1//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// This file implements a class to represent arbitrary precision
12/// integral constant values and operations on them.
13///
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_ADT_APINT_H
17#define LLVM_ADT_APINT_H
18
19#include "llvm/Support/Compiler.h"
20#include "llvm/Support/MathExtras.h"
21#include <cassert>
22#include <climits>
23#include <cstring>
24#include <string>
25
26namespace llvm {
27class FoldingSetNodeID;
28class StringRef;
29class hash_code;
30class raw_ostream;
31
32template <typename T> class SmallVectorImpl;
33template <typename T> class ArrayRef;
34template <typename T> class Optional;
35
36class APInt;
37
38inline APInt operator-(APInt);
39
40//===----------------------------------------------------------------------===//
41// APInt Class
42//===----------------------------------------------------------------------===//
43
44/// Class for arbitrary precision integers.
45///
46/// APInt is a functional replacement for common case unsigned integer type like
47/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
48/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
49/// than 64-bits of precision. APInt provides a variety of arithmetic operators
50/// and methods to manipulate integer values of any bit-width. It supports both
51/// the typical integer arithmetic and comparison operations as well as bitwise
52/// manipulation.
53///
54/// The class has several invariants worth noting:
55/// * All bit, byte, and word positions are zero-based.
56/// * Once the bit width is set, it doesn't change except by the Truncate,
57/// SignExtend, or ZeroExtend operations.
58/// * All binary operators must be on APInt instances of the same bit width.
59/// Attempting to use these operators on instances with different bit
60/// widths will yield an assertion.
61/// * The value is stored canonically as an unsigned value. For operations
62/// where it makes a difference, there are both signed and unsigned variants
63/// of the operation. For example, sdiv and udiv. However, because the bit
64/// widths must be the same, operations such as Mul and Add produce the same
65/// results regardless of whether the values are interpreted as signed or
66/// not.
67/// * In general, the class tries to follow the style of computation that LLVM
68/// uses in its IR. This simplifies its use for LLVM.
69///
70class LLVM_NODISCARD APInt {
71public:
72 typedef uint64_t WordType;
73
74 /// This enum is used to hold the constants we needed for APInt.
75 enum : unsigned {
76 /// Byte size of a word.
77 APINT_WORD_SIZE = sizeof(WordType),
78 /// Bits in a word.
79 APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT
80 };
81
82 enum class Rounding {
83 DOWN,
84 TOWARD_ZERO,
85 UP,
86 };
87
88 static const WordType WORDTYPE_MAX = ~WordType(0);
89
90private:
91 /// This union is used to store the integer value. When the
92 /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
93 union {
94 uint64_t VAL; ///< Used to store the <= 64 bits integer value.
95 uint64_t *pVal; ///< Used to store the >64 bits integer value.
96 } U;
97
98 unsigned BitWidth; ///< The number of bits in this APInt.
99
100 friend struct DenseMapAPIntKeyInfo;
101
102 friend class APSInt;
103
104 /// Fast internal constructor
105 ///
106 /// This constructor is used only internally for speed of construction of
107 /// temporaries. It is unsafe for general use so it is not public.
108 APInt(uint64_t *val, unsigned bits) : BitWidth(bits) {
109 U.pVal = val;
110 }
111
112 /// Determine if this APInt just has one word to store value.
113 ///
114 /// \returns true if the number of bits <= 64, false otherwise.
115 bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
116
117 /// Determine which word a bit is in.
118 ///
119 /// \returns the word position for the specified bit position.
120 static unsigned whichWord(unsigned bitPosition) {
121 return bitPosition / APINT_BITS_PER_WORD;
122 }
123
124 /// Determine which bit in a word a bit is in.
125 ///
126 /// \returns the bit position in a word for the specified bit position
127 /// in the APInt.
128 static unsigned whichBit(unsigned bitPosition) {
129 return bitPosition % APINT_BITS_PER_WORD;
130 }
131
132 /// Get a single bit mask.
133 ///
134 /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
135 /// This method generates and returns a uint64_t (word) mask for a single
136 /// bit at a specific bit position. This is used to mask the bit in the
137 /// corresponding word.
138 static uint64_t maskBit(unsigned bitPosition) {
139 return 1ULL << whichBit(bitPosition);
140 }
141
142 /// Clear unused high order bits
143 ///
144 /// This method is used internally to clear the top "N" bits in the high order
145 /// word that are not used by the APInt. This is needed after the most
146 /// significant word is assigned a value to ensure that those bits are
147 /// zero'd out.
148 APInt &clearUnusedBits() {
149 // Compute how many bits are used in the final word
150 unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1;
151
152 // Mask out the high bits.
153 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits);
154 if (isSingleWord())
155 U.VAL &= mask;
156 else
157 U.pVal[getNumWords() - 1] &= mask;
158 return *this;
159 }
160
161 /// Get the word corresponding to a bit position
162 /// \returns the corresponding word for the specified bit position.
163 uint64_t getWord(unsigned bitPosition) const {
164 return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
165 }
166
167 /// Utility method to change the bit width of this APInt to new bit width,
168 /// allocating and/or deallocating as necessary. There is no guarantee on the
169 /// value of any bits upon return. Caller should populate the bits after.
170 void reallocate(unsigned NewBitWidth);
171
172 /// Convert a char array into an APInt
173 ///
174 /// \param radix 2, 8, 10, 16, or 36
175 /// Converts a string into a number. The string must be non-empty
176 /// and well-formed as a number of the given base. The bit-width
177 /// must be sufficient to hold the result.
178 ///
179 /// This is used by the constructors that take string arguments.
180 ///
181 /// StringRef::getAsInteger is superficially similar but (1) does
182 /// not assume that the string is well-formed and (2) grows the
183 /// result to hold the input.
184 void fromString(unsigned numBits, StringRef str, uint8_t radix);
185
186 /// An internal division function for dividing APInts.
187 ///
188 /// This is used by the toString method to divide by the radix. It simply
189 /// provides a more convenient form of divide for internal use since KnuthDiv
190 /// has specific constraints on its inputs. If those constraints are not met
191 /// then it provides a simpler form of divide.
192 static void divide(const WordType *LHS, unsigned lhsWords,
193 const WordType *RHS, unsigned rhsWords, WordType *Quotient,
194 WordType *Remainder);
195
196 /// out-of-line slow case for inline constructor
197 void initSlowCase(uint64_t val, bool isSigned);
198
199 /// shared code between two array constructors
200 void initFromArray(ArrayRef<uint64_t> array);
201
202 /// out-of-line slow case for inline copy constructor
203 void initSlowCase(const APInt &that);
204
205 /// out-of-line slow case for shl
206 void shlSlowCase(unsigned ShiftAmt);
207
208 /// out-of-line slow case for lshr.
209 void lshrSlowCase(unsigned ShiftAmt);
210
211 /// out-of-line slow case for ashr.
212 void ashrSlowCase(unsigned ShiftAmt);
213
214 /// out-of-line slow case for operator=
215 void AssignSlowCase(const APInt &RHS);
216
217 /// out-of-line slow case for operator==
218 bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY;
219
220 /// out-of-line slow case for countLeadingZeros
221 unsigned countLeadingZerosSlowCase() const LLVM_READONLY;
222
223 /// out-of-line slow case for countLeadingOnes.
224 unsigned countLeadingOnesSlowCase() const LLVM_READONLY;
225
226 /// out-of-line slow case for countTrailingZeros.
227 unsigned countTrailingZerosSlowCase() const LLVM_READONLY;
228
229 /// out-of-line slow case for countTrailingOnes
230 unsigned countTrailingOnesSlowCase() const LLVM_READONLY;
231
232 /// out-of-line slow case for countPopulation
233 unsigned countPopulationSlowCase() const LLVM_READONLY;
234
235 /// out-of-line slow case for intersects.
236 bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY;
237
238 /// out-of-line slow case for isSubsetOf.
239 bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY;
240
241 /// out-of-line slow case for setBits.
242 void setBitsSlowCase(unsigned loBit, unsigned hiBit);
243
244 /// out-of-line slow case for flipAllBits.
245 void flipAllBitsSlowCase();
246
247 /// out-of-line slow case for operator&=.
248 void AndAssignSlowCase(const APInt& RHS);
249
250 /// out-of-line slow case for operator|=.
251 void OrAssignSlowCase(const APInt& RHS);
252
253 /// out-of-line slow case for operator^=.
254 void XorAssignSlowCase(const APInt& RHS);
255
256 /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
257 /// to, or greater than RHS.
258 int compare(const APInt &RHS) const LLVM_READONLY;
259
260 /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
261 /// to, or greater than RHS.
262 int compareSigned(const APInt &RHS) const LLVM_READONLY;
263
264public:
265 /// \name Constructors
266 /// @{
267
268 /// Create a new APInt of numBits width, initialized as val.
269 ///
270 /// If isSigned is true then val is treated as if it were a signed value
271 /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
272 /// will be done. Otherwise, no sign extension occurs (high order bits beyond
273 /// the range of val are zero filled).
274 ///
275 /// \param numBits the bit width of the constructed APInt
276 /// \param val the initial value of the APInt
277 /// \param isSigned how to treat signedness of val
278 APInt(unsigned numBits, uint64_t val, bool isSigned = false)
279 : BitWidth(numBits) {
280 assert(BitWidth && "bitwidth too small");
281 if (isSingleWord()) {
282 U.VAL = val;
283 clearUnusedBits();
284 } else {
285 initSlowCase(val, isSigned);
286 }
287 }
288
289 /// Construct an APInt of numBits width, initialized as bigVal[].
290 ///
291 /// Note that bigVal.size() can be smaller or larger than the corresponding
292 /// bit width but any extraneous bits will be dropped.
293 ///
294 /// \param numBits the bit width of the constructed APInt
295 /// \param bigVal a sequence of words to form the initial value of the APInt
296 APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
297
298 /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
299 /// deprecated because this constructor is prone to ambiguity with the
300 /// APInt(unsigned, uint64_t, bool) constructor.
301 ///
302 /// If this overload is ever deleted, care should be taken to prevent calls
303 /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
304 /// constructor.
305 APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
306
307 /// Construct an APInt from a string representation.
308 ///
309 /// This constructor interprets the string \p str in the given radix. The
310 /// interpretation stops when the first character that is not suitable for the
311 /// radix is encountered, or the end of the string. Acceptable radix values
312 /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
313 /// string to require more bits than numBits.
314 ///
315 /// \param numBits the bit width of the constructed APInt
316 /// \param str the string to be interpreted
317 /// \param radix the radix to use for the conversion
318 APInt(unsigned numBits, StringRef str, uint8_t radix);
319
320 /// Simply makes *this a copy of that.
321 /// Copy Constructor.
322 APInt(const APInt &that) : BitWidth(that.BitWidth) {
323 if (isSingleWord())
324 U.VAL = that.U.VAL;
325 else
326 initSlowCase(that);
327 }
328
329 /// Move Constructor.
330 APInt(APInt &&that) : BitWidth(that.BitWidth) {
331 memcpy(&U, &that.U, sizeof(U));
332 that.BitWidth = 0;
333 }
334
335 /// Destructor.
336 ~APInt() {
337 if (needsCleanup())
338 delete[] U.pVal;
339 }
340
341 /// Default constructor that creates an uninteresting APInt
342 /// representing a 1-bit zero value.
343 ///
344 /// This is useful for object deserialization (pair this with the static
345 /// method Read).
346 explicit APInt() : BitWidth(1) { U.VAL = 0; }
347
348 /// Returns whether this instance allocated memory.
349 bool needsCleanup() const { return !isSingleWord(); }
350
351 /// Used to insert APInt objects, or objects that contain APInt objects, into
352 /// FoldingSets.
353 void Profile(FoldingSetNodeID &id) const;
354
355 /// @}
356 /// \name Value Tests
357 /// @{
358
359 /// Determine sign of this APInt.
360 ///
361 /// This tests the high bit of this APInt to determine if it is set.
362 ///
363 /// \returns true if this APInt is negative, false otherwise
364 bool isNegative() const { return (*this)[BitWidth - 1]; }
365
366 /// Determine if this APInt Value is non-negative (>= 0)
367 ///
368 /// This tests the high bit of the APInt to determine if it is unset.
369 bool isNonNegative() const { return !isNegative(); }
370
371 /// Determine if sign bit of this APInt is set.
372 ///
373 /// This tests the high bit of this APInt to determine if it is set.
374 ///
375 /// \returns true if this APInt has its sign bit set, false otherwise.
376 bool isSignBitSet() const { return (*this)[BitWidth-1]; }
377
378 /// Determine if sign bit of this APInt is clear.
379 ///
380 /// This tests the high bit of this APInt to determine if it is clear.
381 ///
382 /// \returns true if this APInt has its sign bit clear, false otherwise.
383 bool isSignBitClear() const { return !isSignBitSet(); }
384
385 /// Determine if this APInt Value is positive.
386 ///
387 /// This tests if the value of this APInt is positive (> 0). Note
388 /// that 0 is not a positive value.
389 ///
390 /// \returns true if this APInt is positive.
391 bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); }
392
393 /// Determine if all bits are set
394 ///
395 /// This checks to see if the value has all bits of the APInt are set or not.
396 bool isAllOnesValue() const {
397 if (isSingleWord())
398 return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth);
399 return countTrailingOnesSlowCase() == BitWidth;
400 }
401
402 /// Determine if all bits are clear
403 ///
404 /// This checks to see if the value has all bits of the APInt are clear or
405 /// not.
406 bool isNullValue() const { return !*this; }
407
408 /// Determine if this is a value of 1.
409 ///
410 /// This checks to see if the value of this APInt is one.
411 bool isOneValue() const {
412 if (isSingleWord())
413 return U.VAL == 1;
414 return countLeadingZerosSlowCase() == BitWidth - 1;
415 }
416
417 /// Determine if this is the largest unsigned value.
418 ///
419 /// This checks to see if the value of this APInt is the maximum unsigned
420 /// value for the APInt's bit width.
421 bool isMaxValue() const { return isAllOnesValue(); }
422
423 /// Determine if this is the largest signed value.
424 ///
425 /// This checks to see if the value of this APInt is the maximum signed
426 /// value for the APInt's bit width.
427 bool isMaxSignedValue() const {
428 if (isSingleWord())
429 return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
430 return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
431 }
432
433 /// Determine if this is the smallest unsigned value.
434 ///
435 /// This checks to see if the value of this APInt is the minimum unsigned
436 /// value for the APInt's bit width.
437 bool isMinValue() const { return isNullValue(); }
438
439 /// Determine if this is the smallest signed value.
440 ///
441 /// This checks to see if the value of this APInt is the minimum signed
442 /// value for the APInt's bit width.
443 bool isMinSignedValue() const {
444 if (isSingleWord())
445 return U.VAL == (WordType(1) << (BitWidth - 1));
446 return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
447 }
448
449 /// Check if this APInt has an N-bits unsigned integer value.
450 bool isIntN(unsigned N) const {
451 assert(N && "N == 0 ???");
452 return getActiveBits() <= N;
453 }
454
455 /// Check if this APInt has an N-bits signed integer value.
456 bool isSignedIntN(unsigned N) const {
457 assert(N && "N == 0 ???");
458 return getMinSignedBits() <= N;
459 }
460
461 /// Check if this APInt's value is a power of two greater than zero.
462 ///
463 /// \returns true if the argument APInt value is a power of two > 0.
464 bool isPowerOf2() const {
465 if (isSingleWord())
466 return isPowerOf2_64(U.VAL);
467 return countPopulationSlowCase() == 1;
468 }
469
470 /// Check if the APInt's value is returned by getSignMask.
471 ///
472 /// \returns true if this is the value returned by getSignMask.
473 bool isSignMask() const { return isMinSignedValue(); }
474
475 /// Convert APInt to a boolean value.
476 ///
477 /// This converts the APInt to a boolean value as a test against zero.
478 bool getBoolValue() const { return !!*this; }
479
480 /// If this value is smaller than the specified limit, return it, otherwise
481 /// return the limit value. This causes the value to saturate to the limit.
482 uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const {
483 return ugt(Limit) ? Limit : getZExtValue();
484 }
485
486 /// Check if the APInt consists of a repeated bit pattern.
487 ///
488 /// e.g. 0x01010101 satisfies isSplat(8).
489 /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
490 /// width without remainder.
491 bool isSplat(unsigned SplatSizeInBits) const;
492
493 /// \returns true if this APInt value is a sequence of \param numBits ones
494 /// starting at the least significant bit with the remainder zero.
495 bool isMask(unsigned numBits) const {
496 assert(numBits != 0 && "numBits must be non-zero");
497 assert(numBits <= BitWidth && "numBits out of range");
498 if (isSingleWord())
499 return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits));
500 unsigned Ones = countTrailingOnesSlowCase();
501 return (numBits == Ones) &&
502 ((Ones + countLeadingZerosSlowCase()) == BitWidth);
503 }
504
505 /// \returns true if this APInt is a non-empty sequence of ones starting at
506 /// the least significant bit with the remainder zero.
507 /// Ex. isMask(0x0000FFFFU) == true.
508 bool isMask() const {
509 if (isSingleWord())
510 return isMask_64(U.VAL);
511 unsigned Ones = countTrailingOnesSlowCase();
512 return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
513 }
514
515 /// Return true if this APInt value contains a sequence of ones with
516 /// the remainder zero.
517 bool isShiftedMask() const {
518 if (isSingleWord())
519 return isShiftedMask_64(U.VAL);
520 unsigned Ones = countPopulationSlowCase();
521 unsigned LeadZ = countLeadingZerosSlowCase();
522 return (Ones + LeadZ + countTrailingZeros()) == BitWidth;
523 }
524
525 /// @}
526 /// \name Value Generators
527 /// @{
528
529 /// Gets maximum unsigned value of APInt for specific bit width.
530 static APInt getMaxValue(unsigned numBits) {
531 return getAllOnesValue(numBits);
532 }
533
534 /// Gets maximum signed value of APInt for a specific bit width.
535 static APInt getSignedMaxValue(unsigned numBits) {
536 APInt API = getAllOnesValue(numBits);
537 API.clearBit(numBits - 1);
538 return API;
539 }
540
541 /// Gets minimum unsigned value of APInt for a specific bit width.
542 static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
543
544 /// Gets minimum signed value of APInt for a specific bit width.
545 static APInt getSignedMinValue(unsigned numBits) {
546 APInt API(numBits, 0);
547 API.setBit(numBits - 1);
548 return API;
549 }
550
551 /// Get the SignMask for a specific bit width.
552 ///
553 /// This is just a wrapper function of getSignedMinValue(), and it helps code
554 /// readability when we want to get a SignMask.
555 static APInt getSignMask(unsigned BitWidth) {
556 return getSignedMinValue(BitWidth);
557 }
558
559 /// Get the all-ones value.
560 ///
561 /// \returns the all-ones value for an APInt of the specified bit-width.
562 static APInt getAllOnesValue(unsigned numBits) {
563 return APInt(numBits, WORDTYPE_MAX, true);
564 }
565
566 /// Get the '0' value.
567 ///
568 /// \returns the '0' value for an APInt of the specified bit-width.
569 static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
570
571 /// Compute an APInt containing numBits highbits from this APInt.
572 ///
573 /// Get an APInt with the same BitWidth as this APInt, just zero mask
574 /// the low bits and right shift to the least significant bit.
575 ///
576 /// \returns the high "numBits" bits of this APInt.
577 APInt getHiBits(unsigned numBits) const;
578
579 /// Compute an APInt containing numBits lowbits from this APInt.
580 ///
581 /// Get an APInt with the same BitWidth as this APInt, just zero mask
582 /// the high bits.
583 ///
584 /// \returns the low "numBits" bits of this APInt.
585 APInt getLoBits(unsigned numBits) const;
586
587 /// Return an APInt with exactly one bit set in the result.
588 static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
589 APInt Res(numBits, 0);
590 Res.setBit(BitNo);
591 return Res;
592 }
593
594 /// Get a value with a block of bits set.
595 ///
596 /// Constructs an APInt value that has a contiguous range of bits set. The
597 /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
598 /// bits will be zero. For example, with parameters(32, 0, 16) you would get
599 /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
600 /// example, with parameters (32, 28, 4), you would get 0xF000000F.
601 ///
602 /// \param numBits the intended bit width of the result
603 /// \param loBit the index of the lowest bit set.
604 /// \param hiBit the index of the highest bit set.
605 ///
606 /// \returns An APInt value with the requested bits set.
607 static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
608 APInt Res(numBits, 0);
609 Res.setBits(loBit, hiBit);
610 return Res;
611 }
612
613 /// Get a value with upper bits starting at loBit set.
614 ///
615 /// Constructs an APInt value that has a contiguous range of bits set. The
616 /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
617 /// bits will be zero. For example, with parameters(32, 12) you would get
618 /// 0xFFFFF000.
619 ///
620 /// \param numBits the intended bit width of the result
621 /// \param loBit the index of the lowest bit to set.
622 ///
623 /// \returns An APInt value with the requested bits set.
624 static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
625 APInt Res(numBits, 0);
626 Res.setBitsFrom(loBit);
627 return Res;
628 }
629
630 /// Get a value with high bits set
631 ///
632 /// Constructs an APInt value that has the top hiBitsSet bits set.
633 ///
634 /// \param numBits the bitwidth of the result
635 /// \param hiBitsSet the number of high-order bits set in the result.
636 static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
637 APInt Res(numBits, 0);
638 Res.setHighBits(hiBitsSet);
639 return Res;
640 }
641
642 /// Get a value with low bits set
643 ///
644 /// Constructs an APInt value that has the bottom loBitsSet bits set.
645 ///
646 /// \param numBits the bitwidth of the result
647 /// \param loBitsSet the number of low-order bits set in the result.
648 static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
649 APInt Res(numBits, 0);
650 Res.setLowBits(loBitsSet);
651 return Res;
652 }
653
654 /// Return a value containing V broadcasted over NewLen bits.
655 static APInt getSplat(unsigned NewLen, const APInt &V);
656
657 /// Determine if two APInts have the same value, after zero-extending
658 /// one of them (if needed!) to ensure that the bit-widths match.
659 static bool isSameValue(const APInt &I1, const APInt &I2) {
660 if (I1.getBitWidth() == I2.getBitWidth())
661 return I1 == I2;
662
663 if (I1.getBitWidth() > I2.getBitWidth())
664 return I1 == I2.zext(I1.getBitWidth());
665
666 return I1.zext(I2.getBitWidth()) == I2;
667 }
668
669 /// Overload to compute a hash_code for an APInt value.
670 friend hash_code hash_value(const APInt &Arg);
671
672 /// This function returns a pointer to the internal storage of the APInt.
673 /// This is useful for writing out the APInt in binary form without any
674 /// conversions.
675 const uint64_t *getRawData() const {
676 if (isSingleWord())
677 return &U.VAL;
678 return &U.pVal[0];
679 }
680
681 /// @}
682 /// \name Unary Operators
683 /// @{
684
685 /// Postfix increment operator.
686 ///
687 /// Increments *this by 1.
688 ///
689 /// \returns a new APInt value representing the original value of *this.
690 const APInt operator++(int) {
691 APInt API(*this);
692 ++(*this);
693 return API;
694 }
695
696 /// Prefix increment operator.
697 ///
698 /// \returns *this incremented by one
699 APInt &operator++();
700
701 /// Postfix decrement operator.
702 ///
703 /// Decrements *this by 1.
704 ///
705 /// \returns a new APInt value representing the original value of *this.
706 const APInt operator--(int) {
707 APInt API(*this);
708 --(*this);
709 return API;
710 }
711
712 /// Prefix decrement operator.
713 ///
714 /// \returns *this decremented by one.
715 APInt &operator--();
716
717 /// Logical negation operator.
718 ///
719 /// Performs logical negation operation on this APInt.
720 ///
721 /// \returns true if *this is zero, false otherwise.
722 bool operator!() const {
723 if (isSingleWord())
724 return U.VAL == 0;
725 return countLeadingZerosSlowCase() == BitWidth;
726 }
727
728 /// @}
729 /// \name Assignment Operators
730 /// @{
731
732 /// Copy assignment operator.
733 ///
734 /// \returns *this after assignment of RHS.
735 APInt &operator=(const APInt &RHS) {
736 // If the bitwidths are the same, we can avoid mucking with memory
737 if (isSingleWord() && RHS.isSingleWord()) {
738 U.VAL = RHS.U.VAL;
739 BitWidth = RHS.BitWidth;
740 return clearUnusedBits();
741 }
742
743 AssignSlowCase(RHS);
744 return *this;
745 }
746
747 /// Move assignment operator.
748 APInt &operator=(APInt &&that) {
749#ifdef _MSC_VER
750 // The MSVC std::shuffle implementation still does self-assignment.
751 if (this == &that)
752 return *this;
753#endif
754 assert(this != &that && "Self-move not supported");
755 if (!isSingleWord())
756 delete[] U.pVal;
757
758 // Use memcpy so that type based alias analysis sees both VAL and pVal
759 // as modified.
760 memcpy(&U, &that.U, sizeof(U));
761
762 BitWidth = that.BitWidth;
763 that.BitWidth = 0;
764
765 return *this;
766 }
767
768 /// Assignment operator.
769 ///
770 /// The RHS value is assigned to *this. If the significant bits in RHS exceed
771 /// the bit width, the excess bits are truncated. If the bit width is larger
772 /// than 64, the value is zero filled in the unspecified high order bits.
773 ///
774 /// \returns *this after assignment of RHS value.
775 APInt &operator=(uint64_t RHS) {
776 if (isSingleWord()) {
777 U.VAL = RHS;
778 clearUnusedBits();
779 } else {
780 U.pVal[0] = RHS;
781 memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
782 }
783 return *this;
784 }
785
786 /// Bitwise AND assignment operator.
787 ///
788 /// Performs a bitwise AND operation on this APInt and RHS. The result is
789 /// assigned to *this.
790 ///
791 /// \returns *this after ANDing with RHS.
792 APInt &operator&=(const APInt &RHS) {
793 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
794 if (isSingleWord())
795 U.VAL &= RHS.U.VAL;
796 else
797 AndAssignSlowCase(RHS);
798 return *this;
799 }
800
801 /// Bitwise AND assignment operator.
802 ///
803 /// Performs a bitwise AND operation on this APInt and RHS. RHS is
804 /// logically zero-extended or truncated to match the bit-width of
805 /// the LHS.
806 APInt &operator&=(uint64_t RHS) {
807 if (isSingleWord()) {
808 U.VAL &= RHS;
809 return *this;
810 }
811 U.pVal[0] &= RHS;
812 memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
813 return *this;
814 }
815
816 /// Bitwise OR assignment operator.
817 ///
818 /// Performs a bitwise OR operation on this APInt and RHS. The result is
819 /// assigned *this;
820 ///
821 /// \returns *this after ORing with RHS.
822 APInt &operator|=(const APInt &RHS) {
823 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
824 if (isSingleWord())
825 U.VAL |= RHS.U.VAL;
826 else
827 OrAssignSlowCase(RHS);
828 return *this;
829 }
830
831 /// Bitwise OR assignment operator.
832 ///
833 /// Performs a bitwise OR operation on this APInt and RHS. RHS is
834 /// logically zero-extended or truncated to match the bit-width of
835 /// the LHS.
836 APInt &operator|=(uint64_t RHS) {
837 if (isSingleWord()) {
838 U.VAL |= RHS;
839 clearUnusedBits();
840 } else {
841 U.pVal[0] |= RHS;
842 }
843 return *this;
844 }
845
846 /// Bitwise XOR assignment operator.
847 ///
848 /// Performs a bitwise XOR operation on this APInt and RHS. The result is
849 /// assigned to *this.
850 ///
851 /// \returns *this after XORing with RHS.
852 APInt &operator^=(const APInt &RHS) {
853 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
854 if (isSingleWord())
855 U.VAL ^= RHS.U.VAL;
856 else
857 XorAssignSlowCase(RHS);
858 return *this;
859 }
860
861 /// Bitwise XOR assignment operator.
862 ///
863 /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
864 /// logically zero-extended or truncated to match the bit-width of
865 /// the LHS.
866 APInt &operator^=(uint64_t RHS) {
867 if (isSingleWord()) {
868 U.VAL ^= RHS;
869 clearUnusedBits();
870 } else {
871 U.pVal[0] ^= RHS;
872 }
873 return *this;
874 }
875
876 /// Multiplication assignment operator.
877 ///
878 /// Multiplies this APInt by RHS and assigns the result to *this.
879 ///
880 /// \returns *this
881 APInt &operator*=(const APInt &RHS);
882 APInt &operator*=(uint64_t RHS);
883
884 /// Addition assignment operator.
885 ///
886 /// Adds RHS to *this and assigns the result to *this.
887 ///
888 /// \returns *this
889 APInt &operator+=(const APInt &RHS);
890 APInt &operator+=(uint64_t RHS);
891
892 /// Subtraction assignment operator.
893 ///
894 /// Subtracts RHS from *this and assigns the result to *this.
895 ///
896 /// \returns *this
897 APInt &operator-=(const APInt &RHS);
898 APInt &operator-=(uint64_t RHS);
899
900 /// Left-shift assignment function.
901 ///
902 /// Shifts *this left by shiftAmt and assigns the result to *this.
903 ///
904 /// \returns *this after shifting left by ShiftAmt
905 APInt &operator<<=(unsigned ShiftAmt) {
906 assert(ShiftAmt <= BitWidth && "Invalid shift amount");
907 if (isSingleWord()) {
908 if (ShiftAmt == BitWidth)
909 U.VAL = 0;
910 else
911 U.VAL <<= ShiftAmt;
912 return clearUnusedBits();
913 }
914 shlSlowCase(ShiftAmt);
915 return *this;
916 }
917
918 /// Left-shift assignment function.
919 ///
920 /// Shifts *this left by shiftAmt and assigns the result to *this.
921 ///
922 /// \returns *this after shifting left by ShiftAmt
923 APInt &operator<<=(const APInt &ShiftAmt);
924
925 /// @}
926 /// \name Binary Operators
927 /// @{
928
929 /// Multiplication operator.
930 ///
931 /// Multiplies this APInt by RHS and returns the result.
932 APInt operator*(const APInt &RHS) const;
933
934 /// Left logical shift operator.
935 ///
936 /// Shifts this APInt left by \p Bits and returns the result.
937 APInt operator<<(unsigned Bits) const { return shl(Bits); }
938
939 /// Left logical shift operator.
940 ///
941 /// Shifts this APInt left by \p Bits and returns the result.
942 APInt operator<<(const APInt &Bits) const { return shl(Bits); }
943
944 /// Arithmetic right-shift function.
945 ///
946 /// Arithmetic right-shift this APInt by shiftAmt.
947 APInt ashr(unsigned ShiftAmt) const {
948 APInt R(*this);
949 R.ashrInPlace(ShiftAmt);
950 return R;
951 }
952
953 /// Arithmetic right-shift this APInt by ShiftAmt in place.
954 void ashrInPlace(unsigned ShiftAmt) {
955 assert(ShiftAmt <= BitWidth && "Invalid shift amount");
956 if (isSingleWord()) {
957 int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
958 if (ShiftAmt == BitWidth)
959 U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
960 else
961 U.VAL = SExtVAL >> ShiftAmt;
962 clearUnusedBits();
963 return;
964 }
965 ashrSlowCase(ShiftAmt);
966 }
967
968 /// Logical right-shift function.
969 ///
970 /// Logical right-shift this APInt by shiftAmt.
971 APInt lshr(unsigned shiftAmt) const {
972 APInt R(*this);
973 R.lshrInPlace(shiftAmt);
974 return R;
975 }
976
977 /// Logical right-shift this APInt by ShiftAmt in place.
978 void lshrInPlace(unsigned ShiftAmt) {
979 assert(ShiftAmt <= BitWidth && "Invalid shift amount");
980 if (isSingleWord()) {
981 if (ShiftAmt == BitWidth)
982 U.VAL = 0;
983 else
984 U.VAL >>= ShiftAmt;
985 return;
986 }
987 lshrSlowCase(ShiftAmt);
988 }
989
990 /// Left-shift function.
991 ///
992 /// Left-shift this APInt by shiftAmt.
993 APInt shl(unsigned shiftAmt) const {
994 APInt R(*this);
995 R <<= shiftAmt;
996 return R;
997 }
998
999 /// Rotate left by rotateAmt.
1000 APInt rotl(unsigned rotateAmt) const;
1001
1002 /// Rotate right by rotateAmt.
1003 APInt rotr(unsigned rotateAmt) const;
1004
1005 /// Arithmetic right-shift function.
1006 ///
1007 /// Arithmetic right-shift this APInt by shiftAmt.
1008 APInt ashr(const APInt &ShiftAmt) const {
1009 APInt R(*this);
1010 R.ashrInPlace(ShiftAmt);
1011 return R;
1012 }
1013
1014 /// Arithmetic right-shift this APInt by shiftAmt in place.
1015 void ashrInPlace(const APInt &shiftAmt);
1016
1017 /// Logical right-shift function.
1018 ///
1019 /// Logical right-shift this APInt by shiftAmt.
1020 APInt lshr(const APInt &ShiftAmt) const {
1021 APInt R(*this);
1022 R.lshrInPlace(ShiftAmt);
1023 return R;
1024 }
1025
1026 /// Logical right-shift this APInt by ShiftAmt in place.
1027 void lshrInPlace(const APInt &ShiftAmt);
1028
1029 /// Left-shift function.
1030 ///
1031 /// Left-shift this APInt by shiftAmt.
1032 APInt shl(const APInt &ShiftAmt) const {
1033 APInt R(*this);
1034 R <<= ShiftAmt;
1035 return R;
1036 }
1037
1038 /// Rotate left by rotateAmt.
1039 APInt rotl(const APInt &rotateAmt) const;
1040
1041 /// Rotate right by rotateAmt.
1042 APInt rotr(const APInt &rotateAmt) const;
1043
1044 /// Unsigned division operation.
1045 ///
1046 /// Perform an unsigned divide operation on this APInt by RHS. Both this and
1047 /// RHS are treated as unsigned quantities for purposes of this division.
1048 ///
1049 /// \returns a new APInt value containing the division result, rounded towards
1050 /// zero.
1051 APInt udiv(const APInt &RHS) const;
1052 APInt udiv(uint64_t RHS) const;
1053
1054 /// Signed division function for APInt.
1055 ///
1056 /// Signed divide this APInt by APInt RHS.
1057 ///
1058 /// The result is rounded towards zero.
1059 APInt sdiv(const APInt &RHS) const;
1060 APInt sdiv(int64_t RHS) const;
1061
1062 /// Unsigned remainder operation.
1063 ///
1064 /// Perform an unsigned remainder operation on this APInt with RHS being the
1065 /// divisor. Both this and RHS are treated as unsigned quantities for purposes
1066 /// of this operation. Note that this is a true remainder operation and not a
1067 /// modulo operation because the sign follows the sign of the dividend which
1068 /// is *this.
1069 ///
1070 /// \returns a new APInt value containing the remainder result
1071 APInt urem(const APInt &RHS) const;
1072 uint64_t urem(uint64_t RHS) const;
1073
1074 /// Function for signed remainder operation.
1075 ///
1076 /// Signed remainder operation on APInt.
1077 APInt srem(const APInt &RHS) const;
1078 int64_t srem(int64_t RHS) const;
1079
1080 /// Dual division/remainder interface.
1081 ///
1082 /// Sometimes it is convenient to divide two APInt values and obtain both the
1083 /// quotient and remainder. This function does both operations in the same
1084 /// computation making it a little more efficient. The pair of input arguments
1085 /// may overlap with the pair of output arguments. It is safe to call
1086 /// udivrem(X, Y, X, Y), for example.
1087 static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1088 APInt &Remainder);
1089 static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1090 uint64_t &Remainder);
1091
1092 static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1093 APInt &Remainder);
1094 static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
1095 int64_t &Remainder);
1096
1097 // Operations that return overflow indicators.
1098 APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
1099 APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
1100 APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
1101 APInt usub_ov(const APInt &RHS, bool &Overflow) const;
1102 APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
1103 APInt smul_ov(const APInt &RHS, bool &Overflow) const;
1104 APInt umul_ov(const APInt &RHS, bool &Overflow) const;
1105 APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
1106 APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
1107
1108 /// Array-indexing support.
1109 ///
1110 /// \returns the bit value at bitPosition
1111 bool operator[](unsigned bitPosition) const {
1112 assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
1113 return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
1114 }
1115
1116 /// @}
1117 /// \name Comparison Operators
1118 /// @{
1119
1120 /// Equality operator.
1121 ///
1122 /// Compares this APInt with RHS for the validity of the equality
1123 /// relationship.
1124 bool operator==(const APInt &RHS) const {
1125 assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
1126 if (isSingleWord())
1127 return U.VAL == RHS.U.VAL;
1128 return EqualSlowCase(RHS);
1129 }
1130
1131 /// Equality operator.
1132 ///
1133 /// Compares this APInt with a uint64_t for the validity of the equality
1134 /// relationship.
1135 ///
1136 /// \returns true if *this == Val
1137 bool operator==(uint64_t Val) const {
1138 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
1139 }
1140
1141 /// Equality comparison.
1142 ///
1143 /// Compares this APInt with RHS for the validity of the equality
1144 /// relationship.
1145 ///
1146 /// \returns true if *this == Val
1147 bool eq(const APInt &RHS) const { return (*this) == RHS; }
1148
1149 /// Inequality operator.
1150 ///
1151 /// Compares this APInt with RHS for the validity of the inequality
1152 /// relationship.
1153 ///
1154 /// \returns true if *this != Val
1155 bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
1156
1157 /// Inequality operator.
1158 ///
1159 /// Compares this APInt with a uint64_t for the validity of the inequality
1160 /// relationship.
1161 ///
1162 /// \returns true if *this != Val
1163 bool operator!=(uint64_t Val) const { return !((*this) == Val); }
1164
1165 /// Inequality comparison
1166 ///
1167 /// Compares this APInt with RHS for the validity of the inequality
1168 /// relationship.
1169 ///
1170 /// \returns true if *this != Val
1171 bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1172
1173 /// Unsigned less than comparison
1174 ///
1175 /// Regards both *this and RHS as unsigned quantities and compares them for
1176 /// the validity of the less-than relationship.
1177 ///
1178 /// \returns true if *this < RHS when both are considered unsigned.
1179 bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
1180
1181 /// Unsigned less than comparison
1182 ///
1183 /// Regards both *this as an unsigned quantity and compares it with RHS for
1184 /// the validity of the less-than relationship.
1185 ///
1186 /// \returns true if *this < RHS when considered unsigned.
1187 bool ult(uint64_t RHS) const {
1188 // Only need to check active bits if not a single word.
1189 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
1190 }
1191
1192 /// Signed less than comparison
1193 ///
1194 /// Regards both *this and RHS as signed quantities and compares them for
1195 /// validity of the less-than relationship.
1196 ///
1197 /// \returns true if *this < RHS when both are considered signed.
1198 bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
1199
1200 /// Signed less than comparison
1201 ///
1202 /// Regards both *this as a signed quantity and compares it with RHS for
1203 /// the validity of the less-than relationship.
1204 ///
1205 /// \returns true if *this < RHS when considered signed.
1206 bool slt(int64_t RHS) const {
1207 return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative()
1208 : getSExtValue() < RHS;
1209 }
1210
1211 /// Unsigned less or equal comparison
1212 ///
1213 /// Regards both *this and RHS as unsigned quantities and compares them for
1214 /// validity of the less-or-equal relationship.
1215 ///
1216 /// \returns true if *this <= RHS when both are considered unsigned.
1217 bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
1218
1219 /// Unsigned less or equal comparison
1220 ///
1221 /// Regards both *this as an unsigned quantity and compares it with RHS for
1222 /// the validity of the less-or-equal relationship.
1223 ///
1224 /// \returns true if *this <= RHS when considered unsigned.
1225 bool ule(uint64_t RHS) const { return !ugt(RHS); }
1226
1227 /// Signed less or equal comparison
1228 ///
1229 /// Regards both *this and RHS as signed quantities and compares them for
1230 /// validity of the less-or-equal relationship.
1231 ///
1232 /// \returns true if *this <= RHS when both are considered signed.
1233 bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
1234
1235 /// Signed less or equal comparison
1236 ///
1237 /// Regards both *this as a signed quantity and compares it with RHS for the
1238 /// validity of the less-or-equal relationship.
1239 ///
1240 /// \returns true if *this <= RHS when considered signed.
1241 bool sle(uint64_t RHS) const { return !sgt(RHS); }
1242
1243 /// Unsigned greather than comparison
1244 ///
1245 /// Regards both *this and RHS as unsigned quantities and compares them for
1246 /// the validity of the greater-than relationship.
1247 ///
1248 /// \returns true if *this > RHS when both are considered unsigned.
1249 bool ugt(const APInt &RHS) const { return !ule(RHS); }
1250
1251 /// Unsigned greater than comparison
1252 ///
1253 /// Regards both *this as an unsigned quantity and compares it with RHS for
1254 /// the validity of the greater-than relationship.
1255 ///
1256 /// \returns true if *this > RHS when considered unsigned.
1257 bool ugt(uint64_t RHS) const {
1258 // Only need to check active bits if not a single word.
1259 return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
1260 }
1261
1262 /// Signed greather than comparison
1263 ///
1264 /// Regards both *this and RHS as signed quantities and compares them for the
1265 /// validity of the greater-than relationship.
1266 ///
1267 /// \returns true if *this > RHS when both are considered signed.
1268 bool sgt(const APInt &RHS) const { return !sle(RHS); }
1269
1270 /// Signed greater than comparison
1271 ///
1272 /// Regards both *this as a signed quantity and compares it with RHS for
1273 /// the validity of the greater-than relationship.
1274 ///
1275 /// \returns true if *this > RHS when considered signed.
1276 bool sgt(int64_t RHS) const {
1277 return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative()
1278 : getSExtValue() > RHS;
1279 }
1280
1281 /// Unsigned greater or equal comparison
1282 ///
1283 /// Regards both *this and RHS as unsigned quantities and compares them for
1284 /// validity of the greater-or-equal relationship.
1285 ///
1286 /// \returns true if *this >= RHS when both are considered unsigned.
1287 bool uge(const APInt &RHS) const { return !ult(RHS); }
1288
1289 /// Unsigned greater or equal comparison
1290 ///
1291 /// Regards both *this as an unsigned quantity and compares it with RHS for
1292 /// the validity of the greater-or-equal relationship.
1293 ///
1294 /// \returns true if *this >= RHS when considered unsigned.
1295 bool uge(uint64_t RHS) const { return !ult(RHS); }
1296
1297 /// Signed greater or equal comparison
1298 ///
1299 /// Regards both *this and RHS as signed quantities and compares them for
1300 /// validity of the greater-or-equal relationship.
1301 ///
1302 /// \returns true if *this >= RHS when both are considered signed.
1303 bool sge(const APInt &RHS) const { return !slt(RHS); }
1304
1305 /// Signed greater or equal comparison
1306 ///
1307 /// Regards both *this as a signed quantity and compares it with RHS for
1308 /// the validity of the greater-or-equal relationship.
1309 ///
1310 /// \returns true if *this >= RHS when considered signed.
1311 bool sge(int64_t RHS) const { return !slt(RHS); }
1312
1313 /// This operation tests if there are any pairs of corresponding bits
1314 /// between this APInt and RHS that are both set.
1315 bool intersects(const APInt &RHS) const {
1316 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1317 if (isSingleWord())
1318 return (U.VAL & RHS.U.VAL) != 0;
1319 return intersectsSlowCase(RHS);
1320 }
1321
1322 /// This operation checks that all bits set in this APInt are also set in RHS.
1323 bool isSubsetOf(const APInt &RHS) const {
1324 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1325 if (isSingleWord())
1326 return (U.VAL & ~RHS.U.VAL) == 0;
1327 return isSubsetOfSlowCase(RHS);
1328 }
1329
1330 /// @}
1331 /// \name Resizing Operators
1332 /// @{
1333
1334 /// Truncate to new width.
1335 ///
1336 /// Truncate the APInt to a specified width. It is an error to specify a width
1337 /// that is greater than or equal to the current width.
1338 APInt trunc(unsigned width) const;
1339
1340 /// Sign extend to a new width.
1341 ///
1342 /// This operation sign extends the APInt to a new width. If the high order
1343 /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1344 /// It is an error to specify a width that is less than or equal to the
1345 /// current width.
1346 APInt sext(unsigned width) const;
1347
1348 /// Zero extend to a new width.
1349 ///
1350 /// This operation zero extends the APInt to a new width. The high order bits
1351 /// are filled with 0 bits. It is an error to specify a width that is less
1352 /// than or equal to the current width.
1353 APInt zext(unsigned width) const;
1354
1355 /// Sign extend or truncate to width
1356 ///
1357 /// Make this APInt have the bit width given by \p width. The value is sign
1358 /// extended, truncated, or left alone to make it that width.
1359 APInt sextOrTrunc(unsigned width) const;
1360
1361 /// Zero extend or truncate to width
1362 ///
1363 /// Make this APInt have the bit width given by \p width. The value is zero
1364 /// extended, truncated, or left alone to make it that width.
1365 APInt zextOrTrunc(unsigned width) const;
1366
1367 /// Sign extend or truncate to width
1368 ///
1369 /// Make this APInt have the bit width given by \p width. The value is sign
1370 /// extended, or left alone to make it that width.
1371 APInt sextOrSelf(unsigned width) const;
1372
1373 /// Zero extend or truncate to width
1374 ///
1375 /// Make this APInt have the bit width given by \p width. The value is zero
1376 /// extended, or left alone to make it that width.
1377 APInt zextOrSelf(unsigned width) const;
1378
1379 /// @}
1380 /// \name Bit Manipulation Operators
1381 /// @{
1382
1383 /// Set every bit to 1.
1384 void setAllBits() {
1385 if (isSingleWord())
1386 U.VAL = WORDTYPE_MAX;
1387 else
1388 // Set all the bits in all the words.
1389 memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
1390 // Clear the unused ones
1391 clearUnusedBits();
1392 }
1393
1394 /// Set a given bit to 1.
1395 ///
1396 /// Set the given bit to 1 whose position is given as "bitPosition".
1397 void setBit(unsigned BitPosition) {
1398 assert(BitPosition <= BitWidth && "BitPosition out of range");
1399 WordType Mask = maskBit(BitPosition);
1400 if (isSingleWord())
1401 U.VAL |= Mask;
1402 else
1403 U.pVal[whichWord(BitPosition)] |= Mask;
1404 }
1405
1406 /// Set the sign bit to 1.
1407 void setSignBit() {
1408 setBit(BitWidth - 1);
1409 }
1410
1411 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1412 void setBits(unsigned loBit, unsigned hiBit) {
1413 assert(hiBit <= BitWidth && "hiBit out of range");
1414 assert(loBit <= BitWidth && "loBit out of range");
1415 assert(loBit <= hiBit && "loBit greater than hiBit");
1416 if (loBit == hiBit)
1417 return;
1418 if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
1419 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
1420 mask <<= loBit;
1421 if (isSingleWord())
1422 U.VAL |= mask;
1423 else
1424 U.pVal[0] |= mask;
1425 } else {
1426 setBitsSlowCase(loBit, hiBit);
1427 }
1428 }
1429
1430 /// Set the top bits starting from loBit.
1431 void setBitsFrom(unsigned loBit) {
1432 return setBits(loBit, BitWidth);
1433 }
1434
1435 /// Set the bottom loBits bits.
1436 void setLowBits(unsigned loBits) {
1437 return setBits(0, loBits);
1438 }
1439
1440 /// Set the top hiBits bits.
1441 void setHighBits(unsigned hiBits) {
1442 return setBits(BitWidth - hiBits, BitWidth);
1443 }
1444
1445 /// Set every bit to 0.
1446 void clearAllBits() {
1447 if (isSingleWord())
1448 U.VAL = 0;
1449 else
1450 memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
1451 }
1452
1453 /// Set a given bit to 0.
1454 ///
1455 /// Set the given bit to 0 whose position is given as "bitPosition".
1456 void clearBit(unsigned BitPosition) {
1457 assert(BitPosition <= BitWidth && "BitPosition out of range");
1458 WordType Mask = ~maskBit(BitPosition);
1459 if (isSingleWord())
1460 U.VAL &= Mask;
1461 else
1462 U.pVal[whichWord(BitPosition)] &= Mask;
1463 }
1464
1465 /// Set the sign bit to 0.
1466 void clearSignBit() {
1467 clearBit(BitWidth - 1);
1468 }
1469
1470 /// Toggle every bit to its opposite value.
1471 void flipAllBits() {
1472 if (isSingleWord()) {
1473 U.VAL ^= WORDTYPE_MAX;
1474 clearUnusedBits();
1475 } else {
1476 flipAllBitsSlowCase();
1477 }
1478 }
1479
1480 /// Toggles a given bit to its opposite value.
1481 ///
1482 /// Toggle a given bit to its opposite value whose position is given
1483 /// as "bitPosition".
1484 void flipBit(unsigned bitPosition);
1485
1486 /// Negate this APInt in place.
1487 void negate() {
1488 flipAllBits();
1489 ++(*this);
1490 }
1491
1492 /// Insert the bits from a smaller APInt starting at bitPosition.
1493 void insertBits(const APInt &SubBits, unsigned bitPosition);
1494
1495 /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
1496 APInt extractBits(unsigned numBits, unsigned bitPosition) const;
1497
1498 /// @}
1499 /// \name Value Characterization Functions
1500 /// @{
1501
1502 /// Return the number of bits in the APInt.
1503 unsigned getBitWidth() const { return BitWidth; }
1504
1505 /// Get the number of words.
1506 ///
1507 /// Here one word's bitwidth equals to that of uint64_t.
1508 ///
1509 /// \returns the number of words to hold the integer value of this APInt.
1510 unsigned getNumWords() const { return getNumWords(BitWidth); }
1511
1512 /// Get the number of words.
1513 ///
1514 /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1515 ///
1516 /// \returns the number of words to hold the integer value with a given bit
1517 /// width.
1518 static unsigned getNumWords(unsigned BitWidth) {
1519 return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1520 }
1521
1522 /// Compute the number of active bits in the value
1523 ///
1524 /// This function returns the number of active bits which is defined as the
1525 /// bit width minus the number of leading zeros. This is used in several
1526 /// computations to see how "wide" the value is.
1527 unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
1528
1529 /// Compute the number of active words in the value of this APInt.
1530 ///
1531 /// This is used in conjunction with getActiveData to extract the raw value of
1532 /// the APInt.
1533 unsigned getActiveWords() const {
1534 unsigned numActiveBits = getActiveBits();
1535 return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1536 }
1537
1538 /// Get the minimum bit size for this signed APInt
1539 ///
1540 /// Computes the minimum bit width for this APInt while considering it to be a
1541 /// signed (and probably negative) value. If the value is not negative, this
1542 /// function returns the same value as getActiveBits()+1. Otherwise, it
1543 /// returns the smallest bit width that will retain the negative value. For
1544 /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1545 /// for -1, this function will always return 1.
1546 unsigned getMinSignedBits() const {
1547 if (isNegative())
1548 return BitWidth - countLeadingOnes() + 1;
1549 return getActiveBits() + 1;
1550 }
1551
1552 /// Get zero extended value
1553 ///
1554 /// This method attempts to return the value of this APInt as a zero extended
1555 /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1556 /// uint64_t. Otherwise an assertion will result.
1557 uint64_t getZExtValue() const {
1558 if (isSingleWord())
1559 return U.VAL;
1560 assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1561 return U.pVal[0];
1562 }
1563
1564 /// Get sign extended value
1565 ///
1566 /// This method attempts to return the value of this APInt as a sign extended
1567 /// int64_t. The bit width must be <= 64 or the value must fit within an
1568 /// int64_t. Otherwise an assertion will result.
1569 int64_t getSExtValue() const {
1570 if (isSingleWord())
1571 return SignExtend64(U.VAL, BitWidth);
1572 assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
1573 return int64_t(U.pVal[0]);
1574 }
1575
1576 /// Get bits required for string value.
1577 ///
1578 /// This method determines how many bits are required to hold the APInt
1579 /// equivalent of the string given by \p str.
1580 static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1581
1582 /// The APInt version of the countLeadingZeros functions in
1583 /// MathExtras.h.
1584 ///
1585 /// It counts the number of zeros from the most significant bit to the first
1586 /// one bit.
1587 ///
1588 /// \returns BitWidth if the value is zero, otherwise returns the number of
1589 /// zeros from the most significant bit to the first one bits.
1590 unsigned countLeadingZeros() const {
1591 if (isSingleWord()) {
1592 unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1593 return llvm::countLeadingZeros(U.VAL) - unusedBits;
1594 }
1595 return countLeadingZerosSlowCase();
1596 }
1597
1598 /// Count the number of leading one bits.
1599 ///
1600 /// This function is an APInt version of the countLeadingOnes
1601 /// functions in MathExtras.h. It counts the number of ones from the most
1602 /// significant bit to the first zero bit.
1603 ///
1604 /// \returns 0 if the high order bit is not set, otherwise returns the number
1605 /// of 1 bits from the most significant to the least
1606 unsigned countLeadingOnes() const {
1607 if (isSingleWord())
1608 return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
1609 return countLeadingOnesSlowCase();
1610 }
1611
1612 /// Computes the number of leading bits of this APInt that are equal to its
1613 /// sign bit.
1614 unsigned getNumSignBits() const {
1615 return isNegative() ? countLeadingOnes() : countLeadingZeros();
1616 }
1617
1618 /// Count the number of trailing zero bits.
1619 ///
1620 /// This function is an APInt version of the countTrailingZeros
1621 /// functions in MathExtras.h. It counts the number of zeros from the least
1622 /// significant bit to the first set bit.
1623 ///
1624 /// \returns BitWidth if the value is zero, otherwise returns the number of
1625 /// zeros from the least significant bit to the first one bit.
1626 unsigned countTrailingZeros() const {
1627 if (isSingleWord())
1628 return std::min(unsigned(llvm::countTrailingZeros(U.VAL)), BitWidth);
1629 return countTrailingZerosSlowCase();
1630 }
1631
1632 /// Count the number of trailing one bits.
1633 ///
1634 /// This function is an APInt version of the countTrailingOnes
1635 /// functions in MathExtras.h. It counts the number of ones from the least
1636 /// significant bit to the first zero bit.
1637 ///
1638 /// \returns BitWidth if the value is all ones, otherwise returns the number
1639 /// of ones from the least significant bit to the first zero bit.
1640 unsigned countTrailingOnes() const {
1641 if (isSingleWord())
1642 return llvm::countTrailingOnes(U.VAL);
1643 return countTrailingOnesSlowCase();
1644 }
1645
1646 /// Count the number of bits set.
1647 ///
1648 /// This function is an APInt version of the countPopulation functions
1649 /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
1650 ///
1651 /// \returns 0 if the value is zero, otherwise returns the number of set bits.
1652 unsigned countPopulation() const {
1653 if (isSingleWord())
1654 return llvm::countPopulation(U.VAL);
1655 return countPopulationSlowCase();
1656 }
1657
1658 /// @}
1659 /// \name Conversion Functions
1660 /// @{
1661 void print(raw_ostream &OS, bool isSigned) const;
1662
1663 /// Converts an APInt to a string and append it to Str. Str is commonly a
1664 /// SmallString.
1665 void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1666 bool formatAsCLiteral = false) const;
1667
1668 /// Considers the APInt to be unsigned and converts it into a string in the
1669 /// radix given. The radix can be 2, 8, 10 16, or 36.
1670 void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1671 toString(Str, Radix, false, false);
1672 }
1673
1674 /// Considers the APInt to be signed and converts it into a string in the
1675 /// radix given. The radix can be 2, 8, 10, 16, or 36.
1676 void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1677 toString(Str, Radix, true, false);
1678 }
1679
1680 /// Return the APInt as a std::string.
1681 ///
1682 /// Note that this is an inefficient method. It is better to pass in a
1683 /// SmallVector/SmallString to the methods above to avoid thrashing the heap
1684 /// for the string.
1685 std::string toString(unsigned Radix, bool Signed) const;
1686
1687 /// \returns a byte-swapped representation of this APInt Value.
1688 APInt byteSwap() const;
1689
1690 /// \returns the value with the bit representation reversed of this APInt
1691 /// Value.
1692 APInt reverseBits() const;
1693
1694 /// Converts this APInt to a double value.
1695 double roundToDouble(bool isSigned) const;
1696
1697 /// Converts this unsigned APInt to a double value.
1698 double roundToDouble() const { return roundToDouble(false); }
1699
1700 /// Converts this signed APInt to a double value.
1701 double signedRoundToDouble() const { return roundToDouble(true); }
1702
1703 /// Converts APInt bits to a double
1704 ///
1705 /// The conversion does not do a translation from integer to double, it just
1706 /// re-interprets the bits as a double. Note that it is valid to do this on
1707 /// any bit width. Exactly 64 bits will be translated.
1708 double bitsToDouble() const {
1709 return BitsToDouble(getWord(0));
1710 }
1711
1712 /// Converts APInt bits to a double
1713 ///
1714 /// The conversion does not do a translation from integer to float, it just
1715 /// re-interprets the bits as a float. Note that it is valid to do this on
1716 /// any bit width. Exactly 32 bits will be translated.
1717 float bitsToFloat() const {
1718 return BitsToFloat(getWord(0));
1719 }
1720
1721 /// Converts a double to APInt bits.
1722 ///
1723 /// The conversion does not do a translation from double to integer, it just
1724 /// re-interprets the bits of the double.
1725 static APInt doubleToBits(double V) {
1726 return APInt(sizeof(double) * CHAR_BIT, DoubleToBits(V));
1727 }
1728
1729 /// Converts a float to APInt bits.
1730 ///
1731 /// The conversion does not do a translation from float to integer, it just
1732 /// re-interprets the bits of the float.
1733 static APInt floatToBits(float V) {
1734 return APInt(sizeof(float) * CHAR_BIT, FloatToBits(V));
1735 }
1736
1737 /// @}
1738 /// \name Mathematics Operations
1739 /// @{
1740
1741 /// \returns the floor log base 2 of this APInt.
1742 unsigned logBase2() const { return getActiveBits() - 1; }
1743
1744 /// \returns the ceil log base 2 of this APInt.
1745 unsigned ceilLogBase2() const {
1746 APInt temp(*this);
1747 --temp;
1748 return temp.getActiveBits();
1749 }
1750
1751 /// \returns the nearest log base 2 of this APInt. Ties round up.
1752 ///
1753 /// NOTE: When we have a BitWidth of 1, we define:
1754 ///
1755 /// log2(0) = UINT32_MAX
1756 /// log2(1) = 0
1757 ///
1758 /// to get around any mathematical concerns resulting from
1759 /// referencing 2 in a space where 2 does no exist.
1760 unsigned nearestLogBase2() const {
1761 // Special case when we have a bitwidth of 1. If VAL is 1, then we
1762 // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to
1763 // UINT32_MAX.
1764 if (BitWidth == 1)
1765 return U.VAL - 1;
1766
1767 // Handle the zero case.
1768 if (isNullValue())
1769 return UINT32_MAX;
1770
1771 // The non-zero case is handled by computing:
1772 //
1773 // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1774 //
1775 // where x[i] is referring to the value of the ith bit of x.
1776 unsigned lg = logBase2();
1777 return lg + unsigned((*this)[lg - 1]);
1778 }
1779
1780 /// \returns the log base 2 of this APInt if its an exact power of two, -1
1781 /// otherwise
1782 int32_t exactLogBase2() const {
1783 if (!isPowerOf2())
1784 return -1;
1785 return logBase2();
1786 }
1787
1788 /// Compute the square root
1789 APInt sqrt() const;
1790
1791 /// Get the absolute value;
1792 ///
1793 /// If *this is < 0 then return -(*this), otherwise *this;
1794 APInt abs() const {
1795 if (isNegative())
1796 return -(*this);
1797 return *this;
1798 }
1799
1800 /// \returns the multiplicative inverse for a given modulo.
1801 APInt multiplicativeInverse(const APInt &modulo) const;
1802
1803 /// @}
1804 /// \name Support for division by constant
1805 /// @{
1806
1807 /// Calculate the magic number for signed division by a constant.
1808 struct ms;
1809 ms magic() const;
1810
1811 /// Calculate the magic number for unsigned division by a constant.
1812 struct mu;
1813 mu magicu(unsigned LeadingZeros = 0) const;
1814
1815 /// @}
1816 /// \name Building-block Operations for APInt and APFloat
1817 /// @{
1818
1819 // These building block operations operate on a representation of arbitrary
1820 // precision, two's-complement, bignum integer values. They should be
1821 // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1822 // generally a pointer to the base of an array of integer parts, representing
1823 // an unsigned bignum, and a count of how many parts there are.
1824
1825 /// Sets the least significant part of a bignum to the input value, and zeroes
1826 /// out higher parts.
1827 static void tcSet(WordType *, WordType, unsigned);
1828
1829 /// Assign one bignum to another.
1830 static void tcAssign(WordType *, const WordType *, unsigned);
1831
1832 /// Returns true if a bignum is zero, false otherwise.
1833 static bool tcIsZero(const WordType *, unsigned);
1834
1835 /// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
1836 static int tcExtractBit(const WordType *, unsigned bit);
1837
1838 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1839 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1840 /// significant bit of DST. All high bits above srcBITS in DST are
1841 /// zero-filled.
1842 static void tcExtract(WordType *, unsigned dstCount,
1843 const WordType *, unsigned srcBits,
1844 unsigned srcLSB);
1845
1846 /// Set the given bit of a bignum. Zero-based.
1847 static void tcSetBit(WordType *, unsigned bit);
1848
1849 /// Clear the given bit of a bignum. Zero-based.
1850 static void tcClearBit(WordType *, unsigned bit);
1851
1852 /// Returns the bit number of the least or most significant set bit of a
1853 /// number. If the input number has no bits set -1U is returned.
1854 static unsigned tcLSB(const WordType *, unsigned n);
1855 static unsigned tcMSB(const WordType *parts, unsigned n);
1856
1857 /// Negate a bignum in-place.
1858 static void tcNegate(WordType *, unsigned);
1859
1860 /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1861 static WordType tcAdd(WordType *, const WordType *,
1862 WordType carry, unsigned);
1863 /// DST += RHS. Returns the carry flag.
1864 static WordType tcAddPart(WordType *, WordType, unsigned);
1865
1866 /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1867 static WordType tcSubtract(WordType *, const WordType *,
1868 WordType carry, unsigned);
1869 /// DST -= RHS. Returns the carry flag.
1870 static WordType tcSubtractPart(WordType *, WordType, unsigned);
1871
1872 /// DST += SRC * MULTIPLIER + PART if add is true
1873 /// DST = SRC * MULTIPLIER + PART if add is false
1874 ///
1875 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must
1876 /// start at the same point, i.e. DST == SRC.
1877 ///
1878 /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1879 /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1880 /// result, and if all of the omitted higher parts were zero return zero,
1881 /// otherwise overflow occurred and return one.
1882 static int tcMultiplyPart(WordType *dst, const WordType *src,
1883 WordType multiplier, WordType carry,
1884 unsigned srcParts, unsigned dstParts,
1885 bool add);
1886
1887 /// DST = LHS * RHS, where DST has the same width as the operands and is
1888 /// filled with the least significant parts of the result. Returns one if
1889 /// overflow occurred, otherwise zero. DST must be disjoint from both
1890 /// operands.
1891 static int tcMultiply(WordType *, const WordType *, const WordType *,
1892 unsigned);
1893
1894 /// DST = LHS * RHS, where DST has width the sum of the widths of the
1895 /// operands. No overflow occurs. DST must be disjoint from both operands.
1896 static void tcFullMultiply(WordType *, const WordType *,
1897 const WordType *, unsigned, unsigned);
1898
1899 /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1900 /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1901 /// REMAINDER to the remainder, return zero. i.e.
1902 ///
1903 /// OLD_LHS = RHS * LHS + REMAINDER
1904 ///
1905 /// SCRATCH is a bignum of the same size as the operands and result for use by
1906 /// the routine; its contents need not be initialized and are destroyed. LHS,
1907 /// REMAINDER and SCRATCH must be distinct.
1908 static int tcDivide(WordType *lhs, const WordType *rhs,
1909 WordType *remainder, WordType *scratch,
1910 unsigned parts);
1911
1912 /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
1913 /// restrictions on Count.
1914 static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
1915
1916 /// Shift a bignum right Count bits. Shifted in bits are zero. There are no
1917 /// restrictions on Count.
1918 static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
1919
1920 /// The obvious AND, OR and XOR and complement operations.
1921 static void tcAnd(WordType *, const WordType *, unsigned);
1922 static void tcOr(WordType *, const WordType *, unsigned);
1923 static void tcXor(WordType *, const WordType *, unsigned);
1924 static void tcComplement(WordType *, unsigned);
1925
1926 /// Comparison (unsigned) of two bignums.
1927 static int tcCompare(const WordType *, const WordType *, unsigned);
1928
1929 /// Increment a bignum in-place. Return the carry flag.
1930 static WordType tcIncrement(WordType *dst, unsigned parts) {
1931 return tcAddPart(dst, 1, parts);
1932 }
1933
1934 /// Decrement a bignum in-place. Return the borrow flag.
1935 static WordType tcDecrement(WordType *dst, unsigned parts) {
1936 return tcSubtractPart(dst, 1, parts);
1937 }
1938
1939 /// Set the least significant BITS and clear the rest.
1940 static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits);
1941
1942 /// debug method
1943 void dump() const;
1944
1945 /// @}
1946};
1947
1948/// Magic data for optimising signed division by a constant.
1949struct APInt::ms {
1950 APInt m; ///< magic number
1951 unsigned s; ///< shift amount
1952};
1953
1954/// Magic data for optimising unsigned division by a constant.
1955struct APInt::mu {
1956 APInt m; ///< magic number
1957 bool a; ///< add indicator
1958 unsigned s; ///< shift amount
1959};
1960
1961inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
1962
1963inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
1964
1965/// Unary bitwise complement operator.
1966///
1967/// \returns an APInt that is the bitwise complement of \p v.
1968inline APInt operator~(APInt v) {
1969 v.flipAllBits();
1970 return v;
1971}
1972
1973inline APInt operator&(APInt a, const APInt &b) {
1974 a &= b;
1975 return a;
1976}
1977
1978inline APInt operator&(const APInt &a, APInt &&b) {
1979 b &= a;
1980 return std::move(b);
1981}
1982
1983inline APInt operator&(APInt a, uint64_t RHS) {
1984 a &= RHS;
1985 return a;
1986}
1987
1988inline APInt operator&(uint64_t LHS, APInt b) {
1989 b &= LHS;
1990 return b;
1991}
1992
1993inline APInt operator|(APInt a, const APInt &b) {
1994 a |= b;
1995 return a;
1996}
1997
1998inline APInt operator|(const APInt &a, APInt &&b) {
1999 b |= a;
2000 return std::move(b);
2001}
2002
2003inline APInt operator|(APInt a, uint64_t RHS) {
2004 a |= RHS;
2005 return a;
2006}
2007
2008inline APInt operator|(uint64_t LHS, APInt b) {
2009 b |= LHS;
2010 return b;
2011}
2012
2013inline APInt operator^(APInt a, const APInt &b) {
2014 a ^= b;
2015 return a;
2016}
2017
2018inline APInt operator^(const APInt &a, APInt &&b) {
2019 b ^= a;
2020 return std::move(b);
2021}
2022
2023inline APInt operator^(APInt a, uint64_t RHS) {
2024 a ^= RHS;
2025 return a;
2026}
2027
2028inline APInt operator^(uint64_t LHS, APInt b) {
2029 b ^= LHS;
2030 return b;
2031}
2032
2033inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
2034 I.print(OS, true);
2035 return OS;
2036}
2037
2038inline APInt operator-(APInt v) {
2039 v.negate();
2040 return v;
2041}
2042
2043inline APInt operator+(APInt a, const APInt &b) {
2044 a += b;
2045 return a;
2046}
2047
2048inline APInt operator+(const APInt &a, APInt &&b) {
2049 b += a;
2050 return std::move(b);
2051}
2052
2053inline APInt operator+(APInt a, uint64_t RHS) {
2054 a += RHS;
2055 return a;
2056}
2057
2058inline APInt operator+(uint64_t LHS, APInt b) {
2059 b += LHS;
2060 return b;
2061}
2062
2063inline APInt operator-(APInt a, const APInt &b) {
2064 a -= b;
2065 return a;
2066}
2067
2068inline APInt operator-(const APInt &a, APInt &&b) {
2069 b.negate();
2070 b += a;
2071 return std::move(b);
2072}
2073
2074inline APInt operator-(APInt a, uint64_t RHS) {
2075 a -= RHS;
2076 return a;
2077}
2078
2079inline APInt operator-(uint64_t LHS, APInt b) {
2080 b.negate();
2081 b += LHS;
2082 return b;
2083}
2084
2085inline APInt operator*(APInt a, uint64_t RHS) {
2086 a *= RHS;
2087 return a;
2088}
2089
2090inline APInt operator*(uint64_t LHS, APInt b) {
2091 b *= LHS;
2092 return b;
2093}
2094
2095
2096namespace APIntOps {
2097
2098/// Determine the smaller of two APInts considered to be signed.
2099inline const APInt &smin(const APInt &A, const APInt &B) {
2100 return A.slt(B) ? A : B;
2101}
2102
2103/// Determine the larger of two APInts considered to be signed.
2104inline const APInt &smax(const APInt &A, const APInt &B) {
2105 return A.sgt(B) ? A : B;
2106}
2107
2108/// Determine the smaller of two APInts considered to be signed.
2109inline const APInt &umin(const APInt &A, const APInt &B) {
2110 return A.ult(B) ? A : B;
2111}
2112
2113/// Determine the larger of two APInts considered to be unsigned.
2114inline const APInt &umax(const APInt &A, const APInt &B) {
2115 return A.ugt(B) ? A : B;
2116}
2117
2118/// Compute GCD of two unsigned APInt values.
2119///
2120/// This function returns the greatest common divisor of the two APInt values
2121/// using Stein's algorithm.
2122///
2123/// \returns the greatest common divisor of A and B.
2124APInt GreatestCommonDivisor(APInt A, APInt B);
2125
2126/// Converts the given APInt to a double value.
2127///
2128/// Treats the APInt as an unsigned value for conversion purposes.
2129inline double RoundAPIntToDouble(const APInt &APIVal) {
2130 return APIVal.roundToDouble();
2131}
2132
2133/// Converts the given APInt to a double value.
2134///
2135/// Treats the APInt as a signed value for conversion purposes.
2136inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
2137 return APIVal.signedRoundToDouble();
2138}
2139
2140/// Converts the given APInt to a float vlalue.
2141inline float RoundAPIntToFloat(const APInt &APIVal) {
2142 return float(RoundAPIntToDouble(APIVal));
2143}
2144
2145/// Converts the given APInt to a float value.
2146///
2147/// Treast the APInt as a signed value for conversion purposes.
2148inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
2149 return float(APIVal.signedRoundToDouble());
2150}
2151
2152/// Converts the given double value into a APInt.
2153///
2154/// This function convert a double value to an APInt value.
2155APInt RoundDoubleToAPInt(double Double, unsigned width);
2156
2157/// Converts a float value into a APInt.
2158///
2159/// Converts a float value into an APInt value.
2160inline APInt RoundFloatToAPInt(float Float, unsigned width) {
2161 return RoundDoubleToAPInt(double(Float), width);
2162}
2163
2164/// Return A unsign-divided by B, rounded by the given rounding mode.
2165APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2166
2167/// Return A sign-divided by B, rounded by the given rounding mode.
2168APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2169
2170/// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range
2171/// (e.g. 32 for i32).
2172/// This function finds the smallest number n, such that
2173/// (a) n >= 0 and q(n) = 0, or
2174/// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all
2175/// integers, belong to two different intervals [Rk, Rk+R),
2176/// where R = 2^BW, and k is an integer.
2177/// The idea here is to find when q(n) "overflows" 2^BW, while at the
2178/// same time "allowing" subtraction. In unsigned modulo arithmetic a
2179/// subtraction (treated as addition of negated numbers) would always
2180/// count as an overflow, but here we want to allow values to decrease
2181/// and increase as long as they are within the same interval.
2182/// Specifically, adding of two negative numbers should not cause an
2183/// overflow (as long as the magnitude does not exceed the bith width).
2184/// On the other hand, given a positive number, adding a negative
2185/// number to it can give a negative result, which would cause the
2186/// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is
2187/// treated as a special case of an overflow.
2188///
2189/// This function returns None if after finding k that minimizes the
2190/// positive solution to q(n) = kR, both solutions are contained between
2191/// two consecutive integers.
2192///
2193/// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation
2194/// in arithmetic modulo 2^BW, and treating the values as signed) by the
2195/// virtue of *signed* overflow. This function will *not* find such an n,
2196/// however it may find a value of n satisfying the inequalities due to
2197/// an *unsigned* overflow (if the values are treated as unsigned).
2198/// To find a solution for a signed overflow, treat it as a problem of
2199/// finding an unsigned overflow with a range with of BW-1.
2200///
2201/// The returned value may have a different bit width from the input
2202/// coefficients.
2203Optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2204 unsigned RangeWidth);
2205} // End of APIntOps namespace
2206
2207// See friend declaration above. This additional declaration is required in
2208// order to compile LLVM with IBM xlC compiler.
2209hash_code hash_value(const APInt &Arg);
2210} // End of llvm namespace
2211
2212#endif
2213