1//===- APFixedPoint.h - Fixed point constant handling -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// Defines the fixed point number interface.
11/// This is a class for abstracting various operations performed on fixed point
12/// types.
13///
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_ADT_APFIXEDPOINT_H
17#define LLVM_ADT_APFIXEDPOINT_H
18
19#include "llvm/ADT/APSInt.h"
20#include "llvm/ADT/DenseMapInfo.h"
21#include "llvm/ADT/Hashing.h"
22#include "llvm/ADT/SmallString.h"
23#include "llvm/Support/raw_ostream.h"
24
25namespace llvm {
26
27class APFloat;
28struct fltSemantics;
29
30/// The fixed point semantics work similarly to fltSemantics. The width
31/// specifies the whole bit width of the underlying scaled integer (with padding
32/// if any). The scale represents the number of fractional bits in this type.
33/// When HasUnsignedPadding is true and this type is unsigned, the first bit
34/// in the value this represents is treated as padding.
35class FixedPointSemantics {
36public:
37 static constexpr unsigned WidthBitWidth = 16;
38 static constexpr unsigned LsbWeightBitWidth = 13;
39 /// Used to differentiate between constructors with Width and Lsb from the
40 /// default Width and scale
41 struct Lsb {
42 int LsbWeight;
43 };
44 FixedPointSemantics(unsigned Width, unsigned Scale, bool IsSigned,
45 bool IsSaturated, bool HasUnsignedPadding)
46 : FixedPointSemantics(Width, Lsb{.LsbWeight: -static_cast<int>(Scale)}, IsSigned,
47 IsSaturated, HasUnsignedPadding) {}
48 FixedPointSemantics(unsigned Width, Lsb Weight, bool IsSigned,
49 bool IsSaturated, bool HasUnsignedPadding)
50 : Width(Width), LsbWeight(Weight.LsbWeight), IsSigned(IsSigned),
51 IsSaturated(IsSaturated), HasUnsignedPadding(HasUnsignedPadding) {
52 assert(isUInt<WidthBitWidth>(Width) && isInt<LsbWeightBitWidth>(Weight.LsbWeight));
53 assert(!(IsSigned && HasUnsignedPadding) &&
54 "Cannot have unsigned padding on a signed type.");
55 }
56
57 /// Check if the Semantic follow the requirements of an older more limited
58 /// version of this class
59 bool isValidLegacySema() const {
60 return LsbWeight <= 0 && static_cast<int>(Width) >= -LsbWeight;
61 }
62 unsigned getWidth() const { return Width; }
63 unsigned getScale() const { assert(isValidLegacySema()); return -LsbWeight; }
64 int getLsbWeight() const { return LsbWeight; }
65 int getMsbWeight() const {
66 return LsbWeight + Width - 1 /*Both lsb and msb are both part of width*/;
67 }
68 bool isSigned() const { return IsSigned; }
69 bool isSaturated() const { return IsSaturated; }
70 bool hasUnsignedPadding() const { return HasUnsignedPadding; }
71
72 void setSaturated(bool Saturated) { IsSaturated = Saturated; }
73
74 /// return true if the first bit doesn't have a strictly positive weight
75 bool hasSignOrPaddingBit() const { return IsSigned || HasUnsignedPadding; }
76
77 /// Return the number of integral bits represented by these semantics. These
78 /// are separate from the fractional bits and do not include the sign or
79 /// padding bit.
80 unsigned getIntegralBits() const {
81 return std::max(a: getMsbWeight() + 1 - hasSignOrPaddingBit(), b: 0);
82 }
83
84 /// Return the FixedPointSemantics that allows for calculating the full
85 /// precision semantic that can precisely represent the precision and ranges
86 /// of both input values. This does not compute the resulting semantics for a
87 /// given binary operation.
88 FixedPointSemantics
89 getCommonSemantics(const FixedPointSemantics &Other) const;
90
91 /// Print semantics for debug purposes
92 void print(llvm::raw_ostream& OS) const;
93
94 /// Returns true if this fixed-point semantic with its value bits interpreted
95 /// as an integer can fit in the given floating point semantic without
96 /// overflowing to infinity.
97 /// For example, a signed 8-bit fixed-point semantic has a maximum and
98 /// minimum integer representation of 127 and -128, respectively. If both of
99 /// these values can be represented (possibly inexactly) in the floating
100 /// point semantic without overflowing, this returns true.
101 bool fitsInFloatSemantics(const fltSemantics &FloatSema) const;
102
103 /// Return the FixedPointSemantics for an integer type.
104 static FixedPointSemantics GetIntegerSemantics(unsigned Width,
105 bool IsSigned) {
106 return FixedPointSemantics(Width, /*Scale=*/0, IsSigned,
107 /*IsSaturated=*/false,
108 /*HasUnsignedPadding=*/false);
109 }
110
111 bool operator==(FixedPointSemantics Other) const {
112 return Width == Other.Width && LsbWeight == Other.LsbWeight &&
113 IsSigned == Other.IsSigned && IsSaturated == Other.IsSaturated &&
114 HasUnsignedPadding == Other.HasUnsignedPadding;
115 }
116 bool operator!=(FixedPointSemantics Other) const { return !(*this == Other); }
117
118private:
119 unsigned Width : WidthBitWidth;
120 signed int LsbWeight : LsbWeightBitWidth;
121 unsigned IsSigned : 1;
122 unsigned IsSaturated : 1;
123 unsigned HasUnsignedPadding : 1;
124};
125
126static_assert(sizeof(FixedPointSemantics) == 4, "");
127
128inline hash_code hash_value(const FixedPointSemantics &Val) {
129 return hash_value(value: bit_cast<uint32_t>(from: Val));
130}
131
132template <> struct DenseMapInfo<FixedPointSemantics> {
133 static inline FixedPointSemantics getEmptyKey() {
134 return FixedPointSemantics(0, 0, false, false, false);
135 }
136
137 static inline FixedPointSemantics getTombstoneKey() {
138 return FixedPointSemantics(0, 1, false, false, false);
139 }
140
141 static unsigned getHashValue(const FixedPointSemantics &Val) {
142 return hash_value(Val);
143 }
144
145 static bool isEqual(const char &LHS, const char &RHS) { return LHS == RHS; }
146};
147
148/// The APFixedPoint class works similarly to APInt/APSInt in that it is a
149/// functional replacement for a scaled integer. It supports a wide range of
150/// semantics including the one used by fixed point types proposed in ISO/IEC
151/// JTC1 SC22 WG14 N1169. The class carries the value and semantics of
152/// a fixed point, and provides different operations that would normally be
153/// performed on fixed point types.
154class APFixedPoint {
155public:
156 APFixedPoint(const APInt &Val, const FixedPointSemantics &Sema)
157 : Val(Val, !Sema.isSigned()), Sema(Sema) {
158 assert(Val.getBitWidth() == Sema.getWidth() &&
159 "The value should have a bit width that matches the Sema width");
160 }
161
162 APFixedPoint(uint64_t Val, const FixedPointSemantics &Sema)
163 : APFixedPoint(APInt(Sema.getWidth(), Val, Sema.isSigned()), Sema) {}
164
165 // Zero initialization.
166 APFixedPoint(const FixedPointSemantics &Sema) : APFixedPoint(0, Sema) {}
167
168 APSInt getValue() const { return APSInt(Val, !Sema.isSigned()); }
169 inline unsigned getWidth() const { return Sema.getWidth(); }
170 inline unsigned getScale() const { return Sema.getScale(); }
171 int getLsbWeight() const { return Sema.getLsbWeight(); }
172 int getMsbWeight() const { return Sema.getMsbWeight(); }
173 inline bool isSaturated() const { return Sema.isSaturated(); }
174 inline bool isSigned() const { return Sema.isSigned(); }
175 inline bool hasPadding() const { return Sema.hasUnsignedPadding(); }
176 FixedPointSemantics getSemantics() const { return Sema; }
177
178 bool getBoolValue() const { return Val.getBoolValue(); }
179
180 // Convert this number to match the semantics provided. If the overflow
181 // parameter is provided, set this value to true or false to indicate if this
182 // operation results in an overflow.
183 APFixedPoint convert(const FixedPointSemantics &DstSema,
184 bool *Overflow = nullptr) const;
185
186 // Perform binary operations on a fixed point type. The resulting fixed point
187 // value will be in the common, full precision semantics that can represent
188 // the precision and ranges of both input values. See convert() for an
189 // explanation of the Overflow parameter.
190 APFixedPoint add(const APFixedPoint &Other, bool *Overflow = nullptr) const;
191 APFixedPoint sub(const APFixedPoint &Other, bool *Overflow = nullptr) const;
192 APFixedPoint mul(const APFixedPoint &Other, bool *Overflow = nullptr) const;
193 APFixedPoint div(const APFixedPoint &Other, bool *Overflow = nullptr) const;
194
195 // Perform shift operations on a fixed point type. Unlike the other binary
196 // operations, the resulting fixed point value will be in the original
197 // semantic.
198 APFixedPoint shl(unsigned Amt, bool *Overflow = nullptr) const;
199 APFixedPoint shr(unsigned Amt, bool *Overflow = nullptr) const {
200 // Right shift cannot overflow.
201 if (Overflow)
202 *Overflow = false;
203 return APFixedPoint(Val >> Amt, Sema);
204 }
205
206 /// Perform a unary negation (-X) on this fixed point type, taking into
207 /// account saturation if applicable.
208 APFixedPoint negate(bool *Overflow = nullptr) const;
209
210 /// Return the integral part of this fixed point number, rounded towards
211 /// zero. (-2.5k -> -2)
212 APSInt getIntPart() const {
213 if (getMsbWeight() < 0)
214 return APSInt(APInt::getZero(numBits: getWidth()), Val.isUnsigned());
215 APSInt ExtVal =
216 (getLsbWeight() > 0) ? Val.extend(width: getWidth() + getLsbWeight()) : Val;
217 if (Val < 0 && Val != -Val) // Cover the case when we have the min val
218 return -((-ExtVal).relativeShl(Amt: getLsbWeight()));
219 return ExtVal.relativeShl(Amt: getLsbWeight());
220 }
221
222 /// Return the integral part of this fixed point number, rounded towards
223 /// zero. The value is stored into an APSInt with the provided width and sign.
224 /// If the overflow parameter is provided, and the integral value is not able
225 /// to be fully stored in the provided width and sign, the overflow parameter
226 /// is set to true.
227 APSInt convertToInt(unsigned DstWidth, bool DstSign,
228 bool *Overflow = nullptr) const;
229
230 /// Convert this fixed point number to a floating point value with the
231 /// provided semantics.
232 APFloat convertToFloat(const fltSemantics &FloatSema) const;
233
234 void toString(SmallVectorImpl<char> &Str) const;
235 std::string toString() const {
236 SmallString<40> S;
237 toString(Str&: S);
238 return std::string(S);
239 }
240
241 void print(raw_ostream &) const;
242 void dump() const;
243
244 // If LHS > RHS, return 1. If LHS == RHS, return 0. If LHS < RHS, return -1.
245 int compare(const APFixedPoint &Other) const;
246 bool operator==(const APFixedPoint &Other) const {
247 return compare(Other) == 0;
248 }
249 bool operator!=(const APFixedPoint &Other) const {
250 return compare(Other) != 0;
251 }
252 bool operator>(const APFixedPoint &Other) const { return compare(Other) > 0; }
253 bool operator<(const APFixedPoint &Other) const { return compare(Other) < 0; }
254 bool operator>=(const APFixedPoint &Other) const {
255 return compare(Other) >= 0;
256 }
257 bool operator<=(const APFixedPoint &Other) const {
258 return compare(Other) <= 0;
259 }
260
261 static APFixedPoint getMax(const FixedPointSemantics &Sema);
262 static APFixedPoint getMin(const FixedPointSemantics &Sema);
263 static APFixedPoint getEpsilon(const FixedPointSemantics &Sema);
264
265 /// Given a floating point semantic, return the next floating point semantic
266 /// with a larger exponent and larger or equal mantissa.
267 static const fltSemantics *promoteFloatSemantics(const fltSemantics *S);
268
269 /// Create an APFixedPoint with a value equal to that of the provided integer,
270 /// and in the same semantics as the provided target semantics. If the value
271 /// is not able to fit in the specified fixed point semantics, and the
272 /// overflow parameter is provided, it is set to true.
273 static APFixedPoint getFromIntValue(const APSInt &Value,
274 const FixedPointSemantics &DstFXSema,
275 bool *Overflow = nullptr);
276
277 /// Create an APFixedPoint with a value equal to that of the provided
278 /// floating point value, in the provided target semantics. If the value is
279 /// not able to fit in the specified fixed point semantics and the overflow
280 /// parameter is specified, it is set to true.
281 /// For NaN, the Overflow flag is always set. For +inf and -inf, if the
282 /// semantic is saturating, the value saturates. Otherwise, the Overflow flag
283 /// is set.
284 static APFixedPoint getFromFloatValue(const APFloat &Value,
285 const FixedPointSemantics &DstFXSema,
286 bool *Overflow = nullptr);
287
288private:
289 APSInt Val;
290 FixedPointSemantics Sema;
291};
292
293inline raw_ostream &operator<<(raw_ostream &OS, const APFixedPoint &FX) {
294 OS << FX.toString();
295 return OS;
296}
297
298inline hash_code hash_value(const APFixedPoint &Val) {
299 return hash_combine(args: Val.getSemantics(), args: Val.getValue());
300}
301
302template <> struct DenseMapInfo<APFixedPoint> {
303 static inline APFixedPoint getEmptyKey() {
304 return APFixedPoint(DenseMapInfo<FixedPointSemantics>::getEmptyKey());
305 }
306
307 static inline APFixedPoint getTombstoneKey() {
308 return APFixedPoint(DenseMapInfo<FixedPointSemantics>::getTombstoneKey());
309 }
310
311 static unsigned getHashValue(const APFixedPoint &Val) {
312 return hash_value(Val);
313 }
314
315 static bool isEqual(const APFixedPoint &LHS, const APFixedPoint &RHS) {
316 return LHS.getSemantics() == RHS.getSemantics() &&
317 LHS.getValue() == RHS.getValue();
318 }
319};
320
321} // namespace llvm
322
323#endif
324

source code of llvm/include/llvm/ADT/APFixedPoint.h