1 | //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This coordinates the per-function state used while generating code. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "CodeGenFunction.h" |
14 | #include "CGBlocks.h" |
15 | #include "CGCUDARuntime.h" |
16 | #include "CGCXXABI.h" |
17 | #include "CGCleanup.h" |
18 | #include "CGDebugInfo.h" |
19 | #include "CGOpenMPRuntime.h" |
20 | #include "CodeGenModule.h" |
21 | #include "CodeGenPGO.h" |
22 | #include "TargetInfo.h" |
23 | #include "clang/AST/ASTContext.h" |
24 | #include "clang/AST/ASTLambda.h" |
25 | #include "clang/AST/Attr.h" |
26 | #include "clang/AST/Decl.h" |
27 | #include "clang/AST/DeclCXX.h" |
28 | #include "clang/AST/Expr.h" |
29 | #include "clang/AST/StmtCXX.h" |
30 | #include "clang/AST/StmtObjC.h" |
31 | #include "clang/Basic/Builtins.h" |
32 | #include "clang/Basic/CodeGenOptions.h" |
33 | #include "clang/Basic/TargetInfo.h" |
34 | #include "clang/CodeGen/CGFunctionInfo.h" |
35 | #include "clang/Frontend/FrontendDiagnostic.h" |
36 | #include "llvm/ADT/ArrayRef.h" |
37 | #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" |
38 | #include "llvm/IR/DataLayout.h" |
39 | #include "llvm/IR/Dominators.h" |
40 | #include "llvm/IR/FPEnv.h" |
41 | #include "llvm/IR/IntrinsicInst.h" |
42 | #include "llvm/IR/Intrinsics.h" |
43 | #include "llvm/IR/MDBuilder.h" |
44 | #include "llvm/IR/Operator.h" |
45 | #include "llvm/Support/CRC.h" |
46 | #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" |
47 | #include "llvm/Transforms/Utils/PromoteMemToReg.h" |
48 | using namespace clang; |
49 | using namespace CodeGen; |
50 | |
51 | /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time |
52 | /// markers. |
53 | static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, |
54 | const LangOptions &LangOpts) { |
55 | if (CGOpts.DisableLifetimeMarkers) |
56 | return false; |
57 | |
58 | // Sanitizers may use markers. |
59 | if (CGOpts.SanitizeAddressUseAfterScope || |
60 | LangOpts.Sanitize.has(SanitizerKind::HWAddress) || |
61 | LangOpts.Sanitize.has(SanitizerKind::Memory)) |
62 | return true; |
63 | |
64 | // For now, only in optimized builds. |
65 | return CGOpts.OptimizationLevel != 0; |
66 | } |
67 | |
68 | CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) |
69 | : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), |
70 | Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), |
71 | CGBuilderInserterTy(this)), |
72 | SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), |
73 | DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), |
74 | ShouldEmitLifetimeMarkers( |
75 | shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { |
76 | if (!suppressNewContext) |
77 | CGM.getCXXABI().getMangleContext().startNewFunction(); |
78 | |
79 | SetFastMathFlags(CurFPFeatures); |
80 | SetFPModel(); |
81 | } |
82 | |
83 | CodeGenFunction::~CodeGenFunction() { |
84 | assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup" ); |
85 | |
86 | if (getLangOpts().OpenMP && CurFn) |
87 | CGM.getOpenMPRuntime().functionFinished(*this); |
88 | |
89 | // If we have an OpenMPIRBuilder we want to finalize functions (incl. |
90 | // outlining etc) at some point. Doing it once the function codegen is done |
91 | // seems to be a reasonable spot. We do it here, as opposed to the deletion |
92 | // time of the CodeGenModule, because we have to ensure the IR has not yet |
93 | // been "emitted" to the outside, thus, modifications are still sensible. |
94 | if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) |
95 | CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn); |
96 | } |
97 | |
98 | // Map the LangOption for exception behavior into |
99 | // the corresponding enum in the IR. |
100 | llvm::fp::ExceptionBehavior |
101 | clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { |
102 | |
103 | switch (Kind) { |
104 | case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; |
105 | case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; |
106 | case LangOptions::FPE_Strict: return llvm::fp::ebStrict; |
107 | } |
108 | llvm_unreachable("Unsupported FP Exception Behavior" ); |
109 | } |
110 | |
111 | void CodeGenFunction::SetFPModel() { |
112 | llvm::RoundingMode RM = getLangOpts().getFPRoundingMode(); |
113 | auto fpExceptionBehavior = ToConstrainedExceptMD( |
114 | getLangOpts().getFPExceptionMode()); |
115 | |
116 | Builder.setDefaultConstrainedRounding(RM); |
117 | Builder.setDefaultConstrainedExcept(fpExceptionBehavior); |
118 | Builder.setIsFPConstrained(fpExceptionBehavior != llvm::fp::ebIgnore || |
119 | RM != llvm::RoundingMode::NearestTiesToEven); |
120 | } |
121 | |
122 | void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { |
123 | llvm::FastMathFlags FMF; |
124 | FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); |
125 | FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); |
126 | FMF.setNoInfs(FPFeatures.getNoHonorInfs()); |
127 | FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); |
128 | FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); |
129 | FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); |
130 | FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); |
131 | Builder.setFastMathFlags(FMF); |
132 | } |
133 | |
134 | CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, |
135 | const Expr *E) |
136 | : CGF(CGF) { |
137 | ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts())); |
138 | } |
139 | |
140 | CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, |
141 | FPOptions FPFeatures) |
142 | : CGF(CGF) { |
143 | ConstructorHelper(FPFeatures); |
144 | } |
145 | |
146 | void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { |
147 | OldFPFeatures = CGF.CurFPFeatures; |
148 | CGF.CurFPFeatures = FPFeatures; |
149 | |
150 | OldExcept = CGF.Builder.getDefaultConstrainedExcept(); |
151 | OldRounding = CGF.Builder.getDefaultConstrainedRounding(); |
152 | |
153 | if (OldFPFeatures == FPFeatures) |
154 | return; |
155 | |
156 | FMFGuard.emplace(CGF.Builder); |
157 | |
158 | llvm::RoundingMode NewRoundingBehavior = |
159 | static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode()); |
160 | CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); |
161 | auto NewExceptionBehavior = |
162 | ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( |
163 | FPFeatures.getFPExceptionMode())); |
164 | CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); |
165 | |
166 | CGF.SetFastMathFlags(FPFeatures); |
167 | |
168 | assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || |
169 | isa<CXXConstructorDecl>(CGF.CurFuncDecl) || |
170 | isa<CXXDestructorDecl>(CGF.CurFuncDecl) || |
171 | (NewExceptionBehavior == llvm::fp::ebIgnore && |
172 | NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && |
173 | "FPConstrained should be enabled on entire function" ); |
174 | |
175 | auto mergeFnAttrValue = [&](StringRef Name, bool Value) { |
176 | auto OldValue = |
177 | CGF.CurFn->getFnAttribute(Name).getValueAsBool(); |
178 | auto NewValue = OldValue & Value; |
179 | if (OldValue != NewValue) |
180 | CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); |
181 | }; |
182 | mergeFnAttrValue("no-infs-fp-math" , FPFeatures.getNoHonorInfs()); |
183 | mergeFnAttrValue("no-nans-fp-math" , FPFeatures.getNoHonorNaNs()); |
184 | mergeFnAttrValue("no-signed-zeros-fp-math" , FPFeatures.getNoSignedZero()); |
185 | mergeFnAttrValue("unsafe-fp-math" , FPFeatures.getAllowFPReassociate() && |
186 | FPFeatures.getAllowReciprocal() && |
187 | FPFeatures.getAllowApproxFunc() && |
188 | FPFeatures.getNoSignedZero()); |
189 | } |
190 | |
191 | CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { |
192 | CGF.CurFPFeatures = OldFPFeatures; |
193 | CGF.Builder.setDefaultConstrainedExcept(OldExcept); |
194 | CGF.Builder.setDefaultConstrainedRounding(OldRounding); |
195 | } |
196 | |
197 | LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { |
198 | LValueBaseInfo BaseInfo; |
199 | TBAAAccessInfo TBAAInfo; |
200 | CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); |
201 | return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, |
202 | TBAAInfo); |
203 | } |
204 | |
205 | /// Given a value of type T* that may not be to a complete object, |
206 | /// construct an l-value with the natural pointee alignment of T. |
207 | LValue |
208 | CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { |
209 | LValueBaseInfo BaseInfo; |
210 | TBAAAccessInfo TBAAInfo; |
211 | CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, |
212 | /* forPointeeType= */ true); |
213 | return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); |
214 | } |
215 | |
216 | |
217 | llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { |
218 | return CGM.getTypes().ConvertTypeForMem(T); |
219 | } |
220 | |
221 | llvm::Type *CodeGenFunction::ConvertType(QualType T) { |
222 | return CGM.getTypes().ConvertType(T); |
223 | } |
224 | |
225 | TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { |
226 | type = type.getCanonicalType(); |
227 | while (true) { |
228 | switch (type->getTypeClass()) { |
229 | #define TYPE(name, parent) |
230 | #define ABSTRACT_TYPE(name, parent) |
231 | #define NON_CANONICAL_TYPE(name, parent) case Type::name: |
232 | #define DEPENDENT_TYPE(name, parent) case Type::name: |
233 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: |
234 | #include "clang/AST/TypeNodes.inc" |
235 | llvm_unreachable("non-canonical or dependent type in IR-generation" ); |
236 | |
237 | case Type::Auto: |
238 | case Type::DeducedTemplateSpecialization: |
239 | llvm_unreachable("undeduced type in IR-generation" ); |
240 | |
241 | // Various scalar types. |
242 | case Type::Builtin: |
243 | case Type::Pointer: |
244 | case Type::BlockPointer: |
245 | case Type::LValueReference: |
246 | case Type::RValueReference: |
247 | case Type::MemberPointer: |
248 | case Type::Vector: |
249 | case Type::ExtVector: |
250 | case Type::ConstantMatrix: |
251 | case Type::FunctionProto: |
252 | case Type::FunctionNoProto: |
253 | case Type::Enum: |
254 | case Type::ObjCObjectPointer: |
255 | case Type::Pipe: |
256 | case Type::ExtInt: |
257 | return TEK_Scalar; |
258 | |
259 | // Complexes. |
260 | case Type::Complex: |
261 | return TEK_Complex; |
262 | |
263 | // Arrays, records, and Objective-C objects. |
264 | case Type::ConstantArray: |
265 | case Type::IncompleteArray: |
266 | case Type::VariableArray: |
267 | case Type::Record: |
268 | case Type::ObjCObject: |
269 | case Type::ObjCInterface: |
270 | return TEK_Aggregate; |
271 | |
272 | // We operate on atomic values according to their underlying type. |
273 | case Type::Atomic: |
274 | type = cast<AtomicType>(type)->getValueType(); |
275 | continue; |
276 | } |
277 | llvm_unreachable("unknown type kind!" ); |
278 | } |
279 | } |
280 | |
281 | llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { |
282 | // For cleanliness, we try to avoid emitting the return block for |
283 | // simple cases. |
284 | llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); |
285 | |
286 | if (CurBB) { |
287 | assert(!CurBB->getTerminator() && "Unexpected terminated block." ); |
288 | |
289 | // We have a valid insert point, reuse it if it is empty or there are no |
290 | // explicit jumps to the return block. |
291 | if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { |
292 | ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); |
293 | delete ReturnBlock.getBlock(); |
294 | ReturnBlock = JumpDest(); |
295 | } else |
296 | EmitBlock(ReturnBlock.getBlock()); |
297 | return llvm::DebugLoc(); |
298 | } |
299 | |
300 | // Otherwise, if the return block is the target of a single direct |
301 | // branch then we can just put the code in that block instead. This |
302 | // cleans up functions which started with a unified return block. |
303 | if (ReturnBlock.getBlock()->hasOneUse()) { |
304 | llvm::BranchInst *BI = |
305 | dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); |
306 | if (BI && BI->isUnconditional() && |
307 | BI->getSuccessor(0) == ReturnBlock.getBlock()) { |
308 | // Record/return the DebugLoc of the simple 'return' expression to be used |
309 | // later by the actual 'ret' instruction. |
310 | llvm::DebugLoc Loc = BI->getDebugLoc(); |
311 | Builder.SetInsertPoint(BI->getParent()); |
312 | BI->eraseFromParent(); |
313 | delete ReturnBlock.getBlock(); |
314 | ReturnBlock = JumpDest(); |
315 | return Loc; |
316 | } |
317 | } |
318 | |
319 | // FIXME: We are at an unreachable point, there is no reason to emit the block |
320 | // unless it has uses. However, we still need a place to put the debug |
321 | // region.end for now. |
322 | |
323 | EmitBlock(ReturnBlock.getBlock()); |
324 | return llvm::DebugLoc(); |
325 | } |
326 | |
327 | static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { |
328 | if (!BB) return; |
329 | if (!BB->use_empty()) |
330 | return CGF.CurFn->getBasicBlockList().push_back(BB); |
331 | delete BB; |
332 | } |
333 | |
334 | void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { |
335 | assert(BreakContinueStack.empty() && |
336 | "mismatched push/pop in break/continue stack!" ); |
337 | |
338 | bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 |
339 | && NumSimpleReturnExprs == NumReturnExprs |
340 | && ReturnBlock.getBlock()->use_empty(); |
341 | // Usually the return expression is evaluated before the cleanup |
342 | // code. If the function contains only a simple return statement, |
343 | // such as a constant, the location before the cleanup code becomes |
344 | // the last useful breakpoint in the function, because the simple |
345 | // return expression will be evaluated after the cleanup code. To be |
346 | // safe, set the debug location for cleanup code to the location of |
347 | // the return statement. Otherwise the cleanup code should be at the |
348 | // end of the function's lexical scope. |
349 | // |
350 | // If there are multiple branches to the return block, the branch |
351 | // instructions will get the location of the return statements and |
352 | // all will be fine. |
353 | if (CGDebugInfo *DI = getDebugInfo()) { |
354 | if (OnlySimpleReturnStmts) |
355 | DI->EmitLocation(Builder, LastStopPoint); |
356 | else |
357 | DI->EmitLocation(Builder, EndLoc); |
358 | } |
359 | |
360 | // Pop any cleanups that might have been associated with the |
361 | // parameters. Do this in whatever block we're currently in; it's |
362 | // important to do this before we enter the return block or return |
363 | // edges will be *really* confused. |
364 | bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; |
365 | bool HasOnlyLifetimeMarkers = |
366 | HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); |
367 | bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; |
368 | if (HasCleanups) { |
369 | // Make sure the line table doesn't jump back into the body for |
370 | // the ret after it's been at EndLoc. |
371 | Optional<ApplyDebugLocation> AL; |
372 | if (CGDebugInfo *DI = getDebugInfo()) { |
373 | if (OnlySimpleReturnStmts) |
374 | DI->EmitLocation(Builder, EndLoc); |
375 | else |
376 | // We may not have a valid end location. Try to apply it anyway, and |
377 | // fall back to an artificial location if needed. |
378 | AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); |
379 | } |
380 | |
381 | PopCleanupBlocks(PrologueCleanupDepth); |
382 | } |
383 | |
384 | // Emit function epilog (to return). |
385 | llvm::DebugLoc Loc = EmitReturnBlock(); |
386 | |
387 | if (ShouldInstrumentFunction()) { |
388 | if (CGM.getCodeGenOpts().InstrumentFunctions) |
389 | CurFn->addFnAttr("instrument-function-exit" , "__cyg_profile_func_exit" ); |
390 | if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) |
391 | CurFn->addFnAttr("instrument-function-exit-inlined" , |
392 | "__cyg_profile_func_exit" ); |
393 | } |
394 | |
395 | // Emit debug descriptor for function end. |
396 | if (CGDebugInfo *DI = getDebugInfo()) |
397 | DI->EmitFunctionEnd(Builder, CurFn); |
398 | |
399 | // Reset the debug location to that of the simple 'return' expression, if any |
400 | // rather than that of the end of the function's scope '}'. |
401 | ApplyDebugLocation AL(*this, Loc); |
402 | EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); |
403 | EmitEndEHSpec(CurCodeDecl); |
404 | |
405 | assert(EHStack.empty() && |
406 | "did not remove all scopes from cleanup stack!" ); |
407 | |
408 | // If someone did an indirect goto, emit the indirect goto block at the end of |
409 | // the function. |
410 | if (IndirectBranch) { |
411 | EmitBlock(IndirectBranch->getParent()); |
412 | Builder.ClearInsertionPoint(); |
413 | } |
414 | |
415 | // If some of our locals escaped, insert a call to llvm.localescape in the |
416 | // entry block. |
417 | if (!EscapedLocals.empty()) { |
418 | // Invert the map from local to index into a simple vector. There should be |
419 | // no holes. |
420 | SmallVector<llvm::Value *, 4> EscapeArgs; |
421 | EscapeArgs.resize(EscapedLocals.size()); |
422 | for (auto &Pair : EscapedLocals) |
423 | EscapeArgs[Pair.second] = Pair.first; |
424 | llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( |
425 | &CGM.getModule(), llvm::Intrinsic::localescape); |
426 | CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); |
427 | } |
428 | |
429 | // Remove the AllocaInsertPt instruction, which is just a convenience for us. |
430 | llvm::Instruction *Ptr = AllocaInsertPt; |
431 | AllocaInsertPt = nullptr; |
432 | Ptr->eraseFromParent(); |
433 | |
434 | // If someone took the address of a label but never did an indirect goto, we |
435 | // made a zero entry PHI node, which is illegal, zap it now. |
436 | if (IndirectBranch) { |
437 | llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); |
438 | if (PN->getNumIncomingValues() == 0) { |
439 | PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); |
440 | PN->eraseFromParent(); |
441 | } |
442 | } |
443 | |
444 | EmitIfUsed(*this, EHResumeBlock); |
445 | EmitIfUsed(*this, TerminateLandingPad); |
446 | EmitIfUsed(*this, TerminateHandler); |
447 | EmitIfUsed(*this, UnreachableBlock); |
448 | |
449 | for (const auto &FuncletAndParent : TerminateFunclets) |
450 | EmitIfUsed(*this, FuncletAndParent.second); |
451 | |
452 | if (CGM.getCodeGenOpts().EmitDeclMetadata) |
453 | EmitDeclMetadata(); |
454 | |
455 | for (const auto &R : DeferredReplacements) { |
456 | if (llvm::Value *Old = R.first) { |
457 | Old->replaceAllUsesWith(R.second); |
458 | cast<llvm::Instruction>(Old)->eraseFromParent(); |
459 | } |
460 | } |
461 | DeferredReplacements.clear(); |
462 | |
463 | // Eliminate CleanupDestSlot alloca by replacing it with SSA values and |
464 | // PHIs if the current function is a coroutine. We don't do it for all |
465 | // functions as it may result in slight increase in numbers of instructions |
466 | // if compiled with no optimizations. We do it for coroutine as the lifetime |
467 | // of CleanupDestSlot alloca make correct coroutine frame building very |
468 | // difficult. |
469 | if (NormalCleanupDest.isValid() && isCoroutine()) { |
470 | llvm::DominatorTree DT(*CurFn); |
471 | llvm::PromoteMemToReg( |
472 | cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); |
473 | NormalCleanupDest = Address::invalid(); |
474 | } |
475 | |
476 | // Scan function arguments for vector width. |
477 | for (llvm::Argument &A : CurFn->args()) |
478 | if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) |
479 | LargestVectorWidth = |
480 | std::max((uint64_t)LargestVectorWidth, |
481 | VT->getPrimitiveSizeInBits().getKnownMinSize()); |
482 | |
483 | // Update vector width based on return type. |
484 | if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) |
485 | LargestVectorWidth = |
486 | std::max((uint64_t)LargestVectorWidth, |
487 | VT->getPrimitiveSizeInBits().getKnownMinSize()); |
488 | |
489 | // Add the required-vector-width attribute. This contains the max width from: |
490 | // 1. min-vector-width attribute used in the source program. |
491 | // 2. Any builtins used that have a vector width specified. |
492 | // 3. Values passed in and out of inline assembly. |
493 | // 4. Width of vector arguments and return types for this function. |
494 | // 5. Width of vector aguments and return types for functions called by this |
495 | // function. |
496 | CurFn->addFnAttr("min-legal-vector-width" , llvm::utostr(LargestVectorWidth)); |
497 | |
498 | // Add vscale attribute if appropriate. |
499 | if (getLangOpts().ArmSveVectorBits) { |
500 | unsigned VScale = getLangOpts().ArmSveVectorBits / 128; |
501 | CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(getLLVMContext(), |
502 | VScale, VScale)); |
503 | } |
504 | |
505 | // If we generated an unreachable return block, delete it now. |
506 | if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { |
507 | Builder.ClearInsertionPoint(); |
508 | ReturnBlock.getBlock()->eraseFromParent(); |
509 | } |
510 | if (ReturnValue.isValid()) { |
511 | auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); |
512 | if (RetAlloca && RetAlloca->use_empty()) { |
513 | RetAlloca->eraseFromParent(); |
514 | ReturnValue = Address::invalid(); |
515 | } |
516 | } |
517 | } |
518 | |
519 | /// ShouldInstrumentFunction - Return true if the current function should be |
520 | /// instrumented with __cyg_profile_func_* calls |
521 | bool CodeGenFunction::ShouldInstrumentFunction() { |
522 | if (!CGM.getCodeGenOpts().InstrumentFunctions && |
523 | !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && |
524 | !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) |
525 | return false; |
526 | if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) |
527 | return false; |
528 | return true; |
529 | } |
530 | |
531 | /// ShouldXRayInstrument - Return true if the current function should be |
532 | /// instrumented with XRay nop sleds. |
533 | bool CodeGenFunction::ShouldXRayInstrumentFunction() const { |
534 | return CGM.getCodeGenOpts().XRayInstrumentFunctions; |
535 | } |
536 | |
537 | /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to |
538 | /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. |
539 | bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { |
540 | return CGM.getCodeGenOpts().XRayInstrumentFunctions && |
541 | (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || |
542 | CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == |
543 | XRayInstrKind::Custom); |
544 | } |
545 | |
546 | bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { |
547 | return CGM.getCodeGenOpts().XRayInstrumentFunctions && |
548 | (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || |
549 | CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == |
550 | XRayInstrKind::Typed); |
551 | } |
552 | |
553 | llvm::Constant * |
554 | CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, |
555 | llvm::Constant *Addr) { |
556 | // Addresses stored in prologue data can't require run-time fixups and must |
557 | // be PC-relative. Run-time fixups are undesirable because they necessitate |
558 | // writable text segments, which are unsafe. And absolute addresses are |
559 | // undesirable because they break PIE mode. |
560 | |
561 | // Add a layer of indirection through a private global. Taking its address |
562 | // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. |
563 | auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), |
564 | /*isConstant=*/true, |
565 | llvm::GlobalValue::PrivateLinkage, Addr); |
566 | |
567 | // Create a PC-relative address. |
568 | auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); |
569 | auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); |
570 | auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); |
571 | return (IntPtrTy == Int32Ty) |
572 | ? PCRelAsInt |
573 | : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); |
574 | } |
575 | |
576 | llvm::Value * |
577 | CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, |
578 | llvm::Value *EncodedAddr) { |
579 | // Reconstruct the address of the global. |
580 | auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); |
581 | auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int" ); |
582 | auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int" ); |
583 | auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr" ); |
584 | |
585 | // Load the original pointer through the global. |
586 | return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), |
587 | "decoded_addr" ); |
588 | } |
589 | |
590 | void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, |
591 | llvm::Function *Fn) |
592 | { |
593 | if (!FD->hasAttr<OpenCLKernelAttr>()) |
594 | return; |
595 | |
596 | llvm::LLVMContext &Context = getLLVMContext(); |
597 | |
598 | CGM.GenOpenCLArgMetadata(Fn, FD, this); |
599 | |
600 | if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { |
601 | QualType HintQTy = A->getTypeHint(); |
602 | const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); |
603 | bool IsSignedInteger = |
604 | HintQTy->isSignedIntegerType() || |
605 | (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); |
606 | llvm::Metadata *AttrMDArgs[] = { |
607 | llvm::ConstantAsMetadata::get(llvm::UndefValue::get( |
608 | CGM.getTypes().ConvertType(A->getTypeHint()))), |
609 | llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( |
610 | llvm::IntegerType::get(Context, 32), |
611 | llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; |
612 | Fn->setMetadata("vec_type_hint" , llvm::MDNode::get(Context, AttrMDArgs)); |
613 | } |
614 | |
615 | if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { |
616 | llvm::Metadata *AttrMDArgs[] = { |
617 | llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), |
618 | llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), |
619 | llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; |
620 | Fn->setMetadata("work_group_size_hint" , llvm::MDNode::get(Context, AttrMDArgs)); |
621 | } |
622 | |
623 | if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { |
624 | llvm::Metadata *AttrMDArgs[] = { |
625 | llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), |
626 | llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), |
627 | llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; |
628 | Fn->setMetadata("reqd_work_group_size" , llvm::MDNode::get(Context, AttrMDArgs)); |
629 | } |
630 | |
631 | if (const OpenCLIntelReqdSubGroupSizeAttr *A = |
632 | FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { |
633 | llvm::Metadata *AttrMDArgs[] = { |
634 | llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; |
635 | Fn->setMetadata("intel_reqd_sub_group_size" , |
636 | llvm::MDNode::get(Context, AttrMDArgs)); |
637 | } |
638 | } |
639 | |
640 | /// Determine whether the function F ends with a return stmt. |
641 | static bool endsWithReturn(const Decl* F) { |
642 | const Stmt *Body = nullptr; |
643 | if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) |
644 | Body = FD->getBody(); |
645 | else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) |
646 | Body = OMD->getBody(); |
647 | |
648 | if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { |
649 | auto LastStmt = CS->body_rbegin(); |
650 | if (LastStmt != CS->body_rend()) |
651 | return isa<ReturnStmt>(*LastStmt); |
652 | } |
653 | return false; |
654 | } |
655 | |
656 | void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { |
657 | if (SanOpts.has(SanitizerKind::Thread)) { |
658 | Fn->addFnAttr("sanitize_thread_no_checking_at_run_time" ); |
659 | Fn->removeFnAttr(llvm::Attribute::SanitizeThread); |
660 | } |
661 | } |
662 | |
663 | /// Check if the return value of this function requires sanitization. |
664 | bool CodeGenFunction::requiresReturnValueCheck() const { |
665 | return requiresReturnValueNullabilityCheck() || |
666 | (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && |
667 | CurCodeDecl->getAttr<ReturnsNonNullAttr>()); |
668 | } |
669 | |
670 | static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { |
671 | auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); |
672 | if (!MD || !MD->getDeclName().getAsIdentifierInfo() || |
673 | !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate" ) || |
674 | (MD->getNumParams() != 1 && MD->getNumParams() != 2)) |
675 | return false; |
676 | |
677 | if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) |
678 | return false; |
679 | |
680 | if (MD->getNumParams() == 2) { |
681 | auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); |
682 | if (!PT || !PT->isVoidPointerType() || |
683 | !PT->getPointeeType().isConstQualified()) |
684 | return false; |
685 | } |
686 | |
687 | return true; |
688 | } |
689 | |
690 | /// Return the UBSan prologue signature for \p FD if one is available. |
691 | static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, |
692 | const FunctionDecl *FD) { |
693 | if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) |
694 | if (!MD->isStatic()) |
695 | return nullptr; |
696 | return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); |
697 | } |
698 | |
699 | void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, |
700 | llvm::Function *Fn, |
701 | const CGFunctionInfo &FnInfo, |
702 | const FunctionArgList &Args, |
703 | SourceLocation Loc, |
704 | SourceLocation StartLoc) { |
705 | assert(!CurFn && |
706 | "Do not use a CodeGenFunction object for more than one function" ); |
707 | |
708 | const Decl *D = GD.getDecl(); |
709 | |
710 | DidCallStackSave = false; |
711 | CurCodeDecl = D; |
712 | if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) |
713 | if (FD->usesSEHTry()) |
714 | CurSEHParent = FD; |
715 | CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); |
716 | FnRetTy = RetTy; |
717 | CurFn = Fn; |
718 | CurFnInfo = &FnInfo; |
719 | assert(CurFn->isDeclaration() && "Function already has body?" ); |
720 | |
721 | // If this function is ignored for any of the enabled sanitizers, |
722 | // disable the sanitizer for the function. |
723 | do { |
724 | #define SANITIZER(NAME, ID) \ |
725 | if (SanOpts.empty()) \ |
726 | break; \ |
727 | if (SanOpts.has(SanitizerKind::ID)) \ |
728 | if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ |
729 | SanOpts.set(SanitizerKind::ID, false); |
730 | |
731 | #include "clang/Basic/Sanitizers.def" |
732 | #undef SANITIZER |
733 | } while (0); |
734 | |
735 | if (D) { |
736 | // Apply the no_sanitize* attributes to SanOpts. |
737 | for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { |
738 | SanitizerMask mask = Attr->getMask(); |
739 | SanOpts.Mask &= ~mask; |
740 | if (mask & SanitizerKind::Address) |
741 | SanOpts.set(SanitizerKind::KernelAddress, false); |
742 | if (mask & SanitizerKind::KernelAddress) |
743 | SanOpts.set(SanitizerKind::Address, false); |
744 | if (mask & SanitizerKind::HWAddress) |
745 | SanOpts.set(SanitizerKind::KernelHWAddress, false); |
746 | if (mask & SanitizerKind::KernelHWAddress) |
747 | SanOpts.set(SanitizerKind::HWAddress, false); |
748 | } |
749 | } |
750 | |
751 | // Apply sanitizer attributes to the function. |
752 | if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) |
753 | Fn->addFnAttr(llvm::Attribute::SanitizeAddress); |
754 | if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) |
755 | Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); |
756 | if (SanOpts.has(SanitizerKind::MemTag)) |
757 | Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); |
758 | if (SanOpts.has(SanitizerKind::Thread)) |
759 | Fn->addFnAttr(llvm::Attribute::SanitizeThread); |
760 | if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) |
761 | Fn->addFnAttr(llvm::Attribute::SanitizeMemory); |
762 | if (SanOpts.has(SanitizerKind::SafeStack)) |
763 | Fn->addFnAttr(llvm::Attribute::SafeStack); |
764 | if (SanOpts.has(SanitizerKind::ShadowCallStack)) |
765 | Fn->addFnAttr(llvm::Attribute::ShadowCallStack); |
766 | |
767 | // Apply fuzzing attribute to the function. |
768 | if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) |
769 | Fn->addFnAttr(llvm::Attribute::OptForFuzzing); |
770 | |
771 | // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, |
772 | // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. |
773 | if (SanOpts.has(SanitizerKind::Thread)) { |
774 | if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { |
775 | IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); |
776 | if (OMD->getMethodFamily() == OMF_dealloc || |
777 | OMD->getMethodFamily() == OMF_initialize || |
778 | (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct" ))) { |
779 | markAsIgnoreThreadCheckingAtRuntime(Fn); |
780 | } |
781 | } |
782 | } |
783 | |
784 | // Ignore unrelated casts in STL allocate() since the allocator must cast |
785 | // from void* to T* before object initialization completes. Don't match on the |
786 | // namespace because not all allocators are in std:: |
787 | if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { |
788 | if (matchesStlAllocatorFn(D, getContext())) |
789 | SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; |
790 | } |
791 | |
792 | // Ignore null checks in coroutine functions since the coroutines passes |
793 | // are not aware of how to move the extra UBSan instructions across the split |
794 | // coroutine boundaries. |
795 | if (D && SanOpts.has(SanitizerKind::Null)) |
796 | if (const auto *FD = dyn_cast<FunctionDecl>(D)) |
797 | if (FD->getBody() && |
798 | FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) |
799 | SanOpts.Mask &= ~SanitizerKind::Null; |
800 | |
801 | // Apply xray attributes to the function (as a string, for now) |
802 | bool AlwaysXRayAttr = false; |
803 | if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { |
804 | if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( |
805 | XRayInstrKind::FunctionEntry) || |
806 | CGM.getCodeGenOpts().XRayInstrumentationBundle.has( |
807 | XRayInstrKind::FunctionExit)) { |
808 | if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { |
809 | Fn->addFnAttr("function-instrument" , "xray-always" ); |
810 | AlwaysXRayAttr = true; |
811 | } |
812 | if (XRayAttr->neverXRayInstrument()) |
813 | Fn->addFnAttr("function-instrument" , "xray-never" ); |
814 | if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) |
815 | if (ShouldXRayInstrumentFunction()) |
816 | Fn->addFnAttr("xray-log-args" , |
817 | llvm::utostr(LogArgs->getArgumentCount())); |
818 | } |
819 | } else { |
820 | if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) |
821 | Fn->addFnAttr( |
822 | "xray-instruction-threshold" , |
823 | llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); |
824 | } |
825 | |
826 | if (ShouldXRayInstrumentFunction()) { |
827 | if (CGM.getCodeGenOpts().XRayIgnoreLoops) |
828 | Fn->addFnAttr("xray-ignore-loops" ); |
829 | |
830 | if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( |
831 | XRayInstrKind::FunctionExit)) |
832 | Fn->addFnAttr("xray-skip-exit" ); |
833 | |
834 | if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( |
835 | XRayInstrKind::FunctionEntry)) |
836 | Fn->addFnAttr("xray-skip-entry" ); |
837 | |
838 | auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; |
839 | if (FuncGroups > 1) { |
840 | auto FuncName = llvm::makeArrayRef<uint8_t>( |
841 | CurFn->getName().bytes_begin(), CurFn->getName().bytes_end()); |
842 | auto Group = crc32(FuncName) % FuncGroups; |
843 | if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && |
844 | !AlwaysXRayAttr) |
845 | Fn->addFnAttr("function-instrument" , "xray-never" ); |
846 | } |
847 | } |
848 | |
849 | if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) |
850 | if (CGM.isProfileInstrExcluded(Fn, Loc)) |
851 | Fn->addFnAttr(llvm::Attribute::NoProfile); |
852 | |
853 | unsigned Count, Offset; |
854 | if (const auto *Attr = |
855 | D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { |
856 | Count = Attr->getCount(); |
857 | Offset = Attr->getOffset(); |
858 | } else { |
859 | Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; |
860 | Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; |
861 | } |
862 | if (Count && Offset <= Count) { |
863 | Fn->addFnAttr("patchable-function-entry" , std::to_string(Count - Offset)); |
864 | if (Offset) |
865 | Fn->addFnAttr("patchable-function-prefix" , std::to_string(Offset)); |
866 | } |
867 | |
868 | // Add no-jump-tables value. |
869 | if (CGM.getCodeGenOpts().NoUseJumpTables) |
870 | Fn->addFnAttr("no-jump-tables" , "true" ); |
871 | |
872 | // Add no-inline-line-tables value. |
873 | if (CGM.getCodeGenOpts().NoInlineLineTables) |
874 | Fn->addFnAttr("no-inline-line-tables" ); |
875 | |
876 | // Add profile-sample-accurate value. |
877 | if (CGM.getCodeGenOpts().ProfileSampleAccurate) |
878 | Fn->addFnAttr("profile-sample-accurate" ); |
879 | |
880 | if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) |
881 | Fn->addFnAttr("use-sample-profile" ); |
882 | |
883 | if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) |
884 | Fn->addFnAttr("cfi-canonical-jump-table" ); |
885 | |
886 | if (getLangOpts().OpenCL) { |
887 | // Add metadata for a kernel function. |
888 | if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) |
889 | EmitOpenCLKernelMetadata(FD, Fn); |
890 | } |
891 | |
892 | // If we are checking function types, emit a function type signature as |
893 | // prologue data. |
894 | if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { |
895 | if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { |
896 | if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { |
897 | // Remove any (C++17) exception specifications, to allow calling e.g. a |
898 | // noexcept function through a non-noexcept pointer. |
899 | auto ProtoTy = |
900 | getContext().getFunctionTypeWithExceptionSpec(FD->getType(), |
901 | EST_None); |
902 | llvm::Constant *FTRTTIConst = |
903 | CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); |
904 | llvm::Constant *FTRTTIConstEncoded = |
905 | EncodeAddrForUseInPrologue(Fn, FTRTTIConst); |
906 | llvm::Constant *PrologueStructElems[] = {PrologueSig, |
907 | FTRTTIConstEncoded}; |
908 | llvm::Constant *PrologueStructConst = |
909 | llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); |
910 | Fn->setPrologueData(PrologueStructConst); |
911 | } |
912 | } |
913 | } |
914 | |
915 | // If we're checking nullability, we need to know whether we can check the |
916 | // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. |
917 | if (SanOpts.has(SanitizerKind::NullabilityReturn)) { |
918 | auto Nullability = FnRetTy->getNullability(getContext()); |
919 | if (Nullability && *Nullability == NullabilityKind::NonNull) { |
920 | if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && |
921 | CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) |
922 | RetValNullabilityPrecondition = |
923 | llvm::ConstantInt::getTrue(getLLVMContext()); |
924 | } |
925 | } |
926 | |
927 | // If we're in C++ mode and the function name is "main", it is guaranteed |
928 | // to be norecurse by the standard (3.6.1.3 "The function main shall not be |
929 | // used within a program"). |
930 | // |
931 | // OpenCL C 2.0 v2.2-11 s6.9.i: |
932 | // Recursion is not supported. |
933 | // |
934 | // SYCL v1.2.1 s3.10: |
935 | // kernels cannot include RTTI information, exception classes, |
936 | // recursive code, virtual functions or make use of C++ libraries that |
937 | // are not compiled for the device. |
938 | if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { |
939 | if ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL || |
940 | getLangOpts().SYCLIsDevice || |
941 | (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())) |
942 | Fn->addFnAttr(llvm::Attribute::NoRecurse); |
943 | } |
944 | |
945 | if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { |
946 | Builder.setIsFPConstrained(FD->hasAttr<StrictFPAttr>()); |
947 | if (FD->hasAttr<StrictFPAttr>()) |
948 | Fn->addFnAttr(llvm::Attribute::StrictFP); |
949 | } |
950 | |
951 | // If a custom alignment is used, force realigning to this alignment on |
952 | // any main function which certainly will need it. |
953 | if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) |
954 | if ((FD->isMain() || FD->isMSVCRTEntryPoint()) && |
955 | CGM.getCodeGenOpts().StackAlignment) |
956 | Fn->addFnAttr("stackrealign" ); |
957 | |
958 | llvm::BasicBlock *EntryBB = createBasicBlock("entry" , CurFn); |
959 | |
960 | // Create a marker to make it easy to insert allocas into the entryblock |
961 | // later. Don't create this with the builder, because we don't want it |
962 | // folded. |
963 | llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); |
964 | AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt" , EntryBB); |
965 | |
966 | ReturnBlock = getJumpDestInCurrentScope("return" ); |
967 | |
968 | Builder.SetInsertPoint(EntryBB); |
969 | |
970 | // If we're checking the return value, allocate space for a pointer to a |
971 | // precise source location of the checked return statement. |
972 | if (requiresReturnValueCheck()) { |
973 | ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr" ); |
974 | InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); |
975 | } |
976 | |
977 | // Emit subprogram debug descriptor. |
978 | if (CGDebugInfo *DI = getDebugInfo()) { |
979 | // Reconstruct the type from the argument list so that implicit parameters, |
980 | // such as 'this' and 'vtt', show up in the debug info. Preserve the calling |
981 | // convention. |
982 | CallingConv CC = CallingConv::CC_C; |
983 | if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) |
984 | if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) |
985 | CC = SrcFnTy->getCallConv(); |
986 | SmallVector<QualType, 16> ArgTypes; |
987 | for (const VarDecl *VD : Args) |
988 | ArgTypes.push_back(VD->getType()); |
989 | QualType FnType = getContext().getFunctionType( |
990 | RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); |
991 | DI->emitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk); |
992 | } |
993 | |
994 | if (ShouldInstrumentFunction()) { |
995 | if (CGM.getCodeGenOpts().InstrumentFunctions) |
996 | CurFn->addFnAttr("instrument-function-entry" , "__cyg_profile_func_enter" ); |
997 | if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) |
998 | CurFn->addFnAttr("instrument-function-entry-inlined" , |
999 | "__cyg_profile_func_enter" ); |
1000 | if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) |
1001 | CurFn->addFnAttr("instrument-function-entry-inlined" , |
1002 | "__cyg_profile_func_enter_bare" ); |
1003 | } |
1004 | |
1005 | // Since emitting the mcount call here impacts optimizations such as function |
1006 | // inlining, we just add an attribute to insert a mcount call in backend. |
1007 | // The attribute "counting-function" is set to mcount function name which is |
1008 | // architecture dependent. |
1009 | if (CGM.getCodeGenOpts().InstrumentForProfiling) { |
1010 | // Calls to fentry/mcount should not be generated if function has |
1011 | // the no_instrument_function attribute. |
1012 | if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { |
1013 | if (CGM.getCodeGenOpts().CallFEntry) |
1014 | Fn->addFnAttr("fentry-call" , "true" ); |
1015 | else { |
1016 | Fn->addFnAttr("instrument-function-entry-inlined" , |
1017 | getTarget().getMCountName()); |
1018 | } |
1019 | if (CGM.getCodeGenOpts().MNopMCount) { |
1020 | if (!CGM.getCodeGenOpts().CallFEntry) |
1021 | CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) |
1022 | << "-mnop-mcount" << "-mfentry" ; |
1023 | Fn->addFnAttr("mnop-mcount" ); |
1024 | } |
1025 | |
1026 | if (CGM.getCodeGenOpts().RecordMCount) { |
1027 | if (!CGM.getCodeGenOpts().CallFEntry) |
1028 | CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) |
1029 | << "-mrecord-mcount" << "-mfentry" ; |
1030 | Fn->addFnAttr("mrecord-mcount" ); |
1031 | } |
1032 | } |
1033 | } |
1034 | |
1035 | if (CGM.getCodeGenOpts().PackedStack) { |
1036 | if (getContext().getTargetInfo().getTriple().getArch() != |
1037 | llvm::Triple::systemz) |
1038 | CGM.getDiags().Report(diag::err_opt_not_valid_on_target) |
1039 | << "-mpacked-stack" ; |
1040 | Fn->addFnAttr("packed-stack" ); |
1041 | } |
1042 | |
1043 | if (RetTy->isVoidType()) { |
1044 | // Void type; nothing to return. |
1045 | ReturnValue = Address::invalid(); |
1046 | |
1047 | // Count the implicit return. |
1048 | if (!endsWithReturn(D)) |
1049 | ++NumReturnExprs; |
1050 | } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { |
1051 | // Indirect return; emit returned value directly into sret slot. |
1052 | // This reduces code size, and affects correctness in C++. |
1053 | auto AI = CurFn->arg_begin(); |
1054 | if (CurFnInfo->getReturnInfo().isSRetAfterThis()) |
1055 | ++AI; |
1056 | ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); |
1057 | if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { |
1058 | ReturnValuePointer = |
1059 | CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr" ); |
1060 | Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( |
1061 | ReturnValue.getPointer(), Int8PtrTy), |
1062 | ReturnValuePointer); |
1063 | } |
1064 | } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && |
1065 | !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { |
1066 | // Load the sret pointer from the argument struct and return into that. |
1067 | unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); |
1068 | llvm::Function::arg_iterator EI = CurFn->arg_end(); |
1069 | --EI; |
1070 | llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); |
1071 | llvm::Type *Ty = |
1072 | cast<llvm::GetElementPtrInst>(Addr)->getResultElementType(); |
1073 | ReturnValuePointer = Address(Addr, getPointerAlign()); |
1074 | Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result" ); |
1075 | ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy)); |
1076 | } else { |
1077 | ReturnValue = CreateIRTemp(RetTy, "retval" ); |
1078 | |
1079 | // Tell the epilog emitter to autorelease the result. We do this |
1080 | // now so that various specialized functions can suppress it |
1081 | // during their IR-generation. |
1082 | if (getLangOpts().ObjCAutoRefCount && |
1083 | !CurFnInfo->isReturnsRetained() && |
1084 | RetTy->isObjCRetainableType()) |
1085 | AutoreleaseResult = true; |
1086 | } |
1087 | |
1088 | EmitStartEHSpec(CurCodeDecl); |
1089 | |
1090 | PrologueCleanupDepth = EHStack.stable_begin(); |
1091 | |
1092 | // Emit OpenMP specific initialization of the device functions. |
1093 | if (getLangOpts().OpenMP && CurCodeDecl) |
1094 | CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); |
1095 | |
1096 | EmitFunctionProlog(*CurFnInfo, CurFn, Args); |
1097 | |
1098 | if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { |
1099 | CGM.getCXXABI().EmitInstanceFunctionProlog(*this); |
1100 | const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); |
1101 | if (MD->getParent()->isLambda() && |
1102 | MD->getOverloadedOperator() == OO_Call) { |
1103 | // We're in a lambda; figure out the captures. |
1104 | MD->getParent()->getCaptureFields(LambdaCaptureFields, |
1105 | LambdaThisCaptureField); |
1106 | if (LambdaThisCaptureField) { |
1107 | // If the lambda captures the object referred to by '*this' - either by |
1108 | // value or by reference, make sure CXXThisValue points to the correct |
1109 | // object. |
1110 | |
1111 | // Get the lvalue for the field (which is a copy of the enclosing object |
1112 | // or contains the address of the enclosing object). |
1113 | LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); |
1114 | if (!LambdaThisCaptureField->getType()->isPointerType()) { |
1115 | // If the enclosing object was captured by value, just use its address. |
1116 | CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); |
1117 | } else { |
1118 | // Load the lvalue pointed to by the field, since '*this' was captured |
1119 | // by reference. |
1120 | CXXThisValue = |
1121 | EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); |
1122 | } |
1123 | } |
1124 | for (auto *FD : MD->getParent()->fields()) { |
1125 | if (FD->hasCapturedVLAType()) { |
1126 | auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), |
1127 | SourceLocation()).getScalarVal(); |
1128 | auto VAT = FD->getCapturedVLAType(); |
1129 | VLASizeMap[VAT->getSizeExpr()] = ExprArg; |
1130 | } |
1131 | } |
1132 | } else { |
1133 | // Not in a lambda; just use 'this' from the method. |
1134 | // FIXME: Should we generate a new load for each use of 'this'? The |
1135 | // fast register allocator would be happier... |
1136 | CXXThisValue = CXXABIThisValue; |
1137 | } |
1138 | |
1139 | // Check the 'this' pointer once per function, if it's available. |
1140 | if (CXXABIThisValue) { |
1141 | SanitizerSet SkippedChecks; |
1142 | SkippedChecks.set(SanitizerKind::ObjectSize, true); |
1143 | QualType ThisTy = MD->getThisType(); |
1144 | |
1145 | // If this is the call operator of a lambda with no capture-default, it |
1146 | // may have a static invoker function, which may call this operator with |
1147 | // a null 'this' pointer. |
1148 | if (isLambdaCallOperator(MD) && |
1149 | MD->getParent()->getLambdaCaptureDefault() == LCD_None) |
1150 | SkippedChecks.set(SanitizerKind::Null, true); |
1151 | |
1152 | EmitTypeCheck( |
1153 | isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall, |
1154 | Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks); |
1155 | } |
1156 | } |
1157 | |
1158 | // If any of the arguments have a variably modified type, make sure to |
1159 | // emit the type size. |
1160 | for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); |
1161 | i != e; ++i) { |
1162 | const VarDecl *VD = *i; |
1163 | |
1164 | // Dig out the type as written from ParmVarDecls; it's unclear whether |
1165 | // the standard (C99 6.9.1p10) requires this, but we're following the |
1166 | // precedent set by gcc. |
1167 | QualType Ty; |
1168 | if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) |
1169 | Ty = PVD->getOriginalType(); |
1170 | else |
1171 | Ty = VD->getType(); |
1172 | |
1173 | if (Ty->isVariablyModifiedType()) |
1174 | EmitVariablyModifiedType(Ty); |
1175 | } |
1176 | // Emit a location at the end of the prologue. |
1177 | if (CGDebugInfo *DI = getDebugInfo()) |
1178 | DI->EmitLocation(Builder, StartLoc); |
1179 | |
1180 | // TODO: Do we need to handle this in two places like we do with |
1181 | // target-features/target-cpu? |
1182 | if (CurFuncDecl) |
1183 | if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) |
1184 | LargestVectorWidth = VecWidth->getVectorWidth(); |
1185 | } |
1186 | |
1187 | void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { |
1188 | incrementProfileCounter(Body); |
1189 | if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) |
1190 | EmitCompoundStmtWithoutScope(*S); |
1191 | else |
1192 | EmitStmt(Body); |
1193 | |
1194 | // This is checked after emitting the function body so we know if there |
1195 | // are any permitted infinite loops. |
1196 | if (checkIfFunctionMustProgress()) |
1197 | CurFn->addFnAttr(llvm::Attribute::MustProgress); |
1198 | } |
1199 | |
1200 | /// When instrumenting to collect profile data, the counts for some blocks |
1201 | /// such as switch cases need to not include the fall-through counts, so |
1202 | /// emit a branch around the instrumentation code. When not instrumenting, |
1203 | /// this just calls EmitBlock(). |
1204 | void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, |
1205 | const Stmt *S) { |
1206 | llvm::BasicBlock *SkipCountBB = nullptr; |
1207 | if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { |
1208 | // When instrumenting for profiling, the fallthrough to certain |
1209 | // statements needs to skip over the instrumentation code so that we |
1210 | // get an accurate count. |
1211 | SkipCountBB = createBasicBlock("skipcount" ); |
1212 | EmitBranch(SkipCountBB); |
1213 | } |
1214 | EmitBlock(BB); |
1215 | uint64_t CurrentCount = getCurrentProfileCount(); |
1216 | incrementProfileCounter(S); |
1217 | setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); |
1218 | if (SkipCountBB) |
1219 | EmitBlock(SkipCountBB); |
1220 | } |
1221 | |
1222 | /// Tries to mark the given function nounwind based on the |
1223 | /// non-existence of any throwing calls within it. We believe this is |
1224 | /// lightweight enough to do at -O0. |
1225 | static void TryMarkNoThrow(llvm::Function *F) { |
1226 | // LLVM treats 'nounwind' on a function as part of the type, so we |
1227 | // can't do this on functions that can be overwritten. |
1228 | if (F->isInterposable()) return; |
1229 | |
1230 | for (llvm::BasicBlock &BB : *F) |
1231 | for (llvm::Instruction &I : BB) |
1232 | if (I.mayThrow()) |
1233 | return; |
1234 | |
1235 | F->setDoesNotThrow(); |
1236 | } |
1237 | |
1238 | QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, |
1239 | FunctionArgList &Args) { |
1240 | const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); |
1241 | QualType ResTy = FD->getReturnType(); |
1242 | |
1243 | const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); |
1244 | if (MD && MD->isInstance()) { |
1245 | if (CGM.getCXXABI().HasThisReturn(GD)) |
1246 | ResTy = MD->getThisType(); |
1247 | else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) |
1248 | ResTy = CGM.getContext().VoidPtrTy; |
1249 | CGM.getCXXABI().buildThisParam(*this, Args); |
1250 | } |
1251 | |
1252 | // The base version of an inheriting constructor whose constructed base is a |
1253 | // virtual base is not passed any arguments (because it doesn't actually call |
1254 | // the inherited constructor). |
1255 | bool PassedParams = true; |
1256 | if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) |
1257 | if (auto Inherited = CD->getInheritedConstructor()) |
1258 | PassedParams = |
1259 | getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); |
1260 | |
1261 | if (PassedParams) { |
1262 | for (auto *Param : FD->parameters()) { |
1263 | Args.push_back(Param); |
1264 | if (!Param->hasAttr<PassObjectSizeAttr>()) |
1265 | continue; |
1266 | |
1267 | auto *Implicit = ImplicitParamDecl::Create( |
1268 | getContext(), Param->getDeclContext(), Param->getLocation(), |
1269 | /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); |
1270 | SizeArguments[Param] = Implicit; |
1271 | Args.push_back(Implicit); |
1272 | } |
1273 | } |
1274 | |
1275 | if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) |
1276 | CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); |
1277 | |
1278 | return ResTy; |
1279 | } |
1280 | |
1281 | void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, |
1282 | const CGFunctionInfo &FnInfo) { |
1283 | const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); |
1284 | CurGD = GD; |
1285 | |
1286 | FunctionArgList Args; |
1287 | QualType ResTy = BuildFunctionArgList(GD, Args); |
1288 | |
1289 | // Check if we should generate debug info for this function. |
1290 | if (FD->hasAttr<NoDebugAttr>()) |
1291 | DebugInfo = nullptr; // disable debug info indefinitely for this function |
1292 | |
1293 | // The function might not have a body if we're generating thunks for a |
1294 | // function declaration. |
1295 | SourceRange BodyRange; |
1296 | if (Stmt *Body = FD->getBody()) |
1297 | BodyRange = Body->getSourceRange(); |
1298 | else |
1299 | BodyRange = FD->getLocation(); |
1300 | CurEHLocation = BodyRange.getEnd(); |
1301 | |
1302 | // Use the location of the start of the function to determine where |
1303 | // the function definition is located. By default use the location |
1304 | // of the declaration as the location for the subprogram. A function |
1305 | // may lack a declaration in the source code if it is created by code |
1306 | // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). |
1307 | SourceLocation Loc = FD->getLocation(); |
1308 | |
1309 | // If this is a function specialization then use the pattern body |
1310 | // as the location for the function. |
1311 | if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) |
1312 | if (SpecDecl->hasBody(SpecDecl)) |
1313 | Loc = SpecDecl->getLocation(); |
1314 | |
1315 | Stmt *Body = FD->getBody(); |
1316 | |
1317 | if (Body) { |
1318 | // Coroutines always emit lifetime markers. |
1319 | if (isa<CoroutineBodyStmt>(Body)) |
1320 | ShouldEmitLifetimeMarkers = true; |
1321 | |
1322 | // Initialize helper which will detect jumps which can cause invalid |
1323 | // lifetime markers. |
1324 | if (ShouldEmitLifetimeMarkers) |
1325 | Bypasses.Init(Body); |
1326 | } |
1327 | |
1328 | // Emit the standard function prologue. |
1329 | StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); |
1330 | |
1331 | // Save parameters for coroutine function. |
1332 | if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body)) |
1333 | for (const auto *ParamDecl : FD->parameters()) |
1334 | FnArgs.push_back(ParamDecl); |
1335 | |
1336 | // Generate the body of the function. |
1337 | PGO.assignRegionCounters(GD, CurFn); |
1338 | if (isa<CXXDestructorDecl>(FD)) |
1339 | EmitDestructorBody(Args); |
1340 | else if (isa<CXXConstructorDecl>(FD)) |
1341 | EmitConstructorBody(Args); |
1342 | else if (getLangOpts().CUDA && |
1343 | !getLangOpts().CUDAIsDevice && |
1344 | FD->hasAttr<CUDAGlobalAttr>()) |
1345 | CGM.getCUDARuntime().emitDeviceStub(*this, Args); |
1346 | else if (isa<CXXMethodDecl>(FD) && |
1347 | cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { |
1348 | // The lambda static invoker function is special, because it forwards or |
1349 | // clones the body of the function call operator (but is actually static). |
1350 | EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); |
1351 | } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && |
1352 | (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || |
1353 | cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { |
1354 | // Implicit copy-assignment gets the same special treatment as implicit |
1355 | // copy-constructors. |
1356 | emitImplicitAssignmentOperatorBody(Args); |
1357 | } else if (Body) { |
1358 | EmitFunctionBody(Body); |
1359 | } else |
1360 | llvm_unreachable("no definition for emitted function" ); |
1361 | |
1362 | // C++11 [stmt.return]p2: |
1363 | // Flowing off the end of a function [...] results in undefined behavior in |
1364 | // a value-returning function. |
1365 | // C11 6.9.1p12: |
1366 | // If the '}' that terminates a function is reached, and the value of the |
1367 | // function call is used by the caller, the behavior is undefined. |
1368 | if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && |
1369 | !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { |
1370 | bool ShouldEmitUnreachable = |
1371 | CGM.getCodeGenOpts().StrictReturn || |
1372 | !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType()); |
1373 | if (SanOpts.has(SanitizerKind::Return)) { |
1374 | SanitizerScope SanScope(this); |
1375 | llvm::Value *IsFalse = Builder.getFalse(); |
1376 | EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), |
1377 | SanitizerHandler::MissingReturn, |
1378 | EmitCheckSourceLocation(FD->getLocation()), None); |
1379 | } else if (ShouldEmitUnreachable) { |
1380 | if (CGM.getCodeGenOpts().OptimizationLevel == 0) |
1381 | EmitTrapCall(llvm::Intrinsic::trap); |
1382 | } |
1383 | if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { |
1384 | Builder.CreateUnreachable(); |
1385 | Builder.ClearInsertionPoint(); |
1386 | } |
1387 | } |
1388 | |
1389 | // Emit the standard function epilogue. |
1390 | FinishFunction(BodyRange.getEnd()); |
1391 | |
1392 | // If we haven't marked the function nothrow through other means, do |
1393 | // a quick pass now to see if we can. |
1394 | if (!CurFn->doesNotThrow()) |
1395 | TryMarkNoThrow(CurFn); |
1396 | } |
1397 | |
1398 | /// ContainsLabel - Return true if the statement contains a label in it. If |
1399 | /// this statement is not executed normally, it not containing a label means |
1400 | /// that we can just remove the code. |
1401 | bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { |
1402 | // Null statement, not a label! |
1403 | if (!S) return false; |
1404 | |
1405 | // If this is a label, we have to emit the code, consider something like: |
1406 | // if (0) { ... foo: bar(); } goto foo; |
1407 | // |
1408 | // TODO: If anyone cared, we could track __label__'s, since we know that you |
1409 | // can't jump to one from outside their declared region. |
1410 | if (isa<LabelStmt>(S)) |
1411 | return true; |
1412 | |
1413 | // If this is a case/default statement, and we haven't seen a switch, we have |
1414 | // to emit the code. |
1415 | if (isa<SwitchCase>(S) && !IgnoreCaseStmts) |
1416 | return true; |
1417 | |
1418 | // If this is a switch statement, we want to ignore cases below it. |
1419 | if (isa<SwitchStmt>(S)) |
1420 | IgnoreCaseStmts = true; |
1421 | |
1422 | // Scan subexpressions for verboten labels. |
1423 | for (const Stmt *SubStmt : S->children()) |
1424 | if (ContainsLabel(SubStmt, IgnoreCaseStmts)) |
1425 | return true; |
1426 | |
1427 | return false; |
1428 | } |
1429 | |
1430 | /// containsBreak - Return true if the statement contains a break out of it. |
1431 | /// If the statement (recursively) contains a switch or loop with a break |
1432 | /// inside of it, this is fine. |
1433 | bool CodeGenFunction::containsBreak(const Stmt *S) { |
1434 | // Null statement, not a label! |
1435 | if (!S) return false; |
1436 | |
1437 | // If this is a switch or loop that defines its own break scope, then we can |
1438 | // include it and anything inside of it. |
1439 | if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || |
1440 | isa<ForStmt>(S)) |
1441 | return false; |
1442 | |
1443 | if (isa<BreakStmt>(S)) |
1444 | return true; |
1445 | |
1446 | // Scan subexpressions for verboten breaks. |
1447 | for (const Stmt *SubStmt : S->children()) |
1448 | if (containsBreak(SubStmt)) |
1449 | return true; |
1450 | |
1451 | return false; |
1452 | } |
1453 | |
1454 | bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { |
1455 | if (!S) return false; |
1456 | |
1457 | // Some statement kinds add a scope and thus never add a decl to the current |
1458 | // scope. Note, this list is longer than the list of statements that might |
1459 | // have an unscoped decl nested within them, but this way is conservatively |
1460 | // correct even if more statement kinds are added. |
1461 | if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || |
1462 | isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || |
1463 | isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || |
1464 | isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) |
1465 | return false; |
1466 | |
1467 | if (isa<DeclStmt>(S)) |
1468 | return true; |
1469 | |
1470 | for (const Stmt *SubStmt : S->children()) |
1471 | if (mightAddDeclToScope(SubStmt)) |
1472 | return true; |
1473 | |
1474 | return false; |
1475 | } |
1476 | |
1477 | /// ConstantFoldsToSimpleInteger - If the specified expression does not fold |
1478 | /// to a constant, or if it does but contains a label, return false. If it |
1479 | /// constant folds return true and set the boolean result in Result. |
1480 | bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, |
1481 | bool &ResultBool, |
1482 | bool AllowLabels) { |
1483 | llvm::APSInt ResultInt; |
1484 | if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) |
1485 | return false; |
1486 | |
1487 | ResultBool = ResultInt.getBoolValue(); |
1488 | return true; |
1489 | } |
1490 | |
1491 | /// ConstantFoldsToSimpleInteger - If the specified expression does not fold |
1492 | /// to a constant, or if it does but contains a label, return false. If it |
1493 | /// constant folds return true and set the folded value. |
1494 | bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, |
1495 | llvm::APSInt &ResultInt, |
1496 | bool AllowLabels) { |
1497 | // FIXME: Rename and handle conversion of other evaluatable things |
1498 | // to bool. |
1499 | Expr::EvalResult Result; |
1500 | if (!Cond->EvaluateAsInt(Result, getContext())) |
1501 | return false; // Not foldable, not integer or not fully evaluatable. |
1502 | |
1503 | llvm::APSInt Int = Result.Val.getInt(); |
1504 | if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) |
1505 | return false; // Contains a label. |
1506 | |
1507 | ResultInt = Int; |
1508 | return true; |
1509 | } |
1510 | |
1511 | /// Determine whether the given condition is an instrumentable condition |
1512 | /// (i.e. no "&&" or "||"). |
1513 | bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { |
1514 | // Bypass simplistic logical-NOT operator before determining whether the |
1515 | // condition contains any other logical operator. |
1516 | if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens())) |
1517 | if (UnOp->getOpcode() == UO_LNot) |
1518 | C = UnOp->getSubExpr(); |
1519 | |
1520 | const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens()); |
1521 | return (!BOp || !BOp->isLogicalOp()); |
1522 | } |
1523 | |
1524 | /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that |
1525 | /// increments a profile counter based on the semantics of the given logical |
1526 | /// operator opcode. This is used to instrument branch condition coverage for |
1527 | /// logical operators. |
1528 | void CodeGenFunction::EmitBranchToCounterBlock( |
1529 | const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, |
1530 | llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, |
1531 | Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { |
1532 | // If not instrumenting, just emit a branch. |
1533 | bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); |
1534 | if (!InstrumentRegions || !isInstrumentedCondition(Cond)) |
1535 | return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); |
1536 | |
1537 | llvm::BasicBlock *ThenBlock = NULL; |
1538 | llvm::BasicBlock *ElseBlock = NULL; |
1539 | llvm::BasicBlock *NextBlock = NULL; |
1540 | |
1541 | // Create the block we'll use to increment the appropriate counter. |
1542 | llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt" ); |
1543 | |
1544 | // Set block pointers according to Logical-AND (BO_LAnd) semantics. This |
1545 | // means we need to evaluate the condition and increment the counter on TRUE: |
1546 | // |
1547 | // if (Cond) |
1548 | // goto CounterIncrBlock; |
1549 | // else |
1550 | // goto FalseBlock; |
1551 | // |
1552 | // CounterIncrBlock: |
1553 | // Counter++; |
1554 | // goto TrueBlock; |
1555 | |
1556 | if (LOp == BO_LAnd) { |
1557 | ThenBlock = CounterIncrBlock; |
1558 | ElseBlock = FalseBlock; |
1559 | NextBlock = TrueBlock; |
1560 | } |
1561 | |
1562 | // Set block pointers according to Logical-OR (BO_LOr) semantics. This means |
1563 | // we need to evaluate the condition and increment the counter on FALSE: |
1564 | // |
1565 | // if (Cond) |
1566 | // goto TrueBlock; |
1567 | // else |
1568 | // goto CounterIncrBlock; |
1569 | // |
1570 | // CounterIncrBlock: |
1571 | // Counter++; |
1572 | // goto FalseBlock; |
1573 | |
1574 | else if (LOp == BO_LOr) { |
1575 | ThenBlock = TrueBlock; |
1576 | ElseBlock = CounterIncrBlock; |
1577 | NextBlock = FalseBlock; |
1578 | } else { |
1579 | llvm_unreachable("Expected Opcode must be that of a Logical Operator" ); |
1580 | } |
1581 | |
1582 | // Emit Branch based on condition. |
1583 | EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH); |
1584 | |
1585 | // Emit the block containing the counter increment(s). |
1586 | EmitBlock(CounterIncrBlock); |
1587 | |
1588 | // Increment corresponding counter; if index not provided, use Cond as index. |
1589 | incrementProfileCounter(CntrIdx ? CntrIdx : Cond); |
1590 | |
1591 | // Go to the next block. |
1592 | EmitBranch(NextBlock); |
1593 | } |
1594 | |
1595 | /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if |
1596 | /// statement) to the specified blocks. Based on the condition, this might try |
1597 | /// to simplify the codegen of the conditional based on the branch. |
1598 | /// \param LH The value of the likelihood attribute on the True branch. |
1599 | void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, |
1600 | llvm::BasicBlock *TrueBlock, |
1601 | llvm::BasicBlock *FalseBlock, |
1602 | uint64_t TrueCount, |
1603 | Stmt::Likelihood LH) { |
1604 | Cond = Cond->IgnoreParens(); |
1605 | |
1606 | if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { |
1607 | |
1608 | // Handle X && Y in a condition. |
1609 | if (CondBOp->getOpcode() == BO_LAnd) { |
1610 | // If we have "1 && X", simplify the code. "0 && X" would have constant |
1611 | // folded if the case was simple enough. |
1612 | bool ConstantBool = false; |
1613 | if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && |
1614 | ConstantBool) { |
1615 | // br(1 && X) -> br(X). |
1616 | incrementProfileCounter(CondBOp); |
1617 | return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, |
1618 | FalseBlock, TrueCount, LH); |
1619 | } |
1620 | |
1621 | // If we have "X && 1", simplify the code to use an uncond branch. |
1622 | // "X && 0" would have been constant folded to 0. |
1623 | if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && |
1624 | ConstantBool) { |
1625 | // br(X && 1) -> br(X). |
1626 | return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, |
1627 | FalseBlock, TrueCount, LH, CondBOp); |
1628 | } |
1629 | |
1630 | // Emit the LHS as a conditional. If the LHS conditional is false, we |
1631 | // want to jump to the FalseBlock. |
1632 | llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true" ); |
1633 | // The counter tells us how often we evaluate RHS, and all of TrueCount |
1634 | // can be propagated to that branch. |
1635 | uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); |
1636 | |
1637 | ConditionalEvaluation eval(*this); |
1638 | { |
1639 | ApplyDebugLocation DL(*this, Cond); |
1640 | // Propagate the likelihood attribute like __builtin_expect |
1641 | // __builtin_expect(X && Y, 1) -> X and Y are likely |
1642 | // __builtin_expect(X && Y, 0) -> only Y is unlikely |
1643 | EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, |
1644 | LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); |
1645 | EmitBlock(LHSTrue); |
1646 | } |
1647 | |
1648 | incrementProfileCounter(CondBOp); |
1649 | setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); |
1650 | |
1651 | // Any temporaries created here are conditional. |
1652 | eval.begin(*this); |
1653 | EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, |
1654 | FalseBlock, TrueCount, LH); |
1655 | eval.end(*this); |
1656 | |
1657 | return; |
1658 | } |
1659 | |
1660 | if (CondBOp->getOpcode() == BO_LOr) { |
1661 | // If we have "0 || X", simplify the code. "1 || X" would have constant |
1662 | // folded if the case was simple enough. |
1663 | bool ConstantBool = false; |
1664 | if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && |
1665 | !ConstantBool) { |
1666 | // br(0 || X) -> br(X). |
1667 | incrementProfileCounter(CondBOp); |
1668 | return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, |
1669 | FalseBlock, TrueCount, LH); |
1670 | } |
1671 | |
1672 | // If we have "X || 0", simplify the code to use an uncond branch. |
1673 | // "X || 1" would have been constant folded to 1. |
1674 | if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && |
1675 | !ConstantBool) { |
1676 | // br(X || 0) -> br(X). |
1677 | return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, |
1678 | FalseBlock, TrueCount, LH, CondBOp); |
1679 | } |
1680 | |
1681 | // Emit the LHS as a conditional. If the LHS conditional is true, we |
1682 | // want to jump to the TrueBlock. |
1683 | llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false" ); |
1684 | // We have the count for entry to the RHS and for the whole expression |
1685 | // being true, so we can divy up True count between the short circuit and |
1686 | // the RHS. |
1687 | uint64_t LHSCount = |
1688 | getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); |
1689 | uint64_t RHSCount = TrueCount - LHSCount; |
1690 | |
1691 | ConditionalEvaluation eval(*this); |
1692 | { |
1693 | // Propagate the likelihood attribute like __builtin_expect |
1694 | // __builtin_expect(X || Y, 1) -> only Y is likely |
1695 | // __builtin_expect(X || Y, 0) -> both X and Y are unlikely |
1696 | ApplyDebugLocation DL(*this, Cond); |
1697 | EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, |
1698 | LH == Stmt::LH_Likely ? Stmt::LH_None : LH); |
1699 | EmitBlock(LHSFalse); |
1700 | } |
1701 | |
1702 | incrementProfileCounter(CondBOp); |
1703 | setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); |
1704 | |
1705 | // Any temporaries created here are conditional. |
1706 | eval.begin(*this); |
1707 | EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, |
1708 | RHSCount, LH); |
1709 | |
1710 | eval.end(*this); |
1711 | |
1712 | return; |
1713 | } |
1714 | } |
1715 | |
1716 | if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { |
1717 | // br(!x, t, f) -> br(x, f, t) |
1718 | if (CondUOp->getOpcode() == UO_LNot) { |
1719 | // Negate the count. |
1720 | uint64_t FalseCount = getCurrentProfileCount() - TrueCount; |
1721 | // The values of the enum are chosen to make this negation possible. |
1722 | LH = static_cast<Stmt::Likelihood>(-LH); |
1723 | // Negate the condition and swap the destination blocks. |
1724 | return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, |
1725 | FalseCount, LH); |
1726 | } |
1727 | } |
1728 | |
1729 | if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { |
1730 | // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) |
1731 | llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true" ); |
1732 | llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false" ); |
1733 | |
1734 | // The ConditionalOperator itself has no likelihood information for its |
1735 | // true and false branches. This matches the behavior of __builtin_expect. |
1736 | ConditionalEvaluation cond(*this); |
1737 | EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, |
1738 | getProfileCount(CondOp), Stmt::LH_None); |
1739 | |
1740 | // When computing PGO branch weights, we only know the overall count for |
1741 | // the true block. This code is essentially doing tail duplication of the |
1742 | // naive code-gen, introducing new edges for which counts are not |
1743 | // available. Divide the counts proportionally between the LHS and RHS of |
1744 | // the conditional operator. |
1745 | uint64_t LHSScaledTrueCount = 0; |
1746 | if (TrueCount) { |
1747 | double LHSRatio = |
1748 | getProfileCount(CondOp) / (double)getCurrentProfileCount(); |
1749 | LHSScaledTrueCount = TrueCount * LHSRatio; |
1750 | } |
1751 | |
1752 | cond.begin(*this); |
1753 | EmitBlock(LHSBlock); |
1754 | incrementProfileCounter(CondOp); |
1755 | { |
1756 | ApplyDebugLocation DL(*this, Cond); |
1757 | EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, |
1758 | LHSScaledTrueCount, LH); |
1759 | } |
1760 | cond.end(*this); |
1761 | |
1762 | cond.begin(*this); |
1763 | EmitBlock(RHSBlock); |
1764 | EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, |
1765 | TrueCount - LHSScaledTrueCount, LH); |
1766 | cond.end(*this); |
1767 | |
1768 | return; |
1769 | } |
1770 | |
1771 | if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { |
1772 | // Conditional operator handling can give us a throw expression as a |
1773 | // condition for a case like: |
1774 | // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) |
1775 | // Fold this to: |
1776 | // br(c, throw x, br(y, t, f)) |
1777 | EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); |
1778 | return; |
1779 | } |
1780 | |
1781 | // Emit the code with the fully general case. |
1782 | llvm::Value *CondV; |
1783 | { |
1784 | ApplyDebugLocation DL(*this, Cond); |
1785 | CondV = EvaluateExprAsBool(Cond); |
1786 | } |
1787 | |
1788 | llvm::MDNode *Weights = nullptr; |
1789 | llvm::MDNode *Unpredictable = nullptr; |
1790 | |
1791 | // If the branch has a condition wrapped by __builtin_unpredictable, |
1792 | // create metadata that specifies that the branch is unpredictable. |
1793 | // Don't bother if not optimizing because that metadata would not be used. |
1794 | auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); |
1795 | if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { |
1796 | auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); |
1797 | if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { |
1798 | llvm::MDBuilder MDHelper(getLLVMContext()); |
1799 | Unpredictable = MDHelper.createUnpredictable(); |
1800 | } |
1801 | } |
1802 | |
1803 | // If there is a Likelihood knowledge for the cond, lower it. |
1804 | // Note that if not optimizing this won't emit anything. |
1805 | llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH); |
1806 | if (CondV != NewCondV) |
1807 | CondV = NewCondV; |
1808 | else { |
1809 | // Otherwise, lower profile counts. Note that we do this even at -O0. |
1810 | uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); |
1811 | Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); |
1812 | } |
1813 | |
1814 | Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); |
1815 | } |
1816 | |
1817 | /// ErrorUnsupported - Print out an error that codegen doesn't support the |
1818 | /// specified stmt yet. |
1819 | void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { |
1820 | CGM.ErrorUnsupported(S, Type); |
1821 | } |
1822 | |
1823 | /// emitNonZeroVLAInit - Emit the "zero" initialization of a |
1824 | /// variable-length array whose elements have a non-zero bit-pattern. |
1825 | /// |
1826 | /// \param baseType the inner-most element type of the array |
1827 | /// \param src - a char* pointing to the bit-pattern for a single |
1828 | /// base element of the array |
1829 | /// \param sizeInChars - the total size of the VLA, in chars |
1830 | static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, |
1831 | Address dest, Address src, |
1832 | llvm::Value *sizeInChars) { |
1833 | CGBuilderTy &Builder = CGF.Builder; |
1834 | |
1835 | CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); |
1836 | llvm::Value *baseSizeInChars |
1837 | = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); |
1838 | |
1839 | Address begin = |
1840 | Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin" ); |
1841 | llvm::Value *end = Builder.CreateInBoundsGEP( |
1842 | begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end" ); |
1843 | |
1844 | llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); |
1845 | llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop" ); |
1846 | llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont" ); |
1847 | |
1848 | // Make a loop over the VLA. C99 guarantees that the VLA element |
1849 | // count must be nonzero. |
1850 | CGF.EmitBlock(loopBB); |
1851 | |
1852 | llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur" ); |
1853 | cur->addIncoming(begin.getPointer(), originBB); |
1854 | |
1855 | CharUnits curAlign = |
1856 | dest.getAlignment().alignmentOfArrayElement(baseSize); |
1857 | |
1858 | // memcpy the individual element bit-pattern. |
1859 | Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, |
1860 | /*volatile*/ false); |
1861 | |
1862 | // Go to the next element. |
1863 | llvm::Value *next = |
1864 | Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next" ); |
1865 | |
1866 | // Leave if that's the end of the VLA. |
1867 | llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone" ); |
1868 | Builder.CreateCondBr(done, contBB, loopBB); |
1869 | cur->addIncoming(next, loopBB); |
1870 | |
1871 | CGF.EmitBlock(contBB); |
1872 | } |
1873 | |
1874 | void |
1875 | CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { |
1876 | // Ignore empty classes in C++. |
1877 | if (getLangOpts().CPlusPlus) { |
1878 | if (const RecordType *RT = Ty->getAs<RecordType>()) { |
1879 | if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) |
1880 | return; |
1881 | } |
1882 | } |
1883 | |
1884 | // Cast the dest ptr to the appropriate i8 pointer type. |
1885 | if (DestPtr.getElementType() != Int8Ty) |
1886 | DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); |
1887 | |
1888 | // Get size and alignment info for this aggregate. |
1889 | CharUnits size = getContext().getTypeSizeInChars(Ty); |
1890 | |
1891 | llvm::Value *SizeVal; |
1892 | const VariableArrayType *vla; |
1893 | |
1894 | // Don't bother emitting a zero-byte memset. |
1895 | if (size.isZero()) { |
1896 | // But note that getTypeInfo returns 0 for a VLA. |
1897 | if (const VariableArrayType *vlaType = |
1898 | dyn_cast_or_null<VariableArrayType>( |
1899 | getContext().getAsArrayType(Ty))) { |
1900 | auto VlaSize = getVLASize(vlaType); |
1901 | SizeVal = VlaSize.NumElts; |
1902 | CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); |
1903 | if (!eltSize.isOne()) |
1904 | SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); |
1905 | vla = vlaType; |
1906 | } else { |
1907 | return; |
1908 | } |
1909 | } else { |
1910 | SizeVal = CGM.getSize(size); |
1911 | vla = nullptr; |
1912 | } |
1913 | |
1914 | // If the type contains a pointer to data member we can't memset it to zero. |
1915 | // Instead, create a null constant and copy it to the destination. |
1916 | // TODO: there are other patterns besides zero that we can usefully memset, |
1917 | // like -1, which happens to be the pattern used by member-pointers. |
1918 | if (!CGM.getTypes().isZeroInitializable(Ty)) { |
1919 | // For a VLA, emit a single element, then splat that over the VLA. |
1920 | if (vla) Ty = getContext().getBaseElementType(vla); |
1921 | |
1922 | llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); |
1923 | |
1924 | llvm::GlobalVariable *NullVariable = |
1925 | new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), |
1926 | /*isConstant=*/true, |
1927 | llvm::GlobalVariable::PrivateLinkage, |
1928 | NullConstant, Twine()); |
1929 | CharUnits NullAlign = DestPtr.getAlignment(); |
1930 | NullVariable->setAlignment(NullAlign.getAsAlign()); |
1931 | Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), |
1932 | NullAlign); |
1933 | |
1934 | if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); |
1935 | |
1936 | // Get and call the appropriate llvm.memcpy overload. |
1937 | Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); |
1938 | return; |
1939 | } |
1940 | |
1941 | // Otherwise, just memset the whole thing to zero. This is legal |
1942 | // because in LLVM, all default initializers (other than the ones we just |
1943 | // handled above) are guaranteed to have a bit pattern of all zeros. |
1944 | Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); |
1945 | } |
1946 | |
1947 | llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { |
1948 | // Make sure that there is a block for the indirect goto. |
1949 | if (!IndirectBranch) |
1950 | GetIndirectGotoBlock(); |
1951 | |
1952 | llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); |
1953 | |
1954 | // Make sure the indirect branch includes all of the address-taken blocks. |
1955 | IndirectBranch->addDestination(BB); |
1956 | return llvm::BlockAddress::get(CurFn, BB); |
1957 | } |
1958 | |
1959 | llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { |
1960 | // If we already made the indirect branch for indirect goto, return its block. |
1961 | if (IndirectBranch) return IndirectBranch->getParent(); |
1962 | |
1963 | CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto" )); |
1964 | |
1965 | // Create the PHI node that indirect gotos will add entries to. |
1966 | llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, |
1967 | "indirect.goto.dest" ); |
1968 | |
1969 | // Create the indirect branch instruction. |
1970 | IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); |
1971 | return IndirectBranch->getParent(); |
1972 | } |
1973 | |
1974 | /// Computes the length of an array in elements, as well as the base |
1975 | /// element type and a properly-typed first element pointer. |
1976 | llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, |
1977 | QualType &baseType, |
1978 | Address &addr) { |
1979 | const ArrayType *arrayType = origArrayType; |
1980 | |
1981 | // If it's a VLA, we have to load the stored size. Note that |
1982 | // this is the size of the VLA in bytes, not its size in elements. |
1983 | llvm::Value *numVLAElements = nullptr; |
1984 | if (isa<VariableArrayType>(arrayType)) { |
1985 | numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; |
1986 | |
1987 | // Walk into all VLAs. This doesn't require changes to addr, |
1988 | // which has type T* where T is the first non-VLA element type. |
1989 | do { |
1990 | QualType elementType = arrayType->getElementType(); |
1991 | arrayType = getContext().getAsArrayType(elementType); |
1992 | |
1993 | // If we only have VLA components, 'addr' requires no adjustment. |
1994 | if (!arrayType) { |
1995 | baseType = elementType; |
1996 | return numVLAElements; |
1997 | } |
1998 | } while (isa<VariableArrayType>(arrayType)); |
1999 | |
2000 | // We get out here only if we find a constant array type |
2001 | // inside the VLA. |
2002 | } |
2003 | |
2004 | // We have some number of constant-length arrays, so addr should |
2005 | // have LLVM type [M x [N x [...]]]*. Build a GEP that walks |
2006 | // down to the first element of addr. |
2007 | SmallVector<llvm::Value*, 8> gepIndices; |
2008 | |
2009 | // GEP down to the array type. |
2010 | llvm::ConstantInt *zero = Builder.getInt32(0); |
2011 | gepIndices.push_back(zero); |
2012 | |
2013 | uint64_t countFromCLAs = 1; |
2014 | QualType eltType; |
2015 | |
2016 | llvm::ArrayType *llvmArrayType = |
2017 | dyn_cast<llvm::ArrayType>(addr.getElementType()); |
2018 | while (llvmArrayType) { |
2019 | assert(isa<ConstantArrayType>(arrayType)); |
2020 | assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() |
2021 | == llvmArrayType->getNumElements()); |
2022 | |
2023 | gepIndices.push_back(zero); |
2024 | countFromCLAs *= llvmArrayType->getNumElements(); |
2025 | eltType = arrayType->getElementType(); |
2026 | |
2027 | llvmArrayType = |
2028 | dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); |
2029 | arrayType = getContext().getAsArrayType(arrayType->getElementType()); |
2030 | assert((!llvmArrayType || arrayType) && |
2031 | "LLVM and Clang types are out-of-synch" ); |
2032 | } |
2033 | |
2034 | if (arrayType) { |
2035 | // From this point onwards, the Clang array type has been emitted |
2036 | // as some other type (probably a packed struct). Compute the array |
2037 | // size, and just emit the 'begin' expression as a bitcast. |
2038 | while (arrayType) { |
2039 | countFromCLAs *= |
2040 | cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); |
2041 | eltType = arrayType->getElementType(); |
2042 | arrayType = getContext().getAsArrayType(eltType); |
2043 | } |
2044 | |
2045 | llvm::Type *baseType = ConvertType(eltType); |
2046 | addr = Builder.CreateElementBitCast(addr, baseType, "array.begin" ); |
2047 | } else { |
2048 | // Create the actual GEP. |
2049 | addr = Address(Builder.CreateInBoundsGEP( |
2050 | addr.getElementType(), addr.getPointer(), gepIndices, "array.begin" ), |
2051 | addr.getAlignment()); |
2052 | } |
2053 | |
2054 | baseType = eltType; |
2055 | |
2056 | llvm::Value *numElements |
2057 | = llvm::ConstantInt::get(SizeTy, countFromCLAs); |
2058 | |
2059 | // If we had any VLA dimensions, factor them in. |
2060 | if (numVLAElements) |
2061 | numElements = Builder.CreateNUWMul(numVLAElements, numElements); |
2062 | |
2063 | return numElements; |
2064 | } |
2065 | |
2066 | CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { |
2067 | const VariableArrayType *vla = getContext().getAsVariableArrayType(type); |
2068 | assert(vla && "type was not a variable array type!" ); |
2069 | return getVLASize(vla); |
2070 | } |
2071 | |
2072 | CodeGenFunction::VlaSizePair |
2073 | CodeGenFunction::getVLASize(const VariableArrayType *type) { |
2074 | // The number of elements so far; always size_t. |
2075 | llvm::Value *numElements = nullptr; |
2076 | |
2077 | QualType elementType; |
2078 | do { |
2079 | elementType = type->getElementType(); |
2080 | llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; |
2081 | assert(vlaSize && "no size for VLA!" ); |
2082 | assert(vlaSize->getType() == SizeTy); |
2083 | |
2084 | if (!numElements) { |
2085 | numElements = vlaSize; |
2086 | } else { |
2087 | // It's undefined behavior if this wraps around, so mark it that way. |
2088 | // FIXME: Teach -fsanitize=undefined to trap this. |
2089 | numElements = Builder.CreateNUWMul(numElements, vlaSize); |
2090 | } |
2091 | } while ((type = getContext().getAsVariableArrayType(elementType))); |
2092 | |
2093 | return { numElements, elementType }; |
2094 | } |
2095 | |
2096 | CodeGenFunction::VlaSizePair |
2097 | CodeGenFunction::getVLAElements1D(QualType type) { |
2098 | const VariableArrayType *vla = getContext().getAsVariableArrayType(type); |
2099 | assert(vla && "type was not a variable array type!" ); |
2100 | return getVLAElements1D(vla); |
2101 | } |
2102 | |
2103 | CodeGenFunction::VlaSizePair |
2104 | CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { |
2105 | llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; |
2106 | assert(VlaSize && "no size for VLA!" ); |
2107 | assert(VlaSize->getType() == SizeTy); |
2108 | return { VlaSize, Vla->getElementType() }; |
2109 | } |
2110 | |
2111 | void CodeGenFunction::EmitVariablyModifiedType(QualType type) { |
2112 | assert(type->isVariablyModifiedType() && |
2113 | "Must pass variably modified type to EmitVLASizes!" ); |
2114 | |
2115 | EnsureInsertPoint(); |
2116 | |
2117 | // We're going to walk down into the type and look for VLA |
2118 | // expressions. |
2119 | do { |
2120 | assert(type->isVariablyModifiedType()); |
2121 | |
2122 | const Type *ty = type.getTypePtr(); |
2123 | switch (ty->getTypeClass()) { |
2124 | |
2125 | #define TYPE(Class, Base) |
2126 | #define ABSTRACT_TYPE(Class, Base) |
2127 | #define NON_CANONICAL_TYPE(Class, Base) |
2128 | #define DEPENDENT_TYPE(Class, Base) case Type::Class: |
2129 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) |
2130 | #include "clang/AST/TypeNodes.inc" |
2131 | llvm_unreachable("unexpected dependent type!" ); |
2132 | |
2133 | // These types are never variably-modified. |
2134 | case Type::Builtin: |
2135 | case Type::Complex: |
2136 | case Type::Vector: |
2137 | case Type::ExtVector: |
2138 | case Type::ConstantMatrix: |
2139 | case Type::Record: |
2140 | case Type::Enum: |
2141 | case Type::Elaborated: |
2142 | case Type::TemplateSpecialization: |
2143 | case Type::ObjCTypeParam: |
2144 | case Type::ObjCObject: |
2145 | case Type::ObjCInterface: |
2146 | case Type::ObjCObjectPointer: |
2147 | case Type::ExtInt: |
2148 | llvm_unreachable("type class is never variably-modified!" ); |
2149 | |
2150 | case Type::Adjusted: |
2151 | type = cast<AdjustedType>(ty)->getAdjustedType(); |
2152 | break; |
2153 | |
2154 | case Type::Decayed: |
2155 | type = cast<DecayedType>(ty)->getPointeeType(); |
2156 | break; |
2157 | |
2158 | case Type::Pointer: |
2159 | type = cast<PointerType>(ty)->getPointeeType(); |
2160 | break; |
2161 | |
2162 | case Type::BlockPointer: |
2163 | type = cast<BlockPointerType>(ty)->getPointeeType(); |
2164 | break; |
2165 | |
2166 | case Type::LValueReference: |
2167 | case Type::RValueReference: |
2168 | type = cast<ReferenceType>(ty)->getPointeeType(); |
2169 | break; |
2170 | |
2171 | case Type::MemberPointer: |
2172 | type = cast<MemberPointerType>(ty)->getPointeeType(); |
2173 | break; |
2174 | |
2175 | case Type::ConstantArray: |
2176 | case Type::IncompleteArray: |
2177 | // Losing element qualification here is fine. |
2178 | type = cast<ArrayType>(ty)->getElementType(); |
2179 | break; |
2180 | |
2181 | case Type::VariableArray: { |
2182 | // Losing element qualification here is fine. |
2183 | const VariableArrayType *vat = cast<VariableArrayType>(ty); |
2184 | |
2185 | // Unknown size indication requires no size computation. |
2186 | // Otherwise, evaluate and record it. |
2187 | if (const Expr *size = vat->getSizeExpr()) { |
2188 | // It's possible that we might have emitted this already, |
2189 | // e.g. with a typedef and a pointer to it. |
2190 | llvm::Value *&entry = VLASizeMap[size]; |
2191 | if (!entry) { |
2192 | llvm::Value *Size = EmitScalarExpr(size); |
2193 | |
2194 | // C11 6.7.6.2p5: |
2195 | // If the size is an expression that is not an integer constant |
2196 | // expression [...] each time it is evaluated it shall have a value |
2197 | // greater than zero. |
2198 | if (SanOpts.has(SanitizerKind::VLABound) && |
2199 | size->getType()->isSignedIntegerType()) { |
2200 | SanitizerScope SanScope(this); |
2201 | llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); |
2202 | llvm::Constant *StaticArgs[] = { |
2203 | EmitCheckSourceLocation(size->getBeginLoc()), |
2204 | EmitCheckTypeDescriptor(size->getType())}; |
2205 | EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), |
2206 | SanitizerKind::VLABound), |
2207 | SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); |
2208 | } |
2209 | |
2210 | // Always zexting here would be wrong if it weren't |
2211 | // undefined behavior to have a negative bound. |
2212 | entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); |
2213 | } |
2214 | } |
2215 | type = vat->getElementType(); |
2216 | break; |
2217 | } |
2218 | |
2219 | case Type::FunctionProto: |
2220 | case Type::FunctionNoProto: |
2221 | type = cast<FunctionType>(ty)->getReturnType(); |
2222 | break; |
2223 | |
2224 | case Type::Paren: |
2225 | case Type::TypeOf: |
2226 | case Type::UnaryTransform: |
2227 | case Type::Attributed: |
2228 | case Type::SubstTemplateTypeParm: |
2229 | case Type::MacroQualified: |
2230 | // Keep walking after single level desugaring. |
2231 | type = type.getSingleStepDesugaredType(getContext()); |
2232 | break; |
2233 | |
2234 | case Type::Typedef: |
2235 | case Type::Decltype: |
2236 | case Type::Auto: |
2237 | case Type::DeducedTemplateSpecialization: |
2238 | // Stop walking: nothing to do. |
2239 | return; |
2240 | |
2241 | case Type::TypeOfExpr: |
2242 | // Stop walking: emit typeof expression. |
2243 | EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); |
2244 | return; |
2245 | |
2246 | case Type::Atomic: |
2247 | type = cast<AtomicType>(ty)->getValueType(); |
2248 | break; |
2249 | |
2250 | case Type::Pipe: |
2251 | type = cast<PipeType>(ty)->getElementType(); |
2252 | break; |
2253 | } |
|
---|