1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This coordinates the per-module state used while generating code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CodeGenModule.h"
14#include "ABIInfo.h"
15#include "CGBlocks.h"
16#include "CGCUDARuntime.h"
17#include "CGCXXABI.h"
18#include "CGCall.h"
19#include "CGDebugInfo.h"
20#include "CGHLSLRuntime.h"
21#include "CGObjCRuntime.h"
22#include "CGOpenCLRuntime.h"
23#include "CGOpenMPRuntime.h"
24#include "CGOpenMPRuntimeGPU.h"
25#include "CodeGenFunction.h"
26#include "CodeGenPGO.h"
27#include "ConstantEmitter.h"
28#include "CoverageMappingGen.h"
29#include "TargetInfo.h"
30#include "clang/AST/ASTContext.h"
31#include "clang/AST/ASTLambda.h"
32#include "clang/AST/CharUnits.h"
33#include "clang/AST/Decl.h"
34#include "clang/AST/DeclCXX.h"
35#include "clang/AST/DeclObjC.h"
36#include "clang/AST/DeclTemplate.h"
37#include "clang/AST/Mangle.h"
38#include "clang/AST/RecursiveASTVisitor.h"
39#include "clang/AST/StmtVisitor.h"
40#include "clang/Basic/Builtins.h"
41#include "clang/Basic/CharInfo.h"
42#include "clang/Basic/CodeGenOptions.h"
43#include "clang/Basic/Diagnostic.h"
44#include "clang/Basic/FileManager.h"
45#include "clang/Basic/Module.h"
46#include "clang/Basic/SourceManager.h"
47#include "clang/Basic/TargetInfo.h"
48#include "clang/Basic/Version.h"
49#include "clang/CodeGen/BackendUtil.h"
50#include "clang/CodeGen/ConstantInitBuilder.h"
51#include "clang/Frontend/FrontendDiagnostic.h"
52#include "llvm/ADT/STLExtras.h"
53#include "llvm/ADT/StringExtras.h"
54#include "llvm/ADT/StringSwitch.h"
55#include "llvm/Analysis/TargetLibraryInfo.h"
56#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
57#include "llvm/IR/AttributeMask.h"
58#include "llvm/IR/CallingConv.h"
59#include "llvm/IR/DataLayout.h"
60#include "llvm/IR/Intrinsics.h"
61#include "llvm/IR/LLVMContext.h"
62#include "llvm/IR/Module.h"
63#include "llvm/IR/ProfileSummary.h"
64#include "llvm/ProfileData/InstrProfReader.h"
65#include "llvm/ProfileData/SampleProf.h"
66#include "llvm/Support/CRC.h"
67#include "llvm/Support/CodeGen.h"
68#include "llvm/Support/CommandLine.h"
69#include "llvm/Support/ConvertUTF.h"
70#include "llvm/Support/ErrorHandling.h"
71#include "llvm/Support/RISCVISAInfo.h"
72#include "llvm/Support/TimeProfiler.h"
73#include "llvm/Support/xxhash.h"
74#include "llvm/TargetParser/Triple.h"
75#include "llvm/TargetParser/X86TargetParser.h"
76#include <optional>
77
78using namespace clang;
79using namespace CodeGen;
80
81static llvm::cl::opt<bool> LimitedCoverage(
82 "limited-coverage-experimental", llvm::cl::Hidden,
83 llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
84
85static const char AnnotationSection[] = "llvm.metadata";
86
87static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
88 switch (CGM.getContext().getCXXABIKind()) {
89 case TargetCXXABI::AppleARM64:
90 case TargetCXXABI::Fuchsia:
91 case TargetCXXABI::GenericAArch64:
92 case TargetCXXABI::GenericARM:
93 case TargetCXXABI::iOS:
94 case TargetCXXABI::WatchOS:
95 case TargetCXXABI::GenericMIPS:
96 case TargetCXXABI::GenericItanium:
97 case TargetCXXABI::WebAssembly:
98 case TargetCXXABI::XL:
99 return CreateItaniumCXXABI(CGM);
100 case TargetCXXABI::Microsoft:
101 return CreateMicrosoftCXXABI(CGM);
102 }
103
104 llvm_unreachable("invalid C++ ABI kind");
105}
106
107static std::unique_ptr<TargetCodeGenInfo>
108createTargetCodeGenInfo(CodeGenModule &CGM) {
109 const TargetInfo &Target = CGM.getTarget();
110 const llvm::Triple &Triple = Target.getTriple();
111 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
112
113 switch (Triple.getArch()) {
114 default:
115 return createDefaultTargetCodeGenInfo(CGM);
116
117 case llvm::Triple::le32:
118 return createPNaClTargetCodeGenInfo(CGM);
119 case llvm::Triple::m68k:
120 return createM68kTargetCodeGenInfo(CGM);
121 case llvm::Triple::mips:
122 case llvm::Triple::mipsel:
123 if (Triple.getOS() == llvm::Triple::NaCl)
124 return createPNaClTargetCodeGenInfo(CGM);
125 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true);
126
127 case llvm::Triple::mips64:
128 case llvm::Triple::mips64el:
129 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false);
130
131 case llvm::Triple::avr: {
132 // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
133 // on avrtiny. For passing return value, R18~R25 are used on avr, and
134 // R22~R25 are used on avrtiny.
135 unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18;
136 unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8;
137 return createAVRTargetCodeGenInfo(CGM, NPR, NRR);
138 }
139
140 case llvm::Triple::aarch64:
141 case llvm::Triple::aarch64_32:
142 case llvm::Triple::aarch64_be: {
143 AArch64ABIKind Kind = AArch64ABIKind::AAPCS;
144 if (Target.getABI() == "darwinpcs")
145 Kind = AArch64ABIKind::DarwinPCS;
146 else if (Triple.isOSWindows())
147 return createWindowsAArch64TargetCodeGenInfo(CGM, K: AArch64ABIKind::Win64);
148
149 return createAArch64TargetCodeGenInfo(CGM, Kind);
150 }
151
152 case llvm::Triple::wasm32:
153 case llvm::Triple::wasm64: {
154 WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP;
155 if (Target.getABI() == "experimental-mv")
156 Kind = WebAssemblyABIKind::ExperimentalMV;
157 return createWebAssemblyTargetCodeGenInfo(CGM, K: Kind);
158 }
159
160 case llvm::Triple::arm:
161 case llvm::Triple::armeb:
162 case llvm::Triple::thumb:
163 case llvm::Triple::thumbeb: {
164 if (Triple.getOS() == llvm::Triple::Win32)
165 return createWindowsARMTargetCodeGenInfo(CGM, K: ARMABIKind::AAPCS_VFP);
166
167 ARMABIKind Kind = ARMABIKind::AAPCS;
168 StringRef ABIStr = Target.getABI();
169 if (ABIStr == "apcs-gnu")
170 Kind = ARMABIKind::APCS;
171 else if (ABIStr == "aapcs16")
172 Kind = ARMABIKind::AAPCS16_VFP;
173 else if (CodeGenOpts.FloatABI == "hard" ||
174 (CodeGenOpts.FloatABI != "soft" &&
175 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
176 Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
177 Triple.getEnvironment() == llvm::Triple::EABIHF)))
178 Kind = ARMABIKind::AAPCS_VFP;
179
180 return createARMTargetCodeGenInfo(CGM, Kind);
181 }
182
183 case llvm::Triple::ppc: {
184 if (Triple.isOSAIX())
185 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false);
186
187 bool IsSoftFloat =
188 CodeGenOpts.FloatABI == "soft" || Target.hasFeature(Feature: "spe");
189 return createPPC32TargetCodeGenInfo(CGM, SoftFloatABI: IsSoftFloat);
190 }
191 case llvm::Triple::ppcle: {
192 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
193 return createPPC32TargetCodeGenInfo(CGM, SoftFloatABI: IsSoftFloat);
194 }
195 case llvm::Triple::ppc64:
196 if (Triple.isOSAIX())
197 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true);
198
199 if (Triple.isOSBinFormatELF()) {
200 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1;
201 if (Target.getABI() == "elfv2")
202 Kind = PPC64_SVR4_ABIKind::ELFv2;
203 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
204
205 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, SoftFloatABI: IsSoftFloat);
206 }
207 return createPPC64TargetCodeGenInfo(CGM);
208 case llvm::Triple::ppc64le: {
209 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
210 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2;
211 if (Target.getABI() == "elfv1")
212 Kind = PPC64_SVR4_ABIKind::ELFv1;
213 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
214
215 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, SoftFloatABI: IsSoftFloat);
216 }
217
218 case llvm::Triple::nvptx:
219 case llvm::Triple::nvptx64:
220 return createNVPTXTargetCodeGenInfo(CGM);
221
222 case llvm::Triple::msp430:
223 return createMSP430TargetCodeGenInfo(CGM);
224
225 case llvm::Triple::riscv32:
226 case llvm::Triple::riscv64: {
227 StringRef ABIStr = Target.getABI();
228 unsigned XLen = Target.getPointerWidth(AddrSpace: LangAS::Default);
229 unsigned ABIFLen = 0;
230 if (ABIStr.ends_with(Suffix: "f"))
231 ABIFLen = 32;
232 else if (ABIStr.ends_with(Suffix: "d"))
233 ABIFLen = 64;
234 bool EABI = ABIStr.ends_with(Suffix: "e");
235 return createRISCVTargetCodeGenInfo(CGM, XLen, FLen: ABIFLen, EABI);
236 }
237
238 case llvm::Triple::systemz: {
239 bool SoftFloat = CodeGenOpts.FloatABI == "soft";
240 bool HasVector = !SoftFloat && Target.getABI() == "vector";
241 return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloatABI: SoftFloat);
242 }
243
244 case llvm::Triple::tce:
245 case llvm::Triple::tcele:
246 return createTCETargetCodeGenInfo(CGM);
247
248 case llvm::Triple::x86: {
249 bool IsDarwinVectorABI = Triple.isOSDarwin();
250 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
251
252 if (Triple.getOS() == llvm::Triple::Win32) {
253 return createWinX86_32TargetCodeGenInfo(
254 CGM, DarwinVectorABI: IsDarwinVectorABI, Win32StructABI: IsWin32FloatStructABI,
255 NumRegisterParameters: CodeGenOpts.NumRegisterParameters);
256 }
257 return createX86_32TargetCodeGenInfo(
258 CGM, DarwinVectorABI: IsDarwinVectorABI, Win32StructABI: IsWin32FloatStructABI,
259 NumRegisterParameters: CodeGenOpts.NumRegisterParameters, SoftFloatABI: CodeGenOpts.FloatABI == "soft");
260 }
261
262 case llvm::Triple::x86_64: {
263 StringRef ABI = Target.getABI();
264 X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512
265 : ABI == "avx" ? X86AVXABILevel::AVX
266 : X86AVXABILevel::None);
267
268 switch (Triple.getOS()) {
269 case llvm::Triple::Win32:
270 return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel);
271 default:
272 return createX86_64TargetCodeGenInfo(CGM, AVXLevel);
273 }
274 }
275 case llvm::Triple::hexagon:
276 return createHexagonTargetCodeGenInfo(CGM);
277 case llvm::Triple::lanai:
278 return createLanaiTargetCodeGenInfo(CGM);
279 case llvm::Triple::r600:
280 return createAMDGPUTargetCodeGenInfo(CGM);
281 case llvm::Triple::amdgcn:
282 return createAMDGPUTargetCodeGenInfo(CGM);
283 case llvm::Triple::sparc:
284 return createSparcV8TargetCodeGenInfo(CGM);
285 case llvm::Triple::sparcv9:
286 return createSparcV9TargetCodeGenInfo(CGM);
287 case llvm::Triple::xcore:
288 return createXCoreTargetCodeGenInfo(CGM);
289 case llvm::Triple::arc:
290 return createARCTargetCodeGenInfo(CGM);
291 case llvm::Triple::spir:
292 case llvm::Triple::spir64:
293 return createCommonSPIRTargetCodeGenInfo(CGM);
294 case llvm::Triple::spirv32:
295 case llvm::Triple::spirv64:
296 return createSPIRVTargetCodeGenInfo(CGM);
297 case llvm::Triple::ve:
298 return createVETargetCodeGenInfo(CGM);
299 case llvm::Triple::csky: {
300 bool IsSoftFloat = !Target.hasFeature(Feature: "hard-float-abi");
301 bool hasFP64 =
302 Target.hasFeature(Feature: "fpuv2_df") || Target.hasFeature(Feature: "fpuv3_df");
303 return createCSKYTargetCodeGenInfo(CGM, FLen: IsSoftFloat ? 0
304 : hasFP64 ? 64
305 : 32);
306 }
307 case llvm::Triple::bpfeb:
308 case llvm::Triple::bpfel:
309 return createBPFTargetCodeGenInfo(CGM);
310 case llvm::Triple::loongarch32:
311 case llvm::Triple::loongarch64: {
312 StringRef ABIStr = Target.getABI();
313 unsigned ABIFRLen = 0;
314 if (ABIStr.ends_with(Suffix: "f"))
315 ABIFRLen = 32;
316 else if (ABIStr.ends_with(Suffix: "d"))
317 ABIFRLen = 64;
318 return createLoongArchTargetCodeGenInfo(
319 CGM, GRLen: Target.getPointerWidth(AddrSpace: LangAS::Default), FLen: ABIFRLen);
320 }
321 }
322}
323
324const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
325 if (!TheTargetCodeGenInfo)
326 TheTargetCodeGenInfo = createTargetCodeGenInfo(CGM&: *this);
327 return *TheTargetCodeGenInfo;
328}
329
330CodeGenModule::CodeGenModule(ASTContext &C,
331 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
332 const HeaderSearchOptions &HSO,
333 const PreprocessorOptions &PPO,
334 const CodeGenOptions &CGO, llvm::Module &M,
335 DiagnosticsEngine &diags,
336 CoverageSourceInfo *CoverageInfo)
337 : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO),
338 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
339 Target(C.getTargetInfo()), ABI(createCXXABI(CGM&: *this)),
340 VMContext(M.getContext()), Types(*this), VTables(*this),
341 SanitizerMD(new SanitizerMetadata(*this)) {
342
343 // Initialize the type cache.
344 llvm::LLVMContext &LLVMContext = M.getContext();
345 VoidTy = llvm::Type::getVoidTy(C&: LLVMContext);
346 Int8Ty = llvm::Type::getInt8Ty(C&: LLVMContext);
347 Int16Ty = llvm::Type::getInt16Ty(C&: LLVMContext);
348 Int32Ty = llvm::Type::getInt32Ty(C&: LLVMContext);
349 Int64Ty = llvm::Type::getInt64Ty(C&: LLVMContext);
350 HalfTy = llvm::Type::getHalfTy(C&: LLVMContext);
351 BFloatTy = llvm::Type::getBFloatTy(C&: LLVMContext);
352 FloatTy = llvm::Type::getFloatTy(C&: LLVMContext);
353 DoubleTy = llvm::Type::getDoubleTy(C&: LLVMContext);
354 PointerWidthInBits = C.getTargetInfo().getPointerWidth(AddrSpace: LangAS::Default);
355 PointerAlignInBytes =
356 C.toCharUnitsFromBits(BitSize: C.getTargetInfo().getPointerAlign(AddrSpace: LangAS::Default))
357 .getQuantity();
358 SizeSizeInBytes =
359 C.toCharUnitsFromBits(BitSize: C.getTargetInfo().getMaxPointerWidth()).getQuantity();
360 IntAlignInBytes =
361 C.toCharUnitsFromBits(BitSize: C.getTargetInfo().getIntAlign()).getQuantity();
362 CharTy =
363 llvm::IntegerType::get(C&: LLVMContext, NumBits: C.getTargetInfo().getCharWidth());
364 IntTy = llvm::IntegerType::get(C&: LLVMContext, NumBits: C.getTargetInfo().getIntWidth());
365 IntPtrTy = llvm::IntegerType::get(C&: LLVMContext,
366 NumBits: C.getTargetInfo().getMaxPointerWidth());
367 Int8PtrTy = llvm::PointerType::get(C&: LLVMContext, AddressSpace: 0);
368 const llvm::DataLayout &DL = M.getDataLayout();
369 AllocaInt8PtrTy =
370 llvm::PointerType::get(C&: LLVMContext, AddressSpace: DL.getAllocaAddrSpace());
371 GlobalsInt8PtrTy =
372 llvm::PointerType::get(C&: LLVMContext, AddressSpace: DL.getDefaultGlobalsAddressSpace());
373 ConstGlobalsPtrTy = llvm::PointerType::get(
374 C&: LLVMContext, AddressSpace: C.getTargetAddressSpace(AS: GetGlobalConstantAddressSpace()));
375 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
376
377 // Build C++20 Module initializers.
378 // TODO: Add Microsoft here once we know the mangling required for the
379 // initializers.
380 CXX20ModuleInits =
381 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
382 ItaniumMangleContext::MK_Itanium;
383
384 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
385
386 if (LangOpts.ObjC)
387 createObjCRuntime();
388 if (LangOpts.OpenCL)
389 createOpenCLRuntime();
390 if (LangOpts.OpenMP)
391 createOpenMPRuntime();
392 if (LangOpts.CUDA)
393 createCUDARuntime();
394 if (LangOpts.HLSL)
395 createHLSLRuntime();
396
397 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
398 if (LangOpts.Sanitize.has(K: SanitizerKind::Thread) ||
399 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
400 TBAA.reset(p: new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
401 getCXXABI().getMangleContext()));
402
403 // If debug info or coverage generation is enabled, create the CGDebugInfo
404 // object.
405 if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo ||
406 CodeGenOpts.CoverageNotesFile.size() ||
407 CodeGenOpts.CoverageDataFile.size())
408 DebugInfo.reset(p: new CGDebugInfo(*this));
409
410 Block.GlobalUniqueCount = 0;
411
412 if (C.getLangOpts().ObjC)
413 ObjCData.reset(p: new ObjCEntrypoints());
414
415 if (CodeGenOpts.hasProfileClangUse()) {
416 auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
417 Path: CodeGenOpts.ProfileInstrumentUsePath, FS&: *FS,
418 RemappingPath: CodeGenOpts.ProfileRemappingFile);
419 // We're checking for profile read errors in CompilerInvocation, so if
420 // there was an error it should've already been caught. If it hasn't been
421 // somehow, trip an assertion.
422 assert(ReaderOrErr);
423 PGOReader = std::move(ReaderOrErr.get());
424 }
425
426 // If coverage mapping generation is enabled, create the
427 // CoverageMappingModuleGen object.
428 if (CodeGenOpts.CoverageMapping)
429 CoverageMapping.reset(p: new CoverageMappingModuleGen(*this, *CoverageInfo));
430
431 // Generate the module name hash here if needed.
432 if (CodeGenOpts.UniqueInternalLinkageNames &&
433 !getModule().getSourceFileName().empty()) {
434 std::string Path = getModule().getSourceFileName();
435 // Check if a path substitution is needed from the MacroPrefixMap.
436 for (const auto &Entry : LangOpts.MacroPrefixMap)
437 if (Path.rfind(str: Entry.first, pos: 0) != std::string::npos) {
438 Path = Entry.second + Path.substr(pos: Entry.first.size());
439 break;
440 }
441 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(FName: Path);
442 }
443}
444
445CodeGenModule::~CodeGenModule() {}
446
447void CodeGenModule::createObjCRuntime() {
448 // This is just isGNUFamily(), but we want to force implementors of
449 // new ABIs to decide how best to do this.
450 switch (LangOpts.ObjCRuntime.getKind()) {
451 case ObjCRuntime::GNUstep:
452 case ObjCRuntime::GCC:
453 case ObjCRuntime::ObjFW:
454 ObjCRuntime.reset(p: CreateGNUObjCRuntime(CGM&: *this));
455 return;
456
457 case ObjCRuntime::FragileMacOSX:
458 case ObjCRuntime::MacOSX:
459 case ObjCRuntime::iOS:
460 case ObjCRuntime::WatchOS:
461 ObjCRuntime.reset(p: CreateMacObjCRuntime(CGM&: *this));
462 return;
463 }
464 llvm_unreachable("bad runtime kind");
465}
466
467void CodeGenModule::createOpenCLRuntime() {
468 OpenCLRuntime.reset(p: new CGOpenCLRuntime(*this));
469}
470
471void CodeGenModule::createOpenMPRuntime() {
472 // Select a specialized code generation class based on the target, if any.
473 // If it does not exist use the default implementation.
474 switch (getTriple().getArch()) {
475 case llvm::Triple::nvptx:
476 case llvm::Triple::nvptx64:
477 case llvm::Triple::amdgcn:
478 assert(getLangOpts().OpenMPIsTargetDevice &&
479 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
480 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
481 break;
482 default:
483 if (LangOpts.OpenMPSimd)
484 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
485 else
486 OpenMPRuntime.reset(p: new CGOpenMPRuntime(*this));
487 break;
488 }
489}
490
491void CodeGenModule::createCUDARuntime() {
492 CUDARuntime.reset(p: CreateNVCUDARuntime(CGM&: *this));
493}
494
495void CodeGenModule::createHLSLRuntime() {
496 HLSLRuntime.reset(p: new CGHLSLRuntime(*this));
497}
498
499void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
500 Replacements[Name] = C;
501}
502
503void CodeGenModule::applyReplacements() {
504 for (auto &I : Replacements) {
505 StringRef MangledName = I.first;
506 llvm::Constant *Replacement = I.second;
507 llvm::GlobalValue *Entry = GetGlobalValue(Ref: MangledName);
508 if (!Entry)
509 continue;
510 auto *OldF = cast<llvm::Function>(Val: Entry);
511 auto *NewF = dyn_cast<llvm::Function>(Val: Replacement);
512 if (!NewF) {
513 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Val: Replacement)) {
514 NewF = dyn_cast<llvm::Function>(Val: Alias->getAliasee());
515 } else {
516 auto *CE = cast<llvm::ConstantExpr>(Val: Replacement);
517 assert(CE->getOpcode() == llvm::Instruction::BitCast ||
518 CE->getOpcode() == llvm::Instruction::GetElementPtr);
519 NewF = dyn_cast<llvm::Function>(Val: CE->getOperand(i_nocapture: 0));
520 }
521 }
522
523 // Replace old with new, but keep the old order.
524 OldF->replaceAllUsesWith(V: Replacement);
525 if (NewF) {
526 NewF->removeFromParent();
527 OldF->getParent()->getFunctionList().insertAfter(where: OldF->getIterator(),
528 New: NewF);
529 }
530 OldF->eraseFromParent();
531 }
532}
533
534void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
535 GlobalValReplacements.push_back(Elt: std::make_pair(x&: GV, y&: C));
536}
537
538void CodeGenModule::applyGlobalValReplacements() {
539 for (auto &I : GlobalValReplacements) {
540 llvm::GlobalValue *GV = I.first;
541 llvm::Constant *C = I.second;
542
543 GV->replaceAllUsesWith(V: C);
544 GV->eraseFromParent();
545 }
546}
547
548// This is only used in aliases that we created and we know they have a
549// linear structure.
550static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
551 const llvm::Constant *C;
552 if (auto *GA = dyn_cast<llvm::GlobalAlias>(Val: GV))
553 C = GA->getAliasee();
554 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(Val: GV))
555 C = GI->getResolver();
556 else
557 return GV;
558
559 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(Val: C->stripPointerCasts());
560 if (!AliaseeGV)
561 return nullptr;
562
563 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
564 if (FinalGV == GV)
565 return nullptr;
566
567 return FinalGV;
568}
569
570static bool checkAliasedGlobal(
571 const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location,
572 bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV,
573 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames,
574 SourceRange AliasRange) {
575 GV = getAliasedGlobal(GV: Alias);
576 if (!GV) {
577 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
578 return false;
579 }
580
581 if (GV->hasCommonLinkage()) {
582 const llvm::Triple &Triple = Context.getTargetInfo().getTriple();
583 if (Triple.getObjectFormat() == llvm::Triple::XCOFF) {
584 Diags.Report(Location, diag::err_alias_to_common);
585 return false;
586 }
587 }
588
589 if (GV->isDeclaration()) {
590 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
591 Diags.Report(Location, diag::note_alias_requires_mangled_name)
592 << IsIFunc << IsIFunc;
593 // Provide a note if the given function is not found and exists as a
594 // mangled name.
595 for (const auto &[Decl, Name] : MangledDeclNames) {
596 if (const auto *ND = dyn_cast<NamedDecl>(Val: Decl.getDecl())) {
597 if (ND->getName() == GV->getName()) {
598 Diags.Report(Location, diag::note_alias_mangled_name_alternative)
599 << Name
600 << FixItHint::CreateReplacement(
601 AliasRange,
602 (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")")
603 .str());
604 }
605 }
606 }
607 return false;
608 }
609
610 if (IsIFunc) {
611 // Check resolver function type.
612 const auto *F = dyn_cast<llvm::Function>(Val: GV);
613 if (!F) {
614 Diags.Report(Location, diag::err_alias_to_undefined)
615 << IsIFunc << IsIFunc;
616 return false;
617 }
618
619 llvm::FunctionType *FTy = F->getFunctionType();
620 if (!FTy->getReturnType()->isPointerTy()) {
621 Diags.Report(Location, diag::err_ifunc_resolver_return);
622 return false;
623 }
624 }
625
626 return true;
627}
628
629void CodeGenModule::checkAliases() {
630 // Check if the constructed aliases are well formed. It is really unfortunate
631 // that we have to do this in CodeGen, but we only construct mangled names
632 // and aliases during codegen.
633 bool Error = false;
634 DiagnosticsEngine &Diags = getDiags();
635 for (const GlobalDecl &GD : Aliases) {
636 const auto *D = cast<ValueDecl>(Val: GD.getDecl());
637 SourceLocation Location;
638 SourceRange Range;
639 bool IsIFunc = D->hasAttr<IFuncAttr>();
640 if (const Attr *A = D->getDefiningAttr()) {
641 Location = A->getLocation();
642 Range = A->getRange();
643 } else
644 llvm_unreachable("Not an alias or ifunc?");
645
646 StringRef MangledName = getMangledName(GD);
647 llvm::GlobalValue *Alias = GetGlobalValue(Ref: MangledName);
648 const llvm::GlobalValue *GV = nullptr;
649 if (!checkAliasedGlobal(Context: getContext(), Diags, Location, IsIFunc, Alias, GV,
650 MangledDeclNames, AliasRange: Range)) {
651 Error = true;
652 continue;
653 }
654
655 llvm::Constant *Aliasee =
656 IsIFunc ? cast<llvm::GlobalIFunc>(Val: Alias)->getResolver()
657 : cast<llvm::GlobalAlias>(Val: Alias)->getAliasee();
658
659 llvm::GlobalValue *AliaseeGV;
660 if (auto CE = dyn_cast<llvm::ConstantExpr>(Val: Aliasee))
661 AliaseeGV = cast<llvm::GlobalValue>(Val: CE->getOperand(i_nocapture: 0));
662 else
663 AliaseeGV = cast<llvm::GlobalValue>(Val: Aliasee);
664
665 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
666 StringRef AliasSection = SA->getName();
667 if (AliasSection != AliaseeGV->getSection())
668 Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
669 << AliasSection << IsIFunc << IsIFunc;
670 }
671
672 // We have to handle alias to weak aliases in here. LLVM itself disallows
673 // this since the object semantics would not match the IL one. For
674 // compatibility with gcc we implement it by just pointing the alias
675 // to its aliasee's aliasee. We also warn, since the user is probably
676 // expecting the link to be weak.
677 if (auto *GA = dyn_cast<llvm::GlobalAlias>(Val: AliaseeGV)) {
678 if (GA->isInterposable()) {
679 Diags.Report(Location, diag::warn_alias_to_weak_alias)
680 << GV->getName() << GA->getName() << IsIFunc;
681 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
682 C: GA->getAliasee(), Ty: Alias->getType());
683
684 if (IsIFunc)
685 cast<llvm::GlobalIFunc>(Val: Alias)->setResolver(Aliasee);
686 else
687 cast<llvm::GlobalAlias>(Val: Alias)->setAliasee(Aliasee);
688 }
689 }
690 }
691 if (!Error)
692 return;
693
694 for (const GlobalDecl &GD : Aliases) {
695 StringRef MangledName = getMangledName(GD);
696 llvm::GlobalValue *Alias = GetGlobalValue(Ref: MangledName);
697 Alias->replaceAllUsesWith(V: llvm::UndefValue::get(T: Alias->getType()));
698 Alias->eraseFromParent();
699 }
700}
701
702void CodeGenModule::clear() {
703 DeferredDeclsToEmit.clear();
704 EmittedDeferredDecls.clear();
705 DeferredAnnotations.clear();
706 if (OpenMPRuntime)
707 OpenMPRuntime->clear();
708}
709
710void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
711 StringRef MainFile) {
712 if (!hasDiagnostics())
713 return;
714 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
715 if (MainFile.empty())
716 MainFile = "<stdin>";
717 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
718 } else {
719 if (Mismatched > 0)
720 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
721
722 if (Missing > 0)
723 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
724 }
725}
726
727static std::optional<llvm::GlobalValue::VisibilityTypes>
728getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) {
729 // Map to LLVM visibility.
730 switch (K) {
731 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep:
732 return std::nullopt;
733 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default:
734 return llvm::GlobalValue::DefaultVisibility;
735 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden:
736 return llvm::GlobalValue::HiddenVisibility;
737 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected:
738 return llvm::GlobalValue::ProtectedVisibility;
739 }
740 llvm_unreachable("unknown option value!");
741}
742
743void setLLVMVisibility(llvm::GlobalValue &GV,
744 std::optional<llvm::GlobalValue::VisibilityTypes> V) {
745 if (!V)
746 return;
747
748 // Reset DSO locality before setting the visibility. This removes
749 // any effects that visibility options and annotations may have
750 // had on the DSO locality. Setting the visibility will implicitly set
751 // appropriate globals to DSO Local; however, this will be pessimistic
752 // w.r.t. to the normal compiler IRGen.
753 GV.setDSOLocal(false);
754 GV.setVisibility(*V);
755}
756
757static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
758 llvm::Module &M) {
759 if (!LO.VisibilityFromDLLStorageClass)
760 return;
761
762 std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility =
763 getLLVMVisibility(K: LO.getDLLExportVisibility());
764
765 std::optional<llvm::GlobalValue::VisibilityTypes>
766 NoDLLStorageClassVisibility =
767 getLLVMVisibility(K: LO.getNoDLLStorageClassVisibility());
768
769 std::optional<llvm::GlobalValue::VisibilityTypes>
770 ExternDeclDLLImportVisibility =
771 getLLVMVisibility(K: LO.getExternDeclDLLImportVisibility());
772
773 std::optional<llvm::GlobalValue::VisibilityTypes>
774 ExternDeclNoDLLStorageClassVisibility =
775 getLLVMVisibility(K: LO.getExternDeclNoDLLStorageClassVisibility());
776
777 for (llvm::GlobalValue &GV : M.global_values()) {
778 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
779 continue;
780
781 if (GV.isDeclarationForLinker())
782 setLLVMVisibility(GV, V: GV.getDLLStorageClass() ==
783 llvm::GlobalValue::DLLImportStorageClass
784 ? ExternDeclDLLImportVisibility
785 : ExternDeclNoDLLStorageClassVisibility);
786 else
787 setLLVMVisibility(GV, V: GV.getDLLStorageClass() ==
788 llvm::GlobalValue::DLLExportStorageClass
789 ? DLLExportVisibility
790 : NoDLLStorageClassVisibility);
791
792 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
793 }
794}
795
796static bool isStackProtectorOn(const LangOptions &LangOpts,
797 const llvm::Triple &Triple,
798 clang::LangOptions::StackProtectorMode Mode) {
799 if (Triple.isAMDGPU() || Triple.isNVPTX())
800 return false;
801 return LangOpts.getStackProtector() == Mode;
802}
803
804void CodeGenModule::Release() {
805 Module *Primary = getContext().getCurrentNamedModule();
806 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
807 EmitModuleInitializers(Primary);
808 EmitDeferred();
809 DeferredDecls.insert(I: EmittedDeferredDecls.begin(),
810 E: EmittedDeferredDecls.end());
811 EmittedDeferredDecls.clear();
812 EmitVTablesOpportunistically();
813 applyGlobalValReplacements();
814 applyReplacements();
815 emitMultiVersionFunctions();
816
817 if (Context.getLangOpts().IncrementalExtensions &&
818 GlobalTopLevelStmtBlockInFlight.first) {
819 const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
820 GlobalTopLevelStmtBlockInFlight.first->FinishFunction(EndLoc: TLSD->getEndLoc());
821 GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
822 }
823
824 // Module implementations are initialized the same way as a regular TU that
825 // imports one or more modules.
826 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
827 EmitCXXModuleInitFunc(Primary);
828 else
829 EmitCXXGlobalInitFunc();
830 EmitCXXGlobalCleanUpFunc();
831 registerGlobalDtorsWithAtExit();
832 EmitCXXThreadLocalInitFunc();
833 if (ObjCRuntime)
834 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
835 AddGlobalCtor(Ctor: ObjCInitFunction);
836 if (Context.getLangOpts().CUDA && CUDARuntime) {
837 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
838 AddGlobalCtor(Ctor: CudaCtorFunction);
839 }
840 if (OpenMPRuntime) {
841 if (llvm::Function *OpenMPRequiresDirectiveRegFun =
842 OpenMPRuntime->emitRequiresDirectiveRegFun()) {
843 AddGlobalCtor(Ctor: OpenMPRequiresDirectiveRegFun, Priority: 0);
844 }
845 OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
846 OpenMPRuntime->clear();
847 }
848 if (PGOReader) {
849 getModule().setProfileSummary(
850 M: PGOReader->getSummary(/* UseCS */ false).getMD(Context&: VMContext),
851 Kind: llvm::ProfileSummary::PSK_Instr);
852 if (PGOStats.hasDiagnostics())
853 PGOStats.reportDiagnostics(Diags&: getDiags(), MainFile: getCodeGenOpts().MainFileName);
854 }
855 llvm::stable_sort(Range&: GlobalCtors, C: [](const Structor &L, const Structor &R) {
856 return L.LexOrder < R.LexOrder;
857 });
858 EmitCtorList(Fns&: GlobalCtors, GlobalName: "llvm.global_ctors");
859 EmitCtorList(Fns&: GlobalDtors, GlobalName: "llvm.global_dtors");
860 EmitGlobalAnnotations();
861 EmitStaticExternCAliases();
862 checkAliases();
863 EmitDeferredUnusedCoverageMappings();
864 CodeGenPGO(*this).setValueProfilingFlag(getModule());
865 if (CoverageMapping)
866 CoverageMapping->emit();
867 if (CodeGenOpts.SanitizeCfiCrossDso) {
868 CodeGenFunction(*this).EmitCfiCheckFail();
869 CodeGenFunction(*this).EmitCfiCheckStub();
870 }
871 if (LangOpts.Sanitize.has(K: SanitizerKind::KCFI))
872 finalizeKCFITypes();
873 emitAtAvailableLinkGuard();
874 if (Context.getTargetInfo().getTriple().isWasm())
875 EmitMainVoidAlias();
876
877 if (getTriple().isAMDGPU()) {
878 // Emit amdgpu_code_object_version module flag, which is code object version
879 // times 100.
880 if (getTarget().getTargetOpts().CodeObjectVersion !=
881 llvm::CodeObjectVersionKind::COV_None) {
882 getModule().addModuleFlag(Behavior: llvm::Module::Error,
883 Key: "amdgpu_code_object_version",
884 Val: getTarget().getTargetOpts().CodeObjectVersion);
885 }
886
887 // Currently, "-mprintf-kind" option is only supported for HIP
888 if (LangOpts.HIP) {
889 auto *MDStr = llvm::MDString::get(
890 Context&: getLLVMContext(), Str: (getTarget().getTargetOpts().AMDGPUPrintfKindVal ==
891 TargetOptions::AMDGPUPrintfKind::Hostcall)
892 ? "hostcall"
893 : "buffered");
894 getModule().addModuleFlag(Behavior: llvm::Module::Error, Key: "amdgpu_printf_kind",
895 Val: MDStr);
896 }
897 }
898
899 // Emit a global array containing all external kernels or device variables
900 // used by host functions and mark it as used for CUDA/HIP. This is necessary
901 // to get kernels or device variables in archives linked in even if these
902 // kernels or device variables are only used in host functions.
903 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
904 SmallVector<llvm::Constant *, 8> UsedArray;
905 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
906 GlobalDecl GD;
907 if (auto *FD = dyn_cast<FunctionDecl>(Val: D))
908 GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
909 else
910 GD = GlobalDecl(D);
911 UsedArray.push_back(Elt: llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
912 C: GetAddrOfGlobal(GD), Ty: Int8PtrTy));
913 }
914
915 llvm::ArrayType *ATy = llvm::ArrayType::get(ElementType: Int8PtrTy, NumElements: UsedArray.size());
916
917 auto *GV = new llvm::GlobalVariable(
918 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
919 llvm::ConstantArray::get(T: ATy, V: UsedArray), "__clang_gpu_used_external");
920 addCompilerUsedGlobal(GV);
921 }
922
923 emitLLVMUsed();
924 if (SanStats)
925 SanStats->finish();
926
927 if (CodeGenOpts.Autolink &&
928 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
929 EmitModuleLinkOptions();
930 }
931
932 // On ELF we pass the dependent library specifiers directly to the linker
933 // without manipulating them. This is in contrast to other platforms where
934 // they are mapped to a specific linker option by the compiler. This
935 // difference is a result of the greater variety of ELF linkers and the fact
936 // that ELF linkers tend to handle libraries in a more complicated fashion
937 // than on other platforms. This forces us to defer handling the dependent
938 // libs to the linker.
939 //
940 // CUDA/HIP device and host libraries are different. Currently there is no
941 // way to differentiate dependent libraries for host or device. Existing
942 // usage of #pragma comment(lib, *) is intended for host libraries on
943 // Windows. Therefore emit llvm.dependent-libraries only for host.
944 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
945 auto *NMD = getModule().getOrInsertNamedMetadata(Name: "llvm.dependent-libraries");
946 for (auto *MD : ELFDependentLibraries)
947 NMD->addOperand(M: MD);
948 }
949
950 // Record mregparm value now so it is visible through rest of codegen.
951 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
952 getModule().addModuleFlag(Behavior: llvm::Module::Error, Key: "NumRegisterParameters",
953 Val: CodeGenOpts.NumRegisterParameters);
954
955 if (CodeGenOpts.DwarfVersion) {
956 getModule().addModuleFlag(Behavior: llvm::Module::Max, Key: "Dwarf Version",
957 Val: CodeGenOpts.DwarfVersion);
958 }
959
960 if (CodeGenOpts.Dwarf64)
961 getModule().addModuleFlag(Behavior: llvm::Module::Max, Key: "DWARF64", Val: 1);
962
963 if (Context.getLangOpts().SemanticInterposition)
964 // Require various optimization to respect semantic interposition.
965 getModule().setSemanticInterposition(true);
966
967 if (CodeGenOpts.EmitCodeView) {
968 // Indicate that we want CodeView in the metadata.
969 getModule().addModuleFlag(Behavior: llvm::Module::Warning, Key: "CodeView", Val: 1);
970 }
971 if (CodeGenOpts.CodeViewGHash) {
972 getModule().addModuleFlag(Behavior: llvm::Module::Warning, Key: "CodeViewGHash", Val: 1);
973 }
974 if (CodeGenOpts.ControlFlowGuard) {
975 // Function ID tables and checks for Control Flow Guard (cfguard=2).
976 getModule().addModuleFlag(Behavior: llvm::Module::Warning, Key: "cfguard", Val: 2);
977 } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
978 // Function ID tables for Control Flow Guard (cfguard=1).
979 getModule().addModuleFlag(Behavior: llvm::Module::Warning, Key: "cfguard", Val: 1);
980 }
981 if (CodeGenOpts.EHContGuard) {
982 // Function ID tables for EH Continuation Guard.
983 getModule().addModuleFlag(Behavior: llvm::Module::Warning, Key: "ehcontguard", Val: 1);
984 }
985 if (Context.getLangOpts().Kernel) {
986 // Note if we are compiling with /kernel.
987 getModule().addModuleFlag(Behavior: llvm::Module::Warning, Key: "ms-kernel", Val: 1);
988 }
989 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
990 // We don't support LTO with 2 with different StrictVTablePointers
991 // FIXME: we could support it by stripping all the information introduced
992 // by StrictVTablePointers.
993
994 getModule().addModuleFlag(Behavior: llvm::Module::Error, Key: "StrictVTablePointers",Val: 1);
995
996 llvm::Metadata *Ops[2] = {
997 llvm::MDString::get(Context&: VMContext, Str: "StrictVTablePointers"),
998 llvm::ConstantAsMetadata::get(C: llvm::ConstantInt::get(
999 Ty: llvm::Type::getInt32Ty(C&: VMContext), V: 1))};
1000
1001 getModule().addModuleFlag(Behavior: llvm::Module::Require,
1002 Key: "StrictVTablePointersRequirement",
1003 Val: llvm::MDNode::get(Context&: VMContext, MDs: Ops));
1004 }
1005 if (getModuleDebugInfo())
1006 // We support a single version in the linked module. The LLVM
1007 // parser will drop debug info with a different version number
1008 // (and warn about it, too).
1009 getModule().addModuleFlag(Behavior: llvm::Module::Warning, Key: "Debug Info Version",
1010 Val: llvm::DEBUG_METADATA_VERSION);
1011
1012 // We need to record the widths of enums and wchar_t, so that we can generate
1013 // the correct build attributes in the ARM backend. wchar_size is also used by
1014 // TargetLibraryInfo.
1015 uint64_t WCharWidth =
1016 Context.getTypeSizeInChars(T: Context.getWideCharType()).getQuantity();
1017 getModule().addModuleFlag(Behavior: llvm::Module::Error, Key: "wchar_size", Val: WCharWidth);
1018
1019 if (getTriple().isOSzOS()) {
1020 getModule().addModuleFlag(Behavior: llvm::Module::Warning,
1021 Key: "zos_product_major_version",
1022 Val: uint32_t(CLANG_VERSION_MAJOR));
1023 getModule().addModuleFlag(Behavior: llvm::Module::Warning,
1024 Key: "zos_product_minor_version",
1025 Val: uint32_t(CLANG_VERSION_MINOR));
1026 getModule().addModuleFlag(Behavior: llvm::Module::Warning, Key: "zos_product_patchlevel",
1027 Val: uint32_t(CLANG_VERSION_PATCHLEVEL));
1028 std::string ProductId = getClangVendor() + "clang";
1029 getModule().addModuleFlag(Behavior: llvm::Module::Error, Key: "zos_product_id",
1030 Val: llvm::MDString::get(Context&: VMContext, Str: ProductId));
1031
1032 // Record the language because we need it for the PPA2.
1033 StringRef lang_str = languageToString(
1034 L: LangStandard::getLangStandardForKind(K: LangOpts.LangStd).Language);
1035 getModule().addModuleFlag(Behavior: llvm::Module::Error, Key: "zos_cu_language",
1036 Val: llvm::MDString::get(Context&: VMContext, Str: lang_str));
1037
1038 time_t TT = PreprocessorOpts.SourceDateEpoch
1039 ? *PreprocessorOpts.SourceDateEpoch
1040 : std::time(timer: nullptr);
1041 getModule().addModuleFlag(Behavior: llvm::Module::Max, Key: "zos_translation_time",
1042 Val: static_cast<uint64_t>(TT));
1043
1044 // Multiple modes will be supported here.
1045 getModule().addModuleFlag(Behavior: llvm::Module::Error, Key: "zos_le_char_mode",
1046 Val: llvm::MDString::get(Context&: VMContext, Str: "ascii"));
1047 }
1048
1049 llvm::Triple T = Context.getTargetInfo().getTriple();
1050 if (T.isARM() || T.isThumb()) {
1051 // The minimum width of an enum in bytes
1052 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
1053 getModule().addModuleFlag(Behavior: llvm::Module::Error, Key: "min_enum_size", Val: EnumWidth);
1054 }
1055
1056 if (T.isRISCV()) {
1057 StringRef ABIStr = Target.getABI();
1058 llvm::LLVMContext &Ctx = TheModule.getContext();
1059 getModule().addModuleFlag(Behavior: llvm::Module::Error, Key: "target-abi",
1060 Val: llvm::MDString::get(Context&: Ctx, Str: ABIStr));
1061
1062 // Add the canonical ISA string as metadata so the backend can set the ELF
1063 // attributes correctly. We use AppendUnique so LTO will keep all of the
1064 // unique ISA strings that were linked together.
1065 const std::vector<std::string> &Features =
1066 getTarget().getTargetOpts().Features;
1067 auto ParseResult =
1068 llvm::RISCVISAInfo::parseFeatures(XLen: T.isRISCV64() ? 64 : 32, Features);
1069 if (!errorToBool(Err: ParseResult.takeError()))
1070 getModule().addModuleFlag(
1071 Behavior: llvm::Module::AppendUnique, Key: "riscv-isa",
1072 Val: llvm::MDNode::get(
1073 Context&: Ctx, MDs: llvm::MDString::get(Context&: Ctx, Str: (*ParseResult)->toString())));
1074 }
1075
1076 if (CodeGenOpts.SanitizeCfiCrossDso) {
1077 // Indicate that we want cross-DSO control flow integrity checks.
1078 getModule().addModuleFlag(Behavior: llvm::Module::Override, Key: "Cross-DSO CFI", Val: 1);
1079 }
1080
1081 if (CodeGenOpts.WholeProgramVTables) {
1082 // Indicate whether VFE was enabled for this module, so that the
1083 // vcall_visibility metadata added under whole program vtables is handled
1084 // appropriately in the optimizer.
1085 getModule().addModuleFlag(Behavior: llvm::Module::Error, Key: "Virtual Function Elim",
1086 Val: CodeGenOpts.VirtualFunctionElimination);
1087 }
1088
1089 if (LangOpts.Sanitize.has(K: SanitizerKind::CFIICall)) {
1090 getModule().addModuleFlag(Behavior: llvm::Module::Override,
1091 Key: "CFI Canonical Jump Tables",
1092 Val: CodeGenOpts.SanitizeCfiCanonicalJumpTables);
1093 }
1094
1095 if (LangOpts.Sanitize.has(K: SanitizerKind::KCFI)) {
1096 getModule().addModuleFlag(Behavior: llvm::Module::Override, Key: "kcfi", Val: 1);
1097 // KCFI assumes patchable-function-prefix is the same for all indirectly
1098 // called functions. Store the expected offset for code generation.
1099 if (CodeGenOpts.PatchableFunctionEntryOffset)
1100 getModule().addModuleFlag(Behavior: llvm::Module::Override, Key: "kcfi-offset",
1101 Val: CodeGenOpts.PatchableFunctionEntryOffset);
1102 }
1103
1104 if (CodeGenOpts.CFProtectionReturn &&
1105 Target.checkCFProtectionReturnSupported(Diags&: getDiags())) {
1106 // Indicate that we want to instrument return control flow protection.
1107 getModule().addModuleFlag(Behavior: llvm::Module::Min, Key: "cf-protection-return",
1108 Val: 1);
1109 }
1110
1111 if (CodeGenOpts.CFProtectionBranch &&
1112 Target.checkCFProtectionBranchSupported(Diags&: getDiags())) {
1113 // Indicate that we want to instrument branch control flow protection.
1114 getModule().addModuleFlag(Behavior: llvm::Module::Min, Key: "cf-protection-branch",
1115 Val: 1);
1116 }
1117
1118 if (CodeGenOpts.FunctionReturnThunks)
1119 getModule().addModuleFlag(Behavior: llvm::Module::Override, Key: "function_return_thunk_extern", Val: 1);
1120
1121 if (CodeGenOpts.IndirectBranchCSPrefix)
1122 getModule().addModuleFlag(Behavior: llvm::Module::Override, Key: "indirect_branch_cs_prefix", Val: 1);
1123
1124 // Add module metadata for return address signing (ignoring
1125 // non-leaf/all) and stack tagging. These are actually turned on by function
1126 // attributes, but we use module metadata to emit build attributes. This is
1127 // needed for LTO, where the function attributes are inside bitcode
1128 // serialised into a global variable by the time build attributes are
1129 // emitted, so we can't access them. LTO objects could be compiled with
1130 // different flags therefore module flags are set to "Min" behavior to achieve
1131 // the same end result of the normal build where e.g BTI is off if any object
1132 // doesn't support it.
1133 if (Context.getTargetInfo().hasFeature(Feature: "ptrauth") &&
1134 LangOpts.getSignReturnAddressScope() !=
1135 LangOptions::SignReturnAddressScopeKind::None)
1136 getModule().addModuleFlag(Behavior: llvm::Module::Override,
1137 Key: "sign-return-address-buildattr", Val: 1);
1138 if (LangOpts.Sanitize.has(K: SanitizerKind::MemtagStack))
1139 getModule().addModuleFlag(Behavior: llvm::Module::Override,
1140 Key: "tag-stack-memory-buildattr", Val: 1);
1141
1142 if (T.isARM() || T.isThumb() || T.isAArch64()) {
1143 if (LangOpts.BranchTargetEnforcement)
1144 getModule().addModuleFlag(Behavior: llvm::Module::Min, Key: "branch-target-enforcement",
1145 Val: 1);
1146 if (LangOpts.BranchProtectionPAuthLR)
1147 getModule().addModuleFlag(Behavior: llvm::Module::Min, Key: "branch-protection-pauth-lr",
1148 Val: 1);
1149 if (LangOpts.GuardedControlStack)
1150 getModule().addModuleFlag(Behavior: llvm::Module::Min, Key: "guarded-control-stack", Val: 1);
1151 if (LangOpts.hasSignReturnAddress())
1152 getModule().addModuleFlag(Behavior: llvm::Module::Min, Key: "sign-return-address", Val: 1);
1153 if (LangOpts.isSignReturnAddressScopeAll())
1154 getModule().addModuleFlag(Behavior: llvm::Module::Min, Key: "sign-return-address-all",
1155 Val: 1);
1156 if (!LangOpts.isSignReturnAddressWithAKey())
1157 getModule().addModuleFlag(Behavior: llvm::Module::Min,
1158 Key: "sign-return-address-with-bkey", Val: 1);
1159 }
1160
1161 if (CodeGenOpts.StackClashProtector)
1162 getModule().addModuleFlag(
1163 Behavior: llvm::Module::Override, Key: "probe-stack",
1164 Val: llvm::MDString::get(Context&: TheModule.getContext(), Str: "inline-asm"));
1165
1166 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
1167 getModule().addModuleFlag(Behavior: llvm::Module::Min, Key: "stack-probe-size",
1168 Val: CodeGenOpts.StackProbeSize);
1169
1170 if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1171 llvm::LLVMContext &Ctx = TheModule.getContext();
1172 getModule().addModuleFlag(
1173 Behavior: llvm::Module::Error, Key: "MemProfProfileFilename",
1174 Val: llvm::MDString::get(Context&: Ctx, Str: CodeGenOpts.MemoryProfileOutput));
1175 }
1176
1177 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
1178 // Indicate whether __nvvm_reflect should be configured to flush denormal
1179 // floating point values to 0. (This corresponds to its "__CUDA_FTZ"
1180 // property.)
1181 getModule().addModuleFlag(Behavior: llvm::Module::Override, Key: "nvvm-reflect-ftz",
1182 Val: CodeGenOpts.FP32DenormalMode.Output !=
1183 llvm::DenormalMode::IEEE);
1184 }
1185
1186 if (LangOpts.EHAsynch)
1187 getModule().addModuleFlag(Behavior: llvm::Module::Warning, Key: "eh-asynch", Val: 1);
1188
1189 // Indicate whether this Module was compiled with -fopenmp
1190 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1191 getModule().addModuleFlag(Behavior: llvm::Module::Max, Key: "openmp", Val: LangOpts.OpenMP);
1192 if (getLangOpts().OpenMPIsTargetDevice)
1193 getModule().addModuleFlag(Behavior: llvm::Module::Max, Key: "openmp-device",
1194 Val: LangOpts.OpenMP);
1195
1196 // Emit OpenCL specific module metadata: OpenCL/SPIR version.
1197 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
1198 EmitOpenCLMetadata();
1199 // Emit SPIR version.
1200 if (getTriple().isSPIR()) {
1201 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
1202 // opencl.spir.version named metadata.
1203 // C++ for OpenCL has a distinct mapping for version compatibility with
1204 // OpenCL.
1205 auto Version = LangOpts.getOpenCLCompatibleVersion();
1206 llvm::Metadata *SPIRVerElts[] = {
1207 llvm::ConstantAsMetadata::get(C: llvm::ConstantInt::get(
1208 Ty: Int32Ty, V: Version / 100)),
1209 llvm::ConstantAsMetadata::get(C: llvm::ConstantInt::get(
1210 Ty: Int32Ty, V: (Version / 100 > 1) ? 0 : 2))};
1211 llvm::NamedMDNode *SPIRVerMD =
1212 TheModule.getOrInsertNamedMetadata(Name: "opencl.spir.version");
1213 llvm::LLVMContext &Ctx = TheModule.getContext();
1214 SPIRVerMD->addOperand(M: llvm::MDNode::get(Context&: Ctx, MDs: SPIRVerElts));
1215 }
1216 }
1217
1218 // HLSL related end of code gen work items.
1219 if (LangOpts.HLSL)
1220 getHLSLRuntime().finishCodeGen();
1221
1222 if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
1223 assert(PLevel < 3 && "Invalid PIC Level");
1224 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
1225 if (Context.getLangOpts().PIE)
1226 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
1227 }
1228
1229 if (getCodeGenOpts().CodeModel.size() > 0) {
1230 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
1231 .Case(S: "tiny", Value: llvm::CodeModel::Tiny)
1232 .Case(S: "small", Value: llvm::CodeModel::Small)
1233 .Case(S: "kernel", Value: llvm::CodeModel::Kernel)
1234 .Case(S: "medium", Value: llvm::CodeModel::Medium)
1235 .Case(S: "large", Value: llvm::CodeModel::Large)
1236 .Default(Value: ~0u);
1237 if (CM != ~0u) {
1238 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
1239 getModule().setCodeModel(codeModel);
1240
1241 if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) &&
1242 Context.getTargetInfo().getTriple().getArch() ==
1243 llvm::Triple::x86_64) {
1244 getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold);
1245 }
1246 }
1247 }
1248
1249 if (CodeGenOpts.NoPLT)
1250 getModule().setRtLibUseGOT();
1251 if (getTriple().isOSBinFormatELF() &&
1252 CodeGenOpts.DirectAccessExternalData !=
1253 getModule().getDirectAccessExternalData()) {
1254 getModule().setDirectAccessExternalData(
1255 CodeGenOpts.DirectAccessExternalData);
1256 }
1257 if (CodeGenOpts.UnwindTables)
1258 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1259
1260 switch (CodeGenOpts.getFramePointer()) {
1261 case CodeGenOptions::FramePointerKind::None:
1262 // 0 ("none") is the default.
1263 break;
1264 case CodeGenOptions::FramePointerKind::NonLeaf:
1265 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
1266 break;
1267 case CodeGenOptions::FramePointerKind::All:
1268 getModule().setFramePointer(llvm::FramePointerKind::All);
1269 break;
1270 }
1271
1272 SimplifyPersonality();
1273
1274 if (getCodeGenOpts().EmitDeclMetadata)
1275 EmitDeclMetadata();
1276
1277 if (getCodeGenOpts().CoverageNotesFile.size() ||
1278 getCodeGenOpts().CoverageDataFile.size())
1279 EmitCoverageFile();
1280
1281 if (CGDebugInfo *DI = getModuleDebugInfo())
1282 DI->finalize();
1283
1284 if (getCodeGenOpts().EmitVersionIdentMetadata)
1285 EmitVersionIdentMetadata();
1286
1287 if (!getCodeGenOpts().RecordCommandLine.empty())
1288 EmitCommandLineMetadata();
1289
1290 if (!getCodeGenOpts().StackProtectorGuard.empty())
1291 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
1292 if (!getCodeGenOpts().StackProtectorGuardReg.empty())
1293 getModule().setStackProtectorGuardReg(
1294 getCodeGenOpts().StackProtectorGuardReg);
1295 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
1296 getModule().setStackProtectorGuardSymbol(
1297 getCodeGenOpts().StackProtectorGuardSymbol);
1298 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
1299 getModule().setStackProtectorGuardOffset(
1300 getCodeGenOpts().StackProtectorGuardOffset);
1301 if (getCodeGenOpts().StackAlignment)
1302 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
1303 if (getCodeGenOpts().SkipRaxSetup)
1304 getModule().addModuleFlag(Behavior: llvm::Module::Override, Key: "SkipRaxSetup", Val: 1);
1305 if (getLangOpts().RegCall4)
1306 getModule().addModuleFlag(Behavior: llvm::Module::Override, Key: "RegCallv4", Val: 1);
1307
1308 if (getContext().getTargetInfo().getMaxTLSAlign())
1309 getModule().addModuleFlag(Behavior: llvm::Module::Error, Key: "MaxTLSAlign",
1310 Val: getContext().getTargetInfo().getMaxTLSAlign());
1311
1312 getTargetCodeGenInfo().emitTargetGlobals(CGM&: *this);
1313
1314 getTargetCodeGenInfo().emitTargetMetadata(CGM&: *this, MangledDeclNames);
1315
1316 EmitBackendOptionsMetadata(CodeGenOpts: getCodeGenOpts());
1317
1318 // If there is device offloading code embed it in the host now.
1319 EmbedObject(M: &getModule(), CGOpts: CodeGenOpts, Diags&: getDiags());
1320
1321 // Set visibility from DLL storage class
1322 // We do this at the end of LLVM IR generation; after any operation
1323 // that might affect the DLL storage class or the visibility, and
1324 // before anything that might act on these.
1325 setVisibilityFromDLLStorageClass(LO: LangOpts, M&: getModule());
1326}
1327
1328void CodeGenModule::EmitOpenCLMetadata() {
1329 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
1330 // opencl.ocl.version named metadata node.
1331 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
1332 auto Version = LangOpts.getOpenCLCompatibleVersion();
1333 llvm::Metadata *OCLVerElts[] = {
1334 llvm::ConstantAsMetadata::get(C: llvm::ConstantInt::get(
1335 Ty: Int32Ty, V: Version / 100)),
1336 llvm::ConstantAsMetadata::get(C: llvm::ConstantInt::get(
1337 Ty: Int32Ty, V: (Version % 100) / 10))};
1338 llvm::NamedMDNode *OCLVerMD =
1339 TheModule.getOrInsertNamedMetadata(Name: "opencl.ocl.version");
1340 llvm::LLVMContext &Ctx = TheModule.getContext();
1341 OCLVerMD->addOperand(M: llvm::MDNode::get(Context&: Ctx, MDs: OCLVerElts));
1342}
1343
1344void CodeGenModule::EmitBackendOptionsMetadata(
1345 const CodeGenOptions &CodeGenOpts) {
1346 if (getTriple().isRISCV()) {
1347 getModule().addModuleFlag(Behavior: llvm::Module::Min, Key: "SmallDataLimit",
1348 Val: CodeGenOpts.SmallDataLimit);
1349 }
1350}
1351
1352void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
1353 // Make sure that this type is translated.
1354 Types.UpdateCompletedType(TD);
1355}
1356
1357void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
1358 // Make sure that this type is translated.
1359 Types.RefreshTypeCacheForClass(RD);
1360}
1361
1362llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
1363 if (!TBAA)
1364 return nullptr;
1365 return TBAA->getTypeInfo(QTy);
1366}
1367
1368TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1369 if (!TBAA)
1370 return TBAAAccessInfo();
1371 if (getLangOpts().CUDAIsDevice) {
1372 // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1373 // access info.
1374 if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1375 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1376 nullptr)
1377 return TBAAAccessInfo();
1378 } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1379 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1380 nullptr)
1381 return TBAAAccessInfo();
1382 }
1383 }
1384 return TBAA->getAccessInfo(AccessType);
1385}
1386
1387TBAAAccessInfo
1388CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1389 if (!TBAA)
1390 return TBAAAccessInfo();
1391 return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1392}
1393
1394llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1395 if (!TBAA)
1396 return nullptr;
1397 return TBAA->getTBAAStructInfo(QTy);
1398}
1399
1400llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1401 if (!TBAA)
1402 return nullptr;
1403 return TBAA->getBaseTypeInfo(QTy);
1404}
1405
1406llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1407 if (!TBAA)
1408 return nullptr;
1409 return TBAA->getAccessTagInfo(Info);
1410}
1411
1412TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1413 TBAAAccessInfo TargetInfo) {
1414 if (!TBAA)
1415 return TBAAAccessInfo();
1416 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1417}
1418
1419TBAAAccessInfo
1420CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1421 TBAAAccessInfo InfoB) {
1422 if (!TBAA)
1423 return TBAAAccessInfo();
1424 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1425}
1426
1427TBAAAccessInfo
1428CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1429 TBAAAccessInfo SrcInfo) {
1430 if (!TBAA)
1431 return TBAAAccessInfo();
1432 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA: DestInfo, InfoB: SrcInfo);
1433}
1434
1435void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1436 TBAAAccessInfo TBAAInfo) {
1437 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(Info: TBAAInfo))
1438 Inst->setMetadata(KindID: llvm::LLVMContext::MD_tbaa, Node: Tag);
1439}
1440
1441void CodeGenModule::DecorateInstructionWithInvariantGroup(
1442 llvm::Instruction *I, const CXXRecordDecl *RD) {
1443 I->setMetadata(KindID: llvm::LLVMContext::MD_invariant_group,
1444 Node: llvm::MDNode::get(Context&: getLLVMContext(), MDs: {}));
1445}
1446
1447void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1448 unsigned diagID = getDiags().getCustomDiagID(L: DiagnosticsEngine::Error, FormatString: "%0");
1449 getDiags().Report(Loc: Context.getFullLoc(Loc: loc), DiagID: diagID) << message;
1450}
1451
1452/// ErrorUnsupported - Print out an error that codegen doesn't support the
1453/// specified stmt yet.
1454void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1455 unsigned DiagID = getDiags().getCustomDiagID(L: DiagnosticsEngine::Error,
1456 FormatString: "cannot compile this %0 yet");
1457 std::string Msg = Type;
1458 getDiags().Report(Loc: Context.getFullLoc(Loc: S->getBeginLoc()), DiagID)
1459 << Msg << S->getSourceRange();
1460}
1461
1462/// ErrorUnsupported - Print out an error that codegen doesn't support the
1463/// specified decl yet.
1464void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1465 unsigned DiagID = getDiags().getCustomDiagID(L: DiagnosticsEngine::Error,
1466 FormatString: "cannot compile this %0 yet");
1467 std::string Msg = Type;
1468 getDiags().Report(Loc: Context.getFullLoc(Loc: D->getLocation()), DiagID) << Msg;
1469}
1470
1471llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1472 return llvm::ConstantInt::get(Ty: SizeTy, V: size.getQuantity());
1473}
1474
1475void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1476 const NamedDecl *D) const {
1477 // Internal definitions always have default visibility.
1478 if (GV->hasLocalLinkage()) {
1479 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1480 return;
1481 }
1482 if (!D)
1483 return;
1484
1485 // Set visibility for definitions, and for declarations if requested globally
1486 // or set explicitly.
1487 LinkageInfo LV = D->getLinkageAndVisibility();
1488
1489 // OpenMP declare target variables must be visible to the host so they can
1490 // be registered. We require protected visibility unless the variable has
1491 // the DT_nohost modifier and does not need to be registered.
1492 if (Context.getLangOpts().OpenMP &&
1493 Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) &&
1494 D->hasAttr<OMPDeclareTargetDeclAttr>() &&
1495 D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() !=
1496 OMPDeclareTargetDeclAttr::DT_NoHost &&
1497 LV.getVisibility() == HiddenVisibility) {
1498 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
1499 return;
1500 }
1501
1502 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1503 // Reject incompatible dlllstorage and visibility annotations.
1504 if (!LV.isVisibilityExplicit())
1505 return;
1506 if (GV->hasDLLExportStorageClass()) {
1507 if (LV.getVisibility() == HiddenVisibility)
1508 getDiags().Report(D->getLocation(),
1509 diag::err_hidden_visibility_dllexport);
1510 } else if (LV.getVisibility() != DefaultVisibility) {
1511 getDiags().Report(D->getLocation(),
1512 diag::err_non_default_visibility_dllimport);
1513 }
1514 return;
1515 }
1516
1517 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1518 !GV->isDeclarationForLinker())
1519 GV->setVisibility(GetLLVMVisibility(V: LV.getVisibility()));
1520}
1521
1522static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1523 llvm::GlobalValue *GV) {
1524 if (GV->hasLocalLinkage())
1525 return true;
1526
1527 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1528 return true;
1529
1530 // DLLImport explicitly marks the GV as external.
1531 if (GV->hasDLLImportStorageClass())
1532 return false;
1533
1534 const llvm::Triple &TT = CGM.getTriple();
1535 const auto &CGOpts = CGM.getCodeGenOpts();
1536 if (TT.isWindowsGNUEnvironment()) {
1537 // In MinGW, variables without DLLImport can still be automatically
1538 // imported from a DLL by the linker; don't mark variables that
1539 // potentially could come from another DLL as DSO local.
1540
1541 // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1542 // (and this actually happens in the public interface of libstdc++), so
1543 // such variables can't be marked as DSO local. (Native TLS variables
1544 // can't be dllimported at all, though.)
1545 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(Val: GV) &&
1546 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) &&
1547 CGOpts.AutoImport)
1548 return false;
1549 }
1550
1551 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1552 // remain unresolved in the link, they can be resolved to zero, which is
1553 // outside the current DSO.
1554 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1555 return false;
1556
1557 // Every other GV is local on COFF.
1558 // Make an exception for windows OS in the triple: Some firmware builds use
1559 // *-win32-macho triples. This (accidentally?) produced windows relocations
1560 // without GOT tables in older clang versions; Keep this behaviour.
1561 // FIXME: even thread local variables?
1562 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1563 return true;
1564
1565 // Only handle COFF and ELF for now.
1566 if (!TT.isOSBinFormatELF())
1567 return false;
1568
1569 // If this is not an executable, don't assume anything is local.
1570 llvm::Reloc::Model RM = CGOpts.RelocationModel;
1571 const auto &LOpts = CGM.getLangOpts();
1572 if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1573 // On ELF, if -fno-semantic-interposition is specified and the target
1574 // supports local aliases, there will be neither CC1
1575 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1576 // dso_local on the function if using a local alias is preferable (can avoid
1577 // PLT indirection).
1578 if (!(isa<llvm::Function>(Val: GV) && GV->canBenefitFromLocalAlias()))
1579 return false;
1580 return !(CGM.getLangOpts().SemanticInterposition ||
1581 CGM.getLangOpts().HalfNoSemanticInterposition);
1582 }
1583
1584 // A definition cannot be preempted from an executable.
1585 if (!GV->isDeclarationForLinker())
1586 return true;
1587
1588 // Most PIC code sequences that assume that a symbol is local cannot produce a
1589 // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1590 // depended, it seems worth it to handle it here.
1591 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1592 return false;
1593
1594 // PowerPC64 prefers TOC indirection to avoid copy relocations.
1595 if (TT.isPPC64())
1596 return false;
1597
1598 if (CGOpts.DirectAccessExternalData) {
1599 // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1600 // for non-thread-local variables. If the symbol is not defined in the
1601 // executable, a copy relocation will be needed at link time. dso_local is
1602 // excluded for thread-local variables because they generally don't support
1603 // copy relocations.
1604 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Val: GV))
1605 if (!Var->isThreadLocal())
1606 return true;
1607
1608 // -fno-pic sets dso_local on a function declaration to allow direct
1609 // accesses when taking its address (similar to a data symbol). If the
1610 // function is not defined in the executable, a canonical PLT entry will be
1611 // needed at link time. -fno-direct-access-external-data can avoid the
1612 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1613 // it could just cause trouble without providing perceptible benefits.
1614 if (isa<llvm::Function>(Val: GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1615 return true;
1616 }
1617
1618 // If we can use copy relocations we can assume it is local.
1619
1620 // Otherwise don't assume it is local.
1621 return false;
1622}
1623
1624void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1625 GV->setDSOLocal(shouldAssumeDSOLocal(CGM: *this, GV));
1626}
1627
1628void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1629 GlobalDecl GD) const {
1630 const auto *D = dyn_cast<NamedDecl>(Val: GD.getDecl());
1631 // C++ destructors have a few C++ ABI specific special cases.
1632 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(Val: D)) {
1633 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, DT: GD.getDtorType());
1634 return;
1635 }
1636 setDLLImportDLLExport(GV, D);
1637}
1638
1639void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1640 const NamedDecl *D) const {
1641 if (D && D->isExternallyVisible()) {
1642 if (D->hasAttr<DLLImportAttr>())
1643 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1644 else if ((D->hasAttr<DLLExportAttr>() ||
1645 shouldMapVisibilityToDLLExport(D)) &&
1646 !GV->isDeclarationForLinker())
1647 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1648 }
1649}
1650
1651void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1652 GlobalDecl GD) const {
1653 setDLLImportDLLExport(GV, GD);
1654 setGVPropertiesAux(GV, D: dyn_cast<NamedDecl>(Val: GD.getDecl()));
1655}
1656
1657void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1658 const NamedDecl *D) const {
1659 setDLLImportDLLExport(GV, D);
1660 setGVPropertiesAux(GV, D);
1661}
1662
1663void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1664 const NamedDecl *D) const {
1665 setGlobalVisibility(GV, D);
1666 setDSOLocal(GV);
1667 GV->setPartition(CodeGenOpts.SymbolPartition);
1668}
1669
1670static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1671 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1672 .Case(S: "global-dynamic", Value: llvm::GlobalVariable::GeneralDynamicTLSModel)
1673 .Case(S: "local-dynamic", Value: llvm::GlobalVariable::LocalDynamicTLSModel)
1674 .Case(S: "initial-exec", Value: llvm::GlobalVariable::InitialExecTLSModel)
1675 .Case(S: "local-exec", Value: llvm::GlobalVariable::LocalExecTLSModel);
1676}
1677
1678llvm::GlobalVariable::ThreadLocalMode
1679CodeGenModule::GetDefaultLLVMTLSModel() const {
1680 switch (CodeGenOpts.getDefaultTLSModel()) {
1681 case CodeGenOptions::GeneralDynamicTLSModel:
1682 return llvm::GlobalVariable::GeneralDynamicTLSModel;
1683 case CodeGenOptions::LocalDynamicTLSModel:
1684 return llvm::GlobalVariable::LocalDynamicTLSModel;
1685 case CodeGenOptions::InitialExecTLSModel:
1686 return llvm::GlobalVariable::InitialExecTLSModel;
1687 case CodeGenOptions::LocalExecTLSModel:
1688 return llvm::GlobalVariable::LocalExecTLSModel;
1689 }
1690 llvm_unreachable("Invalid TLS model!");
1691}
1692
1693void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1694 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1695
1696 llvm::GlobalValue::ThreadLocalMode TLM;
1697 TLM = GetDefaultLLVMTLSModel();
1698
1699 // Override the TLS model if it is explicitly specified.
1700 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1701 TLM = GetLLVMTLSModel(Attr->getModel());
1702 }
1703
1704 GV->setThreadLocalMode(TLM);
1705}
1706
1707static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1708 StringRef Name) {
1709 const TargetInfo &Target = CGM.getTarget();
1710 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1711}
1712
1713static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1714 const CPUSpecificAttr *Attr,
1715 unsigned CPUIndex,
1716 raw_ostream &Out) {
1717 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1718 // supported.
1719 if (Attr)
1720 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1721 else if (CGM.getTarget().supportsIFunc())
1722 Out << ".resolver";
1723}
1724
1725static void AppendTargetVersionMangling(const CodeGenModule &CGM,
1726 const TargetVersionAttr *Attr,
1727 raw_ostream &Out) {
1728 if (Attr->isDefaultVersion()) {
1729 Out << ".default";
1730 return;
1731 }
1732 Out << "._";
1733 const TargetInfo &TI = CGM.getTarget();
1734 llvm::SmallVector<StringRef, 8> Feats;
1735 Attr->getFeatures(Feats);
1736 llvm::stable_sort(Range&: Feats, C: [&TI](const StringRef FeatL, const StringRef FeatR) {
1737 return TI.multiVersionSortPriority(Name: FeatL) <
1738 TI.multiVersionSortPriority(Name: FeatR);
1739 });
1740 for (const auto &Feat : Feats) {
1741 Out << 'M';
1742 Out << Feat;
1743 }
1744}
1745
1746static void AppendTargetMangling(const CodeGenModule &CGM,
1747 const TargetAttr *Attr, raw_ostream &Out) {
1748 if (Attr->isDefaultVersion())
1749 return;
1750
1751 Out << '.';
1752 const TargetInfo &Target = CGM.getTarget();
1753 ParsedTargetAttr Info = Target.parseTargetAttr(Str: Attr->getFeaturesStr());
1754 llvm::sort(C&: Info.Features, Comp: [&Target](StringRef LHS, StringRef RHS) {
1755 // Multiversioning doesn't allow "no-${feature}", so we can
1756 // only have "+" prefixes here.
1757 assert(LHS.starts_with("+") && RHS.starts_with("+") &&
1758 "Features should always have a prefix.");
1759 return Target.multiVersionSortPriority(Name: LHS.substr(Start: 1)) >
1760 Target.multiVersionSortPriority(Name: RHS.substr(Start: 1));
1761 });
1762
1763 bool IsFirst = true;
1764
1765 if (!Info.CPU.empty()) {
1766 IsFirst = false;
1767 Out << "arch_" << Info.CPU;
1768 }
1769
1770 for (StringRef Feat : Info.Features) {
1771 if (!IsFirst)
1772 Out << '_';
1773 IsFirst = false;
1774 Out << Feat.substr(1);
1775 }
1776}
1777
1778// Returns true if GD is a function decl with internal linkage and
1779// needs a unique suffix after the mangled name.
1780static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1781 CodeGenModule &CGM) {
1782 const Decl *D = GD.getDecl();
1783 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(Val: D) &&
1784 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1785}
1786
1787static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1788 const TargetClonesAttr *Attr,
1789 unsigned VersionIndex,
1790 raw_ostream &Out) {
1791 const TargetInfo &TI = CGM.getTarget();
1792 if (TI.getTriple().isAArch64()) {
1793 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1794 if (FeatureStr == "default") {
1795 Out << ".default";
1796 return;
1797 }
1798 Out << "._";
1799 SmallVector<StringRef, 8> Features;
1800 FeatureStr.split(A&: Features, Separator: "+");
1801 llvm::stable_sort(Range&: Features,
1802 C: [&TI](const StringRef FeatL, const StringRef FeatR) {
1803 return TI.multiVersionSortPriority(Name: FeatL) <
1804 TI.multiVersionSortPriority(Name: FeatR);
1805 });
1806 for (auto &Feat : Features) {
1807 Out << 'M';
1808 Out << Feat;
1809 }
1810 } else {
1811 Out << '.';
1812 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1813 if (FeatureStr.starts_with(Prefix: "arch="))
1814 Out << "arch_" << FeatureStr.substr(Start: sizeof("arch=") - 1);
1815 else
1816 Out << FeatureStr;
1817
1818 Out << '.' << Attr->getMangledIndex(VersionIndex);
1819 }
1820}
1821
1822static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1823 const NamedDecl *ND,
1824 bool OmitMultiVersionMangling = false) {
1825 SmallString<256> Buffer;
1826 llvm::raw_svector_ostream Out(Buffer);
1827 MangleContext &MC = CGM.getCXXABI().getMangleContext();
1828 if (!CGM.getModuleNameHash().empty())
1829 MC.needsUniqueInternalLinkageNames();
1830 bool ShouldMangle = MC.shouldMangleDeclName(D: ND);
1831 if (ShouldMangle)
1832 MC.mangleName(GD: GD.getWithDecl(ND), Out);
1833 else {
1834 IdentifierInfo *II = ND->getIdentifier();
1835 assert(II && "Attempt to mangle unnamed decl.");
1836 const auto *FD = dyn_cast<FunctionDecl>(Val: ND);
1837
1838 if (FD &&
1839 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1840 if (CGM.getLangOpts().RegCall4)
1841 Out << "__regcall4__" << II->getName();
1842 else
1843 Out << "__regcall3__" << II->getName();
1844 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1845 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1846 Out << "__device_stub__" << II->getName();
1847 } else {
1848 Out << II->getName();
1849 }
1850 }
1851
1852 // Check if the module name hash should be appended for internal linkage
1853 // symbols. This should come before multi-version target suffixes are
1854 // appended. This is to keep the name and module hash suffix of the
1855 // internal linkage function together. The unique suffix should only be
1856 // added when name mangling is done to make sure that the final name can
1857 // be properly demangled. For example, for C functions without prototypes,
1858 // name mangling is not done and the unique suffix should not be appeneded
1859 // then.
1860 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1861 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1862 "Hash computed when not explicitly requested");
1863 Out << CGM.getModuleNameHash();
1864 }
1865
1866 if (const auto *FD = dyn_cast<FunctionDecl>(Val: ND))
1867 if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1868 switch (FD->getMultiVersionKind()) {
1869 case MultiVersionKind::CPUDispatch:
1870 case MultiVersionKind::CPUSpecific:
1871 AppendCPUSpecificCPUDispatchMangling(CGM,
1872 FD->getAttr<CPUSpecificAttr>(),
1873 GD.getMultiVersionIndex(), Out);
1874 break;
1875 case MultiVersionKind::Target:
1876 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1877 break;
1878 case MultiVersionKind::TargetVersion:
1879 AppendTargetVersionMangling(CGM, FD->getAttr<TargetVersionAttr>(), Out);
1880 break;
1881 case MultiVersionKind::TargetClones:
1882 AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1883 GD.getMultiVersionIndex(), Out);
1884 break;
1885 case MultiVersionKind::None:
1886 llvm_unreachable("None multiversion type isn't valid here");
1887 }
1888 }
1889
1890 // Make unique name for device side static file-scope variable for HIP.
1891 if (CGM.getContext().shouldExternalize(ND) &&
1892 CGM.getLangOpts().GPURelocatableDeviceCode &&
1893 CGM.getLangOpts().CUDAIsDevice)
1894 CGM.printPostfixForExternalizedDecl(Out, ND);
1895
1896 return std::string(Out.str());
1897}
1898
1899void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1900 const FunctionDecl *FD,
1901 StringRef &CurName) {
1902 if (!FD->isMultiVersion())
1903 return;
1904
1905 // Get the name of what this would be without the 'target' attribute. This
1906 // allows us to lookup the version that was emitted when this wasn't a
1907 // multiversion function.
1908 std::string NonTargetName =
1909 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1910 GlobalDecl OtherGD;
1911 if (lookupRepresentativeDecl(MangledName: NonTargetName, Result&: OtherGD)) {
1912 assert(OtherGD.getCanonicalDecl()
1913 .getDecl()
1914 ->getAsFunction()
1915 ->isMultiVersion() &&
1916 "Other GD should now be a multiversioned function");
1917 // OtherFD is the version of this function that was mangled BEFORE
1918 // becoming a MultiVersion function. It potentially needs to be updated.
1919 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1920 .getDecl()
1921 ->getAsFunction()
1922 ->getMostRecentDecl();
1923 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1924 // This is so that if the initial version was already the 'default'
1925 // version, we don't try to update it.
1926 if (OtherName != NonTargetName) {
1927 // Remove instead of erase, since others may have stored the StringRef
1928 // to this.
1929 const auto ExistingRecord = Manglings.find(Key: NonTargetName);
1930 if (ExistingRecord != std::end(cont&: Manglings))
1931 Manglings.remove(KeyValue: &(*ExistingRecord));
1932 auto Result = Manglings.insert(KV: std::make_pair(x&: OtherName, y&: OtherGD));
1933 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1934 Result.first->first();
1935 // If this is the current decl is being created, make sure we update the name.
1936 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1937 CurName = OtherNameRef;
1938 if (llvm::GlobalValue *Entry = GetGlobalValue(Ref: NonTargetName))
1939 Entry->setName(OtherName);
1940 }
1941 }
1942}
1943
1944StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1945 GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1946
1947 // Some ABIs don't have constructor variants. Make sure that base and
1948 // complete constructors get mangled the same.
1949 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Val: CanonicalGD.getDecl())) {
1950 if (!getTarget().getCXXABI().hasConstructorVariants()) {
1951 CXXCtorType OrigCtorType = GD.getCtorType();
1952 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1953 if (OrigCtorType == Ctor_Base)
1954 CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1955 }
1956 }
1957
1958 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1959 // static device variable depends on whether the variable is referenced by
1960 // a host or device host function. Therefore the mangled name cannot be
1961 // cached.
1962 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(D: GD.getDecl())) {
1963 auto FoundName = MangledDeclNames.find(Key: CanonicalGD);
1964 if (FoundName != MangledDeclNames.end())
1965 return FoundName->second;
1966 }
1967
1968 // Keep the first result in the case of a mangling collision.
1969 const auto *ND = cast<NamedDecl>(Val: GD.getDecl());
1970 std::string MangledName = getMangledNameImpl(CGM&: *this, GD, ND);
1971
1972 // Ensure either we have different ABIs between host and device compilations,
1973 // says host compilation following MSVC ABI but device compilation follows
1974 // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1975 // mangling should be the same after name stubbing. The later checking is
1976 // very important as the device kernel name being mangled in host-compilation
1977 // is used to resolve the device binaries to be executed. Inconsistent naming
1978 // result in undefined behavior. Even though we cannot check that naming
1979 // directly between host- and device-compilations, the host- and
1980 // device-mangling in host compilation could help catching certain ones.
1981 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1982 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
1983 (getContext().getAuxTargetInfo() &&
1984 (getContext().getAuxTargetInfo()->getCXXABI() !=
1985 getContext().getTargetInfo().getCXXABI())) ||
1986 getCUDARuntime().getDeviceSideName(ND) ==
1987 getMangledNameImpl(
1988 *this,
1989 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1990 ND));
1991
1992 auto Result = Manglings.insert(KV: std::make_pair(x&: MangledName, y&: GD));
1993 return MangledDeclNames[CanonicalGD] = Result.first->first();
1994}
1995
1996StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1997 const BlockDecl *BD) {
1998 MangleContext &MangleCtx = getCXXABI().getMangleContext();
1999 const Decl *D = GD.getDecl();
2000
2001 SmallString<256> Buffer;
2002 llvm::raw_svector_ostream Out(Buffer);
2003 if (!D)
2004 MangleCtx.mangleGlobalBlock(BD,
2005 dyn_cast_or_null<VarDecl>(Val: initializedGlobalDecl.getDecl()), Out);
2006 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(Val: D))
2007 MangleCtx.mangleCtorBlock(CD, CT: GD.getCtorType(), BD, Out);
2008 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Val: D))
2009 MangleCtx.mangleDtorBlock(CD: DD, DT: GD.getDtorType(), BD, Out);
2010 else
2011 MangleCtx.mangleBlock(DC: cast<DeclContext>(Val: D), BD, Out);
2012
2013 auto Result = Manglings.insert(KV: std::make_pair(x: Out.str(), y&: BD));
2014 return Result.first->first();
2015}
2016
2017const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
2018 auto it = MangledDeclNames.begin();
2019 while (it != MangledDeclNames.end()) {
2020 if (it->second == Name)
2021 return it->first;
2022 it++;
2023 }
2024 return GlobalDecl();
2025}
2026
2027llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
2028 return getModule().getNamedValue(Name);
2029}
2030
2031/// AddGlobalCtor - Add a function to the list that will be called before
2032/// main() runs.
2033void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
2034 unsigned LexOrder,
2035 llvm::Constant *AssociatedData) {
2036 // FIXME: Type coercion of void()* types.
2037 GlobalCtors.push_back(x: Structor(Priority, LexOrder, Ctor, AssociatedData));
2038}
2039
2040/// AddGlobalDtor - Add a function to the list that will be called
2041/// when the module is unloaded.
2042void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
2043 bool IsDtorAttrFunc) {
2044 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
2045 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
2046 DtorsUsingAtExit[Priority].push_back(NewVal: Dtor);
2047 return;
2048 }
2049
2050 // FIXME: Type coercion of void()* types.
2051 GlobalDtors.push_back(x: Structor(Priority, ~0U, Dtor, nullptr));
2052}
2053
2054void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
2055 if (Fns.empty()) return;
2056
2057 // Ctor function type is void()*.
2058 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(Result: VoidTy, isVarArg: false);
2059 llvm::Type *CtorPFTy = llvm::PointerType::get(ElementType: CtorFTy,
2060 AddressSpace: TheModule.getDataLayout().getProgramAddressSpace());
2061
2062 // Get the type of a ctor entry, { i32, void ()*, i8* }.
2063 llvm::StructType *CtorStructTy = llvm::StructType::get(
2064 elt1: Int32Ty, elts: CtorPFTy, elts: VoidPtrTy);
2065
2066 // Construct the constructor and destructor arrays.
2067 ConstantInitBuilder builder(*this);
2068 auto ctors = builder.beginArray(eltTy: CtorStructTy);
2069 for (const auto &I : Fns) {
2070 auto ctor = ctors.beginStruct(ty: CtorStructTy);
2071 ctor.addInt(intTy: Int32Ty, value: I.Priority);
2072 ctor.add(value: I.Initializer);
2073 if (I.AssociatedData)
2074 ctor.add(value: I.AssociatedData);
2075 else
2076 ctor.addNullPointer(ptrTy: VoidPtrTy);
2077 ctor.finishAndAddTo(parent&: ctors);
2078 }
2079
2080 auto list =
2081 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
2082 /*constant*/ false,
2083 llvm::GlobalValue::AppendingLinkage);
2084
2085 // The LTO linker doesn't seem to like it when we set an alignment
2086 // on appending variables. Take it off as a workaround.
2087 list->setAlignment(std::nullopt);
2088
2089 Fns.clear();
2090}
2091
2092llvm::GlobalValue::LinkageTypes
2093CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
2094 const auto *D = cast<FunctionDecl>(Val: GD.getDecl());
2095
2096 GVALinkage Linkage = getContext().GetGVALinkageForFunction(FD: D);
2097
2098 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(Val: D))
2099 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, DT: GD.getDtorType());
2100
2101 return getLLVMLinkageForDeclarator(D, Linkage);
2102}
2103
2104llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
2105 llvm::MDString *MDS = dyn_cast<llvm::MDString>(Val: MD);
2106 if (!MDS) return nullptr;
2107
2108 return llvm::ConstantInt::get(Ty: Int64Ty, V: llvm::MD5Hash(Str: MDS->getString()));
2109}
2110
2111llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
2112 if (auto *FnType = T->getAs<FunctionProtoType>())
2113 T = getContext().getFunctionType(
2114 ResultTy: FnType->getReturnType(), Args: FnType->getParamTypes(),
2115 EPI: FnType->getExtProtoInfo().withExceptionSpec(ESI: EST_None));
2116
2117 std::string OutName;
2118 llvm::raw_string_ostream Out(OutName);
2119 getCXXABI().getMangleContext().mangleCanonicalTypeName(
2120 T, Out, NormalizeIntegers: getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
2121
2122 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
2123 Out << ".normalized";
2124
2125 return llvm::ConstantInt::get(Ty: Int32Ty,
2126 V: static_cast<uint32_t>(llvm::xxHash64(Data: OutName)));
2127}
2128
2129void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
2130 const CGFunctionInfo &Info,
2131 llvm::Function *F, bool IsThunk) {
2132 unsigned CallingConv;
2133 llvm::AttributeList PAL;
2134 ConstructAttributeList(Name: F->getName(), Info, CalleeInfo: GD, Attrs&: PAL, CallingConv,
2135 /*AttrOnCallSite=*/false, IsThunk);
2136 F->setAttributes(PAL);
2137 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2138}
2139
2140static void removeImageAccessQualifier(std::string& TyName) {
2141 std::string ReadOnlyQual("__read_only");
2142 std::string::size_type ReadOnlyPos = TyName.find(str: ReadOnlyQual);
2143 if (ReadOnlyPos != std::string::npos)
2144 // "+ 1" for the space after access qualifier.
2145 TyName.erase(pos: ReadOnlyPos, n: ReadOnlyQual.size() + 1);
2146 else {
2147 std::string WriteOnlyQual("__write_only");
2148 std::string::size_type WriteOnlyPos = TyName.find(str: WriteOnlyQual);
2149 if (WriteOnlyPos != std::string::npos)
2150 TyName.erase(pos: WriteOnlyPos, n: WriteOnlyQual.size() + 1);
2151 else {
2152 std::string ReadWriteQual("__read_write");
2153 std::string::size_type ReadWritePos = TyName.find(str: ReadWriteQual);
2154 if (ReadWritePos != std::string::npos)
2155 TyName.erase(pos: ReadWritePos, n: ReadWriteQual.size() + 1);
2156 }
2157 }
2158}
2159
2160// Returns the address space id that should be produced to the
2161// kernel_arg_addr_space metadata. This is always fixed to the ids
2162// as specified in the SPIR 2.0 specification in order to differentiate
2163// for example in clGetKernelArgInfo() implementation between the address
2164// spaces with targets without unique mapping to the OpenCL address spaces
2165// (basically all single AS CPUs).
2166static unsigned ArgInfoAddressSpace(LangAS AS) {
2167 switch (AS) {
2168 case LangAS::opencl_global:
2169 return 1;
2170 case LangAS::opencl_constant:
2171 return 2;
2172 case LangAS::opencl_local:
2173 return 3;
2174 case LangAS::opencl_generic:
2175 return 4; // Not in SPIR 2.0 specs.
2176 case LangAS::opencl_global_device:
2177 return 5;
2178 case LangAS::opencl_global_host:
2179 return 6;
2180 default:
2181 return 0; // Assume private.
2182 }
2183}
2184
2185void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
2186 const FunctionDecl *FD,
2187 CodeGenFunction *CGF) {
2188 assert(((FD && CGF) || (!FD && !CGF)) &&
2189 "Incorrect use - FD and CGF should either be both null or not!");
2190 // Create MDNodes that represent the kernel arg metadata.
2191 // Each MDNode is a list in the form of "key", N number of values which is
2192 // the same number of values as their are kernel arguments.
2193
2194 const PrintingPolicy &Policy = Context.getPrintingPolicy();
2195
2196 // MDNode for the kernel argument address space qualifiers.
2197 SmallVector<llvm::Metadata *, 8> addressQuals;
2198
2199 // MDNode for the kernel argument access qualifiers (images only).
2200 SmallVector<llvm::Metadata *, 8> accessQuals;
2201
2202 // MDNode for the kernel argument type names.
2203 SmallVector<llvm::Metadata *, 8> argTypeNames;
2204
2205 // MDNode for the kernel argument base type names.
2206 SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
2207
2208 // MDNode for the kernel argument type qualifiers.
2209 SmallVector<llvm::Metadata *, 8> argTypeQuals;
2210
2211 // MDNode for the kernel argument names.
2212 SmallVector<llvm::Metadata *, 8> argNames;
2213
2214 if (FD && CGF)
2215 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
2216 const ParmVarDecl *parm = FD->getParamDecl(i);
2217 // Get argument name.
2218 argNames.push_back(Elt: llvm::MDString::get(VMContext, parm->getName()));
2219
2220 if (!getLangOpts().OpenCL)
2221 continue;
2222 QualType ty = parm->getType();
2223 std::string typeQuals;
2224
2225 // Get image and pipe access qualifier:
2226 if (ty->isImageType() || ty->isPipeType()) {
2227 const Decl *PDecl = parm;
2228 if (const auto *TD = ty->getAs<TypedefType>())
2229 PDecl = TD->getDecl();
2230 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
2231 if (A && A->isWriteOnly())
2232 accessQuals.push_back(Elt: llvm::MDString::get(Context&: VMContext, Str: "write_only"));
2233 else if (A && A->isReadWrite())
2234 accessQuals.push_back(Elt: llvm::MDString::get(Context&: VMContext, Str: "read_write"));
2235 else
2236 accessQuals.push_back(Elt: llvm::MDString::get(Context&: VMContext, Str: "read_only"));
2237 } else
2238 accessQuals.push_back(Elt: llvm::MDString::get(Context&: VMContext, Str: "none"));
2239
2240 auto getTypeSpelling = [&](QualType Ty) {
2241 auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
2242
2243 if (Ty.isCanonical()) {
2244 StringRef typeNameRef = typeName;
2245 // Turn "unsigned type" to "utype"
2246 if (typeNameRef.consume_front(Prefix: "unsigned "))
2247 return std::string("u") + typeNameRef.str();
2248 if (typeNameRef.consume_front(Prefix: "signed "))
2249 return typeNameRef.str();
2250 }
2251
2252 return typeName;
2253 };
2254
2255 if (ty->isPointerType()) {
2256 QualType pointeeTy = ty->getPointeeType();
2257
2258 // Get address qualifier.
2259 addressQuals.push_back(
2260 Elt: llvm::ConstantAsMetadata::get(C: CGF->Builder.getInt32(
2261 C: ArgInfoAddressSpace(AS: pointeeTy.getAddressSpace()))));
2262
2263 // Get argument type name.
2264 std::string typeName = getTypeSpelling(pointeeTy) + "*";
2265 std::string baseTypeName =
2266 getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
2267 argTypeNames.push_back(Elt: llvm::MDString::get(Context&: VMContext, Str: typeName));
2268 argBaseTypeNames.push_back(
2269 Elt: llvm::MDString::get(Context&: VMContext, Str: baseTypeName));
2270
2271 // Get argument type qualifiers:
2272 if (ty.isRestrictQualified())
2273 typeQuals = "restrict";
2274 if (pointeeTy.isConstQualified() ||
2275 (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
2276 typeQuals += typeQuals.empty() ? "const" : " const";
2277 if (pointeeTy.isVolatileQualified())
2278 typeQuals += typeQuals.empty() ? "volatile" : " volatile";
2279 } else {
2280 uint32_t AddrSpc = 0;
2281 bool isPipe = ty->isPipeType();
2282 if (ty->isImageType() || isPipe)
2283 AddrSpc = ArgInfoAddressSpace(AS: LangAS::opencl_global);
2284
2285 addressQuals.push_back(
2286 Elt: llvm::ConstantAsMetadata::get(C: CGF->Builder.getInt32(C: AddrSpc)));
2287
2288 // Get argument type name.
2289 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
2290 std::string typeName = getTypeSpelling(ty);
2291 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
2292
2293 // Remove access qualifiers on images
2294 // (as they are inseparable from type in clang implementation,
2295 // but OpenCL spec provides a special query to get access qualifier
2296 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
2297 if (ty->isImageType()) {
2298 removeImageAccessQualifier(TyName&: typeName);
2299 removeImageAccessQualifier(TyName&: baseTypeName);
2300 }
2301
2302 argTypeNames.push_back(Elt: llvm::MDString::get(Context&: VMContext, Str: typeName));
2303 argBaseTypeNames.push_back(
2304 Elt: llvm::MDString::get(Context&: VMContext, Str: baseTypeName));
2305
2306 if (isPipe)
2307 typeQuals = "pipe";
2308 }
2309 argTypeQuals.push_back(Elt: llvm::MDString::get(Context&: VMContext, Str: typeQuals));
2310 }
2311
2312 if (getLangOpts().OpenCL) {
2313 Fn->setMetadata(Kind: "kernel_arg_addr_space",
2314 Node: llvm::MDNode::get(Context&: VMContext, MDs: addressQuals));
2315 Fn->setMetadata(Kind: "kernel_arg_access_qual",
2316 Node: llvm::MDNode::get(Context&: VMContext, MDs: accessQuals));
2317 Fn->setMetadata(Kind: "kernel_arg_type",
2318 Node: llvm::MDNode::get(Context&: VMContext, MDs: argTypeNames));
2319 Fn->setMetadata(Kind: "kernel_arg_base_type",
2320 Node: llvm::MDNode::get(Context&: VMContext, MDs: argBaseTypeNames));
2321 Fn->setMetadata(Kind: "kernel_arg_type_qual",
2322 Node: llvm::MDNode::get(Context&: VMContext, MDs: argTypeQuals));
2323 }
2324 if (getCodeGenOpts().EmitOpenCLArgMetadata ||
2325 getCodeGenOpts().HIPSaveKernelArgName)
2326 Fn->setMetadata(Kind: "kernel_arg_name",
2327 Node: llvm::MDNode::get(Context&: VMContext, MDs: argNames));
2328}
2329
2330/// Determines whether the language options require us to model
2331/// unwind exceptions. We treat -fexceptions as mandating this
2332/// except under the fragile ObjC ABI with only ObjC exceptions
2333/// enabled. This means, for example, that C with -fexceptions
2334/// enables this.
2335static bool hasUnwindExceptions(const LangOptions &LangOpts) {
2336 // If exceptions are completely disabled, obviously this is false.
2337 if (!LangOpts.Exceptions) return false;
2338
2339 // If C++ exceptions are enabled, this is true.
2340 if (LangOpts.CXXExceptions) return true;
2341
2342 // If ObjC exceptions are enabled, this depends on the ABI.
2343 if (LangOpts.ObjCExceptions) {
2344 return LangOpts.ObjCRuntime.hasUnwindExceptions();
2345 }
2346
2347 return true;
2348}
2349
2350static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
2351 const CXXMethodDecl *MD) {
2352 // Check that the type metadata can ever actually be used by a call.
2353 if (!CGM.getCodeGenOpts().LTOUnit ||
2354 !CGM.HasHiddenLTOVisibility(RD: MD->getParent()))
2355 return false;
2356
2357 // Only functions whose address can be taken with a member function pointer
2358 // need this sort of type metadata.
2359 return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() &&
2360 !isa<CXXConstructorDecl, CXXDestructorDecl>(Val: MD);
2361}
2362
2363SmallVector<const CXXRecordDecl *, 0>
2364CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
2365 llvm::SetVector<const CXXRecordDecl *> MostBases;
2366
2367 std::function<void (const CXXRecordDecl *)> CollectMostBases;
2368 CollectMostBases = [&](const CXXRecordDecl *RD) {
2369 if (RD->getNumBases() == 0)
2370 MostBases.insert(X: RD);
2371 for (const CXXBaseSpecifier &B : RD->bases())
2372 CollectMostBases(B.getType()->getAsCXXRecordDecl());
2373 };
2374 CollectMostBases(RD);
2375 return MostBases.takeVector();
2376}
2377
2378void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
2379 llvm::Function *F) {
2380 llvm::AttrBuilder B(F->getContext());
2381
2382 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
2383 B.addUWTableAttr(Kind: llvm::UWTableKind(CodeGenOpts.UnwindTables));
2384
2385 if (CodeGenOpts.StackClashProtector)
2386 B.addAttribute(A: "probe-stack", V: "inline-asm");
2387
2388 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
2389 B.addAttribute(A: "stack-probe-size",
2390 V: std::to_string(val: CodeGenOpts.StackProbeSize));
2391
2392 if (!hasUnwindExceptions(LangOpts))
2393 B.addAttribute(llvm::Attribute::NoUnwind);
2394
2395 if (D && D->hasAttr<NoStackProtectorAttr>())
2396 ; // Do nothing.
2397 else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
2398 isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2399 B.addAttribute(llvm::Attribute::StackProtectStrong);
2400 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2401 B.addAttribute(llvm::Attribute::StackProtect);
2402 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong))
2403 B.addAttribute(llvm::Attribute::StackProtectStrong);
2404 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq))
2405 B.addAttribute(llvm::Attribute::StackProtectReq);
2406
2407 if (!D) {
2408 // If we don't have a declaration to control inlining, the function isn't
2409 // explicitly marked as alwaysinline for semantic reasons, and inlining is
2410 // disabled, mark the function as noinline.
2411 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
2412 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
2413 B.addAttribute(llvm::Attribute::NoInline);
2414
2415 F->addFnAttrs(Attrs: B);
2416 return;
2417 }
2418
2419 // Handle SME attributes that apply to function definitions,
2420 // rather than to function prototypes.
2421 if (D->hasAttr<ArmLocallyStreamingAttr>())
2422 B.addAttribute(A: "aarch64_pstate_sm_body");
2423
2424 if (auto *Attr = D->getAttr<ArmNewAttr>()) {
2425 if (Attr->isNewZA())
2426 B.addAttribute(A: "aarch64_new_za");
2427 if (Attr->isNewZT0())
2428 B.addAttribute(A: "aarch64_new_zt0");
2429 }
2430
2431 // Track whether we need to add the optnone LLVM attribute,
2432 // starting with the default for this optimization level.
2433 bool ShouldAddOptNone =
2434 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2435 // We can't add optnone in the following cases, it won't pass the verifier.
2436 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2437 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2438
2439 // Add optnone, but do so only if the function isn't always_inline.
2440 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2441 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2442 B.addAttribute(llvm::Attribute::OptimizeNone);
2443
2444 // OptimizeNone implies noinline; we should not be inlining such functions.
2445 B.addAttribute(llvm::Attribute::NoInline);
2446
2447 // We still need to handle naked functions even though optnone subsumes
2448 // much of their semantics.
2449 if (D->hasAttr<NakedAttr>())
2450 B.addAttribute(llvm::Attribute::Naked);
2451
2452 // OptimizeNone wins over OptimizeForSize and MinSize.
2453 F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2454 F->removeFnAttr(llvm::Attribute::MinSize);
2455 } else if (D->hasAttr<NakedAttr>()) {
2456 // Naked implies noinline: we should not be inlining such functions.
2457 B.addAttribute(llvm::Attribute::Naked);
2458 B.addAttribute(llvm::Attribute::NoInline);
2459 } else if (D->hasAttr<NoDuplicateAttr>()) {
2460 B.addAttribute(llvm::Attribute::NoDuplicate);
2461 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2462 // Add noinline if the function isn't always_inline.
2463 B.addAttribute(llvm::Attribute::NoInline);
2464 } else if (D->hasAttr<AlwaysInlineAttr>() &&
2465 !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2466 // (noinline wins over always_inline, and we can't specify both in IR)
2467 B.addAttribute(llvm::Attribute::AlwaysInline);
2468 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2469 // If we're not inlining, then force everything that isn't always_inline to
2470 // carry an explicit noinline attribute.
2471 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2472 B.addAttribute(llvm::Attribute::NoInline);
2473 } else {
2474 // Otherwise, propagate the inline hint attribute and potentially use its
2475 // absence to mark things as noinline.
2476 if (auto *FD = dyn_cast<FunctionDecl>(Val: D)) {
2477 // Search function and template pattern redeclarations for inline.
2478 auto CheckForInline = [](const FunctionDecl *FD) {
2479 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2480 return Redecl->isInlineSpecified();
2481 };
2482 if (any_of(FD->redecls(), CheckRedeclForInline))
2483 return true;
2484 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2485 if (!Pattern)
2486 return false;
2487 return any_of(Pattern->redecls(), CheckRedeclForInline);
2488 };
2489 if (CheckForInline(FD)) {
2490 B.addAttribute(llvm::Attribute::InlineHint);
2491 } else if (CodeGenOpts.getInlining() ==
2492 CodeGenOptions::OnlyHintInlining &&
2493 !FD->isInlined() &&
2494 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2495 B.addAttribute(llvm::Attribute::NoInline);
2496 }
2497 }
2498 }
2499
2500 // Add other optimization related attributes if we are optimizing this
2501 // function.
2502 if (!D->hasAttr<OptimizeNoneAttr>()) {
2503 if (D->hasAttr<ColdAttr>()) {
2504 if (!ShouldAddOptNone)
2505 B.addAttribute(llvm::Attribute::OptimizeForSize);
2506 B.addAttribute(llvm::Attribute::Cold);
2507 }
2508 if (D->hasAttr<HotAttr>())
2509 B.addAttribute(llvm::Attribute::Hot);
2510 if (D->hasAttr<MinSizeAttr>())
2511 B.addAttribute(llvm::Attribute::MinSize);
2512 }
2513
2514 F->addFnAttrs(Attrs: B);
2515
2516 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2517 if (alignment)
2518 F->setAlignment(llvm::Align(alignment));
2519
2520 if (!D->hasAttr<AlignedAttr>())
2521 if (LangOpts.FunctionAlignment)
2522 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2523
2524 // Some C++ ABIs require 2-byte alignment for member functions, in order to
2525 // reserve a bit for differentiating between virtual and non-virtual member
2526 // functions. If the current target's C++ ABI requires this and this is a
2527 // member function, set its alignment accordingly.
2528 if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2529 if (isa<CXXMethodDecl>(Val: D) && F->getPointerAlignment(DL: getDataLayout()) < 2)
2530 F->setAlignment(std::max(a: llvm::Align(2), b: F->getAlign().valueOrOne()));
2531 }
2532
2533 // In the cross-dso CFI mode with canonical jump tables, we want !type
2534 // attributes on definitions only.
2535 if (CodeGenOpts.SanitizeCfiCrossDso &&
2536 CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2537 if (auto *FD = dyn_cast<FunctionDecl>(Val: D)) {
2538 // Skip available_externally functions. They won't be codegen'ed in the
2539 // current module anyway.
2540 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2541 CreateFunctionTypeMetadataForIcall(FD, F);
2542 }
2543 }
2544
2545 // Emit type metadata on member functions for member function pointer checks.
2546 // These are only ever necessary on definitions; we're guaranteed that the
2547 // definition will be present in the LTO unit as a result of LTO visibility.
2548 auto *MD = dyn_cast<CXXMethodDecl>(Val: D);
2549 if (MD && requiresMemberFunctionPointerTypeMetadata(CGM&: *this, MD)) {
2550 for (const CXXRecordDecl *Base : getMostBaseClasses(RD: MD->getParent())) {
2551 llvm::Metadata *Id =
2552 CreateMetadataIdentifierForType(T: Context.getMemberPointerType(
2553 T: MD->getType(), Cls: Context.getRecordType(Base).getTypePtr()));
2554 F->addTypeMetadata(Offset: 0, TypeID: Id);
2555 }
2556 }
2557}
2558
2559void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2560 const Decl *D = GD.getDecl();
2561 if (isa_and_nonnull<NamedDecl>(Val: D))
2562 setGVProperties(GV, GD);
2563 else
2564 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2565
2566 if (D && D->hasAttr<UsedAttr>())
2567 addUsedOrCompilerUsedGlobal(GV);
2568
2569 if (const auto *VD = dyn_cast_if_present<VarDecl>(Val: D);
2570 VD &&
2571 ((CodeGenOpts.KeepPersistentStorageVariables &&
2572 (VD->getStorageDuration() == SD_Static ||
2573 VD->getStorageDuration() == SD_Thread)) ||
2574 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
2575 VD->getType().isConstQualified())))
2576 addUsedOrCompilerUsedGlobal(GV);
2577}
2578
2579bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2580 llvm::AttrBuilder &Attrs,
2581 bool SetTargetFeatures) {
2582 // Add target-cpu and target-features attributes to functions. If
2583 // we have a decl for the function and it has a target attribute then
2584 // parse that and add it to the feature set.
2585 StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2586 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2587 std::vector<std::string> Features;
2588 const auto *FD = dyn_cast_or_null<FunctionDecl>(Val: GD.getDecl());
2589 FD = FD ? FD->getMostRecentDecl() : FD;
2590 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2591 const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
2592 assert((!TD || !TV) && "both target_version and target specified");
2593 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2594 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2595 bool AddedAttr = false;
2596 if (TD || TV || SD || TC) {
2597 llvm::StringMap<bool> FeatureMap;
2598 getContext().getFunctionFeatureMap(FeatureMap, GD);
2599
2600 // Produce the canonical string for this set of features.
2601 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2602 Features.push_back(x: (Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2603
2604 // Now add the target-cpu and target-features to the function.
2605 // While we populated the feature map above, we still need to
2606 // get and parse the target attribute so we can get the cpu for
2607 // the function.
2608 if (TD) {
2609 ParsedTargetAttr ParsedAttr =
2610 Target.parseTargetAttr(Str: TD->getFeaturesStr());
2611 if (!ParsedAttr.CPU.empty() &&
2612 getTarget().isValidCPUName(Name: ParsedAttr.CPU)) {
2613 TargetCPU = ParsedAttr.CPU;
2614 TuneCPU = ""; // Clear the tune CPU.
2615 }
2616 if (!ParsedAttr.Tune.empty() &&
2617 getTarget().isValidCPUName(Name: ParsedAttr.Tune))
2618 TuneCPU = ParsedAttr.Tune;
2619 }
2620
2621 if (SD) {
2622 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2623 // favor this processor.
2624 TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName();
2625 }
2626 } else {
2627 // Otherwise just add the existing target cpu and target features to the
2628 // function.
2629 Features = getTarget().getTargetOpts().Features;
2630 }
2631
2632 if (!TargetCPU.empty()) {
2633 Attrs.addAttribute(A: "target-cpu", V: TargetCPU);
2634 AddedAttr = true;
2635 }
2636 if (!TuneCPU.empty()) {
2637 Attrs.addAttribute(A: "tune-cpu", V: TuneCPU);
2638 AddedAttr = true;
2639 }
2640 if (!Features.empty() && SetTargetFeatures) {
2641 llvm::erase_if(C&: Features, P: [&](const std::string& F) {
2642 return getTarget().isReadOnlyFeature(Feature: F.substr(pos: 1));
2643 });
2644 llvm::sort(C&: Features);
2645 Attrs.addAttribute(A: "target-features", V: llvm::join(R&: Features, Separator: ","));
2646 AddedAttr = true;
2647 }
2648
2649 return AddedAttr;
2650}
2651
2652void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2653 llvm::GlobalObject *GO) {
2654 const Decl *D = GD.getDecl();
2655 SetCommonAttributes(GD, GV: GO);
2656
2657 if (D) {
2658 if (auto *GV = dyn_cast<llvm::GlobalVariable>(Val: GO)) {
2659 if (D->hasAttr<RetainAttr>())
2660 addUsedGlobal(GV);
2661 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2662 GV->addAttribute("bss-section", SA->getName());
2663 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2664 GV->addAttribute("data-section", SA->getName());
2665 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2666 GV->addAttribute("rodata-section", SA->getName());
2667 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2668 GV->addAttribute("relro-section", SA->getName());
2669 }
2670
2671 if (auto *F = dyn_cast<llvm::Function>(Val: GO)) {
2672 if (D->hasAttr<RetainAttr>())
2673 addUsedGlobal(GV: F);
2674 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2675 if (!D->getAttr<SectionAttr>())
2676 F->addFnAttr("implicit-section-name", SA->getName());
2677
2678 llvm::AttrBuilder Attrs(F->getContext());
2679 if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2680 // We know that GetCPUAndFeaturesAttributes will always have the
2681 // newest set, since it has the newest possible FunctionDecl, so the
2682 // new ones should replace the old.
2683 llvm::AttributeMask RemoveAttrs;
2684 RemoveAttrs.addAttribute(A: "target-cpu");
2685 RemoveAttrs.addAttribute(A: "target-features");
2686 RemoveAttrs.addAttribute(A: "tune-cpu");
2687 F->removeFnAttrs(Attrs: RemoveAttrs);
2688 F->addFnAttrs(Attrs);
2689 }
2690 }
2691
2692 if (const auto *CSA = D->getAttr<CodeSegAttr>())
2693 GO->setSection(CSA->getName());
2694 else if (const auto *SA = D->getAttr<SectionAttr>())
2695 GO->setSection(SA->getName());
2696 }
2697
2698 getTargetCodeGenInfo().setTargetAttributes(D, GV: GO, M&: *this);
2699}
2700
2701void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2702 llvm::Function *F,
2703 const CGFunctionInfo &FI) {
2704 const Decl *D = GD.getDecl();
2705 SetLLVMFunctionAttributes(GD, Info: FI, F, /*IsThunk=*/false);
2706 SetLLVMFunctionAttributesForDefinition(D, F);
2707
2708 F->setLinkage(llvm::Function::InternalLinkage);
2709
2710 setNonAliasAttributes(GD, GO: F);
2711}
2712
2713static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2714 // Set linkage and visibility in case we never see a definition.
2715 LinkageInfo LV = ND->getLinkageAndVisibility();
2716 // Don't set internal linkage on declarations.
2717 // "extern_weak" is overloaded in LLVM; we probably should have
2718 // separate linkage types for this.
2719 if (isExternallyVisible(LV.getLinkage()) &&
2720 (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2721 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2722}
2723
2724void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2725 llvm::Function *F) {
2726 // Only if we are checking indirect calls.
2727 if (!LangOpts.Sanitize.has(K: SanitizerKind::CFIICall))
2728 return;
2729
2730 // Non-static class methods are handled via vtable or member function pointer
2731 // checks elsewhere.
2732 if (isa<CXXMethodDecl>(Val: FD) && !cast<CXXMethodDecl>(Val: FD)->isStatic())
2733 return;
2734
2735 llvm::Metadata *MD = CreateMetadataIdentifierForType(T: FD->getType());
2736 F->addTypeMetadata(Offset: 0, TypeID: MD);
2737 F->addTypeMetadata(Offset: 0, TypeID: CreateMetadataIdentifierGeneralized(T: FD->getType()));
2738
2739 // Emit a hash-based bit set entry for cross-DSO calls.
2740 if (CodeGenOpts.SanitizeCfiCrossDso)
2741 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2742 F->addTypeMetadata(Offset: 0, TypeID: llvm::ConstantAsMetadata::get(C: CrossDsoTypeId));
2743}
2744
2745void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2746 llvm::LLVMContext &Ctx = F->getContext();
2747 llvm::MDBuilder MDB(Ctx);
2748 F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2749 llvm::MDNode::get(
2750 Context&: Ctx, MDs: MDB.createConstant(C: CreateKCFITypeId(T: FD->getType()))));
2751}
2752
2753static bool allowKCFIIdentifier(StringRef Name) {
2754 // KCFI type identifier constants are only necessary for external assembly
2755 // functions, which means it's safe to skip unusual names. Subset of
2756 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2757 return llvm::all_of(Range&: Name, P: [](const char &C) {
2758 return llvm::isAlnum(C) || C == '_' || C == '.';
2759 });
2760}
2761
2762void CodeGenModule::finalizeKCFITypes() {
2763 llvm::Module &M = getModule();
2764 for (auto &F : M.functions()) {
2765 // Remove KCFI type metadata from non-address-taken local functions.
2766 bool AddressTaken = F.hasAddressTaken();
2767 if (!AddressTaken && F.hasLocalLinkage())
2768 F.eraseMetadata(KindID: llvm::LLVMContext::MD_kcfi_type);
2769
2770 // Generate a constant with the expected KCFI type identifier for all
2771 // address-taken function declarations to support annotating indirectly
2772 // called assembly functions.
2773 if (!AddressTaken || !F.isDeclaration())
2774 continue;
2775
2776 const llvm::ConstantInt *Type;
2777 if (const llvm::MDNode *MD = F.getMetadata(KindID: llvm::LLVMContext::MD_kcfi_type))
2778 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD: MD->getOperand(I: 0));
2779 else
2780 continue;
2781
2782 StringRef Name = F.getName();
2783 if (!allowKCFIIdentifier(Name))
2784 continue;
2785
2786 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2787 Name + ", " + Twine(Type->getZExtValue()) + "\n")
2788 .str();
2789 M.appendModuleInlineAsm(Asm);
2790 }
2791}
2792
2793void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2794 bool IsIncompleteFunction,
2795 bool IsThunk) {
2796
2797 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2798 // If this is an intrinsic function, set the function's attributes
2799 // to the intrinsic's attributes.
2800 F->setAttributes(llvm::Intrinsic::getAttributes(C&: getLLVMContext(), id: IID));
2801 return;
2802 }
2803
2804 const auto *FD = cast<FunctionDecl>(Val: GD.getDecl());
2805
2806 if (!IsIncompleteFunction)
2807 SetLLVMFunctionAttributes(GD, Info: getTypes().arrangeGlobalDeclaration(GD), F,
2808 IsThunk);
2809
2810 // Add the Returned attribute for "this", except for iOS 5 and earlier
2811 // where substantial code, including the libstdc++ dylib, was compiled with
2812 // GCC and does not actually return "this".
2813 if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2814 !(getTriple().isiOS() && getTriple().isOSVersionLT(Major: 6))) {
2815 assert(!F->arg_empty() &&
2816 F->arg_begin()->getType()
2817 ->canLosslesslyBitCastTo(F->getReturnType()) &&
2818 "unexpected this return");
2819 F->addParamAttr(0, llvm::Attribute::Returned);
2820 }
2821
2822 // Only a few attributes are set on declarations; these may later be
2823 // overridden by a definition.
2824
2825 setLinkageForGV(F, FD);
2826 setGVProperties(GV: F, GD: FD);
2827
2828 // Setup target-specific attributes.
2829 if (!IsIncompleteFunction && F->isDeclaration())
2830 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2831
2832 if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2833 F->setSection(CSA->getName());
2834 else if (const auto *SA = FD->getAttr<SectionAttr>())
2835 F->setSection(SA->getName());
2836
2837 if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2838 if (EA->isError())
2839 F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2840 else if (EA->isWarning())
2841 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2842 }
2843
2844 // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2845 if (FD->isInlineBuiltinDeclaration()) {
2846 const FunctionDecl *FDBody;
2847 bool HasBody = FD->hasBody(Definition&: FDBody);
2848 (void)HasBody;
2849 assert(HasBody && "Inline builtin declarations should always have an "
2850 "available body!");
2851 if (shouldEmitFunction(FDBody))
2852 F->addFnAttr(llvm::Attribute::NoBuiltin);
2853 }
2854
2855 if (FD->isReplaceableGlobalAllocationFunction()) {
2856 // A replaceable global allocation function does not act like a builtin by
2857 // default, only if it is invoked by a new-expression or delete-expression.
2858 F->addFnAttr(llvm::Attribute::NoBuiltin);
2859 }
2860
2861 if (isa<CXXConstructorDecl>(Val: FD) || isa<CXXDestructorDecl>(Val: FD))
2862 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2863 else if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: FD))
2864 if (MD->isVirtual())
2865 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2866
2867 // Don't emit entries for function declarations in the cross-DSO mode. This
2868 // is handled with better precision by the receiving DSO. But if jump tables
2869 // are non-canonical then we need type metadata in order to produce the local
2870 // jump table.
2871 if (!CodeGenOpts.SanitizeCfiCrossDso ||
2872 !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2873 CreateFunctionTypeMetadataForIcall(FD, F);
2874
2875 if (LangOpts.Sanitize.has(K: SanitizerKind::KCFI))
2876 setKCFIType(FD, F);
2877
2878 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2879 getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn: F);
2880
2881 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2882 F->addFnAttr(Kind: "inline-max-stacksize", Val: llvm::utostr(X: CodeGenOpts.InlineMaxStackSize));
2883
2884 if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2885 // Annotate the callback behavior as metadata:
2886 // - The callback callee (as argument number).
2887 // - The callback payloads (as argument numbers).
2888 llvm::LLVMContext &Ctx = F->getContext();
2889 llvm::MDBuilder MDB(Ctx);
2890
2891 // The payload indices are all but the first one in the encoding. The first
2892 // identifies the callback callee.
2893 int CalleeIdx = *CB->encoding_begin();
2894 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2895 F->addMetadata(KindID: llvm::LLVMContext::MD_callback,
2896 MD&: *llvm::MDNode::get(Context&: Ctx, MDs: {MDB.createCallbackEncoding(
2897 CalleeArgNo: CalleeIdx, Arguments: PayloadIndices,
2898 /* VarArgsArePassed */ false)}));
2899 }
2900}
2901
2902void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2903 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2904 "Only globals with definition can force usage.");
2905 LLVMUsed.emplace_back(args&: GV);
2906}
2907
2908void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2909 assert(!GV->isDeclaration() &&
2910 "Only globals with definition can force usage.");
2911 LLVMCompilerUsed.emplace_back(args&: GV);
2912}
2913
2914void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2915 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2916 "Only globals with definition can force usage.");
2917 if (getTriple().isOSBinFormatELF())
2918 LLVMCompilerUsed.emplace_back(args&: GV);
2919 else
2920 LLVMUsed.emplace_back(args&: GV);
2921}
2922
2923static void emitUsed(CodeGenModule &CGM, StringRef Name,
2924 std::vector<llvm::WeakTrackingVH> &List) {
2925 // Don't create llvm.used if there is no need.
2926 if (List.empty())
2927 return;
2928
2929 // Convert List to what ConstantArray needs.
2930 SmallVector<llvm::Constant*, 8> UsedArray;
2931 UsedArray.resize(N: List.size());
2932 for (unsigned i = 0, e = List.size(); i != e; ++i) {
2933 UsedArray[i] =
2934 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2935 C: cast<llvm::Constant>(Val: &*List[i]), Ty: CGM.Int8PtrTy);
2936 }
2937
2938 if (UsedArray.empty())
2939 return;
2940 llvm::ArrayType *ATy = llvm::ArrayType::get(ElementType: CGM.Int8PtrTy, NumElements: UsedArray.size());
2941
2942 auto *GV = new llvm::GlobalVariable(
2943 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2944 llvm::ConstantArray::get(T: ATy, V: UsedArray), Name);
2945
2946 GV->setSection("llvm.metadata");
2947}
2948
2949void CodeGenModule::emitLLVMUsed() {
2950 emitUsed(CGM&: *this, Name: "llvm.used", List&: LLVMUsed);
2951 emitUsed(CGM&: *this, Name: "llvm.compiler.used", List&: LLVMCompilerUsed);
2952}
2953
2954void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2955 auto *MDOpts = llvm::MDString::get(Context&: getLLVMContext(), Str: Opts);
2956 LinkerOptionsMetadata.push_back(Elt: llvm::MDNode::get(Context&: getLLVMContext(), MDs: MDOpts));
2957}
2958
2959void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2960 llvm::SmallString<32> Opt;
2961 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2962 if (Opt.empty())
2963 return;
2964 auto *MDOpts = llvm::MDString::get(Context&: getLLVMContext(), Str: Opt);
2965 LinkerOptionsMetadata.push_back(Elt: llvm::MDNode::get(Context&: getLLVMContext(), MDs: MDOpts));
2966}
2967
2968void CodeGenModule::AddDependentLib(StringRef Lib) {
2969 auto &C = getLLVMContext();
2970 if (getTarget().getTriple().isOSBinFormatELF()) {
2971 ELFDependentLibraries.push_back(
2972 Elt: llvm::MDNode::get(Context&: C, MDs: llvm::MDString::get(Context&: C, Str: Lib)));
2973 return;
2974 }
2975
2976 llvm::SmallString<24> Opt;
2977 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2978 auto *MDOpts = llvm::MDString::get(Context&: getLLVMContext(), Str: Opt);
2979 LinkerOptionsMetadata.push_back(Elt: llvm::MDNode::get(Context&: C, MDs: MDOpts));
2980}
2981
2982/// Add link options implied by the given module, including modules
2983/// it depends on, using a postorder walk.
2984static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2985 SmallVectorImpl<llvm::MDNode *> &Metadata,
2986 llvm::SmallPtrSet<Module *, 16> &Visited) {
2987 // Import this module's parent.
2988 if (Mod->Parent && Visited.insert(Ptr: Mod->Parent).second) {
2989 addLinkOptionsPostorder(CGM, Mod: Mod->Parent, Metadata, Visited);
2990 }
2991
2992 // Import this module's dependencies.
2993 for (Module *Import : llvm::reverse(C&: Mod->Imports)) {
2994 if (Visited.insert(Ptr: Import).second)
2995 addLinkOptionsPostorder(CGM, Mod: Import, Metadata, Visited);
2996 }
2997
2998 // Add linker options to link against the libraries/frameworks
2999 // described by this module.
3000 llvm::LLVMContext &Context = CGM.getLLVMContext();
3001 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
3002
3003 // For modules that use export_as for linking, use that module
3004 // name instead.
3005 if (Mod->UseExportAsModuleLinkName)
3006 return;
3007
3008 for (const Module::LinkLibrary &LL : llvm::reverse(C&: Mod->LinkLibraries)) {
3009 // Link against a framework. Frameworks are currently Darwin only, so we
3010 // don't to ask TargetCodeGenInfo for the spelling of the linker option.
3011 if (LL.IsFramework) {
3012 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, Str: "-framework"),
3013 llvm::MDString::get(Context, Str: LL.Library)};
3014
3015 Metadata.push_back(Elt: llvm::MDNode::get(Context, MDs: Args));
3016 continue;
3017 }
3018
3019 // Link against a library.
3020 if (IsELF) {
3021 llvm::Metadata *Args[2] = {
3022 llvm::MDString::get(Context, Str: "lib"),
3023 llvm::MDString::get(Context, Str: LL.Library),
3024 };
3025 Metadata.push_back(Elt: llvm::MDNode::get(Context, MDs: Args));
3026 } else {
3027 llvm::SmallString<24> Opt;
3028 CGM.getTargetCodeGenInfo().getDependentLibraryOption(Lib: LL.Library, Opt);
3029 auto *OptString = llvm::MDString::get(Context, Str: Opt);
3030 Metadata.push_back(Elt: llvm::MDNode::get(Context, MDs: OptString));
3031 }
3032 }
3033}
3034
3035void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
3036 assert(Primary->isNamedModuleUnit() &&
3037 "We should only emit module initializers for named modules.");
3038
3039 // Emit the initializers in the order that sub-modules appear in the
3040 // source, first Global Module Fragments, if present.
3041 if (auto GMF = Primary->getGlobalModuleFragment()) {
3042 for (Decl *D : getContext().getModuleInitializers(M: GMF)) {
3043 if (isa<ImportDecl>(Val: D))
3044 continue;
3045 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
3046 EmitTopLevelDecl(D);
3047 }
3048 }
3049 // Second any associated with the module, itself.
3050 for (Decl *D : getContext().getModuleInitializers(M: Primary)) {
3051 // Skip import decls, the inits for those are called explicitly.
3052 if (isa<ImportDecl>(Val: D))
3053 continue;
3054 EmitTopLevelDecl(D);
3055 }
3056 // Third any associated with the Privat eMOdule Fragment, if present.
3057 if (auto PMF = Primary->getPrivateModuleFragment()) {
3058 for (Decl *D : getContext().getModuleInitializers(M: PMF)) {
3059 // Skip import decls, the inits for those are called explicitly.
3060 if (isa<ImportDecl>(Val: D))
3061 continue;
3062 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
3063 EmitTopLevelDecl(D);
3064 }
3065 }
3066}
3067
3068void CodeGenModule::EmitModuleLinkOptions() {
3069 // Collect the set of all of the modules we want to visit to emit link
3070 // options, which is essentially the imported modules and all of their
3071 // non-explicit child modules.
3072 llvm::SetVector<clang::Module *> LinkModules;
3073 llvm::SmallPtrSet<clang::Module *, 16> Visited;
3074 SmallVector<clang::Module *, 16> Stack;
3075
3076 // Seed the stack with imported modules.
3077 for (Module *M : ImportedModules) {
3078 // Do not add any link flags when an implementation TU of a module imports
3079 // a header of that same module.
3080 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
3081 !getLangOpts().isCompilingModule())
3082 continue;
3083 if (Visited.insert(Ptr: M).second)
3084 Stack.push_back(Elt: M);
3085 }
3086
3087 // Find all of the modules to import, making a little effort to prune
3088 // non-leaf modules.
3089 while (!Stack.empty()) {
3090 clang::Module *Mod = Stack.pop_back_val();
3091
3092 bool AnyChildren = false;
3093
3094 // Visit the submodules of this module.
3095 for (const auto &SM : Mod->submodules()) {
3096 // Skip explicit children; they need to be explicitly imported to be
3097 // linked against.
3098 if (SM->IsExplicit)
3099 continue;
3100
3101 if (Visited.insert(Ptr: SM).second) {
3102 Stack.push_back(Elt: SM);
3103 AnyChildren = true;
3104 }
3105 }
3106
3107 // We didn't find any children, so add this module to the list of
3108 // modules to link against.
3109 if (!AnyChildren) {
3110 LinkModules.insert(X: Mod);
3111 }
3112 }
3113
3114 // Add link options for all of the imported modules in reverse topological
3115 // order. We don't do anything to try to order import link flags with respect
3116 // to linker options inserted by things like #pragma comment().
3117 SmallVector<llvm::MDNode *, 16> MetadataArgs;
3118 Visited.clear();
3119 for (Module *M : LinkModules)
3120 if (Visited.insert(Ptr: M).second)
3121 addLinkOptionsPostorder(CGM&: *this, Mod: M, Metadata&: MetadataArgs, Visited);
3122 std::reverse(first: MetadataArgs.begin(), last: MetadataArgs.end());
3123 LinkerOptionsMetadata.append(in_start: MetadataArgs.begin(), in_end: MetadataArgs.end());
3124
3125 // Add the linker options metadata flag.
3126 auto *NMD = getModule().getOrInsertNamedMetadata(Name: "llvm.linker.options");
3127 for (auto *MD : LinkerOptionsMetadata)
3128 NMD->addOperand(M: MD);
3129}
3130
3131void CodeGenModule::EmitDeferred() {
3132 // Emit deferred declare target declarations.
3133 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
3134 getOpenMPRuntime().emitDeferredTargetDecls();
3135
3136 // Emit code for any potentially referenced deferred decls. Since a
3137 // previously unused static decl may become used during the generation of code
3138 // for a static function, iterate until no changes are made.
3139
3140 if (!DeferredVTables.empty()) {
3141 EmitDeferredVTables();
3142
3143 // Emitting a vtable doesn't directly cause more vtables to
3144 // become deferred, although it can cause functions to be
3145 // emitted that then need those vtables.
3146 assert(DeferredVTables.empty());
3147 }
3148
3149 // Emit CUDA/HIP static device variables referenced by host code only.
3150 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
3151 // needed for further handling.
3152 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
3153 llvm::append_range(C&: DeferredDeclsToEmit,
3154 R&: getContext().CUDADeviceVarODRUsedByHost);
3155
3156 // Stop if we're out of both deferred vtables and deferred declarations.
3157 if (DeferredDeclsToEmit.empty())
3158 return;
3159
3160 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
3161 // work, it will not interfere with this.
3162 std::vector<GlobalDecl> CurDeclsToEmit;
3163 CurDeclsToEmit.swap(x&: DeferredDeclsToEmit);
3164
3165 for (GlobalDecl &D : CurDeclsToEmit) {
3166 // We should call GetAddrOfGlobal with IsForDefinition set to true in order
3167 // to get GlobalValue with exactly the type we need, not something that
3168 // might had been created for another decl with the same mangled name but
3169 // different type.
3170 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
3171 Val: GetAddrOfGlobal(GD: D, IsForDefinition: ForDefinition));
3172
3173 // In case of different address spaces, we may still get a cast, even with
3174 // IsForDefinition equal to true. Query mangled names table to get
3175 // GlobalValue.
3176 if (!GV)
3177 GV = GetGlobalValue(Name: getMangledName(GD: D));
3178
3179 // Make sure GetGlobalValue returned non-null.
3180 assert(GV);
3181
3182 // Check to see if we've already emitted this. This is necessary
3183 // for a couple of reasons: first, decls can end up in the
3184 // deferred-decls queue multiple times, and second, decls can end
3185 // up with definitions in unusual ways (e.g. by an extern inline
3186 // function acquiring a strong function redefinition). Just
3187 // ignore these cases.
3188 if (!GV->isDeclaration())
3189 continue;
3190
3191 // If this is OpenMP, check if it is legal to emit this global normally.
3192 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD: D))
3193 continue;
3194
3195 // Otherwise, emit the definition and move on to the next one.
3196 EmitGlobalDefinition(D, GV);
3197
3198 // If we found out that we need to emit more decls, do that recursively.
3199 // This has the advantage that the decls are emitted in a DFS and related
3200 // ones are close together, which is convenient for testing.
3201 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
3202 EmitDeferred();
3203 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
3204 }
3205 }
3206}
3207
3208void CodeGenModule::EmitVTablesOpportunistically() {
3209 // Try to emit external vtables as available_externally if they have emitted
3210 // all inlined virtual functions. It runs after EmitDeferred() and therefore
3211 // is not allowed to create new references to things that need to be emitted
3212 // lazily. Note that it also uses fact that we eagerly emitting RTTI.
3213
3214 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
3215 && "Only emit opportunistic vtables with optimizations");
3216
3217 for (const CXXRecordDecl *RD : OpportunisticVTables) {
3218 assert(getVTables().isVTableExternal(RD) &&
3219 "This queue should only contain external vtables");
3220 if (getCXXABI().canSpeculativelyEmitVTable(RD))
3221 VTables.GenerateClassData(RD);
3222 }
3223 OpportunisticVTables.clear();
3224}
3225
3226void CodeGenModule::EmitGlobalAnnotations() {
3227 for (const auto& [MangledName, VD] : DeferredAnnotations) {
3228 llvm::GlobalValue *GV = GetGlobalValue(Name: MangledName);
3229 if (GV)
3230 AddGlobalAnnotations(D: VD, GV);
3231 }
3232 DeferredAnnotations.clear();
3233
3234 if (Annotations.empty())
3235 return;
3236
3237 // Create a new global variable for the ConstantStruct in the Module.
3238 llvm::Constant *Array = llvm::ConstantArray::get(T: llvm::ArrayType::get(
3239 ElementType: Annotations[0]->getType(), NumElements: Annotations.size()), V: Annotations);
3240 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
3241 llvm::GlobalValue::AppendingLinkage,
3242 Array, "llvm.global.annotations");
3243 gv->setSection(AnnotationSection);
3244}
3245
3246llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
3247 llvm::Constant *&AStr = AnnotationStrings[Str];
3248 if (AStr)
3249 return AStr;
3250
3251 // Not found yet, create a new global.
3252 llvm::Constant *s = llvm::ConstantDataArray::getString(Context&: getLLVMContext(), Initializer: Str);
3253 auto *gv = new llvm::GlobalVariable(
3254 getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
3255 ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
3256 ConstGlobalsPtrTy->getAddressSpace());
3257 gv->setSection(AnnotationSection);
3258 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3259 AStr = gv;
3260 return gv;
3261}
3262
3263llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
3264 SourceManager &SM = getContext().getSourceManager();
3265 PresumedLoc PLoc = SM.getPresumedLoc(Loc);
3266 if (PLoc.isValid())
3267 return EmitAnnotationString(Str: PLoc.getFilename());
3268 return EmitAnnotationString(Str: SM.getBufferName(Loc));
3269}
3270
3271llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
3272 SourceManager &SM = getContext().getSourceManager();
3273 PresumedLoc PLoc = SM.getPresumedLoc(Loc: L);
3274 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
3275 SM.getExpansionLineNumber(Loc: L);
3276 return llvm::ConstantInt::get(Ty: Int32Ty, V: LineNo);
3277}
3278
3279llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
3280 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
3281 if (Exprs.empty())
3282 return llvm::ConstantPointerNull::get(T: ConstGlobalsPtrTy);
3283
3284 llvm::FoldingSetNodeID ID;
3285 for (Expr *E : Exprs) {
3286 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
3287 }
3288 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
3289 if (Lookup)
3290 return Lookup;
3291
3292 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
3293 LLVMArgs.reserve(N: Exprs.size());
3294 ConstantEmitter ConstEmiter(*this);
3295 llvm::transform(Range&: Exprs, d_first: std::back_inserter(x&: LLVMArgs), F: [&](const Expr *E) {
3296 const auto *CE = cast<clang::ConstantExpr>(Val: E);
3297 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
3298 CE->getType());
3299 });
3300 auto *Struct = llvm::ConstantStruct::getAnon(V: LLVMArgs);
3301 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
3302 llvm::GlobalValue::PrivateLinkage, Struct,
3303 ".args");
3304 GV->setSection(AnnotationSection);
3305 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3306
3307 Lookup = GV;
3308 return GV;
3309}
3310
3311llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
3312 const AnnotateAttr *AA,
3313 SourceLocation L) {
3314 // Get the globals for file name, annotation, and the line number.
3315 llvm::Constant *AnnoGV = EmitAnnotationString(Str: AA->getAnnotation()),
3316 *UnitGV = EmitAnnotationUnit(Loc: L),
3317 *LineNoCst = EmitAnnotationLineNo(L),
3318 *Args = EmitAnnotationArgs(Attr: AA);
3319
3320 llvm::Constant *GVInGlobalsAS = GV;
3321 if (GV->getAddressSpace() !=
3322 getDataLayout().getDefaultGlobalsAddressSpace()) {
3323 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
3324 C: GV,
3325 Ty: llvm::PointerType::get(
3326 C&: GV->getContext(), AddressSpace: getDataLayout().getDefaultGlobalsAddressSpace()));
3327 }
3328
3329 // Create the ConstantStruct for the global annotation.
3330 llvm::Constant *Fields[] = {
3331 GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args,
3332 };
3333 return llvm::ConstantStruct::getAnon(V: Fields);
3334}
3335
3336void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
3337 llvm::GlobalValue *GV) {
3338 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
3339 // Get the struct elements for these annotations.
3340 for (const auto *I : D->specific_attrs<AnnotateAttr>())
3341 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
3342}
3343
3344bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
3345 SourceLocation Loc) const {
3346 const auto &NoSanitizeL = getContext().getNoSanitizeList();
3347 // NoSanitize by function name.
3348 if (NoSanitizeL.containsFunction(Mask: Kind, FunctionName: Fn->getName()))
3349 return true;
3350 // NoSanitize by location. Check "mainfile" prefix.
3351 auto &SM = Context.getSourceManager();
3352 FileEntryRef MainFile = *SM.getFileEntryRefForID(FID: SM.getMainFileID());
3353 if (NoSanitizeL.containsMainFile(Mask: Kind, FileName: MainFile.getName()))
3354 return true;
3355
3356 // Check "src" prefix.
3357 if (Loc.isValid())
3358 return NoSanitizeL.containsLocation(Mask: Kind, Loc);
3359 // If location is unknown, this may be a compiler-generated function. Assume
3360 // it's located in the main file.
3361 return NoSanitizeL.containsFile(Mask: Kind, FileName: MainFile.getName());
3362}
3363
3364bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
3365 llvm::GlobalVariable *GV,
3366 SourceLocation Loc, QualType Ty,
3367 StringRef Category) const {
3368 const auto &NoSanitizeL = getContext().getNoSanitizeList();
3369 if (NoSanitizeL.containsGlobal(Mask: Kind, GlobalName: GV->getName(), Category))
3370 return true;
3371 auto &SM = Context.getSourceManager();
3372 if (NoSanitizeL.containsMainFile(
3373 Mask: Kind, FileName: SM.getFileEntryRefForID(FID: SM.getMainFileID())->getName(),
3374 Category))
3375 return true;
3376 if (NoSanitizeL.containsLocation(Mask: Kind, Loc, Category))
3377 return true;
3378
3379 // Check global type.
3380 if (!Ty.isNull()) {
3381 // Drill down the array types: if global variable of a fixed type is
3382 // not sanitized, we also don't instrument arrays of them.
3383 while (auto AT = dyn_cast<ArrayType>(Val: Ty.getTypePtr()))
3384 Ty = AT->getElementType();
3385 Ty = Ty.getCanonicalType().getUnqualifiedType();
3386 // Only record types (classes, structs etc.) are ignored.
3387 if (Ty->isRecordType()) {
3388 std::string TypeStr = Ty.getAsString(Policy: getContext().getPrintingPolicy());
3389 if (NoSanitizeL.containsType(Mask: Kind, MangledTypeName: TypeStr, Category))
3390 return true;
3391 }
3392 }
3393 return false;
3394}
3395
3396bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
3397 StringRef Category) const {
3398 const auto &XRayFilter = getContext().getXRayFilter();
3399 using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
3400 auto Attr = ImbueAttr::NONE;
3401 if (Loc.isValid())
3402 Attr = XRayFilter.shouldImbueLocation(Loc, Category);
3403 if (Attr == ImbueAttr::NONE)
3404 Attr = XRayFilter.shouldImbueFunction(FunctionName: Fn->getName());
3405 switch (Attr) {
3406 case ImbueAttr::NONE:
3407 return false;
3408 case ImbueAttr::ALWAYS:
3409 Fn->addFnAttr(Kind: "function-instrument", Val: "xray-always");
3410 break;
3411 case ImbueAttr::ALWAYS_ARG1:
3412 Fn->addFnAttr(Kind: "function-instrument", Val: "xray-always");
3413 Fn->addFnAttr(Kind: "xray-log-args", Val: "1");
3414 break;
3415 case ImbueAttr::NEVER:
3416 Fn->addFnAttr(Kind: "function-instrument", Val: "xray-never");
3417 break;
3418 }
3419 return true;
3420}
3421
3422ProfileList::ExclusionType
3423CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
3424 SourceLocation Loc) const {
3425 const auto &ProfileList = getContext().getProfileList();
3426 // If the profile list is empty, then instrument everything.
3427 if (ProfileList.isEmpty())
3428 return ProfileList::Allow;
3429 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
3430 // First, check the function name.
3431 if (auto V = ProfileList.isFunctionExcluded(FunctionName: Fn->getName(), Kind))
3432 return *V;
3433 // Next, check the source location.
3434 if (Loc.isValid())
3435 if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3436 return *V;
3437 // If location is unknown, this may be a compiler-generated function. Assume
3438 // it's located in the main file.
3439 auto &SM = Context.getSourceManager();
3440 if (auto MainFile = SM.getFileEntryRefForID(FID: SM.getMainFileID()))
3441 if (auto V = ProfileList.isFileExcluded(FileName: MainFile->getName(), Kind))
3442 return *V;
3443 return ProfileList.getDefault(Kind);
3444}
3445
3446ProfileList::ExclusionType
3447CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3448 SourceLocation Loc) const {
3449 auto V = isFunctionBlockedByProfileList(Fn, Loc);
3450 if (V != ProfileList::Allow)
3451 return V;
3452
3453 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3454 if (NumGroups > 1) {
3455 auto Group = llvm::crc32(Data: arrayRefFromStringRef(Input: Fn->getName())) % NumGroups;
3456 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3457 return ProfileList::Skip;
3458 }
3459 return ProfileList::Allow;
3460}
3461
3462bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3463 // Never defer when EmitAllDecls is specified.
3464 if (LangOpts.EmitAllDecls)
3465 return true;
3466
3467 const auto *VD = dyn_cast<VarDecl>(Val: Global);
3468 if (VD &&
3469 ((CodeGenOpts.KeepPersistentStorageVariables &&
3470 (VD->getStorageDuration() == SD_Static ||
3471 VD->getStorageDuration() == SD_Thread)) ||
3472 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
3473 VD->getType().isConstQualified())))
3474 return true;
3475
3476 return getContext().DeclMustBeEmitted(Global);
3477}
3478
3479bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3480 // In OpenMP 5.0 variables and function may be marked as
3481 // device_type(host/nohost) and we should not emit them eagerly unless we sure
3482 // that they must be emitted on the host/device. To be sure we need to have
3483 // seen a declare target with an explicit mentioning of the function, we know
3484 // we have if the level of the declare target attribute is -1. Note that we
3485 // check somewhere else if we should emit this at all.
3486 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3487 std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3488 OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3489 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3490 return false;
3491 }
3492
3493 if (const auto *FD = dyn_cast<FunctionDecl>(Val: Global)) {
3494 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3495 // Implicit template instantiations may change linkage if they are later
3496 // explicitly instantiated, so they should not be emitted eagerly.
3497 return false;
3498 }
3499 if (const auto *VD = dyn_cast<VarDecl>(Val: Global)) {
3500 if (Context.getInlineVariableDefinitionKind(VD) ==
3501 ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3502 // A definition of an inline constexpr static data member may change
3503 // linkage later if it's redeclared outside the class.
3504 return false;
3505 if (CXX20ModuleInits && VD->getOwningModule() &&
3506 !VD->getOwningModule()->isModuleMapModule()) {
3507 // For CXX20, module-owned initializers need to be deferred, since it is
3508 // not known at this point if they will be run for the current module or
3509 // as part of the initializer for an imported one.
3510 return false;
3511 }
3512 }
3513 // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3514 // codegen for global variables, because they may be marked as threadprivate.
3515 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3516 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3517 !Global->getType().isConstantStorage(getContext(), false, false) &&
3518 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3519 return false;
3520
3521 return true;
3522}
3523
3524ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3525 StringRef Name = getMangledName(GD);
3526
3527 // The UUID descriptor should be pointer aligned.
3528 CharUnits Alignment = CharUnits::fromQuantity(Quantity: PointerAlignInBytes);
3529
3530 // Look for an existing global.
3531 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3532 return ConstantAddress(GV, GV->getValueType(), Alignment);
3533
3534 ConstantEmitter Emitter(*this);
3535 llvm::Constant *Init;
3536
3537 APValue &V = GD->getAsAPValue();
3538 if (!V.isAbsent()) {
3539 // If possible, emit the APValue version of the initializer. In particular,
3540 // this gets the type of the constant right.
3541 Init = Emitter.emitForInitializer(
3542 value: GD->getAsAPValue(), destAddrSpace: GD->getType().getAddressSpace(), destType: GD->getType());
3543 } else {
3544 // As a fallback, directly construct the constant.
3545 // FIXME: This may get padding wrong under esoteric struct layout rules.
3546 // MSVC appears to create a complete type 'struct __s_GUID' that it
3547 // presumably uses to represent these constants.
3548 MSGuidDecl::Parts Parts = GD->getParts();
3549 llvm::Constant *Fields[4] = {
3550 llvm::ConstantInt::get(Ty: Int32Ty, V: Parts.Part1),
3551 llvm::ConstantInt::get(Ty: Int16Ty, V: Parts.Part2),
3552 llvm::ConstantInt::get(Ty: Int16Ty, V: Parts.Part3),
3553 llvm::ConstantDataArray::getRaw(
3554 Data: StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), NumElements: 8,
3555 ElementTy: Int8Ty)};
3556 Init = llvm::ConstantStruct::getAnon(V: Fields);
3557 }
3558
3559 auto *GV = new llvm::GlobalVariable(
3560 getModule(), Init->getType(),
3561 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3562 if (supportsCOMDAT())
3563 GV->setComdat(TheModule.getOrInsertComdat(Name: GV->getName()));
3564 setDSOLocal(GV);
3565
3566 if (!V.isAbsent()) {
3567 Emitter.finalize(global: GV);
3568 return ConstantAddress(GV, GV->getValueType(), Alignment);
3569 }
3570
3571 llvm::Type *Ty = getTypes().ConvertTypeForMem(T: GD->getType());
3572 return ConstantAddress(GV, Ty, Alignment);
3573}
3574
3575ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3576 const UnnamedGlobalConstantDecl *GCD) {
3577 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3578
3579 llvm::GlobalVariable **Entry = nullptr;
3580 Entry = &UnnamedGlobalConstantDeclMap[GCD];
3581 if (*Entry)
3582 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3583
3584 ConstantEmitter Emitter(*this);
3585 llvm::Constant *Init;
3586
3587 const APValue &V = GCD->getValue();
3588
3589 assert(!V.isAbsent());
3590 Init = Emitter.emitForInitializer(value: V, destAddrSpace: GCD->getType().getAddressSpace(),
3591 destType: GCD->getType());
3592
3593 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3594 /*isConstant=*/true,
3595 llvm::GlobalValue::PrivateLinkage, Init,
3596 ".constant");
3597 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3598 GV->setAlignment(Alignment.getAsAlign());
3599
3600 Emitter.finalize(global: GV);
3601
3602 *Entry = GV;
3603 return ConstantAddress(GV, GV->getValueType(), Alignment);
3604}
3605
3606ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3607 const TemplateParamObjectDecl *TPO) {
3608 StringRef Name = getMangledName(TPO);
3609 CharUnits Alignment = getNaturalTypeAlignment(T: TPO->getType());
3610
3611 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3612 return ConstantAddress(GV, GV->getValueType(), Alignment);
3613
3614 ConstantEmitter Emitter(*this);
3615 llvm::Constant *Init = Emitter.emitForInitializer(
3616 value: TPO->getValue(), destAddrSpace: TPO->getType().getAddressSpace(), destType: TPO->getType());
3617
3618 if (!Init) {
3619 ErrorUnsupported(TPO, "template parameter object");
3620 return ConstantAddress::invalid();
3621 }
3622
3623 llvm::GlobalValue::LinkageTypes Linkage =
3624 isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage())
3625 ? llvm::GlobalValue::LinkOnceODRLinkage
3626 : llvm::GlobalValue::InternalLinkage;
3627 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3628 /*isConstant=*/true, Linkage, Init, Name);
3629 setGVProperties(GV, TPO);
3630 if (supportsCOMDAT())
3631 GV->setComdat(TheModule.getOrInsertComdat(Name: GV->getName()));
3632 Emitter.finalize(global: GV);
3633
3634 return ConstantAddress(GV, GV->getValueType(), Alignment);
3635}
3636
3637ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3638 const AliasAttr *AA = VD->getAttr<AliasAttr>();
3639 assert(AA && "No alias?");
3640
3641 CharUnits Alignment = getContext().getDeclAlign(VD);
3642 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(T: VD->getType());
3643
3644 // See if there is already something with the target's name in the module.
3645 llvm::GlobalValue *Entry = GetGlobalValue(Name: AA->getAliasee());
3646 if (Entry)
3647 return ConstantAddress(Entry, DeclTy, Alignment);
3648
3649 llvm::Constant *Aliasee;
3650 if (isa<llvm::FunctionType>(Val: DeclTy))
3651 Aliasee = GetOrCreateLLVMFunction(MangledName: AA->getAliasee(), Ty: DeclTy,
3652 D: GlobalDecl(cast<FunctionDecl>(Val: VD)),
3653 /*ForVTable=*/false);
3654 else
3655 Aliasee = GetOrCreateLLVMGlobal(MangledName: AA->getAliasee(), Ty: DeclTy, AddrSpace: LangAS::Default,
3656 D: nullptr);
3657
3658 auto *F = cast<llvm::GlobalValue>(Val: Aliasee);
3659 F->setLinkage(llvm::Function::ExternalWeakLinkage);
3660 WeakRefReferences.insert(Ptr: F);
3661
3662 return ConstantAddress(Aliasee, DeclTy, Alignment);
3663}
3664
3665template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) {
3666 if (!D)
3667 return false;
3668 if (auto *A = D->getAttr<AttrT>())
3669 return A->isImplicit();
3670 return D->isImplicit();
3671}
3672
3673void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3674 const auto *Global = cast<ValueDecl>(Val: GD.getDecl());
3675
3676 // Weak references don't produce any output by themselves.
3677 if (Global->hasAttr<WeakRefAttr>())
3678 return;
3679
3680 // If this is an alias definition (which otherwise looks like a declaration)
3681 // emit it now.
3682 if (Global->hasAttr<AliasAttr>())
3683 return EmitAliasDefinition(GD);
3684
3685 // IFunc like an alias whose value is resolved at runtime by calling resolver.
3686 if (Global->hasAttr<IFuncAttr>())
3687 return emitIFuncDefinition(GD);
3688
3689 // If this is a cpu_dispatch multiversion function, emit the resolver.
3690 if (Global->hasAttr<CPUDispatchAttr>())
3691 return emitCPUDispatchDefinition(GD);
3692
3693 // If this is CUDA, be selective about which declarations we emit.
3694 // Non-constexpr non-lambda implicit host device functions are not emitted
3695 // unless they are used on device side.
3696 if (LangOpts.CUDA) {
3697 if (LangOpts.CUDAIsDevice) {
3698 const auto *FD = dyn_cast<FunctionDecl>(Val: Global);
3699 if ((!Global->hasAttr<CUDADeviceAttr>() ||
3700 (LangOpts.OffloadImplicitHostDeviceTemplates && FD &&
3701 hasImplicitAttr<CUDAHostAttr>(FD) &&
3702 hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() &&
3703 !isLambdaCallOperator(FD) &&
3704 !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) &&
3705 !Global->hasAttr<CUDAGlobalAttr>() &&
3706 !Global->hasAttr<CUDAConstantAttr>() &&
3707 !Global->hasAttr<CUDASharedAttr>() &&
3708 !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3709 !Global->getType()->isCUDADeviceBuiltinTextureType() &&
3710 !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) &&
3711 !Global->hasAttr<CUDAHostAttr>()))
3712 return;
3713 } else {
3714 // We need to emit host-side 'shadows' for all global
3715 // device-side variables because the CUDA runtime needs their
3716 // size and host-side address in order to provide access to
3717 // their device-side incarnations.
3718
3719 // So device-only functions are the only things we skip.
3720 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3721 Global->hasAttr<CUDADeviceAttr>())
3722 return;
3723
3724 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3725 "Expected Variable or Function");
3726 }
3727 }
3728
3729 if (LangOpts.OpenMP) {
3730 // If this is OpenMP, check if it is legal to emit this global normally.
3731 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3732 return;
3733 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Val: Global)) {
3734 if (MustBeEmitted(Global))
3735 EmitOMPDeclareReduction(D: DRD);
3736 return;
3737 }
3738 if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Val: Global)) {
3739 if (MustBeEmitted(Global))
3740 EmitOMPDeclareMapper(D: DMD);
3741 return;
3742 }
3743 }
3744
3745 // Ignore declarations, they will be emitted on their first use.
3746 if (const auto *FD = dyn_cast<FunctionDecl>(Val: Global)) {
3747 // Update deferred annotations with the latest declaration if the function
3748 // function was already used or defined.
3749 if (FD->hasAttr<AnnotateAttr>()) {
3750 StringRef MangledName = getMangledName(GD);
3751 if (GetGlobalValue(Name: MangledName))
3752 DeferredAnnotations[MangledName] = FD;
3753 }
3754
3755 // Forward declarations are emitted lazily on first use.
3756 if (!FD->doesThisDeclarationHaveABody()) {
3757 if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3758 return;
3759
3760 StringRef MangledName = getMangledName(GD);
3761
3762 // Compute the function info and LLVM type.
3763 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3764 llvm::Type *Ty = getTypes().GetFunctionType(Info: FI);
3765
3766 GetOrCreateLLVMFunction(MangledName, Ty, D: GD, /*ForVTable=*/false,
3767 /*DontDefer=*/false);
3768 return;
3769 }
3770 } else {
3771 const auto *VD = cast<VarDecl>(Val: Global);
3772 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3773 if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3774 !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3775 if (LangOpts.OpenMP) {
3776 // Emit declaration of the must-be-emitted declare target variable.
3777 if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3778 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3779
3780 // If this variable has external storage and doesn't require special
3781 // link handling we defer to its canonical definition.
3782 if (VD->hasExternalStorage() &&
3783 Res != OMPDeclareTargetDeclAttr::MT_Link)
3784 return;
3785
3786 bool UnifiedMemoryEnabled =
3787 getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3788 if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3789 *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3790 !UnifiedMemoryEnabled) {
3791 (void)GetAddrOfGlobalVar(D: VD);
3792 } else {
3793 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3794 ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3795 *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3796 UnifiedMemoryEnabled)) &&
3797 "Link clause or to clause with unified memory expected.");
3798 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3799 }
3800
3801 return;
3802 }
3803 }
3804 // If this declaration may have caused an inline variable definition to
3805 // change linkage, make sure that it's emitted.
3806 if (Context.getInlineVariableDefinitionKind(VD) ==
3807 ASTContext::InlineVariableDefinitionKind::Strong)
3808 GetAddrOfGlobalVar(D: VD);
3809 return;
3810 }
3811 }
3812
3813 // Defer code generation to first use when possible, e.g. if this is an inline
3814 // function. If the global must always be emitted, do it eagerly if possible
3815 // to benefit from cache locality.
3816 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3817 // Emit the definition if it can't be deferred.
3818 EmitGlobalDefinition(D: GD);
3819 addEmittedDeferredDecl(GD);
3820 return;
3821 }
3822
3823 // If we're deferring emission of a C++ variable with an
3824 // initializer, remember the order in which it appeared in the file.
3825 if (getLangOpts().CPlusPlus && isa<VarDecl>(Val: Global) &&
3826 cast<VarDecl>(Val: Global)->hasInit()) {
3827 DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3828 CXXGlobalInits.push_back(x: nullptr);
3829 }
3830
3831 StringRef MangledName = getMangledName(GD);
3832 if (GetGlobalValue(Name: MangledName) != nullptr) {
3833 // The value has already been used and should therefore be emitted.
3834 addDeferredDeclToEmit(GD);
3835 } else if (MustBeEmitted(Global)) {
3836 // The value must be emitted, but cannot be emitted eagerly.
3837 assert(!MayBeEmittedEagerly(Global));
3838 addDeferredDeclToEmit(GD);
3839 } else {
3840 // Otherwise, remember that we saw a deferred decl with this name. The
3841 // first use of the mangled name will cause it to move into
3842 // DeferredDeclsToEmit.
3843 DeferredDecls[MangledName] = GD;
3844 }
3845}
3846
3847// Check if T is a class type with a destructor that's not dllimport.
3848static bool HasNonDllImportDtor(QualType T) {
3849 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3850 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Val: RT->getDecl()))
3851 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3852 return true;
3853
3854 return false;
3855}
3856
3857namespace {
3858 struct FunctionIsDirectlyRecursive
3859 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3860 const StringRef Name;
3861 const Builtin::Context &BI;
3862 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3863 : Name(N), BI(C) {}
3864
3865 bool VisitCallExpr(const CallExpr *E) {
3866 const FunctionDecl *FD = E->getDirectCallee();
3867 if (!FD)
3868 return false;
3869 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3870 if (Attr && Name == Attr->getLabel())
3871 return true;
3872 unsigned BuiltinID = FD->getBuiltinID();
3873 if (!BuiltinID || !BI.isLibFunction(ID: BuiltinID))
3874 return false;
3875 StringRef BuiltinName = BI.getName(ID: BuiltinID);
3876 if (BuiltinName.starts_with(Prefix: "__builtin_") &&
3877 Name == BuiltinName.slice(Start: strlen(s: "__builtin_"), End: StringRef::npos)) {
3878 return true;
3879 }
3880 return false;
3881 }
3882
3883 bool VisitStmt(const Stmt *S) {
3884 for (const Stmt *Child : S->children())
3885 if (Child && this->Visit(Child))
3886 return true;
3887 return false;
3888 }
3889 };
3890
3891 // Make sure we're not referencing non-imported vars or functions.
3892 struct DLLImportFunctionVisitor
3893 : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3894 bool SafeToInline = true;
3895
3896 bool shouldVisitImplicitCode() const { return true; }
3897
3898 bool VisitVarDecl(VarDecl *VD) {
3899 if (VD->getTLSKind()) {
3900 // A thread-local variable cannot be imported.
3901 SafeToInline = false;
3902 return SafeToInline;
3903 }
3904
3905 // A variable definition might imply a destructor call.
3906 if (VD->isThisDeclarationADefinition())
3907 SafeToInline = !HasNonDllImportDtor(VD->getType());
3908
3909 return SafeToInline;
3910 }
3911
3912 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3913 if (const auto *D = E->getTemporary()->getDestructor())
3914 SafeToInline = D->hasAttr<DLLImportAttr>();
3915 return SafeToInline;
3916 }
3917
3918 bool VisitDeclRefExpr(DeclRefExpr *E) {
3919 ValueDecl *VD = E->getDecl();
3920 if (isa<FunctionDecl>(VD))
3921 SafeToInline = VD->hasAttr<DLLImportAttr>();
3922 else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3923 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3924 return SafeToInline;
3925 }
3926
3927 bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3928 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3929 return SafeToInline;
3930 }
3931
3932 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3933 CXXMethodDecl *M = E->getMethodDecl();
3934 if (!M) {
3935 // Call through a pointer to member function. This is safe to inline.
3936 SafeToInline = true;
3937 } else {
3938 SafeToInline = M->hasAttr<DLLImportAttr>();
3939 }
3940 return SafeToInline;
3941 }
3942
3943 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3944 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3945 return SafeToInline;
3946 }
3947
3948 bool VisitCXXNewExpr(CXXNewExpr *E) {
3949 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3950 return SafeToInline;
3951 }
3952 };
3953}
3954
3955// isTriviallyRecursive - Check if this function calls another
3956// decl that, because of the asm attribute or the other decl being a builtin,
3957// ends up pointing to itself.
3958bool
3959CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3960 StringRef Name;
3961 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3962 // asm labels are a special kind of mangling we have to support.
3963 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3964 if (!Attr)
3965 return false;
3966 Name = Attr->getLabel();
3967 } else {
3968 Name = FD->getName();
3969 }
3970
3971 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3972 const Stmt *Body = FD->getBody();
3973 return Body ? Walker.Visit(Body) : false;
3974}
3975
3976bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3977 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3978 return true;
3979
3980 const auto *F = cast<FunctionDecl>(Val: GD.getDecl());
3981 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3982 return false;
3983
3984 // We don't import function bodies from other named module units since that
3985 // behavior may break ABI compatibility of the current unit.
3986 if (const Module *M = F->getOwningModule();
3987 M && M->getTopLevelModule()->isNamedModule() &&
3988 getContext().getCurrentNamedModule() != M->getTopLevelModule() &&
3989 !F->hasAttr<AlwaysInlineAttr>())
3990 return false;
3991
3992 if (F->hasAttr<NoInlineAttr>())
3993 return false;
3994
3995 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3996 // Check whether it would be safe to inline this dllimport function.
3997 DLLImportFunctionVisitor Visitor;
3998 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3999 if (!Visitor.SafeToInline)
4000 return false;
4001
4002 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(Val: F)) {
4003 // Implicit destructor invocations aren't captured in the AST, so the
4004 // check above can't see them. Check for them manually here.
4005 for (const Decl *Member : Dtor->getParent()->decls())
4006 if (isa<FieldDecl>(Member))
4007 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
4008 return false;
4009 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
4010 if (HasNonDllImportDtor(B.getType()))
4011 return false;
4012 }
4013 }
4014
4015 // Inline builtins declaration must be emitted. They often are fortified
4016 // functions.
4017 if (F->isInlineBuiltinDeclaration())
4018 return true;
4019
4020 // PR9614. Avoid cases where the source code is lying to us. An available
4021 // externally function should have an equivalent function somewhere else,
4022 // but a function that calls itself through asm label/`__builtin_` trickery is
4023 // clearly not equivalent to the real implementation.
4024 // This happens in glibc's btowc and in some configure checks.
4025 return !isTriviallyRecursive(FD: F);
4026}
4027
4028bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
4029 return CodeGenOpts.OptimizationLevel > 0;
4030}
4031
4032void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
4033 llvm::GlobalValue *GV) {
4034 const auto *FD = cast<FunctionDecl>(Val: GD.getDecl());
4035
4036 if (FD->isCPUSpecificMultiVersion()) {
4037 auto *Spec = FD->getAttr<CPUSpecificAttr>();
4038 for (unsigned I = 0; I < Spec->cpus_size(); ++I)
4039 EmitGlobalFunctionDefinition(GD: GD.getWithMultiVersionIndex(Index: I), GV: nullptr);
4040 } else if (FD->isTargetClonesMultiVersion()) {
4041 auto *Clone = FD->getAttr<TargetClonesAttr>();
4042 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
4043 if (Clone->isFirstOfVersion(I))
4044 EmitGlobalFunctionDefinition(GD: GD.getWithMultiVersionIndex(Index: I), GV: nullptr);
4045 // Ensure that the resolver function is also emitted.
4046 GetOrCreateMultiVersionResolver(GD);
4047 } else if (FD->hasAttr<TargetVersionAttr>()) {
4048 GetOrCreateMultiVersionResolver(GD);
4049 } else
4050 EmitGlobalFunctionDefinition(GD, GV);
4051}
4052
4053void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
4054 const auto *D = cast<ValueDecl>(Val: GD.getDecl());
4055
4056 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
4057 Context.getSourceManager(),
4058 "Generating code for declaration");
4059
4060 if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) {
4061 // At -O0, don't generate IR for functions with available_externally
4062 // linkage.
4063 if (!shouldEmitFunction(GD))
4064 return;
4065
4066 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
4067 std::string Name;
4068 llvm::raw_string_ostream OS(Name);
4069 FD->getNameForDiagnostic(OS, Policy: getContext().getPrintingPolicy(),
4070 /*Qualified=*/true);
4071 return Name;
4072 });
4073
4074 if (const auto *Method = dyn_cast<CXXMethodDecl>(Val: D)) {
4075 // Make sure to emit the definition(s) before we emit the thunks.
4076 // This is necessary for the generation of certain thunks.
4077 if (isa<CXXConstructorDecl>(Val: Method) || isa<CXXDestructorDecl>(Val: Method))
4078 ABI->emitCXXStructor(GD);
4079 else if (FD->isMultiVersion())
4080 EmitMultiVersionFunctionDefinition(GD, GV);
4081 else
4082 EmitGlobalFunctionDefinition(GD, GV);
4083
4084 if (Method->isVirtual())
4085 getVTables().EmitThunks(GD);
4086
4087 return;
4088 }
4089
4090 if (FD->isMultiVersion())
4091 return EmitMultiVersionFunctionDefinition(GD, GV);
4092 return EmitGlobalFunctionDefinition(GD, GV);
4093 }
4094
4095 if (const auto *VD = dyn_cast<VarDecl>(Val: D))
4096 return EmitGlobalVarDefinition(D: VD, IsTentative: !VD->hasDefinition());
4097
4098 llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
4099}
4100
4101static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4102 llvm::Function *NewFn);
4103
4104static unsigned
4105TargetMVPriority(const TargetInfo &TI,
4106 const CodeGenFunction::MultiVersionResolverOption &RO) {
4107 unsigned Priority = 0;
4108 unsigned NumFeatures = 0;
4109 for (StringRef Feat : RO.Conditions.Features) {
4110 Priority = std::max(a: Priority, b: TI.multiVersionSortPriority(Name: Feat));
4111 NumFeatures++;
4112 }
4113
4114 if (!RO.Conditions.Architecture.empty())
4115 Priority = std::max(
4116 a: Priority, b: TI.multiVersionSortPriority(Name: RO.Conditions.Architecture));
4117
4118 Priority += TI.multiVersionFeatureCost() * NumFeatures;
4119
4120 return Priority;
4121}
4122
4123// Multiversion functions should be at most 'WeakODRLinkage' so that a different
4124// TU can forward declare the function without causing problems. Particularly
4125// in the cases of CPUDispatch, this causes issues. This also makes sure we
4126// work with internal linkage functions, so that the same function name can be
4127// used with internal linkage in multiple TUs.
4128llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
4129 GlobalDecl GD) {
4130 const FunctionDecl *FD = cast<FunctionDecl>(Val: GD.getDecl());
4131 if (FD->getFormalLinkage() == Linkage::Internal)
4132 return llvm::GlobalValue::InternalLinkage;
4133 return llvm::GlobalValue::WeakODRLinkage;
4134}
4135
4136void CodeGenModule::emitMultiVersionFunctions() {
4137 std::vector<GlobalDecl> MVFuncsToEmit;
4138 MultiVersionFuncs.swap(x&: MVFuncsToEmit);
4139 for (GlobalDecl GD : MVFuncsToEmit) {
4140 const auto *FD = cast<FunctionDecl>(Val: GD.getDecl());
4141 assert(FD && "Expected a FunctionDecl");
4142
4143 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4144 if (FD->isTargetMultiVersion()) {
4145 getContext().forEachMultiversionedFunctionVersion(
4146 FD, Pred: [this, &GD, &Options](const FunctionDecl *CurFD) {
4147 GlobalDecl CurGD{
4148 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
4149 StringRef MangledName = getMangledName(GD: CurGD);
4150 llvm::Constant *Func = GetGlobalValue(Name: MangledName);
4151 if (!Func) {
4152 if (CurFD->isDefined()) {
4153 EmitGlobalFunctionDefinition(GD: CurGD, GV: nullptr);
4154 Func = GetGlobalValue(Name: MangledName);
4155 } else {
4156 const CGFunctionInfo &FI =
4157 getTypes().arrangeGlobalDeclaration(GD);
4158 llvm::FunctionType *Ty = getTypes().GetFunctionType(Info: FI);
4159 Func = GetAddrOfFunction(GD: CurGD, Ty, /*ForVTable=*/false,
4160 /*DontDefer=*/false, IsForDefinition: ForDefinition);
4161 }
4162 assert(Func && "This should have just been created");
4163 }
4164 if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) {
4165 const auto *TA = CurFD->getAttr<TargetAttr>();
4166 llvm::SmallVector<StringRef, 8> Feats;
4167 TA->getAddedFeatures(Feats);
4168 Options.emplace_back(cast<llvm::Function>(Val: Func),
4169 TA->getArchitecture(), Feats);
4170 } else {
4171 const auto *TVA = CurFD->getAttr<TargetVersionAttr>();
4172 llvm::SmallVector<StringRef, 8> Feats;
4173 TVA->getFeatures(Feats);
4174 Options.emplace_back(Args: cast<llvm::Function>(Val: Func),
4175 /*Architecture*/ Args: "", Args&: Feats);
4176 }
4177 });
4178 } else if (FD->isTargetClonesMultiVersion()) {
4179 const auto *TC = FD->getAttr<TargetClonesAttr>();
4180 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
4181 ++VersionIndex) {
4182 if (!TC->isFirstOfVersion(VersionIndex))
4183 continue;
4184 GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD),
4185 VersionIndex};
4186 StringRef Version = TC->getFeatureStr(VersionIndex);
4187 StringRef MangledName = getMangledName(GD: CurGD);
4188 llvm::Constant *Func = GetGlobalValue(Name: MangledName);
4189 if (!Func) {
4190 if (FD->isDefined()) {
4191 EmitGlobalFunctionDefinition(GD: CurGD, GV: nullptr);
4192 Func = GetGlobalValue(Name: MangledName);
4193 } else {
4194 const CGFunctionInfo &FI =
4195 getTypes().arrangeGlobalDeclaration(GD: CurGD);
4196 llvm::FunctionType *Ty = getTypes().GetFunctionType(Info: FI);
4197 Func = GetAddrOfFunction(GD: CurGD, Ty, /*ForVTable=*/false,
4198 /*DontDefer=*/false, IsForDefinition: ForDefinition);
4199 }
4200 assert(Func && "This should have just been created");
4201 }
4202
4203 StringRef Architecture;
4204 llvm::SmallVector<StringRef, 1> Feature;
4205
4206 if (getTarget().getTriple().isAArch64()) {
4207 if (Version != "default") {
4208 llvm::SmallVector<StringRef, 8> VerFeats;
4209 Version.split(A&: VerFeats, Separator: "+");
4210 for (auto &CurFeat : VerFeats)
4211 Feature.push_back(Elt: CurFeat.trim());
4212 }
4213 } else {
4214 if (Version.starts_with(Prefix: "arch="))
4215 Architecture = Version.drop_front(N: sizeof("arch=") - 1);
4216 else if (Version != "default")
4217 Feature.push_back(Elt: Version);
4218 }
4219
4220 Options.emplace_back(Args: cast<llvm::Function>(Val: Func), Args&: Architecture, Args&: Feature);
4221 }
4222 } else {
4223 assert(0 && "Expected a target or target_clones multiversion function");
4224 continue;
4225 }
4226
4227 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
4228 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(Val: ResolverConstant)) {
4229 ResolverConstant = IFunc->getResolver();
4230 if (FD->isTargetClonesMultiVersion() ||
4231 FD->isTargetVersionMultiVersion()) {
4232 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4233 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(Info: FI);
4234 std::string MangledName = getMangledNameImpl(
4235 *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4236 // In prior versions of Clang, the mangling for ifuncs incorrectly
4237 // included an .ifunc suffix. This alias is generated for backward
4238 // compatibility. It is deprecated, and may be removed in the future.
4239 auto *Alias = llvm::GlobalAlias::create(
4240 Ty: DeclTy, AddressSpace: 0, Linkage: getMultiversionLinkage(CGM&: *this, GD),
4241 Name: MangledName + ".ifunc", Aliasee: IFunc, Parent: &getModule());
4242 SetCommonAttributes(GD: FD, GV: Alias);
4243 }
4244 }
4245 llvm::Function *ResolverFunc = cast<llvm::Function>(Val: ResolverConstant);
4246
4247 ResolverFunc->setLinkage(getMultiversionLinkage(CGM&: *this, GD));
4248
4249 if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT())
4250 ResolverFunc->setComdat(
4251 getModule().getOrInsertComdat(Name: ResolverFunc->getName()));
4252
4253 const TargetInfo &TI = getTarget();
4254 llvm::stable_sort(
4255 Range&: Options, C: [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
4256 const CodeGenFunction::MultiVersionResolverOption &RHS) {
4257 return TargetMVPriority(TI, RO: LHS) > TargetMVPriority(TI, RO: RHS);
4258 });
4259 CodeGenFunction CGF(*this);
4260 CGF.EmitMultiVersionResolver(Resolver: ResolverFunc, Options);
4261 }
4262
4263 // Ensure that any additions to the deferred decls list caused by emitting a
4264 // variant are emitted. This can happen when the variant itself is inline and
4265 // calls a function without linkage.
4266 if (!MVFuncsToEmit.empty())
4267 EmitDeferred();
4268
4269 // Ensure that any additions to the multiversion funcs list from either the
4270 // deferred decls or the multiversion functions themselves are emitted.
4271 if (!MultiVersionFuncs.empty())
4272 emitMultiVersionFunctions();
4273}
4274
4275void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
4276 const auto *FD = cast<FunctionDecl>(Val: GD.getDecl());
4277 assert(FD && "Not a FunctionDecl?");
4278 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
4279 const auto *DD = FD->getAttr<CPUDispatchAttr>();
4280 assert(DD && "Not a cpu_dispatch Function?");
4281
4282 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4283 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(Info: FI);
4284
4285 StringRef ResolverName = getMangledName(GD);
4286 UpdateMultiVersionNames(GD, FD, CurName&: ResolverName);
4287
4288 llvm::Type *ResolverType;
4289 GlobalDecl ResolverGD;
4290 if (getTarget().supportsIFunc()) {
4291 ResolverType = llvm::FunctionType::get(
4292 llvm::PointerType::get(DeclTy,
4293 getTypes().getTargetAddressSpace(T: FD->getType())),
4294 false);
4295 }
4296 else {
4297 ResolverType = DeclTy;
4298 ResolverGD = GD;
4299 }
4300
4301 auto *ResolverFunc = cast<llvm::Function>(Val: GetOrCreateLLVMFunction(
4302 MangledName: ResolverName, Ty: ResolverType, D: ResolverGD, /*ForVTable=*/false));
4303 ResolverFunc->setLinkage(getMultiversionLinkage(CGM&: *this, GD));
4304 if (supportsCOMDAT())
4305 ResolverFunc->setComdat(
4306 getModule().getOrInsertComdat(Name: ResolverFunc->getName()));
4307
4308 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4309 const TargetInfo &Target = getTarget();
4310 unsigned Index = 0;
4311 for (const IdentifierInfo *II : DD->cpus()) {
4312 // Get the name of the target function so we can look it up/create it.
4313 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
4314 getCPUSpecificMangling(*this, II->getName());
4315
4316 llvm::Constant *Func = GetGlobalValue(MangledName);
4317
4318 if (!Func) {
4319 GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
4320 if (ExistingDecl.getDecl() &&
4321 ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
4322 EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
4323 Func = GetGlobalValue(MangledName);
4324 } else {
4325 if (!ExistingDecl.getDecl())
4326 ExistingDecl = GD.getWithMultiVersionIndex(Index);
4327
4328 Func = GetOrCreateLLVMFunction(
4329 MangledName, DeclTy, ExistingDecl,
4330 /*ForVTable=*/false, /*DontDefer=*/true,
4331 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
4332 }
4333 }
4334
4335 llvm::SmallVector<StringRef, 32> Features;
4336 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
4337 llvm::transform(Features, Features.begin(),
4338 [](StringRef Str) { return Str.substr(1); });
4339 llvm::erase_if(Features, [&Target](StringRef Feat) {
4340 return !Target.validateCpuSupports(Feat);
4341 });
4342 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
4343 ++Index;
4344 }
4345
4346 llvm::stable_sort(
4347 Range&: Options, C: [](const CodeGenFunction::MultiVersionResolverOption &LHS,
4348 const CodeGenFunction::MultiVersionResolverOption &RHS) {
4349 return llvm::X86::getCpuSupportsMask(FeatureStrs: LHS.Conditions.Features) >
4350 llvm::X86::getCpuSupportsMask(FeatureStrs: RHS.Conditions.Features);
4351 });
4352
4353 // If the list contains multiple 'default' versions, such as when it contains
4354 // 'pentium' and 'generic', don't emit the call to the generic one (since we
4355 // always run on at least a 'pentium'). We do this by deleting the 'least
4356 // advanced' (read, lowest mangling letter).
4357 while (Options.size() > 1 &&
4358 llvm::all_of(Range: llvm::X86::getCpuSupportsMask(
4359 FeatureStrs: (Options.end() - 2)->Conditions.Features),
4360 P: [](auto X) { return X == 0; })) {
4361 StringRef LHSName = (Options.end() - 2)->Function->getName();
4362 StringRef RHSName = (Options.end() - 1)->Function->getName();
4363 if (LHSName.compare(RHS: RHSName) < 0)
4364 Options.erase(CI: Options.end() - 2);
4365 else
4366 Options.erase(CI: Options.end() - 1);
4367 }
4368
4369 CodeGenFunction CGF(*this);
4370 CGF.EmitMultiVersionResolver(Resolver: ResolverFunc, Options);
4371
4372 if (getTarget().supportsIFunc()) {
4373 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(CGM&: *this, GD);
4374 auto *IFunc = cast<llvm::GlobalValue>(Val: GetOrCreateMultiVersionResolver(GD));
4375
4376 // Fix up function declarations that were created for cpu_specific before
4377 // cpu_dispatch was known
4378 if (!isa<llvm::GlobalIFunc>(Val: IFunc)) {
4379 assert(cast<llvm::Function>(IFunc)->isDeclaration());
4380 auto *GI = llvm::GlobalIFunc::create(Ty: DeclTy, AddressSpace: 0, Linkage, Name: "", Resolver: ResolverFunc,
4381 Parent: &getModule());
4382 GI->takeName(V: IFunc);
4383 IFunc->replaceAllUsesWith(V: GI);
4384 IFunc->eraseFromParent();
4385 IFunc = GI;
4386 }
4387
4388 std::string AliasName = getMangledNameImpl(
4389 *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4390 llvm::Constant *AliasFunc = GetGlobalValue(Name: AliasName);
4391 if (!AliasFunc) {
4392 auto *GA = llvm::GlobalAlias::create(Ty: DeclTy, AddressSpace: 0, Linkage, Name: AliasName, Aliasee: IFunc,
4393 Parent: &getModule());
4394 SetCommonAttributes(GD, GV: GA);
4395 }
4396 }
4397}
4398
4399/// If a dispatcher for the specified mangled name is not in the module, create
4400/// and return an llvm Function with the specified type.
4401llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
4402 const auto *FD = cast<FunctionDecl>(Val: GD.getDecl());
4403 assert(FD && "Not a FunctionDecl?");
4404
4405 std::string MangledName =
4406 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4407
4408 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
4409 // a separate resolver).
4410 std::string ResolverName = MangledName;
4411 if (getTarget().supportsIFunc()) {
4412 switch (FD->getMultiVersionKind()) {
4413 case MultiVersionKind::None:
4414 llvm_unreachable("unexpected MultiVersionKind::None for resolver");
4415 case MultiVersionKind::Target:
4416 case MultiVersionKind::CPUSpecific:
4417 case MultiVersionKind::CPUDispatch:
4418 ResolverName += ".ifunc";
4419 break;
4420 case MultiVersionKind::TargetClones:
4421 case MultiVersionKind::TargetVersion:
4422 break;
4423 }
4424 } else if (FD->isTargetMultiVersion()) {
4425 ResolverName += ".resolver";
4426 }
4427
4428 // If the resolver has already been created, just return it.
4429 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(Name: ResolverName))
4430 return ResolverGV;
4431
4432 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4433 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(Info: FI);
4434
4435 // The resolver needs to be created. For target and target_clones, defer
4436 // creation until the end of the TU.
4437 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
4438 MultiVersionFuncs.push_back(x: GD);
4439
4440 // For cpu_specific, don't create an ifunc yet because we don't know if the
4441 // cpu_dispatch will be emitted in this translation unit.
4442 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
4443 llvm::Type *ResolverType = llvm::FunctionType::get(
4444 llvm::PointerType::get(DeclTy,
4445 getTypes().getTargetAddressSpace(T: FD->getType())),
4446 false);
4447 llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4448 MangledName: MangledName + ".resolver", Ty: ResolverType, D: GlobalDecl{},
4449 /*ForVTable=*/false);
4450 llvm::GlobalIFunc *GIF =
4451 llvm::GlobalIFunc::create(Ty: DeclTy, AddressSpace: 0, Linkage: getMultiversionLinkage(CGM&: *this, GD),
4452 Name: "", Resolver, Parent: &getModule());
4453 GIF->setName(ResolverName);
4454 SetCommonAttributes(GD: FD, GV: GIF);
4455
4456 return GIF;
4457 }
4458
4459 llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4460 MangledName: ResolverName, Ty: DeclTy, D: GlobalDecl{}, /*ForVTable=*/false);
4461 assert(isa<llvm::GlobalValue>(Resolver) &&
4462 "Resolver should be created for the first time");
4463 SetCommonAttributes(GD: FD, GV: cast<llvm::GlobalValue>(Val: Resolver));
4464 return Resolver;
4465}
4466
4467/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4468/// module, create and return an llvm Function with the specified type. If there
4469/// is something in the module with the specified name, return it potentially
4470/// bitcasted to the right type.
4471///
4472/// If D is non-null, it specifies a decl that correspond to this. This is used
4473/// to set the attributes on the function when it is first created.
4474llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
4475 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
4476 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
4477 ForDefinition_t IsForDefinition) {
4478 const Decl *D = GD.getDecl();
4479
4480 // Any attempts to use a MultiVersion function should result in retrieving
4481 // the iFunc instead. Name Mangling will handle the rest of the changes.
4482 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(Val: D)) {
4483 // For the device mark the function as one that should be emitted.
4484 if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime &&
4485 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
4486 !DontDefer && !IsForDefinition) {
4487 if (const FunctionDecl *FDDef = FD->getDefinition()) {
4488 GlobalDecl GDDef;
4489 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Val: FDDef))
4490 GDDef = GlobalDecl(CD, GD.getCtorType());
4491 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Val: FDDef))
4492 GDDef = GlobalDecl(DD, GD.getDtorType());
4493 else
4494 GDDef = GlobalDecl(FDDef);
4495 EmitGlobal(GD: GDDef);
4496 }
4497 }
4498
4499 if (FD->isMultiVersion()) {
4500 UpdateMultiVersionNames(GD, FD, CurName&: MangledName);
4501 if (!IsForDefinition)
4502 return GetOrCreateMultiVersionResolver(GD);
4503 }
4504 }
4505
4506 // Lookup the entry, lazily creating it if necessary.
4507 llvm::GlobalValue *Entry = GetGlobalValue(Name: MangledName);
4508 if (Entry) {
4509 if (WeakRefReferences.erase(Ptr: Entry)) {
4510 const FunctionDecl *FD = cast_or_null<FunctionDecl>(Val: D);
4511 if (FD && !FD->hasAttr<WeakAttr>())
4512 Entry->setLinkage(llvm::Function::ExternalLinkage);
4513 }
4514
4515 // Handle dropped DLL attributes.
4516 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4517 !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) {
4518 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4519 setDSOLocal(Entry);
4520 }
4521
4522 // If there are two attempts to define the same mangled name, issue an
4523 // error.
4524 if (IsForDefinition && !Entry->isDeclaration()) {
4525 GlobalDecl OtherGD;
4526 // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4527 // to make sure that we issue an error only once.
4528 if (lookupRepresentativeDecl(MangledName, Result&: OtherGD) &&
4529 (GD.getCanonicalDecl().getDecl() !=
4530 OtherGD.getCanonicalDecl().getDecl()) &&
4531 DiagnosedConflictingDefinitions.insert(V: GD).second) {
4532 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4533 << MangledName;
4534 getDiags().Report(OtherGD.getDecl()->getLocation(),
4535 diag::note_previous_definition);
4536 }
4537 }
4538
4539 if ((isa<llvm::Function>(Val: Entry) || isa<llvm::GlobalAlias>(Val: Entry)) &&
4540 (Entry->getValueType() == Ty)) {
4541 return Entry;
4542 }
4543
4544 // Make sure the result is of the correct type.
4545 // (If function is requested for a definition, we always need to create a new
4546 // function, not just return a bitcast.)
4547 if (!IsForDefinition)
4548 return Entry;
4549 }
4550
4551 // This function doesn't have a complete type (for example, the return
4552 // type is an incomplete struct). Use a fake type instead, and make
4553 // sure not to try to set attributes.
4554 bool IsIncompleteFunction = false;
4555
4556 llvm::FunctionType *FTy;
4557 if (isa<llvm::FunctionType>(Val: Ty)) {
4558 FTy = cast<llvm::FunctionType>(Val: Ty);
4559 } else {
4560 FTy = llvm::FunctionType::get(Result: VoidTy, isVarArg: false);
4561 IsIncompleteFunction = true;
4562 }
4563
4564 llvm::Function *F =
4565 llvm::Function::Create(Ty: FTy, Linkage: llvm::Function::ExternalLinkage,
4566 N: Entry ? StringRef() : MangledName, M: &getModule());
4567
4568 // Store the declaration associated with this function so it is potentially
4569 // updated by further declarations or definitions and emitted at the end.
4570 if (D && D->hasAttr<AnnotateAttr>())
4571 DeferredAnnotations[MangledName] = cast<ValueDecl>(Val: D);
4572
4573 // If we already created a function with the same mangled name (but different
4574 // type) before, take its name and add it to the list of functions to be
4575 // replaced with F at the end of CodeGen.
4576 //
4577 // This happens if there is a prototype for a function (e.g. "int f()") and
4578 // then a definition of a different type (e.g. "int f(int x)").
4579 if (Entry) {
4580 F->takeName(V: Entry);
4581
4582 // This might be an implementation of a function without a prototype, in
4583 // which case, try to do special replacement of calls which match the new
4584 // prototype. The really key thing here is that we also potentially drop
4585 // arguments from the call site so as to make a direct call, which makes the
4586 // inliner happier and suppresses a number of optimizer warnings (!) about
4587 // dropping arguments.
4588 if (!Entry->use_empty()) {
4589 ReplaceUsesOfNonProtoTypeWithRealFunction(Old: Entry, NewFn: F);
4590 Entry->removeDeadConstantUsers();
4591 }
4592
4593 addGlobalValReplacement(GV: Entry, C: F);
4594 }
4595
4596 assert(F->getName() == MangledName && "name was uniqued!");
4597 if (D)
4598 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4599 if (ExtraAttrs.hasFnAttrs()) {
4600 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4601 F->addFnAttrs(Attrs: B);
4602 }
4603
4604 if (!DontDefer) {
4605 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4606 // each other bottoming out with the base dtor. Therefore we emit non-base
4607 // dtors on usage, even if there is no dtor definition in the TU.
4608 if (isa_and_nonnull<CXXDestructorDecl>(Val: D) &&
4609 getCXXABI().useThunkForDtorVariant(Dtor: cast<CXXDestructorDecl>(Val: D),
4610 DT: GD.getDtorType()))
4611 addDeferredDeclToEmit(GD);
4612
4613 // This is the first use or definition of a mangled name. If there is a
4614 // deferred decl with this name, remember that we need to emit it at the end
4615 // of the file.
4616 auto DDI = DeferredDecls.find(Val: MangledName);
4617 if (DDI != DeferredDecls.end()) {
4618 // Move the potentially referenced deferred decl to the
4619 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4620 // don't need it anymore).
4621 addDeferredDeclToEmit(GD: DDI->second);
4622 DeferredDecls.erase(I: DDI);
4623
4624 // Otherwise, there are cases we have to worry about where we're
4625 // using a declaration for which we must emit a definition but where
4626 // we might not find a top-level definition:
4627 // - member functions defined inline in their classes
4628 // - friend functions defined inline in some class
4629 // - special member functions with implicit definitions
4630 // If we ever change our AST traversal to walk into class methods,
4631 // this will be unnecessary.
4632 //
4633 // We also don't emit a definition for a function if it's going to be an
4634 // entry in a vtable, unless it's already marked as used.
4635 } else if (getLangOpts().CPlusPlus && D) {
4636 // Look for a declaration that's lexically in a record.
4637 for (const auto *FD = cast<FunctionDecl>(Val: D)->getMostRecentDecl(); FD;
4638 FD = FD->getPreviousDecl()) {
4639 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4640 if (FD->doesThisDeclarationHaveABody()) {
4641 addDeferredDeclToEmit(GD: GD.getWithDecl(D: FD));
4642 break;
4643 }
4644 }
4645 }
4646 }
4647 }
4648
4649 // Make sure the result is of the requested type.
4650 if (!IsIncompleteFunction) {
4651 assert(F->getFunctionType() == Ty);
4652 return F;
4653 }
4654
4655 return F;
4656}
4657
4658/// GetAddrOfFunction - Return the address of the given function. If Ty is
4659/// non-null, then this function will use the specified type if it has to
4660/// create it (this occurs when we see a definition of the function).
4661llvm::Constant *
4662CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable,
4663 bool DontDefer,
4664 ForDefinition_t IsForDefinition) {
4665 // If there was no specific requested type, just convert it now.
4666 if (!Ty) {
4667 const auto *FD = cast<FunctionDecl>(Val: GD.getDecl());
4668 Ty = getTypes().ConvertType(T: FD->getType());
4669 }
4670
4671 // Devirtualized destructor calls may come through here instead of via
4672 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4673 // of the complete destructor when necessary.
4674 if (const auto *DD = dyn_cast<CXXDestructorDecl>(Val: GD.getDecl())) {
4675 if (getTarget().getCXXABI().isMicrosoft() &&
4676 GD.getDtorType() == Dtor_Complete &&
4677 DD->getParent()->getNumVBases() == 0)
4678 GD = GlobalDecl(DD, Dtor_Base);
4679 }
4680
4681 StringRef MangledName = getMangledName(GD);
4682 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4683 /*IsThunk=*/false, ExtraAttrs: llvm::AttributeList(),
4684 IsForDefinition);
4685 // Returns kernel handle for HIP kernel stub function.
4686 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4687 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4688 auto *Handle = getCUDARuntime().getKernelHandle(
4689 Stub: cast<llvm::Function>(Val: F->stripPointerCasts()), GD);
4690 if (IsForDefinition)
4691 return F;
4692 return Handle;
4693 }
4694 return F;
4695}
4696
4697llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4698 llvm::GlobalValue *F =
4699 cast<llvm::GlobalValue>(Val: GetAddrOfFunction(Decl)->stripPointerCasts());
4700
4701 return llvm::NoCFIValue::get(GV: F);
4702}
4703
4704static const FunctionDecl *
4705GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4706 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4707 DeclContext *DC = TranslationUnitDecl::castToDeclContext(D: TUDecl);
4708
4709 IdentifierInfo &CII = C.Idents.get(Name);
4710 for (const auto *Result : DC->lookup(Name: &CII))
4711 if (const auto *FD = dyn_cast<FunctionDecl>(Val: Result))
4712 return FD;
4713
4714 if (!C.getLangOpts().CPlusPlus)
4715 return nullptr;
4716
4717 // Demangle the premangled name from getTerminateFn()
4718 IdentifierInfo &CXXII =
4719 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4720 ? C.Idents.get(Name: "terminate")
4721 : C.Idents.get(Name);
4722
4723 for (const auto &N : {"__cxxabiv1", "std"}) {
4724 IdentifierInfo &NS = C.Idents.get(Name: N);
4725 for (const auto *Result : DC->lookup(Name: &NS)) {
4726 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Val: Result);
4727 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4728 for (const auto *Result : LSD->lookup(&NS))
4729 if ((ND = dyn_cast<NamespaceDecl>(Result)))
4730 break;
4731
4732 if (ND)
4733 for (const auto *Result : ND->lookup(&CXXII))
4734 if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4735 return FD;
4736 }
4737 }
4738
4739 return nullptr;
4740}
4741
4742/// CreateRuntimeFunction - Create a new runtime function with the specified
4743/// type and name.
4744llvm::FunctionCallee
4745CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4746 llvm::AttributeList ExtraAttrs, bool Local,
4747 bool AssumeConvergent) {
4748 if (AssumeConvergent) {
4749 ExtraAttrs =
4750 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4751 }
4752
4753 llvm::Constant *C =
4754 GetOrCreateLLVMFunction(MangledName: Name, Ty: FTy, GD: GlobalDecl(), /*ForVTable=*/false,
4755 /*DontDefer=*/false, /*IsThunk=*/false,
4756 ExtraAttrs);
4757
4758 if (auto *F = dyn_cast<llvm::Function>(Val: C)) {
4759 if (F->empty()) {
4760 F->setCallingConv(getRuntimeCC());
4761
4762 // In Windows Itanium environments, try to mark runtime functions
4763 // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4764 // will link their standard library statically or dynamically. Marking
4765 // functions imported when they are not imported can cause linker errors
4766 // and warnings.
4767 if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4768 !getCodeGenOpts().LTOVisibilityPublicStd) {
4769 const FunctionDecl *FD = GetRuntimeFunctionDecl(C&: Context, Name);
4770 if (!FD || FD->hasAttr<DLLImportAttr>()) {
4771 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4772 F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4773 }
4774 }
4775 setDSOLocal(F);
4776 }
4777 }
4778
4779 return {FTy, C};
4780}
4781
4782/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4783/// create and return an llvm GlobalVariable with the specified type and address
4784/// space. If there is something in the module with the specified name, return
4785/// it potentially bitcasted to the right type.
4786///
4787/// If D is non-null, it specifies a decl that correspond to this. This is used
4788/// to set the attributes on the global when it is first created.
4789///
4790/// If IsForDefinition is true, it is guaranteed that an actual global with
4791/// type Ty will be returned, not conversion of a variable with the same
4792/// mangled name but some other type.
4793llvm::Constant *
4794CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4795 LangAS AddrSpace, const VarDecl *D,
4796 ForDefinition_t IsForDefinition) {
4797 // Lookup the entry, lazily creating it if necessary.
4798 llvm::GlobalValue *Entry = GetGlobalValue(Name: MangledName);
4799 unsigned TargetAS = getContext().getTargetAddressSpace(AS: AddrSpace);
4800 if (Entry) {
4801 if (WeakRefReferences.erase(Ptr: Entry)) {
4802 if (D && !D->hasAttr<WeakAttr>())
4803 Entry->setLinkage(llvm::Function::ExternalLinkage);
4804 }
4805
4806 // Handle dropped DLL attributes.
4807 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4808 !shouldMapVisibilityToDLLExport(D))
4809 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4810
4811 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4812 getOpenMPRuntime().registerTargetGlobalVariable(VD: D, Addr: Entry);
4813
4814 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4815 return Entry;
4816
4817 // If there are two attempts to define the same mangled name, issue an
4818 // error.
4819 if (IsForDefinition && !Entry->isDeclaration()) {
4820 GlobalDecl OtherGD;
4821 const VarDecl *OtherD;
4822
4823 // Check that D is not yet in DiagnosedConflictingDefinitions is required
4824 // to make sure that we issue an error only once.
4825 if (D && lookupRepresentativeDecl(MangledName, Result&: OtherGD) &&
4826 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4827 (OtherD = dyn_cast<VarDecl>(Val: OtherGD.getDecl())) &&
4828 OtherD->hasInit() &&
4829 DiagnosedConflictingDefinitions.insert(V: D).second) {
4830 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4831 << MangledName;
4832 getDiags().Report(OtherGD.getDecl()->getLocation(),
4833 diag::note_previous_definition);
4834 }
4835 }
4836
4837 // Make sure the result is of the correct type.
4838 if (Entry->getType()->getAddressSpace() != TargetAS)
4839 return llvm::ConstantExpr::getAddrSpaceCast(
4840 C: Entry, Ty: llvm::PointerType::get(C&: Ty->getContext(), AddressSpace: TargetAS));
4841
4842 // (If global is requested for a definition, we always need to create a new
4843 // global, not just return a bitcast.)
4844 if (!IsForDefinition)
4845 return Entry;
4846 }
4847
4848 auto DAddrSpace = GetGlobalVarAddressSpace(D);
4849
4850 auto *GV = new llvm::GlobalVariable(
4851 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4852 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4853 getContext().getTargetAddressSpace(AS: DAddrSpace));
4854
4855 // If we already created a global with the same mangled name (but different
4856 // type) before, take its name and remove it from its parent.
4857 if (Entry) {
4858 GV->takeName(V: Entry);
4859
4860 if (!Entry->use_empty()) {
4861 Entry->replaceAllUsesWith(V: GV);
4862 }
4863
4864 Entry->eraseFromParent();
4865 }
4866
4867 // This is the first use or definition of a mangled name. If there is a
4868 // deferred decl with this name, remember that we need to emit it at the end
4869 // of the file.
4870 auto DDI = DeferredDecls.find(Val: MangledName);
4871 if (DDI != DeferredDecls.end()) {
4872 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4873 // list, and remove it from DeferredDecls (since we don't need it anymore).
4874 addDeferredDeclToEmit(GD: DDI->second);
4875 DeferredDecls.erase(I: DDI);
4876 }
4877
4878 // Handle things which are present even on external declarations.
4879 if (D) {
4880 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4881 getOpenMPRuntime().registerTargetGlobalVariable(VD: D, Addr: GV);
4882
4883 // FIXME: This code is overly simple and should be merged with other global
4884 // handling.
4885 GV->setConstant(D->getType().isConstantStorage(getContext(), false, false));
4886
4887 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4888
4889 setLinkageForGV(GV, D);
4890
4891 if (D->getTLSKind()) {
4892 if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4893 CXXThreadLocals.push_back(x: D);
4894 setTLSMode(GV, D: *D);
4895 }
4896
4897 setGVProperties(GV, GD: D);
4898
4899 // If required by the ABI, treat declarations of static data members with
4900 // inline initializers as definitions.
4901 if (getContext().isMSStaticDataMemberInlineDefinition(VD: D)) {
4902 EmitGlobalVarDefinition(D);
4903 }
4904
4905 // Emit section information for extern variables.
4906 if (D->hasExternalStorage()) {
4907 if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4908 GV->setSection(SA->getName());
4909 }
4910
4911 // Handle XCore specific ABI requirements.
4912 if (getTriple().getArch() == llvm::Triple::xcore &&
4913 D->getLanguageLinkage() == CLanguageLinkage &&
4914 D->getType().isConstant(Context) &&
4915 isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4916 GV->setSection(".cp.rodata");
4917
4918 // Handle code model attribute
4919 if (const auto *CMA = D->getAttr<CodeModelAttr>())
4920 GV->setCodeModel(CMA->getModel());
4921
4922 // Check if we a have a const declaration with an initializer, we may be
4923 // able to emit it as available_externally to expose it's value to the
4924 // optimizer.
4925 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4926 D->getType().isConstQualified() && !GV->hasInitializer() &&
4927 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4928 const auto *Record =
4929 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4930 bool HasMutableFields = Record && Record->hasMutableFields();
4931 if (!HasMutableFields) {
4932 const VarDecl *InitDecl;
4933 const Expr *InitExpr = D->getAnyInitializer(D&: InitDecl);
4934 if (InitExpr) {
4935 ConstantEmitter emitter(*this);
4936 llvm::Constant *Init = emitter.tryEmitForInitializer(D: *InitDecl);
4937 if (Init) {
4938 auto *InitType = Init->getType();
4939 if (GV->getValueType() != InitType) {
4940 // The type of the initializer does not match the definition.
4941 // This happens when an initializer has a different type from
4942 // the type of the global (because of padding at the end of a
4943 // structure for instance).
4944 GV->setName(StringRef());
4945 // Make a new global with the correct type, this is now guaranteed
4946 // to work.
4947 auto *NewGV = cast<llvm::GlobalVariable>(
4948 Val: GetAddrOfGlobalVar(D, Ty: InitType, IsForDefinition)
4949 ->stripPointerCasts());
4950
4951 // Erase the old global, since it is no longer used.
4952 GV->eraseFromParent();
4953 GV = NewGV;
4954 } else {
4955 GV->setInitializer(Init);
4956 GV->setConstant(true);
4957 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4958 }
4959 emitter.finalize(global: GV);
4960 }
4961 }
4962 }
4963 }
4964 }
4965
4966 if (D &&
4967 D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) {
4968 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4969 // External HIP managed variables needed to be recorded for transformation
4970 // in both device and host compilations.
4971 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4972 D->hasExternalStorage())
4973 getCUDARuntime().handleVarRegistration(VD: D, Var&: *GV);
4974 }
4975
4976 if (D)
4977 SanitizerMD->reportGlobal(GV, D: *D);
4978
4979 LangAS ExpectedAS =
4980 D ? D->getType().getAddressSpace()
4981 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4982 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4983 if (DAddrSpace != ExpectedAS) {
4984 return getTargetCodeGenInfo().performAddrSpaceCast(
4985 CGM&: *this, V: GV, SrcAddr: DAddrSpace, DestAddr: ExpectedAS,
4986 DestTy: llvm::PointerType::get(C&: getLLVMContext(), AddressSpace: TargetAS));
4987 }
4988
4989 return GV;
4990}
4991
4992llvm::Constant *
4993CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4994 const Decl *D = GD.getDecl();
4995
4996 if (isa<CXXConstructorDecl>(Val: D) || isa<CXXDestructorDecl>(Val: D))
4997 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4998 /*DontDefer=*/false, IsForDefinition);
4999
5000 if (isa<CXXMethodDecl>(Val: D)) {
5001 auto FInfo =
5002 &getTypes().arrangeCXXMethodDeclaration(MD: cast<CXXMethodDecl>(Val: D));
5003 auto Ty = getTypes().GetFunctionType(Info: *FInfo);
5004 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5005 IsForDefinition);
5006 }
5007
5008 if (isa<FunctionDecl>(Val: D)) {
5009 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5010 llvm::FunctionType *Ty = getTypes().GetFunctionType(Info: FI);
5011 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5012 IsForDefinition);
5013 }
5014
5015 return GetAddrOfGlobalVar(D: cast<VarDecl>(Val: D), /*Ty=*/nullptr, IsForDefinition);
5016}
5017
5018llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
5019 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
5020 llvm::Align Alignment) {
5021 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
5022 llvm::GlobalVariable *OldGV = nullptr;
5023
5024 if (GV) {
5025 // Check if the variable has the right type.
5026 if (GV->getValueType() == Ty)
5027 return GV;
5028
5029 // Because C++ name mangling, the only way we can end up with an already
5030 // existing global with the same name is if it has been declared extern "C".
5031 assert(GV->isDeclaration() && "Declaration has wrong type!");
5032 OldGV = GV;
5033 }
5034
5035 // Create a new variable.
5036 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
5037 Linkage, nullptr, Name);
5038
5039 if (OldGV) {
5040 // Replace occurrences of the old variable if needed.
5041 GV->takeName(V: OldGV);
5042
5043 if (!OldGV->use_empty()) {
5044 OldGV->replaceAllUsesWith(V: GV);
5045 }
5046
5047 OldGV->eraseFromParent();
5048 }
5049
5050 if (supportsCOMDAT() && GV->isWeakForLinker() &&
5051 !GV->hasAvailableExternallyLinkage())
5052 GV->setComdat(TheModule.getOrInsertComdat(Name: GV->getName()));
5053
5054 GV->setAlignment(Alignment);
5055
5056 return GV;
5057}
5058
5059/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
5060/// given global variable. If Ty is non-null and if the global doesn't exist,
5061/// then it will be created with the specified type instead of whatever the
5062/// normal requested type would be. If IsForDefinition is true, it is guaranteed
5063/// that an actual global with type Ty will be returned, not conversion of a
5064/// variable with the same mangled name but some other type.
5065llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
5066 llvm::Type *Ty,
5067 ForDefinition_t IsForDefinition) {
5068 assert(D->hasGlobalStorage() && "Not a global variable");
5069 QualType ASTTy = D->getType();
5070 if (!Ty)
5071 Ty = getTypes().ConvertTypeForMem(T: ASTTy);
5072
5073 StringRef MangledName = getMangledName(GD: D);
5074 return GetOrCreateLLVMGlobal(MangledName, Ty, AddrSpace: ASTTy.getAddressSpace(), D,
5075 IsForDefinition);
5076}
5077
5078/// CreateRuntimeVariable - Create a new runtime global variable with the
5079/// specified type and name.
5080llvm::Constant *
5081CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
5082 StringRef Name) {
5083 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
5084 : LangAS::Default;
5085 auto *Ret = GetOrCreateLLVMGlobal(MangledName: Name, Ty, AddrSpace, D: nullptr);
5086 setDSOLocal(cast<llvm::GlobalValue>(Val: Ret->stripPointerCasts()));
5087 return Ret;
5088}
5089
5090void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
5091 assert(!D->getInit() && "Cannot emit definite definitions here!");
5092
5093 StringRef MangledName = getMangledName(GD: D);
5094 llvm::GlobalValue *GV = GetGlobalValue(Name: MangledName);
5095
5096 // We already have a definition, not declaration, with the same mangled name.
5097 // Emitting of declaration is not required (and actually overwrites emitted
5098 // definition).
5099 if (GV && !GV->isDeclaration())
5100 return;
5101
5102 // If we have not seen a reference to this variable yet, place it into the
5103 // deferred declarations table to be emitted if needed later.
5104 if (!MustBeEmitted(D) && !GV) {
5105 DeferredDecls[MangledName] = D;
5106 return;
5107 }
5108
5109 // The tentative definition is the only definition.
5110 EmitGlobalVarDefinition(D);
5111}
5112
5113void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
5114 EmitExternalVarDeclaration(D);
5115}
5116
5117CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
5118 return Context.toCharUnitsFromBits(
5119 BitSize: getDataLayout().getTypeStoreSizeInBits(Ty));
5120}
5121
5122LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
5123 if (LangOpts.OpenCL) {
5124 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
5125 assert(AS == LangAS::opencl_global ||
5126 AS == LangAS::opencl_global_device ||
5127 AS == LangAS::opencl_global_host ||
5128 AS == LangAS::opencl_constant ||
5129 AS == LangAS::opencl_local ||
5130 AS >= LangAS::FirstTargetAddressSpace);
5131 return AS;
5132 }
5133
5134 if (LangOpts.SYCLIsDevice &&
5135 (!D || D->getType().getAddressSpace() == LangAS::Default))
5136 return LangAS::sycl_global;
5137
5138 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
5139 if (D) {
5140 if (D->hasAttr<CUDAConstantAttr>())
5141 return LangAS::cuda_constant;
5142 if (D->hasAttr<CUDASharedAttr>())
5143 return LangAS::cuda_shared;
5144 if (D->hasAttr<CUDADeviceAttr>())
5145 return LangAS::cuda_device;
5146 if (D->getType().isConstQualified())
5147 return LangAS::cuda_constant;
5148 }
5149 return LangAS::cuda_device;
5150 }
5151
5152 if (LangOpts.OpenMP) {
5153 LangAS AS;
5154 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(VD: D, AS))
5155 return AS;
5156 }
5157 return getTargetCodeGenInfo().getGlobalVarAddressSpace(CGM&: *this, D);
5158}
5159
5160LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
5161 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
5162 if (LangOpts.OpenCL)
5163 return LangAS::opencl_constant;
5164 if (LangOpts.SYCLIsDevice)
5165 return LangAS::sycl_global;
5166 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
5167 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
5168 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
5169 // with OpVariable instructions with Generic storage class which is not
5170 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
5171 // UniformConstant storage class is not viable as pointers to it may not be
5172 // casted to Generic pointers which are used to model HIP's "flat" pointers.
5173 return LangAS::cuda_device;
5174 if (auto AS = getTarget().getConstantAddressSpace())
5175 return *AS;
5176 return LangAS::Default;
5177}
5178
5179// In address space agnostic languages, string literals are in default address
5180// space in AST. However, certain targets (e.g. amdgcn) request them to be
5181// emitted in constant address space in LLVM IR. To be consistent with other
5182// parts of AST, string literal global variables in constant address space
5183// need to be casted to default address space before being put into address
5184// map and referenced by other part of CodeGen.
5185// In OpenCL, string literals are in constant address space in AST, therefore
5186// they should not be casted to default address space.
5187static llvm::Constant *
5188castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
5189 llvm::GlobalVariable *GV) {
5190 llvm::Constant *Cast = GV;
5191 if (!CGM.getLangOpts().OpenCL) {
5192 auto AS = CGM.GetGlobalConstantAddressSpace();
5193 if (AS != LangAS::Default)
5194 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
5195 CGM, V: GV, SrcAddr: AS, DestAddr: LangAS::Default,
5196 DestTy: llvm::PointerType::get(
5197 C&: CGM.getLLVMContext(),
5198 AddressSpace: CGM.getContext().getTargetAddressSpace(AS: LangAS::Default)));
5199 }
5200 return Cast;
5201}
5202
5203template<typename SomeDecl>
5204void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
5205 llvm::GlobalValue *GV) {
5206 if (!getLangOpts().CPlusPlus)
5207 return;
5208
5209 // Must have 'used' attribute, or else inline assembly can't rely on
5210 // the name existing.
5211 if (!D->template hasAttr<UsedAttr>())
5212 return;
5213
5214 // Must have internal linkage and an ordinary name.
5215 if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal)
5216 return;
5217
5218 // Must be in an extern "C" context. Entities declared directly within
5219 // a record are not extern "C" even if the record is in such a context.
5220 const SomeDecl *First = D->getFirstDecl();
5221 if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
5222 return;
5223
5224 // OK, this is an internal linkage entity inside an extern "C" linkage
5225 // specification. Make a note of that so we can give it the "expected"
5226 // mangled name if nothing else is using that name.
5227 std::pair<StaticExternCMap::iterator, bool> R =
5228 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
5229
5230 // If we have multiple internal linkage entities with the same name
5231 // in extern "C" regions, none of them gets that name.
5232 if (!R.second)
5233 R.first->second = nullptr;
5234}
5235
5236static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
5237 if (!CGM.supportsCOMDAT())
5238 return false;
5239
5240 if (D.hasAttr<SelectAnyAttr>())
5241 return true;
5242
5243 GVALinkage Linkage;
5244 if (auto *VD = dyn_cast<VarDecl>(Val: &D))
5245 Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
5246 else
5247 Linkage = CGM.getContext().GetGVALinkageForFunction(FD: cast<FunctionDecl>(Val: &D));
5248
5249 switch (Linkage) {
5250 case GVA_Internal:
5251 case GVA_AvailableExternally:
5252 case GVA_StrongExternal:
5253 return false;
5254 case GVA_DiscardableODR:
5255 case GVA_StrongODR:
5256 return true;
5257 }
5258 llvm_unreachable("No such linkage");
5259}
5260
5261bool CodeGenModule::supportsCOMDAT() const {
5262 return getTriple().supportsCOMDAT();
5263}
5264
5265void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
5266 llvm::GlobalObject &GO) {
5267 if (!shouldBeInCOMDAT(CGM&: *this, D))
5268 return;
5269 GO.setComdat(TheModule.getOrInsertComdat(Name: GO.getName()));
5270}
5271
5272/// Pass IsTentative as true if you want to create a tentative definition.
5273void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
5274 bool IsTentative) {
5275 // OpenCL global variables of sampler type are translated to function calls,
5276 // therefore no need to be translated.
5277 QualType ASTTy = D->getType();
5278 if (getLangOpts().OpenCL && ASTTy->isSamplerT())
5279 return;
5280
5281 // If this is OpenMP device, check if it is legal to emit this global
5282 // normally.
5283 if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime &&
5284 OpenMPRuntime->emitTargetGlobalVariable(GD: D))
5285 return;
5286
5287 llvm::TrackingVH<llvm::Constant> Init;
5288 bool NeedsGlobalCtor = false;
5289 // Whether the definition of the variable is available externally.
5290 // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
5291 // since this is the job for its original source.
5292 bool IsDefinitionAvailableExternally =
5293 getContext().GetGVALinkageForVariable(VD: D) == GVA_AvailableExternally;
5294 bool NeedsGlobalDtor =
5295 !IsDefinitionAvailableExternally &&
5296 D->needsDestruction(Ctx: getContext()) == QualType::DK_cxx_destructor;
5297
5298 const VarDecl *InitDecl;
5299 const Expr *InitExpr = D->getAnyInitializer(D&: InitDecl);
5300
5301 std::optional<ConstantEmitter> emitter;
5302
5303 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
5304 // as part of their declaration." Sema has already checked for
5305 // error cases, so we just need to set Init to UndefValue.
5306 bool IsCUDASharedVar =
5307 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
5308 // Shadows of initialized device-side global variables are also left
5309 // undefined.
5310 // Managed Variables should be initialized on both host side and device side.
5311 bool IsCUDAShadowVar =
5312 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5313 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
5314 D->hasAttr<CUDASharedAttr>());
5315 bool IsCUDADeviceShadowVar =
5316 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5317 (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5318 D->getType()->isCUDADeviceBuiltinTextureType());
5319 if (getLangOpts().CUDA &&
5320 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
5321 Init = llvm::UndefValue::get(T: getTypes().ConvertTypeForMem(T: ASTTy));
5322 else if (D->hasAttr<LoaderUninitializedAttr>())
5323 Init = llvm::UndefValue::get(T: getTypes().ConvertTypeForMem(T: ASTTy));
5324 else if (!InitExpr) {
5325 // This is a tentative definition; tentative definitions are
5326 // implicitly initialized with { 0 }.
5327 //
5328 // Note that tentative definitions are only emitted at the end of
5329 // a translation unit, so they should never have incomplete
5330 // type. In addition, EmitTentativeDefinition makes sure that we
5331 // never attempt to emit a tentative definition if a real one
5332 // exists. A use may still exists, however, so we still may need
5333 // to do a RAUW.
5334 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
5335 Init = EmitNullConstant(T: D->getType());
5336 } else {
5337 initializedGlobalDecl = GlobalDecl(D);
5338 emitter.emplace(args&: *this);
5339 llvm::Constant *Initializer = emitter->tryEmitForInitializer(D: *InitDecl);
5340 if (!Initializer) {
5341 QualType T = InitExpr->getType();
5342 if (D->getType()->isReferenceType())
5343 T = D->getType();
5344
5345 if (getLangOpts().CPlusPlus) {
5346 if (InitDecl->hasFlexibleArrayInit(Ctx: getContext()))
5347 ErrorUnsupported(D, "flexible array initializer");
5348 Init = EmitNullConstant(T);
5349
5350 if (!IsDefinitionAvailableExternally)
5351 NeedsGlobalCtor = true;
5352 } else {
5353 ErrorUnsupported(D, "static initializer");
5354 Init = llvm::UndefValue::get(T: getTypes().ConvertType(T));
5355 }
5356 } else {
5357 Init = Initializer;
5358 // We don't need an initializer, so remove the entry for the delayed
5359 // initializer position (just in case this entry was delayed) if we
5360 // also don't need to register a destructor.
5361 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
5362 DelayedCXXInitPosition.erase(D);
5363
5364#ifndef NDEBUG
5365 CharUnits VarSize = getContext().getTypeSizeInChars(T: ASTTy) +
5366 InitDecl->getFlexibleArrayInitChars(Ctx: getContext());
5367 CharUnits CstSize = CharUnits::fromQuantity(
5368 Quantity: getDataLayout().getTypeAllocSize(Ty: Init->getType()));
5369 assert(VarSize == CstSize && "Emitted constant has unexpected size");
5370#endif
5371 }
5372 }
5373
5374 llvm::Type* InitType = Init->getType();
5375 llvm::Constant *Entry =
5376 GetAddrOfGlobalVar(D, Ty: InitType, IsForDefinition: ForDefinition_t(!IsTentative));
5377
5378 // Strip off pointer casts if we got them.
5379 Entry = Entry->stripPointerCasts();
5380
5381 // Entry is now either a Function or GlobalVariable.
5382 auto *GV = dyn_cast<llvm::GlobalVariable>(Val: Entry);
5383
5384 // We have a definition after a declaration with the wrong type.
5385 // We must make a new GlobalVariable* and update everything that used OldGV
5386 // (a declaration or tentative definition) with the new GlobalVariable*
5387 // (which will be a definition).
5388 //
5389 // This happens if there is a prototype for a global (e.g.
5390 // "extern int x[];") and then a definition of a different type (e.g.
5391 // "int x[10];"). This also happens when an initializer has a different type
5392 // from the type of the global (this happens with unions).
5393 if (!GV || GV->getValueType() != InitType ||
5394 GV->getType()->getAddressSpace() !=
5395 getContext().getTargetAddressSpace(AS: GetGlobalVarAddressSpace(D))) {
5396
5397 // Move the old entry aside so that we'll create a new one.
5398 Entry->setName(StringRef());
5399
5400 // Make a new global with the correct type, this is now guaranteed to work.
5401 GV = cast<llvm::GlobalVariable>(
5402 Val: GetAddrOfGlobalVar(D, Ty: InitType, IsForDefinition: ForDefinition_t(!IsTentative))
5403 ->stripPointerCasts());
5404
5405 // Replace all uses of the old global with the new global
5406 llvm::Constant *NewPtrForOldDecl =
5407 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(C: GV,
5408 Ty: Entry->getType());
5409 Entry->replaceAllUsesWith(V: NewPtrForOldDecl);
5410
5411 // Erase the old global, since it is no longer used.
5412 cast<llvm::GlobalValue>(Val: Entry)->eraseFromParent();
5413 }
5414
5415 MaybeHandleStaticInExternC(D, GV);
5416
5417 if (D->hasAttr<AnnotateAttr>())
5418 AddGlobalAnnotations(D, GV);
5419
5420 // Set the llvm linkage type as appropriate.
5421 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD: D);
5422
5423 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
5424 // the device. [...]"
5425 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
5426 // __device__, declares a variable that: [...]
5427 // Is accessible from all the threads within the grid and from the host
5428 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
5429 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
5430 if (LangOpts.CUDA) {
5431 if (LangOpts.CUDAIsDevice) {
5432 if (Linkage != llvm::GlobalValue::InternalLinkage &&
5433 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
5434 D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5435 D->getType()->isCUDADeviceBuiltinTextureType()))
5436 GV->setExternallyInitialized(true);
5437 } else {
5438 getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
5439 }
5440 getCUDARuntime().handleVarRegistration(VD: D, Var&: *GV);
5441 }
5442
5443 GV->setInitializer(Init);
5444 if (emitter)
5445 emitter->finalize(global: GV);
5446
5447 // If it is safe to mark the global 'constant', do so now.
5448 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
5449 D->getType().isConstantStorage(getContext(), true, true));
5450
5451 // If it is in a read-only section, mark it 'constant'.
5452 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
5453 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
5454 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
5455 GV->setConstant(true);
5456 }
5457
5458 CharUnits AlignVal = getContext().getDeclAlign(D);
5459 // Check for alignment specifed in an 'omp allocate' directive.
5460 if (std::optional<CharUnits> AlignValFromAllocate =
5461 getOMPAllocateAlignment(VD: D))
5462 AlignVal = *AlignValFromAllocate;
5463 GV->setAlignment(AlignVal.getAsAlign());
5464
5465 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5466 // function is only defined alongside the variable, not also alongside
5467 // callers. Normally, all accesses to a thread_local go through the
5468 // thread-wrapper in order to ensure initialization has occurred, underlying
5469 // variable will never be used other than the thread-wrapper, so it can be
5470 // converted to internal linkage.
5471 //
5472 // However, if the variable has the 'constinit' attribute, it _can_ be
5473 // referenced directly, without calling the thread-wrapper, so the linkage
5474 // must not be changed.
5475 //
5476 // Additionally, if the variable isn't plain external linkage, e.g. if it's
5477 // weak or linkonce, the de-duplication semantics are important to preserve,
5478 // so we don't change the linkage.
5479 if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
5480 Linkage == llvm::GlobalValue::ExternalLinkage &&
5481 Context.getTargetInfo().getTriple().isOSDarwin() &&
5482 !D->hasAttr<ConstInitAttr>())
5483 Linkage = llvm::GlobalValue::InternalLinkage;
5484
5485 GV->setLinkage(Linkage);
5486 if (D->hasAttr<DLLImportAttr>())
5487 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
5488 else if (D->hasAttr<DLLExportAttr>())
5489 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
5490 else
5491 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5492
5493 if (Linkage == llvm::GlobalVariable::CommonLinkage) {
5494 // common vars aren't constant even if declared const.
5495 GV->setConstant(false);
5496 // Tentative definition of global variables may be initialized with
5497 // non-zero null pointers. In this case they should have weak linkage
5498 // since common linkage must have zero initializer and must not have
5499 // explicit section therefore cannot have non-zero initial value.
5500 if (!GV->getInitializer()->isNullValue())
5501 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
5502 }
5503
5504 setNonAliasAttributes(GD: D, GO: GV);
5505
5506 if (D->getTLSKind() && !GV->isThreadLocal()) {
5507 if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5508 CXXThreadLocals.push_back(x: D);
5509 setTLSMode(GV, D: *D);
5510 }
5511
5512 maybeSetTrivialComdat(*D, *GV);
5513
5514 // Emit the initializer function if necessary.
5515 if (NeedsGlobalCtor || NeedsGlobalDtor)
5516 EmitCXXGlobalVarDeclInitFunc(D, Addr: GV, PerformInit: NeedsGlobalCtor);
5517
5518 SanitizerMD->reportGlobal(GV, D: *D, IsDynInit: NeedsGlobalCtor);
5519
5520 // Emit global variable debug information.
5521 if (CGDebugInfo *DI = getModuleDebugInfo())
5522 if (getCodeGenOpts().hasReducedDebugInfo())
5523 DI->EmitGlobalVariable(GV, Decl: D);
5524}
5525
5526void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5527 if (CGDebugInfo *DI = getModuleDebugInfo())
5528 if (getCodeGenOpts().hasReducedDebugInfo()) {
5529 QualType ASTTy = D->getType();
5530 llvm::Type *Ty = getTypes().ConvertTypeForMem(T: D->getType());
5531 llvm::Constant *GV =
5532 GetOrCreateLLVMGlobal(MangledName: D->getName(), Ty, AddrSpace: ASTTy.getAddressSpace(), D);
5533 DI->EmitExternalVariable(
5534 GV: cast<llvm::GlobalVariable>(Val: GV->stripPointerCasts()), Decl: D);
5535 }
5536}
5537
5538static bool isVarDeclStrongDefinition(const ASTContext &Context,
5539 CodeGenModule &CGM, const VarDecl *D,
5540 bool NoCommon) {
5541 // Don't give variables common linkage if -fno-common was specified unless it
5542 // was overridden by a NoCommon attribute.
5543 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5544 return true;
5545
5546 // C11 6.9.2/2:
5547 // A declaration of an identifier for an object that has file scope without
5548 // an initializer, and without a storage-class specifier or with the
5549 // storage-class specifier static, constitutes a tentative definition.
5550 if (D->getInit() || D->hasExternalStorage())
5551 return true;
5552
5553 // A variable cannot be both common and exist in a section.
5554 if (D->hasAttr<SectionAttr>())
5555 return true;
5556
5557 // A variable cannot be both common and exist in a section.
5558 // We don't try to determine which is the right section in the front-end.
5559 // If no specialized section name is applicable, it will resort to default.
5560 if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5561 D->hasAttr<PragmaClangDataSectionAttr>() ||
5562 D->hasAttr<PragmaClangRelroSectionAttr>() ||
5563 D->hasAttr<PragmaClangRodataSectionAttr>())
5564 return true;
5565
5566 // Thread local vars aren't considered common linkage.
5567 if (D->getTLSKind())
5568 return true;
5569
5570 // Tentative definitions marked with WeakImportAttr are true definitions.
5571 if (D->hasAttr<WeakImportAttr>())
5572 return true;
5573
5574 // A variable cannot be both common and exist in a comdat.
5575 if (shouldBeInCOMDAT(CGM, *D))
5576 return true;
5577
5578 // Declarations with a required alignment do not have common linkage in MSVC
5579 // mode.
5580 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5581 if (D->hasAttr<AlignedAttr>())
5582 return true;
5583 QualType VarType = D->getType();
5584 if (Context.isAlignmentRequired(T: VarType))
5585 return true;
5586
5587 if (const auto *RT = VarType->getAs<RecordType>()) {
5588 const RecordDecl *RD = RT->getDecl();
5589 for (const FieldDecl *FD : RD->fields()) {
5590 if (FD->isBitField())
5591 continue;
5592 if (FD->hasAttr<AlignedAttr>())
5593 return true;
5594 if (Context.isAlignmentRequired(FD->getType()))
5595 return true;
5596 }
5597 }
5598 }
5599
5600 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5601 // common symbols, so symbols with greater alignment requirements cannot be
5602 // common.
5603 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5604 // alignments for common symbols via the aligncomm directive, so this
5605 // restriction only applies to MSVC environments.
5606 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5607 Context.getTypeAlignIfKnown(T: D->getType()) >
5608 Context.toBits(CharSize: CharUnits::fromQuantity(Quantity: 32)))
5609 return true;
5610
5611 return false;
5612}
5613
5614llvm::GlobalValue::LinkageTypes
5615CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D,
5616 GVALinkage Linkage) {
5617 if (Linkage == GVA_Internal)
5618 return llvm::Function::InternalLinkage;
5619
5620 if (D->hasAttr<WeakAttr>())
5621 return llvm::GlobalVariable::WeakAnyLinkage;
5622
5623 if (const auto *FD = D->getAsFunction())
5624 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5625 return llvm::GlobalVariable::LinkOnceAnyLinkage;
5626
5627 // We are guaranteed to have a strong definition somewhere else,
5628 // so we can use available_externally linkage.
5629 if (Linkage == GVA_AvailableExternally)
5630 return llvm::GlobalValue::AvailableExternallyLinkage;
5631
5632 // Note that Apple's kernel linker doesn't support symbol
5633 // coalescing, so we need to avoid linkonce and weak linkages there.
5634 // Normally, this means we just map to internal, but for explicit
5635 // instantiations we'll map to external.
5636
5637 // In C++, the compiler has to emit a definition in every translation unit
5638 // that references the function. We should use linkonce_odr because
5639 // a) if all references in this translation unit are optimized away, we
5640 // don't need to codegen it. b) if the function persists, it needs to be
5641 // merged with other definitions. c) C++ has the ODR, so we know the
5642 // definition is dependable.
5643 if (Linkage == GVA_DiscardableODR)
5644 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5645 : llvm::Function::InternalLinkage;
5646
5647 // An explicit instantiation of a template has weak linkage, since
5648 // explicit instantiations can occur in multiple translation units
5649 // and must all be equivalent. However, we are not allowed to
5650 // throw away these explicit instantiations.
5651 //
5652 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5653 // so say that CUDA templates are either external (for kernels) or internal.
5654 // This lets llvm perform aggressive inter-procedural optimizations. For
5655 // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5656 // therefore we need to follow the normal linkage paradigm.
5657 if (Linkage == GVA_StrongODR) {
5658 if (getLangOpts().AppleKext)
5659 return llvm::Function::ExternalLinkage;
5660 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5661 !getLangOpts().GPURelocatableDeviceCode)
5662 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5663 : llvm::Function::InternalLinkage;
5664 return llvm::Function::WeakODRLinkage;
5665 }
5666
5667 // C++ doesn't have tentative definitions and thus cannot have common
5668 // linkage.
5669 if (!getLangOpts().CPlusPlus && isa<VarDecl>(Val: D) &&
5670 !isVarDeclStrongDefinition(Context, CGM&: *this, D: cast<VarDecl>(Val: D),
5671 NoCommon: CodeGenOpts.NoCommon))
5672 return llvm::GlobalVariable::CommonLinkage;
5673
5674 // selectany symbols are externally visible, so use weak instead of
5675 // linkonce. MSVC optimizes away references to const selectany globals, so
5676 // all definitions should be the same and ODR linkage should be used.
5677 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5678 if (D->hasAttr<SelectAnyAttr>())
5679 return llvm::GlobalVariable::WeakODRLinkage;
5680
5681 // Otherwise, we have strong external linkage.
5682 assert(Linkage == GVA_StrongExternal);
5683 return llvm::GlobalVariable::ExternalLinkage;
5684}
5685
5686llvm::GlobalValue::LinkageTypes
5687CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) {
5688 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5689 return getLLVMLinkageForDeclarator(VD, Linkage);
5690}
5691
5692/// Replace the uses of a function that was declared with a non-proto type.
5693/// We want to silently drop extra arguments from call sites
5694static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5695 llvm::Function *newFn) {
5696 // Fast path.
5697 if (old->use_empty()) return;
5698
5699 llvm::Type *newRetTy = newFn->getReturnType();
5700 SmallVector<llvm::Value*, 4> newArgs;
5701
5702 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5703 ui != ue; ) {
5704 llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
5705 llvm::User *user = use->getUser();
5706
5707 // Recognize and replace uses of bitcasts. Most calls to
5708 // unprototyped functions will use bitcasts.
5709 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(Val: user)) {
5710 if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5711 replaceUsesOfNonProtoConstant(old: bitcast, newFn);
5712 continue;
5713 }
5714
5715 // Recognize calls to the function.
5716 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(Val: user);
5717 if (!callSite) continue;
5718 if (!callSite->isCallee(U: &*use))
5719 continue;
5720
5721 // If the return types don't match exactly, then we can't
5722 // transform this call unless it's dead.
5723 if (callSite->getType() != newRetTy && !callSite->use_empty())
5724 continue;
5725
5726 // Get the call site's attribute list.
5727 SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5728 llvm::AttributeList oldAttrs = callSite->getAttributes();
5729
5730 // If the function was passed too few arguments, don't transform.
5731 unsigned newNumArgs = newFn->arg_size();
5732 if (callSite->arg_size() < newNumArgs)
5733 continue;
5734
5735 // If extra arguments were passed, we silently drop them.
5736 // If any of the types mismatch, we don't transform.
5737 unsigned argNo = 0;
5738 bool dontTransform = false;
5739 for (llvm::Argument &A : newFn->args()) {
5740 if (callSite->getArgOperand(i: argNo)->getType() != A.getType()) {
5741 dontTransform = true;
5742 break;
5743 }
5744
5745 // Add any parameter attributes.
5746 newArgAttrs.push_back(Elt: oldAttrs.getParamAttrs(ArgNo: argNo));
5747 argNo++;
5748 }
5749 if (dontTransform)
5750 continue;
5751
5752 // Okay, we can transform this. Create the new call instruction and copy
5753 // over the required information.
5754 newArgs.append(in_start: callSite->arg_begin(), in_end: callSite->arg_begin() + argNo);
5755
5756 // Copy over any operand bundles.
5757 SmallVector<llvm::OperandBundleDef, 1> newBundles;
5758 callSite->getOperandBundlesAsDefs(Defs&: newBundles);
5759
5760 llvm::CallBase *newCall;
5761 if (isa<llvm::CallInst>(Val: callSite)) {
5762 newCall =
5763 llvm::CallInst::Create(Func: newFn, Args: newArgs, Bundles: newBundles, NameStr: "", InsertBefore: callSite);
5764 } else {
5765 auto *oldInvoke = cast<llvm::InvokeInst>(Val: callSite);
5766 newCall = llvm::InvokeInst::Create(Func: newFn, IfNormal: oldInvoke->getNormalDest(),
5767 IfException: oldInvoke->getUnwindDest(), Args: newArgs,
5768 Bundles: newBundles, NameStr: "", InsertBefore: callSite);
5769 }
5770 newArgs.clear(); // for the next iteration
5771
5772 if (!newCall->getType()->isVoidTy())
5773 newCall->takeName(V: callSite);
5774 newCall->setAttributes(
5775 llvm::AttributeList::get(C&: newFn->getContext(), FnAttrs: oldAttrs.getFnAttrs(),
5776 RetAttrs: oldAttrs.getRetAttrs(), ArgAttrs: newArgAttrs));
5777 newCall->setCallingConv(callSite->getCallingConv());
5778
5779 // Finally, remove the old call, replacing any uses with the new one.
5780 if (!callSite->use_empty())
5781 callSite->replaceAllUsesWith(V: newCall);
5782
5783 // Copy debug location attached to CI.
5784 if (callSite->getDebugLoc())
5785 newCall->setDebugLoc(callSite->getDebugLoc());
5786
5787 callSite->eraseFromParent();
5788 }
5789}
5790
5791/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5792/// implement a function with no prototype, e.g. "int foo() {}". If there are
5793/// existing call uses of the old function in the module, this adjusts them to
5794/// call the new function directly.
5795///
5796/// This is not just a cleanup: the always_inline pass requires direct calls to
5797/// functions to be able to inline them. If there is a bitcast in the way, it
5798/// won't inline them. Instcombine normally deletes these calls, but it isn't
5799/// run at -O0.
5800static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5801 llvm::Function *NewFn) {
5802 // If we're redefining a global as a function, don't transform it.
5803 if (!isa<llvm::Function>(Val: Old)) return;
5804
5805 replaceUsesOfNonProtoConstant(old: Old, newFn: NewFn);
5806}
5807
5808void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5809 auto DK = VD->isThisDeclarationADefinition();
5810 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5811 return;
5812
5813 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5814 // If we have a definition, this might be a deferred decl. If the
5815 // instantiation is explicit, make sure we emit it at the end.
5816 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5817 GetAddrOfGlobalVar(D: VD);
5818
5819 EmitTopLevelDecl(VD);
5820}
5821
5822void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5823 llvm::GlobalValue *GV) {
5824 const auto *D = cast<FunctionDecl>(Val: GD.getDecl());
5825
5826 // Compute the function info and LLVM type.
5827 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5828 llvm::FunctionType *Ty = getTypes().GetFunctionType(Info: FI);
5829
5830 // Get or create the prototype for the function.
5831 if (!GV || (GV->getValueType() != Ty))
5832 GV = cast<llvm::GlobalValue>(Val: GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5833 /*DontDefer=*/true,
5834 IsForDefinition: ForDefinition));
5835
5836 // Already emitted.
5837 if (!GV->isDeclaration())
5838 return;
5839
5840 // We need to set linkage and visibility on the function before
5841 // generating code for it because various parts of IR generation
5842 // want to propagate this information down (e.g. to local static
5843 // declarations).
5844 auto *Fn = cast<llvm::Function>(Val: GV);
5845 setFunctionLinkage(GD, F: Fn);
5846
5847 // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5848 setGVProperties(GV: Fn, GD);
5849
5850 MaybeHandleStaticInExternC(D, GV: Fn);
5851
5852 maybeSetTrivialComdat(*D, *Fn);
5853
5854 CodeGenFunction(*this).GenerateCode(GD, Fn, FnInfo: FI);
5855
5856 setNonAliasAttributes(GD, GO: Fn);
5857 SetLLVMFunctionAttributesForDefinition(D, Fn);
5858
5859 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5860 AddGlobalCtor(Ctor: Fn, Priority: CA->getPriority());
5861 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5862 AddGlobalDtor(Dtor: Fn, Priority: DA->getPriority(), IsDtorAttrFunc: true);
5863 if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>())
5864 getOpenMPRuntime().emitDeclareTargetFunction(FD: D, GV);
5865}
5866
5867void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5868 const auto *D = cast<ValueDecl>(Val: GD.getDecl());
5869 const AliasAttr *AA = D->getAttr<AliasAttr>();
5870 assert(AA && "Not an alias?");
5871
5872 StringRef MangledName = getMangledName(GD);
5873
5874 if (AA->getAliasee() == MangledName) {
5875 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5876 return;
5877 }
5878
5879 // If there is a definition in the module, then it wins over the alias.
5880 // This is dubious, but allow it to be safe. Just ignore the alias.
5881 llvm::GlobalValue *Entry = GetGlobalValue(Name: MangledName);
5882 if (Entry && !Entry->isDeclaration())
5883 return;
5884
5885 Aliases.push_back(x: GD);
5886
5887 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(T: D->getType());
5888
5889 // Create a reference to the named value. This ensures that it is emitted
5890 // if a deferred decl.
5891 llvm::Constant *Aliasee;
5892 llvm::GlobalValue::LinkageTypes LT;
5893 if (isa<llvm::FunctionType>(Val: DeclTy)) {
5894 Aliasee = GetOrCreateLLVMFunction(MangledName: AA->getAliasee(), Ty: DeclTy, GD,
5895 /*ForVTable=*/false);
5896 LT = getFunctionLinkage(GD);
5897 } else {
5898 Aliasee = GetOrCreateLLVMGlobal(MangledName: AA->getAliasee(), Ty: DeclTy, AddrSpace: LangAS::Default,
5899 /*D=*/nullptr);
5900 if (const auto *VD = dyn_cast<VarDecl>(Val: GD.getDecl()))
5901 LT = getLLVMLinkageVarDefinition(VD);
5902 else
5903 LT = getFunctionLinkage(GD);
5904 }
5905
5906 // Create the new alias itself, but don't set a name yet.
5907 unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5908 auto *GA =
5909 llvm::GlobalAlias::create(Ty: DeclTy, AddressSpace: AS, Linkage: LT, Name: "", Aliasee, Parent: &getModule());
5910
5911 if (Entry) {
5912 if (GA->getAliasee() == Entry) {
5913 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5914 return;
5915 }
5916
5917 assert(Entry->isDeclaration());
5918
5919 // If there is a declaration in the module, then we had an extern followed
5920 // by the alias, as in:
5921 // extern int test6();
5922 // ...
5923 // int test6() __attribute__((alias("test7")));
5924 //
5925 // Remove it and replace uses of it with the alias.
5926 GA->takeName(V: Entry);
5927
5928 Entry->replaceAllUsesWith(V: GA);
5929 Entry->eraseFromParent();
5930 } else {
5931 GA->setName(MangledName);
5932 }
5933
5934 // Set attributes which are particular to an alias; this is a
5935 // specialization of the attributes which may be set on a global
5936 // variable/function.
5937 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5938 D->isWeakImported()) {
5939 GA->setLinkage(llvm::Function::WeakAnyLinkage);
5940 }
5941
5942 if (const auto *VD = dyn_cast<VarDecl>(Val: D))
5943 if (VD->getTLSKind())
5944 setTLSMode(GV: GA, D: *VD);
5945
5946 SetCommonAttributes(GD, GV: GA);
5947
5948 // Emit global alias debug information.
5949 if (isa<VarDecl>(Val: D))
5950 if (CGDebugInfo *DI = getModuleDebugInfo())
5951 DI->EmitGlobalAlias(GV: cast<llvm::GlobalValue>(Val: GA->getAliasee()->stripPointerCasts()), Decl: GD);
5952}
5953
5954void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5955 const auto *D = cast<ValueDecl>(Val: GD.getDecl());
5956 const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5957 assert(IFA && "Not an ifunc?");
5958
5959 StringRef MangledName = getMangledName(GD);
5960
5961 if (IFA->getResolver() == MangledName) {
5962 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5963 return;
5964 }
5965
5966 // Report an error if some definition overrides ifunc.
5967 llvm::GlobalValue *Entry = GetGlobalValue(Name: MangledName);
5968 if (Entry && !Entry->isDeclaration()) {
5969 GlobalDecl OtherGD;
5970 if (lookupRepresentativeDecl(MangledName, Result&: OtherGD) &&
5971 DiagnosedConflictingDefinitions.insert(V: GD).second) {
5972 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5973 << MangledName;
5974 Diags.Report(OtherGD.getDecl()->getLocation(),
5975 diag::note_previous_definition);
5976 }
5977 return;
5978 }
5979
5980 Aliases.push_back(x: GD);
5981
5982 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(T: D->getType());
5983 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(IFuncValTy: DeclTy);
5984 llvm::Constant *Resolver =
5985 GetOrCreateLLVMFunction(MangledName: IFA->getResolver(), Ty: ResolverTy, GD: {},
5986 /*ForVTable=*/false);
5987 llvm::GlobalIFunc *GIF =
5988 llvm::GlobalIFunc::create(Ty: DeclTy, AddressSpace: 0, Linkage: llvm::Function::ExternalLinkage,
5989 Name: "", Resolver, Parent: &getModule());
5990 if (Entry) {
5991 if (GIF->getResolver() == Entry) {
5992 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5993 return;
5994 }
5995 assert(Entry->isDeclaration());
5996
5997 // If there is a declaration in the module, then we had an extern followed
5998 // by the ifunc, as in:
5999 // extern int test();
6000 // ...
6001 // int test() __attribute__((ifunc("resolver")));
6002 //
6003 // Remove it and replace uses of it with the ifunc.
6004 GIF->takeName(V: Entry);
6005
6006 Entry->replaceAllUsesWith(V: GIF);
6007 Entry->eraseFromParent();
6008 } else
6009 GIF->setName(MangledName);
6010 if (auto *F = dyn_cast<llvm::Function>(Resolver)) {
6011 F->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
6012 }
6013 SetCommonAttributes(GD, GV: GIF);
6014}
6015
6016llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
6017 ArrayRef<llvm::Type*> Tys) {
6018 return llvm::Intrinsic::getDeclaration(M: &getModule(), id: (llvm::Intrinsic::ID)IID,
6019 Tys);
6020}
6021
6022static llvm::StringMapEntry<llvm::GlobalVariable *> &
6023GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
6024 const StringLiteral *Literal, bool TargetIsLSB,
6025 bool &IsUTF16, unsigned &StringLength) {
6026 StringRef String = Literal->getString();
6027 unsigned NumBytes = String.size();
6028
6029 // Check for simple case.
6030 if (!Literal->containsNonAsciiOrNull()) {
6031 StringLength = NumBytes;
6032 return *Map.insert(KV: std::make_pair(x&: String, y: nullptr)).first;
6033 }
6034
6035 // Otherwise, convert the UTF8 literals into a string of shorts.
6036 IsUTF16 = true;
6037
6038 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
6039 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
6040 llvm::UTF16 *ToPtr = &ToBuf[0];
6041
6042 (void)llvm::ConvertUTF8toUTF16(sourceStart: &FromPtr, sourceEnd: FromPtr + NumBytes, targetStart: &ToPtr,
6043 targetEnd: ToPtr + NumBytes, flags: llvm::strictConversion);
6044
6045 // ConvertUTF8toUTF16 returns the length in ToPtr.
6046 StringLength = ToPtr - &ToBuf[0];
6047
6048 // Add an explicit null.
6049 *ToPtr = 0;
6050 return *Map.insert(KV: std::make_pair(
6051 x: StringRef(reinterpret_cast<const char *>(ToBuf.data()),
6052 (StringLength + 1) * 2),
6053 y: nullptr)).first;
6054}
6055
6056ConstantAddress
6057CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
6058 unsigned StringLength = 0;
6059 bool isUTF16 = false;
6060 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
6061 GetConstantCFStringEntry(Map&: CFConstantStringMap, Literal,
6062 TargetIsLSB: getDataLayout().isLittleEndian(), IsUTF16&: isUTF16,
6063 StringLength);
6064
6065 if (auto *C = Entry.second)
6066 return ConstantAddress(
6067 C, C->getValueType(), CharUnits::fromQuantity(Quantity: C->getAlignment()));
6068
6069 llvm::Constant *Zero = llvm::Constant::getNullValue(Ty: Int32Ty);
6070 llvm::Constant *Zeros[] = { Zero, Zero };
6071
6072 const ASTContext &Context = getContext();
6073 const llvm::Triple &Triple = getTriple();
6074
6075 const auto CFRuntime = getLangOpts().CFRuntime;
6076 const bool IsSwiftABI =
6077 static_cast<unsigned>(CFRuntime) >=
6078 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
6079 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
6080
6081 // If we don't already have it, get __CFConstantStringClassReference.
6082 if (!CFConstantStringClassRef) {
6083 const char *CFConstantStringClassName = "__CFConstantStringClassReference";
6084 llvm::Type *Ty = getTypes().ConvertType(T: getContext().IntTy);
6085 Ty = llvm::ArrayType::get(ElementType: Ty, NumElements: 0);
6086
6087 switch (CFRuntime) {
6088 default: break;
6089 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
6090 case LangOptions::CoreFoundationABI::Swift5_0:
6091 CFConstantStringClassName =
6092 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
6093 : "$s10Foundation19_NSCFConstantStringCN";
6094 Ty = IntPtrTy;
6095 break;
6096 case LangOptions::CoreFoundationABI::Swift4_2:
6097 CFConstantStringClassName =
6098 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
6099 : "$S10Foundation19_NSCFConstantStringCN";
6100 Ty = IntPtrTy;
6101 break;
6102 case LangOptions::CoreFoundationABI::Swift4_1:
6103 CFConstantStringClassName =
6104 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
6105 : "__T010Foundation19_NSCFConstantStringCN";
6106 Ty = IntPtrTy;
6107 break;
6108 }
6109
6110 llvm::Constant *C = CreateRuntimeVariable(Ty, Name: CFConstantStringClassName);
6111
6112 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
6113 llvm::GlobalValue *GV = nullptr;
6114
6115 if ((GV = dyn_cast<llvm::GlobalValue>(Val: C))) {
6116 IdentifierInfo &II = Context.Idents.get(Name: GV->getName());
6117 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
6118 DeclContext *DC = TranslationUnitDecl::castToDeclContext(D: TUDecl);
6119
6120 const VarDecl *VD = nullptr;
6121 for (const auto *Result : DC->lookup(Name: &II))
6122 if ((VD = dyn_cast<VarDecl>(Val: Result)))
6123 break;
6124
6125 if (Triple.isOSBinFormatELF()) {
6126 if (!VD)
6127 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6128 } else {
6129 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6130 if (!VD || !VD->hasAttr<DLLExportAttr>())
6131 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
6132 else
6133 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
6134 }
6135
6136 setDSOLocal(GV);
6137 }
6138 }
6139
6140 // Decay array -> ptr
6141 CFConstantStringClassRef =
6142 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
6143 : llvm::ConstantExpr::getGetElementPtr(Ty, C, IdxList: Zeros);
6144 }
6145
6146 QualType CFTy = Context.getCFConstantStringType();
6147
6148 auto *STy = cast<llvm::StructType>(Val: getTypes().ConvertType(T: CFTy));
6149
6150 ConstantInitBuilder Builder(*this);
6151 auto Fields = Builder.beginStruct(structTy: STy);
6152
6153 // Class pointer.
6154 Fields.add(value: cast<llvm::Constant>(Val&: CFConstantStringClassRef));
6155
6156 // Flags.
6157 if (IsSwiftABI) {
6158 Fields.addInt(intTy: IntPtrTy, value: IsSwift4_1 ? 0x05 : 0x01);
6159 Fields.addInt(intTy: Int64Ty, value: isUTF16 ? 0x07d0 : 0x07c8);
6160 } else {
6161 Fields.addInt(intTy: IntTy, value: isUTF16 ? 0x07d0 : 0x07C8);
6162 }
6163
6164 // String pointer.
6165 llvm::Constant *C = nullptr;
6166 if (isUTF16) {
6167 auto Arr = llvm::ArrayRef(
6168 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
6169 Entry.first().size() / 2);
6170 C = llvm::ConstantDataArray::get(Context&: VMContext, Elts: Arr);
6171 } else {
6172 C = llvm::ConstantDataArray::getString(Context&: VMContext, Initializer: Entry.first());
6173 }
6174
6175 // Note: -fwritable-strings doesn't make the backing store strings of
6176 // CFStrings writable.
6177 auto *GV =
6178 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
6179 llvm::GlobalValue::PrivateLinkage, C, ".str");
6180 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6181 // Don't enforce the target's minimum global alignment, since the only use
6182 // of the string is via this class initializer.
6183 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
6184 : Context.getTypeAlignInChars(Context.CharTy);
6185 GV->setAlignment(Align.getAsAlign());
6186
6187 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
6188 // Without it LLVM can merge the string with a non unnamed_addr one during
6189 // LTO. Doing that changes the section it ends in, which surprises ld64.
6190 if (Triple.isOSBinFormatMachO())
6191 GV->setSection(isUTF16 ? "__TEXT,__ustring"
6192 : "__TEXT,__cstring,cstring_literals");
6193 // Make sure the literal ends up in .rodata to allow for safe ICF and for
6194 // the static linker to adjust permissions to read-only later on.
6195 else if (Triple.isOSBinFormatELF())
6196 GV->setSection(".rodata");
6197
6198 // String.
6199 llvm::Constant *Str =
6200 llvm::ConstantExpr::getGetElementPtr(Ty: GV->getValueType(), C: GV, IdxList: Zeros);
6201
6202 Fields.add(value: Str);
6203
6204 // String length.
6205 llvm::IntegerType *LengthTy =
6206 llvm::IntegerType::get(C&: getModule().getContext(),
6207 NumBits: Context.getTargetInfo().getLongWidth());
6208 if (IsSwiftABI) {
6209 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6210 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6211 LengthTy = Int32Ty;
6212 else
6213 LengthTy = IntPtrTy;
6214 }
6215 Fields.addInt(intTy: LengthTy, value: StringLength);
6216
6217 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
6218 // properly aligned on 32-bit platforms.
6219 CharUnits Alignment =
6220 IsSwiftABI ? Context.toCharUnitsFromBits(BitSize: 64) : getPointerAlign();
6221
6222 // The struct.
6223 GV = Fields.finishAndCreateGlobal(args: "_unnamed_cfstring_", args&: Alignment,
6224 /*isConstant=*/args: false,
6225 args: llvm::GlobalVariable::PrivateLinkage);
6226 GV->addAttribute(Kind: "objc_arc_inert");
6227 switch (Triple.getObjectFormat()) {
6228 case llvm::Triple::UnknownObjectFormat:
6229 llvm_unreachable("unknown file format");
6230 case llvm::Triple::DXContainer:
6231 case llvm::Triple::GOFF:
6232 case llvm::Triple::SPIRV:
6233 case llvm::Triple::XCOFF:
6234 llvm_unreachable("unimplemented");
6235 case llvm::Triple::COFF:
6236 case llvm::Triple::ELF:
6237 case llvm::Triple::Wasm:
6238 GV->setSection("cfstring");
6239 break;
6240 case llvm::Triple::MachO:
6241 GV->setSection("__DATA,__cfstring");
6242 break;
6243 }
6244 Entry.second = GV;
6245
6246 return ConstantAddress(GV, GV->getValueType(), Alignment);
6247}
6248
6249bool CodeGenModule::getExpressionLocationsEnabled() const {
6250 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
6251}
6252
6253QualType CodeGenModule::getObjCFastEnumerationStateType() {
6254 if (ObjCFastEnumerationStateType.isNull()) {
6255 RecordDecl *D = Context.buildImplicitRecord(Name: "__objcFastEnumerationState");
6256 D->startDefinition();
6257
6258 QualType FieldTypes[] = {
6259 Context.UnsignedLongTy, Context.getPointerType(T: Context.getObjCIdType()),
6260 Context.getPointerType(Context.UnsignedLongTy),
6261 Context.getConstantArrayType(EltTy: Context.UnsignedLongTy, ArySize: llvm::APInt(32, 5),
6262 SizeExpr: nullptr, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0)};
6263
6264 for (size_t i = 0; i < 4; ++i) {
6265 FieldDecl *Field = FieldDecl::Create(C: Context,
6266 DC: D,
6267 StartLoc: SourceLocation(),
6268 IdLoc: SourceLocation(), Id: nullptr,
6269 T: FieldTypes[i], /*TInfo=*/nullptr,
6270 /*BitWidth=*/BW: nullptr,
6271 /*Mutable=*/false,
6272 InitStyle: ICIS_NoInit);
6273 Field->setAccess(AS_public);
6274 D->addDecl(Field);
6275 }
6276
6277 D->completeDefinition();
6278 ObjCFastEnumerationStateType = Context.getTagDeclType(D);
6279 }
6280
6281 return ObjCFastEnumerationStateType;
6282}
6283
6284llvm::Constant *
6285CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
6286 assert(!E->getType()->isPointerType() && "Strings are always arrays");
6287
6288 // Don't emit it as the address of the string, emit the string data itself
6289 // as an inline array.
6290 if (E->getCharByteWidth() == 1) {
6291 SmallString<64> Str(E->getString());
6292
6293 // Resize the string to the right size, which is indicated by its type.
6294 const ConstantArrayType *CAT = Context.getAsConstantArrayType(T: E->getType());
6295 assert(CAT && "String literal not of constant array type!");
6296 Str.resize(N: CAT->getSize().getZExtValue());
6297 return llvm::ConstantDataArray::getString(Context&: VMContext, Initializer: Str, AddNull: false);
6298 }
6299
6300 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(T: E->getType()));
6301 llvm::Type *ElemTy = AType->getElementType();
6302 unsigned NumElements = AType->getNumElements();
6303
6304 // Wide strings have either 2-byte or 4-byte elements.
6305 if (ElemTy->getPrimitiveSizeInBits() == 16) {
6306 SmallVector<uint16_t, 32> Elements;
6307 Elements.reserve(N: NumElements);
6308
6309 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6310 Elements.push_back(Elt: E->getCodeUnit(i));
6311 Elements.resize(N: NumElements);
6312 return llvm::ConstantDataArray::get(Context&: VMContext, Elts&: Elements);
6313 }
6314
6315 assert(ElemTy->getPrimitiveSizeInBits() == 32);
6316 SmallVector<uint32_t, 32> Elements;
6317 Elements.reserve(N: NumElements);
6318
6319 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6320 Elements.push_back(Elt: E->getCodeUnit(i));
6321 Elements.resize(N: NumElements);
6322 return llvm::ConstantDataArray::get(Context&: VMContext, Elts&: Elements);
6323}
6324
6325static llvm::GlobalVariable *
6326GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
6327 CodeGenModule &CGM, StringRef GlobalName,
6328 CharUnits Alignment) {
6329 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
6330 AS: CGM.GetGlobalConstantAddressSpace());
6331
6332 llvm::Module &M = CGM.getModule();
6333 // Create a global variable for this string
6334 auto *GV = new llvm::GlobalVariable(
6335 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
6336 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
6337 GV->setAlignment(Alignment.getAsAlign());
6338 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6339 if (GV->isWeakForLinker()) {
6340 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
6341 GV->setComdat(M.getOrInsertComdat(Name: GV->getName()));
6342 }
6343 CGM.setDSOLocal(GV);
6344
6345 return GV;
6346}
6347
6348/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
6349/// constant array for the given string literal.
6350ConstantAddress
6351CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
6352 StringRef Name) {
6353 CharUnits Alignment =
6354 getContext().getAlignOfGlobalVarInChars(T: S->getType(), /*VD=*/nullptr);
6355
6356 llvm::Constant *C = GetConstantArrayFromStringLiteral(E: S);
6357 llvm::GlobalVariable **Entry = nullptr;
6358 if (!LangOpts.WritableStrings) {
6359 Entry = &ConstantStringMap[C];
6360 if (auto GV = *Entry) {
6361 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6362 GV->setAlignment(Alignment.getAsAlign());
6363 return ConstantAddress(castStringLiteralToDefaultAddressSpace(CGM&: *this, GV),
6364 GV->getValueType(), Alignment);
6365 }
6366 }
6367
6368 SmallString<256> MangledNameBuffer;
6369 StringRef GlobalVariableName;
6370 llvm::GlobalValue::LinkageTypes LT;
6371
6372 // Mangle the string literal if that's how the ABI merges duplicate strings.
6373 // Don't do it if they are writable, since we don't want writes in one TU to
6374 // affect strings in another.
6375 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(SL: S) &&
6376 !LangOpts.WritableStrings) {
6377 llvm::raw_svector_ostream Out(MangledNameBuffer);
6378 getCXXABI().getMangleContext().mangleStringLiteral(SL: S, Out);
6379 LT = llvm::GlobalValue::LinkOnceODRLinkage;
6380 GlobalVariableName = MangledNameBuffer;
6381 } else {
6382 LT = llvm::GlobalValue::PrivateLinkage;
6383 GlobalVariableName = Name;
6384 }
6385
6386 auto GV = GenerateStringLiteral(C, LT, CGM&: *this, GlobalName: GlobalVariableName, Alignment);
6387
6388 CGDebugInfo *DI = getModuleDebugInfo();
6389 if (DI && getCodeGenOpts().hasReducedDebugInfo())
6390 DI->AddStringLiteralDebugInfo(GV: GV, S);
6391
6392 if (Entry)
6393 *Entry = GV;
6394
6395 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(TokNum: 0), "<string literal>");
6396
6397 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6398 GV->getValueType(), Alignment);
6399}
6400
6401/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
6402/// array for the given ObjCEncodeExpr node.
6403ConstantAddress
6404CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
6405 std::string Str;
6406 getContext().getObjCEncodingForType(T: E->getEncodedType(), S&: Str);
6407
6408 return GetAddrOfConstantCString(Str);
6409}
6410
6411/// GetAddrOfConstantCString - Returns a pointer to a character array containing
6412/// the literal and a terminating '\0' character.
6413/// The result has pointer to array type.
6414ConstantAddress CodeGenModule::GetAddrOfConstantCString(
6415 const std::string &Str, const char *GlobalName) {
6416 StringRef StrWithNull(Str.c_str(), Str.size() + 1);
6417 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(
6418 T: getContext().CharTy, /*VD=*/nullptr);
6419
6420 llvm::Constant *C =
6421 llvm::ConstantDataArray::getString(Context&: getLLVMContext(), Initializer: StrWithNull, AddNull: false);
6422
6423 // Don't share any string literals if strings aren't constant.
6424 llvm::GlobalVariable **Entry = nullptr;
6425 if (!LangOpts.WritableStrings) {
6426 Entry = &ConstantStringMap[C];
6427 if (auto GV = *Entry) {
6428 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6429 GV->setAlignment(Alignment.getAsAlign());
6430 return ConstantAddress(castStringLiteralToDefaultAddressSpace(CGM&: *this, GV),
6431 GV->getValueType(), Alignment);
6432 }
6433 }
6434
6435 // Get the default prefix if a name wasn't specified.
6436 if (!GlobalName)
6437 GlobalName = ".str";
6438 // Create a global variable for this.
6439 auto GV = GenerateStringLiteral(C, LT: llvm::GlobalValue::PrivateLinkage, CGM&: *this,
6440 GlobalName, Alignment);
6441 if (Entry)
6442 *Entry = GV;
6443
6444 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6445 GV->getValueType(), Alignment);
6446}
6447
6448ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
6449 const MaterializeTemporaryExpr *E, const Expr *Init) {
6450 assert((E->getStorageDuration() == SD_Static ||
6451 E->getStorageDuration() == SD_Thread) && "not a global temporary");
6452 const auto *VD = cast<VarDecl>(Val: E->getExtendingDecl());
6453
6454 // If we're not materializing a subobject of the temporary, keep the
6455 // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6456 QualType MaterializedType = Init->getType();
6457 if (Init == E->getSubExpr())
6458 MaterializedType = E->getType();
6459
6460 CharUnits Align = getContext().getTypeAlignInChars(T: MaterializedType);
6461
6462 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
6463 if (!InsertResult.second) {
6464 // We've seen this before: either we already created it or we're in the
6465 // process of doing so.
6466 if (!InsertResult.first->second) {
6467 // We recursively re-entered this function, probably during emission of
6468 // the initializer. Create a placeholder. We'll clean this up in the
6469 // outer call, at the end of this function.
6470 llvm::Type *Type = getTypes().ConvertTypeForMem(T: MaterializedType);
6471 InsertResult.first->second = new llvm::GlobalVariable(
6472 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
6473 nullptr);
6474 }
6475 return ConstantAddress(InsertResult.first->second,
6476 llvm::cast<llvm::GlobalVariable>(
6477 InsertResult.first->second->stripPointerCasts())
6478 ->getValueType(),
6479 Align);
6480 }
6481
6482 // FIXME: If an externally-visible declaration extends multiple temporaries,
6483 // we need to give each temporary the same name in every translation unit (and
6484 // we also need to make the temporaries externally-visible).
6485 SmallString<256> Name;
6486 llvm::raw_svector_ostream Out(Name);
6487 getCXXABI().getMangleContext().mangleReferenceTemporary(
6488 D: VD, ManglingNumber: E->getManglingNumber(), Out);
6489
6490 APValue *Value = nullptr;
6491 if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) {
6492 // If the initializer of the extending declaration is a constant
6493 // initializer, we should have a cached constant initializer for this
6494 // temporary. Note that this might have a different value from the value
6495 // computed by evaluating the initializer if the surrounding constant
6496 // expression modifies the temporary.
6497 Value = E->getOrCreateValue(MayCreate: false);
6498 }
6499
6500 // Try evaluating it now, it might have a constant initializer.
6501 Expr::EvalResult EvalResult;
6502 if (!Value && Init->EvaluateAsRValue(Result&: EvalResult, Ctx: getContext()) &&
6503 !EvalResult.hasSideEffects())
6504 Value = &EvalResult.Val;
6505
6506 LangAS AddrSpace = GetGlobalVarAddressSpace(D: VD);
6507
6508 std::optional<ConstantEmitter> emitter;
6509 llvm::Constant *InitialValue = nullptr;
6510 bool Constant = false;
6511 llvm::Type *Type;
6512 if (Value) {
6513 // The temporary has a constant initializer, use it.
6514 emitter.emplace(args&: *this);
6515 InitialValue = emitter->emitForInitializer(value: *Value, destAddrSpace: AddrSpace,
6516 destType: MaterializedType);
6517 Constant =
6518 MaterializedType.isConstantStorage(Ctx: getContext(), /*ExcludeCtor*/ Value,
6519 /*ExcludeDtor*/ false);
6520 Type = InitialValue->getType();
6521 } else {
6522 // No initializer, the initialization will be provided when we
6523 // initialize the declaration which performed lifetime extension.
6524 Type = getTypes().ConvertTypeForMem(T: MaterializedType);
6525 }
6526
6527 // Create a global variable for this lifetime-extended temporary.
6528 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD);
6529 if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6530 const VarDecl *InitVD;
6531 if (VD->isStaticDataMember() && VD->getAnyInitializer(D&: InitVD) &&
6532 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6533 // Temporaries defined inside a class get linkonce_odr linkage because the
6534 // class can be defined in multiple translation units.
6535 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6536 } else {
6537 // There is no need for this temporary to have external linkage if the
6538 // VarDecl has external linkage.
6539 Linkage = llvm::GlobalVariable::InternalLinkage;
6540 }
6541 }
6542 auto TargetAS = getContext().getTargetAddressSpace(AS: AddrSpace);
6543 auto *GV = new llvm::GlobalVariable(
6544 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6545 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6546 if (emitter) emitter->finalize(global: GV);
6547 // Don't assign dllimport or dllexport to local linkage globals.
6548 if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6549 setGVProperties(GV, GD: VD);
6550 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6551 // The reference temporary should never be dllexport.
6552 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6553 }
6554 GV->setAlignment(Align.getAsAlign());
6555 if (supportsCOMDAT() && GV->isWeakForLinker())
6556 GV->setComdat(TheModule.getOrInsertComdat(Name: GV->getName()));
6557 if (VD->getTLSKind())
6558 setTLSMode(GV, D: *VD);
6559 llvm::Constant *CV = GV;
6560 if (AddrSpace != LangAS::Default)
6561 CV = getTargetCodeGenInfo().performAddrSpaceCast(
6562 CGM&: *this, V: GV, SrcAddr: AddrSpace, DestAddr: LangAS::Default,
6563 DestTy: llvm::PointerType::get(
6564 C&: getLLVMContext(),
6565 AddressSpace: getContext().getTargetAddressSpace(AS: LangAS::Default)));
6566
6567 // Update the map with the new temporary. If we created a placeholder above,
6568 // replace it with the new global now.
6569 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6570 if (Entry) {
6571 Entry->replaceAllUsesWith(V: CV);
6572 llvm::cast<llvm::GlobalVariable>(Val: Entry)->eraseFromParent();
6573 }
6574 Entry = CV;
6575
6576 return ConstantAddress(CV, Type, Align);
6577}
6578
6579/// EmitObjCPropertyImplementations - Emit information for synthesized
6580/// properties for an implementation.
6581void CodeGenModule::EmitObjCPropertyImplementations(const
6582 ObjCImplementationDecl *D) {
6583 for (const auto *PID : D->property_impls()) {
6584 // Dynamic is just for type-checking.
6585 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6586 ObjCPropertyDecl *PD = PID->getPropertyDecl();
6587
6588 // Determine which methods need to be implemented, some may have
6589 // been overridden. Note that ::isPropertyAccessor is not the method
6590 // we want, that just indicates if the decl came from a
6591 // property. What we want to know is if the method is defined in
6592 // this implementation.
6593 auto *Getter = PID->getGetterMethodDecl();
6594 if (!Getter || Getter->isSynthesizedAccessorStub())
6595 CodeGenFunction(*this).GenerateObjCGetter(
6596 const_cast<ObjCImplementationDecl *>(D), PID);
6597 auto *Setter = PID->getSetterMethodDecl();
6598 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6599 CodeGenFunction(*this).GenerateObjCSetter(
6600 const_cast<ObjCImplementationDecl *>(D), PID);
6601 }
6602 }
6603}
6604
6605static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6606 const ObjCInterfaceDecl *iface = impl->getClassInterface();
6607 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6608 ivar; ivar = ivar->getNextIvar())
6609 if (ivar->getType().isDestructedType())
6610 return true;
6611
6612 return false;
6613}
6614
6615static bool AllTrivialInitializers(CodeGenModule &CGM,
6616 ObjCImplementationDecl *D) {
6617 CodeGenFunction CGF(CGM);
6618 for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6619 E = D->init_end(); B != E; ++B) {
6620 CXXCtorInitializer *CtorInitExp = *B;
6621 Expr *Init = CtorInitExp->getInit();
6622 if (!CGF.isTrivialInitializer(Init))
6623 return false;
6624 }
6625 return true;
6626}
6627
6628/// EmitObjCIvarInitializations - Emit information for ivar initialization
6629/// for an implementation.
6630void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6631 // We might need a .cxx_destruct even if we don't have any ivar initializers.
6632 if (needsDestructMethod(impl: D)) {
6633 IdentifierInfo *II = &getContext().Idents.get(Name: ".cxx_destruct");
6634 Selector cxxSelector = getContext().Selectors.getSelector(NumArgs: 0, IIV: &II);
6635 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6636 C&: getContext(), beginLoc: D->getLocation(), endLoc: D->getLocation(), SelInfo: cxxSelector,
6637 T: getContext().VoidTy, ReturnTInfo: nullptr, contextDecl: D,
6638 /*isInstance=*/true, /*isVariadic=*/false,
6639 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6640 /*isImplicitlyDeclared=*/true,
6641 /*isDefined=*/false, impControl: ObjCImplementationControl::Required);
6642 D->addInstanceMethod(DTORMethod);
6643 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(IMP: D, MD: DTORMethod, ctor: false);
6644 D->setHasDestructors(true);
6645 }
6646
6647 // If the implementation doesn't have any ivar initializers, we don't need
6648 // a .cxx_construct.
6649 if (D->getNumIvarInitializers() == 0 ||
6650 AllTrivialInitializers(CGM&: *this, D))
6651 return;
6652
6653 IdentifierInfo *II = &getContext().Idents.get(Name: ".cxx_construct");
6654 Selector cxxSelector = getContext().Selectors.getSelector(NumArgs: 0, IIV: &II);
6655 // The constructor returns 'self'.
6656 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6657 C&: getContext(), beginLoc: D->getLocation(), endLoc: D->getLocation(), SelInfo: cxxSelector,
6658 T: getContext().getObjCIdType(), ReturnTInfo: nullptr, contextDecl: D, /*isInstance=*/true,
6659 /*isVariadic=*/false,
6660 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6661 /*isImplicitlyDeclared=*/true,
6662 /*isDefined=*/false, impControl: ObjCImplementationControl::Required);
6663 D->addInstanceMethod(CTORMethod);
6664 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(IMP: D, MD: CTORMethod, ctor: true);
6665 D->setHasNonZeroConstructors(true);
6666}
6667
6668// EmitLinkageSpec - Emit all declarations in a linkage spec.
6669void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6670 if (LSD->getLanguage() != LinkageSpecLanguageIDs::C &&
6671 LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) {
6672 ErrorUnsupported(LSD, "linkage spec");
6673 return;
6674 }
6675
6676 EmitDeclContext(LSD);
6677}
6678
6679void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6680 // Device code should not be at top level.
6681 if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6682 return;
6683
6684 std::unique_ptr<CodeGenFunction> &CurCGF =
6685 GlobalTopLevelStmtBlockInFlight.first;
6686
6687 // We emitted a top-level stmt but after it there is initialization.
6688 // Stop squashing the top-level stmts into a single function.
6689 if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6690 CurCGF->FinishFunction(EndLoc: D->getEndLoc());
6691 CurCGF = nullptr;
6692 }
6693
6694 if (!CurCGF) {
6695 // void __stmts__N(void)
6696 // FIXME: Ask the ABI name mangler to pick a name.
6697 std::string Name = "__stmts__" + llvm::utostr(X: CXXGlobalInits.size());
6698 FunctionArgList Args;
6699 QualType RetTy = getContext().VoidTy;
6700 const CGFunctionInfo &FnInfo =
6701 getTypes().arrangeBuiltinFunctionDeclaration(resultType: RetTy, args: Args);
6702 llvm::FunctionType *FnTy = getTypes().GetFunctionType(Info: FnInfo);
6703 llvm::Function *Fn = llvm::Function::Create(
6704 Ty: FnTy, Linkage: llvm::GlobalValue::InternalLinkage, N: Name, M: &getModule());
6705
6706 CurCGF.reset(p: new CodeGenFunction(*this));
6707 GlobalTopLevelStmtBlockInFlight.second = D;
6708 CurCGF->StartFunction(GD: GlobalDecl(), RetTy, Fn, FnInfo, Args,
6709 Loc: D->getBeginLoc(), StartLoc: D->getBeginLoc());
6710 CXXGlobalInits.push_back(x: Fn);
6711 }
6712
6713 CurCGF->EmitStmt(S: D->getStmt());
6714}
6715
6716void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6717 for (auto *I : DC->decls()) {
6718 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6719 // are themselves considered "top-level", so EmitTopLevelDecl on an
6720 // ObjCImplDecl does not recursively visit them. We need to do that in
6721 // case they're nested inside another construct (LinkageSpecDecl /
6722 // ExportDecl) that does stop them from being considered "top-level".
6723 if (auto *OID = dyn_cast<ObjCImplDecl>(Val: I)) {
6724 for (auto *M : OID->methods())
6725 EmitTopLevelDecl(M);
6726 }
6727
6728 EmitTopLevelDecl(D: I);
6729 }
6730}
6731
6732/// EmitTopLevelDecl - Emit code for a single top level declaration.
6733void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6734 // Ignore dependent declarations.
6735 if (D->isTemplated())
6736 return;
6737
6738 // Consteval function shouldn't be emitted.
6739 if (auto *FD = dyn_cast<FunctionDecl>(Val: D); FD && FD->isImmediateFunction())
6740 return;
6741
6742 switch (D->getKind()) {
6743 case Decl::CXXConversion:
6744 case Decl::CXXMethod:
6745 case Decl::Function:
6746 EmitGlobal(GD: cast<FunctionDecl>(Val: D));
6747 // Always provide some coverage mapping
6748 // even for the functions that aren't emitted.
6749 AddDeferredUnusedCoverageMapping(D);
6750 break;
6751
6752 case Decl::CXXDeductionGuide:
6753 // Function-like, but does not result in code emission.
6754 break;
6755
6756 case Decl::Var:
6757 case Decl::Decomposition:
6758 case Decl::VarTemplateSpecialization:
6759 EmitGlobal(GD: cast<VarDecl>(Val: D));
6760 if (auto *DD = dyn_cast<DecompositionDecl>(Val: D))
6761 for (auto *B : DD->bindings())
6762 if (auto *HD = B->getHoldingVar())
6763 EmitGlobal(GD: HD);
6764 break;
6765
6766 // Indirect fields from global anonymous structs and unions can be
6767 // ignored; only the actual variable requires IR gen support.
6768 case Decl::IndirectField:
6769 break;
6770
6771 // C++ Decls
6772 case Decl::Namespace:
6773 EmitDeclContext(cast<NamespaceDecl>(Val: D));
6774 break;
6775 case Decl::ClassTemplateSpecialization: {
6776 const auto *Spec = cast<ClassTemplateSpecializationDecl>(Val: D);
6777 if (CGDebugInfo *DI = getModuleDebugInfo())
6778 if (Spec->getSpecializationKind() ==
6779 TSK_ExplicitInstantiationDefinition &&
6780 Spec->hasDefinition())
6781 DI->completeTemplateDefinition(SD: *Spec);
6782 } [[fallthrough]];
6783 case Decl::CXXRecord: {
6784 CXXRecordDecl *CRD = cast<CXXRecordDecl>(Val: D);
6785 if (CGDebugInfo *DI = getModuleDebugInfo()) {
6786 if (CRD->hasDefinition())
6787 DI->EmitAndRetainType(Ty: getContext().getRecordType(Decl: cast<RecordDecl>(Val: D)));
6788 if (auto *ES = D->getASTContext().getExternalSource())
6789 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6790 DI->completeUnusedClass(D: *CRD);
6791 }
6792 // Emit any static data members, they may be definitions.
6793 for (auto *I : CRD->decls())
6794 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6795 EmitTopLevelDecl(I);
6796 break;
6797 }
6798 // No code generation needed.
6799 case Decl::UsingShadow:
6800 case Decl::ClassTemplate:
6801 case Decl::VarTemplate:
6802 case Decl::Concept:
6803 case Decl::VarTemplatePartialSpecialization:
6804 case Decl::FunctionTemplate:
6805 case Decl::TypeAliasTemplate:
6806 case Decl::Block:
6807 case Decl::Empty:
6808 case Decl::Binding:
6809 break;
6810 case Decl::Using: // using X; [C++]
6811 if (CGDebugInfo *DI = getModuleDebugInfo())
6812 DI->EmitUsingDecl(UD: cast<UsingDecl>(Val&: *D));
6813 break;
6814 case Decl::UsingEnum: // using enum X; [C++]
6815 if (CGDebugInfo *DI = getModuleDebugInfo())
6816 DI->EmitUsingEnumDecl(UD: cast<UsingEnumDecl>(Val&: *D));
6817 break;
6818 case Decl::NamespaceAlias:
6819 if (CGDebugInfo *DI = getModuleDebugInfo())
6820 DI->EmitNamespaceAlias(NA: cast<NamespaceAliasDecl>(Val&: *D));
6821 break;
6822 case Decl::UsingDirective: // using namespace X; [C++]
6823 if (CGDebugInfo *DI = getModuleDebugInfo())
6824 DI->EmitUsingDirective(UD: cast<UsingDirectiveDecl>(Val&: *D));
6825 break;
6826 case Decl::CXXConstructor:
6827 getCXXABI().EmitCXXConstructors(D: cast<CXXConstructorDecl>(Val: D));
6828 break;
6829 case Decl::CXXDestructor:
6830 getCXXABI().EmitCXXDestructors(D: cast<CXXDestructorDecl>(Val: D));
6831 break;
6832
6833 case Decl::StaticAssert:
6834 // Nothing to do.
6835 break;
6836
6837 // Objective-C Decls
6838
6839 // Forward declarations, no (immediate) code generation.
6840 case Decl::ObjCInterface:
6841 case Decl::ObjCCategory:
6842 break;
6843
6844 case Decl::ObjCProtocol: {
6845 auto *Proto = cast<ObjCProtocolDecl>(Val: D);
6846 if (Proto->isThisDeclarationADefinition())
6847 ObjCRuntime->GenerateProtocol(OPD: Proto);
6848 break;
6849 }
6850
6851 case Decl::ObjCCategoryImpl:
6852 // Categories have properties but don't support synthesize so we
6853 // can ignore them here.
6854 ObjCRuntime->GenerateCategory(OCD: cast<ObjCCategoryImplDecl>(Val: D));
6855 break;
6856
6857 case Decl::ObjCImplementation: {
6858 auto *OMD = cast<ObjCImplementationDecl>(Val: D);
6859 EmitObjCPropertyImplementations(D: OMD);
6860 EmitObjCIvarInitializations(D: OMD);
6861 ObjCRuntime->GenerateClass(OID: OMD);
6862 // Emit global variable debug information.
6863 if (CGDebugInfo *DI = getModuleDebugInfo())
6864 if (getCodeGenOpts().hasReducedDebugInfo())
6865 DI->getOrCreateInterfaceType(Ty: getContext().getObjCInterfaceType(
6866 Decl: OMD->getClassInterface()), Loc: OMD->getLocation());
6867 break;
6868 }
6869 case Decl::ObjCMethod: {
6870 auto *OMD = cast<ObjCMethodDecl>(Val: D);
6871 // If this is not a prototype, emit the body.
6872 if (OMD->getBody())
6873 CodeGenFunction(*this).GenerateObjCMethod(OMD);
6874 break;
6875 }
6876 case Decl::ObjCCompatibleAlias:
6877 ObjCRuntime->RegisterAlias(OAD: cast<ObjCCompatibleAliasDecl>(Val: D));
6878 break;
6879
6880 case Decl::PragmaComment: {
6881 const auto *PCD = cast<PragmaCommentDecl>(Val: D);
6882 switch (PCD->getCommentKind()) {
6883 case PCK_Unknown:
6884 llvm_unreachable("unexpected pragma comment kind");
6885 case PCK_Linker:
6886 AppendLinkerOptions(Opts: PCD->getArg());
6887 break;
6888 case PCK_Lib:
6889 AddDependentLib(Lib: PCD->getArg());
6890 break;
6891 case PCK_Compiler:
6892 case PCK_ExeStr:
6893 case PCK_User:
6894 break; // We ignore all of these.
6895 }
6896 break;
6897 }
6898
6899 case Decl::PragmaDetectMismatch: {
6900 const auto *PDMD = cast<PragmaDetectMismatchDecl>(Val: D);
6901 AddDetectMismatch(Name: PDMD->getName(), Value: PDMD->getValue());
6902 break;
6903 }
6904
6905 case Decl::LinkageSpec:
6906 EmitLinkageSpec(LSD: cast<LinkageSpecDecl>(Val: D));
6907 break;
6908
6909 case Decl::FileScopeAsm: {
6910 // File-scope asm is ignored during device-side CUDA compilation.
6911 if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6912 break;
6913 // File-scope asm is ignored during device-side OpenMP compilation.
6914 if (LangOpts.OpenMPIsTargetDevice)
6915 break;
6916 // File-scope asm is ignored during device-side SYCL compilation.
6917 if (LangOpts.SYCLIsDevice)
6918 break;
6919 auto *AD = cast<FileScopeAsmDecl>(Val: D);
6920 getModule().appendModuleInlineAsm(Asm: AD->getAsmString()->getString());
6921 break;
6922 }
6923
6924 case Decl::TopLevelStmt:
6925 EmitTopLevelStmt(D: cast<TopLevelStmtDecl>(Val: D));
6926 break;
6927
6928 case Decl::Import: {
6929 auto *Import = cast<ImportDecl>(Val: D);
6930
6931 // If we've already imported this module, we're done.
6932 if (!ImportedModules.insert(X: Import->getImportedModule()))
6933 break;
6934
6935 // Emit debug information for direct imports.
6936 if (!Import->getImportedOwningModule()) {
6937 if (CGDebugInfo *DI = getModuleDebugInfo())
6938 DI->EmitImportDecl(ID: *Import);
6939 }
6940
6941 // For C++ standard modules we are done - we will call the module
6942 // initializer for imported modules, and that will likewise call those for
6943 // any imports it has.
6944 if (CXX20ModuleInits && Import->getImportedOwningModule() &&
6945 !Import->getImportedOwningModule()->isModuleMapModule())
6946 break;
6947
6948 // For clang C++ module map modules the initializers for sub-modules are
6949 // emitted here.
6950
6951 // Find all of the submodules and emit the module initializers.
6952 llvm::SmallPtrSet<clang::Module *, 16> Visited;
6953 SmallVector<clang::Module *, 16> Stack;
6954 Visited.insert(Ptr: Import->getImportedModule());
6955 Stack.push_back(Elt: Import->getImportedModule());
6956
6957 while (!Stack.empty()) {
6958 clang::Module *Mod = Stack.pop_back_val();
6959 if (!EmittedModuleInitializers.insert(Ptr: Mod).second)
6960 continue;
6961
6962 for (auto *D : Context.getModuleInitializers(M: Mod))
6963 EmitTopLevelDecl(D);
6964
6965 // Visit the submodules of this module.
6966 for (auto *Submodule : Mod->submodules()) {
6967 // Skip explicit children; they need to be explicitly imported to emit
6968 // the initializers.
6969 if (Submodule->IsExplicit)
6970 continue;
6971
6972 if (Visited.insert(Ptr: Submodule).second)
6973 Stack.push_back(Elt: Submodule);
6974 }
6975 }
6976 break;
6977 }
6978
6979 case Decl::Export:
6980 EmitDeclContext(cast<ExportDecl>(Val: D));
6981 break;
6982
6983 case Decl::OMPThreadPrivate:
6984 EmitOMPThreadPrivateDecl(D: cast<OMPThreadPrivateDecl>(Val: D));
6985 break;
6986
6987 case Decl::OMPAllocate:
6988 EmitOMPAllocateDecl(D: cast<OMPAllocateDecl>(Val: D));
6989 break;
6990
6991 case Decl::OMPDeclareReduction:
6992 EmitOMPDeclareReduction(D: cast<OMPDeclareReductionDecl>(Val: D));
6993 break;
6994
6995 case Decl::OMPDeclareMapper:
6996 EmitOMPDeclareMapper(D: cast<OMPDeclareMapperDecl>(Val: D));
6997 break;
6998
6999 case Decl::OMPRequires:
7000 EmitOMPRequiresDecl(D: cast<OMPRequiresDecl>(Val: D));
7001 break;
7002
7003 case Decl::Typedef:
7004 case Decl::TypeAlias: // using foo = bar; [C++11]
7005 if (CGDebugInfo *DI = getModuleDebugInfo())
7006 DI->EmitAndRetainType(
7007 Ty: getContext().getTypedefType(Decl: cast<TypedefNameDecl>(Val: D)));
7008 break;
7009
7010 case Decl::Record:
7011 if (CGDebugInfo *DI = getModuleDebugInfo())
7012 if (cast<RecordDecl>(Val: D)->getDefinition())
7013 DI->EmitAndRetainType(Ty: getContext().getRecordType(Decl: cast<RecordDecl>(Val: D)));
7014 break;
7015
7016 case Decl::Enum:
7017 if (CGDebugInfo *DI = getModuleDebugInfo())
7018 if (cast<EnumDecl>(Val: D)->getDefinition())
7019 DI->EmitAndRetainType(Ty: getContext().getEnumType(Decl: cast<EnumDecl>(Val: D)));
7020 break;
7021
7022 case Decl::HLSLBuffer:
7023 getHLSLRuntime().addBuffer(D: cast<HLSLBufferDecl>(Val: D));
7024 break;
7025
7026 default:
7027 // Make sure we handled everything we should, every other kind is a
7028 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind
7029 // function. Need to recode Decl::Kind to do that easily.
7030 assert(isa<TypeDecl>(D) && "Unsupported decl kind");
7031 break;
7032 }
7033}
7034
7035void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
7036 // Do we need to generate coverage mapping?
7037 if (!CodeGenOpts.CoverageMapping)
7038 return;
7039 switch (D->getKind()) {
7040 case Decl::CXXConversion:
7041 case Decl::CXXMethod:
7042 case Decl::Function:
7043 case Decl::ObjCMethod:
7044 case Decl::CXXConstructor:
7045 case Decl::CXXDestructor: {
7046 if (!cast<FunctionDecl>(Val: D)->doesThisDeclarationHaveABody())
7047 break;
7048 SourceManager &SM = getContext().getSourceManager();
7049 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(SpellingLoc: D->getBeginLoc()))
7050 break;
7051 DeferredEmptyCoverageMappingDecls.try_emplace(Key: D, Args: true);
7052 break;
7053 }
7054 default:
7055 break;
7056 };
7057}
7058
7059void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
7060 // Do we need to generate coverage mapping?
7061 if (!CodeGenOpts.CoverageMapping)
7062 return;
7063 if (const auto *Fn = dyn_cast<FunctionDecl>(Val: D)) {
7064 if (Fn->isTemplateInstantiation())
7065 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
7066 }
7067 DeferredEmptyCoverageMappingDecls.insert_or_assign(Key: D, Val: false);
7068}
7069
7070void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
7071 // We call takeVector() here to avoid use-after-free.
7072 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
7073 // we deserialize function bodies to emit coverage info for them, and that
7074 // deserializes more declarations. How should we handle that case?
7075 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
7076 if (!Entry.second)
7077 continue;
7078 const Decl *D = Entry.first;
7079 switch (D->getKind()) {
7080 case Decl::CXXConversion:
7081 case Decl::CXXMethod:
7082 case Decl::Function:
7083 case Decl::ObjCMethod: {
7084 CodeGenPGO PGO(*this);
7085 GlobalDecl GD(cast<FunctionDecl>(Val: D));
7086 PGO.emitEmptyCounterMapping(D, FuncName: getMangledName(GD),
7087 Linkage: getFunctionLinkage(GD));
7088 break;
7089 }
7090 case Decl::CXXConstructor: {
7091 CodeGenPGO PGO(*this);
7092 GlobalDecl GD(cast<CXXConstructorDecl>(Val: D), Ctor_Base);
7093 PGO.emitEmptyCounterMapping(D, FuncName: getMangledName(GD),
7094 Linkage: getFunctionLinkage(GD));
7095 break;
7096 }
7097 case Decl::CXXDestructor: {
7098 CodeGenPGO PGO(*this);
7099 GlobalDecl GD(cast<CXXDestructorDecl>(Val: D), Dtor_Base);
7100 PGO.emitEmptyCounterMapping(D, FuncName: getMangledName(GD),
7101 Linkage: getFunctionLinkage(GD));
7102 break;
7103 }
7104 default:
7105 break;
7106 };
7107 }
7108}
7109
7110void CodeGenModule::EmitMainVoidAlias() {
7111 // In order to transition away from "__original_main" gracefully, emit an
7112 // alias for "main" in the no-argument case so that libc can detect when
7113 // new-style no-argument main is in used.
7114 if (llvm::Function *F = getModule().getFunction(Name: "main")) {
7115 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
7116 F->getReturnType()->isIntegerTy(Bitwidth: Context.getTargetInfo().getIntWidth())) {
7117 auto *GA = llvm::GlobalAlias::create(Name: "__main_void", Aliasee: F);
7118 GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
7119 }
7120 }
7121}
7122
7123/// Turns the given pointer into a constant.
7124static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
7125 const void *Ptr) {
7126 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
7127 llvm::Type *i64 = llvm::Type::getInt64Ty(C&: Context);
7128 return llvm::ConstantInt::get(Ty: i64, V: PtrInt);
7129}
7130
7131static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
7132 llvm::NamedMDNode *&GlobalMetadata,
7133 GlobalDecl D,
7134 llvm::GlobalValue *Addr) {
7135 if (!GlobalMetadata)
7136 GlobalMetadata =
7137 CGM.getModule().getOrInsertNamedMetadata(Name: "clang.global.decl.ptrs");
7138
7139 // TODO: should we report variant information for ctors/dtors?
7140 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(C: Addr),
7141 llvm::ConstantAsMetadata::get(C: GetPointerConstant(
7142 Context&: CGM.getLLVMContext(), Ptr: D.getDecl()))};
7143 GlobalMetadata->addOperand(M: llvm::MDNode::get(Context&: CGM.getLLVMContext(), MDs: Ops));
7144}
7145
7146bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
7147 llvm::GlobalValue *CppFunc) {
7148 // Store the list of ifuncs we need to replace uses in.
7149 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
7150 // List of ConstantExprs that we should be able to delete when we're done
7151 // here.
7152 llvm::SmallVector<llvm::ConstantExpr *> CEs;
7153
7154 // It isn't valid to replace the extern-C ifuncs if all we find is itself!
7155 if (Elem == CppFunc)
7156 return false;
7157
7158 // First make sure that all users of this are ifuncs (or ifuncs via a
7159 // bitcast), and collect the list of ifuncs and CEs so we can work on them
7160 // later.
7161 for (llvm::User *User : Elem->users()) {
7162 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
7163 // ifunc directly. In any other case, just give up, as we don't know what we
7164 // could break by changing those.
7165 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(Val: User)) {
7166 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
7167 return false;
7168
7169 for (llvm::User *CEUser : ConstExpr->users()) {
7170 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(Val: CEUser)) {
7171 IFuncs.push_back(Elt: IFunc);
7172 } else {
7173 return false;
7174 }
7175 }
7176 CEs.push_back(Elt: ConstExpr);
7177 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(Val: User)) {
7178 IFuncs.push_back(Elt: IFunc);
7179 } else {
7180 // This user is one we don't know how to handle, so fail redirection. This
7181 // will result in an ifunc retaining a resolver name that will ultimately
7182 // fail to be resolved to a defined function.
7183 return false;
7184 }
7185 }
7186
7187 // Now we know this is a valid case where we can do this alias replacement, we
7188 // need to remove all of the references to Elem (and the bitcasts!) so we can
7189 // delete it.
7190 for (llvm::GlobalIFunc *IFunc : IFuncs)
7191 IFunc->setResolver(nullptr);
7192 for (llvm::ConstantExpr *ConstExpr : CEs)
7193 ConstExpr->destroyConstant();
7194
7195 // We should now be out of uses for the 'old' version of this function, so we
7196 // can erase it as well.
7197 Elem->eraseFromParent();
7198
7199 for (llvm::GlobalIFunc *IFunc : IFuncs) {
7200 // The type of the resolver is always just a function-type that returns the
7201 // type of the IFunc, so create that here. If the type of the actual
7202 // resolver doesn't match, it just gets bitcast to the right thing.
7203 auto *ResolverTy =
7204 llvm::FunctionType::get(Result: IFunc->getType(), /*isVarArg*/ false);
7205 llvm::Constant *Resolver = GetOrCreateLLVMFunction(
7206 MangledName: CppFunc->getName(), Ty: ResolverTy, GD: {}, /*ForVTable*/ false);
7207 IFunc->setResolver(Resolver);
7208 }
7209 return true;
7210}
7211
7212/// For each function which is declared within an extern "C" region and marked
7213/// as 'used', but has internal linkage, create an alias from the unmangled
7214/// name to the mangled name if possible. People expect to be able to refer
7215/// to such functions with an unmangled name from inline assembly within the
7216/// same translation unit.
7217void CodeGenModule::EmitStaticExternCAliases() {
7218 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
7219 return;
7220 for (auto &I : StaticExternCValues) {
7221 IdentifierInfo *Name = I.first;
7222 llvm::GlobalValue *Val = I.second;
7223
7224 // If Val is null, that implies there were multiple declarations that each
7225 // had a claim to the unmangled name. In this case, generation of the alias
7226 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
7227 if (!Val)
7228 break;
7229
7230 llvm::GlobalValue *ExistingElem =
7231 getModule().getNamedValue(Name: Name->getName());
7232
7233 // If there is either not something already by this name, or we were able to
7234 // replace all uses from IFuncs, create the alias.
7235 if (!ExistingElem || CheckAndReplaceExternCIFuncs(Elem: ExistingElem, CppFunc: Val))
7236 addCompilerUsedGlobal(GV: llvm::GlobalAlias::create(Name: Name->getName(), Aliasee: Val));
7237 }
7238}
7239
7240bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
7241 GlobalDecl &Result) const {
7242 auto Res = Manglings.find(Key: MangledName);
7243 if (Res == Manglings.end())
7244 return false;
7245 Result = Res->getValue();
7246 return true;
7247}
7248
7249/// Emits metadata nodes associating all the global values in the
7250/// current module with the Decls they came from. This is useful for
7251/// projects using IR gen as a subroutine.
7252///
7253/// Since there's currently no way to associate an MDNode directly
7254/// with an llvm::GlobalValue, we create a global named metadata
7255/// with the name 'clang.global.decl.ptrs'.
7256void CodeGenModule::EmitDeclMetadata() {
7257 llvm::NamedMDNode *GlobalMetadata = nullptr;
7258
7259 for (auto &I : MangledDeclNames) {
7260 llvm::GlobalValue *Addr = getModule().getNamedValue(Name: I.second);
7261 // Some mangled names don't necessarily have an associated GlobalValue
7262 // in this module, e.g. if we mangled it for DebugInfo.
7263 if (Addr)
7264 EmitGlobalDeclMetadata(CGM&: *this, GlobalMetadata, D: I.first, Addr);
7265 }
7266}
7267
7268/// Emits metadata nodes for all the local variables in the current
7269/// function.
7270void CodeGenFunction::EmitDeclMetadata() {
7271 if (LocalDeclMap.empty()) return;
7272
7273 llvm::LLVMContext &Context = getLLVMContext();
7274
7275 // Find the unique metadata ID for this name.
7276 unsigned DeclPtrKind = Context.getMDKindID(Name: "clang.decl.ptr");
7277
7278 llvm::NamedMDNode *GlobalMetadata = nullptr;
7279
7280 for (auto &I : LocalDeclMap) {
7281 const Decl *D = I.first;
7282 llvm::Value *Addr = I.second.getPointer();
7283 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Val: Addr)) {
7284 llvm::Value *DAddr = GetPointerConstant(Context&: getLLVMContext(), Ptr: D);
7285 Alloca->setMetadata(
7286 KindID: DeclPtrKind, Node: llvm::MDNode::get(
7287 Context, MDs: llvm::ValueAsMetadata::getConstant(C: DAddr)));
7288 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Val: Addr)) {
7289 GlobalDecl GD = GlobalDecl(cast<VarDecl>(Val: D));
7290 EmitGlobalDeclMetadata(CGM, GlobalMetadata, D: GD, Addr: GV);
7291 }
7292 }
7293}
7294
7295void CodeGenModule::EmitVersionIdentMetadata() {
7296 llvm::NamedMDNode *IdentMetadata =
7297 TheModule.getOrInsertNamedMetadata(Name: "llvm.ident");
7298 std::string Version = getClangFullVersion();
7299 llvm::LLVMContext &Ctx = TheModule.getContext();
7300
7301 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Context&: Ctx, Str: Version)};
7302 IdentMetadata->addOperand(M: llvm::MDNode::get(Context&: Ctx, MDs: IdentNode));
7303}
7304
7305void CodeGenModule::EmitCommandLineMetadata() {
7306 llvm::NamedMDNode *CommandLineMetadata =
7307 TheModule.getOrInsertNamedMetadata(Name: "llvm.commandline");
7308 std::string CommandLine = getCodeGenOpts().RecordCommandLine;
7309 llvm::LLVMContext &Ctx = TheModule.getContext();
7310
7311 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Context&: Ctx, Str: CommandLine)};
7312 CommandLineMetadata->addOperand(M: llvm::MDNode::get(Context&: Ctx, MDs: CommandLineNode));
7313}
7314
7315void CodeGenModule::EmitCoverageFile() {
7316 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata(Name: "llvm.dbg.cu");
7317 if (!CUNode)
7318 return;
7319
7320 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata(Name: "llvm.gcov");
7321 llvm::LLVMContext &Ctx = TheModule.getContext();
7322 auto *CoverageDataFile =
7323 llvm::MDString::get(Context&: Ctx, Str: getCodeGenOpts().CoverageDataFile);
7324 auto *CoverageNotesFile =
7325 llvm::MDString::get(Context&: Ctx, Str: getCodeGenOpts().CoverageNotesFile);
7326 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
7327 llvm::MDNode *CU = CUNode->getOperand(i);
7328 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
7329 GCov->addOperand(M: llvm::MDNode::get(Context&: Ctx, MDs: Elts));
7330 }
7331}
7332
7333llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
7334 bool ForEH) {
7335 // Return a bogus pointer if RTTI is disabled, unless it's for EH.
7336 // FIXME: should we even be calling this method if RTTI is disabled
7337 // and it's not for EH?
7338 if (!shouldEmitRTTI(ForEH))
7339 return llvm::Constant::getNullValue(Ty: GlobalsInt8PtrTy);
7340
7341 if (ForEH && Ty->isObjCObjectPointerType() &&
7342 LangOpts.ObjCRuntime.isGNUFamily())
7343 return ObjCRuntime->GetEHType(T: Ty);
7344
7345 return getCXXABI().getAddrOfRTTIDescriptor(Ty);
7346}
7347
7348void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
7349 // Do not emit threadprivates in simd-only mode.
7350 if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
7351 return;
7352 for (auto RefExpr : D->varlists()) {
7353 auto *VD = cast<VarDecl>(Val: cast<DeclRefExpr>(Val: RefExpr)->getDecl());
7354 bool PerformInit =
7355 VD->getAnyInitializer() &&
7356 !VD->getAnyInitializer()->isConstantInitializer(Ctx&: getContext(),
7357 /*ForRef=*/false);
7358
7359 Address Addr(GetAddrOfGlobalVar(D: VD),
7360 getTypes().ConvertTypeForMem(T: VD->getType()),
7361 getContext().getDeclAlign(VD));
7362 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
7363 VD, Addr, RefExpr->getBeginLoc(), PerformInit))
7364 CXXGlobalInits.push_back(InitFunction);
7365 }
7366}
7367
7368llvm::Metadata *
7369CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
7370 StringRef Suffix) {
7371 if (auto *FnType = T->getAs<FunctionProtoType>())
7372 T = getContext().getFunctionType(
7373 ResultTy: FnType->getReturnType(), Args: FnType->getParamTypes(),
7374 EPI: FnType->getExtProtoInfo().withExceptionSpec(ESI: EST_None));
7375
7376 llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
7377 if (InternalId)
7378 return InternalId;
7379
7380 if (isExternallyVisible(L: T->getLinkage())) {
7381 std::string OutName;
7382 llvm::raw_string_ostream Out(OutName);
7383 getCXXABI().getMangleContext().mangleCanonicalTypeName(
7384 T, Out, NormalizeIntegers: getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
7385
7386 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
7387 Out << ".normalized";
7388
7389 Out << Suffix;
7390
7391 InternalId = llvm::MDString::get(Context&: getLLVMContext(), Str: Out.str());
7392 } else {
7393 InternalId = llvm::MDNode::getDistinct(Context&: getLLVMContext(),
7394 MDs: llvm::ArrayRef<llvm::Metadata *>());
7395 }
7396
7397 return InternalId;
7398}
7399
7400llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
7401 return CreateMetadataIdentifierImpl(T, Map&: MetadataIdMap, Suffix: "");
7402}
7403
7404llvm::Metadata *
7405CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
7406 return CreateMetadataIdentifierImpl(T, Map&: VirtualMetadataIdMap, Suffix: ".virtual");
7407}
7408
7409// Generalize pointer types to a void pointer with the qualifiers of the
7410// originally pointed-to type, e.g. 'const char *' and 'char * const *'
7411// generalize to 'const void *' while 'char *' and 'const char **' generalize to
7412// 'void *'.
7413static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
7414 if (!Ty->isPointerType())
7415 return Ty;
7416
7417 return Ctx.getPointerType(
7418 T: QualType(Ctx.VoidTy).withCVRQualifiers(
7419 CVR: Ty->getPointeeType().getCVRQualifiers()));
7420}
7421
7422// Apply type generalization to a FunctionType's return and argument types
7423static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
7424 if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
7425 SmallVector<QualType, 8> GeneralizedParams;
7426 for (auto &Param : FnType->param_types())
7427 GeneralizedParams.push_back(Elt: GeneralizeType(Ctx, Ty: Param));
7428
7429 return Ctx.getFunctionType(
7430 ResultTy: GeneralizeType(Ctx, FnType->getReturnType()),
7431 Args: GeneralizedParams, EPI: FnType->getExtProtoInfo());
7432 }
7433
7434 if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
7435 return Ctx.getFunctionNoProtoType(
7436 GeneralizeType(Ctx, FnType->getReturnType()));
7437
7438 llvm_unreachable("Encountered unknown FunctionType");
7439}
7440
7441llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
7442 return CreateMetadataIdentifierImpl(T: GeneralizeFunctionType(Ctx&: getContext(), Ty: T),
7443 Map&: GeneralizedMetadataIdMap, Suffix: ".generalized");
7444}
7445
7446/// Returns whether this module needs the "all-vtables" type identifier.
7447bool CodeGenModule::NeedAllVtablesTypeId() const {
7448 // Returns true if at least one of vtable-based CFI checkers is enabled and
7449 // is not in the trapping mode.
7450 return ((LangOpts.Sanitize.has(K: SanitizerKind::CFIVCall) &&
7451 !CodeGenOpts.SanitizeTrap.has(K: SanitizerKind::CFIVCall)) ||
7452 (LangOpts.Sanitize.has(K: SanitizerKind::CFINVCall) &&
7453 !CodeGenOpts.SanitizeTrap.has(K: SanitizerKind::CFINVCall)) ||
7454 (LangOpts.Sanitize.has(K: SanitizerKind::CFIDerivedCast) &&
7455 !CodeGenOpts.SanitizeTrap.has(K: SanitizerKind::CFIDerivedCast)) ||
7456 (LangOpts.Sanitize.has(K: SanitizerKind::CFIUnrelatedCast) &&
7457 !CodeGenOpts.SanitizeTrap.has(K: SanitizerKind::CFIUnrelatedCast)));
7458}
7459
7460void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
7461 CharUnits Offset,
7462 const CXXRecordDecl *RD) {
7463 llvm::Metadata *MD =
7464 CreateMetadataIdentifierForType(T: QualType(RD->getTypeForDecl(), 0));
7465 VTable->addTypeMetadata(Offset: Offset.getQuantity(), TypeID: MD);
7466
7467 if (CodeGenOpts.SanitizeCfiCrossDso)
7468 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
7469 VTable->addTypeMetadata(Offset: Offset.getQuantity(),
7470 TypeID: llvm::ConstantAsMetadata::get(C: CrossDsoTypeId));
7471
7472 if (NeedAllVtablesTypeId()) {
7473 llvm::Metadata *MD = llvm::MDString::get(Context&: getLLVMContext(), Str: "all-vtables");
7474 VTable->addTypeMetadata(Offset: Offset.getQuantity(), TypeID: MD);
7475 }
7476}
7477
7478llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
7479 if (!SanStats)
7480 SanStats = std::make_unique<llvm::SanitizerStatReport>(args: &getModule());
7481
7482 return *SanStats;
7483}
7484
7485llvm::Value *
7486CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
7487 CodeGenFunction &CGF) {
7488 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, T: E->getType());
7489 auto *SamplerT = getOpenCLRuntime().getSamplerType(T: E->getType().getTypePtr());
7490 auto *FTy = llvm::FunctionType::get(Result: SamplerT, Params: {C->getType()}, isVarArg: false);
7491 auto *Call = CGF.EmitRuntimeCall(
7492 callee: CreateRuntimeFunction(FTy, Name: "__translate_sampler_initializer"), args: {C});
7493 return Call;
7494}
7495
7496CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
7497 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
7498 return getNaturalTypeAlignment(T: T->getPointeeType(), BaseInfo, TBAAInfo,
7499 /* forPointeeType= */ true);
7500}
7501
7502CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
7503 LValueBaseInfo *BaseInfo,
7504 TBAAAccessInfo *TBAAInfo,
7505 bool forPointeeType) {
7506 if (TBAAInfo)
7507 *TBAAInfo = getTBAAAccessInfo(AccessType: T);
7508
7509 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7510 // that doesn't return the information we need to compute BaseInfo.
7511
7512 // Honor alignment typedef attributes even on incomplete types.
7513 // We also honor them straight for C++ class types, even as pointees;
7514 // there's an expressivity gap here.
7515 if (auto TT = T->getAs<TypedefType>()) {
7516 if (auto Align = TT->getDecl()->getMaxAlignment()) {
7517 if (BaseInfo)
7518 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7519 return getContext().toCharUnitsFromBits(BitSize: Align);
7520 }
7521 }
7522
7523 bool AlignForArray = T->isArrayType();
7524
7525 // Analyze the base element type, so we don't get confused by incomplete
7526 // array types.
7527 T = getContext().getBaseElementType(QT: T);
7528
7529 if (T->isIncompleteType()) {
7530 // We could try to replicate the logic from
7531 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7532 // type is incomplete, so it's impossible to test. We could try to reuse
7533 // getTypeAlignIfKnown, but that doesn't return the information we need
7534 // to set BaseInfo. So just ignore the possibility that the alignment is
7535 // greater than one.
7536 if (BaseInfo)
7537 *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7538 return CharUnits::One();
7539 }
7540
7541 if (BaseInfo)
7542 *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7543
7544 CharUnits Alignment;
7545 const CXXRecordDecl *RD;
7546 if (T.getQualifiers().hasUnaligned()) {
7547 Alignment = CharUnits::One();
7548 } else if (forPointeeType && !AlignForArray &&
7549 (RD = T->getAsCXXRecordDecl())) {
7550 // For C++ class pointees, we don't know whether we're pointing at a
7551 // base or a complete object, so we generally need to use the
7552 // non-virtual alignment.
7553 Alignment = getClassPointerAlignment(CD: RD);
7554 } else {
7555 Alignment = getContext().getTypeAlignInChars(T);
7556 }
7557
7558 // Cap to the global maximum type alignment unless the alignment
7559 // was somehow explicit on the type.
7560 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7561 if (Alignment.getQuantity() > MaxAlign &&
7562 !getContext().isAlignmentRequired(T))
7563 Alignment = CharUnits::fromQuantity(Quantity: MaxAlign);
7564 }
7565 return Alignment;
7566}
7567
7568bool CodeGenModule::stopAutoInit() {
7569 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7570 if (StopAfter) {
7571 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7572 // used
7573 if (NumAutoVarInit >= StopAfter) {
7574 return true;
7575 }
7576 if (!NumAutoVarInit) {
7577 unsigned DiagID = getDiags().getCustomDiagID(
7578 L: DiagnosticsEngine::Warning,
7579 FormatString: "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7580 "number of times ftrivial-auto-var-init=%1 gets applied.");
7581 getDiags().Report(DiagID)
7582 << StopAfter
7583 << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7584 LangOptions::TrivialAutoVarInitKind::Zero
7585 ? "zero"
7586 : "pattern");
7587 }
7588 ++NumAutoVarInit;
7589 }
7590 return false;
7591}
7592
7593void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7594 const Decl *D) const {
7595 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7596 // postfix beginning with '.' since the symbol name can be demangled.
7597 if (LangOpts.HIP)
7598 OS << (isa<VarDecl>(Val: D) ? ".static." : ".intern.");
7599 else
7600 OS << (isa<VarDecl>(Val: D) ? "__static__" : "__intern__");
7601
7602 // If the CUID is not specified we try to generate a unique postfix.
7603 if (getLangOpts().CUID.empty()) {
7604 SourceManager &SM = getContext().getSourceManager();
7605 PresumedLoc PLoc = SM.getPresumedLoc(Loc: D->getLocation());
7606 assert(PLoc.isValid() && "Source location is expected to be valid.");
7607
7608 // Get the hash of the user defined macros.
7609 llvm::MD5 Hash;
7610 llvm::MD5::MD5Result Result;
7611 for (const auto &Arg : PreprocessorOpts.Macros)
7612 Hash.update(Str: Arg.first);
7613 Hash.final(Result);
7614
7615 // Get the UniqueID for the file containing the decl.
7616 llvm::sys::fs::UniqueID ID;
7617 if (llvm::sys::fs::getUniqueID(Path: PLoc.getFilename(), Result&: ID)) {
7618 PLoc = SM.getPresumedLoc(Loc: D->getLocation(), /*UseLineDirectives=*/false);
7619 assert(PLoc.isValid() && "Source location is expected to be valid.");
7620 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7621 SM.getDiagnostics().Report(diag::err_cannot_open_file)
7622 << PLoc.getFilename() << EC.message();
7623 }
7624 OS << llvm::format(Fmt: "%x", Vals: ID.getFile()) << llvm::format(Fmt: "%x", Vals: ID.getDevice())
7625 << "_" << llvm::utohexstr(X: Result.low(), /*LowerCase=*/true, /*Width=*/8);
7626 } else {
7627 OS << getContext().getCUIDHash();
7628 }
7629}
7630
7631void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7632 assert(DeferredDeclsToEmit.empty() &&
7633 "Should have emitted all decls deferred to emit.");
7634 assert(NewBuilder->DeferredDecls.empty() &&
7635 "Newly created module should not have deferred decls");
7636 NewBuilder->DeferredDecls = std::move(DeferredDecls);
7637 assert(EmittedDeferredDecls.empty() &&
7638 "Still have (unmerged) EmittedDeferredDecls deferred decls");
7639
7640 assert(NewBuilder->DeferredVTables.empty() &&
7641 "Newly created module should not have deferred vtables");
7642 NewBuilder->DeferredVTables = std::move(DeferredVTables);
7643
7644 assert(NewBuilder->MangledDeclNames.empty() &&
7645 "Newly created module should not have mangled decl names");
7646 assert(NewBuilder->Manglings.empty() &&
7647 "Newly created module should not have manglings");
7648 NewBuilder->Manglings = std::move(Manglings);
7649
7650 NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7651
7652 NewBuilder->TBAA = std::move(TBAA);
7653
7654 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7655}
7656

source code of clang/lib/CodeGen/CodeGenModule.cpp