1//===-- Type.cpp ----------------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include <cstdio>
10#include <optional>
11
12#include "lldb/Core/Module.h"
13#include "lldb/Utility/DataBufferHeap.h"
14#include "lldb/Utility/DataExtractor.h"
15#include "lldb/Utility/LLDBLog.h"
16#include "lldb/Utility/Log.h"
17#include "lldb/Utility/Scalar.h"
18#include "lldb/Utility/StreamString.h"
19
20#include "lldb/Symbol/CompilerType.h"
21#include "lldb/Symbol/ObjectFile.h"
22#include "lldb/Symbol/SymbolContextScope.h"
23#include "lldb/Symbol/SymbolFile.h"
24#include "lldb/Symbol/SymbolVendor.h"
25#include "lldb/Symbol/Type.h"
26#include "lldb/Symbol/TypeList.h"
27#include "lldb/Symbol/TypeSystem.h"
28
29#include "lldb/Target/ExecutionContext.h"
30#include "lldb/Target/Process.h"
31#include "lldb/Target/Target.h"
32
33#include "llvm/ADT/StringRef.h"
34
35using namespace lldb;
36using namespace lldb_private;
37
38bool lldb_private::contextMatches(llvm::ArrayRef<CompilerContext> context_chain,
39 llvm::ArrayRef<CompilerContext> pattern) {
40 auto ctx = context_chain.begin();
41 auto ctx_end = context_chain.end();
42 for (const CompilerContext &pat : pattern) {
43 // Early exit if the pattern is too long.
44 if (ctx == ctx_end)
45 return false;
46 if (*ctx != pat) {
47 // Skip any number of module matches.
48 if (pat.kind == CompilerContextKind::AnyModule) {
49 // Greedily match 0..n modules.
50 ctx = std::find_if(first: ctx, last: ctx_end, pred: [](const CompilerContext &ctx) {
51 return ctx.kind != CompilerContextKind::Module;
52 });
53 continue;
54 }
55 // See if there is a kind mismatch; they should have 1 bit in common.
56 if (((uint16_t)ctx->kind & (uint16_t)pat.kind) == 0)
57 return false;
58 // The name is ignored for AnyModule, but not for AnyType.
59 if (pat.kind != CompilerContextKind::AnyModule && ctx->name != pat.name)
60 return false;
61 }
62 ++ctx;
63 }
64 return true;
65}
66
67static CompilerContextKind ConvertTypeClass(lldb::TypeClass type_class) {
68 if (type_class == eTypeClassAny)
69 return CompilerContextKind::AnyType;
70 uint16_t result = 0;
71 if (type_class & lldb::eTypeClassClass)
72 result |= (uint16_t)CompilerContextKind::Class;
73 if (type_class & lldb::eTypeClassStruct)
74 result |= (uint16_t)CompilerContextKind::Struct;
75 if (type_class & lldb::eTypeClassUnion)
76 result |= (uint16_t)CompilerContextKind::Union;
77 if (type_class & lldb::eTypeClassEnumeration)
78 result |= (uint16_t)CompilerContextKind::Enum;
79 if (type_class & lldb::eTypeClassFunction)
80 result |= (uint16_t)CompilerContextKind::Function;
81 if (type_class & lldb::eTypeClassTypedef)
82 result |= (uint16_t)CompilerContextKind::Typedef;
83 return (CompilerContextKind)result;
84}
85
86TypeQuery::TypeQuery(llvm::StringRef name, TypeQueryOptions options)
87 : m_options(options) {
88 llvm::StringRef scope, basename;
89 lldb::TypeClass type_class = lldb::eTypeClassAny;
90 if (Type::GetTypeScopeAndBasename(name, scope, basename, type_class)) {
91 if (scope.consume_front(Prefix: "::"))
92 m_options |= e_exact_match;
93 if (!scope.empty()) {
94 std::pair<llvm::StringRef, llvm::StringRef> scope_pair =
95 scope.split(Separator: "::");
96 while (!scope_pair.second.empty()) {
97 m_context.push_back(x: {CompilerContextKind::AnyDeclContext,
98 ConstString(scope_pair.first.str())});
99 scope_pair = scope_pair.second.split(Separator: "::");
100 }
101 m_context.push_back(x: {CompilerContextKind::AnyDeclContext,
102 ConstString(scope_pair.first.str())});
103 }
104 m_context.push_back(
105 x: {ConvertTypeClass(type_class), ConstString(basename.str())});
106 } else {
107 m_context.push_back(
108 x: {CompilerContextKind::AnyType, ConstString(name.str())});
109 }
110}
111
112TypeQuery::TypeQuery(const CompilerDeclContext &decl_ctx,
113 ConstString type_basename, TypeQueryOptions options)
114 : m_options(options) {
115 // Always use an exact match if we are looking for a type in compiler context.
116 m_options |= e_exact_match;
117 m_context = decl_ctx.GetCompilerContext();
118 m_context.push_back(x: {CompilerContextKind::AnyType, type_basename});
119}
120
121TypeQuery::TypeQuery(
122 const llvm::ArrayRef<lldb_private::CompilerContext> &context,
123 TypeQueryOptions options)
124 : m_context(context), m_options(options) {
125 // Always use an exact match if we are looking for a type in compiler context.
126 m_options |= e_exact_match;
127}
128
129TypeQuery::TypeQuery(const CompilerDecl &decl, TypeQueryOptions options)
130 : m_options(options) {
131 // Always for an exact match if we are looking for a type using a declaration.
132 m_options |= e_exact_match;
133 m_context = decl.GetCompilerContext();
134}
135
136ConstString TypeQuery::GetTypeBasename() const {
137 if (m_context.empty())
138 return ConstString();
139 return m_context.back().name;
140}
141
142void TypeQuery::AddLanguage(LanguageType language) {
143 if (!m_languages)
144 m_languages = LanguageSet();
145 m_languages->Insert(language);
146}
147
148void TypeQuery::SetLanguages(LanguageSet languages) {
149 m_languages = std::move(languages);
150}
151
152bool TypeQuery::ContextMatches(
153 llvm::ArrayRef<CompilerContext> context_chain) const {
154 if (GetExactMatch() || context_chain.size() == m_context.size())
155 return ::contextMatches(context_chain, pattern: m_context);
156
157 // We don't have an exact match, we need to bottom m_context.size() items to
158 // match for a successful lookup.
159 if (context_chain.size() < m_context.size())
160 return false; // Not enough items in context_chain to allow for a match.
161
162 size_t compare_count = context_chain.size() - m_context.size();
163 return ::contextMatches(
164 context_chain: llvm::ArrayRef<CompilerContext>(context_chain.data() + compare_count,
165 m_context.size()),
166 pattern: m_context);
167}
168
169bool TypeQuery::LanguageMatches(lldb::LanguageType language) const {
170 // If we have no language filterm language always matches.
171 if (!m_languages.has_value())
172 return true;
173 return (*m_languages)[language];
174}
175
176bool TypeResults::AlreadySearched(lldb_private::SymbolFile *sym_file) {
177 return !m_searched_symbol_files.insert(V: sym_file).second;
178}
179
180bool TypeResults::InsertUnique(const lldb::TypeSP &type_sp) {
181 if (type_sp)
182 return m_type_map.InsertUnique(type: type_sp);
183 return false;
184}
185
186bool TypeResults::Done(const TypeQuery &query) const {
187 if (query.GetFindOne())
188 return !m_type_map.Empty();
189 return false;
190}
191
192void CompilerContext::Dump(Stream &s) const {
193 switch (kind) {
194 default:
195 s << "Invalid";
196 break;
197 case CompilerContextKind::TranslationUnit:
198 s << "TranslationUnit";
199 break;
200 case CompilerContextKind::Module:
201 s << "Module";
202 break;
203 case CompilerContextKind::Namespace:
204 s << "Namespace";
205 break;
206 case CompilerContextKind::Class:
207 s << "Class";
208 break;
209 case CompilerContextKind::Struct:
210 s << "Structure";
211 break;
212 case CompilerContextKind::Union:
213 s << "Union";
214 break;
215 case CompilerContextKind::Function:
216 s << "Function";
217 break;
218 case CompilerContextKind::Variable:
219 s << "Variable";
220 break;
221 case CompilerContextKind::Enum:
222 s << "Enumeration";
223 break;
224 case CompilerContextKind::Typedef:
225 s << "Typedef";
226 break;
227 case CompilerContextKind::AnyModule:
228 s << "AnyModule";
229 break;
230 case CompilerContextKind::AnyType:
231 s << "AnyType";
232 break;
233 }
234 s << "(" << name << ")";
235}
236
237class TypeAppendVisitor {
238public:
239 TypeAppendVisitor(TypeListImpl &type_list) : m_type_list(type_list) {}
240
241 bool operator()(const lldb::TypeSP &type) {
242 m_type_list.Append(type: TypeImplSP(new TypeImpl(type)));
243 return true;
244 }
245
246private:
247 TypeListImpl &m_type_list;
248};
249
250void TypeListImpl::Append(const lldb_private::TypeList &type_list) {
251 TypeAppendVisitor cb(*this);
252 type_list.ForEach(callback: cb);
253}
254
255SymbolFileType::SymbolFileType(SymbolFile &symbol_file,
256 const lldb::TypeSP &type_sp)
257 : UserID(type_sp ? type_sp->GetID() : LLDB_INVALID_UID),
258 m_symbol_file(symbol_file), m_type_sp(type_sp) {}
259
260Type *SymbolFileType::GetType() {
261 if (!m_type_sp) {
262 Type *resolved_type = m_symbol_file.ResolveTypeUID(type_uid: GetID());
263 if (resolved_type)
264 m_type_sp = resolved_type->shared_from_this();
265 }
266 return m_type_sp.get();
267}
268
269Type::Type(lldb::user_id_t uid, SymbolFile *symbol_file, ConstString name,
270 std::optional<uint64_t> byte_size, SymbolContextScope *context,
271 user_id_t encoding_uid, EncodingDataType encoding_uid_type,
272 const Declaration &decl, const CompilerType &compiler_type,
273 ResolveState compiler_type_resolve_state, uint32_t opaque_payload)
274 : std::enable_shared_from_this<Type>(), UserID(uid), m_name(name),
275 m_symbol_file(symbol_file), m_context(context),
276 m_encoding_uid(encoding_uid), m_encoding_uid_type(encoding_uid_type),
277 m_decl(decl), m_compiler_type(compiler_type),
278 m_compiler_type_resolve_state(compiler_type ? compiler_type_resolve_state
279 : ResolveState::Unresolved),
280 m_payload(opaque_payload) {
281 if (byte_size) {
282 m_byte_size = *byte_size;
283 m_byte_size_has_value = true;
284 } else {
285 m_byte_size = 0;
286 m_byte_size_has_value = false;
287 }
288}
289
290Type::Type()
291 : std::enable_shared_from_this<Type>(), UserID(0), m_name("<INVALID TYPE>"),
292 m_payload(0) {
293 m_byte_size = 0;
294 m_byte_size_has_value = false;
295}
296
297void Type::GetDescription(Stream *s, lldb::DescriptionLevel level,
298 bool show_name, ExecutionContextScope *exe_scope) {
299 *s << "id = " << (const UserID &)*this;
300
301 // Call the name accessor to make sure we resolve the type name
302 if (show_name) {
303 ConstString type_name = GetName();
304 if (type_name) {
305 *s << ", name = \"" << type_name << '"';
306 ConstString qualified_type_name(GetQualifiedName());
307 if (qualified_type_name != type_name) {
308 *s << ", qualified = \"" << qualified_type_name << '"';
309 }
310 }
311 }
312
313 // Call the get byte size accessor so we resolve our byte size
314 if (GetByteSize(exe_scope))
315 s->Printf(format: ", byte-size = %" PRIu64, m_byte_size);
316 bool show_fullpaths = (level == lldb::eDescriptionLevelVerbose);
317 m_decl.Dump(s, show_fullpaths);
318
319 if (m_compiler_type.IsValid()) {
320 *s << ", compiler_type = \"";
321 GetForwardCompilerType().DumpTypeDescription(s);
322 *s << '"';
323 } else if (m_encoding_uid != LLDB_INVALID_UID) {
324 s->Printf(format: ", type_uid = 0x%8.8" PRIx64, m_encoding_uid);
325 switch (m_encoding_uid_type) {
326 case eEncodingInvalid:
327 break;
328 case eEncodingIsUID:
329 s->PutCString(cstr: " (unresolved type)");
330 break;
331 case eEncodingIsConstUID:
332 s->PutCString(cstr: " (unresolved const type)");
333 break;
334 case eEncodingIsRestrictUID:
335 s->PutCString(cstr: " (unresolved restrict type)");
336 break;
337 case eEncodingIsVolatileUID:
338 s->PutCString(cstr: " (unresolved volatile type)");
339 break;
340 case eEncodingIsAtomicUID:
341 s->PutCString(cstr: " (unresolved atomic type)");
342 break;
343 case eEncodingIsTypedefUID:
344 s->PutCString(cstr: " (unresolved typedef)");
345 break;
346 case eEncodingIsPointerUID:
347 s->PutCString(cstr: " (unresolved pointer)");
348 break;
349 case eEncodingIsLValueReferenceUID:
350 s->PutCString(cstr: " (unresolved L value reference)");
351 break;
352 case eEncodingIsRValueReferenceUID:
353 s->PutCString(cstr: " (unresolved R value reference)");
354 break;
355 case eEncodingIsSyntheticUID:
356 s->PutCString(cstr: " (synthetic type)");
357 break;
358 }
359 }
360}
361
362void Type::Dump(Stream *s, bool show_context, lldb::DescriptionLevel level) {
363 s->Printf(format: "%p: ", static_cast<void *>(this));
364 s->Indent();
365 *s << "Type" << static_cast<const UserID &>(*this) << ' ';
366 if (m_name)
367 *s << ", name = \"" << m_name << "\"";
368
369 if (m_byte_size_has_value)
370 s->Printf(format: ", size = %" PRIu64, m_byte_size);
371
372 if (show_context && m_context != nullptr) {
373 s->PutCString(cstr: ", context = ( ");
374 m_context->DumpSymbolContext(s);
375 s->PutCString(cstr: " )");
376 }
377
378 bool show_fullpaths = false;
379 m_decl.Dump(s, show_fullpaths);
380
381 if (m_compiler_type.IsValid()) {
382 *s << ", compiler_type = " << m_compiler_type.GetOpaqueQualType() << ' ';
383 GetForwardCompilerType().DumpTypeDescription(s, level);
384 } else if (m_encoding_uid != LLDB_INVALID_UID) {
385 s->Format(format: ", type_data = {0:x-16}", args&: m_encoding_uid);
386 switch (m_encoding_uid_type) {
387 case eEncodingInvalid:
388 break;
389 case eEncodingIsUID:
390 s->PutCString(cstr: " (unresolved type)");
391 break;
392 case eEncodingIsConstUID:
393 s->PutCString(cstr: " (unresolved const type)");
394 break;
395 case eEncodingIsRestrictUID:
396 s->PutCString(cstr: " (unresolved restrict type)");
397 break;
398 case eEncodingIsVolatileUID:
399 s->PutCString(cstr: " (unresolved volatile type)");
400 break;
401 case eEncodingIsAtomicUID:
402 s->PutCString(cstr: " (unresolved atomic type)");
403 break;
404 case eEncodingIsTypedefUID:
405 s->PutCString(cstr: " (unresolved typedef)");
406 break;
407 case eEncodingIsPointerUID:
408 s->PutCString(cstr: " (unresolved pointer)");
409 break;
410 case eEncodingIsLValueReferenceUID:
411 s->PutCString(cstr: " (unresolved L value reference)");
412 break;
413 case eEncodingIsRValueReferenceUID:
414 s->PutCString(cstr: " (unresolved R value reference)");
415 break;
416 case eEncodingIsSyntheticUID:
417 s->PutCString(cstr: " (synthetic type)");
418 break;
419 }
420 }
421
422 //
423 // if (m_access)
424 // s->Printf(", access = %u", m_access);
425 s->EOL();
426}
427
428ConstString Type::GetName() {
429 if (!m_name)
430 m_name = GetForwardCompilerType().GetTypeName();
431 return m_name;
432}
433
434ConstString Type::GetBaseName() {
435 return GetForwardCompilerType().GetTypeName(/*BaseOnly*/ true);
436}
437
438void Type::DumpTypeName(Stream *s) { GetName().Dump(s, value_if_empty: "<invalid-type-name>"); }
439
440Type *Type::GetEncodingType() {
441 if (m_encoding_type == nullptr && m_encoding_uid != LLDB_INVALID_UID)
442 m_encoding_type = m_symbol_file->ResolveTypeUID(type_uid: m_encoding_uid);
443 return m_encoding_type;
444}
445
446std::optional<uint64_t> Type::GetByteSize(ExecutionContextScope *exe_scope) {
447 if (m_byte_size_has_value)
448 return static_cast<uint64_t>(m_byte_size);
449
450 switch (m_encoding_uid_type) {
451 case eEncodingInvalid:
452 case eEncodingIsSyntheticUID:
453 break;
454 case eEncodingIsUID:
455 case eEncodingIsConstUID:
456 case eEncodingIsRestrictUID:
457 case eEncodingIsVolatileUID:
458 case eEncodingIsAtomicUID:
459 case eEncodingIsTypedefUID: {
460 Type *encoding_type = GetEncodingType();
461 if (encoding_type)
462 if (std::optional<uint64_t> size =
463 encoding_type->GetByteSize(exe_scope)) {
464 m_byte_size = *size;
465 m_byte_size_has_value = true;
466 return static_cast<uint64_t>(m_byte_size);
467 }
468
469 if (std::optional<uint64_t> size =
470 GetLayoutCompilerType().GetByteSize(exe_scope)) {
471 m_byte_size = *size;
472 m_byte_size_has_value = true;
473 return static_cast<uint64_t>(m_byte_size);
474 }
475 } break;
476
477 // If we are a pointer or reference, then this is just a pointer size;
478 case eEncodingIsPointerUID:
479 case eEncodingIsLValueReferenceUID:
480 case eEncodingIsRValueReferenceUID: {
481 if (ArchSpec arch = m_symbol_file->GetObjectFile()->GetArchitecture()) {
482 m_byte_size = arch.GetAddressByteSize();
483 m_byte_size_has_value = true;
484 return static_cast<uint64_t>(m_byte_size);
485 }
486 } break;
487 }
488 return {};
489}
490
491uint32_t Type::GetNumChildren(bool omit_empty_base_classes) {
492 return GetForwardCompilerType().GetNumChildren(omit_empty_base_classes, exe_ctx: nullptr);
493}
494
495bool Type::IsAggregateType() {
496 return GetForwardCompilerType().IsAggregateType();
497}
498
499bool Type::IsTemplateType() {
500 return GetForwardCompilerType().IsTemplateType();
501}
502
503lldb::TypeSP Type::GetTypedefType() {
504 lldb::TypeSP type_sp;
505 if (IsTypedef()) {
506 Type *typedef_type = m_symbol_file->ResolveTypeUID(type_uid: m_encoding_uid);
507 if (typedef_type)
508 type_sp = typedef_type->shared_from_this();
509 }
510 return type_sp;
511}
512
513lldb::Format Type::GetFormat() { return GetForwardCompilerType().GetFormat(); }
514
515lldb::Encoding Type::GetEncoding(uint64_t &count) {
516 // Make sure we resolve our type if it already hasn't been.
517 return GetForwardCompilerType().GetEncoding(count);
518}
519
520bool Type::ReadFromMemory(ExecutionContext *exe_ctx, lldb::addr_t addr,
521 AddressType address_type, DataExtractor &data) {
522 if (address_type == eAddressTypeFile) {
523 // Can't convert a file address to anything valid without more context
524 // (which Module it came from)
525 return false;
526 }
527
528 const uint64_t byte_size =
529 GetByteSize(exe_scope: exe_ctx ? exe_ctx->GetBestExecutionContextScope() : nullptr)
530 .value_or(u: 0);
531 if (data.GetByteSize() < byte_size) {
532 lldb::DataBufferSP data_sp(new DataBufferHeap(byte_size, '\0'));
533 data.SetData(data_sp);
534 }
535
536 uint8_t *dst = const_cast<uint8_t *>(data.PeekData(offset: 0, length: byte_size));
537 if (dst != nullptr) {
538 if (address_type == eAddressTypeHost) {
539 // The address is an address in this process, so just copy it
540 if (addr == 0)
541 return false;
542 memcpy(dest: dst, src: reinterpret_cast<uint8_t *>(addr), n: byte_size);
543 return true;
544 } else {
545 if (exe_ctx) {
546 Process *process = exe_ctx->GetProcessPtr();
547 if (process) {
548 Status error;
549 return exe_ctx->GetProcessPtr()->ReadMemory(vm_addr: addr, buf: dst, size: byte_size,
550 error) == byte_size;
551 }
552 }
553 }
554 }
555 return false;
556}
557
558bool Type::WriteToMemory(ExecutionContext *exe_ctx, lldb::addr_t addr,
559 AddressType address_type, DataExtractor &data) {
560 return false;
561}
562
563const Declaration &Type::GetDeclaration() const { return m_decl; }
564
565bool Type::ResolveCompilerType(ResolveState compiler_type_resolve_state) {
566 // TODO: This needs to consider the correct type system to use.
567 Type *encoding_type = nullptr;
568 if (!m_compiler_type.IsValid()) {
569 encoding_type = GetEncodingType();
570 if (encoding_type) {
571 switch (m_encoding_uid_type) {
572 case eEncodingIsUID: {
573 CompilerType encoding_compiler_type =
574 encoding_type->GetForwardCompilerType();
575 if (encoding_compiler_type.IsValid()) {
576 m_compiler_type = encoding_compiler_type;
577 m_compiler_type_resolve_state =
578 encoding_type->m_compiler_type_resolve_state;
579 }
580 } break;
581
582 case eEncodingIsConstUID:
583 m_compiler_type =
584 encoding_type->GetForwardCompilerType().AddConstModifier();
585 break;
586
587 case eEncodingIsRestrictUID:
588 m_compiler_type =
589 encoding_type->GetForwardCompilerType().AddRestrictModifier();
590 break;
591
592 case eEncodingIsVolatileUID:
593 m_compiler_type =
594 encoding_type->GetForwardCompilerType().AddVolatileModifier();
595 break;
596
597 case eEncodingIsAtomicUID:
598 m_compiler_type =
599 encoding_type->GetForwardCompilerType().GetAtomicType();
600 break;
601
602 case eEncodingIsTypedefUID:
603 m_compiler_type = encoding_type->GetForwardCompilerType().CreateTypedef(
604 name: m_name.AsCString(value_if_empty: "__lldb_invalid_typedef_name"),
605 decl_ctx: GetSymbolFile()->GetDeclContextContainingUID(uid: GetID()), payload: m_payload);
606 m_name.Clear();
607 break;
608
609 case eEncodingIsPointerUID:
610 m_compiler_type =
611 encoding_type->GetForwardCompilerType().GetPointerType();
612 break;
613
614 case eEncodingIsLValueReferenceUID:
615 m_compiler_type =
616 encoding_type->GetForwardCompilerType().GetLValueReferenceType();
617 break;
618
619 case eEncodingIsRValueReferenceUID:
620 m_compiler_type =
621 encoding_type->GetForwardCompilerType().GetRValueReferenceType();
622 break;
623
624 default:
625 llvm_unreachable("Unhandled encoding_data_type.");
626 }
627 } else {
628 // We have no encoding type, return void?
629 auto type_system_or_err =
630 m_symbol_file->GetTypeSystemForLanguage(language: eLanguageTypeC);
631 if (auto err = type_system_or_err.takeError()) {
632 LLDB_LOG_ERROR(
633 GetLog(LLDBLog::Symbols), std::move(err),
634 "Unable to construct void type from TypeSystemClang: {0}");
635 } else {
636 CompilerType void_compiler_type;
637 auto ts = *type_system_or_err;
638 if (ts)
639 void_compiler_type = ts->GetBasicTypeFromAST(basic_type: eBasicTypeVoid);
640 switch (m_encoding_uid_type) {
641 case eEncodingIsUID:
642 m_compiler_type = void_compiler_type;
643 break;
644
645 case eEncodingIsConstUID:
646 m_compiler_type = void_compiler_type.AddConstModifier();
647 break;
648
649 case eEncodingIsRestrictUID:
650 m_compiler_type = void_compiler_type.AddRestrictModifier();
651 break;
652
653 case eEncodingIsVolatileUID:
654 m_compiler_type = void_compiler_type.AddVolatileModifier();
655 break;
656
657 case eEncodingIsAtomicUID:
658 m_compiler_type = void_compiler_type.GetAtomicType();
659 break;
660
661 case eEncodingIsTypedefUID:
662 m_compiler_type = void_compiler_type.CreateTypedef(
663 name: m_name.AsCString(value_if_empty: "__lldb_invalid_typedef_name"),
664 decl_ctx: GetSymbolFile()->GetDeclContextContainingUID(uid: GetID()), payload: m_payload);
665 break;
666
667 case eEncodingIsPointerUID:
668 m_compiler_type = void_compiler_type.GetPointerType();
669 break;
670
671 case eEncodingIsLValueReferenceUID:
672 m_compiler_type = void_compiler_type.GetLValueReferenceType();
673 break;
674
675 case eEncodingIsRValueReferenceUID:
676 m_compiler_type = void_compiler_type.GetRValueReferenceType();
677 break;
678
679 default:
680 llvm_unreachable("Unhandled encoding_data_type.");
681 }
682 }
683 }
684
685 // When we have a EncodingUID, our "m_flags.compiler_type_resolve_state" is
686 // set to eResolveStateUnresolved so we need to update it to say that we
687 // now have a forward declaration since that is what we created above.
688 if (m_compiler_type.IsValid())
689 m_compiler_type_resolve_state = ResolveState::Forward;
690 }
691
692 // Check if we have a forward reference to a class/struct/union/enum?
693 if (compiler_type_resolve_state == ResolveState::Layout ||
694 compiler_type_resolve_state == ResolveState::Full) {
695 // Check if we have a forward reference to a class/struct/union/enum?
696 if (m_compiler_type.IsValid() &&
697 m_compiler_type_resolve_state < compiler_type_resolve_state) {
698 m_compiler_type_resolve_state = ResolveState::Full;
699 if (!m_compiler_type.IsDefined()) {
700 // We have a forward declaration, we need to resolve it to a complete
701 // definition.
702 m_symbol_file->CompleteType(compiler_type&: m_compiler_type);
703 }
704 }
705 }
706
707 // If we have an encoding type, then we need to make sure it is resolved
708 // appropriately.
709 if (m_encoding_uid != LLDB_INVALID_UID) {
710 if (encoding_type == nullptr)
711 encoding_type = GetEncodingType();
712 if (encoding_type) {
713 ResolveState encoding_compiler_type_resolve_state =
714 compiler_type_resolve_state;
715
716 if (compiler_type_resolve_state == ResolveState::Layout) {
717 switch (m_encoding_uid_type) {
718 case eEncodingIsPointerUID:
719 case eEncodingIsLValueReferenceUID:
720 case eEncodingIsRValueReferenceUID:
721 encoding_compiler_type_resolve_state = ResolveState::Forward;
722 break;
723 default:
724 break;
725 }
726 }
727 encoding_type->ResolveCompilerType(compiler_type_resolve_state: encoding_compiler_type_resolve_state);
728 }
729 }
730 return m_compiler_type.IsValid();
731}
732uint32_t Type::GetEncodingMask() {
733 uint32_t encoding_mask = 1u << m_encoding_uid_type;
734 Type *encoding_type = GetEncodingType();
735 assert(encoding_type != this);
736 if (encoding_type)
737 encoding_mask |= encoding_type->GetEncodingMask();
738 return encoding_mask;
739}
740
741CompilerType Type::GetFullCompilerType() {
742 ResolveCompilerType(compiler_type_resolve_state: ResolveState::Full);
743 return m_compiler_type;
744}
745
746CompilerType Type::GetLayoutCompilerType() {
747 ResolveCompilerType(compiler_type_resolve_state: ResolveState::Layout);
748 return m_compiler_type;
749}
750
751CompilerType Type::GetForwardCompilerType() {
752 ResolveCompilerType(compiler_type_resolve_state: ResolveState::Forward);
753 return m_compiler_type;
754}
755
756ConstString Type::GetQualifiedName() {
757 return GetForwardCompilerType().GetTypeName();
758}
759
760bool Type::GetTypeScopeAndBasename(llvm::StringRef name,
761 llvm::StringRef &scope,
762 llvm::StringRef &basename,
763 TypeClass &type_class) {
764 type_class = eTypeClassAny;
765
766 if (name.empty())
767 return false;
768
769 // Clear the scope in case we have just a type class and a basename.
770 scope = llvm::StringRef();
771 basename = name;
772 if (basename.consume_front(Prefix: "struct "))
773 type_class = eTypeClassStruct;
774 else if (basename.consume_front(Prefix: "class "))
775 type_class = eTypeClassClass;
776 else if (basename.consume_front(Prefix: "union "))
777 type_class = eTypeClassUnion;
778 else if (basename.consume_front(Prefix: "enum "))
779 type_class = eTypeClassEnumeration;
780 else if (basename.consume_front(Prefix: "typedef "))
781 type_class = eTypeClassTypedef;
782
783 size_t namespace_separator = basename.find(Str: "::");
784 if (namespace_separator == llvm::StringRef::npos) {
785 // If "name" started a type class we need to return true with no scope.
786 return type_class != eTypeClassAny;
787 }
788
789 size_t template_begin = basename.find(C: '<');
790 while (namespace_separator != llvm::StringRef::npos) {
791 if (template_begin != llvm::StringRef::npos &&
792 namespace_separator > template_begin) {
793 size_t template_depth = 1;
794 llvm::StringRef template_arg =
795 basename.drop_front(N: template_begin + 1);
796 while (template_depth > 0 && !template_arg.empty()) {
797 if (template_arg.front() == '<')
798 template_depth++;
799 else if (template_arg.front() == '>')
800 template_depth--;
801 template_arg = template_arg.drop_front(N: 1);
802 }
803 if (template_depth != 0)
804 return false; // We have an invalid type name. Bail out.
805 if (template_arg.empty())
806 break; // The template ends at the end of the full name.
807 basename = template_arg;
808 } else {
809 basename = basename.drop_front(N: namespace_separator + 2);
810 }
811 template_begin = basename.find(C: '<');
812 namespace_separator = basename.find(Str: "::");
813 }
814 if (basename.size() < name.size()) {
815 scope = name.take_front(N: name.size() - basename.size());
816 return true;
817 }
818 return false;
819}
820
821ModuleSP Type::GetModule() {
822 if (m_symbol_file)
823 return m_symbol_file->GetObjectFile()->GetModule();
824 return ModuleSP();
825}
826
827ModuleSP Type::GetExeModule() {
828 if (m_compiler_type) {
829 auto ts = m_compiler_type.GetTypeSystem();
830 if (!ts)
831 return {};
832 SymbolFile *symbol_file = ts->GetSymbolFile();
833 if (symbol_file)
834 return symbol_file->GetObjectFile()->GetModule();
835 }
836 return {};
837}
838
839TypeAndOrName::TypeAndOrName(TypeSP &in_type_sp) {
840 if (in_type_sp) {
841 m_compiler_type = in_type_sp->GetForwardCompilerType();
842 m_type_name = in_type_sp->GetName();
843 }
844}
845
846TypeAndOrName::TypeAndOrName(const char *in_type_str)
847 : m_type_name(in_type_str) {}
848
849TypeAndOrName::TypeAndOrName(ConstString &in_type_const_string)
850 : m_type_name(in_type_const_string) {}
851
852bool TypeAndOrName::operator==(const TypeAndOrName &other) const {
853 if (m_compiler_type != other.m_compiler_type)
854 return false;
855 if (m_type_name != other.m_type_name)
856 return false;
857 return true;
858}
859
860bool TypeAndOrName::operator!=(const TypeAndOrName &other) const {
861 return !(*this == other);
862}
863
864ConstString TypeAndOrName::GetName() const {
865 if (m_type_name)
866 return m_type_name;
867 if (m_compiler_type)
868 return m_compiler_type.GetTypeName();
869 return ConstString("<invalid>");
870}
871
872void TypeAndOrName::SetName(ConstString type_name) {
873 m_type_name = type_name;
874}
875
876void TypeAndOrName::SetName(const char *type_name_cstr) {
877 m_type_name.SetCString(type_name_cstr);
878}
879
880void TypeAndOrName::SetName(llvm::StringRef type_name) {
881 m_type_name.SetString(type_name);
882}
883
884void TypeAndOrName::SetTypeSP(lldb::TypeSP type_sp) {
885 if (type_sp) {
886 m_compiler_type = type_sp->GetForwardCompilerType();
887 m_type_name = type_sp->GetName();
888 } else
889 Clear();
890}
891
892void TypeAndOrName::SetCompilerType(CompilerType compiler_type) {
893 m_compiler_type = compiler_type;
894 if (m_compiler_type)
895 m_type_name = m_compiler_type.GetTypeName();
896}
897
898bool TypeAndOrName::IsEmpty() const {
899 return !((bool)m_type_name || (bool)m_compiler_type);
900}
901
902void TypeAndOrName::Clear() {
903 m_type_name.Clear();
904 m_compiler_type.Clear();
905}
906
907bool TypeAndOrName::HasName() const { return (bool)m_type_name; }
908
909bool TypeAndOrName::HasCompilerType() const {
910 return m_compiler_type.IsValid();
911}
912
913TypeImpl::TypeImpl(const lldb::TypeSP &type_sp)
914 : m_module_wp(), m_static_type(), m_dynamic_type() {
915 SetType(type_sp);
916}
917
918TypeImpl::TypeImpl(const CompilerType &compiler_type)
919 : m_module_wp(), m_static_type(), m_dynamic_type() {
920 SetType(compiler_type);
921}
922
923TypeImpl::TypeImpl(const lldb::TypeSP &type_sp, const CompilerType &dynamic)
924 : m_module_wp(), m_static_type(), m_dynamic_type(dynamic) {
925 SetType(type_sp, dynamic);
926}
927
928TypeImpl::TypeImpl(const CompilerType &static_type,
929 const CompilerType &dynamic_type)
930 : m_module_wp(), m_static_type(), m_dynamic_type() {
931 SetType(compiler_type: static_type, dynamic: dynamic_type);
932}
933
934void TypeImpl::SetType(const lldb::TypeSP &type_sp) {
935 if (type_sp) {
936 m_static_type = type_sp->GetForwardCompilerType();
937 m_exe_module_wp = type_sp->GetExeModule();
938 m_module_wp = type_sp->GetModule();
939 } else {
940 m_static_type.Clear();
941 m_module_wp = lldb::ModuleWP();
942 }
943}
944
945void TypeImpl::SetType(const CompilerType &compiler_type) {
946 m_module_wp = lldb::ModuleWP();
947 m_static_type = compiler_type;
948}
949
950void TypeImpl::SetType(const lldb::TypeSP &type_sp,
951 const CompilerType &dynamic) {
952 SetType(type_sp);
953 m_dynamic_type = dynamic;
954}
955
956void TypeImpl::SetType(const CompilerType &compiler_type,
957 const CompilerType &dynamic) {
958 m_module_wp = lldb::ModuleWP();
959 m_static_type = compiler_type;
960 m_dynamic_type = dynamic;
961}
962
963bool TypeImpl::CheckModule(lldb::ModuleSP &module_sp) const {
964 return CheckModuleCommon(input_module_wp: m_module_wp, module_sp);
965}
966
967bool TypeImpl::CheckExeModule(lldb::ModuleSP &module_sp) const {
968 return CheckModuleCommon(input_module_wp: m_exe_module_wp, module_sp);
969}
970
971bool TypeImpl::CheckModuleCommon(const lldb::ModuleWP &input_module_wp,
972 lldb::ModuleSP &module_sp) const {
973 // Check if we have a module for this type. If we do and the shared pointer
974 // is can be successfully initialized with m_module_wp, return true. Else
975 // return false if we didn't have a module, or if we had a module and it has
976 // been deleted. Any functions doing anything with a TypeSP in this TypeImpl
977 // class should call this function and only do anything with the ivars if
978 // this function returns true. If we have a module, the "module_sp" will be
979 // filled in with a strong reference to the module so that the module will at
980 // least stay around long enough for the type query to succeed.
981 module_sp = input_module_wp.lock();
982 if (!module_sp) {
983 lldb::ModuleWP empty_module_wp;
984 // If either call to "std::weak_ptr::owner_before(...) value returns true,
985 // this indicates that m_module_wp once contained (possibly still does) a
986 // reference to a valid shared pointer. This helps us know if we had a
987 // valid reference to a section which is now invalid because the module it
988 // was in was deleted
989 if (empty_module_wp.owner_before(rhs: input_module_wp) ||
990 input_module_wp.owner_before(rhs: empty_module_wp)) {
991 // input_module_wp had a valid reference to a module, but all strong
992 // references have been released and the module has been deleted
993 return false;
994 }
995 }
996 // We either successfully locked the module, or didn't have one to begin with
997 return true;
998}
999
1000bool TypeImpl::operator==(const TypeImpl &rhs) const {
1001 return m_static_type == rhs.m_static_type &&
1002 m_dynamic_type == rhs.m_dynamic_type;
1003}
1004
1005bool TypeImpl::operator!=(const TypeImpl &rhs) const {
1006 return !(*this == rhs);
1007}
1008
1009bool TypeImpl::IsValid() const {
1010 // just a name is not valid
1011 ModuleSP module_sp;
1012 if (CheckModule(module_sp))
1013 return m_static_type.IsValid() || m_dynamic_type.IsValid();
1014 return false;
1015}
1016
1017TypeImpl::operator bool() const { return IsValid(); }
1018
1019void TypeImpl::Clear() {
1020 m_module_wp = lldb::ModuleWP();
1021 m_static_type.Clear();
1022 m_dynamic_type.Clear();
1023}
1024
1025ModuleSP TypeImpl::GetModule() const {
1026 lldb::ModuleSP module_sp;
1027 if (CheckExeModule(module_sp))
1028 return module_sp;
1029 return nullptr;
1030}
1031
1032ConstString TypeImpl::GetName() const {
1033 ModuleSP module_sp;
1034 if (CheckModule(module_sp)) {
1035 if (m_dynamic_type)
1036 return m_dynamic_type.GetTypeName();
1037 return m_static_type.GetTypeName();
1038 }
1039 return ConstString();
1040}
1041
1042ConstString TypeImpl::GetDisplayTypeName() const {
1043 ModuleSP module_sp;
1044 if (CheckModule(module_sp)) {
1045 if (m_dynamic_type)
1046 return m_dynamic_type.GetDisplayTypeName();
1047 return m_static_type.GetDisplayTypeName();
1048 }
1049 return ConstString();
1050}
1051
1052TypeImpl TypeImpl::GetPointerType() const {
1053 ModuleSP module_sp;
1054 if (CheckModule(module_sp)) {
1055 if (m_dynamic_type.IsValid()) {
1056 return TypeImpl(m_static_type.GetPointerType(),
1057 m_dynamic_type.GetPointerType());
1058 }
1059 return TypeImpl(m_static_type.GetPointerType());
1060 }
1061 return TypeImpl();
1062}
1063
1064TypeImpl TypeImpl::GetPointeeType() const {
1065 ModuleSP module_sp;
1066 if (CheckModule(module_sp)) {
1067 if (m_dynamic_type.IsValid()) {
1068 return TypeImpl(m_static_type.GetPointeeType(),
1069 m_dynamic_type.GetPointeeType());
1070 }
1071 return TypeImpl(m_static_type.GetPointeeType());
1072 }
1073 return TypeImpl();
1074}
1075
1076TypeImpl TypeImpl::GetReferenceType() const {
1077 ModuleSP module_sp;
1078 if (CheckModule(module_sp)) {
1079 if (m_dynamic_type.IsValid()) {
1080 return TypeImpl(m_static_type.GetLValueReferenceType(),
1081 m_dynamic_type.GetLValueReferenceType());
1082 }
1083 return TypeImpl(m_static_type.GetLValueReferenceType());
1084 }
1085 return TypeImpl();
1086}
1087
1088TypeImpl TypeImpl::GetTypedefedType() const {
1089 ModuleSP module_sp;
1090 if (CheckModule(module_sp)) {
1091 if (m_dynamic_type.IsValid()) {
1092 return TypeImpl(m_static_type.GetTypedefedType(),
1093 m_dynamic_type.GetTypedefedType());
1094 }
1095 return TypeImpl(m_static_type.GetTypedefedType());
1096 }
1097 return TypeImpl();
1098}
1099
1100TypeImpl TypeImpl::GetDereferencedType() const {
1101 ModuleSP module_sp;
1102 if (CheckModule(module_sp)) {
1103 if (m_dynamic_type.IsValid()) {
1104 return TypeImpl(m_static_type.GetNonReferenceType(),
1105 m_dynamic_type.GetNonReferenceType());
1106 }
1107 return TypeImpl(m_static_type.GetNonReferenceType());
1108 }
1109 return TypeImpl();
1110}
1111
1112TypeImpl TypeImpl::GetUnqualifiedType() const {
1113 ModuleSP module_sp;
1114 if (CheckModule(module_sp)) {
1115 if (m_dynamic_type.IsValid()) {
1116 return TypeImpl(m_static_type.GetFullyUnqualifiedType(),
1117 m_dynamic_type.GetFullyUnqualifiedType());
1118 }
1119 return TypeImpl(m_static_type.GetFullyUnqualifiedType());
1120 }
1121 return TypeImpl();
1122}
1123
1124TypeImpl TypeImpl::GetCanonicalType() const {
1125 ModuleSP module_sp;
1126 if (CheckModule(module_sp)) {
1127 if (m_dynamic_type.IsValid()) {
1128 return TypeImpl(m_static_type.GetCanonicalType(),
1129 m_dynamic_type.GetCanonicalType());
1130 }
1131 return TypeImpl(m_static_type.GetCanonicalType());
1132 }
1133 return TypeImpl();
1134}
1135
1136CompilerType TypeImpl::GetCompilerType(bool prefer_dynamic) {
1137 ModuleSP module_sp;
1138 if (CheckModule(module_sp)) {
1139 if (prefer_dynamic) {
1140 if (m_dynamic_type.IsValid())
1141 return m_dynamic_type;
1142 }
1143 return m_static_type;
1144 }
1145 return CompilerType();
1146}
1147
1148CompilerType::TypeSystemSPWrapper TypeImpl::GetTypeSystem(bool prefer_dynamic) {
1149 ModuleSP module_sp;
1150 if (CheckModule(module_sp)) {
1151 if (prefer_dynamic) {
1152 if (m_dynamic_type.IsValid())
1153 return m_dynamic_type.GetTypeSystem();
1154 }
1155 return m_static_type.GetTypeSystem();
1156 }
1157 return {};
1158}
1159
1160bool TypeImpl::GetDescription(lldb_private::Stream &strm,
1161 lldb::DescriptionLevel description_level) {
1162 ModuleSP module_sp;
1163 if (CheckModule(module_sp)) {
1164 if (m_dynamic_type.IsValid()) {
1165 strm.Printf(format: "Dynamic:\n");
1166 m_dynamic_type.DumpTypeDescription(s: &strm);
1167 strm.Printf(format: "\nStatic:\n");
1168 }
1169 m_static_type.DumpTypeDescription(s: &strm);
1170 } else {
1171 strm.PutCString(cstr: "Invalid TypeImpl module for type has been deleted\n");
1172 }
1173 return true;
1174}
1175
1176CompilerType TypeImpl::FindDirectNestedType(llvm::StringRef name) {
1177 if (name.empty())
1178 return CompilerType();
1179 auto type_system = GetTypeSystem(/*prefer_dynamic*/ false);
1180 auto *symbol_file = type_system->GetSymbolFile();
1181 if (!symbol_file)
1182 return CompilerType();
1183 auto decl_context = type_system->GetCompilerDeclContextForType(type: m_static_type);
1184 if (!decl_context.IsValid())
1185 return CompilerType();
1186 TypeQuery query(decl_context, ConstString(name),
1187 TypeQueryOptions::e_find_one);
1188 TypeResults results;
1189 symbol_file->FindTypes(query, results);
1190 TypeSP type_sp = results.GetFirstType();
1191 if (type_sp)
1192 return type_sp->GetFullCompilerType();
1193 return CompilerType();
1194}
1195
1196bool TypeMemberFunctionImpl::IsValid() {
1197 return m_type.IsValid() && m_kind != lldb::eMemberFunctionKindUnknown;
1198}
1199
1200ConstString TypeMemberFunctionImpl::GetName() const { return m_name; }
1201
1202ConstString TypeMemberFunctionImpl::GetMangledName() const {
1203 return m_decl.GetMangledName();
1204}
1205
1206CompilerType TypeMemberFunctionImpl::GetType() const { return m_type; }
1207
1208lldb::MemberFunctionKind TypeMemberFunctionImpl::GetKind() const {
1209 return m_kind;
1210}
1211
1212bool TypeMemberFunctionImpl::GetDescription(Stream &stream) {
1213 switch (m_kind) {
1214 case lldb::eMemberFunctionKindUnknown:
1215 return false;
1216 case lldb::eMemberFunctionKindConstructor:
1217 stream.Printf(format: "constructor for %s",
1218 m_type.GetTypeName().AsCString(value_if_empty: "<unknown>"));
1219 break;
1220 case lldb::eMemberFunctionKindDestructor:
1221 stream.Printf(format: "destructor for %s",
1222 m_type.GetTypeName().AsCString(value_if_empty: "<unknown>"));
1223 break;
1224 case lldb::eMemberFunctionKindInstanceMethod:
1225 stream.Printf(format: "instance method %s of type %s", m_name.AsCString(),
1226 m_decl.GetDeclContext().GetName().AsCString());
1227 break;
1228 case lldb::eMemberFunctionKindStaticMethod:
1229 stream.Printf(format: "static method %s of type %s", m_name.AsCString(),
1230 m_decl.GetDeclContext().GetName().AsCString());
1231 break;
1232 }
1233 return true;
1234}
1235
1236CompilerType TypeMemberFunctionImpl::GetReturnType() const {
1237 if (m_type)
1238 return m_type.GetFunctionReturnType();
1239 return m_decl.GetFunctionReturnType();
1240}
1241
1242size_t TypeMemberFunctionImpl::GetNumArguments() const {
1243 if (m_type)
1244 return m_type.GetNumberOfFunctionArguments();
1245 else
1246 return m_decl.GetNumFunctionArguments();
1247}
1248
1249CompilerType TypeMemberFunctionImpl::GetArgumentAtIndex(size_t idx) const {
1250 if (m_type)
1251 return m_type.GetFunctionArgumentAtIndex(index: idx);
1252 else
1253 return m_decl.GetFunctionArgumentType(arg_idx: idx);
1254}
1255
1256TypeEnumMemberImpl::TypeEnumMemberImpl(const lldb::TypeImplSP &integer_type_sp,
1257 ConstString name,
1258 const llvm::APSInt &value)
1259 : m_integer_type_sp(integer_type_sp), m_name(name), m_value(value),
1260 m_valid((bool)name && (bool)integer_type_sp)
1261
1262{}
1263

source code of lldb/source/Symbol/Type.cpp