1//===- llvm/ADT/SparseMultiSet.h - Sparse multiset --------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file defines the SparseMultiSet class, which adds multiset behavior to
11/// the SparseSet.
12///
13/// A sparse multiset holds a small number of objects identified by integer keys
14/// from a moderately sized universe. The sparse multiset uses more memory than
15/// other containers in order to provide faster operations. Any key can map to
16/// multiple values. A SparseMultiSetNode class is provided, which serves as a
17/// convenient base class for the contents of a SparseMultiSet.
18///
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ADT_SPARSEMULTISET_H
22#define LLVM_ADT_SPARSEMULTISET_H
23
24#include "llvm/ADT/identity.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/ADT/SparseSet.h"
27#include <cassert>
28#include <cstdint>
29#include <cstdlib>
30#include <iterator>
31#include <limits>
32#include <utility>
33
34namespace llvm {
35
36/// Fast multiset implementation for objects that can be identified by small
37/// unsigned keys.
38///
39/// SparseMultiSet allocates memory proportional to the size of the key
40/// universe, so it is not recommended for building composite data structures.
41/// It is useful for algorithms that require a single set with fast operations.
42///
43/// Compared to DenseSet and DenseMap, SparseMultiSet provides constant-time
44/// fast clear() as fast as a vector. The find(), insert(), and erase()
45/// operations are all constant time, and typically faster than a hash table.
46/// The iteration order doesn't depend on numerical key values, it only depends
47/// on the order of insert() and erase() operations. Iteration order is the
48/// insertion order. Iteration is only provided over elements of equivalent
49/// keys, but iterators are bidirectional.
50///
51/// Compared to BitVector, SparseMultiSet<unsigned> uses 8x-40x more memory, but
52/// offers constant-time clear() and size() operations as well as fast iteration
53/// independent on the size of the universe.
54///
55/// SparseMultiSet contains a dense vector holding all the objects and a sparse
56/// array holding indexes into the dense vector. Most of the memory is used by
57/// the sparse array which is the size of the key universe. The SparseT template
58/// parameter provides a space/speed tradeoff for sets holding many elements.
59///
60/// When SparseT is uint32_t, find() only touches up to 3 cache lines, but the
61/// sparse array uses 4 x Universe bytes.
62///
63/// When SparseT is uint8_t (the default), find() touches up to 3+[N/256] cache
64/// lines, but the sparse array is 4x smaller. N is the number of elements in
65/// the set.
66///
67/// For sets that may grow to thousands of elements, SparseT should be set to
68/// uint16_t or uint32_t.
69///
70/// Multiset behavior is provided by providing doubly linked lists for values
71/// that are inlined in the dense vector. SparseMultiSet is a good choice when
72/// one desires a growable number of entries per key, as it will retain the
73/// SparseSet algorithmic properties despite being growable. Thus, it is often a
74/// better choice than a SparseSet of growable containers or a vector of
75/// vectors. SparseMultiSet also keeps iterators valid after erasure (provided
76/// the iterators don't point to the element erased), allowing for more
77/// intuitive and fast removal.
78///
79/// @tparam ValueT The type of objects in the set.
80/// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT.
81/// @tparam SparseT An unsigned integer type. See above.
82///
83template<typename ValueT,
84 typename KeyFunctorT = identity<unsigned>,
85 typename SparseT = uint8_t>
86class SparseMultiSet {
87 static_assert(std::is_unsigned_v<SparseT>,
88 "SparseT must be an unsigned integer type");
89
90 /// The actual data that's stored, as a doubly-linked list implemented via
91 /// indices into the DenseVector. The doubly linked list is implemented
92 /// circular in Prev indices, and INVALID-terminated in Next indices. This
93 /// provides efficient access to list tails. These nodes can also be
94 /// tombstones, in which case they are actually nodes in a single-linked
95 /// freelist of recyclable slots.
96 struct SMSNode {
97 static constexpr unsigned INVALID = ~0U;
98
99 ValueT Data;
100 unsigned Prev;
101 unsigned Next;
102
103 SMSNode(ValueT D, unsigned P, unsigned N) : Data(D), Prev(P), Next(N) {}
104
105 /// List tails have invalid Nexts.
106 bool isTail() const {
107 return Next == INVALID;
108 }
109
110 /// Whether this node is a tombstone node, and thus is in our freelist.
111 bool isTombstone() const {
112 return Prev == INVALID;
113 }
114
115 /// Since the list is circular in Prev, all non-tombstone nodes have a valid
116 /// Prev.
117 bool isValid() const { return Prev != INVALID; }
118 };
119
120 using KeyT = typename KeyFunctorT::argument_type;
121 using DenseT = SmallVector<SMSNode, 8>;
122 DenseT Dense;
123 SparseT *Sparse = nullptr;
124 unsigned Universe = 0;
125 KeyFunctorT KeyIndexOf;
126 SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf;
127
128 /// We have a built-in recycler for reusing tombstone slots. This recycler
129 /// puts a singly-linked free list into tombstone slots, allowing us quick
130 /// erasure, iterator preservation, and dense size.
131 unsigned FreelistIdx = SMSNode::INVALID;
132 unsigned NumFree = 0;
133
134 unsigned sparseIndex(const ValueT &Val) const {
135 assert(ValIndexOf(Val) < Universe &&
136 "Invalid key in set. Did object mutate?");
137 return ValIndexOf(Val);
138 }
139 unsigned sparseIndex(const SMSNode &N) const { return sparseIndex(N.Data); }
140
141 /// Whether the given entry is the head of the list. List heads's previous
142 /// pointers are to the tail of the list, allowing for efficient access to the
143 /// list tail. D must be a valid entry node.
144 bool isHead(const SMSNode &D) const {
145 assert(D.isValid() && "Invalid node for head");
146 return Dense[D.Prev].isTail();
147 }
148
149 /// Whether the given entry is a singleton entry, i.e. the only entry with
150 /// that key.
151 bool isSingleton(const SMSNode &N) const {
152 assert(N.isValid() && "Invalid node for singleton");
153 // Is N its own predecessor?
154 return &Dense[N.Prev] == &N;
155 }
156
157 /// Add in the given SMSNode. Uses a free entry in our freelist if
158 /// available. Returns the index of the added node.
159 unsigned addValue(const ValueT& V, unsigned Prev, unsigned Next) {
160 if (NumFree == 0) {
161 Dense.push_back(SMSNode(V, Prev, Next));
162 return Dense.size() - 1;
163 }
164
165 // Peel off a free slot
166 unsigned Idx = FreelistIdx;
167 unsigned NextFree = Dense[Idx].Next;
168 assert(Dense[Idx].isTombstone() && "Non-tombstone free?");
169
170 Dense[Idx] = SMSNode(V, Prev, Next);
171 FreelistIdx = NextFree;
172 --NumFree;
173 return Idx;
174 }
175
176 /// Make the current index a new tombstone. Pushes it onto the freelist.
177 void makeTombstone(unsigned Idx) {
178 Dense[Idx].Prev = SMSNode::INVALID;
179 Dense[Idx].Next = FreelistIdx;
180 FreelistIdx = Idx;
181 ++NumFree;
182 }
183
184public:
185 using value_type = ValueT;
186 using reference = ValueT &;
187 using const_reference = const ValueT &;
188 using pointer = ValueT *;
189 using const_pointer = const ValueT *;
190 using size_type = unsigned;
191
192 SparseMultiSet() = default;
193 SparseMultiSet(const SparseMultiSet &) = delete;
194 SparseMultiSet &operator=(const SparseMultiSet &) = delete;
195 ~SparseMultiSet() { free(Sparse); }
196
197 /// Set the universe size which determines the largest key the set can hold.
198 /// The universe must be sized before any elements can be added.
199 ///
200 /// @param U Universe size. All object keys must be less than U.
201 ///
202 void setUniverse(unsigned U) {
203 // It's not hard to resize the universe on a non-empty set, but it doesn't
204 // seem like a likely use case, so we can add that code when we need it.
205 assert(empty() && "Can only resize universe on an empty map");
206 // Hysteresis prevents needless reallocations.
207 if (U >= Universe/4 && U <= Universe)
208 return;
209 free(Sparse);
210 // The Sparse array doesn't actually need to be initialized, so malloc
211 // would be enough here, but that will cause tools like valgrind to
212 // complain about branching on uninitialized data.
213 Sparse = static_cast<SparseT*>(safe_calloc(Count: U, Sz: sizeof(SparseT)));
214 Universe = U;
215 }
216
217 /// Our iterators are iterators over the collection of objects that share a
218 /// key.
219 template <typename SMSPtrTy> class iterator_base {
220 friend class SparseMultiSet;
221
222 public:
223 using iterator_category = std::bidirectional_iterator_tag;
224 using value_type = ValueT;
225 using difference_type = std::ptrdiff_t;
226 using pointer = value_type *;
227 using reference = value_type &;
228
229 private:
230 SMSPtrTy SMS;
231 unsigned Idx;
232 unsigned SparseIdx;
233
234 iterator_base(SMSPtrTy P, unsigned I, unsigned SI)
235 : SMS(P), Idx(I), SparseIdx(SI) {}
236
237 /// Whether our iterator has fallen outside our dense vector.
238 bool isEnd() const {
239 if (Idx == SMSNode::INVALID)
240 return true;
241
242 assert(Idx < SMS->Dense.size() && "Out of range, non-INVALID Idx?");
243 return false;
244 }
245
246 /// Whether our iterator is properly keyed, i.e. the SparseIdx is valid
247 bool isKeyed() const { return SparseIdx < SMS->Universe; }
248
249 unsigned Prev() const { return SMS->Dense[Idx].Prev; }
250 unsigned Next() const { return SMS->Dense[Idx].Next; }
251
252 void setPrev(unsigned P) { SMS->Dense[Idx].Prev = P; }
253 void setNext(unsigned N) { SMS->Dense[Idx].Next = N; }
254
255 public:
256 reference operator*() const {
257 assert(isKeyed() && SMS->sparseIndex(SMS->Dense[Idx].Data) == SparseIdx &&
258 "Dereferencing iterator of invalid key or index");
259
260 return SMS->Dense[Idx].Data;
261 }
262 pointer operator->() const { return &operator*(); }
263
264 /// Comparison operators
265 bool operator==(const iterator_base &RHS) const {
266 // end compares equal
267 if (SMS == RHS.SMS && Idx == RHS.Idx) {
268 assert((isEnd() || SparseIdx == RHS.SparseIdx) &&
269 "Same dense entry, but different keys?");
270 return true;
271 }
272
273 return false;
274 }
275
276 bool operator!=(const iterator_base &RHS) const {
277 return !operator==(RHS);
278 }
279
280 /// Increment and decrement operators
281 iterator_base &operator--() { // predecrement - Back up
282 assert(isKeyed() && "Decrementing an invalid iterator");
283 assert((isEnd() || !SMS->isHead(SMS->Dense[Idx])) &&
284 "Decrementing head of list");
285
286 // If we're at the end, then issue a new find()
287 if (isEnd())
288 Idx = SMS->findIndex(SparseIdx).Prev();
289 else
290 Idx = Prev();
291
292 return *this;
293 }
294 iterator_base &operator++() { // preincrement - Advance
295 assert(!isEnd() && isKeyed() && "Incrementing an invalid/end iterator");
296 Idx = Next();
297 return *this;
298 }
299 iterator_base operator--(int) { // postdecrement
300 iterator_base I(*this);
301 --*this;
302 return I;
303 }
304 iterator_base operator++(int) { // postincrement
305 iterator_base I(*this);
306 ++*this;
307 return I;
308 }
309 };
310
311 using iterator = iterator_base<SparseMultiSet *>;
312 using const_iterator = iterator_base<const SparseMultiSet *>;
313
314 // Convenience types
315 using RangePair = std::pair<iterator, iterator>;
316
317 /// Returns an iterator past this container. Note that such an iterator cannot
318 /// be decremented, but will compare equal to other end iterators.
319 iterator end() { return iterator(this, SMSNode::INVALID, SMSNode::INVALID); }
320 const_iterator end() const {
321 return const_iterator(this, SMSNode::INVALID, SMSNode::INVALID);
322 }
323
324 /// Returns true if the set is empty.
325 ///
326 /// This is not the same as BitVector::empty().
327 ///
328 bool empty() const { return size() == 0; }
329
330 /// Returns the number of elements in the set.
331 ///
332 /// This is not the same as BitVector::size() which returns the size of the
333 /// universe.
334 ///
335 size_type size() const {
336 assert(NumFree <= Dense.size() && "Out-of-bounds free entries");
337 return Dense.size() - NumFree;
338 }
339
340 /// Clears the set. This is a very fast constant time operation.
341 ///
342 void clear() {
343 // Sparse does not need to be cleared, see find().
344 Dense.clear();
345 NumFree = 0;
346 FreelistIdx = SMSNode::INVALID;
347 }
348
349 /// Find an element by its index.
350 ///
351 /// @param Idx A valid index to find.
352 /// @returns An iterator to the element identified by key, or end().
353 ///
354 iterator findIndex(unsigned Idx) {
355 assert(Idx < Universe && "Key out of range");
356 const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u;
357 for (unsigned i = Sparse[Idx], e = Dense.size(); i < e; i += Stride) {
358 const unsigned FoundIdx = sparseIndex(Dense[i]);
359 // Check that we're pointing at the correct entry and that it is the head
360 // of a valid list.
361 if (Idx == FoundIdx && Dense[i].isValid() && isHead(D: Dense[i]))
362 return iterator(this, i, Idx);
363 // Stride is 0 when SparseT >= unsigned. We don't need to loop.
364 if (!Stride)
365 break;
366 }
367 return end();
368 }
369
370 /// Find an element by its key.
371 ///
372 /// @param Key A valid key to find.
373 /// @returns An iterator to the element identified by key, or end().
374 ///
375 iterator find(const KeyT &Key) {
376 return findIndex(Idx: KeyIndexOf(Key));
377 }
378
379 const_iterator find(const KeyT &Key) const {
380 iterator I = const_cast<SparseMultiSet*>(this)->findIndex(KeyIndexOf(Key));
381 return const_iterator(I.SMS, I.Idx, KeyIndexOf(Key));
382 }
383
384 /// Returns the number of elements identified by Key. This will be linear in
385 /// the number of elements of that key.
386 size_type count(const KeyT &Key) const {
387 unsigned Ret = 0;
388 for (const_iterator It = find(Key); It != end(); ++It)
389 ++Ret;
390
391 return Ret;
392 }
393
394 /// Returns true if this set contains an element identified by Key.
395 bool contains(const KeyT &Key) const {
396 return find(Key) != end();
397 }
398
399 /// Return the head and tail of the subset's list, otherwise returns end().
400 iterator getHead(const KeyT &Key) { return find(Key); }
401 iterator getTail(const KeyT &Key) {
402 iterator I = find(Key);
403 if (I != end())
404 I = iterator(this, I.Prev(), KeyIndexOf(Key));
405 return I;
406 }
407
408 /// The bounds of the range of items sharing Key K. First member is the head
409 /// of the list, and the second member is a decrementable end iterator for
410 /// that key.
411 RangePair equal_range(const KeyT &K) {
412 iterator B = find(K);
413 iterator E = iterator(this, SMSNode::INVALID, B.SparseIdx);
414 return std::make_pair(B, E);
415 }
416
417 /// Insert a new element at the tail of the subset list. Returns an iterator
418 /// to the newly added entry.
419 iterator insert(const ValueT &Val) {
420 unsigned Idx = sparseIndex(Val);
421 iterator I = findIndex(Idx);
422
423 unsigned NodeIdx = addValue(V: Val, Prev: SMSNode::INVALID, Next: SMSNode::INVALID);
424
425 if (I == end()) {
426 // Make a singleton list
427 Sparse[Idx] = NodeIdx;
428 Dense[NodeIdx].Prev = NodeIdx;
429 return iterator(this, NodeIdx, Idx);
430 }
431
432 // Stick it at the end.
433 unsigned HeadIdx = I.Idx;
434 unsigned TailIdx = I.Prev();
435 Dense[TailIdx].Next = NodeIdx;
436 Dense[HeadIdx].Prev = NodeIdx;
437 Dense[NodeIdx].Prev = TailIdx;
438
439 return iterator(this, NodeIdx, Idx);
440 }
441
442 /// Erases an existing element identified by a valid iterator.
443 ///
444 /// This invalidates iterators pointing at the same entry, but erase() returns
445 /// an iterator pointing to the next element in the subset's list. This makes
446 /// it possible to erase selected elements while iterating over the subset:
447 ///
448 /// tie(I, E) = Set.equal_range(Key);
449 /// while (I != E)
450 /// if (test(*I))
451 /// I = Set.erase(I);
452 /// else
453 /// ++I;
454 ///
455 /// Note that if the last element in the subset list is erased, this will
456 /// return an end iterator which can be decremented to get the new tail (if it
457 /// exists):
458 ///
459 /// tie(B, I) = Set.equal_range(Key);
460 /// for (bool isBegin = B == I; !isBegin; /* empty */) {
461 /// isBegin = (--I) == B;
462 /// if (test(I))
463 /// break;
464 /// I = erase(I);
465 /// }
466 iterator erase(iterator I) {
467 assert(I.isKeyed() && !I.isEnd() && !Dense[I.Idx].isTombstone() &&
468 "erasing invalid/end/tombstone iterator");
469
470 // First, unlink the node from its list. Then swap the node out with the
471 // dense vector's last entry
472 iterator NextI = unlink(N: Dense[I.Idx]);
473
474 // Put in a tombstone.
475 makeTombstone(Idx: I.Idx);
476
477 return NextI;
478 }
479
480 /// Erase all elements with the given key. This invalidates all
481 /// iterators of that key.
482 void eraseAll(const KeyT &K) {
483 for (iterator I = find(K); I != end(); /* empty */)
484 I = erase(I);
485 }
486
487private:
488 /// Unlink the node from its list. Returns the next node in the list.
489 iterator unlink(const SMSNode &N) {
490 if (isSingleton(N)) {
491 // Singleton is already unlinked
492 assert(N.Next == SMSNode::INVALID && "Singleton has next?");
493 return iterator(this, SMSNode::INVALID, ValIndexOf(N.Data));
494 }
495
496 if (isHead(D: N)) {
497 // If we're the head, then update the sparse array and our next.
498 Sparse[sparseIndex(N)] = N.Next;
499 Dense[N.Next].Prev = N.Prev;
500 return iterator(this, N.Next, ValIndexOf(N.Data));
501 }
502
503 if (N.isTail()) {
504 // If we're the tail, then update our head and our previous.
505 findIndex(Idx: sparseIndex(N)).setPrev(N.Prev);
506 Dense[N.Prev].Next = N.Next;
507
508 // Give back an end iterator that can be decremented
509 iterator I(this, N.Prev, ValIndexOf(N.Data));
510 return ++I;
511 }
512
513 // Otherwise, just drop us
514 Dense[N.Next].Prev = N.Prev;
515 Dense[N.Prev].Next = N.Next;
516 return iterator(this, N.Next, ValIndexOf(N.Data));
517 }
518};
519
520} // end namespace llvm
521
522#endif // LLVM_ADT_SPARSEMULTISET_H
523

source code of llvm/include/llvm/ADT/SparseMultiSet.h