1//===- BranchProbabilityInfo.h - Branch Probability Analysis ----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass is used to evaluate branch probabilties.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_ANALYSIS_BRANCHPROBABILITYINFO_H
14#define LLVM_ANALYSIS_BRANCHPROBABILITYINFO_H
15
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/DenseMapInfo.h"
18#include "llvm/ADT/DenseSet.h"
19#include "llvm/IR/BasicBlock.h"
20#include "llvm/IR/CFG.h"
21#include "llvm/IR/PassManager.h"
22#include "llvm/IR/ValueHandle.h"
23#include "llvm/Pass.h"
24#include "llvm/Support/BranchProbability.h"
25#include <algorithm>
26#include <cassert>
27#include <cstdint>
28#include <memory>
29#include <utility>
30
31namespace llvm {
32
33class Function;
34class Loop;
35class LoopInfo;
36class raw_ostream;
37class DominatorTree;
38class PostDominatorTree;
39class TargetLibraryInfo;
40class Value;
41
42/// Analysis providing branch probability information.
43///
44/// This is a function analysis which provides information on the relative
45/// probabilities of each "edge" in the function's CFG where such an edge is
46/// defined by a pair (PredBlock and an index in the successors). The
47/// probability of an edge from one block is always relative to the
48/// probabilities of other edges from the block. The probabilites of all edges
49/// from a block sum to exactly one (100%).
50/// We use a pair (PredBlock and an index in the successors) to uniquely
51/// identify an edge, since we can have multiple edges from Src to Dst.
52/// As an example, we can have a switch which jumps to Dst with value 0 and
53/// value 10.
54///
55/// Process of computing branch probabilities can be logically viewed as three
56/// step process:
57///
58/// First, if there is a profile information associated with the branch then
59/// it is trivially translated to branch probabilities. There is one exception
60/// from this rule though. Probabilities for edges leading to "unreachable"
61/// blocks (blocks with the estimated weight not greater than
62/// UNREACHABLE_WEIGHT) are evaluated according to static estimation and
63/// override profile information. If no branch probabilities were calculated
64/// on this step then take the next one.
65///
66/// Second, estimate absolute execution weights for each block based on
67/// statically known information. Roots of such information are "cold",
68/// "unreachable", "noreturn" and "unwind" blocks. Those blocks get their
69/// weights set to BlockExecWeight::COLD, BlockExecWeight::UNREACHABLE,
70/// BlockExecWeight::NORETURN and BlockExecWeight::UNWIND respectively. Then the
71/// weights are propagated to the other blocks up the domination line. In
72/// addition, if all successors have estimated weights set then maximum of these
73/// weights assigned to the block itself (while this is not ideal heuristic in
74/// theory it's simple and works reasonably well in most cases) and the process
75/// repeats. Once the process of weights propagation converges branch
76/// probabilities are set for all such branches that have at least one successor
77/// with the weight set. Default execution weight (BlockExecWeight::DEFAULT) is
78/// used for any successors which doesn't have its weight set. For loop back
79/// branches we use their weights scaled by loop trip count equal to
80/// 'LBH_TAKEN_WEIGHT/LBH_NOTTAKEN_WEIGHT'.
81///
82/// Here is a simple example demonstrating how the described algorithm works.
83///
84/// BB1
85/// / \
86/// v v
87/// BB2 BB3
88/// / \
89/// v v
90/// ColdBB UnreachBB
91///
92/// Initially, ColdBB is associated with COLD_WEIGHT and UnreachBB with
93/// UNREACHABLE_WEIGHT. COLD_WEIGHT is set to BB2 as maximum between its
94/// successors. BB1 and BB3 has no explicit estimated weights and assumed to
95/// have DEFAULT_WEIGHT. Based on assigned weights branches will have the
96/// following probabilities:
97/// P(BB1->BB2) = COLD_WEIGHT/(COLD_WEIGHT + DEFAULT_WEIGHT) =
98/// 0xffff / (0xffff + 0xfffff) = 0.0588(5.9%)
99/// P(BB1->BB3) = DEFAULT_WEIGHT_WEIGHT/(COLD_WEIGHT + DEFAULT_WEIGHT) =
100/// 0xfffff / (0xffff + 0xfffff) = 0.941(94.1%)
101/// P(BB2->ColdBB) = COLD_WEIGHT/(COLD_WEIGHT + UNREACHABLE_WEIGHT) = 1(100%)
102/// P(BB2->UnreachBB) =
103/// UNREACHABLE_WEIGHT/(COLD_WEIGHT+UNREACHABLE_WEIGHT) = 0(0%)
104///
105/// If no branch probabilities were calculated on this step then take the next
106/// one.
107///
108/// Third, apply different kinds of local heuristics for each individual
109/// branch until first match. For example probability of a pointer to be null is
110/// estimated as PH_TAKEN_WEIGHT/(PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT). If
111/// no local heuristic has been matched then branch is left with no explicit
112/// probability set and assumed to have default probability.
113class BranchProbabilityInfo {
114public:
115 BranchProbabilityInfo() = default;
116
117 BranchProbabilityInfo(const Function &F, const LoopInfo &LI,
118 const TargetLibraryInfo *TLI = nullptr,
119 DominatorTree *DT = nullptr,
120 PostDominatorTree *PDT = nullptr) {
121 calculate(F, LI, TLI, DT, PDT);
122 }
123
124 BranchProbabilityInfo(BranchProbabilityInfo &&Arg)
125 : Handles(std::move(Arg.Handles)), Probs(std::move(Arg.Probs)),
126 LastF(Arg.LastF),
127 EstimatedBlockWeight(std::move(Arg.EstimatedBlockWeight)) {
128 for (auto &Handle : Handles)
129 Handle.setBPI(this);
130 }
131
132 BranchProbabilityInfo(const BranchProbabilityInfo &) = delete;
133 BranchProbabilityInfo &operator=(const BranchProbabilityInfo &) = delete;
134
135 BranchProbabilityInfo &operator=(BranchProbabilityInfo &&RHS) {
136 releaseMemory();
137 Handles = std::move(RHS.Handles);
138 Probs = std::move(RHS.Probs);
139 EstimatedBlockWeight = std::move(RHS.EstimatedBlockWeight);
140 for (auto &Handle : Handles)
141 Handle.setBPI(this);
142 return *this;
143 }
144
145 bool invalidate(Function &, const PreservedAnalyses &PA,
146 FunctionAnalysisManager::Invalidator &);
147
148 void releaseMemory();
149
150 void print(raw_ostream &OS) const;
151
152 /// Get an edge's probability, relative to other out-edges of the Src.
153 ///
154 /// This routine provides access to the fractional probability between zero
155 /// (0%) and one (100%) of this edge executing, relative to other edges
156 /// leaving the 'Src' block. The returned probability is never zero, and can
157 /// only be one if the source block has only one successor.
158 BranchProbability getEdgeProbability(const BasicBlock *Src,
159 unsigned IndexInSuccessors) const;
160
161 /// Get the probability of going from Src to Dst.
162 ///
163 /// It returns the sum of all probabilities for edges from Src to Dst.
164 BranchProbability getEdgeProbability(const BasicBlock *Src,
165 const BasicBlock *Dst) const;
166
167 BranchProbability getEdgeProbability(const BasicBlock *Src,
168 const_succ_iterator Dst) const;
169
170 /// Test if an edge is hot relative to other out-edges of the Src.
171 ///
172 /// Check whether this edge out of the source block is 'hot'. We define hot
173 /// as having a relative probability >= 80%.
174 bool isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const;
175
176 /// Print an edge's probability.
177 ///
178 /// Retrieves an edge's probability similarly to \see getEdgeProbability, but
179 /// then prints that probability to the provided stream. That stream is then
180 /// returned.
181 raw_ostream &printEdgeProbability(raw_ostream &OS, const BasicBlock *Src,
182 const BasicBlock *Dst) const;
183
184public:
185 /// Set the raw probabilities for all edges from the given block.
186 ///
187 /// This allows a pass to explicitly set edge probabilities for a block. It
188 /// can be used when updating the CFG to update the branch probability
189 /// information.
190 void setEdgeProbability(const BasicBlock *Src,
191 const SmallVectorImpl<BranchProbability> &Probs);
192
193 /// Copy outgoing edge probabilities from \p Src to \p Dst.
194 ///
195 /// This allows to keep probabilities unset for the destination if they were
196 /// unset for source.
197 void copyEdgeProbabilities(BasicBlock *Src, BasicBlock *Dst);
198
199 /// Swap outgoing edges probabilities for \p Src with branch terminator
200 void swapSuccEdgesProbabilities(const BasicBlock *Src);
201
202 static BranchProbability getBranchProbStackProtector(bool IsLikely) {
203 static const BranchProbability LikelyProb((1u << 20) - 1, 1u << 20);
204 return IsLikely ? LikelyProb : LikelyProb.getCompl();
205 }
206
207 void calculate(const Function &F, const LoopInfo &LI,
208 const TargetLibraryInfo *TLI, DominatorTree *DT,
209 PostDominatorTree *PDT);
210
211 /// Forget analysis results for the given basic block.
212 void eraseBlock(const BasicBlock *BB);
213
214 // Data structure to track SCCs for handling irreducible loops.
215 class SccInfo {
216 // Enum of types to classify basic blocks in SCC. Basic block belonging to
217 // SCC is 'Inner' until it is either 'Header' or 'Exiting'. Note that a
218 // basic block can be 'Header' and 'Exiting' at the same time.
219 enum SccBlockType {
220 Inner = 0x0,
221 Header = 0x1,
222 Exiting = 0x2,
223 };
224 // Map of basic blocks to SCC IDs they belong to. If basic block doesn't
225 // belong to any SCC it is not in the map.
226 using SccMap = DenseMap<const BasicBlock *, int>;
227 // Each basic block in SCC is attributed with one or several types from
228 // SccBlockType. Map value has uint32_t type (instead of SccBlockType)
229 // since basic block may be for example "Header" and "Exiting" at the same
230 // time and we need to be able to keep more than one value from
231 // SccBlockType.
232 using SccBlockTypeMap = DenseMap<const BasicBlock *, uint32_t>;
233 // Vector containing classification of basic blocks for all SCCs where i'th
234 // vector element corresponds to SCC with ID equal to i.
235 using SccBlockTypeMaps = std::vector<SccBlockTypeMap>;
236
237 SccMap SccNums;
238 SccBlockTypeMaps SccBlocks;
239
240 public:
241 explicit SccInfo(const Function &F);
242
243 /// If \p BB belongs to some SCC then ID of that SCC is returned, otherwise
244 /// -1 is returned. If \p BB belongs to more than one SCC at the same time
245 /// result is undefined.
246 int getSCCNum(const BasicBlock *BB) const;
247 /// Returns true if \p BB is a 'header' block in SCC with \p SccNum ID,
248 /// false otherwise.
249 bool isSCCHeader(const BasicBlock *BB, int SccNum) const {
250 return getSccBlockType(BB, SccNum) & Header;
251 }
252 /// Returns true if \p BB is an 'exiting' block in SCC with \p SccNum ID,
253 /// false otherwise.
254 bool isSCCExitingBlock(const BasicBlock *BB, int SccNum) const {
255 return getSccBlockType(BB, SccNum) & Exiting;
256 }
257 /// Fills in \p Enters vector with all such blocks that don't belong to
258 /// SCC with \p SccNum ID but there is an edge to a block belonging to the
259 /// SCC.
260 void getSccEnterBlocks(int SccNum,
261 SmallVectorImpl<BasicBlock *> &Enters) const;
262 /// Fills in \p Exits vector with all such blocks that don't belong to
263 /// SCC with \p SccNum ID but there is an edge from a block belonging to the
264 /// SCC.
265 void getSccExitBlocks(int SccNum,
266 SmallVectorImpl<BasicBlock *> &Exits) const;
267
268 private:
269 /// Returns \p BB's type according to classification given by SccBlockType
270 /// enum. Please note that \p BB must belong to SSC with \p SccNum ID.
271 uint32_t getSccBlockType(const BasicBlock *BB, int SccNum) const;
272 /// Calculates \p BB's type and stores it in internal data structures for
273 /// future use. Please note that \p BB must belong to SSC with \p SccNum ID.
274 void calculateSccBlockType(const BasicBlock *BB, int SccNum);
275 };
276
277private:
278 // We need to store CallbackVH's in order to correctly handle basic block
279 // removal.
280 class BasicBlockCallbackVH final : public CallbackVH {
281 BranchProbabilityInfo *BPI;
282
283 void deleted() override {
284 assert(BPI != nullptr);
285 BPI->eraseBlock(BB: cast<BasicBlock>(Val: getValPtr()));
286 }
287
288 public:
289 void setBPI(BranchProbabilityInfo *BPI) { this->BPI = BPI; }
290
291 BasicBlockCallbackVH(const Value *V, BranchProbabilityInfo *BPI = nullptr)
292 : CallbackVH(const_cast<Value *>(V)), BPI(BPI) {}
293 };
294
295 /// Pair of Loop and SCC ID number. Used to unify handling of normal and
296 /// SCC based loop representations.
297 using LoopData = std::pair<Loop *, int>;
298 /// Helper class to keep basic block along with its loop data information.
299 class LoopBlock {
300 public:
301 explicit LoopBlock(const BasicBlock *BB, const LoopInfo &LI,
302 const SccInfo &SccI);
303
304 const BasicBlock *getBlock() const { return BB; }
305 BasicBlock *getBlock() { return const_cast<BasicBlock *>(BB); }
306 LoopData getLoopData() const { return LD; }
307 Loop *getLoop() const { return LD.first; }
308 int getSccNum() const { return LD.second; }
309
310 bool belongsToLoop() const { return getLoop() || getSccNum() != -1; }
311 bool belongsToSameLoop(const LoopBlock &LB) const {
312 return (LB.getLoop() && getLoop() == LB.getLoop()) ||
313 (LB.getSccNum() != -1 && getSccNum() == LB.getSccNum());
314 }
315
316 private:
317 const BasicBlock *const BB = nullptr;
318 LoopData LD = {nullptr, -1};
319 };
320
321 // Pair of LoopBlocks representing an edge from first to second block.
322 using LoopEdge = std::pair<const LoopBlock &, const LoopBlock &>;
323
324 DenseSet<BasicBlockCallbackVH, DenseMapInfo<Value*>> Handles;
325
326 // Since we allow duplicate edges from one basic block to another, we use
327 // a pair (PredBlock and an index in the successors) to specify an edge.
328 using Edge = std::pair<const BasicBlock *, unsigned>;
329
330 DenseMap<Edge, BranchProbability> Probs;
331
332 /// Track the last function we run over for printing.
333 const Function *LastF = nullptr;
334
335 const LoopInfo *LI = nullptr;
336
337 /// Keeps information about all SCCs in a function.
338 std::unique_ptr<const SccInfo> SccI;
339
340 /// Keeps mapping of a basic block to its estimated weight.
341 SmallDenseMap<const BasicBlock *, uint32_t> EstimatedBlockWeight;
342
343 /// Keeps mapping of a loop to estimated weight to enter the loop.
344 SmallDenseMap<LoopData, uint32_t> EstimatedLoopWeight;
345
346 /// Helper to construct LoopBlock for \p BB.
347 LoopBlock getLoopBlock(const BasicBlock *BB) const {
348 return LoopBlock(BB, *LI, *SccI.get());
349 }
350
351 /// Returns true if destination block belongs to some loop and source block is
352 /// either doesn't belong to any loop or belongs to a loop which is not inner
353 /// relative to the destination block.
354 bool isLoopEnteringEdge(const LoopEdge &Edge) const;
355 /// Returns true if source block belongs to some loop and destination block is
356 /// either doesn't belong to any loop or belongs to a loop which is not inner
357 /// relative to the source block.
358 bool isLoopExitingEdge(const LoopEdge &Edge) const;
359 /// Returns true if \p Edge is either enters to or exits from some loop, false
360 /// in all other cases.
361 bool isLoopEnteringExitingEdge(const LoopEdge &Edge) const;
362 /// Returns true if source and destination blocks belongs to the same loop and
363 /// destination block is loop header.
364 bool isLoopBackEdge(const LoopEdge &Edge) const;
365 // Fills in \p Enters vector with all "enter" blocks to a loop \LB belongs to.
366 void getLoopEnterBlocks(const LoopBlock &LB,
367 SmallVectorImpl<BasicBlock *> &Enters) const;
368 // Fills in \p Exits vector with all "exit" blocks from a loop \LB belongs to.
369 void getLoopExitBlocks(const LoopBlock &LB,
370 SmallVectorImpl<BasicBlock *> &Exits) const;
371
372 /// Returns estimated weight for \p BB. std::nullopt if \p BB has no estimated
373 /// weight.
374 std::optional<uint32_t> getEstimatedBlockWeight(const BasicBlock *BB) const;
375
376 /// Returns estimated weight to enter \p L. In other words it is weight of
377 /// loop's header block not scaled by trip count. Returns std::nullopt if \p L
378 /// has no no estimated weight.
379 std::optional<uint32_t> getEstimatedLoopWeight(const LoopData &L) const;
380
381 /// Return estimated weight for \p Edge. Returns std::nullopt if estimated
382 /// weight is unknown.
383 std::optional<uint32_t> getEstimatedEdgeWeight(const LoopEdge &Edge) const;
384
385 /// Iterates over all edges leading from \p SrcBB to \p Successors and
386 /// returns maximum of all estimated weights. If at least one edge has unknown
387 /// estimated weight std::nullopt is returned.
388 template <class IterT>
389 std::optional<uint32_t>
390 getMaxEstimatedEdgeWeight(const LoopBlock &SrcBB,
391 iterator_range<IterT> Successors) const;
392
393 /// If \p LoopBB has no estimated weight then set it to \p BBWeight and
394 /// return true. Otherwise \p BB's weight remains unchanged and false is
395 /// returned. In addition all blocks/loops that might need their weight to be
396 /// re-estimated are put into BlockWorkList/LoopWorkList.
397 bool updateEstimatedBlockWeight(LoopBlock &LoopBB, uint32_t BBWeight,
398 SmallVectorImpl<BasicBlock *> &BlockWorkList,
399 SmallVectorImpl<LoopBlock> &LoopWorkList);
400
401 /// Starting from \p LoopBB (including \p LoopBB itself) propagate \p BBWeight
402 /// up the domination tree.
403 void propagateEstimatedBlockWeight(const LoopBlock &LoopBB, DominatorTree *DT,
404 PostDominatorTree *PDT, uint32_t BBWeight,
405 SmallVectorImpl<BasicBlock *> &WorkList,
406 SmallVectorImpl<LoopBlock> &LoopWorkList);
407
408 /// Returns block's weight encoded in the IR.
409 std::optional<uint32_t> getInitialEstimatedBlockWeight(const BasicBlock *BB);
410
411 // Computes estimated weights for all blocks in \p F.
412 void computeEestimateBlockWeight(const Function &F, DominatorTree *DT,
413 PostDominatorTree *PDT);
414
415 /// Based on computed weights by \p computeEstimatedBlockWeight set
416 /// probabilities on branches.
417 bool calcEstimatedHeuristics(const BasicBlock *BB);
418 bool calcMetadataWeights(const BasicBlock *BB);
419 bool calcPointerHeuristics(const BasicBlock *BB);
420 bool calcZeroHeuristics(const BasicBlock *BB, const TargetLibraryInfo *TLI);
421 bool calcFloatingPointHeuristics(const BasicBlock *BB);
422};
423
424/// Analysis pass which computes \c BranchProbabilityInfo.
425class BranchProbabilityAnalysis
426 : public AnalysisInfoMixin<BranchProbabilityAnalysis> {
427 friend AnalysisInfoMixin<BranchProbabilityAnalysis>;
428
429 static AnalysisKey Key;
430
431public:
432 /// Provide the result type for this analysis pass.
433 using Result = BranchProbabilityInfo;
434
435 /// Run the analysis pass over a function and produce BPI.
436 BranchProbabilityInfo run(Function &F, FunctionAnalysisManager &AM);
437};
438
439/// Printer pass for the \c BranchProbabilityAnalysis results.
440class BranchProbabilityPrinterPass
441 : public PassInfoMixin<BranchProbabilityPrinterPass> {
442 raw_ostream &OS;
443
444public:
445 explicit BranchProbabilityPrinterPass(raw_ostream &OS) : OS(OS) {}
446
447 PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
448
449 static bool isRequired() { return true; }
450};
451
452/// Legacy analysis pass which computes \c BranchProbabilityInfo.
453class BranchProbabilityInfoWrapperPass : public FunctionPass {
454 BranchProbabilityInfo BPI;
455
456public:
457 static char ID;
458
459 BranchProbabilityInfoWrapperPass();
460
461 BranchProbabilityInfo &getBPI() { return BPI; }
462 const BranchProbabilityInfo &getBPI() const { return BPI; }
463
464 void getAnalysisUsage(AnalysisUsage &AU) const override;
465 bool runOnFunction(Function &F) override;
466 void releaseMemory() override;
467 void print(raw_ostream &OS, const Module *M = nullptr) const override;
468};
469
470} // end namespace llvm
471
472#endif // LLVM_ANALYSIS_BRANCHPROBABILITYINFO_H
473

source code of llvm/include/llvm/Analysis/BranchProbabilityInfo.h