1//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file implements a class to represent arbitrary precision
11/// integral constant values and operations on them.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ADT_APINT_H
16#define LLVM_ADT_APINT_H
17
18#include "llvm/Support/Compiler.h"
19#include "llvm/Support/MathExtras.h"
20#include <cassert>
21#include <climits>
22#include <cstring>
23#include <string>
24
25namespace llvm {
26class FoldingSetNodeID;
27class StringRef;
28class hash_code;
29class raw_ostream;
30
31template <typename T> class SmallVectorImpl;
32template <typename T> class ArrayRef;
33template <typename T> class Optional;
34template <typename T> struct DenseMapInfo;
35
36class APInt;
37
38inline APInt operator-(APInt);
39
40//===----------------------------------------------------------------------===//
41// APInt Class
42//===----------------------------------------------------------------------===//
43
44/// Class for arbitrary precision integers.
45///
46/// APInt is a functional replacement for common case unsigned integer type like
47/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
48/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
49/// than 64-bits of precision. APInt provides a variety of arithmetic operators
50/// and methods to manipulate integer values of any bit-width. It supports both
51/// the typical integer arithmetic and comparison operations as well as bitwise
52/// manipulation.
53///
54/// The class has several invariants worth noting:
55/// * All bit, byte, and word positions are zero-based.
56/// * Once the bit width is set, it doesn't change except by the Truncate,
57/// SignExtend, or ZeroExtend operations.
58/// * All binary operators must be on APInt instances of the same bit width.
59/// Attempting to use these operators on instances with different bit
60/// widths will yield an assertion.
61/// * The value is stored canonically as an unsigned value. For operations
62/// where it makes a difference, there are both signed and unsigned variants
63/// of the operation. For example, sdiv and udiv. However, because the bit
64/// widths must be the same, operations such as Mul and Add produce the same
65/// results regardless of whether the values are interpreted as signed or
66/// not.
67/// * In general, the class tries to follow the style of computation that LLVM
68/// uses in its IR. This simplifies its use for LLVM.
69///
70class LLVM_NODISCARD APInt {
71public:
72 typedef uint64_t WordType;
73
74 /// This enum is used to hold the constants we needed for APInt.
75 enum : unsigned {
76 /// Byte size of a word.
77 APINT_WORD_SIZE = sizeof(WordType),
78 /// Bits in a word.
79 APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT
80 };
81
82 enum class Rounding {
83 DOWN,
84 TOWARD_ZERO,
85 UP,
86 };
87
88 static constexpr WordType WORDTYPE_MAX = ~WordType(0);
89
90private:
91 /// This union is used to store the integer value. When the
92 /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
93 union {
94 uint64_t VAL; ///< Used to store the <= 64 bits integer value.
95 uint64_t *pVal; ///< Used to store the >64 bits integer value.
96 } U;
97
98 unsigned BitWidth; ///< The number of bits in this APInt.
99
100 friend struct DenseMapInfo<APInt>;
101
102 friend class APSInt;
103
104 /// Fast internal constructor
105 ///
106 /// This constructor is used only internally for speed of construction of
107 /// temporaries. It is unsafe for general use so it is not public.
108 APInt(uint64_t *val, unsigned bits) : BitWidth(bits) {
109 U.pVal = val;
110 }
111
112 /// Determine if this APInt just has one word to store value.
113 ///
114 /// \returns true if the number of bits <= 64, false otherwise.
115 bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
116
117 /// Determine which word a bit is in.
118 ///
119 /// \returns the word position for the specified bit position.
120 static unsigned whichWord(unsigned bitPosition) {
121 return bitPosition / APINT_BITS_PER_WORD;
122 }
123
124 /// Determine which bit in a word a bit is in.
125 ///
126 /// \returns the bit position in a word for the specified bit position
127 /// in the APInt.
128 static unsigned whichBit(unsigned bitPosition) {
129 return bitPosition % APINT_BITS_PER_WORD;
130 }
131
132 /// Get a single bit mask.
133 ///
134 /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
135 /// This method generates and returns a uint64_t (word) mask for a single
136 /// bit at a specific bit position. This is used to mask the bit in the
137 /// corresponding word.
138 static uint64_t maskBit(unsigned bitPosition) {
139 return 1ULL << whichBit(bitPosition);
140 }
141
142 /// Clear unused high order bits
143 ///
144 /// This method is used internally to clear the top "N" bits in the high order
145 /// word that are not used by the APInt. This is needed after the most
146 /// significant word is assigned a value to ensure that those bits are
147 /// zero'd out.
148 APInt &clearUnusedBits() {
149 // Compute how many bits are used in the final word
150 unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1;
151
152 // Mask out the high bits.
153 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits);
154 if (isSingleWord())
155 U.VAL &= mask;
156 else
157 U.pVal[getNumWords() - 1] &= mask;
158 return *this;
159 }
160
161 /// Get the word corresponding to a bit position
162 /// \returns the corresponding word for the specified bit position.
163 uint64_t getWord(unsigned bitPosition) const {
164 return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
165 }
166
167 /// Utility method to change the bit width of this APInt to new bit width,
168 /// allocating and/or deallocating as necessary. There is no guarantee on the
169 /// value of any bits upon return. Caller should populate the bits after.
170 void reallocate(unsigned NewBitWidth);
171
172 /// Convert a char array into an APInt
173 ///
174 /// \param radix 2, 8, 10, 16, or 36
175 /// Converts a string into a number. The string must be non-empty
176 /// and well-formed as a number of the given base. The bit-width
177 /// must be sufficient to hold the result.
178 ///
179 /// This is used by the constructors that take string arguments.
180 ///
181 /// StringRef::getAsInteger is superficially similar but (1) does
182 /// not assume that the string is well-formed and (2) grows the
183 /// result to hold the input.
184 void fromString(unsigned numBits, StringRef str, uint8_t radix);
185
186 /// An internal division function for dividing APInts.
187 ///
188 /// This is used by the toString method to divide by the radix. It simply
189 /// provides a more convenient form of divide for internal use since KnuthDiv
190 /// has specific constraints on its inputs. If those constraints are not met
191 /// then it provides a simpler form of divide.
192 static void divide(const WordType *LHS, unsigned lhsWords,
193 const WordType *RHS, unsigned rhsWords, WordType *Quotient,
194 WordType *Remainder);
195
196 /// out-of-line slow case for inline constructor
197 void initSlowCase(uint64_t val, bool isSigned);
198
199 /// shared code between two array constructors
200 void initFromArray(ArrayRef<uint64_t> array);
201
202 /// out-of-line slow case for inline copy constructor
203 void initSlowCase(const APInt &that);
204
205 /// out-of-line slow case for shl
206 void shlSlowCase(unsigned ShiftAmt);
207
208 /// out-of-line slow case for lshr.
209 void lshrSlowCase(unsigned ShiftAmt);
210
211 /// out-of-line slow case for ashr.
212 void ashrSlowCase(unsigned ShiftAmt);
213
214 /// out-of-line slow case for operator=
215 void AssignSlowCase(const APInt &RHS);
216
217 /// out-of-line slow case for operator==
218 bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY;
219
220 /// out-of-line slow case for countLeadingZeros
221 unsigned countLeadingZerosSlowCase() const LLVM_READONLY;
222
223 /// out-of-line slow case for countLeadingOnes.
224 unsigned countLeadingOnesSlowCase() const LLVM_READONLY;
225
226 /// out-of-line slow case for countTrailingZeros.
227 unsigned countTrailingZerosSlowCase() const LLVM_READONLY;
228
229 /// out-of-line slow case for countTrailingOnes
230 unsigned countTrailingOnesSlowCase() const LLVM_READONLY;
231
232 /// out-of-line slow case for countPopulation
233 unsigned countPopulationSlowCase() const LLVM_READONLY;
234
235 /// out-of-line slow case for intersects.
236 bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY;
237
238 /// out-of-line slow case for isSubsetOf.
239 bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY;
240
241 /// out-of-line slow case for setBits.
242 void setBitsSlowCase(unsigned loBit, unsigned hiBit);
243
244 /// out-of-line slow case for flipAllBits.
245 void flipAllBitsSlowCase();
246
247 /// out-of-line slow case for operator&=.
248 void AndAssignSlowCase(const APInt& RHS);
249
250 /// out-of-line slow case for operator|=.
251 void OrAssignSlowCase(const APInt& RHS);
252
253 /// out-of-line slow case for operator^=.
254 void XorAssignSlowCase(const APInt& RHS);
255
256 /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
257 /// to, or greater than RHS.
258 int compare(const APInt &RHS) const LLVM_READONLY;
259
260 /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
261 /// to, or greater than RHS.
262 int compareSigned(const APInt &RHS) const LLVM_READONLY;
263
264public:
265 /// \name Constructors
266 /// @{
267
268 /// Create a new APInt of numBits width, initialized as val.
269 ///
270 /// If isSigned is true then val is treated as if it were a signed value
271 /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
272 /// will be done. Otherwise, no sign extension occurs (high order bits beyond
273 /// the range of val are zero filled).
274 ///
275 /// \param numBits the bit width of the constructed APInt
276 /// \param val the initial value of the APInt
277 /// \param isSigned how to treat signedness of val
278 APInt(unsigned numBits, uint64_t val, bool isSigned = false)
279 : BitWidth(numBits) {
280 assert(BitWidth && "bitwidth too small");
281 if (isSingleWord()) {
282 U.VAL = val;
283 clearUnusedBits();
284 } else {
285 initSlowCase(val, isSigned);
286 }
287 }
288
289 /// Construct an APInt of numBits width, initialized as bigVal[].
290 ///
291 /// Note that bigVal.size() can be smaller or larger than the corresponding
292 /// bit width but any extraneous bits will be dropped.
293 ///
294 /// \param numBits the bit width of the constructed APInt
295 /// \param bigVal a sequence of words to form the initial value of the APInt
296 APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
297
298 /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
299 /// deprecated because this constructor is prone to ambiguity with the
300 /// APInt(unsigned, uint64_t, bool) constructor.
301 ///
302 /// If this overload is ever deleted, care should be taken to prevent calls
303 /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
304 /// constructor.
305 APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
306
307 /// Construct an APInt from a string representation.
308 ///
309 /// This constructor interprets the string \p str in the given radix. The
310 /// interpretation stops when the first character that is not suitable for the
311 /// radix is encountered, or the end of the string. Acceptable radix values
312 /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
313 /// string to require more bits than numBits.
314 ///
315 /// \param numBits the bit width of the constructed APInt
316 /// \param str the string to be interpreted
317 /// \param radix the radix to use for the conversion
318 APInt(unsigned numBits, StringRef str, uint8_t radix);
319
320 /// Simply makes *this a copy of that.
321 /// Copy Constructor.
322 APInt(const APInt &that) : BitWidth(that.BitWidth) {
323 if (isSingleWord())
324 U.VAL = that.U.VAL;
325 else
326 initSlowCase(that);
327 }
328
329 /// Move Constructor.
330 APInt(APInt &&that) : BitWidth(that.BitWidth) {
331 memcpy(&U, &that.U, sizeof(U));
332 that.BitWidth = 0;
333 }
334
335 /// Destructor.
336 ~APInt() {
337 if (needsCleanup())
338 delete[] U.pVal;
339 }
340
341 /// Default constructor that creates an uninteresting APInt
342 /// representing a 1-bit zero value.
343 ///
344 /// This is useful for object deserialization (pair this with the static
345 /// method Read).
346 explicit APInt() : BitWidth(1) { U.VAL = 0; }
347
348 /// Returns whether this instance allocated memory.
349 bool needsCleanup() const { return !isSingleWord(); }
350
351 /// Used to insert APInt objects, or objects that contain APInt objects, into
352 /// FoldingSets.
353 void Profile(FoldingSetNodeID &id) const;
354
355 /// @}
356 /// \name Value Tests
357 /// @{
358
359 /// Determine sign of this APInt.
360 ///
361 /// This tests the high bit of this APInt to determine if it is set.
362 ///
363 /// \returns true if this APInt is negative, false otherwise
364 bool isNegative() const { return (*this)[BitWidth - 1]; }
365
366 /// Determine if this APInt Value is non-negative (>= 0)
367 ///
368 /// This tests the high bit of the APInt to determine if it is unset.
369 bool isNonNegative() const { return !isNegative(); }
370
371 /// Determine if sign bit of this APInt is set.
372 ///
373 /// This tests the high bit of this APInt to determine if it is set.
374 ///
375 /// \returns true if this APInt has its sign bit set, false otherwise.
376 bool isSignBitSet() const { return (*this)[BitWidth-1]; }
377
378 /// Determine if sign bit of this APInt is clear.
379 ///
380 /// This tests the high bit of this APInt to determine if it is clear.
381 ///
382 /// \returns true if this APInt has its sign bit clear, false otherwise.
383 bool isSignBitClear() const { return !isSignBitSet(); }
384
385 /// Determine if this APInt Value is positive.
386 ///
387 /// This tests if the value of this APInt is positive (> 0). Note
388 /// that 0 is not a positive value.
389 ///
390 /// \returns true if this APInt is positive.
391 bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); }
392
393 /// Determine if this APInt Value is non-positive (<= 0).
394 ///
395 /// \returns true if this APInt is non-positive.
396 bool isNonPositive() const { return !isStrictlyPositive(); }
397
398 /// Determine if all bits are set
399 ///
400 /// This checks to see if the value has all bits of the APInt are set or not.
401 bool isAllOnesValue() const {
402 if (isSingleWord())
403 return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth);
404 return countTrailingOnesSlowCase() == BitWidth;
405 }
406
407 /// Determine if all bits are clear
408 ///
409 /// This checks to see if the value has all bits of the APInt are clear or
410 /// not.
411 bool isNullValue() const { return !*this; }
412
413 /// Determine if this is a value of 1.
414 ///
415 /// This checks to see if the value of this APInt is one.
416 bool isOneValue() const {
417 if (isSingleWord())
418 return U.VAL == 1;
419 return countLeadingZerosSlowCase() == BitWidth - 1;
420 }
421
422 /// Determine if this is the largest unsigned value.
423 ///
424 /// This checks to see if the value of this APInt is the maximum unsigned
425 /// value for the APInt's bit width.
426 bool isMaxValue() const { return isAllOnesValue(); }
427
428 /// Determine if this is the largest signed value.
429 ///
430 /// This checks to see if the value of this APInt is the maximum signed
431 /// value for the APInt's bit width.
432 bool isMaxSignedValue() const {
433 if (isSingleWord())
434 return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
435 return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
436 }
437
438 /// Determine if this is the smallest unsigned value.
439 ///
440 /// This checks to see if the value of this APInt is the minimum unsigned
441 /// value for the APInt's bit width.
442 bool isMinValue() const { return isNullValue(); }
443
444 /// Determine if this is the smallest signed value.
445 ///
446 /// This checks to see if the value of this APInt is the minimum signed
447 /// value for the APInt's bit width.
448 bool isMinSignedValue() const {
449 if (isSingleWord())
450 return U.VAL == (WordType(1) << (BitWidth - 1));
451 return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
452 }
453
454 /// Check if this APInt has an N-bits unsigned integer value.
455 bool isIntN(unsigned N) const {
456 assert(N && "N == 0 ???");
457 return getActiveBits() <= N;
458 }
459
460 /// Check if this APInt has an N-bits signed integer value.
461 bool isSignedIntN(unsigned N) const {
462 assert(N && "N == 0 ???");
463 return getMinSignedBits() <= N;
464 }
465
466 /// Check if this APInt's value is a power of two greater than zero.
467 ///
468 /// \returns true if the argument APInt value is a power of two > 0.
469 bool isPowerOf2() const {
470 if (isSingleWord())
471 return isPowerOf2_64(U.VAL);
472 return countPopulationSlowCase() == 1;
473 }
474
475 /// Check if the APInt's value is returned by getSignMask.
476 ///
477 /// \returns true if this is the value returned by getSignMask.
478 bool isSignMask() const { return isMinSignedValue(); }
479
480 /// Convert APInt to a boolean value.
481 ///
482 /// This converts the APInt to a boolean value as a test against zero.
483 bool getBoolValue() const { return !!*this; }
484
485 /// If this value is smaller than the specified limit, return it, otherwise
486 /// return the limit value. This causes the value to saturate to the limit.
487 uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const {
488 return ugt(Limit) ? Limit : getZExtValue();
489 }
490
491 /// Check if the APInt consists of a repeated bit pattern.
492 ///
493 /// e.g. 0x01010101 satisfies isSplat(8).
494 /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
495 /// width without remainder.
496 bool isSplat(unsigned SplatSizeInBits) const;
497
498 /// \returns true if this APInt value is a sequence of \param numBits ones
499 /// starting at the least significant bit with the remainder zero.
500 bool isMask(unsigned numBits) const {
501 assert(numBits != 0 && "numBits must be non-zero");
502 assert(numBits <= BitWidth && "numBits out of range");
503 if (isSingleWord())
504 return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits));
505 unsigned Ones = countTrailingOnesSlowCase();
506 return (numBits == Ones) &&
507 ((Ones + countLeadingZerosSlowCase()) == BitWidth);
508 }
509
510 /// \returns true if this APInt is a non-empty sequence of ones starting at
511 /// the least significant bit with the remainder zero.
512 /// Ex. isMask(0x0000FFFFU) == true.
513 bool isMask() const {
514 if (isSingleWord())
515 return isMask_64(U.VAL);
516 unsigned Ones = countTrailingOnesSlowCase();
517 return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
518 }
519
520 /// Return true if this APInt value contains a sequence of ones with
521 /// the remainder zero.
522 bool isShiftedMask() const {
523 if (isSingleWord())
524 return isShiftedMask_64(U.VAL);
525 unsigned Ones = countPopulationSlowCase();
526 unsigned LeadZ = countLeadingZerosSlowCase();
527 return (Ones + LeadZ + countTrailingZeros()) == BitWidth;
528 }
529
530 /// @}
531 /// \name Value Generators
532 /// @{
533
534 /// Gets maximum unsigned value of APInt for specific bit width.
535 static APInt getMaxValue(unsigned numBits) {
536 return getAllOnesValue(numBits);
537 }
538
539 /// Gets maximum signed value of APInt for a specific bit width.
540 static APInt getSignedMaxValue(unsigned numBits) {
541 APInt API = getAllOnesValue(numBits);
542 API.clearBit(numBits - 1);
543 return API;
544 }
545
546 /// Gets minimum unsigned value of APInt for a specific bit width.
547 static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
548
549 /// Gets minimum signed value of APInt for a specific bit width.
550 static APInt getSignedMinValue(unsigned numBits) {
551 APInt API(numBits, 0);
552 API.setBit(numBits - 1);
553 return API;
554 }
555
556 /// Get the SignMask for a specific bit width.
557 ///
558 /// This is just a wrapper function of getSignedMinValue(), and it helps code
559 /// readability when we want to get a SignMask.
560 static APInt getSignMask(unsigned BitWidth) {
561 return getSignedMinValue(BitWidth);
562 }
563
564 /// Get the all-ones value.
565 ///
566 /// \returns the all-ones value for an APInt of the specified bit-width.
567 static APInt getAllOnesValue(unsigned numBits) {
568 return APInt(numBits, WORDTYPE_MAX, true);
569 }
570
571 /// Get the '0' value.
572 ///
573 /// \returns the '0' value for an APInt of the specified bit-width.
574 static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
575
576 /// Compute an APInt containing numBits highbits from this APInt.
577 ///
578 /// Get an APInt with the same BitWidth as this APInt, just zero mask
579 /// the low bits and right shift to the least significant bit.
580 ///
581 /// \returns the high "numBits" bits of this APInt.
582 APInt getHiBits(unsigned numBits) const;
583
584 /// Compute an APInt containing numBits lowbits from this APInt.
585 ///
586 /// Get an APInt with the same BitWidth as this APInt, just zero mask
587 /// the high bits.
588 ///
589 /// \returns the low "numBits" bits of this APInt.
590 APInt getLoBits(unsigned numBits) const;
591
592 /// Return an APInt with exactly one bit set in the result.
593 static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
594 APInt Res(numBits, 0);
595 Res.setBit(BitNo);
596 return Res;
597 }
598
599 /// Get a value with a block of bits set.
600 ///
601 /// Constructs an APInt value that has a contiguous range of bits set. The
602 /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
603 /// bits will be zero. For example, with parameters(32, 0, 16) you would get
604 /// 0x0000FFFF. Please call getBitsSetWithWrap if \p loBit may be greater than
605 /// \p hiBit.
606 ///
607 /// \param numBits the intended bit width of the result
608 /// \param loBit the index of the lowest bit set.
609 /// \param hiBit the index of the highest bit set.
610 ///
611 /// \returns An APInt value with the requested bits set.
612 static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
613 assert(loBit <= hiBit && "loBit greater than hiBit");
614 APInt Res(numBits, 0);
615 Res.setBits(loBit, hiBit);
616 return Res;
617 }
618
619 /// Wrap version of getBitsSet.
620 /// If \p hiBit is bigger than \p loBit, this is same with getBitsSet.
621 /// If \p hiBit is not bigger than \p loBit, the set bits "wrap". For example,
622 /// with parameters (32, 28, 4), you would get 0xF000000F.
623 /// If \p hiBit is equal to \p loBit, you would get a result with all bits
624 /// set.
625 static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit,
626 unsigned hiBit) {
627 APInt Res(numBits, 0);
628 Res.setBitsWithWrap(loBit, hiBit);
629 return Res;
630 }
631
632 /// Get a value with upper bits starting at loBit set.
633 ///
634 /// Constructs an APInt value that has a contiguous range of bits set. The
635 /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
636 /// bits will be zero. For example, with parameters(32, 12) you would get
637 /// 0xFFFFF000.
638 ///
639 /// \param numBits the intended bit width of the result
640 /// \param loBit the index of the lowest bit to set.
641 ///
642 /// \returns An APInt value with the requested bits set.
643 static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
644 APInt Res(numBits, 0);
645 Res.setBitsFrom(loBit);
646 return Res;
647 }
648
649 /// Get a value with high bits set
650 ///
651 /// Constructs an APInt value that has the top hiBitsSet bits set.
652 ///
653 /// \param numBits the bitwidth of the result
654 /// \param hiBitsSet the number of high-order bits set in the result.
655 static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
656 APInt Res(numBits, 0);
657 Res.setHighBits(hiBitsSet);
658 return Res;
659 }
660
661 /// Get a value with low bits set
662 ///
663 /// Constructs an APInt value that has the bottom loBitsSet bits set.
664 ///
665 /// \param numBits the bitwidth of the result
666 /// \param loBitsSet the number of low-order bits set in the result.
667 static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
668 APInt Res(numBits, 0);
669 Res.setLowBits(loBitsSet);
670 return Res;
671 }
672
673 /// Return a value containing V broadcasted over NewLen bits.
674 static APInt getSplat(unsigned NewLen, const APInt &V);
675
676 /// Determine if two APInts have the same value, after zero-extending
677 /// one of them (if needed!) to ensure that the bit-widths match.
678 static bool isSameValue(const APInt &I1, const APInt &I2) {
679 if (I1.getBitWidth() == I2.getBitWidth())
680 return I1 == I2;
681
682 if (I1.getBitWidth() > I2.getBitWidth())
683 return I1 == I2.zext(I1.getBitWidth());
684
685 return I1.zext(I2.getBitWidth()) == I2;
686 }
687
688 /// Overload to compute a hash_code for an APInt value.
689 friend hash_code hash_value(const APInt &Arg);
690
691 /// This function returns a pointer to the internal storage of the APInt.
692 /// This is useful for writing out the APInt in binary form without any
693 /// conversions.
694 const uint64_t *getRawData() const {
695 if (isSingleWord())
696 return &U.VAL;
697 return &U.pVal[0];
698 }
699
700 /// @}
701 /// \name Unary Operators
702 /// @{
703
704 /// Postfix increment operator.
705 ///
706 /// Increments *this by 1.
707 ///
708 /// \returns a new APInt value representing the original value of *this.
709 const APInt operator++(int) {
710 APInt API(*this);
711 ++(*this);
712 return API;
713 }
714
715 /// Prefix increment operator.
716 ///
717 /// \returns *this incremented by one
718 APInt &operator++();
719
720 /// Postfix decrement operator.
721 ///
722 /// Decrements *this by 1.
723 ///
724 /// \returns a new APInt value representing the original value of *this.
725 const APInt operator--(int) {
726 APInt API(*this);
727 --(*this);
728 return API;
729 }
730
731 /// Prefix decrement operator.
732 ///
733 /// \returns *this decremented by one.
734 APInt &operator--();
735
736 /// Logical negation operator.
737 ///
738 /// Performs logical negation operation on this APInt.
739 ///
740 /// \returns true if *this is zero, false otherwise.
741 bool operator!() const {
742 if (isSingleWord())
743 return U.VAL == 0;
744 return countLeadingZerosSlowCase() == BitWidth;
745 }
746
747 /// @}
748 /// \name Assignment Operators
749 /// @{
750
751 /// Copy assignment operator.
752 ///
753 /// \returns *this after assignment of RHS.
754 APInt &operator=(const APInt &RHS) {
755 // If the bitwidths are the same, we can avoid mucking with memory
756 if (isSingleWord() && RHS.isSingleWord()) {
757 U.VAL = RHS.U.VAL;
758 BitWidth = RHS.BitWidth;
759 return clearUnusedBits();
760 }
761
762 AssignSlowCase(RHS);
763 return *this;
764 }
765
766 /// Move assignment operator.
767 APInt &operator=(APInt &&that) {
768#ifdef EXPENSIVE_CHECKS
769 // Some std::shuffle implementations still do self-assignment.
770 if (this == &that)
771 return *this;
772#endif
773 assert(this != &that && "Self-move not supported");
774 if (!isSingleWord())
775 delete[] U.pVal;
776
777 // Use memcpy so that type based alias analysis sees both VAL and pVal
778 // as modified.
779 memcpy(&U, &that.U, sizeof(U));
780
781 BitWidth = that.BitWidth;
782 that.BitWidth = 0;
783
784 return *this;
785 }
786
787 /// Assignment operator.
788 ///
789 /// The RHS value is assigned to *this. If the significant bits in RHS exceed
790 /// the bit width, the excess bits are truncated. If the bit width is larger
791 /// than 64, the value is zero filled in the unspecified high order bits.
792 ///
793 /// \returns *this after assignment of RHS value.
794 APInt &operator=(uint64_t RHS) {
795 if (isSingleWord()) {
796 U.VAL = RHS;
797 return clearUnusedBits();
798 }
799 U.pVal[0] = RHS;
800 memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
801 return *this;
802 }
803
804 /// Bitwise AND assignment operator.
805 ///
806 /// Performs a bitwise AND operation on this APInt and RHS. The result is
807 /// assigned to *this.
808 ///
809 /// \returns *this after ANDing with RHS.
810 APInt &operator&=(const APInt &RHS) {
811 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
812 if (isSingleWord())
813 U.VAL &= RHS.U.VAL;
814 else
815 AndAssignSlowCase(RHS);
816 return *this;
817 }
818
819 /// Bitwise AND assignment operator.
820 ///
821 /// Performs a bitwise AND operation on this APInt and RHS. RHS is
822 /// logically zero-extended or truncated to match the bit-width of
823 /// the LHS.
824 APInt &operator&=(uint64_t RHS) {
825 if (isSingleWord()) {
826 U.VAL &= RHS;
827 return *this;
828 }
829 U.pVal[0] &= RHS;
830 memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
831 return *this;
832 }
833
834 /// Bitwise OR assignment operator.
835 ///
836 /// Performs a bitwise OR operation on this APInt and RHS. The result is
837 /// assigned *this;
838 ///
839 /// \returns *this after ORing with RHS.
840 APInt &operator|=(const APInt &RHS) {
841 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
842 if (isSingleWord())
843 U.VAL |= RHS.U.VAL;
844 else
845 OrAssignSlowCase(RHS);
846 return *this;
847 }
848
849 /// Bitwise OR assignment operator.
850 ///
851 /// Performs a bitwise OR operation on this APInt and RHS. RHS is
852 /// logically zero-extended or truncated to match the bit-width of
853 /// the LHS.
854 APInt &operator|=(uint64_t RHS) {
855 if (isSingleWord()) {
856 U.VAL |= RHS;
857 return clearUnusedBits();
858 }
859 U.pVal[0] |= RHS;
860 return *this;
861 }
862
863 /// Bitwise XOR assignment operator.
864 ///
865 /// Performs a bitwise XOR operation on this APInt and RHS. The result is
866 /// assigned to *this.
867 ///
868 /// \returns *this after XORing with RHS.
869 APInt &operator^=(const APInt &RHS) {
870 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
871 if (isSingleWord())
872 U.VAL ^= RHS.U.VAL;
873 else
874 XorAssignSlowCase(RHS);
875 return *this;
876 }
877
878 /// Bitwise XOR assignment operator.
879 ///
880 /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
881 /// logically zero-extended or truncated to match the bit-width of
882 /// the LHS.
883 APInt &operator^=(uint64_t RHS) {
884 if (isSingleWord()) {
885 U.VAL ^= RHS;
886 return clearUnusedBits();
887 }
888 U.pVal[0] ^= RHS;
889 return *this;
890 }
891
892 /// Multiplication assignment operator.
893 ///
894 /// Multiplies this APInt by RHS and assigns the result to *this.
895 ///
896 /// \returns *this
897 APInt &operator*=(const APInt &RHS);
898 APInt &operator*=(uint64_t RHS);
899
900 /// Addition assignment operator.
901 ///
902 /// Adds RHS to *this and assigns the result to *this.
903 ///
904 /// \returns *this
905 APInt &operator+=(const APInt &RHS);
906 APInt &operator+=(uint64_t RHS);
907
908 /// Subtraction assignment operator.
909 ///
910 /// Subtracts RHS from *this and assigns the result to *this.
911 ///
912 /// \returns *this
913 APInt &operator-=(const APInt &RHS);
914 APInt &operator-=(uint64_t RHS);
915
916 /// Left-shift assignment function.
917 ///
918 /// Shifts *this left by shiftAmt and assigns the result to *this.
919 ///
920 /// \returns *this after shifting left by ShiftAmt
921 APInt &operator<<=(unsigned ShiftAmt) {
922 assert(ShiftAmt <= BitWidth && "Invalid shift amount");
923 if (isSingleWord()) {
924 if (ShiftAmt == BitWidth)
925 U.VAL = 0;
926 else
927 U.VAL <<= ShiftAmt;
928 return clearUnusedBits();
929 }
930 shlSlowCase(ShiftAmt);
931 return *this;
932 }
933
934 /// Left-shift assignment function.
935 ///
936 /// Shifts *this left by shiftAmt and assigns the result to *this.
937 ///
938 /// \returns *this after shifting left by ShiftAmt
939 APInt &operator<<=(const APInt &ShiftAmt);
940
941 /// @}
942 /// \name Binary Operators
943 /// @{
944
945 /// Multiplication operator.
946 ///
947 /// Multiplies this APInt by RHS and returns the result.
948 APInt operator*(const APInt &RHS) const;
949
950 /// Left logical shift operator.
951 ///
952 /// Shifts this APInt left by \p Bits and returns the result.
953 APInt operator<<(unsigned Bits) const { return shl(Bits); }
954
955 /// Left logical shift operator.
956 ///
957 /// Shifts this APInt left by \p Bits and returns the result.
958 APInt operator<<(const APInt &Bits) const { return shl(Bits); }
959
960 /// Arithmetic right-shift function.
961 ///
962 /// Arithmetic right-shift this APInt by shiftAmt.
963 APInt ashr(unsigned ShiftAmt) const {
964 APInt R(*this);
965 R.ashrInPlace(ShiftAmt);
966 return R;
967 }
968
969 /// Arithmetic right-shift this APInt by ShiftAmt in place.
970 void ashrInPlace(unsigned ShiftAmt) {
971 assert(ShiftAmt <= BitWidth && "Invalid shift amount");
972 if (isSingleWord()) {
973 int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
974 if (ShiftAmt == BitWidth)
975 U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
976 else
977 U.VAL = SExtVAL >> ShiftAmt;
978 clearUnusedBits();
979 return;
980 }
981 ashrSlowCase(ShiftAmt);
982 }
983
984 /// Logical right-shift function.
985 ///
986 /// Logical right-shift this APInt by shiftAmt.
987 APInt lshr(unsigned shiftAmt) const {
988 APInt R(*this);
989 R.lshrInPlace(shiftAmt);
990 return R;
991 }
992
993 /// Logical right-shift this APInt by ShiftAmt in place.
994 void lshrInPlace(unsigned ShiftAmt) {
995 assert(ShiftAmt <= BitWidth && "Invalid shift amount");
996 if (isSingleWord()) {
997 if (ShiftAmt == BitWidth)
998 U.VAL = 0;
999 else
1000 U.VAL >>= ShiftAmt;
1001 return;
1002 }
1003 lshrSlowCase(ShiftAmt);
1004 }
1005
1006 /// Left-shift function.
1007 ///
1008 /// Left-shift this APInt by shiftAmt.
1009 APInt shl(unsigned shiftAmt) const {
1010 APInt R(*this);
1011 R <<= shiftAmt;
1012 return R;
1013 }
1014
1015 /// Rotate left by rotateAmt.
1016 APInt rotl(unsigned rotateAmt) const;
1017
1018 /// Rotate right by rotateAmt.
1019 APInt rotr(unsigned rotateAmt) const;
1020
1021 /// Arithmetic right-shift function.
1022 ///
1023 /// Arithmetic right-shift this APInt by shiftAmt.
1024 APInt ashr(const APInt &ShiftAmt) const {
1025 APInt R(*this);
1026 R.ashrInPlace(ShiftAmt);
1027 return R;
1028 }
1029
1030 /// Arithmetic right-shift this APInt by shiftAmt in place.
1031 void ashrInPlace(const APInt &shiftAmt);
1032
1033 /// Logical right-shift function.
1034 ///
1035 /// Logical right-shift this APInt by shiftAmt.
1036 APInt lshr(const APInt &ShiftAmt) const {
1037 APInt R(*this);
1038 R.lshrInPlace(ShiftAmt);
1039 return R;
1040 }
1041
1042 /// Logical right-shift this APInt by ShiftAmt in place.
1043 void lshrInPlace(const APInt &ShiftAmt);
1044
1045 /// Left-shift function.
1046 ///
1047 /// Left-shift this APInt by shiftAmt.
1048 APInt shl(const APInt &ShiftAmt) const {
1049 APInt R(*this);
1050 R <<= ShiftAmt;
1051 return R;
1052 }
1053
1054 /// Rotate left by rotateAmt.
1055 APInt rotl(const APInt &rotateAmt) const;
1056
1057 /// Rotate right by rotateAmt.
1058 APInt rotr(const APInt &rotateAmt) const;
1059
1060 /// Unsigned division operation.
1061 ///
1062 /// Perform an unsigned divide operation on this APInt by RHS. Both this and
1063 /// RHS are treated as unsigned quantities for purposes of this division.
1064 ///
1065 /// \returns a new APInt value containing the division result, rounded towards
1066 /// zero.
1067 APInt udiv(const APInt &RHS) const;
1068 APInt udiv(uint64_t RHS) const;
1069
1070 /// Signed division function for APInt.
1071 ///
1072 /// Signed divide this APInt by APInt RHS.
1073 ///
1074 /// The result is rounded towards zero.
1075 APInt sdiv(const APInt &RHS) const;
1076 APInt sdiv(int64_t RHS) const;
1077
1078 /// Unsigned remainder operation.
1079 ///
1080 /// Perform an unsigned remainder operation on this APInt with RHS being the
1081 /// divisor. Both this and RHS are treated as unsigned quantities for purposes
1082 /// of this operation. Note that this is a true remainder operation and not a
1083 /// modulo operation because the sign follows the sign of the dividend which
1084 /// is *this.
1085 ///
1086 /// \returns a new APInt value containing the remainder result
1087 APInt urem(const APInt &RHS) const;
1088 uint64_t urem(uint64_t RHS) const;
1089
1090 /// Function for signed remainder operation.
1091 ///
1092 /// Signed remainder operation on APInt.
1093 APInt srem(const APInt &RHS) const;
1094 int64_t srem(int64_t RHS) const;
1095
1096 /// Dual division/remainder interface.
1097 ///
1098 /// Sometimes it is convenient to divide two APInt values and obtain both the
1099 /// quotient and remainder. This function does both operations in the same
1100 /// computation making it a little more efficient. The pair of input arguments
1101 /// may overlap with the pair of output arguments. It is safe to call
1102 /// udivrem(X, Y, X, Y), for example.
1103 static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1104 APInt &Remainder);
1105 static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1106 uint64_t &Remainder);
1107
1108 static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1109 APInt &Remainder);
1110 static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
1111 int64_t &Remainder);
1112
1113 // Operations that return overflow indicators.
1114 APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
1115 APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
1116 APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
1117 APInt usub_ov(const APInt &RHS, bool &Overflow) const;
1118 APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
1119 APInt smul_ov(const APInt &RHS, bool &Overflow) const;
1120 APInt umul_ov(const APInt &RHS, bool &Overflow) const;
1121 APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
1122 APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
1123
1124 // Operations that saturate
1125 APInt sadd_sat(const APInt &RHS) const;
1126 APInt uadd_sat(const APInt &RHS) const;
1127 APInt ssub_sat(const APInt &RHS) const;
1128 APInt usub_sat(const APInt &RHS) const;
1129 APInt smul_sat(const APInt &RHS) const;
1130 APInt umul_sat(const APInt &RHS) const;
1131 APInt sshl_sat(const APInt &RHS) const;
1132 APInt ushl_sat(const APInt &RHS) const;
1133
1134 /// Array-indexing support.
1135 ///
1136 /// \returns the bit value at bitPosition
1137 bool operator[](unsigned bitPosition) const {
1138 assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
1139 return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
1140 }
1141
1142 /// @}
1143 /// \name Comparison Operators
1144 /// @{
1145
1146 /// Equality operator.
1147 ///
1148 /// Compares this APInt with RHS for the validity of the equality
1149 /// relationship.
1150 bool operator==(const APInt &RHS) const {
1151 assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
1152 if (isSingleWord())
1153 return U.VAL == RHS.U.VAL;
1154 return EqualSlowCase(RHS);
1155 }
1156
1157 /// Equality operator.
1158 ///
1159 /// Compares this APInt with a uint64_t for the validity of the equality
1160 /// relationship.
1161 ///
1162 /// \returns true if *this == Val
1163 bool operator==(uint64_t Val) const {
1164 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
1165 }
1166
1167 /// Equality comparison.
1168 ///
1169 /// Compares this APInt with RHS for the validity of the equality
1170 /// relationship.
1171 ///
1172 /// \returns true if *this == Val
1173 bool eq(const APInt &RHS) const { return (*this) == RHS; }
1174
1175 /// Inequality operator.
1176 ///
1177 /// Compares this APInt with RHS for the validity of the inequality
1178 /// relationship.
1179 ///
1180 /// \returns true if *this != Val
1181 bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
1182
1183 /// Inequality operator.
1184 ///
1185 /// Compares this APInt with a uint64_t for the validity of the inequality
1186 /// relationship.
1187 ///
1188 /// \returns true if *this != Val
1189 bool operator!=(uint64_t Val) const { return !((*this) == Val); }
1190
1191 /// Inequality comparison
1192 ///
1193 /// Compares this APInt with RHS for the validity of the inequality
1194 /// relationship.
1195 ///
1196 /// \returns true if *this != Val
1197 bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1198
1199 /// Unsigned less than comparison
1200 ///
1201 /// Regards both *this and RHS as unsigned quantities and compares them for
1202 /// the validity of the less-than relationship.
1203 ///
1204 /// \returns true if *this < RHS when both are considered unsigned.
1205 bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
1206
1207 /// Unsigned less than comparison
1208 ///
1209 /// Regards both *this as an unsigned quantity and compares it with RHS for
1210 /// the validity of the less-than relationship.
1211 ///
1212 /// \returns true if *this < RHS when considered unsigned.
1213 bool ult(uint64_t RHS) const {
1214 // Only need to check active bits if not a single word.
1215 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
1216 }
1217
1218 /// Signed less than comparison
1219 ///
1220 /// Regards both *this and RHS as signed quantities and compares them for
1221 /// validity of the less-than relationship.
1222 ///
1223 /// \returns true if *this < RHS when both are considered signed.
1224 bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
1225
1226 /// Signed less than comparison
1227 ///
1228 /// Regards both *this as a signed quantity and compares it with RHS for
1229 /// the validity of the less-than relationship.
1230 ///
1231 /// \returns true if *this < RHS when considered signed.
1232 bool slt(int64_t RHS) const {
1233 return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative()
1234 : getSExtValue() < RHS;
1235 }
1236
1237 /// Unsigned less or equal comparison
1238 ///
1239 /// Regards both *this and RHS as unsigned quantities and compares them for
1240 /// validity of the less-or-equal relationship.
1241 ///
1242 /// \returns true if *this <= RHS when both are considered unsigned.
1243 bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
1244
1245 /// Unsigned less or equal comparison
1246 ///
1247 /// Regards both *this as an unsigned quantity and compares it with RHS for
1248 /// the validity of the less-or-equal relationship.
1249 ///
1250 /// \returns true if *this <= RHS when considered unsigned.
1251 bool ule(uint64_t RHS) const { return !ugt(RHS); }
1252
1253 /// Signed less or equal comparison
1254 ///
1255 /// Regards both *this and RHS as signed quantities and compares them for
1256 /// validity of the less-or-equal relationship.
1257 ///
1258 /// \returns true if *this <= RHS when both are considered signed.
1259 bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
1260
1261 /// Signed less or equal comparison
1262 ///
1263 /// Regards both *this as a signed quantity and compares it with RHS for the
1264 /// validity of the less-or-equal relationship.
1265 ///
1266 /// \returns true if *this <= RHS when considered signed.
1267 bool sle(uint64_t RHS) const { return !sgt(RHS); }
1268
1269 /// Unsigned greater than comparison
1270 ///
1271 /// Regards both *this and RHS as unsigned quantities and compares them for
1272 /// the validity of the greater-than relationship.
1273 ///
1274 /// \returns true if *this > RHS when both are considered unsigned.
1275 bool ugt(const APInt &RHS) const { return !ule(RHS); }
1276
1277 /// Unsigned greater than comparison
1278 ///
1279 /// Regards both *this as an unsigned quantity and compares it with RHS for
1280 /// the validity of the greater-than relationship.
1281 ///
1282 /// \returns true if *this > RHS when considered unsigned.
1283 bool ugt(uint64_t RHS) const {
1284 // Only need to check active bits if not a single word.
1285 return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
1286 }
1287
1288 /// Signed greater than comparison
1289 ///
1290 /// Regards both *this and RHS as signed quantities and compares them for the
1291 /// validity of the greater-than relationship.
1292 ///
1293 /// \returns true if *this > RHS when both are considered signed.
1294 bool sgt(const APInt &RHS) const { return !sle(RHS); }
1295
1296 /// Signed greater than comparison
1297 ///
1298 /// Regards both *this as a signed quantity and compares it with RHS for
1299 /// the validity of the greater-than relationship.
1300 ///
1301 /// \returns true if *this > RHS when considered signed.
1302 bool sgt(int64_t RHS) const {
1303 return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative()
1304 : getSExtValue() > RHS;
1305 }
1306
1307 /// Unsigned greater or equal comparison
1308 ///
1309 /// Regards both *this and RHS as unsigned quantities and compares them for
1310 /// validity of the greater-or-equal relationship.
1311 ///
1312 /// \returns true if *this >= RHS when both are considered unsigned.
1313 bool uge(const APInt &RHS) const { return !ult(RHS); }
1314
1315 /// Unsigned greater or equal comparison
1316 ///
1317 /// Regards both *this as an unsigned quantity and compares it with RHS for
1318 /// the validity of the greater-or-equal relationship.
1319 ///
1320 /// \returns true if *this >= RHS when considered unsigned.
1321 bool uge(uint64_t RHS) const { return !ult(RHS); }
1322
1323 /// Signed greater or equal comparison
1324 ///
1325 /// Regards both *this and RHS as signed quantities and compares them for
1326 /// validity of the greater-or-equal relationship.
1327 ///
1328 /// \returns true if *this >= RHS when both are considered signed.
1329 bool sge(const APInt &RHS) const { return !slt(RHS); }
1330
1331 /// Signed greater or equal comparison
1332 ///
1333 /// Regards both *this as a signed quantity and compares it with RHS for
1334 /// the validity of the greater-or-equal relationship.
1335 ///
1336 /// \returns true if *this >= RHS when considered signed.
1337 bool sge(int64_t RHS) const { return !slt(RHS); }
1338
1339 /// This operation tests if there are any pairs of corresponding bits
1340 /// between this APInt and RHS that are both set.
1341 bool intersects(const APInt &RHS) const {
1342 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1343 if (isSingleWord())
1344 return (U.VAL & RHS.U.VAL) != 0;
1345 return intersectsSlowCase(RHS);
1346 }
1347
1348 /// This operation checks that all bits set in this APInt are also set in RHS.
1349 bool isSubsetOf(const APInt &RHS) const {
1350 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1351 if (isSingleWord())
1352 return (U.VAL & ~RHS.U.VAL) == 0;
1353 return isSubsetOfSlowCase(RHS);
1354 }
1355
1356 /// @}
1357 /// \name Resizing Operators
1358 /// @{
1359
1360 /// Truncate to new width.
1361 ///
1362 /// Truncate the APInt to a specified width. It is an error to specify a width
1363 /// that is greater than or equal to the current width.
1364 APInt trunc(unsigned width) const;
1365
1366 /// Truncate to new width with unsigned saturation.
1367 ///
1368 /// If the APInt, treated as unsigned integer, can be losslessly truncated to
1369 /// the new bitwidth, then return truncated APInt. Else, return max value.
1370 APInt truncUSat(unsigned width) const;
1371
1372 /// Truncate to new width with signed saturation.
1373 ///
1374 /// If this APInt, treated as signed integer, can be losslessly truncated to
1375 /// the new bitwidth, then return truncated APInt. Else, return either
1376 /// signed min value if the APInt was negative, or signed max value.
1377 APInt truncSSat(unsigned width) const;
1378
1379 /// Sign extend to a new width.
1380 ///
1381 /// This operation sign extends the APInt to a new width. If the high order
1382 /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1383 /// It is an error to specify a width that is less than or equal to the
1384 /// current width.
1385 APInt sext(unsigned width) const;
1386
1387 /// Zero extend to a new width.
1388 ///
1389 /// This operation zero extends the APInt to a new width. The high order bits
1390 /// are filled with 0 bits. It is an error to specify a width that is less
1391 /// than or equal to the current width.
1392 APInt zext(unsigned width) const;
1393
1394 /// Sign extend or truncate to width
1395 ///
1396 /// Make this APInt have the bit width given by \p width. The value is sign
1397 /// extended, truncated, or left alone to make it that width.
1398 APInt sextOrTrunc(unsigned width) const;
1399
1400 /// Zero extend or truncate to width
1401 ///
1402 /// Make this APInt have the bit width given by \p width. The value is zero
1403 /// extended, truncated, or left alone to make it that width.
1404 APInt zextOrTrunc(unsigned width) const;
1405
1406 /// Truncate to width
1407 ///
1408 /// Make this APInt have the bit width given by \p width. The value is
1409 /// truncated or left alone to make it that width.
1410 APInt truncOrSelf(unsigned width) const;
1411
1412 /// Sign extend or truncate to width
1413 ///
1414 /// Make this APInt have the bit width given by \p width. The value is sign
1415 /// extended, or left alone to make it that width.
1416 APInt sextOrSelf(unsigned width) const;
1417
1418 /// Zero extend or truncate to width
1419 ///
1420 /// Make this APInt have the bit width given by \p width. The value is zero
1421 /// extended, or left alone to make it that width.
1422 APInt zextOrSelf(unsigned width) const;
1423
1424 /// @}
1425 /// \name Bit Manipulation Operators
1426 /// @{
1427
1428 /// Set every bit to 1.
1429 void setAllBits() {
1430 if (isSingleWord())
1431 U.VAL = WORDTYPE_MAX;
1432 else
1433 // Set all the bits in all the words.
1434 memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
1435 // Clear the unused ones
1436 clearUnusedBits();
1437 }
1438
1439 /// Set a given bit to 1.
1440 ///
1441 /// Set the given bit to 1 whose position is given as "bitPosition".
1442 void setBit(unsigned BitPosition) {
1443 assert(BitPosition < BitWidth && "BitPosition out of range");
1444 WordType Mask = maskBit(BitPosition);
1445 if (isSingleWord())
1446 U.VAL |= Mask;
1447 else
1448 U.pVal[whichWord(BitPosition)] |= Mask;
1449 }
1450
1451 /// Set the sign bit to 1.
1452 void setSignBit() {
1453 setBit(BitWidth - 1);
1454 }
1455
1456 /// Set a given bit to a given value.
1457 void setBitVal(unsigned BitPosition, bool BitValue) {
1458 if (BitValue)
1459 setBit(BitPosition);
1460 else
1461 clearBit(BitPosition);
1462 }
1463
1464 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1465 /// This function handles "wrap" case when \p loBit >= \p hiBit, and calls
1466 /// setBits when \p loBit < \p hiBit.
1467 /// For \p loBit == \p hiBit wrap case, set every bit to 1.
1468 void setBitsWithWrap(unsigned loBit, unsigned hiBit) {
1469 assert(hiBit <= BitWidth && "hiBit out of range");
1470 assert(loBit <= BitWidth && "loBit out of range");
1471 if (loBit < hiBit) {
1472 setBits(loBit, hiBit);
1473 return;
1474 }
1475 setLowBits(hiBit);
1476 setHighBits(BitWidth - loBit);
1477 }
1478
1479 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1480 /// This function handles case when \p loBit <= \p hiBit.
1481 void setBits(unsigned loBit, unsigned hiBit) {
1482 assert(hiBit <= BitWidth && "hiBit out of range");
1483 assert(loBit <= BitWidth && "loBit out of range");
1484 assert(loBit <= hiBit && "loBit greater than hiBit");
1485 if (loBit == hiBit)
1486 return;
1487 if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
1488 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
1489 mask <<= loBit;
1490 if (isSingleWord())
1491 U.VAL |= mask;
1492 else
1493 U.pVal[0] |= mask;
1494 } else {
1495 setBitsSlowCase(loBit, hiBit);
1496 }
1497 }
1498
1499 /// Set the top bits starting from loBit.
1500 void setBitsFrom(unsigned loBit) {
1501 return setBits(loBit, BitWidth);
1502 }
1503
1504 /// Set the bottom loBits bits.
1505 void setLowBits(unsigned loBits) {
1506 return setBits(0, loBits);
1507 }
1508
1509 /// Set the top hiBits bits.
1510 void setHighBits(unsigned hiBits) {
1511 return setBits(BitWidth - hiBits, BitWidth);
1512 }
1513
1514 /// Set every bit to 0.
1515 void clearAllBits() {
1516 if (isSingleWord())
1517 U.VAL = 0;
1518 else
1519 memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
1520 }
1521
1522 /// Set a given bit to 0.
1523 ///
1524 /// Set the given bit to 0 whose position is given as "bitPosition".
1525 void clearBit(unsigned BitPosition) {
1526 assert(BitPosition < BitWidth && "BitPosition out of range");
1527 WordType Mask = ~maskBit(BitPosition);
1528 if (isSingleWord())
1529 U.VAL &= Mask;
1530 else
1531 U.pVal[whichWord(BitPosition)] &= Mask;
1532 }
1533
1534 /// Set bottom loBits bits to 0.
1535 void clearLowBits(unsigned loBits) {
1536 assert(loBits <= BitWidth && "More bits than bitwidth");
1537 APInt Keep = getHighBitsSet(BitWidth, BitWidth - loBits);
1538 *this &= Keep;
1539 }
1540
1541 /// Set the sign bit to 0.
1542 void clearSignBit() {
1543 clearBit(BitWidth - 1);
1544 }
1545
1546 /// Toggle every bit to its opposite value.
1547 void flipAllBits() {
1548 if (isSingleWord()) {
1549 U.VAL ^= WORDTYPE_MAX;
1550 clearUnusedBits();
1551 } else {
1552 flipAllBitsSlowCase();
1553 }
1554 }
1555
1556 /// Toggles a given bit to its opposite value.
1557 ///
1558 /// Toggle a given bit to its opposite value whose position is given
1559 /// as "bitPosition".
1560 void flipBit(unsigned bitPosition);
1561
1562 /// Negate this APInt in place.
1563 void negate() {
1564 flipAllBits();
1565 ++(*this);
1566 }
1567
1568 /// Insert the bits from a smaller APInt starting at bitPosition.
1569 void insertBits(const APInt &SubBits, unsigned bitPosition);
1570 void insertBits(uint64_t SubBits, unsigned bitPosition, unsigned numBits);
1571
1572 /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
1573 APInt extractBits(unsigned numBits, unsigned bitPosition) const;
1574 uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const;
1575
1576 /// @}
1577 /// \name Value Characterization Functions
1578 /// @{
1579
1580 /// Return the number of bits in the APInt.
1581 unsigned getBitWidth() const { return BitWidth; }
1582
1583 /// Get the number of words.
1584 ///
1585 /// Here one word's bitwidth equals to that of uint64_t.
1586 ///
1587 /// \returns the number of words to hold the integer value of this APInt.
1588 unsigned getNumWords() const { return getNumWords(BitWidth); }
1589
1590 /// Get the number of words.
1591 ///
1592 /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1593 ///
1594 /// \returns the number of words to hold the integer value with a given bit
1595 /// width.
1596 static unsigned getNumWords(unsigned BitWidth) {
1597 return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1598 }
1599
1600 /// Compute the number of active bits in the value
1601 ///
1602 /// This function returns the number of active bits which is defined as the
1603 /// bit width minus the number of leading zeros. This is used in several
1604 /// computations to see how "wide" the value is.
1605 unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
1606
1607 /// Compute the number of active words in the value of this APInt.
1608 ///
1609 /// This is used in conjunction with getActiveData to extract the raw value of
1610 /// the APInt.
1611 unsigned getActiveWords() const {
1612 unsigned numActiveBits = getActiveBits();
1613 return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1614 }
1615
1616 /// Get the minimum bit size for this signed APInt
1617 ///
1618 /// Computes the minimum bit width for this APInt while considering it to be a
1619 /// signed (and probably negative) value. If the value is not negative, this
1620 /// function returns the same value as getActiveBits()+1. Otherwise, it
1621 /// returns the smallest bit width that will retain the negative value. For
1622 /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1623 /// for -1, this function will always return 1.
1624 unsigned getMinSignedBits() const { return BitWidth - getNumSignBits() + 1; }
1625
1626 /// Get zero extended value
1627 ///
1628 /// This method attempts to return the value of this APInt as a zero extended
1629 /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1630 /// uint64_t. Otherwise an assertion will result.
1631 uint64_t getZExtValue() const {
1632 if (isSingleWord())
1633 return U.VAL;
1634 assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1635 return U.pVal[0];
1636 }
1637
1638 /// Get sign extended value
1639 ///
1640 /// This method attempts to return the value of this APInt as a sign extended
1641 /// int64_t. The bit width must be <= 64 or the value must fit within an
1642 /// int64_t. Otherwise an assertion will result.
1643 int64_t getSExtValue() const {
1644 if (isSingleWord())
1645 return SignExtend64(U.VAL, BitWidth);
1646 assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
1647 return int64_t(U.pVal[0]);
1648 }
1649
1650 /// Get bits required for string value.
1651 ///
1652 /// This method determines how many bits are required to hold the APInt
1653 /// equivalent of the string given by \p str.
1654 static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1655
1656 /// The APInt version of the countLeadingZeros functions in
1657 /// MathExtras.h.
1658 ///
1659 /// It counts the number of zeros from the most significant bit to the first
1660 /// one bit.
1661 ///
1662 /// \returns BitWidth if the value is zero, otherwise returns the number of
1663 /// zeros from the most significant bit to the first one bits.
1664 unsigned countLeadingZeros() const {
1665 if (isSingleWord()) {
1666 unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1667 return llvm::countLeadingZeros(U.VAL) - unusedBits;
1668 }
1669 return countLeadingZerosSlowCase();
1670 }
1671
1672 /// Count the number of leading one bits.
1673 ///
1674 /// This function is an APInt version of the countLeadingOnes
1675 /// functions in MathExtras.h. It counts the number of ones from the most
1676 /// significant bit to the first zero bit.
1677 ///
1678 /// \returns 0 if the high order bit is not set, otherwise returns the number
1679 /// of 1 bits from the most significant to the least
1680 unsigned countLeadingOnes() const {
1681 if (isSingleWord())
1682 return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
1683 return countLeadingOnesSlowCase();
1684 }
1685
1686 /// Computes the number of leading bits of this APInt that are equal to its
1687 /// sign bit.
1688 unsigned getNumSignBits() const {
1689 return isNegative() ? countLeadingOnes() : countLeadingZeros();
1690 }
1691
1692 /// Count the number of trailing zero bits.
1693 ///
1694 /// This function is an APInt version of the countTrailingZeros
1695 /// functions in MathExtras.h. It counts the number of zeros from the least
1696 /// significant bit to the first set bit.
1697 ///
1698 /// \returns BitWidth if the value is zero, otherwise returns the number of
1699 /// zeros from the least significant bit to the first one bit.
1700 unsigned countTrailingZeros() const {
1701 if (isSingleWord()) {
1702 unsigned TrailingZeros = llvm::countTrailingZeros(U.VAL);
1703 return (TrailingZeros > BitWidth ? BitWidth : TrailingZeros);
1704 }
1705 return countTrailingZerosSlowCase();
1706 }
1707
1708 /// Count the number of trailing one bits.
1709 ///
1710 /// This function is an APInt version of the countTrailingOnes
1711 /// functions in MathExtras.h. It counts the number of ones from the least
1712 /// significant bit to the first zero bit.
1713 ///
1714 /// \returns BitWidth if the value is all ones, otherwise returns the number
1715 /// of ones from the least significant bit to the first zero bit.
1716 unsigned countTrailingOnes() const {
1717 if (isSingleWord())
1718 return llvm::countTrailingOnes(U.VAL);
1719 return countTrailingOnesSlowCase();
1720 }
1721
1722 /// Count the number of bits set.
1723 ///
1724 /// This function is an APInt version of the countPopulation functions
1725 /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
1726 ///
1727 /// \returns 0 if the value is zero, otherwise returns the number of set bits.
1728 unsigned countPopulation() const {
1729 if (isSingleWord())
1730 return llvm::countPopulation(U.VAL);
1731 return countPopulationSlowCase();
1732 }
1733
1734 /// @}
1735 /// \name Conversion Functions
1736 /// @{
1737 void print(raw_ostream &OS, bool isSigned) const;
1738
1739 /// Converts an APInt to a string and append it to Str. Str is commonly a
1740 /// SmallString.
1741 void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1742 bool formatAsCLiteral = false) const;
1743
1744 /// Considers the APInt to be unsigned and converts it into a string in the
1745 /// radix given. The radix can be 2, 8, 10 16, or 36.
1746 void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1747 toString(Str, Radix, false, false);
1748 }
1749
1750 /// Considers the APInt to be signed and converts it into a string in the
1751 /// radix given. The radix can be 2, 8, 10, 16, or 36.
1752 void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1753 toString(Str, Radix, true, false);
1754 }
1755
1756 /// Return the APInt as a std::string.
1757 ///
1758 /// Note that this is an inefficient method. It is better to pass in a
1759 /// SmallVector/SmallString to the methods above to avoid thrashing the heap
1760 /// for the string.
1761 std::string toString(unsigned Radix, bool Signed) const;
1762
1763 /// \returns a byte-swapped representation of this APInt Value.
1764 APInt byteSwap() const;
1765
1766 /// \returns the value with the bit representation reversed of this APInt
1767 /// Value.
1768 APInt reverseBits() const;
1769
1770 /// Converts this APInt to a double value.
1771 double roundToDouble(bool isSigned) const;
1772
1773 /// Converts this unsigned APInt to a double value.
1774 double roundToDouble() const { return roundToDouble(false); }
1775
1776 /// Converts this signed APInt to a double value.
1777 double signedRoundToDouble() const { return roundToDouble(true); }
1778
1779 /// Converts APInt bits to a double
1780 ///
1781 /// The conversion does not do a translation from integer to double, it just
1782 /// re-interprets the bits as a double. Note that it is valid to do this on
1783 /// any bit width. Exactly 64 bits will be translated.
1784 double bitsToDouble() const {
1785 return BitsToDouble(getWord(0));
1786 }
1787
1788 /// Converts APInt bits to a float
1789 ///
1790 /// The conversion does not do a translation from integer to float, it just
1791 /// re-interprets the bits as a float. Note that it is valid to do this on
1792 /// any bit width. Exactly 32 bits will be translated.
1793 float bitsToFloat() const {
1794 return BitsToFloat(static_cast<uint32_t>(getWord(0)));
1795 }
1796
1797 /// Converts a double to APInt bits.
1798 ///
1799 /// The conversion does not do a translation from double to integer, it just
1800 /// re-interprets the bits of the double.
1801 static APInt doubleToBits(double V) {
1802 return APInt(sizeof(double) * CHAR_BIT, DoubleToBits(V));
1803 }
1804
1805 /// Converts a float to APInt bits.
1806 ///
1807 /// The conversion does not do a translation from float to integer, it just
1808 /// re-interprets the bits of the float.
1809 static APInt floatToBits(float V) {
1810 return APInt(sizeof(float) * CHAR_BIT, FloatToBits(V));
1811 }
1812
1813 /// @}
1814 /// \name Mathematics Operations
1815 /// @{
1816
1817 /// \returns the floor log base 2 of this APInt.
1818 unsigned logBase2() const { return getActiveBits() - 1; }
1819
1820 /// \returns the ceil log base 2 of this APInt.
1821 unsigned ceilLogBase2() const {
1822 APInt temp(*this);
1823 --temp;
1824 return temp.getActiveBits();
1825 }
1826
1827 /// \returns the nearest log base 2 of this APInt. Ties round up.
1828 ///
1829 /// NOTE: When we have a BitWidth of 1, we define:
1830 ///
1831 /// log2(0) = UINT32_MAX
1832 /// log2(1) = 0
1833 ///
1834 /// to get around any mathematical concerns resulting from
1835 /// referencing 2 in a space where 2 does no exist.
1836 unsigned nearestLogBase2() const {
1837 // Special case when we have a bitwidth of 1. If VAL is 1, then we
1838 // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to
1839 // UINT32_MAX.
1840 if (BitWidth == 1)
1841 return U.VAL - 1;
1842
1843 // Handle the zero case.
1844 if (isNullValue())
1845 return UINT32_MAX;
1846
1847 // The non-zero case is handled by computing:
1848 //
1849 // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1850 //
1851 // where x[i] is referring to the value of the ith bit of x.
1852 unsigned lg = logBase2();
1853 return lg + unsigned((*this)[lg - 1]);
1854 }
1855
1856 /// \returns the log base 2 of this APInt if its an exact power of two, -1
1857 /// otherwise
1858 int32_t exactLogBase2() const {
1859 if (!isPowerOf2())
1860 return -1;
1861 return logBase2();
1862 }
1863
1864 /// Compute the square root
1865 APInt sqrt() const;
1866
1867 /// Get the absolute value;
1868 ///
1869 /// If *this is < 0 then return -(*this), otherwise *this;
1870 APInt abs() const {
1871 if (isNegative())
1872 return -(*this);
1873 return *this;
1874 }
1875
1876 /// \returns the multiplicative inverse for a given modulo.
1877 APInt multiplicativeInverse(const APInt &modulo) const;
1878
1879 /// @}
1880 /// \name Support for division by constant
1881 /// @{
1882
1883 /// Calculate the magic number for signed division by a constant.
1884 struct ms;
1885 ms magic() const;
1886
1887 /// Calculate the magic number for unsigned division by a constant.
1888 struct mu;
1889 mu magicu(unsigned LeadingZeros = 0) const;
1890
1891 /// @}
1892 /// \name Building-block Operations for APInt and APFloat
1893 /// @{
1894
1895 // These building block operations operate on a representation of arbitrary
1896 // precision, two's-complement, bignum integer values. They should be
1897 // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1898 // generally a pointer to the base of an array of integer parts, representing
1899 // an unsigned bignum, and a count of how many parts there are.
1900
1901 /// Sets the least significant part of a bignum to the input value, and zeroes
1902 /// out higher parts.
1903 static void tcSet(WordType *, WordType, unsigned);
1904
1905 /// Assign one bignum to another.
1906 static void tcAssign(WordType *, const WordType *, unsigned);
1907
1908 /// Returns true if a bignum is zero, false otherwise.
1909 static bool tcIsZero(const WordType *, unsigned);
1910
1911 /// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
1912 static int tcExtractBit(const WordType *, unsigned bit);
1913
1914 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1915 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1916 /// significant bit of DST. All high bits above srcBITS in DST are
1917 /// zero-filled.
1918 static void tcExtract(WordType *, unsigned dstCount,
1919 const WordType *, unsigned srcBits,
1920 unsigned srcLSB);
1921
1922 /// Set the given bit of a bignum. Zero-based.
1923 static void tcSetBit(WordType *, unsigned bit);
1924
1925 /// Clear the given bit of a bignum. Zero-based.
1926 static void tcClearBit(WordType *, unsigned bit);
1927
1928 /// Returns the bit number of the least or most significant set bit of a
1929 /// number. If the input number has no bits set -1U is returned.
1930 static unsigned tcLSB(const WordType *, unsigned n);
1931 static unsigned tcMSB(const WordType *parts, unsigned n);
1932
1933 /// Negate a bignum in-place.
1934 static void tcNegate(WordType *, unsigned);
1935
1936 /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1937 static WordType tcAdd(WordType *, const WordType *,
1938 WordType carry, unsigned);
1939 /// DST += RHS. Returns the carry flag.
1940 static WordType tcAddPart(WordType *, WordType, unsigned);
1941
1942 /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1943 static WordType tcSubtract(WordType *, const WordType *,
1944 WordType carry, unsigned);
1945 /// DST -= RHS. Returns the carry flag.
1946 static WordType tcSubtractPart(WordType *, WordType, unsigned);
1947
1948 /// DST += SRC * MULTIPLIER + PART if add is true
1949 /// DST = SRC * MULTIPLIER + PART if add is false
1950 ///
1951 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must
1952 /// start at the same point, i.e. DST == SRC.
1953 ///
1954 /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1955 /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1956 /// result, and if all of the omitted higher parts were zero return zero,
1957 /// otherwise overflow occurred and return one.
1958 static int tcMultiplyPart(WordType *dst, const WordType *src,
1959 WordType multiplier, WordType carry,
1960 unsigned srcParts, unsigned dstParts,
1961 bool add);
1962
1963 /// DST = LHS * RHS, where DST has the same width as the operands and is
1964 /// filled with the least significant parts of the result. Returns one if
1965 /// overflow occurred, otherwise zero. DST must be disjoint from both
1966 /// operands.
1967 static int tcMultiply(WordType *, const WordType *, const WordType *,
1968 unsigned);
1969
1970 /// DST = LHS * RHS, where DST has width the sum of the widths of the
1971 /// operands. No overflow occurs. DST must be disjoint from both operands.
1972 static void tcFullMultiply(WordType *, const WordType *,
1973 const WordType *, unsigned, unsigned);
1974
1975 /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1976 /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1977 /// REMAINDER to the remainder, return zero. i.e.
1978 ///
1979 /// OLD_LHS = RHS * LHS + REMAINDER
1980 ///
1981 /// SCRATCH is a bignum of the same size as the operands and result for use by
1982 /// the routine; its contents need not be initialized and are destroyed. LHS,
1983 /// REMAINDER and SCRATCH must be distinct.
1984 static int tcDivide(WordType *lhs, const WordType *rhs,
1985 WordType *remainder, WordType *scratch,
1986 unsigned parts);
1987
1988 /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
1989 /// restrictions on Count.
1990 static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
1991
1992 /// Shift a bignum right Count bits. Shifted in bits are zero. There are no
1993 /// restrictions on Count.
1994 static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
1995
1996 /// The obvious AND, OR and XOR and complement operations.
1997 static void tcAnd(WordType *, const WordType *, unsigned);
1998 static void tcOr(WordType *, const WordType *, unsigned);
1999 static void tcXor(WordType *, const WordType *, unsigned);
2000 static void tcComplement(WordType *, unsigned);
2001
2002 /// Comparison (unsigned) of two bignums.
2003 static int tcCompare(const WordType *, const WordType *, unsigned);
2004
2005 /// Increment a bignum in-place. Return the carry flag.
2006 static WordType tcIncrement(WordType *dst, unsigned parts) {
2007 return tcAddPart(dst, 1, parts);
2008 }
2009
2010 /// Decrement a bignum in-place. Return the borrow flag.
2011 static WordType tcDecrement(WordType *dst, unsigned parts) {
2012 return tcSubtractPart(dst, 1, parts);
2013 }
2014
2015 /// Set the least significant BITS and clear the rest.
2016 static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits);
2017
2018 /// debug method
2019 void dump() const;
2020
2021 /// @}
2022};
2023
2024/// Magic data for optimising signed division by a constant.
2025struct APInt::ms {
2026 APInt m; ///< magic number
2027 unsigned s; ///< shift amount
2028};
2029
2030/// Magic data for optimising unsigned division by a constant.
2031struct APInt::mu {
2032 APInt m; ///< magic number
2033 bool a; ///< add indicator
2034 unsigned s; ///< shift amount
2035};
2036
2037inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
2038
2039inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
2040
2041/// Unary bitwise complement operator.
2042///
2043/// \returns an APInt that is the bitwise complement of \p v.
2044inline APInt operator~(APInt v) {
2045 v.flipAllBits();
2046 return v;
2047}
2048
2049inline APInt operator&(APInt a, const APInt &b) {
2050 a &= b;
2051 return a;
2052}
2053
2054inline APInt operator&(const APInt &a, APInt &&b) {
2055 b &= a;
2056 return std::move(b);
2057}
2058
2059inline APInt operator&(APInt a, uint64_t RHS) {
2060 a &= RHS;
2061 return a;
2062}
2063
2064inline APInt operator&(uint64_t LHS, APInt b) {
2065 b &= LHS;
2066 return b;
2067}
2068
2069inline APInt operator|(APInt a, const APInt &b) {
2070 a |= b;
2071 return a;
2072}
2073
2074inline APInt operator|(const APInt &a, APInt &&b) {
2075 b |= a;
2076 return std::move(b);
2077}
2078
2079inline APInt operator|(APInt a, uint64_t RHS) {
2080 a |= RHS;
2081 return a;
2082}
2083
2084inline APInt operator|(uint64_t LHS, APInt b) {
2085 b |= LHS;
2086 return b;
2087}
2088
2089inline APInt operator^(APInt a, const APInt &b) {
2090 a ^= b;
2091 return a;
2092}
2093
2094inline APInt operator^(const APInt &a, APInt &&b) {
2095 b ^= a;
2096 return std::move(b);
2097}
2098
2099inline APInt operator^(APInt a, uint64_t RHS) {
2100 a ^= RHS;
2101 return a;
2102}
2103
2104inline APInt operator^(uint64_t LHS, APInt b) {
2105 b ^= LHS;
2106 return b;
2107}
2108
2109inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
2110 I.print(OS, true);
2111 return OS;
2112}
2113
2114inline APInt operator-(APInt v) {
2115 v.negate();
2116 return v;
2117}
2118
2119inline APInt operator+(APInt a, const APInt &b) {
2120 a += b;
2121 return a;
2122}
2123
2124inline APInt operator+(const APInt &a, APInt &&b) {
2125 b += a;
2126 return std::move(b);
2127}
2128
2129inline APInt operator+(APInt a, uint64_t RHS) {
2130 a += RHS;
2131 return a;
2132}
2133
2134inline APInt operator+(uint64_t LHS, APInt b) {
2135 b += LHS;
2136 return b;
2137}
2138
2139inline APInt operator-(APInt a, const APInt &b) {
2140 a -= b;
2141 return a;
2142}
2143
2144inline APInt operator-(const APInt &a, APInt &&b) {
2145 b.negate();
2146 b += a;
2147 return std::move(b);
2148}
2149
2150inline APInt operator-(APInt a, uint64_t RHS) {
2151 a -= RHS;
2152 return a;
2153}
2154
2155inline APInt operator-(uint64_t LHS, APInt b) {
2156 b.negate();
2157 b += LHS;
2158 return b;
2159}
2160
2161inline APInt operator*(APInt a, uint64_t RHS) {
2162 a *= RHS;
2163 return a;
2164}
2165
2166inline APInt operator*(uint64_t LHS, APInt b) {
2167 b *= LHS;
2168 return b;
2169}
2170
2171
2172namespace APIntOps {
2173
2174/// Determine the smaller of two APInts considered to be signed.
2175inline const APInt &smin(const APInt &A, const APInt &B) {
2176 return A.slt(B) ? A : B;
2177}
2178
2179/// Determine the larger of two APInts considered to be signed.
2180inline const APInt &smax(const APInt &A, const APInt &B) {
2181 return A.sgt(B) ? A : B;
2182}
2183
2184/// Determine the smaller of two APInts considered to be unsigned.
2185inline const APInt &umin(const APInt &A, const APInt &B) {
2186 return A.ult(B) ? A : B;
2187}
2188
2189/// Determine the larger of two APInts considered to be unsigned.
2190inline const APInt &umax(const APInt &A, const APInt &B) {
2191 return A.ugt(B) ? A : B;
2192}
2193
2194/// Compute GCD of two unsigned APInt values.
2195///
2196/// This function returns the greatest common divisor of the two APInt values
2197/// using Stein's algorithm.
2198///
2199/// \returns the greatest common divisor of A and B.
2200APInt GreatestCommonDivisor(APInt A, APInt B);
2201
2202/// Converts the given APInt to a double value.
2203///
2204/// Treats the APInt as an unsigned value for conversion purposes.
2205inline double RoundAPIntToDouble(const APInt &APIVal) {
2206 return APIVal.roundToDouble();
2207}
2208
2209/// Converts the given APInt to a double value.
2210///
2211/// Treats the APInt as a signed value for conversion purposes.
2212inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
2213 return APIVal.signedRoundToDouble();
2214}
2215
2216/// Converts the given APInt to a float vlalue.
2217inline float RoundAPIntToFloat(const APInt &APIVal) {
2218 return float(RoundAPIntToDouble(APIVal));
2219}
2220
2221/// Converts the given APInt to a float value.
2222///
2223/// Treats the APInt as a signed value for conversion purposes.
2224inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
2225 return float(APIVal.signedRoundToDouble());
2226}
2227
2228/// Converts the given double value into a APInt.
2229///
2230/// This function convert a double value to an APInt value.
2231APInt RoundDoubleToAPInt(double Double, unsigned width);
2232
2233/// Converts a float value into a APInt.
2234///
2235/// Converts a float value into an APInt value.
2236inline APInt RoundFloatToAPInt(float Float, unsigned width) {
2237 return RoundDoubleToAPInt(double(Float), width);
2238}
2239
2240/// Return A unsign-divided by B, rounded by the given rounding mode.
2241APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2242
2243/// Return A sign-divided by B, rounded by the given rounding mode.
2244APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2245
2246/// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range
2247/// (e.g. 32 for i32).
2248/// This function finds the smallest number n, such that
2249/// (a) n >= 0 and q(n) = 0, or
2250/// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all
2251/// integers, belong to two different intervals [Rk, Rk+R),
2252/// where R = 2^BW, and k is an integer.
2253/// The idea here is to find when q(n) "overflows" 2^BW, while at the
2254/// same time "allowing" subtraction. In unsigned modulo arithmetic a
2255/// subtraction (treated as addition of negated numbers) would always
2256/// count as an overflow, but here we want to allow values to decrease
2257/// and increase as long as they are within the same interval.
2258/// Specifically, adding of two negative numbers should not cause an
2259/// overflow (as long as the magnitude does not exceed the bit width).
2260/// On the other hand, given a positive number, adding a negative
2261/// number to it can give a negative result, which would cause the
2262/// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is
2263/// treated as a special case of an overflow.
2264///
2265/// This function returns None if after finding k that minimizes the
2266/// positive solution to q(n) = kR, both solutions are contained between
2267/// two consecutive integers.
2268///
2269/// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation
2270/// in arithmetic modulo 2^BW, and treating the values as signed) by the
2271/// virtue of *signed* overflow. This function will *not* find such an n,
2272/// however it may find a value of n satisfying the inequalities due to
2273/// an *unsigned* overflow (if the values are treated as unsigned).
2274/// To find a solution for a signed overflow, treat it as a problem of
2275/// finding an unsigned overflow with a range with of BW-1.
2276///
2277/// The returned value may have a different bit width from the input
2278/// coefficients.
2279Optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2280 unsigned RangeWidth);
2281
2282/// Compare two values, and if they are different, return the position of the
2283/// most significant bit that is different in the values.
2284Optional<unsigned> GetMostSignificantDifferentBit(const APInt &A,
2285 const APInt &B);
2286
2287} // End of APIntOps namespace
2288
2289// See friend declaration above. This additional declaration is required in
2290// order to compile LLVM with IBM xlC compiler.
2291hash_code hash_value(const APInt &Arg);
2292
2293/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
2294/// with the integer held in IntVal.
2295void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes);
2296
2297/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
2298/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
2299void LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, unsigned LoadBytes);
2300
2301} // namespace llvm
2302
2303#endif
2304