1//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file implements a class to represent arbitrary precision
11/// integral constant values and operations on them.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ADT_APINT_H
16#define LLVM_ADT_APINT_H
17
18#include "llvm/Support/Compiler.h"
19#include "llvm/Support/MathExtras.h"
20#include <cassert>
21#include <climits>
22#include <cstring>
23#include <string>
24
25namespace llvm {
26class FoldingSetNodeID;
27class StringRef;
28class hash_code;
29class raw_ostream;
30
31template <typename T> class SmallVectorImpl;
32template <typename T> class ArrayRef;
33template <typename T> class Optional;
34
35class APInt;
36
37inline APInt operator-(APInt);
38
39//===----------------------------------------------------------------------===//
40// APInt Class
41//===----------------------------------------------------------------------===//
42
43/// Class for arbitrary precision integers.
44///
45/// APInt is a functional replacement for common case unsigned integer type like
46/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
47/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
48/// than 64-bits of precision. APInt provides a variety of arithmetic operators
49/// and methods to manipulate integer values of any bit-width. It supports both
50/// the typical integer arithmetic and comparison operations as well as bitwise
51/// manipulation.
52///
53/// The class has several invariants worth noting:
54/// * All bit, byte, and word positions are zero-based.
55/// * Once the bit width is set, it doesn't change except by the Truncate,
56/// SignExtend, or ZeroExtend operations.
57/// * All binary operators must be on APInt instances of the same bit width.
58/// Attempting to use these operators on instances with different bit
59/// widths will yield an assertion.
60/// * The value is stored canonically as an unsigned value. For operations
61/// where it makes a difference, there are both signed and unsigned variants
62/// of the operation. For example, sdiv and udiv. However, because the bit
63/// widths must be the same, operations such as Mul and Add produce the same
64/// results regardless of whether the values are interpreted as signed or
65/// not.
66/// * In general, the class tries to follow the style of computation that LLVM
67/// uses in its IR. This simplifies its use for LLVM.
68///
69class LLVM_NODISCARD APInt {
70public:
71 typedef uint64_t WordType;
72
73 /// This enum is used to hold the constants we needed for APInt.
74 enum : unsigned {
75 /// Byte size of a word.
76 APINT_WORD_SIZE = sizeof(WordType),
77 /// Bits in a word.
78 APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT
79 };
80
81 enum class Rounding {
82 DOWN,
83 TOWARD_ZERO,
84 UP,
85 };
86
87 static const WordType WORDTYPE_MAX = ~WordType(0);
88
89private:
90 /// This union is used to store the integer value. When the
91 /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
92 union {
93 uint64_t VAL; ///< Used to store the <= 64 bits integer value.
94 uint64_t *pVal; ///< Used to store the >64 bits integer value.
95 } U;
96
97 unsigned BitWidth; ///< The number of bits in this APInt.
98
99 friend struct DenseMapAPIntKeyInfo;
100
101 friend class APSInt;
102
103 /// Fast internal constructor
104 ///
105 /// This constructor is used only internally for speed of construction of
106 /// temporaries. It is unsafe for general use so it is not public.
107 APInt(uint64_t *val, unsigned bits) : BitWidth(bits) {
108 U.pVal = val;
109 }
110
111 /// Determine if this APInt just has one word to store value.
112 ///
113 /// \returns true if the number of bits <= 64, false otherwise.
114 bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
115
116 /// Determine which word a bit is in.
117 ///
118 /// \returns the word position for the specified bit position.
119 static unsigned whichWord(unsigned bitPosition) {
120 return bitPosition / APINT_BITS_PER_WORD;
121 }
122
123 /// Determine which bit in a word a bit is in.
124 ///
125 /// \returns the bit position in a word for the specified bit position
126 /// in the APInt.
127 static unsigned whichBit(unsigned bitPosition) {
128 return bitPosition % APINT_BITS_PER_WORD;
129 }
130
131 /// Get a single bit mask.
132 ///
133 /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
134 /// This method generates and returns a uint64_t (word) mask for a single
135 /// bit at a specific bit position. This is used to mask the bit in the
136 /// corresponding word.
137 static uint64_t maskBit(unsigned bitPosition) {
138 return 1ULL << whichBit(bitPosition);
139 }
140
141 /// Clear unused high order bits
142 ///
143 /// This method is used internally to clear the top "N" bits in the high order
144 /// word that are not used by the APInt. This is needed after the most
145 /// significant word is assigned a value to ensure that those bits are
146 /// zero'd out.
147 APInt &clearUnusedBits() {
148 // Compute how many bits are used in the final word
149 unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1;
150
151 // Mask out the high bits.
152 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits);
153 if (isSingleWord())
154 U.VAL &= mask;
155 else
156 U.pVal[getNumWords() - 1] &= mask;
157 return *this;
158 }
159
160 /// Get the word corresponding to a bit position
161 /// \returns the corresponding word for the specified bit position.
162 uint64_t getWord(unsigned bitPosition) const {
163 return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
164 }
165
166 /// Utility method to change the bit width of this APInt to new bit width,
167 /// allocating and/or deallocating as necessary. There is no guarantee on the
168 /// value of any bits upon return. Caller should populate the bits after.
169 void reallocate(unsigned NewBitWidth);
170
171 /// Convert a char array into an APInt
172 ///
173 /// \param radix 2, 8, 10, 16, or 36
174 /// Converts a string into a number. The string must be non-empty
175 /// and well-formed as a number of the given base. The bit-width
176 /// must be sufficient to hold the result.
177 ///
178 /// This is used by the constructors that take string arguments.
179 ///
180 /// StringRef::getAsInteger is superficially similar but (1) does
181 /// not assume that the string is well-formed and (2) grows the
182 /// result to hold the input.
183 void fromString(unsigned numBits, StringRef str, uint8_t radix);
184
185 /// An internal division function for dividing APInts.
186 ///
187 /// This is used by the toString method to divide by the radix. It simply
188 /// provides a more convenient form of divide for internal use since KnuthDiv
189 /// has specific constraints on its inputs. If those constraints are not met
190 /// then it provides a simpler form of divide.
191 static void divide(const WordType *LHS, unsigned lhsWords,
192 const WordType *RHS, unsigned rhsWords, WordType *Quotient,
193 WordType *Remainder);
194
195 /// out-of-line slow case for inline constructor
196 void initSlowCase(uint64_t val, bool isSigned);
197
198 /// shared code between two array constructors
199 void initFromArray(ArrayRef<uint64_t> array);
200
201 /// out-of-line slow case for inline copy constructor
202 void initSlowCase(const APInt &that);
203
204 /// out-of-line slow case for shl
205 void shlSlowCase(unsigned ShiftAmt);
206
207 /// out-of-line slow case for lshr.
208 void lshrSlowCase(unsigned ShiftAmt);
209
210 /// out-of-line slow case for ashr.
211 void ashrSlowCase(unsigned ShiftAmt);
212
213 /// out-of-line slow case for operator=
214 void AssignSlowCase(const APInt &RHS);
215
216 /// out-of-line slow case for operator==
217 bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY;
218
219 /// out-of-line slow case for countLeadingZeros
220 unsigned countLeadingZerosSlowCase() const LLVM_READONLY;
221
222 /// out-of-line slow case for countLeadingOnes.
223 unsigned countLeadingOnesSlowCase() const LLVM_READONLY;
224
225 /// out-of-line slow case for countTrailingZeros.
226 unsigned countTrailingZerosSlowCase() const LLVM_READONLY;
227
228 /// out-of-line slow case for countTrailingOnes
229 unsigned countTrailingOnesSlowCase() const LLVM_READONLY;
230
231 /// out-of-line slow case for countPopulation
232 unsigned countPopulationSlowCase() const LLVM_READONLY;
233
234 /// out-of-line slow case for intersects.
235 bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY;
236
237 /// out-of-line slow case for isSubsetOf.
238 bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY;
239
240 /// out-of-line slow case for setBits.
241 void setBitsSlowCase(unsigned loBit, unsigned hiBit);
242
243 /// out-of-line slow case for flipAllBits.
244 void flipAllBitsSlowCase();
245
246 /// out-of-line slow case for operator&=.
247 void AndAssignSlowCase(const APInt& RHS);
248
249 /// out-of-line slow case for operator|=.
250 void OrAssignSlowCase(const APInt& RHS);
251
252 /// out-of-line slow case for operator^=.
253 void XorAssignSlowCase(const APInt& RHS);
254
255 /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
256 /// to, or greater than RHS.
257 int compare(const APInt &RHS) const LLVM_READONLY;
258
259 /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
260 /// to, or greater than RHS.
261 int compareSigned(const APInt &RHS) const LLVM_READONLY;
262
263public:
264 /// \name Constructors
265 /// @{
266
267 /// Create a new APInt of numBits width, initialized as val.
268 ///
269 /// If isSigned is true then val is treated as if it were a signed value
270 /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
271 /// will be done. Otherwise, no sign extension occurs (high order bits beyond
272 /// the range of val are zero filled).
273 ///
274 /// \param numBits the bit width of the constructed APInt
275 /// \param val the initial value of the APInt
276 /// \param isSigned how to treat signedness of val
277 APInt(unsigned numBits, uint64_t val, bool isSigned = false)
278 : BitWidth(numBits) {
279 assert(BitWidth && "bitwidth too small");
280 if (isSingleWord()) {
281 U.VAL = val;
282 clearUnusedBits();
283 } else {
284 initSlowCase(val, isSigned);
285 }
286 }
287
288 /// Construct an APInt of numBits width, initialized as bigVal[].
289 ///
290 /// Note that bigVal.size() can be smaller or larger than the corresponding
291 /// bit width but any extraneous bits will be dropped.
292 ///
293 /// \param numBits the bit width of the constructed APInt
294 /// \param bigVal a sequence of words to form the initial value of the APInt
295 APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
296
297 /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
298 /// deprecated because this constructor is prone to ambiguity with the
299 /// APInt(unsigned, uint64_t, bool) constructor.
300 ///
301 /// If this overload is ever deleted, care should be taken to prevent calls
302 /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
303 /// constructor.
304 APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
305
306 /// Construct an APInt from a string representation.
307 ///
308 /// This constructor interprets the string \p str in the given radix. The
309 /// interpretation stops when the first character that is not suitable for the
310 /// radix is encountered, or the end of the string. Acceptable radix values
311 /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
312 /// string to require more bits than numBits.
313 ///
314 /// \param numBits the bit width of the constructed APInt
315 /// \param str the string to be interpreted
316 /// \param radix the radix to use for the conversion
317 APInt(unsigned numBits, StringRef str, uint8_t radix);
318
319 /// Simply makes *this a copy of that.
320 /// Copy Constructor.
321 APInt(const APInt &that) : BitWidth(that.BitWidth) {
322 if (isSingleWord())
323 U.VAL = that.U.VAL;
324 else
325 initSlowCase(that);
326 }
327
328 /// Move Constructor.
329 APInt(APInt &&that) : BitWidth(that.BitWidth) {
330 memcpy(&U, &that.U, sizeof(U));
331 that.BitWidth = 0;
332 }
333
334 /// Destructor.
335 ~APInt() {
336 if (needsCleanup())
337 delete[] U.pVal;
338 }
339
340 /// Default constructor that creates an uninteresting APInt
341 /// representing a 1-bit zero value.
342 ///
343 /// This is useful for object deserialization (pair this with the static
344 /// method Read).
345 explicit APInt() : BitWidth(1) { U.VAL = 0; }
346
347 /// Returns whether this instance allocated memory.
348 bool needsCleanup() const { return !isSingleWord(); }
349
350 /// Used to insert APInt objects, or objects that contain APInt objects, into
351 /// FoldingSets.
352 void Profile(FoldingSetNodeID &id) const;
353
354 /// @}
355 /// \name Value Tests
356 /// @{
357
358 /// Determine sign of this APInt.
359 ///
360 /// This tests the high bit of this APInt to determine if it is set.
361 ///
362 /// \returns true if this APInt is negative, false otherwise
363 bool isNegative() const { return (*this)[BitWidth - 1]; }
364
365 /// Determine if this APInt Value is non-negative (>= 0)
366 ///
367 /// This tests the high bit of the APInt to determine if it is unset.
368 bool isNonNegative() const { return !isNegative(); }
369
370 /// Determine if sign bit of this APInt is set.
371 ///
372 /// This tests the high bit of this APInt to determine if it is set.
373 ///
374 /// \returns true if this APInt has its sign bit set, false otherwise.
375 bool isSignBitSet() const { return (*this)[BitWidth-1]; }
376
377 /// Determine if sign bit of this APInt is clear.
378 ///
379 /// This tests the high bit of this APInt to determine if it is clear.
380 ///
381 /// \returns true if this APInt has its sign bit clear, false otherwise.
382 bool isSignBitClear() const { return !isSignBitSet(); }
383
384 /// Determine if this APInt Value is positive.
385 ///
386 /// This tests if the value of this APInt is positive (> 0). Note
387 /// that 0 is not a positive value.
388 ///
389 /// \returns true if this APInt is positive.
390 bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); }
391
392 /// Determine if all bits are set
393 ///
394 /// This checks to see if the value has all bits of the APInt are set or not.
395 bool isAllOnesValue() const {
396 if (isSingleWord())
397 return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth);
398 return countTrailingOnesSlowCase() == BitWidth;
399 }
400
401 /// Determine if all bits are clear
402 ///
403 /// This checks to see if the value has all bits of the APInt are clear or
404 /// not.
405 bool isNullValue() const { return !*this; }
406
407 /// Determine if this is a value of 1.
408 ///
409 /// This checks to see if the value of this APInt is one.
410 bool isOneValue() const {
411 if (isSingleWord())
412 return U.VAL == 1;
413 return countLeadingZerosSlowCase() == BitWidth - 1;
414 }
415
416 /// Determine if this is the largest unsigned value.
417 ///
418 /// This checks to see if the value of this APInt is the maximum unsigned
419 /// value for the APInt's bit width.
420 bool isMaxValue() const { return isAllOnesValue(); }
421
422 /// Determine if this is the largest signed value.
423 ///
424 /// This checks to see if the value of this APInt is the maximum signed
425 /// value for the APInt's bit width.
426 bool isMaxSignedValue() const {
427 if (isSingleWord())
428 return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
429 return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
430 }
431
432 /// Determine if this is the smallest unsigned value.
433 ///
434 /// This checks to see if the value of this APInt is the minimum unsigned
435 /// value for the APInt's bit width.
436 bool isMinValue() const { return isNullValue(); }
437
438 /// Determine if this is the smallest signed value.
439 ///
440 /// This checks to see if the value of this APInt is the minimum signed
441 /// value for the APInt's bit width.
442 bool isMinSignedValue() const {
443 if (isSingleWord())
444 return U.VAL == (WordType(1) << (BitWidth - 1));
445 return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
446 }
447
448 /// Check if this APInt has an N-bits unsigned integer value.
449 bool isIntN(unsigned N) const {
450 assert(N && "N == 0 ???");
451 return getActiveBits() <= N;
452 }
453
454 /// Check if this APInt has an N-bits signed integer value.
455 bool isSignedIntN(unsigned N) const {
456 assert(N && "N == 0 ???");
457 return getMinSignedBits() <= N;
458 }
459
460 /// Check if this APInt's value is a power of two greater than zero.
461 ///
462 /// \returns true if the argument APInt value is a power of two > 0.
463 bool isPowerOf2() const {
464 if (isSingleWord())
465 return isPowerOf2_64(U.VAL);
466 return countPopulationSlowCase() == 1;
467 }
468
469 /// Check if the APInt's value is returned by getSignMask.
470 ///
471 /// \returns true if this is the value returned by getSignMask.
472 bool isSignMask() const { return isMinSignedValue(); }
473
474 /// Convert APInt to a boolean value.
475 ///
476 /// This converts the APInt to a boolean value as a test against zero.
477 bool getBoolValue() const { return !!*this; }
478
479 /// If this value is smaller than the specified limit, return it, otherwise
480 /// return the limit value. This causes the value to saturate to the limit.
481 uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const {
482 return ugt(Limit) ? Limit : getZExtValue();
483 }
484
485 /// Check if the APInt consists of a repeated bit pattern.
486 ///
487 /// e.g. 0x01010101 satisfies isSplat(8).
488 /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
489 /// width without remainder.
490 bool isSplat(unsigned SplatSizeInBits) const;
491
492 /// \returns true if this APInt value is a sequence of \param numBits ones
493 /// starting at the least significant bit with the remainder zero.
494 bool isMask(unsigned numBits) const {
495 assert(numBits != 0 && "numBits must be non-zero");
496 assert(numBits <= BitWidth && "numBits out of range");
497 if (isSingleWord())
498 return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits));
499 unsigned Ones = countTrailingOnesSlowCase();
500 return (numBits == Ones) &&
501 ((Ones + countLeadingZerosSlowCase()) == BitWidth);
502 }
503
504 /// \returns true if this APInt is a non-empty sequence of ones starting at
505 /// the least significant bit with the remainder zero.
506 /// Ex. isMask(0x0000FFFFU) == true.
507 bool isMask() const {
508 if (isSingleWord())
509 return isMask_64(U.VAL);
510 unsigned Ones = countTrailingOnesSlowCase();
511 return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
512 }
513
514 /// Return true if this APInt value contains a sequence of ones with
515 /// the remainder zero.
516 bool isShiftedMask() const {
517 if (isSingleWord())
518 return isShiftedMask_64(U.VAL);
519 unsigned Ones = countPopulationSlowCase();
520 unsigned LeadZ = countLeadingZerosSlowCase();
521 return (Ones + LeadZ + countTrailingZeros()) == BitWidth;
522 }
523
524 /// @}
525 /// \name Value Generators
526 /// @{
527
528 /// Gets maximum unsigned value of APInt for specific bit width.
529 static APInt getMaxValue(unsigned numBits) {
530 return getAllOnesValue(numBits);
531 }
532
533 /// Gets maximum signed value of APInt for a specific bit width.
534 static APInt getSignedMaxValue(unsigned numBits) {
535 APInt API = getAllOnesValue(numBits);
536 API.clearBit(numBits - 1);
537 return API;
538 }
539
540 /// Gets minimum unsigned value of APInt for a specific bit width.
541 static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
542
543 /// Gets minimum signed value of APInt for a specific bit width.
544 static APInt getSignedMinValue(unsigned numBits) {
545 APInt API(numBits, 0);
546 API.setBit(numBits - 1);
547 return API;
548 }
549
550 /// Get the SignMask for a specific bit width.
551 ///
552 /// This is just a wrapper function of getSignedMinValue(), and it helps code
553 /// readability when we want to get a SignMask.
554 static APInt getSignMask(unsigned BitWidth) {
555 return getSignedMinValue(BitWidth);
556 }
557
558 /// Get the all-ones value.
559 ///
560 /// \returns the all-ones value for an APInt of the specified bit-width.
561 static APInt getAllOnesValue(unsigned numBits) {
562 return APInt(numBits, WORDTYPE_MAX, true);
563 }
564
565 /// Get the '0' value.
566 ///
567 /// \returns the '0' value for an APInt of the specified bit-width.
568 static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
569
570 /// Compute an APInt containing numBits highbits from this APInt.
571 ///
572 /// Get an APInt with the same BitWidth as this APInt, just zero mask
573 /// the low bits and right shift to the least significant bit.
574 ///
575 /// \returns the high "numBits" bits of this APInt.
576 APInt getHiBits(unsigned numBits) const;
577
578 /// Compute an APInt containing numBits lowbits from this APInt.
579 ///
580 /// Get an APInt with the same BitWidth as this APInt, just zero mask
581 /// the high bits.
582 ///
583 /// \returns the low "numBits" bits of this APInt.
584 APInt getLoBits(unsigned numBits) const;
585
586 /// Return an APInt with exactly one bit set in the result.
587 static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
588 APInt Res(numBits, 0);
589 Res.setBit(BitNo);
590 return Res;
591 }
592
593 /// Get a value with a block of bits set.
594 ///
595 /// Constructs an APInt value that has a contiguous range of bits set. The
596 /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
597 /// bits will be zero. For example, with parameters(32, 0, 16) you would get
598 /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
599 /// example, with parameters (32, 28, 4), you would get 0xF000000F.
600 ///
601 /// \param numBits the intended bit width of the result
602 /// \param loBit the index of the lowest bit set.
603 /// \param hiBit the index of the highest bit set.
604 ///
605 /// \returns An APInt value with the requested bits set.
606 static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
607 APInt Res(numBits, 0);
608 Res.setBits(loBit, hiBit);
609 return Res;
610 }
611
612 /// Get a value with upper bits starting at loBit set.
613 ///
614 /// Constructs an APInt value that has a contiguous range of bits set. The
615 /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
616 /// bits will be zero. For example, with parameters(32, 12) you would get
617 /// 0xFFFFF000.
618 ///
619 /// \param numBits the intended bit width of the result
620 /// \param loBit the index of the lowest bit to set.
621 ///
622 /// \returns An APInt value with the requested bits set.
623 static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
624 APInt Res(numBits, 0);
625 Res.setBitsFrom(loBit);
626 return Res;
627 }
628
629 /// Get a value with high bits set
630 ///
631 /// Constructs an APInt value that has the top hiBitsSet bits set.
632 ///
633 /// \param numBits the bitwidth of the result
634 /// \param hiBitsSet the number of high-order bits set in the result.
635 static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
636 APInt Res(numBits, 0);
637 Res.setHighBits(hiBitsSet);
638 return Res;
639 }
640
641 /// Get a value with low bits set
642 ///
643 /// Constructs an APInt value that has the bottom loBitsSet bits set.
644 ///
645 /// \param numBits the bitwidth of the result
646 /// \param loBitsSet the number of low-order bits set in the result.
647 static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
648 APInt Res(numBits, 0);
649 Res.setLowBits(loBitsSet);
650 return Res;
651 }
652
653 /// Return a value containing V broadcasted over NewLen bits.
654 static APInt getSplat(unsigned NewLen, const APInt &V);
655
656 /// Determine if two APInts have the same value, after zero-extending
657 /// one of them (if needed!) to ensure that the bit-widths match.
658 static bool isSameValue(const APInt &I1, const APInt &I2) {
659 if (I1.getBitWidth() == I2.getBitWidth())
660 return I1 == I2;
661
662 if (I1.getBitWidth() > I2.getBitWidth())
663 return I1 == I2.zext(I1.getBitWidth());
664
665 return I1.zext(I2.getBitWidth()) == I2;
666 }
667
668 /// Overload to compute a hash_code for an APInt value.
669 friend hash_code hash_value(const APInt &Arg);
670
671 /// This function returns a pointer to the internal storage of the APInt.
672 /// This is useful for writing out the APInt in binary form without any
673 /// conversions.
674 const uint64_t *getRawData() const {
675 if (isSingleWord())
676 return &U.VAL;
677 return &U.pVal[0];
678 }
679
680 /// @}
681 /// \name Unary Operators
682 /// @{
683
684 /// Postfix increment operator.
685 ///
686 /// Increments *this by 1.
687 ///
688 /// \returns a new APInt value representing the original value of *this.
689 const APInt operator++(int) {
690 APInt API(*this);
691 ++(*this);
692 return API;
693 }
694
695 /// Prefix increment operator.
696 ///
697 /// \returns *this incremented by one
698 APInt &operator++();
699
700 /// Postfix decrement operator.
701 ///
702 /// Decrements *this by 1.
703 ///
704 /// \returns a new APInt value representing the original value of *this.
705 const APInt operator--(int) {
706 APInt API(*this);
707 --(*this);
708 return API;
709 }
710
711 /// Prefix decrement operator.
712 ///
713 /// \returns *this decremented by one.
714 APInt &operator--();
715
716 /// Logical negation operator.
717 ///
718 /// Performs logical negation operation on this APInt.
719 ///
720 /// \returns true if *this is zero, false otherwise.
721 bool operator!() const {
722 if (isSingleWord())
723 return U.VAL == 0;
724 return countLeadingZerosSlowCase() == BitWidth;
725 }
726
727 /// @}
728 /// \name Assignment Operators
729 /// @{
730
731 /// Copy assignment operator.
732 ///
733 /// \returns *this after assignment of RHS.
734 APInt &operator=(const APInt &RHS) {
735 // If the bitwidths are the same, we can avoid mucking with memory
736 if (isSingleWord() && RHS.isSingleWord()) {
737 U.VAL = RHS.U.VAL;
738 BitWidth = RHS.BitWidth;
739 return clearUnusedBits();
740 }
741
742 AssignSlowCase(RHS);
743 return *this;
744 }
745
746 /// Move assignment operator.
747 APInt &operator=(APInt &&that) {
748#ifdef _MSC_VER
749 // The MSVC std::shuffle implementation still does self-assignment.
750 if (this == &that)
751 return *this;
752#endif
753 assert(this != &that && "Self-move not supported");
754 if (!isSingleWord())
755 delete[] U.pVal;
756
757 // Use memcpy so that type based alias analysis sees both VAL and pVal
758 // as modified.
759 memcpy(&U, &that.U, sizeof(U));
760
761 BitWidth = that.BitWidth;
762 that.BitWidth = 0;
763
764 return *this;
765 }
766
767 /// Assignment operator.
768 ///
769 /// The RHS value is assigned to *this. If the significant bits in RHS exceed
770 /// the bit width, the excess bits are truncated. If the bit width is larger
771 /// than 64, the value is zero filled in the unspecified high order bits.
772 ///
773 /// \returns *this after assignment of RHS value.
774 APInt &operator=(uint64_t RHS) {
775 if (isSingleWord()) {
776 U.VAL = RHS;
777 clearUnusedBits();
778 } else {
779 U.pVal[0] = RHS;
780 memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
781 }
782 return *this;
783 }
784
785 /// Bitwise AND assignment operator.
786 ///
787 /// Performs a bitwise AND operation on this APInt and RHS. The result is
788 /// assigned to *this.
789 ///
790 /// \returns *this after ANDing with RHS.
791 APInt &operator&=(const APInt &RHS) {
792 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
793 if (isSingleWord())
794 U.VAL &= RHS.U.VAL;
795 else
796 AndAssignSlowCase(RHS);
797 return *this;
798 }
799
800 /// Bitwise AND assignment operator.
801 ///
802 /// Performs a bitwise AND operation on this APInt and RHS. RHS is
803 /// logically zero-extended or truncated to match the bit-width of
804 /// the LHS.
805 APInt &operator&=(uint64_t RHS) {
806 if (isSingleWord()) {
807 U.VAL &= RHS;
808 return *this;
809 }
810 U.pVal[0] &= RHS;
811 memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
812 return *this;
813 }
814
815 /// Bitwise OR assignment operator.
816 ///
817 /// Performs a bitwise OR operation on this APInt and RHS. The result is
818 /// assigned *this;
819 ///
820 /// \returns *this after ORing with RHS.
821 APInt &operator|=(const APInt &RHS) {
822 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
823 if (isSingleWord())
824 U.VAL |= RHS.U.VAL;
825 else
826 OrAssignSlowCase(RHS);
827 return *this;
828 }
829
830 /// Bitwise OR assignment operator.
831 ///
832 /// Performs a bitwise OR operation on this APInt and RHS. RHS is
833 /// logically zero-extended or truncated to match the bit-width of
834 /// the LHS.
835 APInt &operator|=(uint64_t RHS) {
836 if (isSingleWord()) {
837 U.VAL |= RHS;
838 clearUnusedBits();
839 } else {
840 U.pVal[0] |= RHS;
841 }
842 return *this;
843 }
844
845 /// Bitwise XOR assignment operator.
846 ///
847 /// Performs a bitwise XOR operation on this APInt and RHS. The result is
848 /// assigned to *this.
849 ///
850 /// \returns *this after XORing with RHS.
851 APInt &operator^=(const APInt &RHS) {
852 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
853 if (isSingleWord())
854 U.VAL ^= RHS.U.VAL;
855 else
856 XorAssignSlowCase(RHS);
857 return *this;
858 }
859
860 /// Bitwise XOR assignment operator.
861 ///
862 /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
863 /// logically zero-extended or truncated to match the bit-width of
864 /// the LHS.
865 APInt &operator^=(uint64_t RHS) {
866 if (isSingleWord()) {
867 U.VAL ^= RHS;
868 clearUnusedBits();
869 } else {
870 U.pVal[0] ^= RHS;
871 }
872 return *this;
873 }
874
875 /// Multiplication assignment operator.
876 ///
877 /// Multiplies this APInt by RHS and assigns the result to *this.
878 ///
879 /// \returns *this
880 APInt &operator*=(const APInt &RHS);
881 APInt &operator*=(uint64_t RHS);
882
883 /// Addition assignment operator.
884 ///
885 /// Adds RHS to *this and assigns the result to *this.
886 ///
887 /// \returns *this
888 APInt &operator+=(const APInt &RHS);
889 APInt &operator+=(uint64_t RHS);
890
891 /// Subtraction assignment operator.
892 ///
893 /// Subtracts RHS from *this and assigns the result to *this.
894 ///
895 /// \returns *this
896 APInt &operator-=(const APInt &RHS);
897 APInt &operator-=(uint64_t RHS);
898
899 /// Left-shift assignment function.
900 ///
901 /// Shifts *this left by shiftAmt and assigns the result to *this.
902 ///
903 /// \returns *this after shifting left by ShiftAmt
904 APInt &operator<<=(unsigned ShiftAmt) {
905 assert(ShiftAmt <= BitWidth && "Invalid shift amount");
906 if (isSingleWord()) {
907 if (ShiftAmt == BitWidth)
908 U.VAL = 0;
909 else
910 U.VAL <<= ShiftAmt;
911 return clearUnusedBits();
912 }
913 shlSlowCase(ShiftAmt);
914 return *this;
915 }
916
917 /// Left-shift assignment function.
918 ///
919 /// Shifts *this left by shiftAmt and assigns the result to *this.
920 ///
921 /// \returns *this after shifting left by ShiftAmt
922 APInt &operator<<=(const APInt &ShiftAmt);
923
924 /// @}
925 /// \name Binary Operators
926 /// @{
927
928 /// Multiplication operator.
929 ///
930 /// Multiplies this APInt by RHS and returns the result.
931 APInt operator*(const APInt &RHS) const;
932
933 /// Left logical shift operator.
934 ///
935 /// Shifts this APInt left by \p Bits and returns the result.
936 APInt operator<<(unsigned Bits) const { return shl(Bits); }
937
938 /// Left logical shift operator.
939 ///
940 /// Shifts this APInt left by \p Bits and returns the result.
941 APInt operator<<(const APInt &Bits) const { return shl(Bits); }
942
943 /// Arithmetic right-shift function.
944 ///
945 /// Arithmetic right-shift this APInt by shiftAmt.
946 APInt ashr(unsigned ShiftAmt) const {
947 APInt R(*this);
948 R.ashrInPlace(ShiftAmt);
949 return R;
950 }
951
952 /// Arithmetic right-shift this APInt by ShiftAmt in place.
953 void ashrInPlace(unsigned ShiftAmt) {
954 assert(ShiftAmt <= BitWidth && "Invalid shift amount");
955 if (isSingleWord()) {
956 int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
957 if (ShiftAmt == BitWidth)
958 U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
959 else
960 U.VAL = SExtVAL >> ShiftAmt;
961 clearUnusedBits();
962 return;
963 }
964 ashrSlowCase(ShiftAmt);
965 }
966
967 /// Logical right-shift function.
968 ///
969 /// Logical right-shift this APInt by shiftAmt.
970 APInt lshr(unsigned shiftAmt) const {
971 APInt R(*this);
972 R.lshrInPlace(shiftAmt);
973 return R;
974 }
975
976 /// Logical right-shift this APInt by ShiftAmt in place.
977 void lshrInPlace(unsigned ShiftAmt) {
978 assert(ShiftAmt <= BitWidth && "Invalid shift amount");
979 if (isSingleWord()) {
980 if (ShiftAmt == BitWidth)
981 U.VAL = 0;
982 else
983 U.VAL >>= ShiftAmt;
984 return;
985 }
986 lshrSlowCase(ShiftAmt);
987 }
988
989 /// Left-shift function.
990 ///
991 /// Left-shift this APInt by shiftAmt.
992 APInt shl(unsigned shiftAmt) const {
993 APInt R(*this);
994 R <<= shiftAmt;
995 return R;
996 }
997
998 /// Rotate left by rotateAmt.
999 APInt rotl(unsigned rotateAmt) const;
1000
1001 /// Rotate right by rotateAmt.
1002 APInt rotr(unsigned rotateAmt) const;
1003
1004 /// Arithmetic right-shift function.
1005 ///
1006 /// Arithmetic right-shift this APInt by shiftAmt.
1007 APInt ashr(const APInt &ShiftAmt) const {
1008 APInt R(*this);
1009 R.ashrInPlace(ShiftAmt);
1010 return R;
1011 }
1012
1013 /// Arithmetic right-shift this APInt by shiftAmt in place.
1014 void ashrInPlace(const APInt &shiftAmt);
1015
1016 /// Logical right-shift function.
1017 ///
1018 /// Logical right-shift this APInt by shiftAmt.
1019 APInt lshr(const APInt &ShiftAmt) const {
1020 APInt R(*this);
1021 R.lshrInPlace(ShiftAmt);
1022 return R;
1023 }
1024
1025 /// Logical right-shift this APInt by ShiftAmt in place.
1026 void lshrInPlace(const APInt &ShiftAmt);
1027
1028 /// Left-shift function.
1029 ///
1030 /// Left-shift this APInt by shiftAmt.
1031 APInt shl(const APInt &ShiftAmt) const {
1032 APInt R(*this);
1033 R <<= ShiftAmt;
1034 return R;
1035 }
1036
1037 /// Rotate left by rotateAmt.
1038 APInt rotl(const APInt &rotateAmt) const;
1039
1040 /// Rotate right by rotateAmt.
1041 APInt rotr(const APInt &rotateAmt) const;
1042
1043 /// Unsigned division operation.
1044 ///
1045 /// Perform an unsigned divide operation on this APInt by RHS. Both this and
1046 /// RHS are treated as unsigned quantities for purposes of this division.
1047 ///
1048 /// \returns a new APInt value containing the division result, rounded towards
1049 /// zero.
1050 APInt udiv(const APInt &RHS) const;
1051 APInt udiv(uint64_t RHS) const;
1052
1053 /// Signed division function for APInt.
1054 ///
1055 /// Signed divide this APInt by APInt RHS.
1056 ///
1057 /// The result is rounded towards zero.
1058 APInt sdiv(const APInt &RHS) const;
1059 APInt sdiv(int64_t RHS) const;
1060
1061 /// Unsigned remainder operation.
1062 ///
1063 /// Perform an unsigned remainder operation on this APInt with RHS being the
1064 /// divisor. Both this and RHS are treated as unsigned quantities for purposes
1065 /// of this operation. Note that this is a true remainder operation and not a
1066 /// modulo operation because the sign follows the sign of the dividend which
1067 /// is *this.
1068 ///
1069 /// \returns a new APInt value containing the remainder result
1070 APInt urem(const APInt &RHS) const;
1071 uint64_t urem(uint64_t RHS) const;
1072
1073 /// Function for signed remainder operation.
1074 ///
1075 /// Signed remainder operation on APInt.
1076 APInt srem(const APInt &RHS) const;
1077 int64_t srem(int64_t RHS) const;
1078
1079 /// Dual division/remainder interface.
1080 ///
1081 /// Sometimes it is convenient to divide two APInt values and obtain both the
1082 /// quotient and remainder. This function does both operations in the same
1083 /// computation making it a little more efficient. The pair of input arguments
1084 /// may overlap with the pair of output arguments. It is safe to call
1085 /// udivrem(X, Y, X, Y), for example.
1086 static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1087 APInt &Remainder);
1088 static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1089 uint64_t &Remainder);
1090
1091 static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1092 APInt &Remainder);
1093 static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
1094 int64_t &Remainder);
1095
1096 // Operations that return overflow indicators.
1097 APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
1098 APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
1099 APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
1100 APInt usub_ov(const APInt &RHS, bool &Overflow) const;
1101 APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
1102 APInt smul_ov(const APInt &RHS, bool &Overflow) const;
1103 APInt umul_ov(const APInt &RHS, bool &Overflow) const;
1104 APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
1105 APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
1106
1107 // Operations that saturate
1108 APInt sadd_sat(const APInt &RHS) const;
1109 APInt uadd_sat(const APInt &RHS) const;
1110 APInt ssub_sat(const APInt &RHS) const;
1111 APInt usub_sat(const APInt &RHS) const;
1112
1113 /// Array-indexing support.
1114 ///
1115 /// \returns the bit value at bitPosition
1116 bool operator[](unsigned bitPosition) const {
1117 assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
1118 return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
1119 }
1120
1121 /// @}
1122 /// \name Comparison Operators
1123 /// @{
1124
1125 /// Equality operator.
1126 ///
1127 /// Compares this APInt with RHS for the validity of the equality
1128 /// relationship.
1129 bool operator==(const APInt &RHS) const {
1130 assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
1131 if (isSingleWord())
1132 return U.VAL == RHS.U.VAL;
1133 return EqualSlowCase(RHS);
1134 }
1135
1136 /// Equality operator.
1137 ///
1138 /// Compares this APInt with a uint64_t for the validity of the equality
1139 /// relationship.
1140 ///
1141 /// \returns true if *this == Val
1142 bool operator==(uint64_t Val) const {
1143 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
1144 }
1145
1146 /// Equality comparison.
1147 ///
1148 /// Compares this APInt with RHS for the validity of the equality
1149 /// relationship.
1150 ///
1151 /// \returns true if *this == Val
1152 bool eq(const APInt &RHS) const { return (*this) == RHS; }
1153
1154 /// Inequality operator.
1155 ///
1156 /// Compares this APInt with RHS for the validity of the inequality
1157 /// relationship.
1158 ///
1159 /// \returns true if *this != Val
1160 bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
1161
1162 /// Inequality operator.
1163 ///
1164 /// Compares this APInt with a uint64_t for the validity of the inequality
1165 /// relationship.
1166 ///
1167 /// \returns true if *this != Val
1168 bool operator!=(uint64_t Val) const { return !((*this) == Val); }
1169
1170 /// Inequality comparison
1171 ///
1172 /// Compares this APInt with RHS for the validity of the inequality
1173 /// relationship.
1174 ///
1175 /// \returns true if *this != Val
1176 bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1177
1178 /// Unsigned less than comparison
1179 ///
1180 /// Regards both *this and RHS as unsigned quantities and compares them for
1181 /// the validity of the less-than relationship.
1182 ///
1183 /// \returns true if *this < RHS when both are considered unsigned.
1184 bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
1185
1186 /// Unsigned less than comparison
1187 ///
1188 /// Regards both *this as an unsigned quantity and compares it with RHS for
1189 /// the validity of the less-than relationship.
1190 ///
1191 /// \returns true if *this < RHS when considered unsigned.
1192 bool ult(uint64_t RHS) const {
1193 // Only need to check active bits if not a single word.
1194 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
1195 }
1196
1197 /// Signed less than comparison
1198 ///
1199 /// Regards both *this and RHS as signed quantities and compares them for
1200 /// validity of the less-than relationship.
1201 ///
1202 /// \returns true if *this < RHS when both are considered signed.
1203 bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
1204
1205 /// Signed less than comparison
1206 ///
1207 /// Regards both *this as a signed quantity and compares it with RHS for
1208 /// the validity of the less-than relationship.
1209 ///
1210 /// \returns true if *this < RHS when considered signed.
1211 bool slt(int64_t RHS) const {
1212 return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative()
1213 : getSExtValue() < RHS;
1214 }
1215
1216 /// Unsigned less or equal comparison
1217 ///
1218 /// Regards both *this and RHS as unsigned quantities and compares them for
1219 /// validity of the less-or-equal relationship.
1220 ///
1221 /// \returns true if *this <= RHS when both are considered unsigned.
1222 bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
1223
1224 /// Unsigned less or equal comparison
1225 ///
1226 /// Regards both *this as an unsigned quantity and compares it with RHS for
1227 /// the validity of the less-or-equal relationship.
1228 ///
1229 /// \returns true if *this <= RHS when considered unsigned.
1230 bool ule(uint64_t RHS) const { return !ugt(RHS); }
1231
1232 /// Signed less or equal comparison
1233 ///
1234 /// Regards both *this and RHS as signed quantities and compares them for
1235 /// validity of the less-or-equal relationship.
1236 ///
1237 /// \returns true if *this <= RHS when both are considered signed.
1238 bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
1239
1240 /// Signed less or equal comparison
1241 ///
1242 /// Regards both *this as a signed quantity and compares it with RHS for the
1243 /// validity of the less-or-equal relationship.
1244 ///
1245 /// \returns true if *this <= RHS when considered signed.
1246 bool sle(uint64_t RHS) const { return !sgt(RHS); }
1247
1248 /// Unsigned greather than comparison
1249 ///
1250 /// Regards both *this and RHS as unsigned quantities and compares them for
1251 /// the validity of the greater-than relationship.
1252 ///
1253 /// \returns true if *this > RHS when both are considered unsigned.
1254 bool ugt(const APInt &RHS) const { return !ule(RHS); }
1255
1256 /// Unsigned greater than comparison
1257 ///
1258 /// Regards both *this as an unsigned quantity and compares it with RHS for
1259 /// the validity of the greater-than relationship.
1260 ///
1261 /// \returns true if *this > RHS when considered unsigned.
1262 bool ugt(uint64_t RHS) const {
1263 // Only need to check active bits if not a single word.
1264 return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
1265 }
1266
1267 /// Signed greather than comparison
1268 ///
1269 /// Regards both *this and RHS as signed quantities and compares them for the
1270 /// validity of the greater-than relationship.
1271 ///
1272 /// \returns true if *this > RHS when both are considered signed.
1273 bool sgt(const APInt &RHS) const { return !sle(RHS); }
1274
1275 /// Signed greater than comparison
1276 ///
1277 /// Regards both *this as a signed quantity and compares it with RHS for
1278 /// the validity of the greater-than relationship.
1279 ///
1280 /// \returns true if *this > RHS when considered signed.
1281 bool sgt(int64_t RHS) const {
1282 return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative()
1283 : getSExtValue() > RHS;
1284 }
1285
1286 /// Unsigned greater or equal comparison
1287 ///
1288 /// Regards both *this and RHS as unsigned quantities and compares them for
1289 /// validity of the greater-or-equal relationship.
1290 ///
1291 /// \returns true if *this >= RHS when both are considered unsigned.
1292 bool uge(const APInt &RHS) const { return !ult(RHS); }
1293
1294 /// Unsigned greater or equal comparison
1295 ///
1296 /// Regards both *this as an unsigned quantity and compares it with RHS for
1297 /// the validity of the greater-or-equal relationship.
1298 ///
1299 /// \returns true if *this >= RHS when considered unsigned.
1300 bool uge(uint64_t RHS) const { return !ult(RHS); }
1301
1302 /// Signed greater or equal comparison
1303 ///
1304 /// Regards both *this and RHS as signed quantities and compares them for
1305 /// validity of the greater-or-equal relationship.
1306 ///
1307 /// \returns true if *this >= RHS when both are considered signed.
1308 bool sge(const APInt &RHS) const { return !slt(RHS); }
1309
1310 /// Signed greater or equal comparison
1311 ///
1312 /// Regards both *this as a signed quantity and compares it with RHS for
1313 /// the validity of the greater-or-equal relationship.
1314 ///
1315 /// \returns true if *this >= RHS when considered signed.
1316 bool sge(int64_t RHS) const { return !slt(RHS); }
1317
1318 /// This operation tests if there are any pairs of corresponding bits
1319 /// between this APInt and RHS that are both set.
1320 bool intersects(const APInt &RHS) const {
1321 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1322 if (isSingleWord())
1323 return (U.VAL & RHS.U.VAL) != 0;
1324 return intersectsSlowCase(RHS);
1325 }
1326
1327 /// This operation checks that all bits set in this APInt are also set in RHS.
1328 bool isSubsetOf(const APInt &RHS) const {
1329 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1330 if (isSingleWord())
1331 return (U.VAL & ~RHS.U.VAL) == 0;
1332 return isSubsetOfSlowCase(RHS);
1333 }
1334
1335 /// @}
1336 /// \name Resizing Operators
1337 /// @{
1338
1339 /// Truncate to new width.
1340 ///
1341 /// Truncate the APInt to a specified width. It is an error to specify a width
1342 /// that is greater than or equal to the current width.
1343 APInt trunc(unsigned width) const;
1344
1345 /// Sign extend to a new width.
1346 ///
1347 /// This operation sign extends the APInt to a new width. If the high order
1348 /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1349 /// It is an error to specify a width that is less than or equal to the
1350 /// current width.
1351 APInt sext(unsigned width) const;
1352
1353 /// Zero extend to a new width.
1354 ///
1355 /// This operation zero extends the APInt to a new width. The high order bits
1356 /// are filled with 0 bits. It is an error to specify a width that is less
1357 /// than or equal to the current width.
1358 APInt zext(unsigned width) const;
1359
1360 /// Sign extend or truncate to width
1361 ///
1362 /// Make this APInt have the bit width given by \p width. The value is sign
1363 /// extended, truncated, or left alone to make it that width.
1364 APInt sextOrTrunc(unsigned width) const;
1365
1366 /// Zero extend or truncate to width
1367 ///
1368 /// Make this APInt have the bit width given by \p width. The value is zero
1369 /// extended, truncated, or left alone to make it that width.
1370 APInt zextOrTrunc(unsigned width) const;
1371
1372 /// Sign extend or truncate to width
1373 ///
1374 /// Make this APInt have the bit width given by \p width. The value is sign
1375 /// extended, or left alone to make it that width.
1376 APInt sextOrSelf(unsigned width) const;
1377
1378 /// Zero extend or truncate to width
1379 ///
1380 /// Make this APInt have the bit width given by \p width. The value is zero
1381 /// extended, or left alone to make it that width.
1382 APInt zextOrSelf(unsigned width) const;
1383
1384 /// @}
1385 /// \name Bit Manipulation Operators
1386 /// @{
1387
1388 /// Set every bit to 1.
1389 void setAllBits() {
1390 if (isSingleWord())
1391 U.VAL = WORDTYPE_MAX;
1392 else
1393 // Set all the bits in all the words.
1394 memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
1395 // Clear the unused ones
1396 clearUnusedBits();
1397 }
1398
1399 /// Set a given bit to 1.
1400 ///
1401 /// Set the given bit to 1 whose position is given as "bitPosition".
1402 void setBit(unsigned BitPosition) {
1403 assert(BitPosition < BitWidth && "BitPosition out of range");
1404 WordType Mask = maskBit(BitPosition);
1405 if (isSingleWord())
1406 U.VAL |= Mask;
1407 else
1408 U.pVal[whichWord(BitPosition)] |= Mask;
1409 }
1410
1411 /// Set the sign bit to 1.
1412 void setSignBit() {
1413 setBit(BitWidth - 1);
1414 }
1415
1416 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1417 void setBits(unsigned loBit, unsigned hiBit) {
1418 assert(hiBit <= BitWidth && "hiBit out of range");
1419 assert(loBit <= BitWidth && "loBit out of range");
1420 assert(loBit <= hiBit && "loBit greater than hiBit");
1421 if (loBit == hiBit)
1422 return;
1423 if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
1424 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
1425 mask <<= loBit;
1426 if (isSingleWord())
1427 U.VAL |= mask;
1428 else
1429 U.pVal[0] |= mask;
1430 } else {
1431 setBitsSlowCase(loBit, hiBit);
1432 }
1433 }
1434
1435 /// Set the top bits starting from loBit.
1436 void setBitsFrom(unsigned loBit) {
1437 return setBits(loBit, BitWidth);
1438 }
1439
1440 /// Set the bottom loBits bits.
1441 void setLowBits(unsigned loBits) {
1442 return setBits(0, loBits);
1443 }
1444
1445 /// Set the top hiBits bits.
1446 void setHighBits(unsigned hiBits) {
1447 return setBits(BitWidth - hiBits, BitWidth);
1448 }
1449
1450 /// Set every bit to 0.
1451 void clearAllBits() {
1452 if (isSingleWord())
1453 U.VAL = 0;
1454 else
1455 memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
1456 }
1457
1458 /// Set a given bit to 0.
1459 ///
1460 /// Set the given bit to 0 whose position is given as "bitPosition".
1461 void clearBit(unsigned BitPosition) {
1462 assert(BitPosition < BitWidth && "BitPosition out of range");
1463 WordType Mask = ~maskBit(BitPosition);
1464 if (isSingleWord())
1465 U.VAL &= Mask;
1466 else
1467 U.pVal[whichWord(BitPosition)] &= Mask;
1468 }
1469
1470 /// Set the sign bit to 0.
1471 void clearSignBit() {
1472 clearBit(BitWidth - 1);
1473 }
1474
1475 /// Toggle every bit to its opposite value.
1476 void flipAllBits() {
1477 if (isSingleWord()) {
1478 U.VAL ^= WORDTYPE_MAX;
1479 clearUnusedBits();
1480 } else {
1481 flipAllBitsSlowCase();
1482 }
1483 }
1484
1485 /// Toggles a given bit to its opposite value.
1486 ///
1487 /// Toggle a given bit to its opposite value whose position is given
1488 /// as "bitPosition".
1489 void flipBit(unsigned bitPosition);
1490
1491 /// Negate this APInt in place.
1492 void negate() {
1493 flipAllBits();
1494 ++(*this);
1495 }
1496
1497 /// Insert the bits from a smaller APInt starting at bitPosition.
1498 void insertBits(const APInt &SubBits, unsigned bitPosition);
1499
1500 /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
1501 APInt extractBits(unsigned numBits, unsigned bitPosition) const;
1502
1503 /// @}
1504 /// \name Value Characterization Functions
1505 /// @{
1506
1507 /// Return the number of bits in the APInt.
1508 unsigned getBitWidth() const { return BitWidth; }
1509
1510 /// Get the number of words.
1511 ///
1512 /// Here one word's bitwidth equals to that of uint64_t.
1513 ///
1514 /// \returns the number of words to hold the integer value of this APInt.
1515 unsigned getNumWords() const { return getNumWords(BitWidth); }
1516
1517 /// Get the number of words.
1518 ///
1519 /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1520 ///
1521 /// \returns the number of words to hold the integer value with a given bit
1522 /// width.
1523 static unsigned getNumWords(unsigned BitWidth) {
1524 return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1525 }
1526
1527 /// Compute the number of active bits in the value
1528 ///
1529 /// This function returns the number of active bits which is defined as the
1530 /// bit width minus the number of leading zeros. This is used in several
1531 /// computations to see how "wide" the value is.
1532 unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
1533
1534 /// Compute the number of active words in the value of this APInt.
1535 ///
1536 /// This is used in conjunction with getActiveData to extract the raw value of
1537 /// the APInt.
1538 unsigned getActiveWords() const {
1539 unsigned numActiveBits = getActiveBits();
1540 return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1541 }
1542
1543 /// Get the minimum bit size for this signed APInt
1544 ///
1545 /// Computes the minimum bit width for this APInt while considering it to be a
1546 /// signed (and probably negative) value. If the value is not negative, this
1547 /// function returns the same value as getActiveBits()+1. Otherwise, it
1548 /// returns the smallest bit width that will retain the negative value. For
1549 /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1550 /// for -1, this function will always return 1.
1551 unsigned getMinSignedBits() const {
1552 if (isNegative())
1553 return BitWidth - countLeadingOnes() + 1;
1554 return getActiveBits() + 1;
1555 }
1556
1557 /// Get zero extended value
1558 ///
1559 /// This method attempts to return the value of this APInt as a zero extended
1560 /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1561 /// uint64_t. Otherwise an assertion will result.
1562 uint64_t getZExtValue() const {
1563 if (isSingleWord())
1564 return U.VAL;
1565 assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1566 return U.pVal[0];
1567 }
1568
1569 /// Get sign extended value
1570 ///
1571 /// This method attempts to return the value of this APInt as a sign extended
1572 /// int64_t. The bit width must be <= 64 or the value must fit within an
1573 /// int64_t. Otherwise an assertion will result.
1574 int64_t getSExtValue() const {
1575 if (isSingleWord())
1576 return SignExtend64(U.VAL, BitWidth);
1577 assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
1578 return int64_t(U.pVal[0]);
1579 }
1580
1581 /// Get bits required for string value.
1582 ///
1583 /// This method determines how many bits are required to hold the APInt
1584 /// equivalent of the string given by \p str.
1585 static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1586
1587 /// The APInt version of the countLeadingZeros functions in
1588 /// MathExtras.h.
1589 ///
1590 /// It counts the number of zeros from the most significant bit to the first
1591 /// one bit.
1592 ///
1593 /// \returns BitWidth if the value is zero, otherwise returns the number of
1594 /// zeros from the most significant bit to the first one bits.
1595 unsigned countLeadingZeros() const {
1596 if (isSingleWord()) {
1597 unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1598 return llvm::countLeadingZeros(U.VAL) - unusedBits;
1599 }
1600 return countLeadingZerosSlowCase();
1601 }
1602
1603 /// Count the number of leading one bits.
1604 ///
1605 /// This function is an APInt version of the countLeadingOnes
1606 /// functions in MathExtras.h. It counts the number of ones from the most
1607 /// significant bit to the first zero bit.
1608 ///
1609 /// \returns 0 if the high order bit is not set, otherwise returns the number
1610 /// of 1 bits from the most significant to the least
1611 unsigned countLeadingOnes() const {
1612 if (isSingleWord())
1613 return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
1614 return countLeadingOnesSlowCase();
1615 }
1616
1617 /// Computes the number of leading bits of this APInt that are equal to its
1618 /// sign bit.
1619 unsigned getNumSignBits() const {
1620 return isNegative() ? countLeadingOnes() : countLeadingZeros();
1621 }
1622
1623 /// Count the number of trailing zero bits.
1624 ///
1625 /// This function is an APInt version of the countTrailingZeros
1626 /// functions in MathExtras.h. It counts the number of zeros from the least
1627 /// significant bit to the first set bit.
1628 ///
1629 /// \returns BitWidth if the value is zero, otherwise returns the number of
1630 /// zeros from the least significant bit to the first one bit.
1631 unsigned countTrailingZeros() const {
1632 if (isSingleWord())
1633 return std::min(unsigned(llvm::countTrailingZeros(U.VAL)), BitWidth);
1634 return countTrailingZerosSlowCase();
1635 }
1636
1637 /// Count the number of trailing one bits.
1638 ///
1639 /// This function is an APInt version of the countTrailingOnes
1640 /// functions in MathExtras.h. It counts the number of ones from the least
1641 /// significant bit to the first zero bit.
1642 ///
1643 /// \returns BitWidth if the value is all ones, otherwise returns the number
1644 /// of ones from the least significant bit to the first zero bit.
1645 unsigned countTrailingOnes() const {
1646 if (isSingleWord())
1647 return llvm::countTrailingOnes(U.VAL);
1648 return countTrailingOnesSlowCase();
1649 }
1650
1651 /// Count the number of bits set.
1652 ///
1653 /// This function is an APInt version of the countPopulation functions
1654 /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
1655 ///
1656 /// \returns 0 if the value is zero, otherwise returns the number of set bits.
1657 unsigned countPopulation() const {
1658 if (isSingleWord())
1659 return llvm::countPopulation(U.VAL);
1660 return countPopulationSlowCase();
1661 }
1662
1663 /// @}
1664 /// \name Conversion Functions
1665 /// @{
1666 void print(raw_ostream &OS, bool isSigned) const;
1667
1668 /// Converts an APInt to a string and append it to Str. Str is commonly a
1669 /// SmallString.
1670 void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1671 bool formatAsCLiteral = false) const;
1672
1673 /// Considers the APInt to be unsigned and converts it into a string in the
1674 /// radix given. The radix can be 2, 8, 10 16, or 36.
1675 void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1676 toString(Str, Radix, false, false);
1677 }
1678
1679 /// Considers the APInt to be signed and converts it into a string in the
1680 /// radix given. The radix can be 2, 8, 10, 16, or 36.
1681 void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1682 toString(Str, Radix, true, false);
1683 }
1684
1685 /// Return the APInt as a std::string.
1686 ///
1687 /// Note that this is an inefficient method. It is better to pass in a
1688 /// SmallVector/SmallString to the methods above to avoid thrashing the heap
1689 /// for the string.
1690 std::string toString(unsigned Radix, bool Signed) const;
1691
1692 /// \returns a byte-swapped representation of this APInt Value.
1693 APInt byteSwap() const;
1694
1695 /// \returns the value with the bit representation reversed of this APInt
1696 /// Value.
1697 APInt reverseBits() const;
1698
1699 /// Converts this APInt to a double value.
1700 double roundToDouble(bool isSigned) const;
1701
1702 /// Converts this unsigned APInt to a double value.
1703 double roundToDouble() const { return roundToDouble(false); }
1704
1705 /// Converts this signed APInt to a double value.
1706 double signedRoundToDouble() const { return roundToDouble(true); }
1707
1708 /// Converts APInt bits to a double
1709 ///
1710 /// The conversion does not do a translation from integer to double, it just
1711 /// re-interprets the bits as a double. Note that it is valid to do this on
1712 /// any bit width. Exactly 64 bits will be translated.
1713 double bitsToDouble() const {
1714 return BitsToDouble(getWord(0));
1715 }
1716
1717 /// Converts APInt bits to a double
1718 ///
1719 /// The conversion does not do a translation from integer to float, it just
1720 /// re-interprets the bits as a float. Note that it is valid to do this on
1721 /// any bit width. Exactly 32 bits will be translated.
1722 float bitsToFloat() const {
1723 return BitsToFloat(getWord(0));
1724 }
1725
1726 /// Converts a double to APInt bits.
1727 ///
1728 /// The conversion does not do a translation from double to integer, it just
1729 /// re-interprets the bits of the double.
1730 static APInt doubleToBits(double V) {
1731 return APInt(sizeof(double) * CHAR_BIT, DoubleToBits(V));
1732 }
1733
1734 /// Converts a float to APInt bits.
1735 ///
1736 /// The conversion does not do a translation from float to integer, it just
1737 /// re-interprets the bits of the float.
1738 static APInt floatToBits(float V) {
1739 return APInt(sizeof(float) * CHAR_BIT, FloatToBits(V));
1740 }
1741
1742 /// @}
1743 /// \name Mathematics Operations
1744 /// @{
1745
1746 /// \returns the floor log base 2 of this APInt.
1747 unsigned logBase2() const { return getActiveBits() - 1; }
1748
1749 /// \returns the ceil log base 2 of this APInt.
1750 unsigned ceilLogBase2() const {
1751 APInt temp(*this);
1752 --temp;
1753 return temp.getActiveBits();
1754 }
1755
1756 /// \returns the nearest log base 2 of this APInt. Ties round up.
1757 ///
1758 /// NOTE: When we have a BitWidth of 1, we define:
1759 ///
1760 /// log2(0) = UINT32_MAX
1761 /// log2(1) = 0
1762 ///
1763 /// to get around any mathematical concerns resulting from
1764 /// referencing 2 in a space where 2 does no exist.
1765 unsigned nearestLogBase2() const {
1766 // Special case when we have a bitwidth of 1. If VAL is 1, then we
1767 // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to
1768 // UINT32_MAX.
1769 if (BitWidth == 1)
1770 return U.VAL - 1;
1771
1772 // Handle the zero case.
1773 if (isNullValue())
1774 return UINT32_MAX;
1775
1776 // The non-zero case is handled by computing:
1777 //
1778 // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1779 //
1780 // where x[i] is referring to the value of the ith bit of x.
1781 unsigned lg = logBase2();
1782 return lg + unsigned((*this)[lg - 1]);
1783 }
1784
1785 /// \returns the log base 2 of this APInt if its an exact power of two, -1
1786 /// otherwise
1787 int32_t exactLogBase2() const {
1788 if (!isPowerOf2())
1789 return -1;
1790 return logBase2();
1791 }
1792
1793 /// Compute the square root
1794 APInt sqrt() const;
1795
1796 /// Get the absolute value;
1797 ///
1798 /// If *this is < 0 then return -(*this), otherwise *this;
1799 APInt abs() const {
1800 if (isNegative())
1801 return -(*this);
1802 return *this;
1803 }
1804
1805 /// \returns the multiplicative inverse for a given modulo.
1806 APInt multiplicativeInverse(const APInt &modulo) const;
1807
1808 /// @}
1809 /// \name Support for division by constant
1810 /// @{
1811
1812 /// Calculate the magic number for signed division by a constant.
1813 struct ms;
1814 ms magic() const;
1815
1816 /// Calculate the magic number for unsigned division by a constant.
1817 struct mu;
1818 mu magicu(unsigned LeadingZeros = 0) const;
1819
1820 /// @}
1821 /// \name Building-block Operations for APInt and APFloat
1822 /// @{
1823
1824 // These building block operations operate on a representation of arbitrary
1825 // precision, two's-complement, bignum integer values. They should be
1826 // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1827 // generally a pointer to the base of an array of integer parts, representing
1828 // an unsigned bignum, and a count of how many parts there are.
1829
1830 /// Sets the least significant part of a bignum to the input value, and zeroes
1831 /// out higher parts.
1832 static void tcSet(WordType *, WordType, unsigned);
1833
1834 /// Assign one bignum to another.
1835 static void tcAssign(WordType *, const WordType *, unsigned);
1836
1837 /// Returns true if a bignum is zero, false otherwise.
1838 static bool tcIsZero(const WordType *, unsigned);
1839
1840 /// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
1841 static int tcExtractBit(const WordType *, unsigned bit);
1842
1843 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1844 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1845 /// significant bit of DST. All high bits above srcBITS in DST are
1846 /// zero-filled.
1847 static void tcExtract(WordType *, unsigned dstCount,
1848 const WordType *, unsigned srcBits,
1849 unsigned srcLSB);
1850
1851 /// Set the given bit of a bignum. Zero-based.
1852 static void tcSetBit(WordType *, unsigned bit);
1853
1854 /// Clear the given bit of a bignum. Zero-based.
1855 static void tcClearBit(WordType *, unsigned bit);
1856
1857 /// Returns the bit number of the least or most significant set bit of a
1858 /// number. If the input number has no bits set -1U is returned.
1859 static unsigned tcLSB(const WordType *, unsigned n);
1860 static unsigned tcMSB(const WordType *parts, unsigned n);
1861
1862 /// Negate a bignum in-place.
1863 static void tcNegate(WordType *, unsigned);
1864
1865 /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1866 static WordType tcAdd(WordType *, const WordType *,
1867 WordType carry, unsigned);
1868 /// DST += RHS. Returns the carry flag.
1869 static WordType tcAddPart(WordType *, WordType, unsigned);
1870
1871 /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1872 static WordType tcSubtract(WordType *, const WordType *,
1873 WordType carry, unsigned);
1874 /// DST -= RHS. Returns the carry flag.
1875 static WordType tcSubtractPart(WordType *, WordType, unsigned);
1876
1877 /// DST += SRC * MULTIPLIER + PART if add is true
1878 /// DST = SRC * MULTIPLIER + PART if add is false
1879 ///
1880 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must
1881 /// start at the same point, i.e. DST == SRC.
1882 ///
1883 /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1884 /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1885 /// result, and if all of the omitted higher parts were zero return zero,
1886 /// otherwise overflow occurred and return one.
1887 static int tcMultiplyPart(WordType *dst, const WordType *src,
1888 WordType multiplier, WordType carry,
1889 unsigned srcParts, unsigned dstParts,
1890 bool add);
1891
1892 /// DST = LHS * RHS, where DST has the same width as the operands and is
1893 /// filled with the least significant parts of the result. Returns one if
1894 /// overflow occurred, otherwise zero. DST must be disjoint from both
1895 /// operands.
1896 static int tcMultiply(WordType *, const WordType *, const WordType *,
1897 unsigned);
1898
1899 /// DST = LHS * RHS, where DST has width the sum of the widths of the
1900 /// operands. No overflow occurs. DST must be disjoint from both operands.
1901 static void tcFullMultiply(WordType *, const WordType *,
1902 const WordType *, unsigned, unsigned);
1903
1904 /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1905 /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1906 /// REMAINDER to the remainder, return zero. i.e.
1907 ///
1908 /// OLD_LHS = RHS * LHS + REMAINDER
1909 ///
1910 /// SCRATCH is a bignum of the same size as the operands and result for use by
1911 /// the routine; its contents need not be initialized and are destroyed. LHS,
1912 /// REMAINDER and SCRATCH must be distinct.
1913 static int tcDivide(WordType *lhs, const WordType *rhs,
1914 WordType *remainder, WordType *scratch,
1915 unsigned parts);
1916
1917 /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
1918 /// restrictions on Count.
1919 static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
1920
1921 /// Shift a bignum right Count bits. Shifted in bits are zero. There are no
1922 /// restrictions on Count.
1923 static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
1924
1925 /// The obvious AND, OR and XOR and complement operations.
1926 static void tcAnd(WordType *, const WordType *, unsigned);
1927 static void tcOr(WordType *, const WordType *, unsigned);
1928 static void tcXor(WordType *, const WordType *, unsigned);
1929 static void tcComplement(WordType *, unsigned);
1930
1931 /// Comparison (unsigned) of two bignums.
1932 static int tcCompare(const WordType *, const WordType *, unsigned);
1933
1934 /// Increment a bignum in-place. Return the carry flag.
1935 static WordType tcIncrement(WordType *dst, unsigned parts) {
1936 return tcAddPart(dst, 1, parts);
1937 }
1938
1939 /// Decrement a bignum in-place. Return the borrow flag.
1940 static WordType tcDecrement(WordType *dst, unsigned parts) {
1941 return tcSubtractPart(dst, 1, parts);
1942 }
1943
1944 /// Set the least significant BITS and clear the rest.
1945 static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits);
1946
1947 /// debug method
1948 void dump() const;
1949
1950 /// @}
1951};
1952
1953/// Magic data for optimising signed division by a constant.
1954struct APInt::ms {
1955 APInt m; ///< magic number
1956 unsigned s; ///< shift amount
1957};
1958
1959/// Magic data for optimising unsigned division by a constant.
1960struct APInt::mu {
1961 APInt m; ///< magic number
1962 bool a; ///< add indicator
1963 unsigned s; ///< shift amount
1964};
1965
1966inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
1967
1968inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
1969
1970/// Unary bitwise complement operator.
1971///
1972/// \returns an APInt that is the bitwise complement of \p v.
1973inline APInt operator~(APInt v) {
1974 v.flipAllBits();
1975 return v;
1976}
1977
1978inline APInt operator&(APInt a, const APInt &b) {
1979 a &= b;
1980 return a;
1981}
1982
1983inline APInt operator&(const APInt &a, APInt &&b) {
1984 b &= a;
1985 return std::move(b);
1986}
1987
1988inline APInt operator&(APInt a, uint64_t RHS) {
1989 a &= RHS;
1990 return a;
1991}
1992
1993inline APInt operator&(uint64_t LHS, APInt b) {
1994 b &= LHS;
1995 return b;
1996}
1997
1998inline APInt operator|(APInt a, const APInt &b) {
1999 a |= b;
2000 return a;
2001}
2002
2003inline APInt operator|(const APInt &a, APInt &&b) {
2004 b |= a;
2005 return std::move(b);
2006}
2007
2008inline APInt operator|(APInt a, uint64_t RHS) {
2009 a |= RHS;
2010 return a;
2011}
2012
2013inline APInt operator|(uint64_t LHS, APInt b) {
2014 b |= LHS;
2015 return b;
2016}
2017
2018inline APInt operator^(APInt a, const APInt &b) {
2019 a ^= b;
2020 return a;
2021}
2022
2023inline APInt operator^(const APInt &a, APInt &&b) {
2024 b ^= a;
2025 return std::move(b);
2026}
2027
2028inline APInt operator^(APInt a, uint64_t RHS) {
2029 a ^= RHS;
2030 return a;
2031}
2032
2033inline APInt operator^(uint64_t LHS, APInt b) {
2034 b ^= LHS;
2035 return b;
2036}
2037
2038inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
2039 I.print(OS, true);
2040 return OS;
2041}
2042
2043inline APInt operator-(APInt v) {
2044 v.negate();
2045 return v;
2046}
2047
2048inline APInt operator+(APInt a, const APInt &b) {
2049 a += b;
2050 return a;
2051}
2052
2053inline APInt operator+(const APInt &a, APInt &&b) {
2054 b += a;
2055 return std::move(b);
2056}
2057
2058inline APInt operator+(APInt a, uint64_t RHS) {
2059 a += RHS;
2060 return a;
2061}
2062
2063inline APInt operator+(uint64_t LHS, APInt b) {
2064 b += LHS;
2065 return b;
2066}
2067
2068inline APInt operator-(APInt a, const APInt &b) {
2069 a -= b;
2070 return a;
2071}
2072
2073inline APInt operator-(const APInt &a, APInt &&b) {
2074 b.negate();
2075 b += a;
2076 return std::move(b);
2077}
2078
2079inline APInt operator-(APInt a, uint64_t RHS) {
2080 a -= RHS;
2081 return a;
2082}
2083
2084inline APInt operator-(uint64_t LHS, APInt b) {
2085 b.negate();
2086 b += LHS;
2087 return b;
2088}
2089
2090inline APInt operator*(APInt a, uint64_t RHS) {
2091 a *= RHS;
2092 return a;
2093}
2094
2095inline APInt operator*(uint64_t LHS, APInt b) {
2096 b *= LHS;
2097 return b;
2098}
2099
2100
2101namespace APIntOps {
2102
2103/// Determine the smaller of two APInts considered to be signed.
2104inline const APInt &smin(const APInt &A, const APInt &B) {
2105 return A.slt(B) ? A : B;
2106}
2107
2108/// Determine the larger of two APInts considered to be signed.
2109inline const APInt &smax(const APInt &A, const APInt &B) {
2110 return A.sgt(B) ? A : B;
2111}
2112
2113/// Determine the smaller of two APInts considered to be signed.
2114inline const APInt &umin(const APInt &A, const APInt &B) {
2115 return A.ult(B) ? A : B;
2116}
2117
2118/// Determine the larger of two APInts considered to be unsigned.
2119inline const APInt &umax(const APInt &A, const APInt &B) {
2120 return A.ugt(B) ? A : B;
2121}
2122
2123/// Compute GCD of two unsigned APInt values.
2124///
2125/// This function returns the greatest common divisor of the two APInt values
2126/// using Stein's algorithm.
2127///
2128/// \returns the greatest common divisor of A and B.
2129APInt GreatestCommonDivisor(APInt A, APInt B);
2130
2131/// Converts the given APInt to a double value.
2132///
2133/// Treats the APInt as an unsigned value for conversion purposes.
2134inline double RoundAPIntToDouble(const APInt &APIVal) {
2135 return APIVal.roundToDouble();
2136}
2137
2138/// Converts the given APInt to a double value.
2139///
2140/// Treats the APInt as a signed value for conversion purposes.
2141inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
2142 return APIVal.signedRoundToDouble();
2143}
2144
2145/// Converts the given APInt to a float vlalue.
2146inline float RoundAPIntToFloat(const APInt &APIVal) {
2147 return float(RoundAPIntToDouble(APIVal));
2148}
2149
2150/// Converts the given APInt to a float value.
2151///
2152/// Treast the APInt as a signed value for conversion purposes.
2153inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
2154 return float(APIVal.signedRoundToDouble());
2155}
2156
2157/// Converts the given double value into a APInt.
2158///
2159/// This function convert a double value to an APInt value.
2160APInt RoundDoubleToAPInt(double Double, unsigned width);
2161
2162/// Converts a float value into a APInt.
2163///
2164/// Converts a float value into an APInt value.
2165inline APInt RoundFloatToAPInt(float Float, unsigned width) {
2166 return RoundDoubleToAPInt(double(Float), width);
2167}
2168
2169/// Return A unsign-divided by B, rounded by the given rounding mode.
2170APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2171
2172/// Return A sign-divided by B, rounded by the given rounding mode.
2173APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2174
2175/// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range
2176/// (e.g. 32 for i32).
2177/// This function finds the smallest number n, such that
2178/// (a) n >= 0 and q(n) = 0, or
2179/// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all
2180/// integers, belong to two different intervals [Rk, Rk+R),
2181/// where R = 2^BW, and k is an integer.
2182/// The idea here is to find when q(n) "overflows" 2^BW, while at the
2183/// same time "allowing" subtraction. In unsigned modulo arithmetic a
2184/// subtraction (treated as addition of negated numbers) would always
2185/// count as an overflow, but here we want to allow values to decrease
2186/// and increase as long as they are within the same interval.
2187/// Specifically, adding of two negative numbers should not cause an
2188/// overflow (as long as the magnitude does not exceed the bith width).
2189/// On the other hand, given a positive number, adding a negative
2190/// number to it can give a negative result, which would cause the
2191/// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is
2192/// treated as a special case of an overflow.
2193///
2194/// This function returns None if after finding k that minimizes the
2195/// positive solution to q(n) = kR, both solutions are contained between
2196/// two consecutive integers.
2197///
2198/// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation
2199/// in arithmetic modulo 2^BW, and treating the values as signed) by the
2200/// virtue of *signed* overflow. This function will *not* find such an n,
2201/// however it may find a value of n satisfying the inequalities due to
2202/// an *unsigned* overflow (if the values are treated as unsigned).
2203/// To find a solution for a signed overflow, treat it as a problem of
2204/// finding an unsigned overflow with a range with of BW-1.
2205///
2206/// The returned value may have a different bit width from the input
2207/// coefficients.
2208Optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2209 unsigned RangeWidth);
2210} // End of APIntOps namespace
2211
2212// See friend declaration above. This additional declaration is required in
2213// order to compile LLVM with IBM xlC compiler.
2214hash_code hash_value(const APInt &Arg);
2215} // End of llvm namespace
2216
2217#endif
2218