating that it's okay for the optimizer to eliminate this call
2308/// if it can prove that the block never escapes except down the stack.
2309llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
2310 bool mandatory) {
2311 llvm::Value *result
2312 = emitARCValueOperation(*this, value, nullptr,
2313 CGM.getObjCEntrypoints().objc_retainBlock,
2314 llvm::Intrinsic::objc_retainBlock);
2315
2316 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
2317 // tell the optimizer that it doesn't need to do this copy if the
2318 // block doesn't escape, where being passed as an argument doesn't
2319 // count as escaping.
2320 if (!mandatory && isa<llvm::Instruction>(Val: result)) {
2321 llvm::CallInst *call
2322 = cast<llvm::CallInst>(Val: result->stripPointerCasts());
2323 assert(call->getCalledOperand() ==
2324 CGM.getObjCEntrypoints().objc_retainBlock);
2325
2326 call->setMetadata(Kind: "clang.arc.copy_on_escape",
2327 Node: llvm::MDNode::get(Context&: Builder.getContext(), MDs: std::nullopt));
2328 }
2329
2330 return result;
2331}
2332
2333static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) {
2334 // Fetch the void(void) inline asm which marks that we're going to
2335 // do something with the autoreleased return value.
2336 llvm::InlineAsm *&marker
2337 = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker;
2338 if (!marker) {
2339 StringRef assembly
2340 = CGF.CGM.getTargetCodeGenInfo()
2341 .getARCRetainAutoreleasedReturnValueMarker();
2342
2343 // If we have an empty assembly string, there's nothing to do.
2344 if (assembly.empty()) {
2345
2346 // Otherwise, at -O0, build an inline asm that we're going to call
2347 // in a moment.
2348 } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) {
2349 llvm::FunctionType *type =
2350 llvm::FunctionType::get(Result: CGF.VoidTy, /*variadic*/isVarArg: false);
2351
2352 marker = llvm::InlineAsm::get(Ty: type, AsmString: assembly, Constraints: "", /*sideeffects*/ hasSideEffects: true);
2353
2354 // If we're at -O1 and above, we don't want to litter the code
2355 // with this marker yet, so leave a breadcrumb for the ARC
2356 // optimizer to pick up.
2357 } else {
2358 const char *retainRVMarkerKey = llvm::objcarc::getRVMarkerModuleFlagStr();
2359 if (!CGF.CGM.getModule().getModuleFlag(Key: retainRVMarkerKey)) {
2360 auto *str = llvm::MDString::get(Context&: CGF.getLLVMContext(), Str: assembly);
2361 CGF.CGM.getModule().addModuleFlag(Behavior: llvm::Module::Error,
2362 Key: retainRVMarkerKey, Val: str);
2363 }
2364 }
2365 }
2366
2367 // Call the marker asm if we made one, which we do only at -O0.
2368 if (marker)
2369 CGF.Builder.CreateCall(Callee: marker, Args: std::nullopt,
2370 OpBundles: CGF.getBundlesForFunclet(Callee: marker));
2371}
2372
2373static llvm::Value *emitOptimizedARCReturnCall(llvm::Value *value,
2374 bool IsRetainRV,
2375 CodeGenFunction &CGF) {
2376 emitAutoreleasedReturnValueMarker(CGF);
2377
2378 // Add operand bundle "clang.arc.attachedcall" to the call instead of emitting
2379 // retainRV or claimRV calls in the IR. We currently do this only when the
2380 // optimization level isn't -O0 since global-isel, which is currently run at
2381 // -O0, doesn't know about the operand bundle.
2382 ObjCEntrypoints &EPs = CGF.CGM.getObjCEntrypoints();
2383 llvm::Function *&EP = IsRetainRV
2384 ? EPs.objc_retainAutoreleasedReturnValue
2385 : EPs.objc_unsafeClaimAutoreleasedReturnValue;
2386 llvm::Intrinsic::ID IID =
2387 IsRetainRV ? llvm::Intrinsic::objc_retainAutoreleasedReturnValue
2388 : llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue;
2389 EP = getARCIntrinsic(IntID: IID, CGM&: CGF.CGM);
2390
2391 llvm::Triple::ArchType Arch = CGF.CGM.getTriple().getArch();
2392
2393 // FIXME: Do this on all targets and at -O0 too. This can be enabled only if
2394 // the target backend knows how to handle the operand bundle.
2395 if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2396 (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::x86_64)) {
2397 llvm::Value *bundleArgs[] = {EP};
2398 llvm::OperandBundleDef OB("clang.arc.attachedcall", bundleArgs);
2399 auto *oldCall = cast<llvm::CallBase>(Val: value);
2400 llvm::CallBase *newCall = llvm::CallBase::addOperandBundle(
2401 CB: oldCall, ID: llvm::LLVMContext::OB_clang_arc_attachedcall, OB, InsertPt: oldCall);
2402 newCall->copyMetadata(SrcInst: *oldCall);
2403 oldCall->replaceAllUsesWith(V: newCall);
2404 oldCall->eraseFromParent();
2405 CGF.EmitARCNoopIntrinsicUse(values: newCall);
2406 return newCall;
2407 }
2408
2409 bool isNoTail =
2410 CGF.CGM.getTargetCodeGenInfo().markARCOptimizedReturnCallsAsNoTail();
2411 llvm::CallInst::TailCallKind tailKind =
2412 isNoTail ? llvm::CallInst::TCK_NoTail : llvm::CallInst::TCK_None;
2413 return emitARCValueOperation(CGF, value, returnType: nullptr, fn&: EP, IntID: IID, tailKind);
2414}
2415
2416/// Retain the given object which is the result of a function call.
2417/// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
2418///
2419/// Yes, this function name is one character away from a different
2420/// call with completely different semantics.
2421llvm::Value *
2422CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
2423 return emitOptimizedARCReturnCall(value, IsRetainRV: true, CGF&: *this);
2424}
2425
2426/// Claim a possibly-autoreleased return value at +0. This is only
2427/// valid to do in contexts which do not rely on the retain to keep
2428/// the object valid for all of its uses; for example, when
2429/// the value is ignored, or when it is being assigned to an
2430/// __unsafe_unretained variable.
2431///
2432/// call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value)
2433llvm::Value *
2434CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) {
2435 return emitOptimizedARCReturnCall(value, IsRetainRV: false, CGF&: *this);
2436}
2437
2438/// Release the given object.
2439/// call void \@objc_release(i8* %value)
2440void CodeGenFunction::EmitARCRelease(llvm::Value *value,
2441 ARCPreciseLifetime_t precise) {
2442 if (isa<llvm::ConstantPointerNull>(Val: value)) return;
2443
2444 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release;
2445 if (!fn)
2446 fn = getARCIntrinsic(llvm::Intrinsic::objc_release, CGM);
2447
2448 // Cast the argument to 'id'.
2449 value = Builder.CreateBitCast(V: value, DestTy: Int8PtrTy);
2450
2451 // Call objc_release.
2452 llvm::CallInst *call = EmitNounwindRuntimeCall(callee: fn, args: value);
2453
2454 if (precise == ARCImpreciseLifetime) {
2455 call->setMetadata(Kind: "clang.imprecise_release",
2456 Node: llvm::MDNode::get(Context&: Builder.getContext(), MDs: std::nullopt));
2457 }
2458}
2459
2460/// Destroy a __strong variable.
2461///
2462/// At -O0, emit a call to store 'null' into the address;
2463/// instrumenting tools prefer this because the address is exposed,
2464/// but it's relatively cumbersome to optimize.
2465///
2466/// At -O1 and above, just load and call objc_release.
2467///
2468/// call void \@objc_storeStrong(i8** %addr, i8* null)
2469void CodeGenFunction::EmitARCDestroyStrong(Address addr,
2470 ARCPreciseLifetime_t precise) {
2471 if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2472 llvm::Value *null = getNullForVariable(addr);
2473 EmitARCStoreStrongCall(addr, value: null, /*ignored*/ resultIgnored: true);
2474 return;
2475 }
2476
2477 llvm::Value *value = Builder.CreateLoad(Addr: addr);
2478 EmitARCRelease(value, precise);
2479}
2480
2481/// Store into a strong object. Always calls this:
2482/// call void \@objc_storeStrong(i8** %addr, i8* %value)
2483llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr,
2484 llvm::Value *value,
2485 bool ignored) {
2486 assert(addr.getElementType() == value->getType());
2487
2488 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong;
2489 if (!fn)
2490 fn = getARCIntrinsic(llvm::Intrinsic::objc_storeStrong, CGM);
2491
2492 llvm::Value *args[] = {
2493 Builder.CreateBitCast(V: addr.getPointer(), DestTy: Int8PtrPtrTy),
2494 Builder.CreateBitCast(V: value, DestTy: Int8PtrTy)
2495 };
2496 EmitNounwindRuntimeCall(callee: fn, args);
2497
2498 if (ignored) return nullptr;
2499 return value;
2500}
2501
2502/// Store into a strong object. Sometimes calls this:
2503/// call void \@objc_storeStrong(i8** %addr, i8* %value)
2504/// Other times, breaks it down into components.
2505llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2506 llvm::Value *newValue,
2507 bool ignored) {
2508 QualType type = dst.getType();
2509 bool isBlock = type->isBlockPointerType();
2510
2511 // Use a store barrier at -O0 unless this is a block type or the
2512 // lvalue is inadequately aligned.
2513 if (shouldUseFusedARCCalls() &&
2514 !isBlock &&
2515 (dst.getAlignment().isZero() ||
2516 dst.getAlignment() >= CharUnits::fromQuantity(Quantity: PointerAlignInBytes))) {
2517 return EmitARCStoreStrongCall(addr: dst.getAddress(CGF&: *this), value: newValue, ignored);
2518 }
2519
2520 // Otherwise, split it out.
2521
2522 // Retain the new value.
2523 newValue = EmitARCRetain(type, value: newValue);
2524
2525 // Read the old value.
2526 llvm::Value *oldValue = EmitLoadOfScalar(lvalue: dst, Loc: SourceLocation());
2527
2528 // Store. We do this before the release so that any deallocs won't
2529 // see the old value.
2530 EmitStoreOfScalar(value: newValue, lvalue: dst);
2531
2532 // Finally, release the old value.
2533 EmitARCRelease(value: oldValue, precise: dst.isARCPreciseLifetime());
2534
2535 return newValue;
2536}
2537
2538/// Autorelease the given object.
2539/// call i8* \@objc_autorelease(i8* %value)
2540llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2541 return emitARCValueOperation(*this, value, nullptr,
2542 CGM.getObjCEntrypoints().objc_autorelease,
2543 llvm::Intrinsic::objc_autorelease);
2544}
2545
2546/// Autorelease the given object.
2547/// call i8* \@objc_autoreleaseReturnValue(i8* %value)
2548llvm::Value *
2549CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2550 return emitARCValueOperation(*this, value, nullptr,
2551 CGM.getObjCEntrypoints().objc_autoreleaseReturnValue,
2552 llvm::Intrinsic::objc_autoreleaseReturnValue,
2553 llvm::CallInst::TCK_Tail);
2554}
2555
2556/// Do a fused retain/autorelease of the given object.
2557/// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2558llvm::Value *
2559CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2560 return emitARCValueOperation(*this, value, nullptr,
2561 CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue,
2562 llvm::Intrinsic::objc_retainAutoreleaseReturnValue,
2563 llvm::CallInst::TCK_Tail);
2564}
2565
2566/// Do a fused retain/autorelease of the given object.
2567/// call i8* \@objc_retainAutorelease(i8* %value)
2568/// or
2569/// %retain = call i8* \@objc_retainBlock(i8* %value)
2570/// call i8* \@objc_autorelease(i8* %retain)
2571llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2572 llvm::Value *value) {
2573 if (!type->isBlockPointerType())
2574 return EmitARCRetainAutoreleaseNonBlock(value);
2575
2576 if (isa<llvm::ConstantPointerNull>(Val: value)) return value;
2577
2578 llvm::Type *origType = value->getType();
2579 value = Builder.CreateBitCast(V: value, DestTy: Int8PtrTy);
2580 value = EmitARCRetainBlock(value, /*mandatory*/ true);
2581 value = EmitARCAutorelease(value);
2582 return Builder.CreateBitCast(V: value, DestTy: origType);
2583}
2584
2585/// Do a fused retain/autorelease of the given object.
2586/// call i8* \@objc_retainAutorelease(i8* %value)
2587llvm::Value *
2588CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2589 return emitARCValueOperation(*this, value, nullptr,
2590 CGM.getObjCEntrypoints().objc_retainAutorelease,
2591 llvm::Intrinsic::objc_retainAutorelease);
2592}
2593
2594/// i8* \@objc_loadWeak(i8** %addr)
2595/// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2596llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) {
2597 return emitARCLoadOperation(*this, addr,
2598 CGM.getObjCEntrypoints().objc_loadWeak,
2599 llvm::Intrinsic::objc_loadWeak);
2600}
2601
2602/// i8* \@objc_loadWeakRetained(i8** %addr)
2603llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) {
2604 return emitARCLoadOperation(*this, addr,
2605 CGM.getObjCEntrypoints().objc_loadWeakRetained,
2606 llvm::Intrinsic::objc_loadWeakRetained);
2607}
2608
2609/// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2610/// Returns %value.
2611llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr,
2612 llvm::Value *value,
2613 bool ignored) {
2614 return emitARCStoreOperation(*this, addr, value,
2615 CGM.getObjCEntrypoints().objc_storeWeak,
2616 llvm::Intrinsic::objc_storeWeak, ignored);
2617}
2618
2619/// i8* \@objc_initWeak(i8** %addr, i8* %value)
2620/// Returns %value. %addr is known to not have a current weak entry.
2621/// Essentially equivalent to:
2622/// *addr = nil; objc_storeWeak(addr, value);
2623void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) {
2624 // If we're initializing to null, just write null to memory; no need
2625 // to get the runtime involved. But don't do this if optimization
2626 // is enabled, because accounting for this would make the optimizer
2627 // much more complicated.
2628 if (isa<llvm::ConstantPointerNull>(Val: value) &&
2629 CGM.getCodeGenOpts().OptimizationLevel == 0) {
2630 Builder.CreateStore(Val: value, Addr: addr);
2631 return;
2632 }
2633
2634 emitARCStoreOperation(*this, addr, value,
2635 CGM.getObjCEntrypoints().objc_initWeak,
2636 llvm::Intrinsic::objc_initWeak, /*ignored*/ true);
2637}
2638
2639/// void \@objc_destroyWeak(i8** %addr)
2640/// Essentially objc_storeWeak(addr, nil).
2641void CodeGenFunction::EmitARCDestroyWeak(Address addr) {
2642 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak;
2643 if (!fn)
2644 fn = getARCIntrinsic(llvm::Intrinsic::objc_destroyWeak, CGM);
2645
2646 EmitNounwindRuntimeCall(callee: fn, args: addr.getPointer());
2647}
2648
2649/// void \@objc_moveWeak(i8** %dest, i8** %src)
2650/// Disregards the current value in %dest. Leaves %src pointing to nothing.
2651/// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2652void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) {
2653 emitARCCopyOperation(*this, dst, src,
2654 CGM.getObjCEntrypoints().objc_moveWeak,
2655 llvm::Intrinsic::objc_moveWeak);
2656}
2657
2658/// void \@objc_copyWeak(i8** %dest, i8** %src)
2659/// Disregards the current value in %dest. Essentially
2660/// objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2661void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) {
2662 emitARCCopyOperation(*this, dst, src,
2663 CGM.getObjCEntrypoints().objc_copyWeak,
2664 llvm::Intrinsic::objc_copyWeak);
2665}
2666
2667void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr,
2668 Address SrcAddr) {
2669 llvm::Value *Object = EmitARCLoadWeakRetained(addr: SrcAddr);
2670 Object = EmitObjCConsumeObject(type: Ty, object: Object);
2671 EmitARCStoreWeak(addr: DstAddr, value: Object, ignored: false);
2672}
2673
2674void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr,
2675 Address SrcAddr) {
2676 llvm::Value *Object = EmitARCLoadWeakRetained(addr: SrcAddr);
2677 Object = EmitObjCConsumeObject(type: Ty, object: Object);
2678 EmitARCStoreWeak(addr: DstAddr, value: Object, ignored: false);
2679 EmitARCDestroyWeak(addr: SrcAddr);
2680}
2681
2682/// Produce the code to do a objc_autoreleasepool_push.
2683/// call i8* \@objc_autoreleasePoolPush(void)
2684llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2685 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush;
2686 if (!fn)
2687 fn = getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush, CGM);
2688
2689 return EmitNounwindRuntimeCall(callee: fn);
2690}
2691
2692/// Produce the code to do a primitive release.
2693/// call void \@objc_autoreleasePoolPop(i8* %ptr)
2694void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2695 assert(value->getType() == Int8PtrTy);
2696
2697 if (getInvokeDest()) {
2698 // Call the runtime method not the intrinsic if we are handling exceptions
2699 llvm::FunctionCallee &fn =
2700 CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke;
2701 if (!fn) {
2702 llvm::FunctionType *fnType =
2703 llvm::FunctionType::get(Result: Builder.getVoidTy(), Params: Int8PtrTy, isVarArg: false);
2704 fn = CGM.CreateRuntimeFunction(Ty: fnType, Name: "objc_autoreleasePoolPop");
2705 setARCRuntimeFunctionLinkage(CGM, RTF: fn);
2706 }
2707
2708 // objc_autoreleasePoolPop can throw.
2709 EmitRuntimeCallOrInvoke(callee: fn, args: value);
2710 } else {
2711 llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop;
2712 if (!fn)
2713 fn = getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop, CGM);
2714
2715 EmitRuntimeCall(callee: fn, args: value);
2716 }
2717}
2718
2719/// Produce the code to do an MRR version objc_autoreleasepool_push.
2720/// Which is: [[NSAutoreleasePool alloc] init];
2721/// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2722/// init is declared as: - (id) init; in its NSObject super class.
2723///
2724llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2725 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2726 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(CGF&: *this);
2727 // [NSAutoreleasePool alloc]
2728 IdentifierInfo *II = &CGM.getContext().Idents.get(Name: "alloc");
2729 Selector AllocSel = getContext().Selectors.getSelector(NumArgs: 0, IIV: &II);
2730 CallArgList Args;
2731 RValue AllocRV =
2732 Runtime.GenerateMessageSend(CGF&: *this, ReturnSlot: ReturnValueSlot(),
2733 ResultType: getContext().getObjCIdType(),
2734 Sel: AllocSel, Receiver, CallArgs: Args);
2735
2736 // [Receiver init]
2737 Receiver = AllocRV.getScalarVal();
2738 II = &CGM.getContext().Idents.get(Name: "init");
2739 Selector InitSel = getContext().Selectors.getSelector(NumArgs: 0, IIV: &II);
2740 RValue InitRV =
2741 Runtime.GenerateMessageSend(CGF&: *this, ReturnSlot: ReturnValueSlot(),
2742 ResultType: getContext().getObjCIdType(),
2743 Sel: InitSel, Receiver, CallArgs: Args);
2744 return InitRV.getScalarVal();
2745}
2746
2747/// Allocate the given objc object.
2748/// call i8* \@objc_alloc(i8* %value)
2749llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value,
2750 llvm::Type *resultType) {
2751 return emitObjCValueOperation(CGF&: *this, value, returnType: resultType,
2752 fn&: CGM.getObjCEntrypoints().objc_alloc,
2753 fnName: "objc_alloc");
2754}
2755
2756/// Allocate the given objc object.
2757/// call i8* \@objc_allocWithZone(i8* %value)
2758llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value,
2759 llvm::Type *resultType) {
2760 return emitObjCValueOperation(CGF&: *this, value, returnType: resultType,
2761 fn&: CGM.getObjCEntrypoints().objc_allocWithZone,
2762 fnName: "objc_allocWithZone");
2763}
2764
2765llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value,
2766 llvm::Type *resultType) {
2767 return emitObjCValueOperation(CGF&: *this, value, returnType: resultType,
2768 fn&: CGM.getObjCEntrypoints().objc_alloc_init,
2769 fnName: "objc_alloc_init");
2770}
2771
2772/// Produce the code to do a primitive release.
2773/// [tmp drain];
2774void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2775 IdentifierInfo *II = &CGM.getContext().Idents.get(Name: "drain");
2776 Selector DrainSel = getContext().Selectors.getSelector(NumArgs: 0, IIV: &II);
2777 CallArgList Args;
2778 CGM.getObjCRuntime().GenerateMessageSend(CGF&: *this, ReturnSlot: ReturnValueSlot(),
2779 ResultType: getContext().VoidTy, Sel: DrainSel, Receiver: Arg, CallArgs: Args);
2780}
2781
2782void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2783 Address addr,
2784 QualType type) {
2785 CGF.EmitARCDestroyStrong(addr, precise: ARCPreciseLifetime);
2786}
2787
2788void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2789 Address addr,
2790 QualType type) {
2791 CGF.EmitARCDestroyStrong(addr, precise: ARCImpreciseLifetime);
2792}
2793
2794void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2795 Address addr,
2796 QualType type) {
2797 CGF.EmitARCDestroyWeak(addr);
2798}
2799
2800void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr,
2801 QualType type) {
2802 llvm::Value *value = CGF.Builder.CreateLoad(Addr: addr);
2803 CGF.EmitARCIntrinsicUse(values: value);
2804}
2805
2806/// Autorelease the given object.
2807/// call i8* \@objc_autorelease(i8* %value)
2808llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value,
2809 llvm::Type *returnType) {
2810 return emitObjCValueOperation(
2811 CGF&: *this, value, returnType,
2812 fn&: CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction,
2813 fnName: "objc_autorelease");
2814}
2815
2816/// Retain the given object, with normal retain semantics.
2817/// call i8* \@objc_retain(i8* %value)
2818llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value,
2819 llvm::Type *returnType) {
2820 return emitObjCValueOperation(
2821 CGF&: *this, value, returnType,
2822 fn&: CGM.getObjCEntrypoints().objc_retainRuntimeFunction, fnName: "objc_retain");
2823}
2824
2825/// Release the given object.
2826/// call void \@objc_release(i8* %value)
2827void CodeGenFunction::EmitObjCRelease(llvm::Value *value,
2828 ARCPreciseLifetime_t precise) {
2829 if (isa<llvm::ConstantPointerNull>(Val: value)) return;
2830
2831 llvm::FunctionCallee &fn =
2832 CGM.getObjCEntrypoints().objc_releaseRuntimeFunction;
2833 if (!fn) {
2834 llvm::FunctionType *fnType =
2835 llvm::FunctionType::get(Result: Builder.getVoidTy(), Params: Int8PtrTy, isVarArg: false);
2836 fn = CGM.CreateRuntimeFunction(Ty: fnType, Name: "objc_release");
2837 setARCRuntimeFunctionLinkage(CGM, RTF: fn);
2838 // We have Native ARC, so set nonlazybind attribute for performance
2839 if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2840 f->addFnAttr(llvm::Attribute::NonLazyBind);
2841 }
2842
2843 // Cast the argument to 'id'.
2844 value = Builder.CreateBitCast(V: value, DestTy: Int8PtrTy);
2845
2846 // Call objc_release.
2847 llvm::CallBase *call = EmitCallOrInvoke(Callee: fn, Args: value);
2848
2849 if (precise == ARCImpreciseLifetime) {
2850 call->setMetadata(Kind: "clang.imprecise_release",
2851 Node: llvm::MDNode::get(Context&: Builder.getContext(), MDs: std::nullopt));
2852 }
2853}
2854
2855namespace {
2856 struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup {
2857 llvm::Value *Token;
2858
2859 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2860
2861 void Emit(CodeGenFunction &CGF, Flags flags) override {
2862 CGF.EmitObjCAutoreleasePoolPop(value: Token);
2863 }
2864 };
2865 struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup {
2866 llvm::Value *Token;
2867
2868 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2869
2870 void Emit(CodeGenFunction &CGF, Flags flags) override {
2871 CGF.EmitObjCMRRAutoreleasePoolPop(Arg: Token);
2872 }
2873 };
2874}
2875
2876void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2877 if (CGM.getLangOpts().ObjCAutoRefCount)
2878 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(Kind: NormalCleanup, A: Ptr);
2879 else
2880 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(Kind: NormalCleanup, A: Ptr);
2881}
2882
2883static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) {
2884 switch (lifetime) {
2885 case Qualifiers::OCL_None:
2886 case Qualifiers::OCL_ExplicitNone:
2887 case Qualifiers::OCL_Strong:
2888 case Qualifiers::OCL_Autoreleasing:
2889 return true;
2890
2891 case Qualifiers::OCL_Weak:
2892 return false;
2893 }
2894
2895 llvm_unreachable("impossible lifetime!");
2896}
2897
2898static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2899 LValue lvalue,
2900 QualType type) {
2901 llvm::Value *result;
2902 bool shouldRetain = shouldRetainObjCLifetime(lifetime: type.getObjCLifetime());
2903 if (shouldRetain) {
2904 result = CGF.EmitLoadOfLValue(V: lvalue, Loc: SourceLocation()).getScalarVal();
2905 } else {
2906 assert(type.getObjCLifetime() == Qualifiers::OCL_Weak);
2907 result = CGF.EmitARCLoadWeakRetained(addr: lvalue.getAddress(CGF));
2908 }
2909 return TryEmitResult(result, !shouldRetain);
2910}
2911
2912static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2913 const Expr *e) {
2914 e = e->IgnoreParens();
2915 QualType type = e->getType();
2916
2917 // If we're loading retained from a __strong xvalue, we can avoid
2918 // an extra retain/release pair by zeroing out the source of this
2919 // "move" operation.
2920 if (e->isXValue() &&
2921 !type.isConstQualified() &&
2922 type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2923 // Emit the lvalue.
2924 LValue lv = CGF.EmitLValue(E: e);
2925
2926 // Load the object pointer.
2927 llvm::Value *result = CGF.EmitLoadOfLValue(V: lv,
2928 Loc: SourceLocation()).getScalarVal();
2929
2930 // Set the source pointer to NULL.
2931 CGF.EmitStoreOfScalar(value: getNullForVariable(addr: lv.getAddress(CGF)), lvalue: lv);
2932
2933 return TryEmitResult(result, true);
2934 }
2935
2936 // As a very special optimization, in ARC++, if the l-value is the
2937 // result of a non-volatile assignment, do a simple retain of the
2938 // result of the call to objc_storeWeak instead of reloading.
2939 if (CGF.getLangOpts().CPlusPlus &&
2940 !type.isVolatileQualified() &&
2941 type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2942 isa<BinaryOperator>(Val: e) &&
2943 cast<BinaryOperator>(Val: e)->getOpcode() == BO_Assign)
2944 return TryEmitResult(CGF.EmitScalarExpr(E: e), false);
2945
2946 // Try to emit code for scalar constant instead of emitting LValue and
2947 // loading it because we are not guaranteed to have an l-value. One of such
2948 // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable.
2949 if (const auto *decl_expr = dyn_cast<DeclRefExpr>(Val: e)) {
2950 auto *DRE = const_cast<DeclRefExpr *>(decl_expr);
2951 if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(refExpr: DRE))
2952 return TryEmitResult(CGF.emitScalarConstant(constant, DRE),
2953 !shouldRetainObjCLifetime(lifetime: type.getObjCLifetime()));
2954 }
2955
2956 return tryEmitARCRetainLoadOfScalar(CGF, lvalue: CGF.EmitLValue(E: e), type);
2957}
2958
2959typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
2960 llvm::Value *value)>
2961 ValueTransform;
2962
2963/// Insert code immediately after a call.
2964
2965// FIXME: We should find a way to emit the runtime call immediately
2966// after the call is emitted to eliminate the need for this function.
2967static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF,
2968 llvm::Value *value,
2969 ValueTransform doAfterCall,
2970 ValueTransform doFallback) {
2971 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2972 auto *callBase = dyn_cast<llvm::CallBase>(Val: value);
2973
2974 if (callBase && llvm::objcarc::hasAttachedCallOpBundle(CB: callBase)) {
2975 // Fall back if the call base has operand bundle "clang.arc.attachedcall".
2976 value = doFallback(CGF, value);
2977 } else if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(Val: value)) {
2978 // Place the retain immediately following the call.
2979 CGF.Builder.SetInsertPoint(TheBB: call->getParent(),
2980 IP: ++llvm::BasicBlock::iterator(call));
2981 value = doAfterCall(CGF, value);
2982 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(Val: value)) {
2983 // Place the retain at the beginning of the normal destination block.
2984 llvm::BasicBlock *BB = invoke->getNormalDest();
2985 CGF.Builder.SetInsertPoint(TheBB: BB, IP: BB->begin());
2986 value = doAfterCall(CGF, value);
2987
2988 // Bitcasts can arise because of related-result returns. Rewrite
2989 // the operand.
2990 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(Val: value)) {
2991 // Change the insert point to avoid emitting the fall-back call after the
2992 // bitcast.
2993 CGF.Builder.SetInsertPoint(TheBB: bitcast->getParent(), IP: bitcast->getIterator());
2994 llvm::Value *operand = bitcast->getOperand(i_nocapture: 0);
2995 operand = emitARCOperationAfterCall(CGF, value: operand, doAfterCall, doFallback);
2996 bitcast->setOperand(i_nocapture: 0, Val_nocapture: operand);
2997 value = bitcast;
2998 } else {
2999 auto *phi = dyn_cast<llvm::PHINode>(Val: value);
3000 if (phi && phi->getNumIncomingValues() == 2 &&
3001 isa<llvm::ConstantPointerNull>(Val: phi->getIncomingValue(i: 1)) &&
3002 isa<llvm::CallBase>(Val: phi->getIncomingValue(i: 0))) {
3003 // Handle phi instructions that are generated when it's necessary to check
3004 // whether the receiver of a message is null.
3005 llvm::Value *inVal = phi->getIncomingValue(i: 0);
3006 inVal = emitARCOperationAfterCall(CGF, value: inVal, doAfterCall, doFallback);
3007 phi->setIncomingValue(i: 0, V: inVal);
3008 value = phi;
3009 } else {
3010 // Generic fall-back case.
3011 // Retain using the non-block variant: we never need to do a copy
3012 // of a block that's been returned to us.
3013 value = doFallback(CGF, value);
3014 }
3015 }
3016
3017 CGF.Builder.restoreIP(IP: ip);
3018 return value;
3019}
3020
3021/// Given that the given expression is some sort of call (which does
3022/// not return retained), emit a retain following it.
3023static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF,
3024 const Expr *e) {
3025 llvm::Value *value = CGF.EmitScalarExpr(E: e);
3026 return emitARCOperationAfterCall(CGF, value,
3027 doAfterCall: [](CodeGenFunction &CGF, llvm::Value *value) {
3028 return CGF.EmitARCRetainAutoreleasedReturnValue(value);
3029 },
3030 doFallback: [](CodeGenFunction &CGF, llvm::Value *value) {
3031 return CGF.EmitARCRetainNonBlock(value);
3032 });
3033}
3034
3035/// Given that the given expression is some sort of call (which does
3036/// not return retained), perform an unsafeClaim following it.
3037static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF,
3038 const Expr *e) {
3039 llvm::Value *value = CGF.EmitScalarExpr(E: e);
3040 return emitARCOperationAfterCall(CGF, value,
3041 doAfterCall: [](CodeGenFunction &CGF, llvm::Value *value) {
3042 return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value);
3043 },
3044 doFallback: [](CodeGenFunction &CGF, llvm::Value *value) {
3045 return value;
3046 });
3047}
3048
3049llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E,
3050 bool allowUnsafeClaim) {
3051 if (allowUnsafeClaim &&
3052 CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) {
3053 return emitARCUnsafeClaimCallResult(CGF&: *this, e: E);
3054 } else {
3055 llvm::Value *value = emitARCRetainCallResult(CGF&: *this, e: E);
3056 return EmitObjCConsumeObject(type: E->getType(), object: value);
3057 }
3058}
3059
3060/// Determine whether it might be important to emit a separate
3061/// objc_retain_block on the result of the given expression, or
3062/// whether it's okay to just emit it in a +1 context.
3063static bool shouldEmitSeparateBlockRetain(const Expr *e) {
3064 assert(e->getType()->isBlockPointerType());
3065 e = e->IgnoreParens();
3066
3067 // For future goodness, emit block expressions directly in +1
3068 // contexts if we can.
3069 if (isa<BlockExpr>(Val: e))
3070 return false;
3071
3072 if (const CastExpr *cast = dyn_cast<CastExpr>(Val: e)) {
3073 switch (cast->getCastKind()) {
3074 // Emitting these operations in +1 contexts is goodness.
3075 case CK_LValueToRValue:
3076 case CK_ARCReclaimReturnedObject:
3077 case CK_ARCConsumeObject:
3078 case CK_ARCProduceObject:
3079 return false;
3080
3081 // These operations preserve a block type.
3082 case CK_NoOp:
3083 case CK_BitCast:
3084 return shouldEmitSeparateBlockRetain(e: cast->getSubExpr());
3085
3086 // These operations are known to be bad (or haven't been considered).
3087 case CK_AnyPointerToBlockPointerCast:
3088 default:
3089 return true;
3090 }
3091 }
3092
3093 return true;
3094}
3095
3096namespace {
3097/// A CRTP base class for emitting expressions of retainable object
3098/// pointer type in ARC.
3099template <typename Impl, typename Result> class ARCExprEmitter {
3100protected:
3101 CodeGenFunction &CGF;
3102 Impl &asImpl() { return *static_cast<Impl*>(this); }
3103
3104 ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {}
3105
3106public:
3107 Result visit(const Expr *e);
3108 Result visitCastExpr(const CastExpr *e);
3109 Result visitPseudoObjectExpr(const PseudoObjectExpr *e);
3110 Result visitBlockExpr(const BlockExpr *e);
3111 Result visitBinaryOperator(const BinaryOperator *e);
3112 Result visitBinAssign(const BinaryOperator *e);
3113 Result visitBinAssignUnsafeUnretained(const BinaryOperator *e);
3114 Result visitBinAssignAutoreleasing(const BinaryOperator *e);
3115 Result visitBinAssignWeak(const BinaryOperator *e);
3116 Result visitBinAssignStrong(const BinaryOperator *e);
3117
3118 // Minimal implementation:
3119 // Result visitLValueToRValue(const Expr *e)
3120 // Result visitConsumeObject(const Expr *e)
3121 // Result visitExtendBlockObject(const Expr *e)
3122 // Result visitReclaimReturnedObject(const Expr *e)
3123 // Result visitCall(const Expr *e)
3124 // Result visitExpr(const Expr *e)
3125 //
3126 // Result emitBitCast(Result result, llvm::Type *resultType)
3127 // llvm::Value *getValueOfResult(Result result)
3128};
3129}
3130
3131/// Try to emit a PseudoObjectExpr under special ARC rules.
3132///
3133/// This massively duplicates emitPseudoObjectRValue.
3134template <typename Impl, typename Result>
3135Result
3136ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) {
3137 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3138
3139 // Find the result expression.
3140 const Expr *resultExpr = E->getResultExpr();
3141 assert(resultExpr);
3142 Result result;
3143
3144 for (PseudoObjectExpr::const_semantics_iterator
3145 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3146 const Expr *semantic = *i;
3147
3148 // If this semantic expression is an opaque value, bind it
3149 // to the result of its source expression.
3150 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(Val: semantic)) {
3151 typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3152 OVMA opaqueData;
3153
3154 // If this semantic is the result of the pseudo-object
3155 // expression, try to evaluate the source as +1.
3156 if (ov == resultExpr) {
3157 assert(!OVMA::shouldBindAsLValue(ov));
3158 result = asImpl().visit(ov->getSourceExpr());
3159 opaqueData = OVMA::bind(CGF, ov,
3160 RValue::get(V: asImpl().getValueOfResult(result)));
3161
3162 // Otherwise, just bind it.
3163 } else {
3164 opaqueData = OVMA::bind(CGF, ov, e: ov->getSourceExpr());
3165 }
3166 opaques.push_back(Elt: opaqueData);
3167
3168 // Otherwise, if the expression is the result, evaluate it
3169 // and remember the result.
3170 } else if (semantic == resultExpr) {
3171 result = asImpl().visit(semantic);
3172
3173 // Otherwise, evaluate the expression in an ignored context.
3174 } else {
3175 CGF.EmitIgnoredExpr(E: semantic);
3176 }
3177 }
3178
3179 // Unbind all the opaques now.
3180 for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3181 opaques[i].unbind(CGF);
3182
3183 return result;
3184}
3185
3186template <typename Impl, typename Result>
3187Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) {
3188 // The default implementation just forwards the expression to visitExpr.
3189 return asImpl().visitExpr(e);
3190}
3191
3192template <typename Impl, typename Result>
3193Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) {
3194 switch (e->getCastKind()) {
3195
3196 // No-op casts don't change the type, so we just ignore them.
3197 case CK_NoOp:
3198 return asImpl().visit(e->getSubExpr());
3199
3200 // These casts can change the type.
3201 case CK_CPointerToObjCPointerCast:
3202 case CK_BlockPointerToObjCPointerCast:
3203 case CK_AnyPointerToBlockPointerCast:
3204 case CK_BitCast: {
3205 llvm::Type *resultType = CGF.ConvertType(e->getType());
3206 assert(e->getSubExpr()->getType()->hasPointerRepresentation());
3207 Result result = asImpl().visit(e->getSubExpr());
3208 return asImpl().emitBitCast(result, resultType);
3209 }
3210
3211 // Handle some casts specially.
3212 case CK_LValueToRValue:
3213 return asImpl().visitLValueToRValue(e->getSubExpr());
3214 case CK_ARCConsumeObject:
3215 return asImpl().visitConsumeObject(e->getSubExpr());
3216 case CK_ARCExtendBlockObject:
3217 return asImpl().visitExtendBlockObject(e->getSubExpr());
3218 case CK_ARCReclaimReturnedObject:
3219 return asImpl().visitReclaimReturnedObject(e->getSubExpr());
3220
3221 // Otherwise, use the default logic.
3222 default:
3223 return asImpl().visitExpr(e);
3224 }
3225}
3226
3227template <typename Impl, typename Result>
3228Result
3229ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) {
3230 switch (e->getOpcode()) {
3231 case BO_Comma:
3232 CGF.EmitIgnoredExpr(E: e->getLHS());
3233 CGF.EnsureInsertPoint();
3234 return asImpl().visit(e->getRHS());
3235
3236 case BO_Assign:
3237 return asImpl().visitBinAssign(e);
3238
3239 default:
3240 return asImpl().visitExpr(e);
3241 }
3242}
3243
3244template <typename Impl, typename Result>
3245Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) {
3246 switch (e->getLHS()->getType().getObjCLifetime()) {
3247 case Qualifiers::OCL_ExplicitNone:
3248 return asImpl().visitBinAssignUnsafeUnretained(e);
3249
3250 case Qualifiers::OCL_Weak:
3251 return asImpl().visitBinAssignWeak(e);
3252
3253 case Qualifiers::OCL_Autoreleasing:
3254 return asImpl().visitBinAssignAutoreleasing(e);
3255
3256 case Qualifiers::OCL_Strong:
3257 return asImpl().visitBinAssignStrong(e);
3258
3259 case Qualifiers::OCL_None:
3260 return asImpl().visitExpr(e);
3261 }
3262 llvm_unreachable("bad ObjC ownership qualifier");
3263}
3264
3265/// The default rule for __unsafe_unretained emits the RHS recursively,
3266/// stores into the unsafe variable, and propagates the result outward.
3267template <typename Impl, typename Result>
3268Result ARCExprEmitter<Impl,Result>::
3269 visitBinAssignUnsafeUnretained(const BinaryOperator *e) {
3270 // Recursively emit the RHS.
3271 // For __block safety, do this before emitting the LHS.
3272 Result result = asImpl().visit(e->getRHS());
3273
3274 // Perform the store.
3275 LValue lvalue =
3276 CGF.EmitCheckedLValue(E: e->getLHS(), TCK: CodeGenFunction::TCK_Store);
3277 CGF.EmitStoreThroughLValue(Src: RValue::get(V: asImpl().getValueOfResult(result)),
3278 Dst: lvalue);
3279
3280 return result;
3281}
3282
3283template <typename Impl, typename Result>
3284Result
3285ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) {
3286 return asImpl().visitExpr(e);
3287}
3288
3289template <typename Impl, typename Result>
3290Result
3291ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) {
3292 return asImpl().visitExpr(e);
3293}
3294
3295template <typename Impl, typename Result>
3296Result
3297ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) {
3298 return asImpl().visitExpr(e);
3299}
3300
3301/// The general expression-emission logic.
3302template <typename Impl, typename Result>
3303Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) {
3304 // We should *never* see a nested full-expression here, because if
3305 // we fail to emit at +1, our caller must not retain after we close
3306 // out the full-expression. This isn't as important in the unsafe
3307 // emitter.
3308 assert(!isa<ExprWithCleanups>(e));
3309
3310 // Look through parens, __extension__, generic selection, etc.
3311 e = e->IgnoreParens();
3312
3313 // Handle certain kinds of casts.
3314 if (const CastExpr *ce = dyn_cast<CastExpr>(Val: e)) {
3315 return asImpl().visitCastExpr(ce);
3316
3317 // Handle the comma operator.
3318 } else if (auto op = dyn_cast<BinaryOperator>(Val: e)) {
3319 return asImpl().visitBinaryOperator(op);
3320
3321 // TODO: handle conditional operators here
3322
3323 // For calls and message sends, use the retained-call logic.
3324 // Delegate inits are a special case in that they're the only
3325 // returns-retained expression that *isn't* surrounded by
3326 // a consume.
3327 } else if (isa<CallExpr>(Val: e) ||
3328 (isa<ObjCMessageExpr>(Val: e) &&
3329 !cast<ObjCMessageExpr>(Val: e)->isDelegateInitCall())) {
3330 return asImpl().visitCall(e);
3331
3332 // Look through pseudo-object expressions.
3333 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(Val: e)) {
3334 return asImpl().visitPseudoObjectExpr(pseudo);
3335 } else if (auto *be = dyn_cast<BlockExpr>(Val: e))
3336 return asImpl().visitBlockExpr(be);
3337
3338 return asImpl().visitExpr(e);
3339}
3340
3341namespace {
3342
3343/// An emitter for +1 results.
3344struct ARCRetainExprEmitter :
3345 public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> {
3346
3347 ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3348
3349 llvm::Value *getValueOfResult(TryEmitResult result) {
3350 return result.getPointer();
3351 }
3352
3353 TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) {
3354 llvm::Value *value = result.getPointer();
3355 value = CGF.Builder.CreateBitCast(V: value, DestTy: resultType);
3356 result.setPointer(value);
3357 return result;
3358 }
3359
3360 TryEmitResult visitLValueToRValue(const Expr *e) {
3361 return tryEmitARCRetainLoadOfScalar(CGF, e);
3362 }
3363
3364 /// For consumptions, just emit the subexpression and thus elide
3365 /// the retain/release pair.
3366 TryEmitResult visitConsumeObject(const Expr *e) {
3367 llvm::Value *result = CGF.EmitScalarExpr(E: e);
3368 return TryEmitResult(result, true);
3369 }
3370
3371 TryEmitResult visitBlockExpr(const BlockExpr *e) {
3372 TryEmitResult result = visitExpr(e);
3373 // Avoid the block-retain if this is a block literal that doesn't need to be
3374 // copied to the heap.
3375 if (CGF.CGM.getCodeGenOpts().ObjCAvoidHeapifyLocalBlocks &&
3376 e->getBlockDecl()->canAvoidCopyToHeap())
3377 result.setInt(true);
3378 return result;
3379 }
3380
3381 /// Block extends are net +0. Naively, we could just recurse on
3382 /// the subexpression, but actually we need to ensure that the
3383 /// value is copied as a block, so there's a little filter here.
3384 TryEmitResult visitExtendBlockObject(const Expr *e) {
3385 llvm::Value *result; // will be a +0 value
3386
3387 // If we can't safely assume the sub-expression will produce a
3388 // block-copied value, emit the sub-expression at +0.
3389 if (shouldEmitSeparateBlockRetain(e)) {
3390 result = CGF.EmitScalarExpr(E: e);
3391
3392 // Otherwise, try to emit the sub-expression at +1 recursively.
3393 } else {
3394 TryEmitResult subresult = asImpl().visit(e);
3395
3396 // If that produced a retained value, just use that.
3397 if (subresult.getInt()) {
3398 return subresult;
3399 }
3400
3401 // Otherwise it's +0.
3402 result = subresult.getPointer();
3403 }
3404
3405 // Retain the object as a block.
3406 result = CGF.EmitARCRetainBlock(value: result, /*mandatory*/ true);
3407 return TryEmitResult(result, true);
3408 }
3409
3410 /// For reclaims, emit the subexpression as a retained call and
3411 /// skip the consumption.
3412 TryEmitResult visitReclaimReturnedObject(const Expr *e) {
3413 llvm::Value *result = emitARCRetainCallResult(CGF, e);
3414 return TryEmitResult(result, true);
3415 }
3416
3417 /// When we have an undecorated call, retroactively do a claim.
3418 TryEmitResult visitCall(const Expr *e) {
3419 llvm::Value *result = emitARCRetainCallResult(CGF, e);
3420 return TryEmitResult(result, true);
3421 }
3422
3423 // TODO: maybe special-case visitBinAssignWeak?
3424
3425 TryEmitResult visitExpr(const Expr *e) {
3426 // We didn't find an obvious production, so emit what we've got and
3427 // tell the caller that we didn't manage to retain.
3428 llvm::Value *result = CGF.EmitScalarExpr(E: e);
3429 return TryEmitResult(result, false);
3430 }
3431};
3432}
3433
3434static TryEmitResult
3435tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
3436 return ARCRetainExprEmitter(CGF).visit(e);
3437}
3438
3439static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
3440 LValue lvalue,
3441 QualType type) {
3442 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
3443 llvm::Value *value = result.getPointer();
3444 if (!result.getInt())
3445 value = CGF.EmitARCRetain(type, value);
3446 return value;
3447}
3448
3449/// EmitARCRetainScalarExpr - Semantically equivalent to
3450/// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
3451/// best-effort attempt to peephole expressions that naturally produce
3452/// retained objects.
3453llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
3454 // The retain needs to happen within the full-expression.
3455 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Val: e)) {
3456 RunCleanupsScope scope(*this);
3457 return EmitARCRetainScalarExpr(e: cleanups->getSubExpr());
3458 }
3459
3460 TryEmitResult result = tryEmitARCRetainScalarExpr(CGF&: *this, e);
3461 llvm::Value *value = result.getPointer();
3462 if (!result.getInt())
3463 value = EmitARCRetain(type: e->getType(), value);
3464 return value;
3465}
3466
3467llvm::Value *
3468CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
3469 // The retain needs to happen within the full-expression.
3470 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Val: e)) {
3471 RunCleanupsScope scope(*this);
3472 return EmitARCRetainAutoreleaseScalarExpr(e: cleanups->getSubExpr());
3473 }
3474
3475 TryEmitResult result = tryEmitARCRetainScalarExpr(CGF&: *this, e);
3476 llvm::Value *value = result.getPointer();
3477 if (result.getInt())
3478 value = EmitARCAutorelease(value);
3479 else
3480 value = EmitARCRetainAutorelease(type: e->getType(), value);
3481 return value;
3482}
3483
3484llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
3485 llvm::Value *result;
3486 bool doRetain;
3487
3488 if (shouldEmitSeparateBlockRetain(e)) {
3489 result = EmitScalarExpr(E: e);
3490 doRetain = true;
3491 } else {
3492 TryEmitResult subresult = tryEmitARCRetainScalarExpr(CGF&: *this, e);
3493 result = subresult.getPointer();
3494 doRetain = !subresult.getInt();
3495 }
3496
3497 if (doRetain)
3498 result = EmitARCRetainBlock(value: result, /*mandatory*/ true);
3499 return EmitObjCConsumeObject(type: e->getType(), object: result);
3500}
3501
3502llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
3503 // In ARC, retain and autorelease the expression.
3504 if (getLangOpts().ObjCAutoRefCount) {
3505 // Do so before running any cleanups for the full-expression.
3506 // EmitARCRetainAutoreleaseScalarExpr does this for us.
3507 return EmitARCRetainAutoreleaseScalarExpr(e: expr);
3508 }
3509
3510 // Otherwise, use the normal scalar-expression emission. The
3511 // exception machinery doesn't do anything special with the
3512 // exception like retaining it, so there's no safety associated with
3513 // only running cleanups after the throw has started, and when it
3514 // matters it tends to be substantially inferior code.
3515 return EmitScalarExpr(E: expr);
3516}
3517
3518namespace {
3519
3520/// An emitter for assigning into an __unsafe_unretained context.
3521struct ARCUnsafeUnretainedExprEmitter :
3522 public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> {
3523
3524 ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3525
3526 llvm::Value *getValueOfResult(llvm::Value *value) {
3527 return value;
3528 }
3529
3530 llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) {
3531 return CGF.Builder.CreateBitCast(V: value, DestTy: resultType);
3532 }
3533
3534 llvm::Value *visitLValueToRValue(const Expr *e) {
3535 return CGF.EmitScalarExpr(E: e);
3536 }
3537
3538 /// For consumptions, just emit the subexpression and perform the
3539 /// consumption like normal.
3540 llvm::Value *visitConsumeObject(const Expr *e) {
3541 llvm::Value *value = CGF.EmitScalarExpr(E: e);
3542 return CGF.EmitObjCConsumeObject(type: e->getType(), object: value);
3543 }
3544
3545 /// No special logic for block extensions. (This probably can't
3546 /// actually happen in this emitter, though.)
3547 llvm::Value *visitExtendBlockObject(const Expr *e) {
3548 return CGF.EmitARCExtendBlockObject(e);
3549 }
3550
3551 /// For reclaims, perform an unsafeClaim if that's enabled.
3552 llvm::Value *visitReclaimReturnedObject(const Expr *e) {
3553 return CGF.EmitARCReclaimReturnedObject(E: e, /*unsafe*/ allowUnsafeClaim: true);
3554 }
3555
3556 /// When we have an undecorated call, just emit it without adding
3557 /// the unsafeClaim.
3558 llvm::Value *visitCall(const Expr *e) {
3559 return CGF.EmitScalarExpr(E: e);
3560 }
3561
3562 /// Just do normal scalar emission in the default case.
3563 llvm::Value *visitExpr(const Expr *e) {
3564 return CGF.EmitScalarExpr(E: e);
3565 }
3566};
3567}
3568
3569static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF,
3570 const Expr *e) {
3571 return ARCUnsafeUnretainedExprEmitter(CGF).visit(e);
3572}
3573
3574/// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to
3575/// immediately releasing the resut of EmitARCRetainScalarExpr, but
3576/// avoiding any spurious retains, including by performing reclaims
3577/// with objc_unsafeClaimAutoreleasedReturnValue.
3578llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) {
3579 // Look through full-expressions.
3580 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Val: e)) {
3581 RunCleanupsScope scope(*this);
3582 return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr());
3583 }
3584
3585 return emitARCUnsafeUnretainedScalarExpr(CGF&: *this, e);
3586}
3587
3588std::pair<LValue,llvm::Value*>
3589CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e,
3590 bool ignored) {
3591 // Evaluate the RHS first. If we're ignoring the result, assume
3592 // that we can emit at an unsafe +0.
3593 llvm::Value *value;
3594 if (ignored) {
3595 value = EmitARCUnsafeUnretainedScalarExpr(e: e->getRHS());
3596 } else {
3597 value = EmitScalarExpr(E: e->getRHS());
3598 }
3599
3600 // Emit the LHS and perform the store.
3601 LValue lvalue = EmitLValue(E: e->getLHS());
3602 EmitStoreOfScalar(value, lvalue);
3603
3604 return std::pair<LValue,llvm::Value*>(std::move(lvalue), value);
3605}
3606
3607std::pair<LValue,llvm::Value*>
3608CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
3609 bool ignored) {
3610 // Evaluate the RHS first.
3611 TryEmitResult result = tryEmitARCRetainScalarExpr(CGF&: *this, e: e->getRHS());
3612 llvm::Value *value = result.getPointer();
3613
3614 bool hasImmediateRetain = result.getInt();
3615
3616 // If we didn't emit a retained object, and the l-value is of block
3617 // type, then we need to emit the block-retain immediately in case
3618 // it invalidates the l-value.
3619 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
3620 value = EmitARCRetainBlock(value, /*mandatory*/ false);
3621 hasImmediateRetain = true;
3622 }
3623
3624 LValue lvalue = EmitLValue(E: e->getLHS());
3625
3626 // If the RHS was emitted retained, expand this.
3627 if (hasImmediateRetain) {
3628 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, Loc: SourceLocation());
3629 EmitStoreOfScalar(value, lvalue);
3630 EmitARCRelease(value: oldValue, precise: lvalue.isARCPreciseLifetime());
3631 } else {
3632 value = EmitARCStoreStrong(dst: lvalue, newValue: value, ignored);
3633 }
3634
3635 return std::pair<LValue,llvm::Value*>(lvalue, value);
3636}
3637
3638std::pair<LValue,llvm::Value*>
3639CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
3640 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e: e->getRHS());
3641 LValue lvalue = EmitLValue(E: e->getLHS());
3642
3643 EmitStoreOfScalar(value, lvalue);
3644
3645 return std::pair<LValue,llvm::Value*>(lvalue, value);
3646}
3647
3648void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
3649 const ObjCAutoreleasePoolStmt &ARPS) {
3650 const Stmt *subStmt = ARPS.getSubStmt();
3651 const CompoundStmt &S = cast<CompoundStmt>(Val: *subStmt);
3652
3653 CGDebugInfo *DI = getDebugInfo();
3654 if (DI)
3655 DI->EmitLexicalBlockStart(Builder, Loc: S.getLBracLoc());
3656
3657 // Keep track of the current cleanup stack depth.
3658 RunCleanupsScope Scope(*this);
3659 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
3660 llvm::Value *token = EmitObjCAutoreleasePoolPush();
3661 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(Kind: NormalCleanup, A: token);
3662 } else {
3663 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
3664 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(Kind: NormalCleanup, A: token);
3665 }
3666
3667 for (const auto *I : S.body())
3668 EmitStmt(S: I);
3669
3670 if (DI)
3671 DI->EmitLexicalBlockEnd(Builder, Loc: S.getRBracLoc());
3672}
3673
3674/// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3675/// make sure it survives garbage collection until this point.
3676void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
3677 // We just use an inline assembly.
3678 llvm::FunctionType *extenderType
3679 = llvm::FunctionType::get(Result: VoidTy, Params: VoidPtrTy, isVarArg: RequiredArgs::All);
3680 llvm::InlineAsm *extender = llvm::InlineAsm::get(Ty: extenderType,
3681 /* assembly */ AsmString: "",
3682 /* constraints */ Constraints: "r",
3683 /* side effects */ hasSideEffects: true);
3684
3685 EmitNounwindRuntimeCall(callee: extender, args: object);
3686}
3687
3688/// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
3689/// non-trivial copy assignment function, produce following helper function.
3690/// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
3691///
3692llvm::Constant *
3693CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
3694 const ObjCPropertyImplDecl *PID) {
3695 const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3696 if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
3697 return nullptr;
3698
3699 QualType Ty = PID->getPropertyIvarDecl()->getType();
3700 ASTContext &C = getContext();
3701
3702 if (Ty.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
3703 // Call the move assignment operator instead of calling the copy assignment
3704 // operator and destructor.
3705 CharUnits Alignment = C.getTypeAlignInChars(T: Ty);
3706 llvm::Constant *Fn = getNonTrivialCStructMoveAssignmentOperator(
3707 CGM, DstAlignment: Alignment, SrcAlignment: Alignment, IsVolatile: Ty.isVolatileQualified(), QT: Ty);
3708 return Fn;
3709 }
3710
3711 if (!getLangOpts().CPlusPlus ||
3712 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3713 return nullptr;
3714 if (!Ty->isRecordType())
3715 return nullptr;
3716 llvm::Constant *HelperFn = nullptr;
3717 if (hasTrivialSetExpr(PID))
3718 return nullptr;
3719 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
3720 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
3721 return HelperFn;
3722
3723 IdentifierInfo *II
3724 = &CGM.getContext().Idents.get(Name: "__assign_helper_atomic_property_");
3725
3726 QualType ReturnTy = C.VoidTy;
3727 QualType DestTy = C.getPointerType(T: Ty);
3728 QualType SrcTy = Ty;
3729 SrcTy.addConst();
3730 SrcTy = C.getPointerType(T: SrcTy);
3731
3732 SmallVector<QualType, 2> ArgTys;
3733 ArgTys.push_back(Elt: DestTy);
3734 ArgTys.push_back(Elt: SrcTy);
3735 QualType FunctionTy = C.getFunctionType(ResultTy: ReturnTy, Args: ArgTys, EPI: {});
3736
3737 FunctionDecl *FD = FunctionDecl::Create(
3738 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3739 FunctionTy, nullptr, SC_Static, false, false, false);
3740
3741 FunctionArgList args;
3742 ParmVarDecl *Params[2];
3743 ParmVarDecl *DstDecl = ParmVarDecl::Create(
3744 C, FD, SourceLocation(), SourceLocation(), nullptr, DestTy,
3745 C.getTrivialTypeSourceInfo(T: DestTy, Loc: SourceLocation()), SC_None,
3746 /*DefArg=*/nullptr);
3747 args.push_back(Params[0] = DstDecl);
3748 ParmVarDecl *SrcDecl = ParmVarDecl::Create(
3749 C, FD, SourceLocation(), SourceLocation(), nullptr, SrcTy,
3750 C.getTrivialTypeSourceInfo(T: SrcTy, Loc: SourceLocation()), SC_None,
3751 /*DefArg=*/nullptr);
3752 args.push_back(Params[1] = SrcDecl);
3753 FD->setParams(Params);
3754
3755 const CGFunctionInfo &FI =
3756 CGM.getTypes().arrangeBuiltinFunctionDeclaration(resultType: ReturnTy, args);
3757
3758 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(Info: FI);
3759
3760 llvm::Function *Fn =
3761 llvm::Function::Create(Ty: LTy, Linkage: llvm::GlobalValue::InternalLinkage,
3762 N: "__assign_helper_atomic_property_",
3763 M: &CGM.getModule());
3764
3765 CGM.SetInternalFunctionAttributes(GD: GlobalDecl(), F: Fn, FI);
3766
3767 StartFunction(GD: FD, RetTy: ReturnTy, Fn, FnInfo: FI, Args: args);
3768
3769 DeclRefExpr DstExpr(C, DstDecl, false, DestTy, VK_PRValue, SourceLocation());
3770 UnaryOperator *DST = UnaryOperator::Create(
3771 C, &DstExpr, UO_Deref, DestTy->getPointeeType(), VK_LValue, OK_Ordinary,
3772 SourceLocation(), false, FPOptionsOverride());
3773
3774 DeclRefExpr SrcExpr(C, SrcDecl, false, SrcTy, VK_PRValue, SourceLocation());
3775 UnaryOperator *SRC = UnaryOperator::Create(
3776 C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3777 SourceLocation(), false, FPOptionsOverride());
3778
3779 Expr *Args[2] = {DST, SRC};
3780 CallExpr *CalleeExp = cast<CallExpr>(Val: PID->getSetterCXXAssignment());
3781 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
3782 Ctx: C, OpKind: OO_Equal, Fn: CalleeExp->getCallee(), Args, Ty: DestTy->getPointeeType(),
3783 VK: VK_LValue, OperatorLoc: SourceLocation(), FPFeatures: FPOptionsOverride());
3784
3785 EmitStmt(TheCall);
3786
3787 FinishFunction();
3788 HelperFn = Fn;
3789 CGM.setAtomicSetterHelperFnMap(Ty, Fn: HelperFn);
3790 return HelperFn;
3791}
3792
3793llvm::Constant *CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
3794 const ObjCPropertyImplDecl *PID) {
3795 const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3796 if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
3797 return nullptr;
3798
3799 QualType Ty = PD->getType();
3800 ASTContext &C = getContext();
3801
3802 if (Ty.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
3803 CharUnits Alignment = C.getTypeAlignInChars(T: Ty);
3804 llvm::Constant *Fn = getNonTrivialCStructCopyConstructor(
3805 CGM, DstAlignment: Alignment, SrcAlignment: Alignment, IsVolatile: Ty.isVolatileQualified(), QT: Ty);
3806 return Fn;
3807 }
3808
3809 if (!getLangOpts().CPlusPlus ||
3810 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3811 return nullptr;
3812 if (!Ty->isRecordType())
3813 return nullptr;
3814 llvm::Constant *HelperFn = nullptr;
3815 if (hasTrivialGetExpr(propImpl: PID))
3816 return nullptr;
3817 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
3818 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
3819 return HelperFn;
3820
3821 IdentifierInfo *II =
3822 &CGM.getContext().Idents.get(Name: "__copy_helper_atomic_property_");
3823
3824 QualType ReturnTy = C.VoidTy;
3825 QualType DestTy = C.getPointerType(T: Ty);
3826 QualType SrcTy = Ty;
3827 SrcTy.addConst();
3828 SrcTy = C.getPointerType(T: SrcTy);
3829
3830 SmallVector<QualType, 2> ArgTys;
3831 ArgTys.push_back(Elt: DestTy);
3832 ArgTys.push_back(Elt: SrcTy);
3833 QualType FunctionTy = C.getFunctionType(ResultTy: ReturnTy, Args: ArgTys, EPI: {});
3834
3835 FunctionDecl *FD = FunctionDecl::Create(
3836 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3837 FunctionTy, nullptr, SC_Static, false, false, false);
3838
3839 FunctionArgList args;
3840 ParmVarDecl *Params[2];
3841 ParmVarDecl *DstDecl = ParmVarDecl::Create(
3842 C, FD, SourceLocation(), SourceLocation(), nullptr, DestTy,
3843 C.getTrivialTypeSourceInfo(T: DestTy, Loc: SourceLocation()), SC_None,
3844 /*DefArg=*/nullptr);
3845 args.push_back(Params[0] = DstDecl);
3846 ParmVarDecl *SrcDecl = ParmVarDecl::Create(
3847 C, FD, SourceLocation(), SourceLocation(), nullptr, SrcTy,
3848 C.getTrivialTypeSourceInfo(T: SrcTy, Loc: SourceLocation()), SC_None,
3849 /*DefArg=*/nullptr);
3850 args.push_back(Params[1] = SrcDecl);
3851 FD->setParams(Params);
3852
3853 const CGFunctionInfo &FI =
3854 CGM.getTypes().arrangeBuiltinFunctionDeclaration(resultType: ReturnTy, args);
3855
3856 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(Info: FI);
3857
3858 llvm::Function *Fn = llvm::Function::Create(
3859 Ty: LTy, Linkage: llvm::GlobalValue::InternalLinkage, N: "__copy_helper_atomic_property_",
3860 M: &CGM.getModule());
3861
3862 CGM.SetInternalFunctionAttributes(GD: GlobalDecl(), F: Fn, FI);
3863
3864 StartFunction(GD: FD, RetTy: ReturnTy, Fn, FnInfo: FI, Args: args);
3865
3866 DeclRefExpr SrcExpr(getContext(), SrcDecl, false, SrcTy, VK_PRValue,
3867 SourceLocation());
3868
3869 UnaryOperator *SRC = UnaryOperator::Create(
3870 C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3871 SourceLocation(), false, FPOptionsOverride());
3872
3873 CXXConstructExpr *CXXConstExpr =
3874 cast<CXXConstructExpr>(Val: PID->getGetterCXXConstructor());
3875
3876 SmallVector<Expr*, 4> ConstructorArgs;
3877 ConstructorArgs.push_back(SRC);
3878 ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
3879 CXXConstExpr->arg_end());
3880
3881 CXXConstructExpr *TheCXXConstructExpr =
3882 CXXConstructExpr::Create(Ctx: C, Ty, Loc: SourceLocation(),
3883 Ctor: CXXConstExpr->getConstructor(),
3884 Elidable: CXXConstExpr->isElidable(),
3885 Args: ConstructorArgs,
3886 HadMultipleCandidates: CXXConstExpr->hadMultipleCandidates(),
3887 ListInitialization: CXXConstExpr->isListInitialization(),
3888 StdInitListInitialization: CXXConstExpr->isStdInitListInitialization(),
3889 ZeroInitialization: CXXConstExpr->requiresZeroInitialization(),
3890 ConstructKind: CXXConstExpr->getConstructionKind(),
3891 ParenOrBraceRange: SourceRange());
3892
3893 DeclRefExpr DstExpr(getContext(), DstDecl, false, DestTy, VK_PRValue,
3894 SourceLocation());
3895
3896 RValue DV = EmitAnyExpr(&DstExpr);
3897 CharUnits Alignment =
3898 getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3899 EmitAggExpr(TheCXXConstructExpr,
3900 AggValueSlot::forAddr(
3901 addr: Address(DV.getScalarVal(), ConvertTypeForMem(T: Ty), Alignment),
3902 quals: Qualifiers(), isDestructed: AggValueSlot::IsDestructed,
3903 needsGC: AggValueSlot::DoesNotNeedGCBarriers,
3904 isAliased: AggValueSlot::IsNotAliased, mayOverlap: AggValueSlot::DoesNotOverlap));
3905
3906 FinishFunction();
3907 HelperFn = Fn;
3908 CGM.setAtomicGetterHelperFnMap(Ty, Fn: HelperFn);
3909 return HelperFn;
3910}
3911
3912llvm::Value *
3913CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3914 // Get selectors for retain/autorelease.
3915 IdentifierInfo *CopyID = &getContext().Idents.get(Name: "copy");
3916 Selector CopySelector =
3917 getContext().Selectors.getNullarySelector(ID: CopyID);
3918 IdentifierInfo *AutoreleaseID = &getContext().Idents.get(Name: "autorelease");
3919 Selector AutoreleaseSelector =
3920 getContext().Selectors.getNullarySelector(ID: AutoreleaseID);
3921
3922 // Emit calls to retain/autorelease.
3923 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3924 llvm::Value *Val = Block;
3925 RValue Result;
3926 Result = Runtime.GenerateMessageSend(CGF&: *this, ReturnSlot: ReturnValueSlot(),
3927 ResultType: Ty, Sel: CopySelector,
3928 Receiver: Val, CallArgs: CallArgList(), Class: nullptr, Method: nullptr);
3929 Val = Result.getScalarVal();
3930 Result = Runtime.GenerateMessageSend(CGF&: *this, ReturnSlot: ReturnValueSlot(),
3931 ResultType: Ty, Sel: AutoreleaseSelector,
3932 Receiver: Val, CallArgs: CallArgList(), Class: nullptr, Method: nullptr);
3933 Val = Result.getScalarVal();
3934 return Val;
3935}
3936
3937static unsigned getBaseMachOPlatformID(const llvm::Triple &TT) {
3938 switch (TT.getOS()) {
3939 case llvm::Triple::Darwin:
3940 case llvm::Triple::MacOSX:
3941 return llvm::MachO::PLATFORM_MACOS;
3942 case llvm::Triple::IOS:
3943 return llvm::MachO::PLATFORM_IOS;
3944 case llvm::Triple::TvOS:
3945 return llvm::MachO::PLATFORM_TVOS;
3946 case llvm::Triple::WatchOS:
3947 return llvm::MachO::PLATFORM_WATCHOS;
3948 case llvm::Triple::XROS:
3949 return llvm::MachO::PLATFORM_XROS;
3950 case llvm::Triple::DriverKit:
3951 return llvm::MachO::PLATFORM_DRIVERKIT;
3952 default:
3953 return llvm::MachO::PLATFORM_UNKNOWN;
3954 }
3955}
3956
3957static llvm::Value *emitIsPlatformVersionAtLeast(CodeGenFunction &CGF,
3958 const VersionTuple &Version) {
3959 CodeGenModule &CGM = CGF.CGM;
3960 // Note: we intend to support multi-platform version checks, so reserve
3961 // the room for a dual platform checking invocation that will be
3962 // implemented in the future.
3963 llvm::SmallVector<llvm::Value *, 8> Args;
3964
3965 auto EmitArgs = [&](const VersionTuple &Version, const llvm::Triple &TT) {
3966 std::optional<unsigned> Min = Version.getMinor(),
3967 SMin = Version.getSubminor();
3968 Args.push_back(
3969 Elt: llvm::ConstantInt::get(Ty: CGM.Int32Ty, V: getBaseMachOPlatformID(TT)));
3970 Args.push_back(Elt: llvm::ConstantInt::get(Ty: CGM.Int32Ty, V: Version.getMajor()));
3971 Args.push_back(Elt: llvm::ConstantInt::get(Ty: CGM.Int32Ty, V: Min.value_or(u: 0)));
3972 Args.push_back(Elt: llvm::ConstantInt::get(Ty: CGM.Int32Ty, V: SMin.value_or(u: 0)));
3973 };
3974
3975 assert(!Version.empty() && "unexpected empty version");
3976 EmitArgs(Version, CGM.getTarget().getTriple());
3977
3978 if (!CGM.IsPlatformVersionAtLeastFn) {
3979 llvm::FunctionType *FTy = llvm::FunctionType::get(
3980 Result: CGM.Int32Ty, Params: {CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty},
3981 isVarArg: false);
3982 CGM.IsPlatformVersionAtLeastFn =
3983 CGM.CreateRuntimeFunction(Ty: FTy, Name: "__isPlatformVersionAtLeast");
3984 }
3985
3986 llvm::Value *Check =
3987 CGF.EmitNounwindRuntimeCall(callee: CGM.IsPlatformVersionAtLeastFn, args: Args);
3988 return CGF.Builder.CreateICmpNE(LHS: Check,
3989 RHS: llvm::Constant::getNullValue(Ty: CGM.Int32Ty));
3990}
3991
3992llvm::Value *
3993CodeGenFunction::EmitBuiltinAvailable(const VersionTuple &Version) {
3994 // Darwin uses the new __isPlatformVersionAtLeast family of routines.
3995 if (CGM.getTarget().getTriple().isOSDarwin())
3996 return emitIsPlatformVersionAtLeast(CGF&: *this, Version);
3997
3998 if (!CGM.IsOSVersionAtLeastFn) {
3999 llvm::FunctionType *FTy =
4000 llvm::FunctionType::get(Result: Int32Ty, Params: {Int32Ty, Int32Ty, Int32Ty}, isVarArg: false);
4001 CGM.IsOSVersionAtLeastFn =
4002 CGM.CreateRuntimeFunction(Ty: FTy, Name: "__isOSVersionAtLeast");
4003 }
4004
4005 std::optional<unsigned> Min = Version.getMinor(),
4006 SMin = Version.getSubminor();
4007 llvm::Value *Args[] = {
4008 llvm::ConstantInt::get(Ty: CGM.Int32Ty, V: Version.getMajor()),
4009 llvm::ConstantInt::get(Ty: CGM.Int32Ty, V: Min.value_or(u: 0)),
4010 llvm::ConstantInt::get(Ty: CGM.Int32Ty, V: SMin.value_or(u: 0))};
4011
4012 llvm::Value *CallRes =
4013 EmitNounwindRuntimeCall(callee: CGM.IsOSVersionAtLeastFn, args: Args);
4014
4015 return Builder.CreateICmpNE(LHS: CallRes, RHS: llvm::Constant::getNullValue(Ty: Int32Ty));
4016}
4017
4018static bool isFoundationNeededForDarwinAvailabilityCheck(
4019 const llvm::Triple &TT, const VersionTuple &TargetVersion) {
4020 VersionTuple FoundationDroppedInVersion;
4021 switch (TT.getOS()) {
4022 case llvm::Triple::IOS:
4023 case llvm::Triple::TvOS:
4024 FoundationDroppedInVersion = VersionTuple(/*Major=*/13);
4025 break;
4026 case llvm::Triple::WatchOS:
4027 FoundationDroppedInVersion = VersionTuple(/*Major=*/6);
4028 break;
4029 case llvm::Triple::Darwin:
4030 case llvm::Triple::MacOSX:
4031 FoundationDroppedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/15);
4032 break;
4033 case llvm::Triple::XROS:
4034 // XROS doesn't need Foundation.
4035 return false;
4036 case llvm::Triple::DriverKit:
4037 // DriverKit doesn't need Foundation.
4038 return false;
4039 default:
4040 llvm_unreachable("Unexpected OS");
4041 }
4042 return TargetVersion < FoundationDroppedInVersion;
4043}
4044
4045void CodeGenModule::emitAtAvailableLinkGuard() {
4046 if (!IsPlatformVersionAtLeastFn)
4047 return;
4048 // @available requires CoreFoundation only on Darwin.
4049 if (!Target.getTriple().isOSDarwin())
4050 return;
4051 // @available doesn't need Foundation on macOS 10.15+, iOS/tvOS 13+, or
4052 // watchOS 6+.
4053 if (!isFoundationNeededForDarwinAvailabilityCheck(
4054 TT: Target.getTriple(), TargetVersion: Target.getPlatformMinVersion()))
4055 return;
4056 // Add -framework CoreFoundation to the linker commands. We still want to
4057 // emit the core foundation reference down below because otherwise if
4058 // CoreFoundation is not used in the code, the linker won't link the
4059 // framework.
4060 auto &Context = getLLVMContext();
4061 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, Str: "-framework"),
4062 llvm::MDString::get(Context, Str: "CoreFoundation")};
4063 LinkerOptionsMetadata.push_back(Elt: llvm::MDNode::get(Context, MDs: Args));
4064 // Emit a reference to a symbol from CoreFoundation to ensure that
4065 // CoreFoundation is linked into the final binary.
4066 llvm::FunctionType *FTy =
4067 llvm::FunctionType::get(Result: Int32Ty, Params: {VoidPtrTy}, isVarArg: false);
4068 llvm::FunctionCallee CFFunc =
4069 CreateRuntimeFunction(Ty: FTy, Name: "CFBundleGetVersionNumber");
4070
4071 llvm::FunctionType *CheckFTy = llvm::FunctionType::get(Result: VoidTy, Params: {}, isVarArg: false);
4072 llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction(
4073 Ty: CheckFTy, Name: "__clang_at_available_requires_core_foundation_framework",
4074 ExtraAttrs: llvm::AttributeList(), /*Local=*/true);
4075 llvm::Function *CFLinkCheckFunc =
4076 cast<llvm::Function>(Val: CFLinkCheckFuncRef.getCallee()->stripPointerCasts());
4077 if (CFLinkCheckFunc->empty()) {
4078 CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage);
4079 CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility);
4080 CodeGenFunction CGF(*this);
4081 CGF.Builder.SetInsertPoint(CGF.createBasicBlock(name: "", parent: CFLinkCheckFunc));
4082 CGF.EmitNounwindRuntimeCall(callee: CFFunc,
4083 args: llvm::Constant::getNullValue(Ty: VoidPtrTy));
4084 CGF.Builder.CreateUnreachable();
4085 addCompilerUsedGlobal(GV: CFLinkCheckFunc);
4086 }
4087}
4088
4089CGObjCRuntime::~CGObjCRuntime() {}
4090

source code of clang/lib/CodeGen/CGObjC.cpp