1 | //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This coordinates the per-module state used while generating code. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "CodeGenModule.h" |
14 | #include "CGBlocks.h" |
15 | #include "CGCUDARuntime.h" |
16 | #include "CGCXXABI.h" |
17 | #include "CGCall.h" |
18 | #include "CGDebugInfo.h" |
19 | #include "CGObjCRuntime.h" |
20 | #include "CGOpenCLRuntime.h" |
21 | #include "CGOpenMPRuntime.h" |
22 | #include "CGOpenMPRuntimeAMDGCN.h" |
23 | #include "CGOpenMPRuntimeNVPTX.h" |
24 | #include "CodeGenFunction.h" |
25 | #include "CodeGenPGO.h" |
26 | #include "ConstantEmitter.h" |
27 | #include "CoverageMappingGen.h" |
28 | #include "TargetInfo.h" |
29 | #include "clang/AST/ASTContext.h" |
30 | #include "clang/AST/CharUnits.h" |
31 | #include "clang/AST/DeclCXX.h" |
32 | #include "clang/AST/DeclObjC.h" |
33 | #include "clang/AST/DeclTemplate.h" |
34 | #include "clang/AST/Mangle.h" |
35 | #include "clang/AST/RecordLayout.h" |
36 | #include "clang/AST/RecursiveASTVisitor.h" |
37 | #include "clang/AST/StmtVisitor.h" |
38 | #include "clang/Basic/Builtins.h" |
39 | #include "clang/Basic/CharInfo.h" |
40 | #include "clang/Basic/CodeGenOptions.h" |
41 | #include "clang/Basic/Diagnostic.h" |
42 | #include "clang/Basic/FileManager.h" |
43 | #include "clang/Basic/Module.h" |
44 | #include "clang/Basic/SourceManager.h" |
45 | #include "clang/Basic/TargetInfo.h" |
46 | #include "clang/Basic/Version.h" |
47 | #include "clang/CodeGen/ConstantInitBuilder.h" |
48 | #include "clang/Frontend/FrontendDiagnostic.h" |
49 | #include "llvm/ADT/StringSwitch.h" |
50 | #include "llvm/ADT/Triple.h" |
51 | #include "llvm/Analysis/TargetLibraryInfo.h" |
52 | #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" |
53 | #include "llvm/IR/CallingConv.h" |
54 | #include "llvm/IR/DataLayout.h" |
55 | #include "llvm/IR/Intrinsics.h" |
56 | #include "llvm/IR/LLVMContext.h" |
57 | #include "llvm/IR/Module.h" |
58 | #include "llvm/IR/ProfileSummary.h" |
59 | #include "llvm/ProfileData/InstrProfReader.h" |
60 | #include "llvm/Support/CodeGen.h" |
61 | #include "llvm/Support/CommandLine.h" |
62 | #include "llvm/Support/ConvertUTF.h" |
63 | #include "llvm/Support/ErrorHandling.h" |
64 | #include "llvm/Support/MD5.h" |
65 | #include "llvm/Support/TimeProfiler.h" |
66 | |
67 | using namespace clang; |
68 | using namespace CodeGen; |
69 | |
70 | static llvm::cl::opt<bool> LimitedCoverage( |
71 | "limited-coverage-experimental" , llvm::cl::ZeroOrMore, llvm::cl::Hidden, |
72 | llvm::cl::desc("Emit limited coverage mapping information (experimental)" ), |
73 | llvm::cl::init(false)); |
74 | |
75 | static const char AnnotationSection[] = "llvm.metadata" ; |
76 | |
77 | static CGCXXABI *createCXXABI(CodeGenModule &CGM) { |
78 | switch (CGM.getContext().getCXXABIKind()) { |
79 | case TargetCXXABI::AppleARM64: |
80 | case TargetCXXABI::Fuchsia: |
81 | case TargetCXXABI::GenericAArch64: |
82 | case TargetCXXABI::GenericARM: |
83 | case TargetCXXABI::iOS: |
84 | case TargetCXXABI::WatchOS: |
85 | case TargetCXXABI::GenericMIPS: |
86 | case TargetCXXABI::GenericItanium: |
87 | case TargetCXXABI::WebAssembly: |
88 | case TargetCXXABI::XL: |
89 | return CreateItaniumCXXABI(CGM); |
90 | case TargetCXXABI::Microsoft: |
91 | return CreateMicrosoftCXXABI(CGM); |
92 | } |
93 | |
94 | llvm_unreachable("invalid C++ ABI kind" ); |
95 | } |
96 | |
97 | CodeGenModule::(ASTContext &C, const HeaderSearchOptions &HSO, |
98 | const PreprocessorOptions &PPO, |
99 | const CodeGenOptions &CGO, llvm::Module &M, |
100 | DiagnosticsEngine &diags, |
101 | CoverageSourceInfo *CoverageInfo) |
102 | : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), |
103 | PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), |
104 | Target(C.getTargetInfo()), ABI(createCXXABI(*this)), |
105 | VMContext(M.getContext()), Types(*this), VTables(*this), |
106 | SanitizerMD(new SanitizerMetadata(*this)) { |
107 | |
108 | // Initialize the type cache. |
109 | llvm::LLVMContext &LLVMContext = M.getContext(); |
110 | VoidTy = llvm::Type::getVoidTy(LLVMContext); |
111 | Int8Ty = llvm::Type::getInt8Ty(LLVMContext); |
112 | Int16Ty = llvm::Type::getInt16Ty(LLVMContext); |
113 | Int32Ty = llvm::Type::getInt32Ty(LLVMContext); |
114 | Int64Ty = llvm::Type::getInt64Ty(LLVMContext); |
115 | HalfTy = llvm::Type::getHalfTy(LLVMContext); |
116 | BFloatTy = llvm::Type::getBFloatTy(LLVMContext); |
117 | FloatTy = llvm::Type::getFloatTy(LLVMContext); |
118 | DoubleTy = llvm::Type::getDoubleTy(LLVMContext); |
119 | PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); |
120 | PointerAlignInBytes = |
121 | C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); |
122 | SizeSizeInBytes = |
123 | C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); |
124 | IntAlignInBytes = |
125 | C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); |
126 | CharTy = |
127 | llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); |
128 | IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); |
129 | IntPtrTy = llvm::IntegerType::get(LLVMContext, |
130 | C.getTargetInfo().getMaxPointerWidth()); |
131 | Int8PtrTy = Int8Ty->getPointerTo(0); |
132 | Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); |
133 | AllocaInt8PtrTy = Int8Ty->getPointerTo( |
134 | M.getDataLayout().getAllocaAddrSpace()); |
135 | ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); |
136 | |
137 | RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); |
138 | |
139 | if (LangOpts.ObjC) |
140 | createObjCRuntime(); |
141 | if (LangOpts.OpenCL) |
142 | createOpenCLRuntime(); |
143 | if (LangOpts.OpenMP) |
144 | createOpenMPRuntime(); |
145 | if (LangOpts.CUDA) |
146 | createCUDARuntime(); |
147 | |
148 | // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. |
149 | if (LangOpts.Sanitize.has(SanitizerKind::Thread) || |
150 | (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) |
151 | TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), |
152 | getCXXABI().getMangleContext())); |
153 | |
154 | // If debug info or coverage generation is enabled, create the CGDebugInfo |
155 | // object. |
156 | if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || |
157 | CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) |
158 | DebugInfo.reset(new CGDebugInfo(*this)); |
159 | |
160 | Block.GlobalUniqueCount = 0; |
161 | |
162 | if (C.getLangOpts().ObjC) |
163 | ObjCData.reset(new ObjCEntrypoints()); |
164 | |
165 | if (CodeGenOpts.hasProfileClangUse()) { |
166 | auto ReaderOrErr = llvm::IndexedInstrProfReader::create( |
167 | CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); |
168 | if (auto E = ReaderOrErr.takeError()) { |
169 | unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
170 | "Could not read profile %0: %1" ); |
171 | llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { |
172 | getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath |
173 | << EI.message(); |
174 | }); |
175 | } else |
176 | PGOReader = std::move(ReaderOrErr.get()); |
177 | } |
178 | |
179 | // If coverage mapping generation is enabled, create the |
180 | // CoverageMappingModuleGen object. |
181 | if (CodeGenOpts.CoverageMapping) |
182 | CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); |
183 | |
184 | // Generate the module name hash here if needed. |
185 | if (CodeGenOpts.UniqueInternalLinkageNames && |
186 | !getModule().getSourceFileName().empty()) { |
187 | std::string Path = getModule().getSourceFileName(); |
188 | // Check if a path substitution is needed from the MacroPrefixMap. |
189 | for (const auto &Entry : PPO.MacroPrefixMap) |
190 | if (Path.rfind(Entry.first, 0) != std::string::npos) { |
191 | Path = Entry.second + Path.substr(Entry.first.size()); |
192 | break; |
193 | } |
194 | llvm::MD5 Md5; |
195 | Md5.update(Path); |
196 | llvm::MD5::MD5Result R; |
197 | Md5.final(R); |
198 | SmallString<32> Str; |
199 | llvm::MD5::stringifyResult(R, Str); |
200 | // Convert MD5hash to Decimal. Demangler suffixes can either contain |
201 | // numbers or characters but not both. |
202 | llvm::APInt IntHash(128, Str.str(), 16); |
203 | // Prepend "__uniq" before the hash for tools like profilers to understand |
204 | // that this symbol is of internal linkage type. The "__uniq" is the |
205 | // pre-determined prefix that is used to tell tools that this symbol was |
206 | // created with -funique-internal-linakge-symbols and the tools can strip or |
207 | // keep the prefix as needed. |
208 | ModuleNameHash = (Twine(".__uniq." ) + |
209 | Twine(IntHash.toString(/* Radix = */ 10, /* Signed = */false))).str(); |
210 | } |
211 | } |
212 | |
213 | CodeGenModule::~CodeGenModule() {} |
214 | |
215 | void CodeGenModule::createObjCRuntime() { |
216 | // This is just isGNUFamily(), but we want to force implementors of |
217 | // new ABIs to decide how best to do this. |
218 | switch (LangOpts.ObjCRuntime.getKind()) { |
219 | case ObjCRuntime::GNUstep: |
220 | case ObjCRuntime::GCC: |
221 | case ObjCRuntime::ObjFW: |
222 | ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); |
223 | return; |
224 | |
225 | case ObjCRuntime::FragileMacOSX: |
226 | case ObjCRuntime::MacOSX: |
227 | case ObjCRuntime::iOS: |
228 | case ObjCRuntime::WatchOS: |
229 | ObjCRuntime.reset(CreateMacObjCRuntime(*this)); |
230 | return; |
231 | } |
232 | llvm_unreachable("bad runtime kind" ); |
233 | } |
234 | |
235 | void CodeGenModule::createOpenCLRuntime() { |
236 | OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); |
237 | } |
238 | |
239 | void CodeGenModule::createOpenMPRuntime() { |
240 | // Select a specialized code generation class based on the target, if any. |
241 | // If it does not exist use the default implementation. |
242 | switch (getTriple().getArch()) { |
243 | case llvm::Triple::nvptx: |
244 | case llvm::Triple::nvptx64: |
245 | assert(getLangOpts().OpenMPIsDevice && |
246 | "OpenMP NVPTX is only prepared to deal with device code." ); |
247 | OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); |
248 | break; |
249 | case llvm::Triple::amdgcn: |
250 | assert(getLangOpts().OpenMPIsDevice && |
251 | "OpenMP AMDGCN is only prepared to deal with device code." ); |
252 | OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this)); |
253 | break; |
254 | default: |
255 | if (LangOpts.OpenMPSimd) |
256 | OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); |
257 | else |
258 | OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); |
259 | break; |
260 | } |
261 | } |
262 | |
263 | void CodeGenModule::createCUDARuntime() { |
264 | CUDARuntime.reset(CreateNVCUDARuntime(*this)); |
265 | } |
266 | |
267 | void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { |
268 | Replacements[Name] = C; |
269 | } |
270 | |
271 | void CodeGenModule::applyReplacements() { |
272 | for (auto &I : Replacements) { |
273 | StringRef MangledName = I.first(); |
274 | llvm::Constant *Replacement = I.second; |
275 | llvm::GlobalValue *Entry = GetGlobalValue(MangledName); |
276 | if (!Entry) |
277 | continue; |
278 | auto *OldF = cast<llvm::Function>(Entry); |
279 | auto *NewF = dyn_cast<llvm::Function>(Replacement); |
280 | if (!NewF) { |
281 | if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { |
282 | NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); |
283 | } else { |
284 | auto *CE = cast<llvm::ConstantExpr>(Replacement); |
285 | assert(CE->getOpcode() == llvm::Instruction::BitCast || |
286 | CE->getOpcode() == llvm::Instruction::GetElementPtr); |
287 | NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); |
288 | } |
289 | } |
290 | |
291 | // Replace old with new, but keep the old order. |
292 | OldF->replaceAllUsesWith(Replacement); |
293 | if (NewF) { |
294 | NewF->removeFromParent(); |
295 | OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), |
296 | NewF); |
297 | } |
298 | OldF->eraseFromParent(); |
299 | } |
300 | } |
301 | |
302 | void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { |
303 | GlobalValReplacements.push_back(std::make_pair(GV, C)); |
304 | } |
305 | |
306 | void CodeGenModule::applyGlobalValReplacements() { |
307 | for (auto &I : GlobalValReplacements) { |
308 | llvm::GlobalValue *GV = I.first; |
309 | llvm::Constant *C = I.second; |
310 | |
311 | GV->replaceAllUsesWith(C); |
312 | GV->eraseFromParent(); |
313 | } |
314 | } |
315 | |
316 | // This is only used in aliases that we created and we know they have a |
317 | // linear structure. |
318 | static const llvm::GlobalObject *getAliasedGlobal( |
319 | const llvm::GlobalIndirectSymbol &GIS) { |
320 | llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; |
321 | const llvm::Constant *C = &GIS; |
322 | for (;;) { |
323 | C = C->stripPointerCasts(); |
324 | if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) |
325 | return GO; |
326 | // stripPointerCasts will not walk over weak aliases. |
327 | auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); |
328 | if (!GIS2) |
329 | return nullptr; |
330 | if (!Visited.insert(GIS2).second) |
331 | return nullptr; |
332 | C = GIS2->getIndirectSymbol(); |
333 | } |
334 | } |
335 | |
336 | void CodeGenModule::checkAliases() { |
337 | // Check if the constructed aliases are well formed. It is really unfortunate |
338 | // that we have to do this in CodeGen, but we only construct mangled names |
339 | // and aliases during codegen. |
340 | bool Error = false; |
341 | DiagnosticsEngine &Diags = getDiags(); |
342 | for (const GlobalDecl &GD : Aliases) { |
343 | const auto *D = cast<ValueDecl>(GD.getDecl()); |
344 | SourceLocation Location; |
345 | bool IsIFunc = D->hasAttr<IFuncAttr>(); |
346 | if (const Attr *A = D->getDefiningAttr()) |
347 | Location = A->getLocation(); |
348 | else |
349 | llvm_unreachable("Not an alias or ifunc?" ); |
350 | StringRef MangledName = getMangledName(GD); |
351 | llvm::GlobalValue *Entry = GetGlobalValue(MangledName); |
352 | auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); |
353 | const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); |
354 | if (!GV) { |
355 | Error = true; |
356 | Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; |
357 | } else if (GV->isDeclaration()) { |
358 | Error = true; |
359 | Diags.Report(Location, diag::err_alias_to_undefined) |
360 | << IsIFunc << IsIFunc; |
361 | } else if (IsIFunc) { |
362 | // Check resolver function type. |
363 | llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( |
364 | GV->getType()->getPointerElementType()); |
365 | assert(FTy); |
366 | if (!FTy->getReturnType()->isPointerTy()) |
367 | Diags.Report(Location, diag::err_ifunc_resolver_return); |
368 | } |
369 | |
370 | llvm::Constant *Aliasee = Alias->getIndirectSymbol(); |
371 | llvm::GlobalValue *AliaseeGV; |
372 | if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) |
373 | AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); |
374 | else |
375 | AliaseeGV = cast<llvm::GlobalValue>(Aliasee); |
376 | |
377 | if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { |
378 | StringRef AliasSection = SA->getName(); |
379 | if (AliasSection != AliaseeGV->getSection()) |
380 | Diags.Report(SA->getLocation(), diag::warn_alias_with_section) |
381 | << AliasSection << IsIFunc << IsIFunc; |
382 | } |
383 | |
384 | // We have to handle alias to weak aliases in here. LLVM itself disallows |
385 | // this since the object semantics would not match the IL one. For |
386 | // compatibility with gcc we implement it by just pointing the alias |
387 | // to its aliasee's aliasee. We also warn, since the user is probably |
388 | // expecting the link to be weak. |
389 | if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { |
390 | if (GA->isInterposable()) { |
391 | Diags.Report(Location, diag::warn_alias_to_weak_alias) |
392 | << GV->getName() << GA->getName() << IsIFunc; |
393 | Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( |
394 | GA->getIndirectSymbol(), Alias->getType()); |
395 | Alias->setIndirectSymbol(Aliasee); |
396 | } |
397 | } |
398 | } |
399 | if (!Error) |
400 | return; |
401 | |
402 | for (const GlobalDecl &GD : Aliases) { |
403 | StringRef MangledName = getMangledName(GD); |
404 | llvm::GlobalValue *Entry = GetGlobalValue(MangledName); |
405 | auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); |
406 | Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); |
407 | Alias->eraseFromParent(); |
408 | } |
409 | } |
410 | |
411 | void CodeGenModule::clear() { |
412 | DeferredDeclsToEmit.clear(); |
413 | if (OpenMPRuntime) |
414 | OpenMPRuntime->clear(); |
415 | } |
416 | |
417 | void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, |
418 | StringRef MainFile) { |
419 | if (!hasDiagnostics()) |
420 | return; |
421 | if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { |
422 | if (MainFile.empty()) |
423 | MainFile = "<stdin>" ; |
424 | Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; |
425 | } else { |
426 | if (Mismatched > 0) |
427 | Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; |
428 | |
429 | if (Missing > 0) |
430 | Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; |
431 | } |
432 | } |
433 | |
434 | static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, |
435 | llvm::Module &M) { |
436 | if (!LO.VisibilityFromDLLStorageClass) |
437 | return; |
438 | |
439 | llvm::GlobalValue::VisibilityTypes DLLExportVisibility = |
440 | CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); |
441 | llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = |
442 | CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); |
443 | llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = |
444 | CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); |
445 | llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = |
446 | CodeGenModule::GetLLVMVisibility( |
447 | LO.getExternDeclNoDLLStorageClassVisibility()); |
448 | |
449 | for (llvm::GlobalValue &GV : M.global_values()) { |
450 | if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) |
451 | continue; |
452 | |
453 | // Reset DSO locality before setting the visibility. This removes |
454 | // any effects that visibility options and annotations may have |
455 | // had on the DSO locality. Setting the visibility will implicitly set |
456 | // appropriate globals to DSO Local; however, this will be pessimistic |
457 | // w.r.t. to the normal compiler IRGen. |
458 | GV.setDSOLocal(false); |
459 | |
460 | if (GV.isDeclarationForLinker()) { |
461 | GV.setVisibility(GV.getDLLStorageClass() == |
462 | llvm::GlobalValue::DLLImportStorageClass |
463 | ? ExternDeclDLLImportVisibility |
464 | : ExternDeclNoDLLStorageClassVisibility); |
465 | } else { |
466 | GV.setVisibility(GV.getDLLStorageClass() == |
467 | llvm::GlobalValue::DLLExportStorageClass |
468 | ? DLLExportVisibility |
469 | : NoDLLStorageClassVisibility); |
470 | } |
471 | |
472 | GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); |
473 | } |
474 | } |
475 | |
476 | void CodeGenModule::Release() { |
477 | EmitDeferred(); |
478 | EmitVTablesOpportunistically(); |
479 | applyGlobalValReplacements(); |
480 | applyReplacements(); |
481 | checkAliases(); |
482 | emitMultiVersionFunctions(); |
483 | EmitCXXGlobalInitFunc(); |
484 | EmitCXXGlobalCleanUpFunc(); |
485 | registerGlobalDtorsWithAtExit(); |
486 | EmitCXXThreadLocalInitFunc(); |
487 | if (ObjCRuntime) |
488 | if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) |
489 | AddGlobalCtor(ObjCInitFunction); |
490 | if (Context.getLangOpts().CUDA && CUDARuntime) { |
491 | if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) |
492 | AddGlobalCtor(CudaCtorFunction); |
493 | } |
494 | if (OpenMPRuntime) { |
495 | if (llvm::Function *OpenMPRequiresDirectiveRegFun = |
496 | OpenMPRuntime->emitRequiresDirectiveRegFun()) { |
497 | AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); |
498 | } |
499 | OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); |
500 | OpenMPRuntime->clear(); |
501 | } |
502 | if (PGOReader) { |
503 | getModule().setProfileSummary( |
504 | PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), |
505 | llvm::ProfileSummary::PSK_Instr); |
506 | if (PGOStats.hasDiagnostics()) |
507 | PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); |
508 | } |
509 | EmitCtorList(GlobalCtors, "llvm.global_ctors" ); |
510 | EmitCtorList(GlobalDtors, "llvm.global_dtors" ); |
511 | EmitGlobalAnnotations(); |
512 | EmitStaticExternCAliases(); |
513 | EmitDeferredUnusedCoverageMappings(); |
514 | if (CoverageMapping) |
515 | CoverageMapping->emit(); |
516 | if (CodeGenOpts.SanitizeCfiCrossDso) { |
517 | CodeGenFunction(*this).EmitCfiCheckFail(); |
518 | CodeGenFunction(*this).EmitCfiCheckStub(); |
519 | } |
520 | emitAtAvailableLinkGuard(); |
521 | if (Context.getTargetInfo().getTriple().isWasm() && |
522 | !Context.getTargetInfo().getTriple().isOSEmscripten()) { |
523 | EmitMainVoidAlias(); |
524 | } |
525 | emitLLVMUsed(); |
526 | if (SanStats) |
527 | SanStats->finish(); |
528 | |
529 | if (CodeGenOpts.Autolink && |
530 | (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { |
531 | EmitModuleLinkOptions(); |
532 | } |
533 | |
534 | // On ELF we pass the dependent library specifiers directly to the linker |
535 | // without manipulating them. This is in contrast to other platforms where |
536 | // they are mapped to a specific linker option by the compiler. This |
537 | // difference is a result of the greater variety of ELF linkers and the fact |
538 | // that ELF linkers tend to handle libraries in a more complicated fashion |
539 | // than on other platforms. This forces us to defer handling the dependent |
540 | // libs to the linker. |
541 | // |
542 | // CUDA/HIP device and host libraries are different. Currently there is no |
543 | // way to differentiate dependent libraries for host or device. Existing |
544 | // usage of #pragma comment(lib, *) is intended for host libraries on |
545 | // Windows. Therefore emit llvm.dependent-libraries only for host. |
546 | if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { |
547 | auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries" ); |
548 | for (auto *MD : ELFDependentLibraries) |
549 | NMD->addOperand(MD); |
550 | } |
551 | |
552 | // Record mregparm value now so it is visible through rest of codegen. |
553 | if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) |
554 | getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters" , |
555 | CodeGenOpts.NumRegisterParameters); |
556 | |
557 | if (CodeGenOpts.DwarfVersion) { |
558 | getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version" , |
559 | CodeGenOpts.DwarfVersion); |
560 | } |
561 | |
562 | if (CodeGenOpts.Dwarf64) |
563 | getModule().addModuleFlag(llvm::Module::Max, "DWARF64" , 1); |
564 | |
565 | if (Context.getLangOpts().SemanticInterposition) |
566 | // Require various optimization to respect semantic interposition. |
567 | getModule().setSemanticInterposition(1); |
568 | |
569 | if (CodeGenOpts.EmitCodeView) { |
570 | // Indicate that we want CodeView in the metadata. |
571 | getModule().addModuleFlag(llvm::Module::Warning, "CodeView" , 1); |
572 | } |
573 | if (CodeGenOpts.CodeViewGHash) { |
574 | getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash" , 1); |
575 | } |
576 | if (CodeGenOpts.ControlFlowGuard) { |
577 | // Function ID tables and checks for Control Flow Guard (cfguard=2). |
578 | getModule().addModuleFlag(llvm::Module::Warning, "cfguard" , 2); |
579 | } else if (CodeGenOpts.ControlFlowGuardNoChecks) { |
580 | // Function ID tables for Control Flow Guard (cfguard=1). |
581 | getModule().addModuleFlag(llvm::Module::Warning, "cfguard" , 1); |
582 | } |
583 | if (CodeGenOpts.EHContGuard) { |
584 | // Function ID tables for EH Continuation Guard. |
585 | getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard" , 1); |
586 | } |
587 | if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { |
588 | // We don't support LTO with 2 with different StrictVTablePointers |
589 | // FIXME: we could support it by stripping all the information introduced |
590 | // by StrictVTablePointers. |
591 | |
592 | getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers" ,1); |
593 | |
594 | llvm::Metadata *Ops[2] = { |
595 | llvm::MDString::get(VMContext, "StrictVTablePointers" ), |
596 | llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( |
597 | llvm::Type::getInt32Ty(VMContext), 1))}; |
598 | |
599 | getModule().addModuleFlag(llvm::Module::Require, |
600 | "StrictVTablePointersRequirement" , |
601 | llvm::MDNode::get(VMContext, Ops)); |
602 | } |
603 | if (getModuleDebugInfo()) |
604 | // We support a single version in the linked module. The LLVM |
605 | // parser will drop debug info with a different version number |
606 | // (and warn about it, too). |
607 | getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version" , |
608 | llvm::DEBUG_METADATA_VERSION); |
609 | |
610 | // We need to record the widths of enums and wchar_t, so that we can generate |
611 | // the correct build attributes in the ARM backend. wchar_size is also used by |
612 | // TargetLibraryInfo. |
613 | uint64_t WCharWidth = |
614 | Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); |
615 | getModule().addModuleFlag(llvm::Module::Error, "wchar_size" , WCharWidth); |
616 | |
617 | llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); |
618 | if ( Arch == llvm::Triple::arm |
619 | || Arch == llvm::Triple::armeb |
620 | || Arch == llvm::Triple::thumb |
621 | || Arch == llvm::Triple::thumbeb) { |
622 | // The minimum width of an enum in bytes |
623 | uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; |
624 | getModule().addModuleFlag(llvm::Module::Error, "min_enum_size" , EnumWidth); |
625 | } |
626 | |
627 | if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { |
628 | StringRef ABIStr = Target.getABI(); |
629 | llvm::LLVMContext &Ctx = TheModule.getContext(); |
630 | getModule().addModuleFlag(llvm::Module::Error, "target-abi" , |
631 | llvm::MDString::get(Ctx, ABIStr)); |
632 | } |
633 | |
634 | if (CodeGenOpts.SanitizeCfiCrossDso) { |
635 | // Indicate that we want cross-DSO control flow integrity checks. |
636 | getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI" , 1); |
637 | } |
638 | |
639 | if (CodeGenOpts.WholeProgramVTables) { |
640 | // Indicate whether VFE was enabled for this module, so that the |
641 | // vcall_visibility metadata added under whole program vtables is handled |
642 | // appropriately in the optimizer. |
643 | getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim" , |
644 | CodeGenOpts.VirtualFunctionElimination); |
645 | } |
646 | |
647 | if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { |
648 | getModule().addModuleFlag(llvm::Module::Override, |
649 | "CFI Canonical Jump Tables" , |
650 | CodeGenOpts.SanitizeCfiCanonicalJumpTables); |
651 | } |
652 | |
653 | if (CodeGenOpts.CFProtectionReturn && |
654 | Target.checkCFProtectionReturnSupported(getDiags())) { |
655 | // Indicate that we want to instrument return control flow protection. |
656 | getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return" , |
657 | 1); |
658 | } |
659 | |
660 | if (CodeGenOpts.CFProtectionBranch && |
661 | Target.checkCFProtectionBranchSupported(getDiags())) { |
662 | // Indicate that we want to instrument branch control flow protection. |
663 | getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch" , |
664 | 1); |
665 | } |
666 | |
667 | if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || |
668 | Arch == llvm::Triple::aarch64_be) { |
669 | getModule().addModuleFlag(llvm::Module::Error, |
670 | "branch-target-enforcement" , |
671 | LangOpts.BranchTargetEnforcement); |
672 | |
673 | getModule().addModuleFlag(llvm::Module::Error, "sign-return-address" , |
674 | LangOpts.hasSignReturnAddress()); |
675 | |
676 | getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all" , |
677 | LangOpts.isSignReturnAddressScopeAll()); |
678 | |
679 | getModule().addModuleFlag(llvm::Module::Error, |
680 | "sign-return-address-with-bkey" , |
681 | !LangOpts.isSignReturnAddressWithAKey()); |
682 | } |
683 | |
684 | if (!CodeGenOpts.MemoryProfileOutput.empty()) { |
685 | llvm::LLVMContext &Ctx = TheModule.getContext(); |
686 | getModule().addModuleFlag( |
687 | llvm::Module::Error, "MemProfProfileFilename" , |
688 | llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); |
689 | } |
690 | |
691 | if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { |
692 | // Indicate whether __nvvm_reflect should be configured to flush denormal |
693 | // floating point values to 0. (This corresponds to its "__CUDA_FTZ" |
694 | // property.) |
695 | getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz" , |
696 | CodeGenOpts.FP32DenormalMode.Output != |
697 | llvm::DenormalMode::IEEE); |
698 | } |
699 | |
700 | // Emit OpenCL specific module metadata: OpenCL/SPIR version. |
701 | if (LangOpts.OpenCL) { |
702 | EmitOpenCLMetadata(); |
703 | // Emit SPIR version. |
704 | if (getTriple().isSPIR()) { |
705 | // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the |
706 | // opencl.spir.version named metadata. |
707 | // C++ is backwards compatible with OpenCL v2.0. |
708 | auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; |
709 | llvm::Metadata *SPIRVerElts[] = { |
710 | llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( |
711 | Int32Ty, Version / 100)), |
712 | llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( |
713 | Int32Ty, (Version / 100 > 1) ? 0 : 2))}; |
714 | llvm::NamedMDNode *SPIRVerMD = |
715 | TheModule.getOrInsertNamedMetadata("opencl.spir.version" ); |
716 | llvm::LLVMContext &Ctx = TheModule.getContext(); |
717 | SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); |
718 | } |
719 | } |
720 | |
721 | if (uint32_t PLevel = Context.getLangOpts().PICLevel) { |
722 | assert(PLevel < 3 && "Invalid PIC Level" ); |
723 | getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); |
724 | if (Context.getLangOpts().PIE) |
725 | getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); |
726 | } |
727 | |
728 | if (getCodeGenOpts().CodeModel.size() > 0) { |
729 | unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) |
730 | .Case("tiny" , llvm::CodeModel::Tiny) |
731 | .Case("small" , llvm::CodeModel::Small) |
732 | .Case("kernel" , llvm::CodeModel::Kernel) |
733 | .Case("medium" , llvm::CodeModel::Medium) |
734 | .Case("large" , llvm::CodeModel::Large) |
735 | .Default(~0u); |
736 | if (CM != ~0u) { |
737 | llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); |
738 | getModule().setCodeModel(codeModel); |
739 | } |
740 | } |
741 | |
742 | if (CodeGenOpts.NoPLT) |
743 | getModule().setRtLibUseGOT(); |
744 | if (CodeGenOpts.UnwindTables) |
745 | getModule().setUwtable(); |
746 | |
747 | switch (CodeGenOpts.getFramePointer()) { |
748 | case CodeGenOptions::FramePointerKind::None: |
749 | // 0 ("none") is the default. |
750 | break; |
751 | case CodeGenOptions::FramePointerKind::NonLeaf: |
752 | getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); |
753 | break; |
754 | case CodeGenOptions::FramePointerKind::All: |
755 | getModule().setFramePointer(llvm::FramePointerKind::All); |
756 | break; |
757 | } |
758 | |
759 | SimplifyPersonality(); |
760 | |
761 | if (getCodeGenOpts().EmitDeclMetadata) |
762 | EmitDeclMetadata(); |
763 | |
764 | if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) |
765 | EmitCoverageFile(); |
766 | |
767 | if (CGDebugInfo *DI = getModuleDebugInfo()) |
768 | DI->finalize(); |
769 | |
770 | if (getCodeGenOpts().EmitVersionIdentMetadata) |
771 | EmitVersionIdentMetadata(); |
772 | |
773 | if (!getCodeGenOpts().RecordCommandLine.empty()) |
774 | EmitCommandLineMetadata(); |
775 | |
776 | getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); |
777 | |
778 | EmitBackendOptionsMetadata(getCodeGenOpts()); |
779 | |
780 | // Set visibility from DLL storage class |
781 | // We do this at the end of LLVM IR generation; after any operation |
782 | // that might affect the DLL storage class or the visibility, and |
783 | // before anything that might act on these. |
784 | setVisibilityFromDLLStorageClass(LangOpts, getModule()); |
785 | } |
786 | |
787 | void CodeGenModule::EmitOpenCLMetadata() { |
788 | // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the |
789 | // opencl.ocl.version named metadata node. |
790 | // C++ is backwards compatible with OpenCL v2.0. |
791 | // FIXME: We might need to add CXX version at some point too? |
792 | auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; |
793 | llvm::Metadata *OCLVerElts[] = { |
794 | llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( |
795 | Int32Ty, Version / 100)), |
796 | llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( |
797 | Int32Ty, (Version % 100) / 10))}; |
798 | llvm::NamedMDNode *OCLVerMD = |
799 | TheModule.getOrInsertNamedMetadata("opencl.ocl.version" ); |
800 | llvm::LLVMContext &Ctx = TheModule.getContext(); |
801 | OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); |
802 | } |
803 | |
804 | void CodeGenModule::EmitBackendOptionsMetadata( |
805 | const CodeGenOptions CodeGenOpts) { |
806 | switch (getTriple().getArch()) { |
807 | default: |
808 | break; |
809 | case llvm::Triple::riscv32: |
810 | case llvm::Triple::riscv64: |
811 | getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit" , |
812 | CodeGenOpts.SmallDataLimit); |
813 | break; |
814 | } |
815 | } |
816 | |
817 | void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { |
818 | // Make sure that this type is translated. |
819 | Types.UpdateCompletedType(TD); |
820 | } |
821 | |
822 | void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { |
823 | // Make sure that this type is translated. |
824 | Types.RefreshTypeCacheForClass(RD); |
825 | } |
826 | |
827 | llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { |
828 | if (!TBAA) |
829 | return nullptr; |
830 | return TBAA->getTypeInfo(QTy); |
831 | } |
832 | |
833 | TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { |
834 | if (!TBAA) |
835 | return TBAAAccessInfo(); |
836 | if (getLangOpts().CUDAIsDevice) { |
837 | // As CUDA builtin surface/texture types are replaced, skip generating TBAA |
838 | // access info. |
839 | if (AccessType->isCUDADeviceBuiltinSurfaceType()) { |
840 | if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != |
841 | nullptr) |
842 | return TBAAAccessInfo(); |
843 | } else if (AccessType->isCUDADeviceBuiltinTextureType()) { |
844 | if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != |
845 | nullptr) |
846 | return TBAAAccessInfo(); |
847 | } |
848 | } |
849 | return TBAA->getAccessInfo(AccessType); |
850 | } |
851 | |
852 | TBAAAccessInfo |
853 | CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { |
854 | if (!TBAA) |
855 | return TBAAAccessInfo(); |
856 | return TBAA->getVTablePtrAccessInfo(VTablePtrType); |
857 | } |
858 | |
859 | llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { |
860 | if (!TBAA) |
861 | return nullptr; |
862 | return TBAA->getTBAAStructInfo(QTy); |
863 | } |
864 | |
865 | llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { |
866 | if (!TBAA) |
867 | return nullptr; |
868 | return TBAA->getBaseTypeInfo(QTy); |
869 | } |
870 | |
871 | llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { |
872 | if (!TBAA) |
873 | return nullptr; |
874 | return TBAA->getAccessTagInfo(Info); |
875 | } |
876 | |
877 | TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, |
878 | TBAAAccessInfo TargetInfo) { |
879 | if (!TBAA) |
880 | return TBAAAccessInfo(); |
881 | return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); |
882 | } |
883 | |
884 | TBAAAccessInfo |
885 | CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, |
886 | TBAAAccessInfo InfoB) { |
887 | if (!TBAA) |
888 | return TBAAAccessInfo(); |
889 | return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); |
890 | } |
891 | |
892 | TBAAAccessInfo |
893 | CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, |
894 | TBAAAccessInfo SrcInfo) { |
895 | if (!TBAA) |
896 | return TBAAAccessInfo(); |
897 | return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); |
898 | } |
899 | |
900 | void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, |
901 | TBAAAccessInfo TBAAInfo) { |
902 | if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) |
903 | Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); |
904 | } |
905 | |
906 | void CodeGenModule::DecorateInstructionWithInvariantGroup( |
907 | llvm::Instruction *I, const CXXRecordDecl *RD) { |
908 | I->setMetadata(llvm::LLVMContext::MD_invariant_group, |
909 | llvm::MDNode::get(getLLVMContext(), {})); |
910 | } |
911 | |
912 | void CodeGenModule::Error(SourceLocation loc, StringRef message) { |
913 | unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0" ); |
914 | getDiags().Report(Context.getFullLoc(loc), diagID) << message; |
915 | } |
916 | |
917 | /// ErrorUnsupported - Print out an error that codegen doesn't support the |
918 | /// specified stmt yet. |
919 | void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { |
920 | unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, |
921 | "cannot compile this %0 yet" ); |
922 | std::string Msg = Type; |
923 | getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) |
924 | << Msg << S->getSourceRange(); |
925 | } |
926 | |
927 | /// ErrorUnsupported - Print out an error that codegen doesn't support the |
928 | /// specified decl yet. |
929 | void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { |
930 | unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, |
931 | "cannot compile this %0 yet" ); |
932 | std::string Msg = Type; |
933 | getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; |
934 | } |
935 | |
936 | llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { |
937 | return llvm::ConstantInt::get(SizeTy, size.getQuantity()); |
938 | } |
939 | |
940 | void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, |
941 | const NamedDecl *D) const { |
942 | if (GV->hasDLLImportStorageClass()) |
943 | return; |
944 | // Internal definitions always have default visibility. |
945 | if (GV->hasLocalLinkage()) { |
946 | GV->setVisibility(llvm::GlobalValue::DefaultVisibility); |
947 | return; |
948 | } |
949 | if (!D) |
950 | return; |
951 | // Set visibility for definitions, and for declarations if requested globally |
952 | // or set explicitly. |
953 | LinkageInfo LV = D->getLinkageAndVisibility(); |
954 | if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || |
955 | !GV->isDeclarationForLinker()) |
956 | GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); |
957 | } |
958 | |
959 | static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, |
960 | llvm::GlobalValue *GV) { |
961 | if (GV->hasLocalLinkage()) |
962 | return true; |
963 | |
964 | if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) |
965 | return true; |
966 | |
967 | // DLLImport explicitly marks the GV as external. |
968 | if (GV->hasDLLImportStorageClass()) |
969 | return false; |
970 | |
971 | const llvm::Triple &TT = CGM.getTriple(); |
972 | if (TT.isWindowsGNUEnvironment()) { |
973 | // In MinGW, variables without DLLImport can still be automatically |
974 | // imported from a DLL by the linker; don't mark variables that |
975 | // potentially could come from another DLL as DSO local. |
976 | if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && |
977 | !GV->isThreadLocal()) |
978 | return false; |
979 | } |
980 | |
981 | // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols |
982 | // remain unresolved in the link, they can be resolved to zero, which is |
983 | // outside the current DSO. |
984 | if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) |
985 | return false; |
986 | |
987 | // Every other GV is local on COFF. |
988 | // Make an exception for windows OS in the triple: Some firmware builds use |
989 | // *-win32-macho triples. This (accidentally?) produced windows relocations |
990 | // without GOT tables in older clang versions; Keep this behaviour. |
991 | // FIXME: even thread local variables? |
992 | if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) |
993 | return true; |
994 | |
995 | // Only handle COFF and ELF for now. |
996 | if (!TT.isOSBinFormatELF()) |
997 | return false; |
998 | |
999 | // If this is not an executable, don't assume anything is local. |
1000 | const auto &CGOpts = CGM.getCodeGenOpts(); |
1001 | llvm::Reloc::Model RM = CGOpts.RelocationModel; |
1002 | const auto &LOpts = CGM.getLangOpts(); |
1003 | if (RM != llvm::Reloc::Static && !LOpts.PIE) { |
1004 | // On ELF, if -fno-semantic-interposition is specified and the target |
1005 | // supports local aliases, there will be neither CC1 |
1006 | // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set |
1007 | // dso_local if using a local alias is preferable (can avoid GOT |
1008 | // indirection). |
1009 | if (!GV->canBenefitFromLocalAlias()) |
1010 | return false; |
1011 | return !(CGM.getLangOpts().SemanticInterposition || |
1012 | CGM.getLangOpts().HalfNoSemanticInterposition); |
1013 | } |
1014 | |
1015 | // A definition cannot be preempted from an executable. |
1016 | if (!GV->isDeclarationForLinker()) |
1017 | return true; |
1018 | |
1019 | // Most PIC code sequences that assume that a symbol is local cannot produce a |
1020 | // 0 if it turns out the symbol is undefined. While this is ABI and relocation |
1021 | // depended, it seems worth it to handle it here. |
1022 | if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) |
1023 | return false; |
1024 | |
1025 | // PowerPC64 prefers TOC indirection to avoid copy relocations. |
1026 | if (TT.isPPC64()) |
1027 | return false; |
1028 | |
1029 | if (CGOpts.DirectAccessExternalData) { |
1030 | // If -fdirect-access-external-data (default for -fno-pic), set dso_local |
1031 | // for non-thread-local variables. If the symbol is not defined in the |
1032 | // executable, a copy relocation will be needed at link time. dso_local is |
1033 | // excluded for thread-local variables because they generally don't support |
1034 | // copy relocations. |
1035 | if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) |
1036 | if (!Var->isThreadLocal()) |
1037 | return true; |
1038 | |
1039 | // -fno-pic sets dso_local on a function declaration to allow direct |
1040 | // accesses when taking its address (similar to a data symbol). If the |
1041 | // function is not defined in the executable, a canonical PLT entry will be |
1042 | // needed at link time. -fno-direct-access-external-data can avoid the |
1043 | // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as |
1044 | // it could just cause trouble without providing perceptible benefits. |
1045 | if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) |
1046 | return true; |
1047 | } |
1048 | |
1049 | // If we can use copy relocations we can assume it is local. |
1050 | |
1051 | // Otherwise don't assume it is local. |
1052 | return false; |
1053 | } |
1054 | |
1055 | void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { |
1056 | GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); |
1057 | } |
1058 | |
1059 | void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, |
1060 | GlobalDecl GD) const { |
1061 | const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); |
1062 | // C++ destructors have a few C++ ABI specific special cases. |
1063 | if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { |
1064 | getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); |
1065 | return; |
1066 | } |
1067 | setDLLImportDLLExport(GV, D); |
1068 | } |
1069 | |
1070 | void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, |
1071 | const NamedDecl *D) const { |
1072 | if (D && D->isExternallyVisible()) { |
1073 | if (D->hasAttr<DLLImportAttr>()) |
1074 | GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); |
1075 | else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) |
1076 | GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); |
1077 | } |
1078 | } |
1079 | |
1080 | void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, |
1081 | GlobalDecl GD) const { |
1082 | setDLLImportDLLExport(GV, GD); |
1083 | setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); |
1084 | } |
1085 | |
1086 | void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, |
1087 | const NamedDecl *D) const { |
1088 | setDLLImportDLLExport(GV, D); |
1089 | setGVPropertiesAux(GV, D); |
1090 | } |
1091 | |
1092 | void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, |
1093 | const NamedDecl *D) const { |
1094 | setGlobalVisibility(GV, D); |
1095 | setDSOLocal(GV); |
1096 | GV->setPartition(CodeGenOpts.SymbolPartition); |
1097 | } |
1098 | |
1099 | static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { |
1100 | return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) |
1101 | .Case("global-dynamic" , llvm::GlobalVariable::GeneralDynamicTLSModel) |
1102 | .Case("local-dynamic" , llvm::GlobalVariable::LocalDynamicTLSModel) |
1103 | .Case("initial-exec" , llvm::GlobalVariable::InitialExecTLSModel) |
1104 | .Case("local-exec" , llvm::GlobalVariable::LocalExecTLSModel); |
1105 | } |
1106 | |
1107 | llvm::GlobalVariable::ThreadLocalMode |
1108 | CodeGenModule::GetDefaultLLVMTLSModel() const { |
1109 | switch (CodeGenOpts.getDefaultTLSModel()) { |
1110 | case CodeGenOptions::GeneralDynamicTLSModel: |
1111 | return llvm::GlobalVariable::GeneralDynamicTLSModel; |
1112 | case CodeGenOptions::LocalDynamicTLSModel: |
1113 | return llvm::GlobalVariable::LocalDynamicTLSModel; |
1114 | case CodeGenOptions::InitialExecTLSModel: |
1115 | return llvm::GlobalVariable::InitialExecTLSModel; |
1116 | case CodeGenOptions::LocalExecTLSModel: |
1117 | return llvm::GlobalVariable::LocalExecTLSModel; |
1118 | } |
1119 | llvm_unreachable("Invalid TLS model!" ); |
1120 | } |
1121 | |
1122 | void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { |
1123 | assert(D.getTLSKind() && "setting TLS mode on non-TLS var!" ); |
1124 | |
1125 | llvm::GlobalValue::ThreadLocalMode TLM; |
1126 | TLM = GetDefaultLLVMTLSModel(); |
1127 | |
1128 | // Override the TLS model if it is explicitly specified. |
1129 | if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { |
1130 | TLM = GetLLVMTLSModel(Attr->getModel()); |
1131 | } |
1132 | |
1133 | GV->setThreadLocalMode(TLM); |
1134 | } |
1135 | |
1136 | static std::string getCPUSpecificMangling(const CodeGenModule &CGM, |
1137 | StringRef Name) { |
1138 | const TargetInfo &Target = CGM.getTarget(); |
1139 | return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); |
1140 | } |
1141 | |
1142 | static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, |
1143 | const CPUSpecificAttr *Attr, |
1144 | unsigned CPUIndex, |
1145 | raw_ostream &Out) { |
1146 | // cpu_specific gets the current name, dispatch gets the resolver if IFunc is |
1147 | // supported. |
1148 | if (Attr) |
1149 | Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); |
1150 | else if (CGM.getTarget().supportsIFunc()) |
1151 | Out << ".resolver" ; |
1152 | } |
1153 | |
1154 | static void AppendTargetMangling(const CodeGenModule &CGM, |
1155 | const TargetAttr *Attr, raw_ostream &Out) { |
1156 | if (Attr->isDefaultVersion()) |
1157 | return; |
1158 | |
1159 | Out << '.'; |
1160 | const TargetInfo &Target = CGM.getTarget(); |
1161 | ParsedTargetAttr Info = |
1162 | Attr->parse([&Target](StringRef LHS, StringRef RHS) { |
1163 | // Multiversioning doesn't allow "no-${feature}", so we can |
1164 | // only have "+" prefixes here. |
1165 | assert(LHS.startswith("+" ) && RHS.startswith("+" ) && |
1166 | "Features should always have a prefix." ); |
1167 | return Target.multiVersionSortPriority(LHS.substr(1)) > |
1168 | Target.multiVersionSortPriority(RHS.substr(1)); |
1169 | }); |
1170 | |
1171 | bool IsFirst = true; |
1172 | |
1173 | if (!Info.Architecture.empty()) { |
1174 | IsFirst = false; |
1175 | Out << "arch_" << Info.Architecture; |
1176 | } |
1177 | |
1178 | for (StringRef Feat : Info.Features) { |
1179 | if (!IsFirst) |
1180 | Out << '_'; |
1181 | IsFirst = false; |
1182 | Out << Feat.substr(1); |
1183 | } |
1184 | } |
1185 | |
1186 | // Returns true if GD is a function decl with internal linkage and |
1187 | // needs a unique suffix after the mangled name. |
1188 | static bool isUniqueInternalLinkageDecl(GlobalDecl GD, |
1189 | CodeGenModule &CGM) { |
1190 | const Decl *D = GD.getDecl(); |
1191 | return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && |
1192 | (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); |
1193 | } |
1194 | |
1195 | static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, |
1196 | const NamedDecl *ND, |
1197 | bool OmitMultiVersionMangling = false) { |
1198 | SmallString<256> Buffer; |
1199 | llvm::raw_svector_ostream Out(Buffer); |
1200 | MangleContext &MC = CGM.getCXXABI().getMangleContext(); |
1201 | if (!CGM.getModuleNameHash().empty()) |
1202 | MC.needsUniqueInternalLinkageNames(); |
1203 | bool ShouldMangle = MC.shouldMangleDeclName(ND); |
1204 | if (ShouldMangle) |
1205 | MC.mangleName(GD.getWithDecl(ND), Out); |
1206 | else { |
1207 | IdentifierInfo *II = ND->getIdentifier(); |
1208 | assert(II && "Attempt to mangle unnamed decl." ); |
1209 | const auto *FD = dyn_cast<FunctionDecl>(ND); |
1210 | |
1211 | if (FD && |
1212 | FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { |
1213 | Out << "__regcall3__" << II->getName(); |
1214 | } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && |
1215 | GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { |
1216 | Out << "__device_stub__" << II->getName(); |
1217 | } else { |
1218 | Out << II->getName(); |
1219 | } |
1220 | } |
1221 | |
1222 | // Check if the module name hash should be appended for internal linkage |
1223 | // symbols. This should come before multi-version target suffixes are |
1224 | // appended. This is to keep the name and module hash suffix of the |
1225 | // internal linkage function together. The unique suffix should only be |
1226 | // added when name mangling is done to make sure that the final name can |
1227 | // be properly demangled. For example, for C functions without prototypes, |
1228 | // name mangling is not done and the unique suffix should not be appeneded |
1229 | // then. |
1230 | if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { |
1231 | assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && |
1232 | "Hash computed when not explicitly requested" ); |
1233 | Out << CGM.getModuleNameHash(); |
1234 | } |
1235 | |
1236 | if (const auto *FD = dyn_cast<FunctionDecl>(ND)) |
1237 | if (FD->isMultiVersion() && !OmitMultiVersionMangling) { |
1238 | switch (FD->getMultiVersionKind()) { |
1239 | case MultiVersionKind::CPUDispatch: |
1240 | case MultiVersionKind::CPUSpecific: |
1241 | AppendCPUSpecificCPUDispatchMangling(CGM, |
1242 | FD->getAttr<CPUSpecificAttr>(), |
1243 | GD.getMultiVersionIndex(), Out); |
1244 | break; |
1245 | case MultiVersionKind::Target: |
1246 | AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); |
1247 | break; |
1248 | case MultiVersionKind::None: |
1249 | llvm_unreachable("None multiversion type isn't valid here" ); |
1250 | } |
1251 | } |
1252 | |
1253 | // Make unique name for device side static file-scope variable for HIP. |
1254 | if (CGM.getContext().shouldExternalizeStaticVar(ND) && |
1255 | CGM.getLangOpts().GPURelocatableDeviceCode && |
1256 | CGM.getLangOpts().CUDAIsDevice && !CGM.getLangOpts().CUID.empty()) |
1257 | CGM.printPostfixForExternalizedStaticVar(Out); |
1258 | return std::string(Out.str()); |
1259 | } |
1260 | |
1261 | void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, |
1262 | const FunctionDecl *FD) { |
1263 | if (!FD->isMultiVersion()) |
1264 | return; |
1265 | |
1266 | // Get the name of what this would be without the 'target' attribute. This |
1267 | // allows us to lookup the version that was emitted when this wasn't a |
1268 | // multiversion function. |
1269 | std::string NonTargetName = |
1270 | getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); |
1271 | GlobalDecl OtherGD; |
1272 | if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { |
1273 | assert(OtherGD.getCanonicalDecl() |
1274 | .getDecl() |
1275 | ->getAsFunction() |
1276 | ->isMultiVersion() && |
1277 | "Other GD should now be a multiversioned function" ); |
1278 | // OtherFD is the version of this function that was mangled BEFORE |
1279 | // becoming a MultiVersion function. It potentially needs to be updated. |
1280 | const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() |
1281 | .getDecl() |
1282 | ->getAsFunction() |
1283 | ->getMostRecentDecl(); |
1284 | std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); |
1285 | // This is so that if the initial version was already the 'default' |
1286 | // version, we don't try to update it. |
1287 | if (OtherName != NonTargetName) { |
1288 | // Remove instead of erase, since others may have stored the StringRef |
1289 | // to this. |
1290 | const auto ExistingRecord = Manglings.find(NonTargetName); |
1291 | if (ExistingRecord != std::end(Manglings)) |
1292 | Manglings.remove(&(*ExistingRecord)); |
1293 | auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); |
1294 | MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); |
1295 | if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) |
1296 | Entry->setName(OtherName); |
1297 | } |
1298 | } |
1299 | } |
1300 | |
1301 | StringRef CodeGenModule::getMangledName(GlobalDecl GD) { |
1302 | GlobalDecl CanonicalGD = GD.getCanonicalDecl(); |
1303 | |
1304 | // Some ABIs don't have constructor variants. Make sure that base and |
1305 | // complete constructors get mangled the same. |
1306 | if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { |
1307 | if (!getTarget().getCXXABI().hasConstructorVariants()) { |
1308 | CXXCtorType OrigCtorType = GD.getCtorType(); |
1309 | assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); |
1310 | if (OrigCtorType == Ctor_Base) |
1311 | CanonicalGD = GlobalDecl(CD, Ctor_Complete); |
1312 | } |
1313 | } |
1314 | |
1315 | // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a |
1316 | // static device variable depends on whether the variable is referenced by |
1317 | // a host or device host function. Therefore the mangled name cannot be |
1318 | // cached. |
1319 | if (!LangOpts.CUDAIsDevice || |
1320 | !getContext().mayExternalizeStaticVar(GD.getDecl())) { |
1321 | auto FoundName = MangledDeclNames.find(CanonicalGD); |
1322 | if (FoundName != MangledDeclNames.end()) |
1323 | return FoundName->second; |
1324 | } |
1325 | |
1326 | // Keep the first result in the case of a mangling collision. |
1327 | const auto *ND = cast<NamedDecl>(GD.getDecl()); |
1328 | std::string MangledName = getMangledNameImpl(*this, GD, ND); |
1329 | |
1330 | // Ensure either we have different ABIs between host and device compilations, |
1331 | // says host compilation following MSVC ABI but device compilation follows |
1332 | // Itanium C++ ABI or, if they follow the same ABI, kernel names after |
1333 | // mangling should be the same after name stubbing. The later checking is |
1334 | // very important as the device kernel name being mangled in host-compilation |
1335 | // is used to resolve the device binaries to be executed. Inconsistent naming |
1336 | // result in undefined behavior. Even though we cannot check that naming |
1337 | // directly between host- and device-compilations, the host- and |
1338 | // device-mangling in host compilation could help catching certain ones. |
1339 | assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || |
1340 | getLangOpts().CUDAIsDevice || |
1341 | (getContext().getAuxTargetInfo() && |
1342 | (getContext().getAuxTargetInfo()->getCXXABI() != |
1343 | getContext().getTargetInfo().getCXXABI())) || |
1344 | getCUDARuntime().getDeviceSideName(ND) == |
1345 | getMangledNameImpl( |
1346 | *this, |
1347 | GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), |
1348 | ND)); |
1349 | |
1350 | auto Result = Manglings.insert(std::make_pair(MangledName, GD)); |
1351 | return MangledDeclNames[CanonicalGD] = Result.first->first(); |
1352 | } |
1353 | |
1354 | StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, |
1355 | const BlockDecl *BD) { |
1356 | MangleContext &MangleCtx = getCXXABI().getMangleContext(); |
1357 | const Decl *D = GD.getDecl(); |
1358 | |
1359 | SmallString<256> Buffer; |
1360 | llvm::raw_svector_ostream Out(Buffer); |
1361 | if (!D) |
1362 | MangleCtx.mangleGlobalBlock(BD, |
1363 | dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); |
1364 | else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) |
1365 | MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); |
1366 | else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) |
1367 | MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); |
1368 | else |
1369 | MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); |
1370 | |
1371 | auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); |
1372 | return Result.first->first(); |
1373 | } |
1374 | |
1375 | llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { |
1376 | return getModule().getNamedValue(Name); |
1377 | } |
1378 | |
1379 | /// AddGlobalCtor - Add a function to the list that will be called before |
1380 | /// main() runs. |
1381 | void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, |
1382 | llvm::Constant *AssociatedData) { |
1383 | // FIXME: Type coercion of void()* types. |
1384 | GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); |
1385 | } |
1386 | |
1387 | /// AddGlobalDtor - Add a function to the list that will be called |
1388 | /// when the module is unloaded. |
1389 | void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, |
1390 | bool IsDtorAttrFunc) { |
1391 | if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && |
1392 | (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { |
1393 | DtorsUsingAtExit[Priority].push_back(Dtor); |
1394 | return; |
1395 | } |
1396 | |
1397 | // FIXME: Type coercion of void()* types. |
1398 | GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); |
1399 | } |
1400 | |
1401 | void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { |
1402 | if (Fns.empty()) return; |
1403 | |
1404 | // Ctor function type is void()*. |
1405 | llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); |
1406 | llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, |
1407 | TheModule.getDataLayout().getProgramAddressSpace()); |
1408 | |
1409 | // Get the type of a ctor entry, { i32, void ()*, i8* }. |
1410 | llvm::StructType *CtorStructTy = llvm::StructType::get( |
1411 | Int32Ty, CtorPFTy, VoidPtrTy); |
1412 | |
1413 | // Construct the constructor and destructor arrays. |
1414 | ConstantInitBuilder builder(*this); |
1415 | auto ctors = builder.beginArray(CtorStructTy); |
1416 | for (const auto &I : Fns) { |
1417 | auto ctor = ctors.beginStruct(CtorStructTy); |
1418 | ctor.addInt(Int32Ty, I.Priority); |
1419 | ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); |
1420 | if (I.AssociatedData) |
1421 | ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); |
1422 | else |
1423 | ctor.addNullPointer(VoidPtrTy); |
1424 | ctor.finishAndAddTo(ctors); |
1425 | } |
1426 | |
1427 | auto list = |
1428 | ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), |
1429 | /*constant*/ false, |
1430 | llvm::GlobalValue::AppendingLinkage); |
1431 | |
1432 | // The LTO linker doesn't seem to like it when we set an alignment |
1433 | // on appending variables. Take it off as a workaround. |
1434 | list->setAlignment(llvm::None); |
1435 | |
1436 | Fns.clear(); |
1437 | } |
1438 | |
1439 | llvm::GlobalValue::LinkageTypes |
1440 | CodeGenModule::getFunctionLinkage(GlobalDecl GD) { |
1441 | const auto *D = cast<FunctionDecl>(GD.getDecl()); |
1442 | |
1443 | GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); |
1444 | |
1445 | if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) |
1446 | return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); |
1447 | |
1448 | if (isa<CXXConstructorDecl>(D) && |
1449 | cast<CXXConstructorDecl>(D)->isInheritingConstructor() && |
1450 | Context.getTargetInfo().getCXXABI().isMicrosoft()) { |
1451 | // Our approach to inheriting constructors is fundamentally different from |
1452 | // that used by the MS ABI, so keep our inheriting constructor thunks |
1453 | // internal rather than trying to pick an unambiguous mangling for them. |
1454 | return llvm::GlobalValue::InternalLinkage; |
1455 | } |
1456 | |
1457 | return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); |
1458 | } |
1459 | |
1460 | llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { |
1461 | llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); |
1462 | if (!MDS) return nullptr; |
1463 | |
1464 | return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); |
1465 | } |
1466 | |
1467 | void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, |
1468 | const CGFunctionInfo &Info, |
1469 | llvm::Function *F) { |
1470 | unsigned CallingConv; |
1471 | llvm::AttributeList PAL; |
1472 | ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); |
1473 | F->setAttributes(PAL); |
1474 | F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); |
1475 | } |
1476 | |
1477 | static void removeImageAccessQualifier(std::string& TyName) { |
1478 | std::string ReadOnlyQual("__read_only" ); |
1479 | std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); |
1480 | if (ReadOnlyPos != std::string::npos) |
1481 | // "+ 1" for the space after access qualifier. |
1482 | TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); |
1483 | else { |
1484 | std::string WriteOnlyQual("__write_only" ); |
1485 | std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); |
1486 | if (WriteOnlyPos != std::string::npos) |
1487 | TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); |
1488 | else { |
1489 | std::string ReadWriteQual("__read_write" ); |
1490 | std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); |
1491 | if (ReadWritePos != std::string::npos) |
1492 | TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); |
1493 | } |
1494 | } |
1495 | } |
1496 | |
1497 | // Returns the address space id that should be produced to the |
1498 | // kernel_arg_addr_space metadata. This is always fixed to the ids |
1499 | // as specified in the SPIR 2.0 specification in order to differentiate |
1500 | // for example in clGetKernelArgInfo() implementation between the address |
1501 | // spaces with targets without unique mapping to the OpenCL address spaces |
1502 | // (basically all single AS CPUs). |
1503 | static unsigned ArgInfoAddressSpace(LangAS AS) { |
1504 | switch (AS) { |
1505 | case LangAS::opencl_global: |
1506 | return 1; |
1507 | case LangAS::opencl_constant: |
1508 | return 2; |
1509 | case LangAS::opencl_local: |
1510 | return 3; |
1511 | case LangAS::opencl_generic: |
1512 | return 4; // Not in SPIR 2.0 specs. |
1513 | case LangAS::opencl_global_device: |
1514 | return 5; |
1515 | case LangAS::opencl_global_host: |
1516 | return 6; |
1517 | default: |
1518 | return 0; // Assume private. |
1519 | } |
1520 | } |
1521 | |
1522 | void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, |
1523 | const FunctionDecl *FD, |
1524 | CodeGenFunction *CGF) { |
1525 | assert(((FD && CGF) || (!FD && !CGF)) && |
1526 | "Incorrect use - FD and CGF should either be both null or not!" ); |
1527 | // Create MDNodes that represent the kernel arg metadata. |
1528 | // Each MDNode is a list in the form of "key", N number of values which is |
1529 | // the same number of values as their are kernel arguments. |
1530 | |
1531 | const PrintingPolicy &Policy = Context.getPrintingPolicy(); |
1532 | |
1533 | // MDNode for the kernel argument address space qualifiers. |
1534 | SmallVector<llvm::Metadata *, 8> addressQuals; |
1535 | |
1536 | // MDNode for the kernel argument access qualifiers (images only). |
1537 | SmallVector<llvm::Metadata *, 8> accessQuals; |
1538 | |
1539 | // MDNode for the kernel argument type names. |
1540 | SmallVector<llvm::Metadata *, 8> argTypeNames; |
1541 | |
1542 | // MDNode for the kernel argument base type names. |
1543 | SmallVector<llvm::Metadata *, 8> argBaseTypeNames; |
1544 | |
1545 | // MDNode for the kernel argument type qualifiers. |
1546 | SmallVector<llvm::Metadata *, 8> argTypeQuals; |
1547 | |
1548 | // MDNode for the kernel argument names. |
1549 | SmallVector<llvm::Metadata *, 8> argNames; |
1550 | |
1551 | if (FD && CGF) |
1552 | for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { |
1553 | const ParmVarDecl *parm = FD->getParamDecl(i); |
1554 | QualType ty = parm->getType(); |
1555 | std::string typeQuals; |
1556 | |
1557 | // Get image and pipe access qualifier: |
1558 | if (ty->isImageType() || ty->isPipeType()) { |
1559 | const Decl *PDecl = parm; |
1560 | if (auto *TD = dyn_cast<TypedefType>(ty)) |
1561 | PDecl = TD->getDecl(); |
1562 | const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); |
1563 | if (A && A->isWriteOnly()) |
1564 | accessQuals.push_back(llvm::MDString::get(VMContext, "write_only" )); |
1565 | else if (A && A->isReadWrite()) |
1566 | accessQuals.push_back(llvm::MDString::get(VMContext, "read_write" )); |
1567 | else |
1568 | accessQuals.push_back(llvm::MDString::get(VMContext, "read_only" )); |
1569 | } else |
1570 | accessQuals.push_back(llvm::MDString::get(VMContext, "none" )); |
1571 | |
1572 | // Get argument name. |
1573 | argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); |
1574 | |
1575 | auto getTypeSpelling = [&](QualType Ty) { |
1576 | auto typeName = Ty.getUnqualifiedType().getAsString(Policy); |
1577 | |
1578 | if (Ty.isCanonical()) { |
1579 | StringRef typeNameRef = typeName; |
1580 | // Turn "unsigned type" to "utype" |
1581 | if (typeNameRef.consume_front("unsigned " )) |
1582 | return std::string("u" ) + typeNameRef.str(); |
1583 | if (typeNameRef.consume_front("signed " )) |
1584 | return typeNameRef.str(); |
1585 | } |
1586 | |
1587 | return typeName; |
1588 | }; |
1589 | |
1590 | if (ty->isPointerType()) { |
1591 | QualType pointeeTy = ty->getPointeeType(); |
1592 | |
1593 | // Get address qualifier. |
1594 | addressQuals.push_back( |
1595 | llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( |
1596 | ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); |
1597 | |
1598 | // Get argument type name. |
1599 | std::string typeName = getTypeSpelling(pointeeTy) + "*" ; |
1600 | std::string baseTypeName = |
1601 | getTypeSpelling(pointeeTy.getCanonicalType()) + "*" ; |
1602 | argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); |
1603 | argBaseTypeNames.push_back( |
1604 | llvm::MDString::get(VMContext, baseTypeName)); |
1605 | |
1606 | // Get argument type qualifiers: |
1607 | if (ty.isRestrictQualified()) |
1608 | typeQuals = "restrict" ; |
1609 | if (pointeeTy.isConstQualified() || |
1610 | (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) |
1611 | typeQuals += typeQuals.empty() ? "const" : " const" ; |
1612 | if (pointeeTy.isVolatileQualified()) |
1613 | typeQuals += typeQuals.empty() ? "volatile" : " volatile" ; |
1614 | } else { |
1615 | uint32_t AddrSpc = 0; |
1616 | bool isPipe = ty->isPipeType(); |
1617 | if (ty->isImageType() || isPipe) |
1618 | AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); |
1619 | |
1620 | addressQuals.push_back( |
1621 | llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); |
1622 | |
1623 | // Get argument type name. |
1624 | ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; |
1625 | std::string typeName = getTypeSpelling(ty); |
1626 | std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); |
1627 | |
1628 | // Remove access qualifiers on images |
1629 | // (as they are inseparable from type in clang implementation, |
1630 | // but OpenCL spec provides a special query to get access qualifier |
1631 | // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): |
1632 | if (ty->isImageType()) { |
1633 | removeImageAccessQualifier(typeName); |
1634 | removeImageAccessQualifier(baseTypeName); |
1635 | } |
1636 | |
1637 | argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); |
1638 | argBaseTypeNames.push_back( |
1639 | llvm::MDString::get(VMContext, baseTypeName)); |
1640 | |
1641 | if (isPipe) |
1642 | typeQuals = "pipe" ; |
1643 | } |
1644 | argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); |
1645 | } |
1646 | |
1647 | Fn->setMetadata("kernel_arg_addr_space" , |
1648 | llvm::MDNode::get(VMContext, addressQuals)); |
1649 | Fn->setMetadata("kernel_arg_access_qual" , |
1650 | llvm::MDNode::get(VMContext, accessQuals)); |
1651 | Fn->setMetadata("kernel_arg_type" , |
1652 | llvm::MDNode::get(VMContext, argTypeNames)); |
1653 | Fn->setMetadata("kernel_arg_base_type" , |
1654 | llvm::MDNode::get(VMContext, argBaseTypeNames)); |
1655 | Fn->setMetadata("kernel_arg_type_qual" , |
1656 | llvm::MDNode::get(VMContext, argTypeQuals)); |
1657 | if (getCodeGenOpts().EmitOpenCLArgMetadata) |
1658 | Fn->setMetadata("kernel_arg_name" , |
1659 | llvm::MDNode::get(VMContext, argNames)); |
1660 | } |
1661 | |
1662 | /// Determines whether the language options require us to model |
1663 | /// unwind exceptions. We treat -fexceptions as mandating this |
1664 | /// except under the fragile ObjC ABI with only ObjC exceptions |
1665 | /// enabled. This means, for example, that C with -fexceptions |
1666 | /// enables this. |
1667 | static bool hasUnwindExceptions(const LangOptions &LangOpts) { |
1668 | // If exceptions are completely disabled, obviously this is false. |
1669 | if (!LangOpts.Exceptions) return false; |
1670 | |
1671 | // If C++ exceptions are enabled, this is true. |
1672 | if (LangOpts.CXXExceptions) return true; |
1673 | |
1674 | // If ObjC exceptions are enabled, this depends on the ABI. |
1675 | if (LangOpts.ObjCExceptions) { |
1676 | return LangOpts.ObjCRuntime.hasUnwindExceptions(); |
1677 | } |
1678 | |
1679 | return true; |
1680 | } |
1681 | |
1682 | static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, |
1683 | const CXXMethodDecl *MD) { |
1684 | // Check that the type metadata can ever actually be used by a call. |
1685 | if (!CGM.getCodeGenOpts().LTOUnit || |
1686 | !CGM.HasHiddenLTOVisibility(MD->getParent())) |
1687 | return false; |
1688 | |
1689 | // Only functions whose address can be taken with a member function pointer |
1690 | // need this sort of type metadata. |
1691 | return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && |
1692 | !isa<CXXDestructorDecl>(MD); |
1693 | } |
1694 | |
1695 | std::vector<const CXXRecordDecl *> |
1696 | CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { |
1697 | llvm::SetVector<const CXXRecordDecl *> MostBases; |
1698 | |
1699 | std::function<void (const CXXRecordDecl *)> CollectMostBases; |
1700 | CollectMostBases = [&](const CXXRecordDecl *RD) { |
1701 | if (RD->getNumBases() == 0) |
1702 | MostBases.insert(RD); |
1703 | for (const CXXBaseSpecifier &B : RD->bases()) |
1704 | CollectMostBases(B.getType()->getAsCXXRecordDecl()); |
1705 | }; |
1706 | CollectMostBases(RD); |
1707 | return MostBases.takeVector(); |
1708 | } |
1709 | |
1710 | void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, |
1711 | llvm::Function *F) { |
1712 | llvm::AttrBuilder B; |
1713 | |
1714 | if (CodeGenOpts.UnwindTables) |
1715 | B.addAttribute(llvm::Attribute::UWTable); |
1716 | |
1717 | if (CodeGenOpts.StackClashProtector) |
1718 | B.addAttribute("probe-stack" , "inline-asm" ); |
1719 | |
1720 | if (!hasUnwindExceptions(LangOpts)) |
1721 | B.addAttribute(llvm::Attribute::NoUnwind); |
1722 | |
1723 | if (!D || !D->hasAttr<NoStackProtectorAttr>()) { |
1724 | if (LangOpts.getStackProtector() == LangOptions::SSPOn) |
1725 | B.addAttribute(llvm::Attribute::StackProtect); |
1726 | else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) |
1727 | B.addAttribute(llvm::Attribute::StackProtectStrong); |
1728 | else if (LangOpts.getStackProtector() == LangOptions::SSPReq) |
1729 | B.addAttribute(llvm::Attribute::StackProtectReq); |
1730 | } |
1731 | |
1732 | if (!D) { |
1733 | // If we don't have a declaration to control inlining, the function isn't |
1734 | // explicitly marked as alwaysinline for semantic reasons, and inlining is |
1735 | // disabled, mark the function as noinline. |
1736 | if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && |
1737 | CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) |
1738 | B.addAttribute(llvm::Attribute::NoInline); |
1739 | |
1740 | F->addAttributes(llvm::AttributeList::FunctionIndex, B); |
1741 | return; |
1742 | } |
1743 | |
1744 | // Track whether we need to add the optnone LLVM attribute, |
1745 | // starting with the default for this optimization level. |
1746 | bool ShouldAddOptNone = |
1747 | !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; |
1748 | // We can't add optnone in the following cases, it won't pass the verifier. |
1749 | ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); |
1750 | ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); |
1751 | |
1752 | // Add optnone, but do so only if the function isn't always_inline. |
1753 | if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && |
1754 | !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { |
1755 | B.addAttribute(llvm::Attribute::OptimizeNone); |
1756 | |
1757 | // OptimizeNone implies noinline; we should not be inlining such functions. |
1758 | B.addAttribute(llvm::Attribute::NoInline); |
1759 | |
1760 | // We still need to handle naked functions even though optnone subsumes |
1761 | // much of their semantics. |
1762 | if (D->hasAttr<NakedAttr>()) |
1763 | B.addAttribute(llvm::Attribute::Naked); |
1764 | |
1765 | // OptimizeNone wins over OptimizeForSize and MinSize. |
1766 | F->removeFnAttr(llvm::Attribute::OptimizeForSize); |
1767 | F->removeFnAttr(llvm::Attribute::MinSize); |
1768 | } else if (D->hasAttr<NakedAttr>()) { |
1769 | // Naked implies noinline: we should not be inlining such functions. |
1770 | B.addAttribute(llvm::Attribute::Naked); |
1771 | B.addAttribute(llvm::Attribute::NoInline); |
1772 | } else if (D->hasAttr<NoDuplicateAttr>()) { |
1773 | B.addAttribute(llvm::Attribute::NoDuplicate); |
1774 | } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { |
1775 | // Add noinline if the function isn't always_inline. |
1776 | B.addAttribute(llvm::Attribute::NoInline); |
1777 | } else if (D->hasAttr<AlwaysInlineAttr>() && |
1778 | !F->hasFnAttribute(llvm::Attribute::NoInline)) { |
1779 | // (noinline wins over always_inline, and we can't specify both in IR) |
1780 | B.addAttribute(llvm::Attribute::AlwaysInline); |
1781 | } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { |
1782 | // If we're not inlining, then force everything that isn't always_inline to |
1783 | // carry an explicit noinline attribute. |
1784 | if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) |
1785 | B.addAttribute(llvm::Attribute::NoInline); |
1786 | } else { |
1787 | // Otherwise, propagate the inline hint attribute and potentially use its |
1788 | // absence to mark things as noinline. |
1789 | if (auto *FD = dyn_cast<FunctionDecl>(D)) { |
1790 | // Search function and template pattern redeclarations for inline. |
1791 | auto CheckForInline = [](const FunctionDecl *FD) { |
1792 | auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { |
1793 | return Redecl->isInlineSpecified(); |
1794 | }; |
1795 | if (any_of(FD->redecls(), CheckRedeclForInline)) |
1796 | return true; |
1797 | const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); |
1798 | if (!Pattern) |
1799 | return false; |
1800 | return any_of(Pattern->redecls(), CheckRedeclForInline); |
1801 | }; |
1802 | if (CheckForInline(FD)) { |
1803 | B.addAttribute(llvm::Attribute::InlineHint); |
1804 | } else if (CodeGenOpts.getInlining() == |
1805 | CodeGenOptions::OnlyHintInlining && |
1806 | !FD->isInlined() && |
1807 | !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { |
1808 | B.addAttribute(llvm::Attribute::NoInline); |
1809 | } |
1810 | } |
1811 | } |
1812 | |
1813 | // Add other optimization related attributes if we are optimizing this |
1814 | // function. |
1815 | if (!D->hasAttr<OptimizeNoneAttr>()) { |
1816 | if (D->hasAttr<ColdAttr>()) { |
1817 | if (!ShouldAddOptNone) |
1818 | B.addAttribute(llvm::Attribute::OptimizeForSize); |
1819 | B.addAttribute(llvm::Attribute::Cold); |
1820 | } |
1821 | if (D->hasAttr<HotAttr>()) |
1822 | B.addAttribute(llvm::Attribute::Hot); |
1823 | if (D->hasAttr<MinSizeAttr>()) |
1824 | B.addAttribute(llvm::Attribute::MinSize); |
1825 | } |
1826 | |
1827 | F->addAttributes(llvm::AttributeList::FunctionIndex, B); |
1828 | |
1829 | unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); |
1830 | if (alignment) |
1831 | F->setAlignment(llvm::Align(alignment)); |
1832 | |
1833 | if (!D->hasAttr<AlignedAttr>()) |
1834 | if (LangOpts.FunctionAlignment) |
1835 | F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); |
1836 | |
1837 | // Some C++ ABIs require 2-byte alignment for member functions, in order to |
1838 | // reserve a bit for differentiating between virtual and non-virtual member |
1839 | // functions. If the current target's C++ ABI requires this and this is a |
1840 | // member function, set its alignment accordingly. |
1841 | if (getTarget().getCXXABI().areMemberFunctionsAligned()) { |
1842 | if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) |
1843 | F->setAlignment(llvm::Align(2)); |
1844 | } |
1845 | |
1846 | // In the cross-dso CFI mode with canonical jump tables, we want !type |
1847 | // attributes on definitions only. |
1848 | if (CodeGenOpts.SanitizeCfiCrossDso && |
1849 | CodeGenOpts.SanitizeCfiCanonicalJumpTables) { |
1850 | if (auto *FD = dyn_cast<FunctionDecl>(D)) { |
1851 | // Skip available_externally functions. They won't be codegen'ed in the |
1852 | // current module anyway. |
1853 | if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) |
1854 | CreateFunctionTypeMetadataForIcall(FD, F); |
1855 | } |
1856 | } |
1857 | |
1858 | // Emit type metadata on member functions for member function pointer checks. |
1859 | // These are only ever necessary on definitions; we're guaranteed that the |
1860 | // definition will be present in the LTO unit as a result of LTO visibility. |
1861 | auto *MD = dyn_cast<CXXMethodDecl>(D); |
1862 | if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { |
1863 | for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { |
1864 | llvm::Metadata *Id = |
1865 | CreateMetadataIdentifierForType(Context.getMemberPointerType( |
1866 | MD->getType(), Context.getRecordType(Base).getTypePtr())); |
1867 | F->addTypeMetadata(0, Id); |
1868 | } |
1869 | } |
1870 | } |
1871 | |
1872 | void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, |
1873 | llvm::Function *F) { |
1874 | if (D->hasAttr<StrictFPAttr>()) { |
1875 | llvm::AttrBuilder FuncAttrs; |
1876 | FuncAttrs.addAttribute("strictfp" ); |
1877 | F->addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); |
1878 | } |
1879 | } |
1880 | |
1881 | void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { |
1882 | const Decl *D = GD.getDecl(); |
1883 | if (dyn_cast_or_null<NamedDecl>(D)) |
1884 | setGVProperties(GV, GD); |
1885 | else |
1886 | GV->setVisibility(llvm::GlobalValue::DefaultVisibility); |
1887 | |
1888 | if (D && D->hasAttr<UsedAttr>()) |
1889 | addUsedOrCompilerUsedGlobal(GV); |
1890 | |
1891 | if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { |
1892 | const auto *VD = cast<VarDecl>(D); |
1893 | if (VD->getType().isConstQualified() && |
1894 | VD->getStorageDuration() == SD_Static) |
1895 | addUsedOrCompilerUsedGlobal(GV); |
1896 | } |
1897 | } |
1898 | |
1899 | bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, |
1900 | llvm::AttrBuilder &Attrs) { |
1901 | // Add target-cpu and target-features attributes to functions. If |
1902 | // we have a decl for the function and it has a target attribute then |
1903 | // parse that and add it to the feature set. |
1904 | StringRef TargetCPU = getTarget().getTargetOpts().CPU; |
1905 | StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; |
1906 | std::vector<std::string> Features; |
1907 | const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); |
1908 | FD = FD ? FD->getMostRecentDecl() : FD; |
1909 | const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; |
1910 | const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; |
1911 | bool AddedAttr = false; |
1912 | if (TD || SD) { |
1913 | llvm::StringMap<bool> FeatureMap; |
1914 | getContext().getFunctionFeatureMap(FeatureMap, GD); |
1915 | |
1916 | // Produce the canonical string for this set of features. |
1917 | for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) |
1918 | Features.push_back((Entry.getValue() ? "+" : "-" ) + Entry.getKey().str()); |
1919 | |
1920 | // Now add the target-cpu and target-features to the function. |
1921 | // While we populated the feature map above, we still need to |
1922 | // get and parse the target attribute so we can get the cpu for |
1923 | // the function. |
1924 | if (TD) { |
1925 | ParsedTargetAttr ParsedAttr = TD->parse(); |
1926 | if (!ParsedAttr.Architecture.empty() && |
1927 | getTarget().isValidCPUName(ParsedAttr.Architecture)) { |
1928 | TargetCPU = ParsedAttr.Architecture; |
1929 | TuneCPU = "" ; // Clear the tune CPU. |
1930 | } |
1931 | if (!ParsedAttr.Tune.empty() && |
1932 | getTarget().isValidCPUName(ParsedAttr.Tune)) |
1933 | TuneCPU = ParsedAttr.Tune; |
1934 | } |
1935 | } else { |
1936 | // Otherwise just add the existing target cpu and target features to the |
1937 | // function. |
1938 | Features = getTarget().getTargetOpts().Features; |
1939 | } |
1940 | |
1941 | if (!TargetCPU.empty()) { |
1942 | Attrs.addAttribute("target-cpu" , TargetCPU); |
1943 | AddedAttr = true; |
1944 | } |
1945 | if (!TuneCPU.empty()) { |
1946 | Attrs.addAttribute("tune-cpu" , TuneCPU); |
1947 | AddedAttr = true; |
1948 | } |
1949 | if (!Features.empty()) { |
1950 | llvm::sort(Features); |
1951 | Attrs.addAttribute("target-features" , llvm::join(Features, "," )); |
1952 | AddedAttr = true; |
1953 | } |
1954 | |
1955 | return AddedAttr; |
1956 | } |
1957 | |
1958 | void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, |
1959 | llvm::GlobalObject *GO) { |
1960 | const Decl *D = GD.getDecl(); |
1961 | SetCommonAttributes(GD, GO); |
1962 | |
1963 | if (D) { |
1964 | if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { |
1965 | if (D->hasAttr<RetainAttr>()) |
1966 | addUsedGlobal(GV); |
1967 | if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) |
1968 | GV->addAttribute("bss-section" , SA->getName()); |
1969 | if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) |
1970 | GV->addAttribute("data-section" , SA->getName()); |
1971 | if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) |
1972 | GV->addAttribute("rodata-section" , SA->getName()); |
1973 | if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) |
1974 | GV->addAttribute("relro-section" , SA->getName()); |
1975 | } |
1976 | |
1977 | if (auto *F = dyn_cast<llvm::Function>(GO)) { |
1978 | if (D->hasAttr<RetainAttr>()) |
1979 | addUsedGlobal(F); |
1980 | if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) |
1981 | if (!D->getAttr<SectionAttr>()) |
1982 | F->addFnAttr("implicit-section-name" , SA->getName()); |
1983 | |
1984 | llvm::AttrBuilder Attrs; |
1985 | if (GetCPUAndFeaturesAttributes(GD, Attrs)) { |
1986 | // We know that GetCPUAndFeaturesAttributes will always have the |
1987 | // newest set, since it has the newest possible FunctionDecl, so the |
1988 | // new ones should replace the old. |
1989 | llvm::AttrBuilder RemoveAttrs; |
1990 | RemoveAttrs.addAttribute("target-cpu" ); |
1991 | RemoveAttrs.addAttribute("target-features" ); |
1992 | RemoveAttrs.addAttribute("tune-cpu" ); |
1993 | F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs); |
1994 | F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); |
1995 | } |
1996 | } |
1997 | |
1998 | if (const auto *CSA = D->getAttr<CodeSegAttr>()) |
1999 | GO->setSection(CSA->getName()); |
2000 | else if (const auto *SA = D->getAttr<SectionAttr>()) |
2001 | GO->setSection(SA->getName()); |
2002 | } |
2003 | |
2004 | getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); |
2005 | } |
2006 | |
2007 | void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, |
2008 | llvm::Function *F, |
2009 | const CGFunctionInfo &FI) { |
2010 | const Decl *D = GD.getDecl(); |
2011 | SetLLVMFunctionAttributes(GD, FI, F); |
2012 | SetLLVMFunctionAttributesForDefinition(D, F); |
2013 | |
2014 | F->setLinkage(llvm::Function::InternalLinkage); |
2015 | |
2016 | setNonAliasAttributes(GD, F); |
2017 | } |
2018 | |
2019 | static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { |
2020 | // Set linkage and visibility in case we never see a definition. |
2021 | LinkageInfo LV = ND->getLinkageAndVisibility(); |
2022 | // Don't set internal linkage on declarations. |
2023 | // "extern_weak" is overloaded in LLVM; we probably should have |
2024 | // separate linkage types for this. |
2025 | if (isExternallyVisible(LV.getLinkage()) && |
2026 | (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) |
2027 | GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); |
2028 | } |
2029 | |
2030 | void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, |
2031 | llvm::Function *F) { |
2032 | // Only if we are checking indirect calls. |
2033 | if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) |
2034 | return; |
2035 | |
2036 | // Non-static class methods are handled via vtable or member function pointer |
2037 | // checks elsewhere. |
2038 | if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) |
2039 | return; |
2040 | |
2041 | llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); |
2042 | F->addTypeMetadata(0, MD); |
2043 | F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); |
2044 | |
2045 | // Emit a hash-based bit set entry for cross-DSO calls. |
2046 | if (CodeGenOpts.SanitizeCfiCrossDso) |
2047 | if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) |
2048 | F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); |
2049 | } |
2050 | |
2051 | void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, |
2052 | bool IsIncompleteFunction, |
2053 | bool IsThunk) { |
2054 | |
2055 | if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { |
2056 | // If this is an intrinsic function, set the function's attributes |
2057 | // to the intrinsic's attributes. |
2058 | F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); |
2059 | return; |
2060 | } |
2061 | |
2062 | const auto *FD = cast<FunctionDecl>(GD.getDecl()); |
2063 | |
2064 | if (!IsIncompleteFunction) |
2065 | SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); |
2066 | |
2067 | // Add the Returned attribute for "this", except for iOS 5 and earlier |
2068 | // where substantial code, including the libstdc++ dylib, was compiled with |
2069 | // GCC and does not actually return "this". |
2070 | if (!IsThunk && getCXXABI().HasThisReturn(GD) && |
2071 | !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { |
2072 | assert(!F->arg_empty() && |
2073 | F->arg_begin()->getType() |
2074 | ->canLosslesslyBitCastTo(F->getReturnType()) && |
2075 | "unexpected this return" ); |
2076 | F->addAttribute(1, llvm::Attribute::Returned); |
2077 | } |
2078 | |
2079 | // Only a few attributes are set on declarations; these may later be |
2080 | // overridden by a definition. |
2081 | |
2082 | setLinkageForGV(F, FD); |
2083 | setGVProperties(F, FD); |
2084 | |
2085 | // Setup target-specific attributes. |
2086 | if (!IsIncompleteFunction && F->isDeclaration()) |
2087 | getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); |
2088 | |
2089 | if (const auto *CSA = FD->getAttr<CodeSegAttr>()) |
2090 | F->setSection(CSA->getName()); |
2091 | else if (const auto *SA = FD->getAttr<SectionAttr>()) |
2092 | F->setSection(SA->getName()); |
2093 | |
2094 | // If we plan on emitting this inline builtin, we can't treat it as a builtin. |
2095 | if (FD->isInlineBuiltinDeclaration()) { |
2096 | const FunctionDecl *FDBody; |
2097 | bool HasBody = FD->hasBody(FDBody); |
2098 | (void)HasBody; |
2099 | assert(HasBody && "Inline builtin declarations should always have an " |
2100 | "available body!" ); |
2101 | if (shouldEmitFunction(FDBody)) |
2102 | F->addAttribute(llvm::AttributeList::FunctionIndex, |
2103 | llvm::Attribute::NoBuiltin); |
2104 | } |
2105 | |
2106 | if (FD->isReplaceableGlobalAllocationFunction()) { |
2107 | // A replaceable global allocation function does not act like a builtin by |
2108 | // default, only if it is invoked by a new-expression or delete-expression. |
2109 | F->addAttribute(llvm::AttributeList::FunctionIndex, |
2110 | llvm::Attribute::NoBuiltin); |
2111 | } |
2112 | |
2113 | if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) |
2114 | F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
2115 | else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) |
2116 | if (MD->isVirtual()) |
2117 | |
---|