1 | //===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file defines the LoopInfo class that is used to identify natural loops |
10 | // and determine the loop depth of various nodes of the CFG. A natural loop |
11 | // has exactly one entry-point, which is called the header. Note that natural |
12 | // loops may actually be several loops that share the same header node. |
13 | // |
14 | // This analysis calculates the nesting structure of loops in a function. For |
15 | // each natural loop identified, this analysis identifies natural loops |
16 | // contained entirely within the loop and the basic blocks the make up the loop. |
17 | // |
18 | // It can calculate on the fly various bits of information, for example: |
19 | // |
20 | // * whether there is a preheader for the loop |
21 | // * the number of back edges to the header |
22 | // * whether or not a particular block branches out of the loop |
23 | // * the successor blocks of the loop |
24 | // * the loop depth |
25 | // * etc... |
26 | // |
27 | // Note that this analysis specifically identifies *Loops* not cycles or SCCs |
28 | // in the CFG. There can be strongly connected components in the CFG which |
29 | // this analysis will not recognize and that will not be represented by a Loop |
30 | // instance. In particular, a Loop might be inside such a non-loop SCC, or a |
31 | // non-loop SCC might contain a sub-SCC which is a Loop. |
32 | // |
33 | // For an overview of terminology used in this API (and thus all of our loop |
34 | // analyses or transforms), see docs/LoopTerminology.rst. |
35 | // |
36 | //===----------------------------------------------------------------------===// |
37 | |
38 | #ifndef LLVM_ANALYSIS_LOOPINFO_H |
39 | #define LLVM_ANALYSIS_LOOPINFO_H |
40 | |
41 | #include "llvm/ADT/DenseMap.h" |
42 | #include "llvm/ADT/DenseSet.h" |
43 | #include "llvm/ADT/GraphTraits.h" |
44 | #include "llvm/ADT/SmallPtrSet.h" |
45 | #include "llvm/ADT/SmallVector.h" |
46 | #include "llvm/IR/CFG.h" |
47 | #include "llvm/IR/Instruction.h" |
48 | #include "llvm/IR/Instructions.h" |
49 | #include "llvm/IR/PassManager.h" |
50 | #include "llvm/Pass.h" |
51 | #include "llvm/Support/Allocator.h" |
52 | #include <algorithm> |
53 | #include <utility> |
54 | |
55 | namespace llvm { |
56 | |
57 | class DominatorTree; |
58 | class LoopInfo; |
59 | class Loop; |
60 | class InductionDescriptor; |
61 | class MDNode; |
62 | class MemorySSAUpdater; |
63 | class ScalarEvolution; |
64 | class raw_ostream; |
65 | template <class N, bool IsPostDom> class DominatorTreeBase; |
66 | template <class N, class M> class LoopInfoBase; |
67 | template <class N, class M> class LoopBase; |
68 | |
69 | //===----------------------------------------------------------------------===// |
70 | /// Instances of this class are used to represent loops that are detected in the |
71 | /// flow graph. |
72 | /// |
73 | template <class BlockT, class LoopT> class LoopBase { |
74 | LoopT *ParentLoop; |
75 | // Loops contained entirely within this one. |
76 | std::vector<LoopT *> SubLoops; |
77 | |
78 | // The list of blocks in this loop. First entry is the header node. |
79 | std::vector<BlockT *> Blocks; |
80 | |
81 | SmallPtrSet<const BlockT *, 8> DenseBlockSet; |
82 | |
83 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
84 | /// Indicator that this loop is no longer a valid loop. |
85 | bool IsInvalid = false; |
86 | #endif |
87 | |
88 | LoopBase(const LoopBase<BlockT, LoopT> &) = delete; |
89 | const LoopBase<BlockT, LoopT> & |
90 | operator=(const LoopBase<BlockT, LoopT> &) = delete; |
91 | |
92 | public: |
93 | /// Return the nesting level of this loop. An outer-most loop has depth 1, |
94 | /// for consistency with loop depth values used for basic blocks, where depth |
95 | /// 0 is used for blocks not inside any loops. |
96 | unsigned getLoopDepth() const { |
97 | assert(!isInvalid() && "Loop not in a valid state!" ); |
98 | unsigned D = 1; |
99 | for (const LoopT *CurLoop = ParentLoop; CurLoop; |
100 | CurLoop = CurLoop->ParentLoop) |
101 | ++D; |
102 | return D; |
103 | } |
104 | BlockT *() const { return getBlocks().front(); } |
105 | /// Return the parent loop if it exists or nullptr for top |
106 | /// level loops. |
107 | |
108 | /// A loop is either top-level in a function (that is, it is not |
109 | /// contained in any other loop) or it is entirely enclosed in |
110 | /// some other loop. |
111 | /// If a loop is top-level, it has no parent, otherwise its |
112 | /// parent is the innermost loop in which it is enclosed. |
113 | LoopT *getParentLoop() const { return ParentLoop; } |
114 | |
115 | /// This is a raw interface for bypassing addChildLoop. |
116 | void setParentLoop(LoopT *L) { |
117 | assert(!isInvalid() && "Loop not in a valid state!" ); |
118 | ParentLoop = L; |
119 | } |
120 | |
121 | /// Return true if the specified loop is contained within in this loop. |
122 | bool contains(const LoopT *L) const { |
123 | assert(!isInvalid() && "Loop not in a valid state!" ); |
124 | if (L == this) |
125 | return true; |
126 | if (!L) |
127 | return false; |
128 | return contains(L->getParentLoop()); |
129 | } |
130 | |
131 | /// Return true if the specified basic block is in this loop. |
132 | bool contains(const BlockT *BB) const { |
133 | assert(!isInvalid() && "Loop not in a valid state!" ); |
134 | return DenseBlockSet.count(BB); |
135 | } |
136 | |
137 | /// Return true if the specified instruction is in this loop. |
138 | template <class InstT> bool contains(const InstT *Inst) const { |
139 | return contains(Inst->getParent()); |
140 | } |
141 | |
142 | /// Return the loops contained entirely within this loop. |
143 | const std::vector<LoopT *> &getSubLoops() const { |
144 | assert(!isInvalid() && "Loop not in a valid state!" ); |
145 | return SubLoops; |
146 | } |
147 | std::vector<LoopT *> &getSubLoopsVector() { |
148 | assert(!isInvalid() && "Loop not in a valid state!" ); |
149 | return SubLoops; |
150 | } |
151 | typedef typename std::vector<LoopT *>::const_iterator iterator; |
152 | typedef |
153 | typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator; |
154 | iterator begin() const { return getSubLoops().begin(); } |
155 | iterator end() const { return getSubLoops().end(); } |
156 | reverse_iterator rbegin() const { return getSubLoops().rbegin(); } |
157 | reverse_iterator rend() const { return getSubLoops().rend(); } |
158 | |
159 | // LoopInfo does not detect irreducible control flow, just natural |
160 | // loops. That is, it is possible that there is cyclic control |
161 | // flow within the "innermost loop" or around the "outermost |
162 | // loop". |
163 | |
164 | /// Return true if the loop does not contain any (natural) loops. |
165 | bool isInnermost() const { return getSubLoops().empty(); } |
166 | /// Return true if the loop does not have a parent (natural) loop |
167 | // (i.e. it is outermost, which is the same as top-level). |
168 | bool isOutermost() const { return getParentLoop() == nullptr; } |
169 | |
170 | /// Get a list of the basic blocks which make up this loop. |
171 | ArrayRef<BlockT *> getBlocks() const { |
172 | assert(!isInvalid() && "Loop not in a valid state!" ); |
173 | return Blocks; |
174 | } |
175 | typedef typename ArrayRef<BlockT *>::const_iterator block_iterator; |
176 | block_iterator block_begin() const { return getBlocks().begin(); } |
177 | block_iterator block_end() const { return getBlocks().end(); } |
178 | inline iterator_range<block_iterator> blocks() const { |
179 | assert(!isInvalid() && "Loop not in a valid state!" ); |
180 | return make_range(block_begin(), block_end()); |
181 | } |
182 | |
183 | /// Get the number of blocks in this loop in constant time. |
184 | /// Invalidate the loop, indicating that it is no longer a loop. |
185 | unsigned getNumBlocks() const { |
186 | assert(!isInvalid() && "Loop not in a valid state!" ); |
187 | return Blocks.size(); |
188 | } |
189 | |
190 | /// Return a direct, mutable handle to the blocks vector so that we can |
191 | /// mutate it efficiently with techniques like `std::remove`. |
192 | std::vector<BlockT *> &getBlocksVector() { |
193 | assert(!isInvalid() && "Loop not in a valid state!" ); |
194 | return Blocks; |
195 | } |
196 | /// Return a direct, mutable handle to the blocks set so that we can |
197 | /// mutate it efficiently. |
198 | SmallPtrSetImpl<const BlockT *> &getBlocksSet() { |
199 | assert(!isInvalid() && "Loop not in a valid state!" ); |
200 | return DenseBlockSet; |
201 | } |
202 | |
203 | /// Return a direct, immutable handle to the blocks set. |
204 | const SmallPtrSetImpl<const BlockT *> &getBlocksSet() const { |
205 | assert(!isInvalid() && "Loop not in a valid state!" ); |
206 | return DenseBlockSet; |
207 | } |
208 | |
209 | /// Return true if this loop is no longer valid. The only valid use of this |
210 | /// helper is "assert(L.isInvalid())" or equivalent, since IsInvalid is set to |
211 | /// true by the destructor. In other words, if this accessor returns true, |
212 | /// the caller has already triggered UB by calling this accessor; and so it |
213 | /// can only be called in a context where a return value of true indicates a |
214 | /// programmer error. |
215 | bool isInvalid() const { |
216 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
217 | return IsInvalid; |
218 | #else |
219 | return false; |
220 | #endif |
221 | } |
222 | |
223 | /// True if terminator in the block can branch to another block that is |
224 | /// outside of the current loop. \p BB must be inside the loop. |
225 | bool isLoopExiting(const BlockT *BB) const { |
226 | assert(!isInvalid() && "Loop not in a valid state!" ); |
227 | assert(contains(BB) && "Exiting block must be part of the loop" ); |
228 | for (const auto *Succ : children<const BlockT *>(BB)) { |
229 | if (!contains(Succ)) |
230 | return true; |
231 | } |
232 | return false; |
233 | } |
234 | |
235 | /// Returns true if \p BB is a loop-latch. |
236 | /// A latch block is a block that contains a branch back to the header. |
237 | /// This function is useful when there are multiple latches in a loop |
238 | /// because \fn getLoopLatch will return nullptr in that case. |
239 | bool isLoopLatch(const BlockT *BB) const { |
240 | assert(!isInvalid() && "Loop not in a valid state!" ); |
241 | assert(contains(BB) && "block does not belong to the loop" ); |
242 | |
243 | BlockT * = getHeader(); |
244 | auto PredBegin = GraphTraits<Inverse<BlockT *>>::child_begin(Header); |
245 | auto PredEnd = GraphTraits<Inverse<BlockT *>>::child_end(Header); |
246 | return std::find(PredBegin, PredEnd, BB) != PredEnd; |
247 | } |
248 | |
249 | /// Calculate the number of back edges to the loop header. |
250 | unsigned getNumBackEdges() const { |
251 | assert(!isInvalid() && "Loop not in a valid state!" ); |
252 | unsigned NumBackEdges = 0; |
253 | BlockT *H = getHeader(); |
254 | |
255 | for (const auto Pred : children<Inverse<BlockT *>>(H)) |
256 | if (contains(Pred)) |
257 | ++NumBackEdges; |
258 | |
259 | return NumBackEdges; |
260 | } |
261 | |
262 | //===--------------------------------------------------------------------===// |
263 | // APIs for simple analysis of the loop. |
264 | // |
265 | // Note that all of these methods can fail on general loops (ie, there may not |
266 | // be a preheader, etc). For best success, the loop simplification and |
267 | // induction variable canonicalization pass should be used to normalize loops |
268 | // for easy analysis. These methods assume canonical loops. |
269 | |
270 | /// Return all blocks inside the loop that have successors outside of the |
271 | /// loop. These are the blocks _inside of the current loop_ which branch out. |
272 | /// The returned list is always unique. |
273 | void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const; |
274 | |
275 | /// If getExitingBlocks would return exactly one block, return that block. |
276 | /// Otherwise return null. |
277 | BlockT *getExitingBlock() const; |
278 | |
279 | /// Return all of the successor blocks of this loop. These are the blocks |
280 | /// _outside of the current loop_ which are branched to. |
281 | void getExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const; |
282 | |
283 | /// If getExitBlocks would return exactly one block, return that block. |
284 | /// Otherwise return null. |
285 | BlockT *getExitBlock() const; |
286 | |
287 | /// Return true if no exit block for the loop has a predecessor that is |
288 | /// outside the loop. |
289 | bool hasDedicatedExits() const; |
290 | |
291 | /// Return all unique successor blocks of this loop. |
292 | /// These are the blocks _outside of the current loop_ which are branched to. |
293 | void getUniqueExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const; |
294 | |
295 | /// Return all unique successor blocks of this loop except successors from |
296 | /// Latch block are not considered. If the exit comes from Latch has also |
297 | /// non Latch predecessor in a loop it will be added to ExitBlocks. |
298 | /// These are the blocks _outside of the current loop_ which are branched to. |
299 | void getUniqueNonLatchExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const; |
300 | |
301 | /// If getUniqueExitBlocks would return exactly one block, return that block. |
302 | /// Otherwise return null. |
303 | BlockT *getUniqueExitBlock() const; |
304 | |
305 | /// Return true if this loop does not have any exit blocks. |
306 | bool hasNoExitBlocks() const; |
307 | |
308 | /// Edge type. |
309 | typedef std::pair<BlockT *, BlockT *> Edge; |
310 | |
311 | /// Return all pairs of (_inside_block_,_outside_block_). |
312 | void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const; |
313 | |
314 | /// If there is a preheader for this loop, return it. A loop has a preheader |
315 | /// if there is only one edge to the header of the loop from outside of the |
316 | /// loop. If this is the case, the block branching to the header of the loop |
317 | /// is the preheader node. |
318 | /// |
319 | /// This method returns null if there is no preheader for the loop. |
320 | BlockT *() const; |
321 | |
322 | /// If the given loop's header has exactly one unique predecessor outside the |
323 | /// loop, return it. Otherwise return null. |
324 | /// This is less strict that the loop "preheader" concept, which requires |
325 | /// the predecessor to have exactly one successor. |
326 | BlockT *getLoopPredecessor() const; |
327 | |
328 | /// If there is a single latch block for this loop, return it. |
329 | /// A latch block is a block that contains a branch back to the header. |
330 | BlockT *getLoopLatch() const; |
331 | |
332 | /// Return all loop latch blocks of this loop. A latch block is a block that |
333 | /// contains a branch back to the header. |
334 | void getLoopLatches(SmallVectorImpl<BlockT *> &LoopLatches) const { |
335 | assert(!isInvalid() && "Loop not in a valid state!" ); |
336 | BlockT *H = getHeader(); |
337 | for (const auto Pred : children<Inverse<BlockT *>>(H)) |
338 | if (contains(Pred)) |
339 | LoopLatches.push_back(Pred); |
340 | } |
341 | |
342 | /// Return all inner loops in the loop nest rooted by the loop in preorder, |
343 | /// with siblings in forward program order. |
344 | template <class Type> |
345 | static void getInnerLoopsInPreorder(const LoopT &L, |
346 | SmallVectorImpl<Type> &PreOrderLoops) { |
347 | SmallVector<LoopT *, 4> PreOrderWorklist; |
348 | PreOrderWorklist.append(L.rbegin(), L.rend()); |
349 | |
350 | while (!PreOrderWorklist.empty()) { |
351 | LoopT *L = PreOrderWorklist.pop_back_val(); |
352 | // Sub-loops are stored in forward program order, but will process the |
353 | // worklist backwards so append them in reverse order. |
354 | PreOrderWorklist.append(L->rbegin(), L->rend()); |
355 | PreOrderLoops.push_back(L); |
356 | } |
357 | } |
358 | |
359 | /// Return all loops in the loop nest rooted by the loop in preorder, with |
360 | /// siblings in forward program order. |
361 | SmallVector<const LoopT *, 4> getLoopsInPreorder() const { |
362 | SmallVector<const LoopT *, 4> PreOrderLoops; |
363 | const LoopT *CurLoop = static_cast<const LoopT *>(this); |
364 | PreOrderLoops.push_back(CurLoop); |
365 | getInnerLoopsInPreorder(*CurLoop, PreOrderLoops); |
366 | return PreOrderLoops; |
367 | } |
368 | SmallVector<LoopT *, 4> getLoopsInPreorder() { |
369 | SmallVector<LoopT *, 4> PreOrderLoops; |
370 | LoopT *CurLoop = static_cast<LoopT *>(this); |
371 | PreOrderLoops.push_back(CurLoop); |
372 | getInnerLoopsInPreorder(*CurLoop, PreOrderLoops); |
373 | return PreOrderLoops; |
374 | } |
375 | |
376 | //===--------------------------------------------------------------------===// |
377 | // APIs for updating loop information after changing the CFG |
378 | // |
379 | |
380 | /// This method is used by other analyses to update loop information. |
381 | /// NewBB is set to be a new member of the current loop. |
382 | /// Because of this, it is added as a member of all parent loops, and is added |
383 | /// to the specified LoopInfo object as being in the current basic block. It |
384 | /// is not valid to replace the loop header with this method. |
385 | void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI); |
386 | |
387 | /// This is used when splitting loops up. It replaces the OldChild entry in |
388 | /// our children list with NewChild, and updates the parent pointer of |
389 | /// OldChild to be null and the NewChild to be this loop. |
390 | /// This updates the loop depth of the new child. |
391 | void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild); |
392 | |
393 | /// Add the specified loop to be a child of this loop. |
394 | /// This updates the loop depth of the new child. |
395 | void addChildLoop(LoopT *NewChild) { |
396 | assert(!isInvalid() && "Loop not in a valid state!" ); |
397 | assert(!NewChild->ParentLoop && "NewChild already has a parent!" ); |
398 | NewChild->ParentLoop = static_cast<LoopT *>(this); |
399 | SubLoops.push_back(NewChild); |
400 | } |
401 | |
402 | /// This removes the specified child from being a subloop of this loop. The |
403 | /// loop is not deleted, as it will presumably be inserted into another loop. |
404 | LoopT *removeChildLoop(iterator I) { |
405 | assert(!isInvalid() && "Loop not in a valid state!" ); |
406 | assert(I != SubLoops.end() && "Cannot remove end iterator!" ); |
407 | LoopT *Child = *I; |
408 | assert(Child->ParentLoop == this && "Child is not a child of this loop!" ); |
409 | SubLoops.erase(SubLoops.begin() + (I - begin())); |
410 | Child->ParentLoop = nullptr; |
411 | return Child; |
412 | } |
413 | |
414 | /// This removes the specified child from being a subloop of this loop. The |
415 | /// loop is not deleted, as it will presumably be inserted into another loop. |
416 | LoopT *removeChildLoop(LoopT *Child) { |
417 | return removeChildLoop(llvm::find(*this, Child)); |
418 | } |
419 | |
420 | /// This adds a basic block directly to the basic block list. |
421 | /// This should only be used by transformations that create new loops. Other |
422 | /// transformations should use addBasicBlockToLoop. |
423 | void addBlockEntry(BlockT *BB) { |
424 | assert(!isInvalid() && "Loop not in a valid state!" ); |
425 | Blocks.push_back(BB); |
426 | DenseBlockSet.insert(BB); |
427 | } |
428 | |
429 | /// interface to reverse Blocks[from, end of loop] in this loop |
430 | void reverseBlock(unsigned from) { |
431 | assert(!isInvalid() && "Loop not in a valid state!" ); |
432 | std::reverse(Blocks.begin() + from, Blocks.end()); |
433 | } |
434 | |
435 | /// interface to do reserve() for Blocks |
436 | void reserveBlocks(unsigned size) { |
437 | assert(!isInvalid() && "Loop not in a valid state!" ); |
438 | Blocks.reserve(size); |
439 | } |
440 | |
441 | /// This method is used to move BB (which must be part of this loop) to be the |
442 | /// loop header of the loop (the block that dominates all others). |
443 | void (BlockT *BB) { |
444 | assert(!isInvalid() && "Loop not in a valid state!" ); |
445 | if (Blocks[0] == BB) |
446 | return; |
447 | for (unsigned i = 0;; ++i) { |
448 | assert(i != Blocks.size() && "Loop does not contain BB!" ); |
449 | if (Blocks[i] == BB) { |
450 | Blocks[i] = Blocks[0]; |
451 | Blocks[0] = BB; |
452 | return; |
453 | } |
454 | } |
455 | } |
456 | |
457 | /// This removes the specified basic block from the current loop, updating the |
458 | /// Blocks as appropriate. This does not update the mapping in the LoopInfo |
459 | /// class. |
460 | void removeBlockFromLoop(BlockT *BB) { |
461 | assert(!isInvalid() && "Loop not in a valid state!" ); |
462 | auto I = find(Blocks, BB); |
463 | assert(I != Blocks.end() && "N is not in this list!" ); |
464 | Blocks.erase(I); |
465 | |
466 | DenseBlockSet.erase(BB); |
467 | } |
468 | |
469 | /// Verify loop structure |
470 | void verifyLoop() const; |
471 | |
472 | /// Verify loop structure of this loop and all nested loops. |
473 | void verifyLoopNest(DenseSet<const LoopT *> *Loops) const; |
474 | |
475 | /// Returns true if the loop is annotated parallel. |
476 | /// |
477 | /// Derived classes can override this method using static template |
478 | /// polymorphism. |
479 | bool isAnnotatedParallel() const { return false; } |
480 | |
481 | /// Print loop with all the BBs inside it. |
482 | void print(raw_ostream &OS, bool Verbose = false, bool PrintNested = true, |
483 | unsigned Depth = 0) const; |
484 | |
485 | protected: |
486 | friend class LoopInfoBase<BlockT, LoopT>; |
487 | |
488 | /// This creates an empty loop. |
489 | LoopBase() : ParentLoop(nullptr) {} |
490 | |
491 | explicit LoopBase(BlockT *BB) : ParentLoop(nullptr) { |
492 | Blocks.push_back(BB); |
493 | DenseBlockSet.insert(BB); |
494 | } |
495 | |
496 | // Since loop passes like SCEV are allowed to key analysis results off of |
497 | // `Loop` pointers, we cannot re-use pointers within a loop pass manager. |
498 | // This means loop passes should not be `delete` ing `Loop` objects directly |
499 | // (and risk a later `Loop` allocation re-using the address of a previous one) |
500 | // but should be using LoopInfo::markAsRemoved, which keeps around the `Loop` |
501 | // pointer till the end of the lifetime of the `LoopInfo` object. |
502 | // |
503 | // To make it easier to follow this rule, we mark the destructor as |
504 | // non-public. |
505 | ~LoopBase() { |
506 | for (auto *SubLoop : SubLoops) |
507 | SubLoop->~LoopT(); |
508 | |
509 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
510 | IsInvalid = true; |
511 | #endif |
512 | SubLoops.clear(); |
513 | Blocks.clear(); |
514 | DenseBlockSet.clear(); |
515 | ParentLoop = nullptr; |
516 | } |
517 | }; |
518 | |
519 | template <class BlockT, class LoopT> |
520 | raw_ostream &operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) { |
521 | Loop.print(OS); |
522 | return OS; |
523 | } |
524 | |
525 | // Implementation in LoopInfoImpl.h |
526 | extern template class LoopBase<BasicBlock, Loop>; |
527 | |
528 | /// Represents a single loop in the control flow graph. Note that not all SCCs |
529 | /// in the CFG are necessarily loops. |
530 | class Loop : public LoopBase<BasicBlock, Loop> { |
531 | public: |
532 | /// A range representing the start and end location of a loop. |
533 | class LocRange { |
534 | DebugLoc Start; |
535 | DebugLoc End; |
536 | |
537 | public: |
538 | LocRange() {} |
539 | LocRange(DebugLoc Start) : Start(Start), End(Start) {} |
540 | LocRange(DebugLoc Start, DebugLoc End) |
541 | : Start(std::move(Start)), End(std::move(End)) {} |
542 | |
543 | const DebugLoc &getStart() const { return Start; } |
544 | const DebugLoc &getEnd() const { return End; } |
545 | |
546 | /// Check for null. |
547 | /// |
548 | explicit operator bool() const { return Start && End; } |
549 | }; |
550 | |
551 | /// Return true if the specified value is loop invariant. |
552 | bool isLoopInvariant(const Value *V) const; |
553 | |
554 | /// Return true if all the operands of the specified instruction are loop |
555 | /// invariant. |
556 | bool hasLoopInvariantOperands(const Instruction *I) const; |
557 | |
558 | /// If the given value is an instruction inside of the loop and it can be |
559 | /// hoisted, do so to make it trivially loop-invariant. |
560 | /// Return true if the value after any hoisting is loop invariant. This |
561 | /// function can be used as a slightly more aggressive replacement for |
562 | /// isLoopInvariant. |
563 | /// |
564 | /// If InsertPt is specified, it is the point to hoist instructions to. |
565 | /// If null, the terminator of the loop preheader is used. |
566 | bool makeLoopInvariant(Value *V, bool &Changed, |
567 | Instruction *InsertPt = nullptr, |
568 | MemorySSAUpdater *MSSAU = nullptr) const; |
569 | |
570 | /// If the given instruction is inside of the loop and it can be hoisted, do |
571 | /// so to make it trivially loop-invariant. |
572 | /// Return true if the instruction after any hoisting is loop invariant. This |
573 | /// function can be used as a slightly more aggressive replacement for |
574 | /// isLoopInvariant. |
575 | /// |
576 | /// If InsertPt is specified, it is the point to hoist instructions to. |
577 | /// If null, the terminator of the loop preheader is used. |
578 | /// |
579 | bool makeLoopInvariant(Instruction *I, bool &Changed, |
580 | Instruction *InsertPt = nullptr, |
581 | MemorySSAUpdater *MSSAU = nullptr) const; |
582 | |
583 | /// Check to see if the loop has a canonical induction variable: an integer |
584 | /// recurrence that starts at 0 and increments by one each time through the |
585 | /// loop. If so, return the phi node that corresponds to it. |
586 | /// |
587 | /// The IndVarSimplify pass transforms loops to have a canonical induction |
588 | /// variable. |
589 | /// |
590 | PHINode *getCanonicalInductionVariable() const; |
591 | |
592 | /// Obtain the unique incoming and back edge. Return false if they are |
593 | /// non-unique or the loop is dead; otherwise, return true. |
594 | bool getIncomingAndBackEdge(BasicBlock *&Incoming, |
595 | BasicBlock *&Backedge) const; |
596 | |
597 | /// Below are some utilities to get the loop guard, loop bounds and induction |
598 | /// variable, and to check if a given phinode is an auxiliary induction |
599 | /// variable, if the loop is guarded, and if the loop is canonical. |
600 | /// |
601 | /// Here is an example: |
602 | /// \code |
603 | /// for (int i = lb; i < ub; i+=step) |
604 | /// <loop body> |
605 | /// --- pseudo LLVMIR --- |
606 | /// beforeloop: |
607 | /// guardcmp = (lb < ub) |
608 | /// if (guardcmp) goto preheader; else goto afterloop |
609 | /// preheader: |
610 | /// loop: |
611 | /// i_1 = phi[{lb, preheader}, {i_2, latch}] |
612 | /// <loop body> |
613 | /// i_2 = i_1 + step |
614 | /// latch: |
615 | /// cmp = (i_2 < ub) |
616 | /// if (cmp) goto loop |
617 | /// exit: |
618 | /// afterloop: |
619 | /// \endcode |
620 | /// |
621 | /// - getBounds |
622 | /// - getInitialIVValue --> lb |
623 | /// - getStepInst --> i_2 = i_1 + step |
624 | /// - getStepValue --> step |
625 | /// - getFinalIVValue --> ub |
626 | /// - getCanonicalPredicate --> '<' |
627 | /// - getDirection --> Increasing |
628 | /// |
629 | /// - getInductionVariable --> i_1 |
630 | /// - isAuxiliaryInductionVariable(x) --> true if x == i_1 |
631 | /// - getLoopGuardBranch() |
632 | /// --> `if (guardcmp) goto preheader; else goto afterloop` |
633 | /// - isGuarded() --> true |
634 | /// - isCanonical --> false |
635 | struct LoopBounds { |
636 | /// Return the LoopBounds object if |
637 | /// - the given \p IndVar is an induction variable |
638 | /// - the initial value of the induction variable can be found |
639 | /// - the step instruction of the induction variable can be found |
640 | /// - the final value of the induction variable can be found |
641 | /// |
642 | /// Else None. |
643 | static Optional<Loop::LoopBounds> getBounds(const Loop &L, PHINode &IndVar, |
644 | ScalarEvolution &SE); |
645 | |
646 | /// Get the initial value of the loop induction variable. |
647 | Value &getInitialIVValue() const { return InitialIVValue; } |
648 | |
649 | /// Get the instruction that updates the loop induction variable. |
650 | Instruction &getStepInst() const { return StepInst; } |
651 | |
652 | /// Get the step that the loop induction variable gets updated by in each |
653 | /// loop iteration. Return nullptr if not found. |
654 | Value *getStepValue() const { return StepValue; } |
655 | |
656 | /// Get the final value of the loop induction variable. |
657 | Value &getFinalIVValue() const { return FinalIVValue; } |
658 | |
659 | /// Return the canonical predicate for the latch compare instruction, if |
660 | /// able to be calcuated. Else BAD_ICMP_PREDICATE. |
661 | /// |
662 | /// A predicate is considered as canonical if requirements below are all |
663 | /// satisfied: |
664 | /// 1. The first successor of the latch branch is the loop header |
665 | /// If not, inverse the predicate. |
666 | /// 2. One of the operands of the latch comparison is StepInst |
667 | /// If not, and |
668 | /// - if the current calcuated predicate is not ne or eq, flip the |
669 | /// predicate. |
670 | /// - else if the loop is increasing, return slt |
671 | /// (notice that it is safe to change from ne or eq to sign compare) |
672 | /// - else if the loop is decreasing, return sgt |
673 | /// (notice that it is safe to change from ne or eq to sign compare) |
674 | /// |
675 | /// Here is an example when both (1) and (2) are not satisfied: |
676 | /// \code |
677 | /// loop.header: |
678 | /// %iv = phi [%initialiv, %loop.preheader], [%inc, %loop.header] |
679 | /// %inc = add %iv, %step |
680 | /// %cmp = slt %iv, %finaliv |
681 | /// br %cmp, %loop.exit, %loop.header |
682 | /// loop.exit: |
683 | /// \endcode |
684 | /// - The second successor of the latch branch is the loop header instead |
685 | /// of the first successor (slt -> sge) |
686 | /// - The first operand of the latch comparison (%cmp) is the IndVar (%iv) |
687 | /// instead of the StepInst (%inc) (sge -> sgt) |
688 | /// |
689 | /// The predicate would be sgt if both (1) and (2) are satisfied. |
690 | /// getCanonicalPredicate() returns sgt for this example. |
691 | /// Note: The IR is not changed. |
692 | ICmpInst::Predicate getCanonicalPredicate() const; |
693 | |
694 | /// An enum for the direction of the loop |
695 | /// - for (int i = 0; i < ub; ++i) --> Increasing |
696 | /// - for (int i = ub; i > 0; --i) --> Descresing |
697 | /// - for (int i = x; i != y; i+=z) --> Unknown |
698 | enum class Direction { Increasing, Decreasing, Unknown }; |
699 | |
700 | /// Get the direction of the loop. |
701 | Direction getDirection() const; |
702 | |
703 | private: |
704 | LoopBounds(const Loop &Loop, Value &I, Instruction &SI, Value *SV, Value &F, |
705 | ScalarEvolution &SE) |
706 | : L(Loop), InitialIVValue(I), StepInst(SI), StepValue(SV), |
707 | FinalIVValue(F), SE(SE) {} |
708 | |
709 | const Loop &L; |
710 | |
711 | // The initial value of the loop induction variable |
712 | Value &InitialIVValue; |
713 | |
714 | // The instruction that updates the loop induction variable |
715 | Instruction &StepInst; |
716 | |
717 | // The value that the loop induction variable gets updated by in each loop |
718 | // iteration |
719 | Value *StepValue; |
720 | |
721 | // The final value of the loop induction variable |
722 | Value &FinalIVValue; |
723 | |
724 | ScalarEvolution &SE; |
725 | }; |
726 | |
727 | /// Return the struct LoopBounds collected if all struct members are found, |
728 | /// else None. |
729 | Optional<LoopBounds> getBounds(ScalarEvolution &SE) const; |
730 | |
731 | /// Return the loop induction variable if found, else return nullptr. |
732 | /// An instruction is considered as the loop induction variable if |
733 | /// - it is an induction variable of the loop; and |
734 | /// - it is used to determine the condition of the branch in the loop latch |
735 | /// |
736 | /// Note: the induction variable doesn't need to be canonical, i.e. starts at |
737 | /// zero and increments by one each time through the loop (but it can be). |
738 | PHINode *getInductionVariable(ScalarEvolution &SE) const; |
739 | |
740 | /// Get the loop induction descriptor for the loop induction variable. Return |
741 | /// true if the loop induction variable is found. |
742 | bool getInductionDescriptor(ScalarEvolution &SE, |
743 | InductionDescriptor &IndDesc) const; |
744 | |
745 | /// Return true if the given PHINode \p AuxIndVar is |
746 | /// - in the loop header |
747 | /// - not used outside of the loop |
748 | /// - incremented by a loop invariant step for each loop iteration |
749 | /// - step instruction opcode should be add or sub |
750 | /// Note: auxiliary induction variable is not required to be used in the |
751 | /// conditional branch in the loop latch. (but it can be) |
752 | bool isAuxiliaryInductionVariable(PHINode &AuxIndVar, |
753 | ScalarEvolution &SE) const; |
754 | |
755 | /// Return the loop guard branch, if it exists. |
756 | /// |
757 | /// This currently only works on simplified loop, as it requires a preheader |
758 | /// and a latch to identify the guard. It will work on loops of the form: |
759 | /// \code |
760 | /// GuardBB: |
761 | /// br cond1, Preheader, ExitSucc <== GuardBranch |
762 | /// Preheader: |
763 | /// br Header |
764 | /// Header: |
765 | /// ... |
766 | /// br Latch |
767 | /// Latch: |
768 | /// br cond2, Header, ExitBlock |
769 | /// ExitBlock: |
770 | /// br ExitSucc |
771 | /// ExitSucc: |
772 | /// \endcode |
773 | BranchInst *getLoopGuardBranch() const; |
774 | |
775 | /// Return true iff the loop is |
776 | /// - in simplify rotated form, and |
777 | /// - guarded by a loop guard branch. |
778 | bool isGuarded() const { return (getLoopGuardBranch() != nullptr); } |
779 | |
780 | /// Return true if the loop is in rotated form. |
781 | /// |
782 | /// This does not check if the loop was rotated by loop rotation, instead it |
783 | /// only checks if the loop is in rotated form (has a valid latch that exists |
784 | /// the loop). |
785 | bool isRotatedForm() const { |
786 | assert(!isInvalid() && "Loop not in a valid state!" ); |
787 | BasicBlock *Latch = getLoopLatch(); |
788 | return Latch && isLoopExiting(Latch); |
789 | } |
790 | |
791 | /// Return true if the loop induction variable starts at zero and increments |
792 | /// by one each time through the loop. |
793 | bool isCanonical(ScalarEvolution &SE) const; |
794 | |
795 | /// Return true if the Loop is in LCSSA form. |
796 | bool isLCSSAForm(const DominatorTree &DT) const; |
797 | |
798 | /// Return true if this Loop and all inner subloops are in LCSSA form. |
799 | bool isRecursivelyLCSSAForm(const DominatorTree &DT, |
800 | const LoopInfo &LI) const; |
801 | |
802 | /// Return true if the Loop is in the form that the LoopSimplify form |
803 | /// transforms loops to, which is sometimes called normal form. |
804 | bool isLoopSimplifyForm() const; |
805 | |
806 | /// Return true if the loop body is safe to clone in practice. |
807 | bool isSafeToClone() const; |
808 | |
809 | /// Returns true if the loop is annotated parallel. |
810 | /// |
811 | /// A parallel loop can be assumed to not contain any dependencies between |
812 | /// iterations by the compiler. That is, any loop-carried dependency checking |
813 | /// can be skipped completely when parallelizing the loop on the target |
814 | /// machine. Thus, if the parallel loop information originates from the |
815 | /// programmer, e.g. via the OpenMP parallel for pragma, it is the |
816 | /// programmer's responsibility to ensure there are no loop-carried |
817 | /// dependencies. The final execution order of the instructions across |
818 | /// iterations is not guaranteed, thus, the end result might or might not |
819 | /// implement actual concurrent execution of instructions across multiple |
820 | /// iterations. |
821 | bool isAnnotatedParallel() const; |
822 | |
823 | /// Return the llvm.loop loop id metadata node for this loop if it is present. |
824 | /// |
825 | /// If this loop contains the same llvm.loop metadata on each branch to the |
826 | /// header then the node is returned. If any latch instruction does not |
827 | /// contain llvm.loop or if multiple latches contain different nodes then |
828 | /// 0 is returned. |
829 | MDNode *getLoopID() const; |
830 | /// Set the llvm.loop loop id metadata for this loop. |
831 | /// |
832 | /// The LoopID metadata node will be added to each terminator instruction in |
833 | /// the loop that branches to the loop header. |
834 | /// |
835 | /// The LoopID metadata node should have one or more operands and the first |
836 | /// operand should be the node itself. |
837 | void setLoopID(MDNode *LoopID) const; |
838 | |
839 | /// Add llvm.loop.unroll.disable to this loop's loop id metadata. |
840 | /// |
841 | /// Remove existing unroll metadata and add unroll disable metadata to |
842 | /// indicate the loop has already been unrolled. This prevents a loop |
843 | /// from being unrolled more than is directed by a pragma if the loop |
844 | /// unrolling pass is run more than once (which it generally is). |
845 | void setLoopAlreadyUnrolled(); |
846 | |
847 | /// Add llvm.loop.mustprogress to this loop's loop id metadata. |
848 | void setLoopMustProgress(); |
849 | |
850 | void dump() const; |
851 | void dumpVerbose() const; |
852 | |
853 | /// Return the debug location of the start of this loop. |
854 | /// This looks for a BB terminating instruction with a known debug |
855 | /// location by looking at the preheader and header blocks. If it |
856 | /// cannot find a terminating instruction with location information, |
857 | /// it returns an unknown location. |
858 | DebugLoc getStartLoc() const; |
859 | |
860 | /// Return the source code span of the loop. |
861 | LocRange getLocRange() const; |
862 | |
863 | StringRef getName() const { |
864 | if (BasicBlock * = getHeader()) |
865 | if (Header->hasName()) |
866 | return Header->getName(); |
867 | return "<unnamed loop>" ; |
868 | } |
869 | |
870 | private: |
871 | Loop() = default; |
872 | |
873 | friend class LoopInfoBase<BasicBlock, Loop>; |
874 | friend class LoopBase<BasicBlock, Loop>; |
875 | explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {} |
876 | ~Loop() = default; |
877 | }; |
878 | |
879 | //===----------------------------------------------------------------------===// |
880 | /// This class builds and contains all of the top-level loop |
881 | /// structures in the specified function. |
882 | /// |
883 | |
884 | template <class BlockT, class LoopT> class LoopInfoBase { |
885 | // BBMap - Mapping of basic blocks to the inner most loop they occur in |
886 | DenseMap<const BlockT *, LoopT *> BBMap; |
887 | std::vector<LoopT *> TopLevelLoops; |
888 | BumpPtrAllocator LoopAllocator; |
889 | |
890 | friend class LoopBase<BlockT, LoopT>; |
891 | friend class LoopInfo; |
892 | |
893 | void operator=(const LoopInfoBase &) = delete; |
894 | LoopInfoBase(const LoopInfoBase &) = delete; |
895 | |
896 | public: |
897 | LoopInfoBase() {} |
898 | ~LoopInfoBase() { releaseMemory(); } |
899 | |
900 | LoopInfoBase(LoopInfoBase &&Arg) |
901 | : BBMap(std::move(Arg.BBMap)), |
902 | TopLevelLoops(std::move(Arg.TopLevelLoops)), |
903 | LoopAllocator(std::move(Arg.LoopAllocator)) { |
904 | // We have to clear the arguments top level loops as we've taken ownership. |
905 | Arg.TopLevelLoops.clear(); |
906 | } |
907 | LoopInfoBase &operator=(LoopInfoBase &&RHS) { |
908 | BBMap = std::move(RHS.BBMap); |
909 | |
910 | for (auto *L : TopLevelLoops) |
911 | L->~LoopT(); |
912 | |
913 | TopLevelLoops = std::move(RHS.TopLevelLoops); |
914 | LoopAllocator = std::move(RHS.LoopAllocator); |
915 | RHS.TopLevelLoops.clear(); |
916 | return *this; |
917 | } |
918 | |
919 | void releaseMemory() { |
920 | BBMap.clear(); |
921 | |
922 | for (auto *L : TopLevelLoops) |
923 | L->~LoopT(); |
924 | TopLevelLoops.clear(); |
925 | LoopAllocator.Reset(); |
926 | } |
927 | |
928 | template <typename... ArgsTy> LoopT *AllocateLoop(ArgsTy &&... Args) { |
929 | LoopT *Storage = LoopAllocator.Allocate<LoopT>(); |
930 | return new (Storage) LoopT(std::forward<ArgsTy>(Args)...); |
931 | } |
932 | |
933 | /// iterator/begin/end - The interface to the top-level loops in the current |
934 | /// function. |
935 | /// |
936 | typedef typename std::vector<LoopT *>::const_iterator iterator; |
937 | typedef |
938 | typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator; |
939 | iterator begin() const { return TopLevelLoops.begin(); } |
940 | iterator end() const { return TopLevelLoops.end(); } |
941 | reverse_iterator rbegin() const { return TopLevelLoops.rbegin(); } |
942 | reverse_iterator rend() const { return TopLevelLoops.rend(); } |
943 | bool empty() const { return TopLevelLoops.empty(); } |
944 | |
945 | /// Return all of the loops in the function in preorder across the loop |
946 | /// nests, with siblings in forward program order. |
947 | /// |
948 | /// Note that because loops form a forest of trees, preorder is equivalent to |
949 | /// reverse postorder. |
950 | SmallVector<LoopT *, 4> getLoopsInPreorder(); |
951 | |
952 | /// Return all of the loops in the function in preorder across the loop |
953 | /// nests, with siblings in *reverse* program order. |
954 | /// |
955 | /// Note that because loops form a forest of trees, preorder is equivalent to |
956 | /// reverse postorder. |
957 | /// |
958 | /// Also note that this is *not* a reverse preorder. Only the siblings are in |
959 | /// reverse program order. |
960 | SmallVector<LoopT *, 4> getLoopsInReverseSiblingPreorder(); |
961 | |
962 | /// Return the inner most loop that BB lives in. If a basic block is in no |
963 | /// loop (for example the entry node), null is returned. |
964 | LoopT *getLoopFor(const BlockT *BB) const { return BBMap.lookup(BB); } |
965 | |
966 | /// Same as getLoopFor. |
967 | const LoopT *operator[](const BlockT *BB) const { return getLoopFor(BB); } |
968 | |
969 | /// Return the loop nesting level of the specified block. A depth of 0 means |
970 | /// the block is not inside any loop. |
971 | unsigned getLoopDepth(const BlockT *BB) const { |
972 | const LoopT *L = getLoopFor(BB); |
973 | return L ? L->getLoopDepth() : 0; |
974 | } |
975 | |
976 | // True if the block is a loop header node |
977 | bool (const BlockT *BB) const { |
978 | const LoopT *L = getLoopFor(BB); |
979 | return L && L->getHeader() == BB; |
980 | } |
981 | |
982 | /// Return the top-level loops. |
983 | const std::vector<LoopT *> &getTopLevelLoops() const { return TopLevelLoops; } |
984 | |
985 | /// Return the top-level loops. |
986 | std::vector<LoopT *> &getTopLevelLoopsVector() { return TopLevelLoops; } |
987 | |
988 | /// This removes the specified top-level loop from this loop info object. |
989 | /// The loop is not deleted, as it will presumably be inserted into |
990 | /// another loop. |
991 | LoopT *removeLoop(iterator I) { |
992 | assert(I != end() && "Cannot remove end iterator!" ); |
993 | LoopT *L = *I; |
994 | assert(L->isOutermost() && "Not a top-level loop!" ); |
995 | TopLevelLoops.erase(TopLevelLoops.begin() + (I - begin())); |
996 | return L; |
997 | } |
998 | |
999 | /// Change the top-level loop that contains BB to the specified loop. |
1000 | /// This should be used by transformations that restructure the loop hierarchy |
1001 | /// tree. |
1002 | void changeLoopFor(BlockT *BB, LoopT *L) { |
1003 | if (!L) { |
1004 | BBMap.erase(BB); |
1005 | return; |
1006 | } |
1007 | BBMap[BB] = L; |
1008 | } |
1009 | |
1010 | /// Replace the specified loop in the top-level loops list with the indicated |
1011 | /// loop. |
1012 | void changeTopLevelLoop(LoopT *OldLoop, LoopT *NewLoop) { |
1013 | auto I = find(TopLevelLoops, OldLoop); |
1014 | assert(I != TopLevelLoops.end() && "Old loop not at top level!" ); |
1015 | *I = NewLoop; |
1016 | assert(!NewLoop->ParentLoop && !OldLoop->ParentLoop && |
1017 | "Loops already embedded into a subloop!" ); |
1018 | } |
1019 | |
1020 | /// This adds the specified loop to the collection of top-level loops. |
1021 | void addTopLevelLoop(LoopT *New) { |
1022 | assert(New->isOutermost() && "Loop already in subloop!" ); |
1023 | TopLevelLoops.push_back(New); |
1024 | } |
1025 | |
1026 | /// This method completely removes BB from all data structures, |
1027 | /// including all of the Loop objects it is nested in and our mapping from |
1028 | /// BasicBlocks to loops. |
1029 | void removeBlock(BlockT *BB) { |
1030 | auto I = BBMap.find(BB); |
1031 | if (I != BBMap.end()) { |
1032 | for (LoopT *L = I->second; L; L = L->getParentLoop()) |
1033 | L->removeBlockFromLoop(BB); |
1034 | |
1035 | BBMap.erase(I); |
1036 | } |
1037 | } |
1038 | |
1039 | // Internals |
1040 | |
1041 | static bool isNotAlreadyContainedIn(const LoopT *SubLoop, |
1042 | const LoopT *ParentLoop) { |
1043 | if (!SubLoop) |
1044 | return true; |
1045 | if (SubLoop == ParentLoop) |
1046 | return false; |
1047 | return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop); |
1048 | } |
1049 | |
1050 | /// Create the loop forest using a stable algorithm. |
1051 | void analyze(const DominatorTreeBase<BlockT, false> &DomTree); |
1052 | |
1053 | // Debugging |
1054 | void print(raw_ostream &OS) const; |
1055 | |
1056 | void verify(const DominatorTreeBase<BlockT, false> &DomTree) const; |
1057 | |
1058 | /// Destroy a loop that has been removed from the `LoopInfo` nest. |
1059 | /// |
1060 | /// This runs the destructor of the loop object making it invalid to |
1061 | /// reference afterward. The memory is retained so that the *pointer* to the |
1062 | /// loop remains valid. |
1063 | /// |
1064 | /// The caller is responsible for removing this loop from the loop nest and |
1065 | /// otherwise disconnecting it from the broader `LoopInfo` data structures. |
1066 | /// Callers that don't naturally handle this themselves should probably call |
1067 | /// `erase' instead. |
1068 | void destroy(LoopT *L) { |
1069 | L->~LoopT(); |
1070 | |
1071 | // Since LoopAllocator is a BumpPtrAllocator, this Deallocate only poisons |
1072 | // \c L, but the pointer remains valid for non-dereferencing uses. |
1073 | LoopAllocator.Deallocate(L); |
1074 | } |
1075 | }; |
1076 | |
1077 | // Implementation in LoopInfoImpl.h |
1078 | extern template class LoopInfoBase<BasicBlock, Loop>; |
1079 | |
1080 | class LoopInfo : public LoopInfoBase<BasicBlock, Loop> { |
1081 | typedef LoopInfoBase<BasicBlock, Loop> BaseT; |
1082 | |
1083 | friend class LoopBase<BasicBlock, Loop>; |
1084 | |
1085 | void operator=(const LoopInfo &) = delete; |
1086 | LoopInfo(const LoopInfo &) = delete; |
1087 | |
1088 | public: |
1089 | LoopInfo() {} |
1090 | explicit LoopInfo(const DominatorTreeBase<BasicBlock, false> &DomTree); |
1091 | |
1092 | LoopInfo(LoopInfo &&Arg) : BaseT(std::move(static_cast<BaseT &>(Arg))) {} |
1093 | LoopInfo &operator=(LoopInfo &&RHS) { |
1094 | BaseT::operator=(std::move(static_cast<BaseT &>(RHS))); |
1095 | return *this; |
1096 | } |
1097 | |
1098 | /// Handle invalidation explicitly. |
1099 | bool invalidate(Function &F, const PreservedAnalyses &PA, |
1100 | FunctionAnalysisManager::Invalidator &); |
1101 | |
1102 | // Most of the public interface is provided via LoopInfoBase. |
1103 | |
1104 | /// Update LoopInfo after removing the last backedge from a loop. This updates |
1105 | /// the loop forest and parent loops for each block so that \c L is no longer |
1106 | /// referenced, but does not actually delete \c L immediately. The pointer |
1107 | /// will remain valid until this LoopInfo's memory is released. |
1108 | void erase(Loop *L); |
1109 | |
1110 | /// Returns true if replacing From with To everywhere is guaranteed to |
1111 | /// preserve LCSSA form. |
1112 | bool replacementPreservesLCSSAForm(Instruction *From, Value *To) { |
1113 | // Preserving LCSSA form is only problematic if the replacing value is an |
1114 | // instruction. |
1115 | Instruction *I = dyn_cast<Instruction>(To); |
1116 | if (!I) |
1117 | return true; |
1118 | // If both instructions are defined in the same basic block then replacement |
1119 | // cannot break LCSSA form. |
1120 | if (I->getParent() == From->getParent()) |
1121 | return true; |
1122 | // If the instruction is not defined in a loop then it can safely replace |
1123 | // anything. |
1124 | Loop *ToLoop = getLoopFor(I->getParent()); |
1125 | if (!ToLoop) |
1126 | return true; |
1127 | // If the replacing instruction is defined in the same loop as the original |
1128 | // instruction, or in a loop that contains it as an inner loop, then using |
1129 | // it as a replacement will not break LCSSA form. |
1130 | return ToLoop->contains(getLoopFor(From->getParent())); |
1131 | } |
1132 | |
1133 | /// Checks if moving a specific instruction can break LCSSA in any loop. |
1134 | /// |
1135 | /// Return true if moving \p Inst to before \p NewLoc will break LCSSA, |
1136 | /// assuming that the function containing \p Inst and \p NewLoc is currently |
1137 | /// in LCSSA form. |
1138 | bool movementPreservesLCSSAForm(Instruction *Inst, Instruction *NewLoc) { |
1139 | assert(Inst->getFunction() == NewLoc->getFunction() && |
1140 | "Can't reason about IPO!" ); |
1141 | |
1142 | auto *OldBB = Inst->getParent(); |
1143 | auto *NewBB = NewLoc->getParent(); |
1144 | |
1145 | // Movement within the same loop does not break LCSSA (the equality check is |
1146 | // to avoid doing a hashtable lookup in case of intra-block movement). |
1147 | if (OldBB == NewBB) |
1148 | return true; |
1149 | |
1150 | auto *OldLoop = getLoopFor(OldBB); |
1151 | auto *NewLoop = getLoopFor(NewBB); |
1152 | |
1153 | if (OldLoop == NewLoop) |
1154 | return true; |
1155 | |
1156 | // Check if Outer contains Inner; with the null loop counting as the |
1157 | // "outermost" loop. |
1158 | auto Contains = [](const Loop *Outer, const Loop *Inner) { |
1159 | return !Outer || Outer->contains(Inner); |
1160 | }; |
1161 | |
1162 | // To check that the movement of Inst to before NewLoc does not break LCSSA, |
1163 | // we need to check two sets of uses for possible LCSSA violations at |
1164 | // NewLoc: the users of NewInst, and the operands of NewInst. |
1165 | |
1166 | // If we know we're hoisting Inst out of an inner loop to an outer loop, |
1167 | // then the uses *of* Inst don't need to be checked. |
1168 | |
1169 | if (!Contains(NewLoop, OldLoop)) { |
1170 | for (Use &U : Inst->uses()) { |
1171 | auto *UI = cast<Instruction>(U.getUser()); |
1172 | auto *UBB = isa<PHINode>(UI) ? cast<PHINode>(UI)->getIncomingBlock(U) |
1173 | : UI->getParent(); |
1174 | if (UBB != NewBB && getLoopFor(UBB) != NewLoop) |
1175 | return false; |
1176 | } |
1177 | } |
1178 | |
1179 | // If we know we're sinking Inst from an outer loop into an inner loop, then |
1180 | // the *operands* of Inst don't need to be checked. |
1181 | |
1182 | if (!Contains(OldLoop, NewLoop)) { |
1183 | // See below on why we can't handle phi nodes here. |
1184 | if (isa<PHINode>(Inst)) |
1185 | return false; |
1186 | |
1187 | for (Use &U : Inst->operands()) { |
1188 | auto *DefI = dyn_cast<Instruction>(U.get()); |
1189 | if (!DefI) |
1190 | return false; |
1191 | |
1192 | // This would need adjustment if we allow Inst to be a phi node -- the |
1193 | // new use block won't simply be NewBB. |
1194 | |
1195 | auto *DefBlock = DefI->getParent(); |
1196 | if (DefBlock != NewBB && getLoopFor(DefBlock) != NewLoop) |
1197 | return false; |
1198 | } |
1199 | } |
1200 | |
1201 | return true; |
1202 | } |
1203 | |
1204 | // Return true if a new use of V added in ExitBB would require an LCSSA PHI |
1205 | // to be inserted at the begining of the block. Note that V is assumed to |
1206 | // dominate ExitBB, and ExitBB must be the exit block of some loop. The |
1207 | // IR is assumed to be in LCSSA form before the planned insertion. |
1208 | bool wouldBeOutOfLoopUseRequiringLCSSA(const Value *V, |
1209 | const BasicBlock *ExitBB) const; |
1210 | |
1211 | }; |
1212 | |
1213 | // Allow clients to walk the list of nested loops... |
1214 | template <> struct GraphTraits<const Loop *> { |
1215 | typedef const Loop *NodeRef; |
1216 | typedef LoopInfo::iterator ChildIteratorType; |
1217 | |
1218 | static NodeRef getEntryNode(const Loop *L) { return L; } |
1219 | static ChildIteratorType child_begin(NodeRef N) { return N->begin(); } |
1220 | static ChildIteratorType child_end(NodeRef N) { return N->end(); } |
1221 | }; |
1222 | |
1223 | template <> struct GraphTraits<Loop *> { |
1224 | typedef Loop *NodeRef; |
1225 | typedef LoopInfo::iterator ChildIteratorType; |
1226 | |
1227 | static NodeRef getEntryNode(Loop *L) { return L; } |
1228 | static ChildIteratorType child_begin(NodeRef N) { return N->begin(); } |
1229 | static ChildIteratorType child_end(NodeRef N) { return N->end(); } |
1230 | }; |
1231 | |
1232 | /// Analysis pass that exposes the \c LoopInfo for a function. |
1233 | class LoopAnalysis : public AnalysisInfoMixin<LoopAnalysis> { |
1234 | friend AnalysisInfoMixin<LoopAnalysis>; |
1235 | static AnalysisKey Key; |
1236 | |
1237 | public: |
1238 | typedef LoopInfo Result; |
1239 | |
1240 | LoopInfo run(Function &F, FunctionAnalysisManager &AM); |
1241 | }; |
1242 | |
1243 | /// Printer pass for the \c LoopAnalysis results. |
1244 | class LoopPrinterPass : public PassInfoMixin<LoopPrinterPass> { |
1245 | raw_ostream &OS; |
1246 | |
1247 | public: |
1248 | explicit LoopPrinterPass(raw_ostream &OS) : OS(OS) {} |
1249 | PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); |
1250 | }; |
1251 | |
1252 | /// Verifier pass for the \c LoopAnalysis results. |
1253 | struct LoopVerifierPass : public PassInfoMixin<LoopVerifierPass> { |
1254 | PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); |
1255 | }; |
1256 | |
1257 | /// The legacy pass manager's analysis pass to compute loop information. |
1258 | class LoopInfoWrapperPass : public FunctionPass { |
1259 | LoopInfo LI; |
1260 | |
1261 | public: |
1262 | static char ID; // Pass identification, replacement for typeid |
1263 | |
1264 | LoopInfoWrapperPass(); |
1265 | |
1266 | LoopInfo &getLoopInfo() { return LI; } |
1267 | const LoopInfo &getLoopInfo() const { return LI; } |
1268 | |
1269 | /// Calculate the natural loop information for a given function. |
1270 | bool runOnFunction(Function &F) override; |
1271 | |
1272 | void verifyAnalysis() const override; |
1273 | |
1274 | void releaseMemory() override { LI.releaseMemory(); } |
1275 | |
1276 | void print(raw_ostream &O, const Module *M = nullptr) const override; |
1277 | |
1278 | void getAnalysisUsage(AnalysisUsage &AU) const override; |
1279 | }; |
1280 | |
1281 | /// Function to print a loop's contents as LLVM's text IR assembly. |
1282 | void printLoop(Loop &L, raw_ostream &OS, const std::string &Banner = "" ); |
1283 | |
1284 | /// Find and return the loop attribute node for the attribute @p Name in |
1285 | /// @p LoopID. Return nullptr if there is no such attribute. |
1286 | MDNode *findOptionMDForLoopID(MDNode *LoopID, StringRef Name); |
1287 | |
1288 | /// Find string metadata for a loop. |
1289 | /// |
1290 | /// Returns the MDNode where the first operand is the metadata's name. The |
1291 | /// following operands are the metadata's values. If no metadata with @p Name is |
1292 | /// found, return nullptr. |
1293 | MDNode *findOptionMDForLoop(const Loop *TheLoop, StringRef Name); |
1294 | |
1295 | /// Return whether an MDNode might represent an access group. |
1296 | /// |
1297 | /// Access group metadata nodes have to be distinct and empty. Being |
1298 | /// always-empty ensures that it never needs to be changed (which -- because |
1299 | /// MDNodes are designed immutable -- would require creating a new MDNode). Note |
1300 | /// that this is not a sufficient condition: not every distinct and empty NDNode |
1301 | /// is representing an access group. |
1302 | bool isValidAsAccessGroup(MDNode *AccGroup); |
1303 | |
1304 | /// Create a new LoopID after the loop has been transformed. |
1305 | /// |
1306 | /// This can be used when no follow-up loop attributes are defined |
1307 | /// (llvm::makeFollowupLoopID returning None) to stop transformations to be |
1308 | /// applied again. |
1309 | /// |
1310 | /// @param Context The LLVMContext in which to create the new LoopID. |
1311 | /// @param OrigLoopID The original LoopID; can be nullptr if the original |
1312 | /// loop has no LoopID. |
1313 | /// @param RemovePrefixes Remove all loop attributes that have these prefixes. |
1314 | /// Use to remove metadata of the transformation that has |
1315 | /// been applied. |
1316 | /// @param AddAttrs Add these loop attributes to the new LoopID. |
1317 | /// |
1318 | /// @return A new LoopID that can be applied using Loop::setLoopID(). |
1319 | llvm::MDNode * |
1320 | makePostTransformationMetadata(llvm::LLVMContext &Context, MDNode *OrigLoopID, |
1321 | llvm::ArrayRef<llvm::StringRef> RemovePrefixes, |
1322 | llvm::ArrayRef<llvm::MDNode *> AddAttrs); |
1323 | |
1324 | } // End llvm namespace |
1325 | |
1326 | #endif |
1327 | |