1 | // RUN: %clang_builtins %s %librt -o %t && %run %t |
2 | // REQUIRES: librt_has_multc3 |
3 | |
4 | #include <stdio.h> |
5 | |
6 | #if _ARCH_PPC || __aarch64__ |
7 | |
8 | #include "int_lib.h" |
9 | #include <math.h> |
10 | #include <complex.h> |
11 | |
12 | // Returns: the product of a + ib and c + id |
13 | |
14 | COMPILER_RT_ABI long double _Complex |
15 | __multc3(long double __a, long double __b, long double __c, long double __d); |
16 | |
17 | enum {zero, non_zero, inf, NaN, non_zero_nan}; |
18 | |
19 | int |
20 | classify(long double _Complex x) |
21 | { |
22 | if (x == 0) |
23 | return zero; |
24 | if (isinf(creall(x)) || isinf(cimagl(x))) |
25 | return inf; |
26 | if (isnan(creall(x)) && isnan(cimagl(x))) |
27 | return NaN; |
28 | if (isnan(creall(x))) |
29 | { |
30 | if (cimagl(x) == 0) |
31 | return NaN; |
32 | return non_zero_nan; |
33 | } |
34 | if (isnan(cimagl(x))) |
35 | { |
36 | if (creall(x) == 0) |
37 | return NaN; |
38 | return non_zero_nan; |
39 | } |
40 | return non_zero; |
41 | } |
42 | |
43 | int test__multc3(long double a, long double b, long double c, long double d) |
44 | { |
45 | long double _Complex r = __multc3(a, b, c, d); |
46 | // printf("test__multc3(%Lf, %Lf, %Lf, %Lf) = %Lf + I%Lf\n", |
47 | // a, b, c, d, creall(r), cimagl(r)); |
48 | long double _Complex dividend; |
49 | long double _Complex divisor; |
50 | |
51 | __real__ dividend = a; |
52 | __imag__ dividend = b; |
53 | __real__ divisor = c; |
54 | __imag__ divisor = d; |
55 | |
56 | switch (classify(dividend)) |
57 | { |
58 | case zero: |
59 | switch (classify(divisor)) |
60 | { |
61 | case zero: |
62 | if (classify(r) != zero) |
63 | return 1; |
64 | break; |
65 | case non_zero: |
66 | if (classify(r) != zero) |
67 | return 1; |
68 | break; |
69 | case inf: |
70 | if (classify(r) != NaN) |
71 | return 1; |
72 | break; |
73 | case NaN: |
74 | if (classify(r) != NaN) |
75 | return 1; |
76 | break; |
77 | case non_zero_nan: |
78 | if (classify(r) != NaN) |
79 | return 1; |
80 | break; |
81 | } |
82 | break; |
83 | case non_zero: |
84 | switch (classify(divisor)) |
85 | { |
86 | case zero: |
87 | if (classify(r) != zero) |
88 | return 1; |
89 | break; |
90 | case non_zero: |
91 | if (classify(r) != non_zero) |
92 | return 1; |
93 | if (r != a * c - b * d + _Complex_I*(a * d + b * c)) |
94 | return 1; |
95 | break; |
96 | case inf: |
97 | if (classify(r) != inf) |
98 | return 1; |
99 | break; |
100 | case NaN: |
101 | if (classify(r) != NaN) |
102 | return 1; |
103 | break; |
104 | case non_zero_nan: |
105 | if (classify(r) != NaN) |
106 | return 1; |
107 | break; |
108 | } |
109 | break; |
110 | case inf: |
111 | switch (classify(divisor)) |
112 | { |
113 | case zero: |
114 | if (classify(r) != NaN) |
115 | return 1; |
116 | break; |
117 | case non_zero: |
118 | if (classify(r) != inf) |
119 | return 1; |
120 | break; |
121 | case inf: |
122 | if (classify(r) != inf) |
123 | return 1; |
124 | break; |
125 | case NaN: |
126 | if (classify(r) != NaN) |
127 | return 1; |
128 | break; |
129 | case non_zero_nan: |
130 | if (classify(r) != inf) |
131 | return 1; |
132 | break; |
133 | } |
134 | break; |
135 | case NaN: |
136 | switch (classify(divisor)) |
137 | { |
138 | case zero: |
139 | if (classify(r) != NaN) |
140 | return 1; |
141 | break; |
142 | case non_zero: |
143 | if (classify(r) != NaN) |
144 | return 1; |
145 | break; |
146 | case inf: |
147 | if (classify(r) != NaN) |
148 | return 1; |
149 | break; |
150 | case NaN: |
151 | if (classify(r) != NaN) |
152 | return 1; |
153 | break; |
154 | case non_zero_nan: |
155 | if (classify(r) != NaN) |
156 | return 1; |
157 | break; |
158 | } |
159 | break; |
160 | case non_zero_nan: |
161 | switch (classify(divisor)) |
162 | { |
163 | case zero: |
164 | if (classify(r) != NaN) |
165 | return 1; |
166 | break; |
167 | case non_zero: |
168 | if (classify(r) != NaN) |
169 | return 1; |
170 | break; |
171 | case inf: |
172 | if (classify(r) != inf) |
173 | return 1; |
174 | break; |
175 | case NaN: |
176 | if (classify(r) != NaN) |
177 | return 1; |
178 | break; |
179 | case non_zero_nan: |
180 | if (classify(r) != NaN) |
181 | return 1; |
182 | break; |
183 | } |
184 | break; |
185 | } |
186 | |
187 | return 0; |
188 | } |
189 | |
190 | long double x[][2] = |
191 | { |
192 | { 1.e-6, 1.e-6}, |
193 | {-1.e-6, 1.e-6}, |
194 | {-1.e-6, -1.e-6}, |
195 | { 1.e-6, -1.e-6}, |
196 | |
197 | { 1.e+6, 1.e-6}, |
198 | {-1.e+6, 1.e-6}, |
199 | {-1.e+6, -1.e-6}, |
200 | { 1.e+6, -1.e-6}, |
201 | |
202 | { 1.e-6, 1.e+6}, |
203 | {-1.e-6, 1.e+6}, |
204 | {-1.e-6, -1.e+6}, |
205 | { 1.e-6, -1.e+6}, |
206 | |
207 | { 1.e+6, 1.e+6}, |
208 | {-1.e+6, 1.e+6}, |
209 | {-1.e+6, -1.e+6}, |
210 | { 1.e+6, -1.e+6}, |
211 | |
212 | {NAN, NAN}, |
213 | {-INFINITY, NAN}, |
214 | {-2, NAN}, |
215 | {-1, NAN}, |
216 | {-0.5, NAN}, |
217 | {-0., NAN}, |
218 | {+0., NAN}, |
219 | {0.5, NAN}, |
220 | {1, NAN}, |
221 | {2, NAN}, |
222 | {INFINITY, NAN}, |
223 | |
224 | {NAN, -INFINITY}, |
225 | {-INFINITY, -INFINITY}, |
226 | {-2, -INFINITY}, |
227 | {-1, -INFINITY}, |
228 | {-0.5, -INFINITY}, |
229 | {-0., -INFINITY}, |
230 | {+0., -INFINITY}, |
231 | {0.5, -INFINITY}, |
232 | {1, -INFINITY}, |
233 | {2, -INFINITY}, |
234 | {INFINITY, -INFINITY}, |
235 | |
236 | {NAN, -2}, |
237 | {-INFINITY, -2}, |
238 | {-2, -2}, |
239 | {-1, -2}, |
240 | {-0.5, -2}, |
241 | {-0., -2}, |
242 | {+0., -2}, |
243 | {0.5, -2}, |
244 | {1, -2}, |
245 | {2, -2}, |
246 | {INFINITY, -2}, |
247 | |
248 | {NAN, -1}, |
249 | {-INFINITY, -1}, |
250 | {-2, -1}, |
251 | {-1, -1}, |
252 | {-0.5, -1}, |
253 | {-0., -1}, |
254 | {+0., -1}, |
255 | {0.5, -1}, |
256 | {1, -1}, |
257 | {2, -1}, |
258 | {INFINITY, -1}, |
259 | |
260 | {NAN, -0.5}, |
261 | {-INFINITY, -0.5}, |
262 | {-2, -0.5}, |
263 | {-1, -0.5}, |
264 | {-0.5, -0.5}, |
265 | {-0., -0.5}, |
266 | {+0., -0.5}, |
267 | {0.5, -0.5}, |
268 | {1, -0.5}, |
269 | {2, -0.5}, |
270 | {INFINITY, -0.5}, |
271 | |
272 | {NAN, -0.}, |
273 | {-INFINITY, -0.}, |
274 | {-2, -0.}, |
275 | {-1, -0.}, |
276 | {-0.5, -0.}, |
277 | {-0., -0.}, |
278 | {+0., -0.}, |
279 | {0.5, -0.}, |
280 | {1, -0.}, |
281 | {2, -0.}, |
282 | {INFINITY, -0.}, |
283 | |
284 | {NAN, 0.}, |
285 | {-INFINITY, 0.}, |
286 | {-2, 0.}, |
287 | {-1, 0.}, |
288 | {-0.5, 0.}, |
289 | {-0., 0.}, |
290 | {+0., 0.}, |
291 | {0.5, 0.}, |
292 | {1, 0.}, |
293 | {2, 0.}, |
294 | {INFINITY, 0.}, |
295 | |
296 | {NAN, 0.5}, |
297 | {-INFINITY, 0.5}, |
298 | {-2, 0.5}, |
299 | {-1, 0.5}, |
300 | {-0.5, 0.5}, |
301 | {-0., 0.5}, |
302 | {+0., 0.5}, |
303 | {0.5, 0.5}, |
304 | {1, 0.5}, |
305 | {2, 0.5}, |
306 | {INFINITY, 0.5}, |
307 | |
308 | {NAN, 1}, |
309 | {-INFINITY, 1}, |
310 | {-2, 1}, |
311 | {-1, 1}, |
312 | {-0.5, 1}, |
313 | {-0., 1}, |
314 | {+0., 1}, |
315 | {0.5, 1}, |
316 | {1, 1}, |
317 | {2, 1}, |
318 | {INFINITY, 1}, |
319 | |
320 | {NAN, 2}, |
321 | {-INFINITY, 2}, |
322 | {-2, 2}, |
323 | {-1, 2}, |
324 | {-0.5, 2}, |
325 | {-0., 2}, |
326 | {+0., 2}, |
327 | {0.5, 2}, |
328 | {1, 2}, |
329 | {2, 2}, |
330 | {INFINITY, 2}, |
331 | |
332 | {NAN, INFINITY}, |
333 | {-INFINITY, INFINITY}, |
334 | {-2, INFINITY}, |
335 | {-1, INFINITY}, |
336 | {-0.5, INFINITY}, |
337 | {-0., INFINITY}, |
338 | {+0., INFINITY}, |
339 | {0.5, INFINITY}, |
340 | {1, INFINITY}, |
341 | {2, INFINITY}, |
342 | {INFINITY, INFINITY} |
343 | |
344 | }; |
345 | |
346 | #endif |
347 | |
348 | int main() |
349 | { |
350 | #if _ARCH_PPC || __aarch64__ |
351 | const unsigned N = sizeof(x) / sizeof(x[0]); |
352 | unsigned i, j; |
353 | for (i = 0; i < N; ++i) |
354 | { |
355 | for (j = 0; j < N; ++j) |
356 | { |
357 | if (test__multc3(x[i][0], x[i][1], x[j][0], x[j][1])) |
358 | return 1; |
359 | } |
360 | } |
361 | #else |
362 | printf("skipped\n" ); |
363 | #endif |
364 | return 0; |
365 | } |
366 | |