1 | //===-- sanitizer_common.h --------------------------------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file is shared between run-time libraries of sanitizers. |
10 | // |
11 | // It declares common functions and classes that are used in both runtimes. |
12 | // Implementation of some functions are provided in sanitizer_common, while |
13 | // others must be defined by run-time library itself. |
14 | //===----------------------------------------------------------------------===// |
15 | #ifndef SANITIZER_COMMON_H |
16 | #define SANITIZER_COMMON_H |
17 | |
18 | #include "sanitizer_flags.h" |
19 | #include "sanitizer_interface_internal.h" |
20 | #include "sanitizer_internal_defs.h" |
21 | #include "sanitizer_libc.h" |
22 | #include "sanitizer_list.h" |
23 | #include "sanitizer_mutex.h" |
24 | |
25 | #if defined(_MSC_VER) && !defined(__clang__) |
26 | extern "C" void _ReadWriteBarrier(); |
27 | #pragma intrinsic(_ReadWriteBarrier) |
28 | #endif |
29 | |
30 | namespace __sanitizer { |
31 | |
32 | struct AddressInfo; |
33 | struct BufferedStackTrace; |
34 | struct SignalContext; |
35 | struct StackTrace; |
36 | |
37 | // Constants. |
38 | const uptr kWordSize = SANITIZER_WORDSIZE / 8; |
39 | const uptr kWordSizeInBits = 8 * kWordSize; |
40 | |
41 | const uptr kCacheLineSize = SANITIZER_CACHE_LINE_SIZE; |
42 | |
43 | const uptr kMaxPathLength = 4096; |
44 | |
45 | const uptr kMaxThreadStackSize = 1 << 30; // 1Gb |
46 | |
47 | const uptr kErrorMessageBufferSize = 1 << 16; |
48 | |
49 | // Denotes fake PC values that come from JIT/JAVA/etc. |
50 | // For such PC values __tsan_symbolize_external_ex() will be called. |
51 | const u64 kExternalPCBit = 1ULL << 60; |
52 | |
53 | extern const char *SanitizerToolName; // Can be changed by the tool. |
54 | |
55 | extern atomic_uint32_t current_verbosity; |
56 | inline void SetVerbosity(int verbosity) { |
57 | atomic_store(¤t_verbosity, verbosity, memory_order_relaxed); |
58 | } |
59 | inline int Verbosity() { |
60 | return atomic_load(¤t_verbosity, memory_order_relaxed); |
61 | } |
62 | |
63 | #if SANITIZER_ANDROID |
64 | inline uptr GetPageSize() { |
65 | // Android post-M sysconf(_SC_PAGESIZE) crashes if called from .preinit_array. |
66 | return 4096; |
67 | } |
68 | inline uptr GetPageSizeCached() { |
69 | return 4096; |
70 | } |
71 | #else |
72 | uptr GetPageSize(); |
73 | extern uptr PageSizeCached; |
74 | inline uptr GetPageSizeCached() { |
75 | if (!PageSizeCached) |
76 | PageSizeCached = GetPageSize(); |
77 | return PageSizeCached; |
78 | } |
79 | #endif |
80 | uptr GetMmapGranularity(); |
81 | uptr GetMaxVirtualAddress(); |
82 | uptr GetMaxUserVirtualAddress(); |
83 | // Threads |
84 | tid_t GetTid(); |
85 | int TgKill(pid_t pid, tid_t tid, int sig); |
86 | uptr GetThreadSelf(); |
87 | void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top, |
88 | uptr *stack_bottom); |
89 | void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size, |
90 | uptr *tls_addr, uptr *tls_size); |
91 | |
92 | // Memory management |
93 | void *MmapOrDie(uptr size, const char *mem_type, bool raw_report = false); |
94 | inline void *MmapOrDieQuietly(uptr size, const char *mem_type) { |
95 | return MmapOrDie(size, mem_type, /*raw_report*/ true); |
96 | } |
97 | void UnmapOrDie(void *addr, uptr size); |
98 | // Behaves just like MmapOrDie, but tolerates out of memory condition, in that |
99 | // case returns nullptr. |
100 | void *MmapOrDieOnFatalError(uptr size, const char *mem_type); |
101 | bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name = nullptr) |
102 | WARN_UNUSED_RESULT; |
103 | bool MmapFixedSuperNoReserve(uptr fixed_addr, uptr size, |
104 | const char *name = nullptr) WARN_UNUSED_RESULT; |
105 | void *MmapNoReserveOrDie(uptr size, const char *mem_type); |
106 | void *MmapFixedOrDie(uptr fixed_addr, uptr size, const char *name = nullptr); |
107 | // Behaves just like MmapFixedOrDie, but tolerates out of memory condition, in |
108 | // that case returns nullptr. |
109 | void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size, |
110 | const char *name = nullptr); |
111 | void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name = nullptr); |
112 | void *MmapNoAccess(uptr size); |
113 | // Map aligned chunk of address space; size and alignment are powers of two. |
114 | // Dies on all but out of memory errors, in the latter case returns nullptr. |
115 | void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment, |
116 | const char *mem_type); |
117 | // Disallow access to a memory range. Use MmapFixedNoAccess to allocate an |
118 | // unaccessible memory. |
119 | bool MprotectNoAccess(uptr addr, uptr size); |
120 | bool MprotectReadOnly(uptr addr, uptr size); |
121 | |
122 | void MprotectMallocZones(void *addr, int prot); |
123 | |
124 | #if SANITIZER_LINUX |
125 | // Unmap memory. Currently only used on Linux. |
126 | void UnmapFromTo(uptr from, uptr to); |
127 | #endif |
128 | |
129 | // Maps shadow_size_bytes of shadow memory and returns shadow address. It will |
130 | // be aligned to the mmap granularity * 2^shadow_scale, or to |
131 | // 2^min_shadow_base_alignment if that is larger. The returned address will |
132 | // have max(2^min_shadow_base_alignment, mmap granularity) on the left, and |
133 | // shadow_size_bytes bytes on the right, which on linux is mapped no access. |
134 | // The high_mem_end may be updated if the original shadow size doesn't fit. |
135 | uptr MapDynamicShadow(uptr shadow_size_bytes, uptr shadow_scale, |
136 | uptr min_shadow_base_alignment, uptr &high_mem_end); |
137 | |
138 | // Let S = max(shadow_size, num_aliases * alias_size, ring_buffer_size). |
139 | // Reserves 2*S bytes of address space to the right of the returned address and |
140 | // ring_buffer_size bytes to the left. The returned address is aligned to 2*S. |
141 | // Also creates num_aliases regions of accessible memory starting at offset S |
142 | // from the returned address. Each region has size alias_size and is backed by |
143 | // the same physical memory. |
144 | uptr MapDynamicShadowAndAliases(uptr shadow_size, uptr alias_size, |
145 | uptr num_aliases, uptr ring_buffer_size); |
146 | |
147 | // Reserve memory range [beg, end]. If madvise_shadow is true then apply |
148 | // madvise (e.g. hugepages, core dumping) requested by options. |
149 | void ReserveShadowMemoryRange(uptr beg, uptr end, const char *name, |
150 | bool madvise_shadow = true); |
151 | |
152 | // Protect size bytes of memory starting at addr. Also try to protect |
153 | // several pages at the start of the address space as specified by |
154 | // zero_base_shadow_start, at most up to the size or zero_base_max_shadow_start. |
155 | void ProtectGap(uptr addr, uptr size, uptr zero_base_shadow_start, |
156 | uptr zero_base_max_shadow_start); |
157 | |
158 | // Find an available address space. |
159 | uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding, |
160 | uptr *largest_gap_found, uptr *max_occupied_addr); |
161 | |
162 | // Used to check if we can map shadow memory to a fixed location. |
163 | bool MemoryRangeIsAvailable(uptr range_start, uptr range_end); |
164 | // Releases memory pages entirely within the [beg, end] address range. Noop if |
165 | // the provided range does not contain at least one entire page. |
166 | void ReleaseMemoryPagesToOS(uptr beg, uptr end); |
167 | void IncreaseTotalMmap(uptr size); |
168 | void DecreaseTotalMmap(uptr size); |
169 | uptr (); |
170 | void SetShadowRegionHugePageMode(uptr addr, uptr length); |
171 | bool DontDumpShadowMemory(uptr addr, uptr length); |
172 | // Check if the built VMA size matches the runtime one. |
173 | void CheckVMASize(); |
174 | void RunMallocHooks(const void *ptr, uptr size); |
175 | void RunFreeHooks(const void *ptr); |
176 | |
177 | class ReservedAddressRange { |
178 | public: |
179 | uptr Init(uptr size, const char *name = nullptr, uptr fixed_addr = 0); |
180 | uptr InitAligned(uptr size, uptr align, const char *name = nullptr); |
181 | uptr Map(uptr fixed_addr, uptr size, const char *name = nullptr); |
182 | uptr MapOrDie(uptr fixed_addr, uptr size, const char *name = nullptr); |
183 | void Unmap(uptr addr, uptr size); |
184 | void *base() const { return base_; } |
185 | uptr size() const { return size_; } |
186 | |
187 | private: |
188 | void* base_; |
189 | uptr size_; |
190 | const char* name_; |
191 | uptr os_handle_; |
192 | }; |
193 | |
194 | typedef void (*fill_profile_f)(uptr start, uptr , bool file, |
195 | /*out*/uptr *stats, uptr stats_size); |
196 | |
197 | // Parse the contents of /proc/self/smaps and generate a memory profile. |
198 | // |cb| is a tool-specific callback that fills the |stats| array containing |
199 | // |stats_size| elements. |
200 | void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size); |
201 | |
202 | // Simple low-level (mmap-based) allocator for internal use. Doesn't have |
203 | // constructor, so all instances of LowLevelAllocator should be |
204 | // linker initialized. |
205 | class LowLevelAllocator { |
206 | public: |
207 | // Requires an external lock. |
208 | void *Allocate(uptr size); |
209 | private: |
210 | char *allocated_end_; |
211 | char *allocated_current_; |
212 | }; |
213 | // Set the min alignment of LowLevelAllocator to at least alignment. |
214 | void SetLowLevelAllocateMinAlignment(uptr alignment); |
215 | typedef void (*LowLevelAllocateCallback)(uptr ptr, uptr size); |
216 | // Allows to register tool-specific callbacks for LowLevelAllocator. |
217 | // Passing NULL removes the callback. |
218 | void SetLowLevelAllocateCallback(LowLevelAllocateCallback callback); |
219 | |
220 | // IO |
221 | void CatastrophicErrorWrite(const char *buffer, uptr length); |
222 | void RawWrite(const char *buffer); |
223 | bool ColorizeReports(); |
224 | void RemoveANSIEscapeSequencesFromString(char *buffer); |
225 | void Printf(const char *format, ...); |
226 | void Report(const char *format, ...); |
227 | void SetPrintfAndReportCallback(void (*callback)(const char *)); |
228 | #define VReport(level, ...) \ |
229 | do { \ |
230 | if ((uptr)Verbosity() >= (level)) Report(__VA_ARGS__); \ |
231 | } while (0) |
232 | #define VPrintf(level, ...) \ |
233 | do { \ |
234 | if ((uptr)Verbosity() >= (level)) Printf(__VA_ARGS__); \ |
235 | } while (0) |
236 | |
237 | // Lock sanitizer error reporting and protects against nested errors. |
238 | class ScopedErrorReportLock { |
239 | public: |
240 | ScopedErrorReportLock(); |
241 | ~ScopedErrorReportLock(); |
242 | |
243 | static void CheckLocked(); |
244 | }; |
245 | |
246 | extern uptr stoptheworld_tracer_pid; |
247 | extern uptr stoptheworld_tracer_ppid; |
248 | |
249 | bool IsAccessibleMemoryRange(uptr beg, uptr size); |
250 | |
251 | // Error report formatting. |
252 | const char *StripPathPrefix(const char *filepath, |
253 | const char *strip_file_prefix); |
254 | // Strip the directories from the module name. |
255 | const char *StripModuleName(const char *module); |
256 | |
257 | // OS |
258 | uptr ReadBinaryName(/*out*/char *buf, uptr buf_len); |
259 | uptr ReadBinaryNameCached(/*out*/char *buf, uptr buf_len); |
260 | uptr ReadBinaryDir(/*out*/ char *buf, uptr buf_len); |
261 | uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len); |
262 | const char *GetProcessName(); |
263 | void UpdateProcessName(); |
264 | void CacheBinaryName(); |
265 | void DisableCoreDumperIfNecessary(); |
266 | void DumpProcessMap(); |
267 | const char *GetEnv(const char *name); |
268 | bool SetEnv(const char *name, const char *value); |
269 | |
270 | u32 GetUid(); |
271 | void ReExec(); |
272 | void CheckASLR(); |
273 | void CheckMPROTECT(); |
274 | char **GetArgv(); |
275 | char **GetEnviron(); |
276 | void PrintCmdline(); |
277 | bool StackSizeIsUnlimited(); |
278 | void SetStackSizeLimitInBytes(uptr limit); |
279 | bool AddressSpaceIsUnlimited(); |
280 | void SetAddressSpaceUnlimited(); |
281 | void AdjustStackSize(void *attr); |
282 | void PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments *args); |
283 | void SetSandboxingCallback(void (*f)()); |
284 | |
285 | void InitializeCoverage(bool enabled, const char *coverage_dir); |
286 | |
287 | void InitTlsSize(); |
288 | uptr GetTlsSize(); |
289 | |
290 | // Other |
291 | void SleepForSeconds(int seconds); |
292 | void SleepForMillis(int millis); |
293 | u64 NanoTime(); |
294 | u64 MonotonicNanoTime(); |
295 | int Atexit(void (*function)(void)); |
296 | bool TemplateMatch(const char *templ, const char *str); |
297 | |
298 | // Exit |
299 | void NORETURN Abort(); |
300 | void NORETURN Die(); |
301 | void NORETURN |
302 | CheckFailed(const char *file, int line, const char *cond, u64 v1, u64 v2); |
303 | void NORETURN ReportMmapFailureAndDie(uptr size, const char *mem_type, |
304 | const char *mmap_type, error_t err, |
305 | bool raw_report = false); |
306 | |
307 | // Specific tools may override behavior of "Die" and "CheckFailed" functions |
308 | // to do tool-specific job. |
309 | typedef void (*DieCallbackType)(void); |
310 | |
311 | // It's possible to add several callbacks that would be run when "Die" is |
312 | // called. The callbacks will be run in the opposite order. The tools are |
313 | // strongly recommended to setup all callbacks during initialization, when there |
314 | // is only a single thread. |
315 | bool AddDieCallback(DieCallbackType callback); |
316 | bool RemoveDieCallback(DieCallbackType callback); |
317 | |
318 | void SetUserDieCallback(DieCallbackType callback); |
319 | |
320 | typedef void (*CheckFailedCallbackType)(const char *, int, const char *, |
321 | u64, u64); |
322 | void SetCheckFailedCallback(CheckFailedCallbackType callback); |
323 | |
324 | // Callback will be called if soft_rss_limit_mb is given and the limit is |
325 | // exceeded (exceeded==true) or if rss went down below the limit |
326 | // (exceeded==false). |
327 | // The callback should be registered once at the tool init time. |
328 | void (void (*Callback)(bool exceeded)); |
329 | |
330 | // Functions related to signal handling. |
331 | typedef void (*SignalHandlerType)(int, void *, void *); |
332 | HandleSignalMode GetHandleSignalMode(int signum); |
333 | void InstallDeadlySignalHandlers(SignalHandlerType handler); |
334 | |
335 | // Signal reporting. |
336 | // Each sanitizer uses slightly different implementation of stack unwinding. |
337 | typedef void (*UnwindSignalStackCallbackType)(const SignalContext &sig, |
338 | const void *callback_context, |
339 | BufferedStackTrace *stack); |
340 | // Print deadly signal report and die. |
341 | void HandleDeadlySignal(void *siginfo, void *context, u32 tid, |
342 | UnwindSignalStackCallbackType unwind, |
343 | const void *unwind_context); |
344 | |
345 | // Part of HandleDeadlySignal, exposed for asan. |
346 | void StartReportDeadlySignal(); |
347 | // Part of HandleDeadlySignal, exposed for asan. |
348 | void ReportDeadlySignal(const SignalContext &sig, u32 tid, |
349 | UnwindSignalStackCallbackType unwind, |
350 | const void *unwind_context); |
351 | |
352 | // Alternative signal stack (POSIX-only). |
353 | void SetAlternateSignalStack(); |
354 | void UnsetAlternateSignalStack(); |
355 | |
356 | // Construct a one-line string: |
357 | // SUMMARY: SanitizerToolName: error_message |
358 | // and pass it to __sanitizer_report_error_summary. |
359 | // If alt_tool_name is provided, it's used in place of SanitizerToolName. |
360 | void ReportErrorSummary(const char *error_message, |
361 | const char *alt_tool_name = nullptr); |
362 | // Same as above, but construct error_message as: |
363 | // error_type file:line[:column][ function] |
364 | void ReportErrorSummary(const char *error_type, const AddressInfo &info, |
365 | const char *alt_tool_name = nullptr); |
366 | // Same as above, but obtains AddressInfo by symbolizing top stack trace frame. |
367 | void ReportErrorSummary(const char *error_type, const StackTrace *trace, |
368 | const char *alt_tool_name = nullptr); |
369 | |
370 | void ReportMmapWriteExec(int prot); |
371 | |
372 | // Math |
373 | #if SANITIZER_WINDOWS && !defined(__clang__) && !defined(__GNUC__) |
374 | extern "C" { |
375 | unsigned char _BitScanForward(unsigned long *index, unsigned long mask); |
376 | unsigned char _BitScanReverse(unsigned long *index, unsigned long mask); |
377 | #if defined(_WIN64) |
378 | unsigned char _BitScanForward64(unsigned long *index, unsigned __int64 mask); |
379 | unsigned char _BitScanReverse64(unsigned long *index, unsigned __int64 mask); |
380 | #endif |
381 | } |
382 | #endif |
383 | |
384 | inline uptr MostSignificantSetBitIndex(uptr x) { |
385 | CHECK_NE(x, 0U); |
386 | unsigned long up; |
387 | #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__) |
388 | # ifdef _WIN64 |
389 | up = SANITIZER_WORDSIZE - 1 - __builtin_clzll(x); |
390 | # else |
391 | up = SANITIZER_WORDSIZE - 1 - __builtin_clzl(x); |
392 | # endif |
393 | #elif defined(_WIN64) |
394 | _BitScanReverse64(&up, x); |
395 | #else |
396 | _BitScanReverse(&up, x); |
397 | #endif |
398 | return up; |
399 | } |
400 | |
401 | inline uptr LeastSignificantSetBitIndex(uptr x) { |
402 | CHECK_NE(x, 0U); |
403 | unsigned long up; |
404 | #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__) |
405 | # ifdef _WIN64 |
406 | up = __builtin_ctzll(x); |
407 | # else |
408 | up = __builtin_ctzl(x); |
409 | # endif |
410 | #elif defined(_WIN64) |
411 | _BitScanForward64(&up, x); |
412 | #else |
413 | _BitScanForward(&up, x); |
414 | #endif |
415 | return up; |
416 | } |
417 | |
418 | inline bool IsPowerOfTwo(uptr x) { |
419 | return (x & (x - 1)) == 0; |
420 | } |
421 | |
422 | inline uptr RoundUpToPowerOfTwo(uptr size) { |
423 | CHECK(size); |
424 | if (IsPowerOfTwo(size)) return size; |
425 | |
426 | uptr up = MostSignificantSetBitIndex(size); |
427 | CHECK_LT(size, (1ULL << (up + 1))); |
428 | CHECK_GT(size, (1ULL << up)); |
429 | return 1ULL << (up + 1); |
430 | } |
431 | |
432 | inline uptr RoundUpTo(uptr size, uptr boundary) { |
433 | RAW_CHECK(IsPowerOfTwo(boundary)); |
434 | return (size + boundary - 1) & ~(boundary - 1); |
435 | } |
436 | |
437 | inline uptr RoundDownTo(uptr x, uptr boundary) { |
438 | return x & ~(boundary - 1); |
439 | } |
440 | |
441 | inline bool IsAligned(uptr a, uptr alignment) { |
442 | return (a & (alignment - 1)) == 0; |
443 | } |
444 | |
445 | inline uptr Log2(uptr x) { |
446 | CHECK(IsPowerOfTwo(x)); |
447 | return LeastSignificantSetBitIndex(x); |
448 | } |
449 | |
450 | // Don't use std::min, std::max or std::swap, to minimize dependency |
451 | // on libstdc++. |
452 | template <class T> |
453 | constexpr T Min(T a, T b) { |
454 | return a < b ? a : b; |
455 | } |
456 | template <class T> |
457 | constexpr T Max(T a, T b) { |
458 | return a > b ? a : b; |
459 | } |
460 | template<class T> void Swap(T& a, T& b) { |
461 | T tmp = a; |
462 | a = b; |
463 | b = tmp; |
464 | } |
465 | |
466 | // Char handling |
467 | inline bool IsSpace(int c) { |
468 | return (c == ' ') || (c == '\n') || (c == '\t') || |
469 | (c == '\f') || (c == '\r') || (c == '\v'); |
470 | } |
471 | inline bool IsDigit(int c) { |
472 | return (c >= '0') && (c <= '9'); |
473 | } |
474 | inline int ToLower(int c) { |
475 | return (c >= 'A' && c <= 'Z') ? (c + 'a' - 'A') : c; |
476 | } |
477 | |
478 | // A low-level vector based on mmap. May incur a significant memory overhead for |
479 | // small vectors. |
480 | // WARNING: The current implementation supports only POD types. |
481 | template<typename T> |
482 | class InternalMmapVectorNoCtor { |
483 | public: |
484 | using value_type = T; |
485 | void Initialize(uptr initial_capacity) { |
486 | capacity_bytes_ = 0; |
487 | size_ = 0; |
488 | data_ = 0; |
489 | reserve(initial_capacity); |
490 | } |
491 | void Destroy() { UnmapOrDie(data_, capacity_bytes_); } |
492 | T &operator[](uptr i) { |
493 | CHECK_LT(i, size_); |
494 | return data_[i]; |
495 | } |
496 | const T &operator[](uptr i) const { |
497 | CHECK_LT(i, size_); |
498 | return data_[i]; |
499 | } |
500 | void push_back(const T &element) { |
501 | CHECK_LE(size_, capacity()); |
502 | if (size_ == capacity()) { |
503 | uptr new_capacity = RoundUpToPowerOfTwo(size_ + 1); |
504 | Realloc(new_capacity); |
505 | } |
506 | internal_memcpy(&data_[size_++], &element, sizeof(T)); |
507 | } |
508 | T &back() { |
509 | CHECK_GT(size_, 0); |
510 | return data_[size_ - 1]; |
511 | } |
512 | void pop_back() { |
513 | CHECK_GT(size_, 0); |
514 | size_--; |
515 | } |
516 | uptr size() const { |
517 | return size_; |
518 | } |
519 | const T *data() const { |
520 | return data_; |
521 | } |
522 | T *data() { |
523 | return data_; |
524 | } |
525 | uptr capacity() const { return capacity_bytes_ / sizeof(T); } |
526 | void reserve(uptr new_size) { |
527 | // Never downsize internal buffer. |
528 | if (new_size > capacity()) |
529 | Realloc(new_size); |
530 | } |
531 | void resize(uptr new_size) { |
532 | if (new_size > size_) { |
533 | reserve(new_size); |
534 | internal_memset(&data_[size_], 0, sizeof(T) * (new_size - size_)); |
535 | } |
536 | size_ = new_size; |
537 | } |
538 | |
539 | void clear() { size_ = 0; } |
540 | bool empty() const { return size() == 0; } |
541 | |
542 | const T *begin() const { |
543 | return data(); |
544 | } |
545 | T *begin() { |
546 | return data(); |
547 | } |
548 | const T *end() const { |
549 | return data() + size(); |
550 | } |
551 | T *end() { |
552 | return data() + size(); |
553 | } |
554 | |
555 | void swap(InternalMmapVectorNoCtor &other) { |
556 | Swap(data_, other.data_); |
557 | Swap(capacity_bytes_, other.capacity_bytes_); |
558 | Swap(size_, other.size_); |
559 | } |
560 | |
561 | private: |
562 | void Realloc(uptr new_capacity) { |
563 | CHECK_GT(new_capacity, 0); |
564 | CHECK_LE(size_, new_capacity); |
565 | uptr new_capacity_bytes = |
566 | RoundUpTo(new_capacity * sizeof(T), GetPageSizeCached()); |
567 | T *new_data = (T *)MmapOrDie(new_capacity_bytes, "InternalMmapVector" ); |
568 | internal_memcpy(new_data, data_, size_ * sizeof(T)); |
569 | UnmapOrDie(data_, capacity_bytes_); |
570 | data_ = new_data; |
571 | capacity_bytes_ = new_capacity_bytes; |
572 | } |
573 | |
574 | T *data_; |
575 | uptr capacity_bytes_; |
576 | uptr size_; |
577 | }; |
578 | |
579 | template <typename T> |
580 | bool operator==(const InternalMmapVectorNoCtor<T> &lhs, |
581 | const InternalMmapVectorNoCtor<T> &rhs) { |
582 | if (lhs.size() != rhs.size()) return false; |
583 | return internal_memcmp(lhs.data(), rhs.data(), lhs.size() * sizeof(T)) == 0; |
584 | } |
585 | |
586 | template <typename T> |
587 | bool operator!=(const InternalMmapVectorNoCtor<T> &lhs, |
588 | const InternalMmapVectorNoCtor<T> &rhs) { |
589 | return !(lhs == rhs); |
590 | } |
591 | |
592 | template<typename T> |
593 | class InternalMmapVector : public InternalMmapVectorNoCtor<T> { |
594 | public: |
595 | InternalMmapVector() { InternalMmapVectorNoCtor<T>::Initialize(0); } |
596 | explicit InternalMmapVector(uptr cnt) { |
597 | InternalMmapVectorNoCtor<T>::Initialize(cnt); |
598 | this->resize(cnt); |
599 | } |
600 | ~InternalMmapVector() { InternalMmapVectorNoCtor<T>::Destroy(); } |
601 | // Disallow copies and moves. |
602 | InternalMmapVector(const InternalMmapVector &) = delete; |
603 | InternalMmapVector &operator=(const InternalMmapVector &) = delete; |
604 | InternalMmapVector(InternalMmapVector &&) = delete; |
605 | InternalMmapVector &operator=(InternalMmapVector &&) = delete; |
606 | }; |
607 | |
608 | class InternalScopedString { |
609 | public: |
610 | InternalScopedString() : buffer_(1) { buffer_[0] = '\0'; } |
611 | |
612 | uptr length() const { return buffer_.size() - 1; } |
613 | void clear() { |
614 | buffer_.resize(1); |
615 | buffer_[0] = '\0'; |
616 | } |
617 | void append(const char *format, ...); |
618 | const char *data() const { return buffer_.data(); } |
619 | char *data() { return buffer_.data(); } |
620 | |
621 | private: |
622 | InternalMmapVector<char> buffer_; |
623 | }; |
624 | |
625 | template <class T> |
626 | struct CompareLess { |
627 | bool operator()(const T &a, const T &b) const { return a < b; } |
628 | }; |
629 | |
630 | // HeapSort for arrays and InternalMmapVector. |
631 | template <class T, class Compare = CompareLess<T>> |
632 | void Sort(T *v, uptr size, Compare comp = {}) { |
633 | if (size < 2) |
634 | return; |
635 | // Stage 1: insert elements to the heap. |
636 | for (uptr i = 1; i < size; i++) { |
637 | uptr j, p; |
638 | for (j = i; j > 0; j = p) { |
639 | p = (j - 1) / 2; |
640 | if (comp(v[p], v[j])) |
641 | Swap(v[j], v[p]); |
642 | else |
643 | break; |
644 | } |
645 | } |
646 | // Stage 2: swap largest element with the last one, |
647 | // and sink the new top. |
648 | for (uptr i = size - 1; i > 0; i--) { |
649 | Swap(v[0], v[i]); |
650 | uptr j, max_ind; |
651 | for (j = 0; j < i; j = max_ind) { |
652 | uptr left = 2 * j + 1; |
653 | uptr right = 2 * j + 2; |
654 | max_ind = j; |
655 | if (left < i && comp(v[max_ind], v[left])) |
656 | max_ind = left; |
657 | if (right < i && comp(v[max_ind], v[right])) |
658 | max_ind = right; |
659 | if (max_ind != j) |
660 | Swap(v[j], v[max_ind]); |
661 | else |
662 | break; |
663 | } |
664 | } |
665 | } |
666 | |
667 | // Works like std::lower_bound: finds the first element that is not less |
668 | // than the val. |
669 | template <class Container, |
670 | class Compare = CompareLess<typename Container::value_type>> |
671 | uptr InternalLowerBound(const Container &v, |
672 | const typename Container::value_type &val, |
673 | Compare comp = {}) { |
674 | uptr first = 0; |
675 | uptr last = v.size(); |
676 | while (last > first) { |
677 | uptr mid = (first + last) / 2; |
678 | if (comp(v[mid], val)) |
679 | first = mid + 1; |
680 | else |
681 | last = mid; |
682 | } |
683 | return first; |
684 | } |
685 | |
686 | enum ModuleArch { |
687 | kModuleArchUnknown, |
688 | kModuleArchI386, |
689 | kModuleArchX86_64, |
690 | kModuleArchX86_64H, |
691 | kModuleArchARMV6, |
692 | kModuleArchARMV7, |
693 | kModuleArchARMV7S, |
694 | kModuleArchARMV7K, |
695 | kModuleArchARM64, |
696 | kModuleArchRISCV64 |
697 | }; |
698 | |
699 | // Sorts and removes duplicates from the container. |
700 | template <class Container, |
701 | class Compare = CompareLess<typename Container::value_type>> |
702 | void SortAndDedup(Container &v, Compare comp = {}) { |
703 | Sort(v.data(), v.size(), comp); |
704 | uptr size = v.size(); |
705 | if (size < 2) |
706 | return; |
707 | uptr last = 0; |
708 | for (uptr i = 1; i < size; ++i) { |
709 | if (comp(v[last], v[i])) { |
710 | ++last; |
711 | if (last != i) |
712 | v[last] = v[i]; |
713 | } else { |
714 | CHECK(!comp(v[i], v[last])); |
715 | } |
716 | } |
717 | v.resize(last + 1); |
718 | } |
719 | |
720 | // Opens the file 'file_name" and reads up to 'max_len' bytes. |
721 | // The resulting buffer is mmaped and stored in '*buff'. |
722 | // Returns true if file was successfully opened and read. |
723 | bool ReadFileToVector(const char *file_name, |
724 | InternalMmapVectorNoCtor<char> *buff, |
725 | uptr max_len = 1 << 26, error_t *errno_p = nullptr); |
726 | |
727 | // Opens the file 'file_name" and reads up to 'max_len' bytes. |
728 | // This function is less I/O efficient than ReadFileToVector as it may reread |
729 | // file multiple times to avoid mmap during read attempts. It's used to read |
730 | // procmap, so short reads with mmap in between can produce inconsistent result. |
731 | // The resulting buffer is mmaped and stored in '*buff'. |
732 | // The size of the mmaped region is stored in '*buff_size'. |
733 | // The total number of read bytes is stored in '*read_len'. |
734 | // Returns true if file was successfully opened and read. |
735 | bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size, |
736 | uptr *read_len, uptr max_len = 1 << 26, |
737 | error_t *errno_p = nullptr); |
738 | |
739 | // When adding a new architecture, don't forget to also update |
740 | // script/asan_symbolize.py and sanitizer_symbolizer_libcdep.cpp. |
741 | inline const char *ModuleArchToString(ModuleArch arch) { |
742 | switch (arch) { |
743 | case kModuleArchUnknown: |
744 | return "" ; |
745 | case kModuleArchI386: |
746 | return "i386" ; |
747 | case kModuleArchX86_64: |
748 | return "x86_64" ; |
749 | case kModuleArchX86_64H: |
750 | return "x86_64h" ; |
751 | case kModuleArchARMV6: |
752 | return "armv6" ; |
753 | case kModuleArchARMV7: |
754 | return "armv7" ; |
755 | case kModuleArchARMV7S: |
756 | return "armv7s" ; |
757 | case kModuleArchARMV7K: |
758 | return "armv7k" ; |
759 | case kModuleArchARM64: |
760 | return "arm64" ; |
761 | case kModuleArchRISCV64: |
762 | return "riscv64" ; |
763 | } |
764 | CHECK(0 && "Invalid module arch" ); |
765 | return "" ; |
766 | } |
767 | |
768 | const uptr kModuleUUIDSize = 16; |
769 | const uptr kMaxSegName = 16; |
770 | |
771 | // Represents a binary loaded into virtual memory (e.g. this can be an |
772 | // executable or a shared object). |
773 | class LoadedModule { |
774 | public: |
775 | LoadedModule() |
776 | : full_name_(nullptr), |
777 | base_address_(0), |
778 | max_executable_address_(0), |
779 | arch_(kModuleArchUnknown), |
780 | instrumented_(false) { |
781 | internal_memset(uuid_, 0, kModuleUUIDSize); |
782 | ranges_.clear(); |
783 | } |
784 | void set(const char *module_name, uptr base_address); |
785 | void set(const char *module_name, uptr base_address, ModuleArch arch, |
786 | u8 uuid[kModuleUUIDSize], bool instrumented); |
787 | void clear(); |
788 | void addAddressRange(uptr beg, uptr end, bool executable, bool writable, |
789 | const char *name = nullptr); |
790 | bool containsAddress(uptr address) const; |
791 | |
792 | const char *full_name() const { return full_name_; } |
793 | uptr base_address() const { return base_address_; } |
794 | uptr max_executable_address() const { return max_executable_address_; } |
795 | ModuleArch arch() const { return arch_; } |
796 | const u8 *uuid() const { return uuid_; } |
797 | bool instrumented() const { return instrumented_; } |
798 | |
799 | struct AddressRange { |
800 | AddressRange *next; |
801 | uptr beg; |
802 | uptr end; |
803 | bool executable; |
804 | bool writable; |
805 | char name[kMaxSegName]; |
806 | |
807 | AddressRange(uptr beg, uptr end, bool executable, bool writable, |
808 | const char *name) |
809 | : next(nullptr), |
810 | beg(beg), |
811 | end(end), |
812 | executable(executable), |
813 | writable(writable) { |
814 | internal_strncpy(this->name, (name ? name : "" ), ARRAY_SIZE(this->name)); |
815 | } |
816 | }; |
817 | |
818 | const IntrusiveList<AddressRange> &ranges() const { return ranges_; } |
819 | |
820 | private: |
821 | char *full_name_; // Owned. |
822 | uptr base_address_; |
823 | uptr max_executable_address_; |
824 | ModuleArch arch_; |
825 | u8 uuid_[kModuleUUIDSize]; |
826 | bool instrumented_; |
827 | IntrusiveList<AddressRange> ranges_; |
828 | }; |
829 | |
830 | // List of LoadedModules. OS-dependent implementation is responsible for |
831 | // filling this information. |
832 | class ListOfModules { |
833 | public: |
834 | ListOfModules() : initialized(false) {} |
835 | ~ListOfModules() { clear(); } |
836 | void init(); |
837 | void fallbackInit(); // Uses fallback init if available, otherwise clears |
838 | const LoadedModule *begin() const { return modules_.begin(); } |
839 | LoadedModule *begin() { return modules_.begin(); } |
840 | const LoadedModule *end() const { return modules_.end(); } |
841 | LoadedModule *end() { return modules_.end(); } |
842 | uptr size() const { return modules_.size(); } |
843 | const LoadedModule &operator[](uptr i) const { |
844 | CHECK_LT(i, modules_.size()); |
845 | return modules_[i]; |
846 | } |
847 | |
848 | private: |
849 | void clear() { |
850 | for (auto &module : modules_) module.clear(); |
851 | modules_.clear(); |
852 | } |
853 | void clearOrInit() { |
854 | initialized ? clear() : modules_.Initialize(kInitialCapacity); |
855 | initialized = true; |
856 | } |
857 | |
858 | InternalMmapVectorNoCtor<LoadedModule> modules_; |
859 | // We rarely have more than 16K loaded modules. |
860 | static const uptr kInitialCapacity = 1 << 14; |
861 | bool initialized; |
862 | }; |
863 | |
864 | // Callback type for iterating over a set of memory ranges. |
865 | typedef void (*RangeIteratorCallback)(uptr begin, uptr end, void *arg); |
866 | |
867 | enum AndroidApiLevel { |
868 | ANDROID_NOT_ANDROID = 0, |
869 | ANDROID_KITKAT = 19, |
870 | ANDROID_LOLLIPOP_MR1 = 22, |
871 | ANDROID_POST_LOLLIPOP = 23 |
872 | }; |
873 | |
874 | void WriteToSyslog(const char *buffer); |
875 | |
876 | #if defined(SANITIZER_WINDOWS) && defined(_MSC_VER) && !defined(__clang__) |
877 | #define SANITIZER_WIN_TRACE 1 |
878 | #else |
879 | #define SANITIZER_WIN_TRACE 0 |
880 | #endif |
881 | |
882 | #if SANITIZER_MAC || SANITIZER_WIN_TRACE |
883 | void LogFullErrorReport(const char *buffer); |
884 | #else |
885 | inline void LogFullErrorReport(const char *buffer) {} |
886 | #endif |
887 | |
888 | #if SANITIZER_LINUX || SANITIZER_MAC |
889 | void WriteOneLineToSyslog(const char *s); |
890 | void LogMessageOnPrintf(const char *str); |
891 | #else |
892 | inline void WriteOneLineToSyslog(const char *s) {} |
893 | inline void LogMessageOnPrintf(const char *str) {} |
894 | #endif |
895 | |
896 | #if SANITIZER_LINUX || SANITIZER_WIN_TRACE |
897 | // Initialize Android logging. Any writes before this are silently lost. |
898 | void AndroidLogInit(); |
899 | void SetAbortMessage(const char *); |
900 | #else |
901 | inline void AndroidLogInit() {} |
902 | // FIXME: MacOS implementation could use CRSetCrashLogMessage. |
903 | inline void SetAbortMessage(const char *) {} |
904 | #endif |
905 | |
906 | #if SANITIZER_ANDROID |
907 | void SanitizerInitializeUnwinder(); |
908 | AndroidApiLevel AndroidGetApiLevel(); |
909 | #else |
910 | inline void AndroidLogWrite(const char *buffer_unused) {} |
911 | inline void SanitizerInitializeUnwinder() {} |
912 | inline AndroidApiLevel AndroidGetApiLevel() { return ANDROID_NOT_ANDROID; } |
913 | #endif |
914 | |
915 | inline uptr GetPthreadDestructorIterations() { |
916 | #if SANITIZER_ANDROID |
917 | return (AndroidGetApiLevel() == ANDROID_LOLLIPOP_MR1) ? 8 : 4; |
918 | #elif SANITIZER_POSIX |
919 | return 4; |
920 | #else |
921 | // Unused on Windows. |
922 | return 0; |
923 | #endif |
924 | } |
925 | |
926 | void *internal_start_thread(void *(*func)(void*), void *arg); |
927 | void internal_join_thread(void *th); |
928 | void MaybeStartBackgroudThread(); |
929 | |
930 | // Make the compiler think that something is going on there. |
931 | // Use this inside a loop that looks like memset/memcpy/etc to prevent the |
932 | // compiler from recognising it and turning it into an actual call to |
933 | // memset/memcpy/etc. |
934 | static inline void SanitizerBreakOptimization(void *arg) { |
935 | #if defined(_MSC_VER) && !defined(__clang__) |
936 | _ReadWriteBarrier(); |
937 | #else |
938 | __asm__ __volatile__("" : : "r" (arg) : "memory" ); |
939 | #endif |
940 | } |
941 | |
942 | struct SignalContext { |
943 | void *siginfo; |
944 | void *context; |
945 | uptr addr; |
946 | uptr pc; |
947 | uptr sp; |
948 | uptr bp; |
949 | bool is_memory_access; |
950 | enum WriteFlag { UNKNOWN, READ, WRITE } write_flag; |
951 | |
952 | // In some cases the kernel cannot provide the true faulting address; `addr` |
953 | // will be zero then. This field allows to distinguish between these cases |
954 | // and dereferences of null. |
955 | bool is_true_faulting_addr; |
956 | |
957 | // VS2013 doesn't implement unrestricted unions, so we need a trivial default |
958 | // constructor |
959 | SignalContext() = default; |
960 | |
961 | // Creates signal context in a platform-specific manner. |
962 | // SignalContext is going to keep pointers to siginfo and context without |
963 | // owning them. |
964 | SignalContext(void *siginfo, void *context) |
965 | : siginfo(siginfo), |
966 | context(context), |
967 | addr(GetAddress()), |
968 | is_memory_access(IsMemoryAccess()), |
969 | write_flag(GetWriteFlag()), |
970 | is_true_faulting_addr(IsTrueFaultingAddress()) { |
971 | InitPcSpBp(); |
972 | } |
973 | |
974 | static void DumpAllRegisters(void *context); |
975 | |
976 | // Type of signal e.g. SIGSEGV or EXCEPTION_ACCESS_VIOLATION. |
977 | int GetType() const; |
978 | |
979 | // String description of the signal. |
980 | const char *Describe() const; |
981 | |
982 | // Returns true if signal is stack overflow. |
983 | bool IsStackOverflow() const; |
984 | |
985 | private: |
986 | // Platform specific initialization. |
987 | void InitPcSpBp(); |
988 | uptr GetAddress() const; |
989 | WriteFlag GetWriteFlag() const; |
990 | bool IsMemoryAccess() const; |
991 | bool IsTrueFaultingAddress() const; |
992 | }; |
993 | |
994 | void InitializePlatformEarly(); |
995 | void MaybeReexec(); |
996 | |
997 | template <typename Fn> |
998 | class RunOnDestruction { |
999 | public: |
1000 | explicit RunOnDestruction(Fn fn) : fn_(fn) {} |
1001 | ~RunOnDestruction() { fn_(); } |
1002 | |
1003 | private: |
1004 | Fn fn_; |
1005 | }; |
1006 | |
1007 | // A simple scope guard. Usage: |
1008 | // auto cleanup = at_scope_exit([]{ do_cleanup; }); |
1009 | template <typename Fn> |
1010 | RunOnDestruction<Fn> at_scope_exit(Fn fn) { |
1011 | return RunOnDestruction<Fn>(fn); |
1012 | } |
1013 | |
1014 | // Linux on 64-bit s390 had a nasty bug that crashes the whole machine |
1015 | // if a process uses virtual memory over 4TB (as many sanitizers like |
1016 | // to do). This function will abort the process if running on a kernel |
1017 | // that looks vulnerable. |
1018 | #if SANITIZER_LINUX && SANITIZER_S390_64 |
1019 | void AvoidCVE_2016_2143(); |
1020 | #else |
1021 | inline void AvoidCVE_2016_2143() {} |
1022 | #endif |
1023 | |
1024 | struct StackDepotStats { |
1025 | uptr n_uniq_ids; |
1026 | uptr allocated; |
1027 | }; |
1028 | |
1029 | // The default value for allocator_release_to_os_interval_ms common flag to |
1030 | // indicate that sanitizer allocator should not attempt to release memory to OS. |
1031 | const s32 kReleaseToOSIntervalNever = -1; |
1032 | |
1033 | void CheckNoDeepBind(const char *filename, int flag); |
1034 | |
1035 | // Returns the requested amount of random data (up to 256 bytes) that can then |
1036 | // be used to seed a PRNG. Defaults to blocking like the underlying syscall. |
1037 | bool GetRandom(void *buffer, uptr length, bool blocking = true); |
1038 | |
1039 | // Returns the number of logical processors on the system. |
1040 | u32 GetNumberOfCPUs(); |
1041 | extern u32 NumberOfCPUsCached; |
1042 | inline u32 GetNumberOfCPUsCached() { |
1043 | if (!NumberOfCPUsCached) |
1044 | NumberOfCPUsCached = GetNumberOfCPUs(); |
1045 | return NumberOfCPUsCached; |
1046 | } |
1047 | |
1048 | template <typename T> |
1049 | class ArrayRef { |
1050 | public: |
1051 | ArrayRef() {} |
1052 | ArrayRef(T *begin, T *end) : begin_(begin), end_(end) {} |
1053 | |
1054 | T *begin() { return begin_; } |
1055 | T *end() { return end_; } |
1056 | |
1057 | private: |
1058 | T *begin_ = nullptr; |
1059 | T *end_ = nullptr; |
1060 | }; |
1061 | |
1062 | } // namespace __sanitizer |
1063 | |
1064 | inline void *operator new(__sanitizer::operator_new_size_type size, |
1065 | __sanitizer::LowLevelAllocator &alloc) { // NOLINT |
1066 | return alloc.Allocate(size); |
1067 | } |
1068 | |
1069 | #endif // SANITIZER_COMMON_H |
1070 | |