1//===- ConstantRange.h - Represent a range ----------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Represent a range of possible values that may occur when the program is run
10// for an integral value. This keeps track of a lower and upper bound for the
11// constant, which MAY wrap around the end of the numeric range. To do this, it
12// keeps track of a [lower, upper) bound, which specifies an interval just like
13// STL iterators. When used with boolean values, the following are important
14// ranges: :
15//
16// [F, F) = {} = Empty set
17// [T, F) = {T}
18// [F, T) = {F}
19// [T, T) = {F, T} = Full set
20//
21// The other integral ranges use min/max values for special range values. For
22// example, for 8-bit types, it uses:
23// [0, 0) = {} = Empty set
24// [255, 255) = {0..255} = Full Set
25//
26// Note that ConstantRange can be used to represent either signed or
27// unsigned ranges.
28//
29//===----------------------------------------------------------------------===//
30
31#ifndef LLVM_IR_CONSTANTRANGE_H
32#define LLVM_IR_CONSTANTRANGE_H
33
34#include "llvm/ADT/APInt.h"
35#include "llvm/IR/InstrTypes.h"
36#include "llvm/IR/Instruction.h"
37#include "llvm/Support/Compiler.h"
38#include <cstdint>
39
40namespace llvm {
41
42class MDNode;
43class raw_ostream;
44struct KnownBits;
45
46/// This class represents a range of values.
47class [[nodiscard]] ConstantRange {
48 APInt Lower, Upper;
49
50 /// Create empty constant range with same bitwidth.
51 ConstantRange getEmpty() const {
52 return ConstantRange(getBitWidth(), false);
53 }
54
55 /// Create full constant range with same bitwidth.
56 ConstantRange getFull() const {
57 return ConstantRange(getBitWidth(), true);
58 }
59
60public:
61 /// Initialize a full or empty set for the specified bit width.
62 explicit ConstantRange(uint32_t BitWidth, bool isFullSet);
63
64 /// Initialize a range to hold the single specified value.
65 ConstantRange(APInt Value);
66
67 /// Initialize a range of values explicitly. This will assert out if
68 /// Lower==Upper and Lower != Min or Max value for its type. It will also
69 /// assert out if the two APInt's are not the same bit width.
70 ConstantRange(APInt Lower, APInt Upper);
71
72 /// Create empty constant range with the given bit width.
73 static ConstantRange getEmpty(uint32_t BitWidth) {
74 return ConstantRange(BitWidth, false);
75 }
76
77 /// Create full constant range with the given bit width.
78 static ConstantRange getFull(uint32_t BitWidth) {
79 return ConstantRange(BitWidth, true);
80 }
81
82 /// Create non-empty constant range with the given bounds. If Lower and
83 /// Upper are the same, a full range is returned.
84 static ConstantRange getNonEmpty(APInt Lower, APInt Upper) {
85 if (Lower == Upper)
86 return getFull(BitWidth: Lower.getBitWidth());
87 return ConstantRange(std::move(Lower), std::move(Upper));
88 }
89
90 /// Initialize a range based on a known bits constraint. The IsSigned flag
91 /// indicates whether the constant range should not wrap in the signed or
92 /// unsigned domain.
93 static ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned);
94
95 /// Produce the smallest range such that all values that may satisfy the given
96 /// predicate with any value contained within Other is contained in the
97 /// returned range. Formally, this returns a superset of
98 /// 'union over all y in Other . { x : icmp op x y is true }'. If the exact
99 /// answer is not representable as a ConstantRange, the return value will be a
100 /// proper superset of the above.
101 ///
102 /// Example: Pred = ult and Other = i8 [2, 5) returns Result = [0, 4)
103 static ConstantRange makeAllowedICmpRegion(CmpInst::Predicate Pred,
104 const ConstantRange &Other);
105
106 /// Produce the largest range such that all values in the returned range
107 /// satisfy the given predicate with all values contained within Other.
108 /// Formally, this returns a subset of
109 /// 'intersection over all y in Other . { x : icmp op x y is true }'. If the
110 /// exact answer is not representable as a ConstantRange, the return value
111 /// will be a proper subset of the above.
112 ///
113 /// Example: Pred = ult and Other = i8 [2, 5) returns [0, 2)
114 static ConstantRange makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
115 const ConstantRange &Other);
116
117 /// Produce the exact range such that all values in the returned range satisfy
118 /// the given predicate with any value contained within Other. Formally, this
119 /// returns the exact answer when the superset of 'union over all y in Other
120 /// is exactly same as the subset of intersection over all y in Other.
121 /// { x : icmp op x y is true}'.
122 ///
123 /// Example: Pred = ult and Other = i8 3 returns [0, 3)
124 static ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred,
125 const APInt &Other);
126
127 /// Does the predicate \p Pred hold between ranges this and \p Other?
128 /// NOTE: false does not mean that inverse predicate holds!
129 bool icmp(CmpInst::Predicate Pred, const ConstantRange &Other) const;
130
131 /// Return true iff CR1 ult CR2 is equivalent to CR1 slt CR2.
132 /// Does not depend on strictness/direction of the predicate.
133 static bool
134 areInsensitiveToSignednessOfICmpPredicate(const ConstantRange &CR1,
135 const ConstantRange &CR2);
136
137 /// Return true iff CR1 ult CR2 is equivalent to CR1 sge CR2.
138 /// Does not depend on strictness/direction of the predicate.
139 static bool
140 areInsensitiveToSignednessOfInvertedICmpPredicate(const ConstantRange &CR1,
141 const ConstantRange &CR2);
142
143 /// If the comparison between constant ranges this and Other
144 /// is insensitive to the signedness of the comparison predicate,
145 /// return a predicate equivalent to \p Pred, with flipped signedness
146 /// (i.e. unsigned instead of signed or vice versa), and maybe inverted,
147 /// otherwise returns CmpInst::Predicate::BAD_ICMP_PREDICATE.
148 static CmpInst::Predicate
149 getEquivalentPredWithFlippedSignedness(CmpInst::Predicate Pred,
150 const ConstantRange &CR1,
151 const ConstantRange &CR2);
152
153 /// Produce the largest range containing all X such that "X BinOp Y" is
154 /// guaranteed not to wrap (overflow) for *all* Y in Other. However, there may
155 /// be *some* Y in Other for which additional X not contained in the result
156 /// also do not overflow.
157 ///
158 /// NoWrapKind must be one of OBO::NoUnsignedWrap or OBO::NoSignedWrap.
159 ///
160 /// Examples:
161 /// typedef OverflowingBinaryOperator OBO;
162 /// #define MGNR makeGuaranteedNoWrapRegion
163 /// MGNR(Add, [i8 1, 2), OBO::NoSignedWrap) == [-128, 127)
164 /// MGNR(Add, [i8 1, 2), OBO::NoUnsignedWrap) == [0, -1)
165 /// MGNR(Add, [i8 0, 1), OBO::NoUnsignedWrap) == Full Set
166 /// MGNR(Add, [i8 -1, 6), OBO::NoSignedWrap) == [INT_MIN+1, INT_MAX-4)
167 /// MGNR(Sub, [i8 1, 2), OBO::NoSignedWrap) == [-127, 128)
168 /// MGNR(Sub, [i8 1, 2), OBO::NoUnsignedWrap) == [1, 0)
169 static ConstantRange makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
170 const ConstantRange &Other,
171 unsigned NoWrapKind);
172
173 /// Produce the range that contains X if and only if "X BinOp Other" does
174 /// not wrap.
175 static ConstantRange makeExactNoWrapRegion(Instruction::BinaryOps BinOp,
176 const APInt &Other,
177 unsigned NoWrapKind);
178
179 /// Returns true if ConstantRange calculations are supported for intrinsic
180 /// with \p IntrinsicID.
181 static bool isIntrinsicSupported(Intrinsic::ID IntrinsicID);
182
183 /// Compute range of intrinsic result for the given operand ranges.
184 static ConstantRange intrinsic(Intrinsic::ID IntrinsicID,
185 ArrayRef<ConstantRange> Ops);
186
187 /// Set up \p Pred and \p RHS such that
188 /// ConstantRange::makeExactICmpRegion(Pred, RHS) == *this. Return true if
189 /// successful.
190 bool getEquivalentICmp(CmpInst::Predicate &Pred, APInt &RHS) const;
191
192 /// Set up \p Pred, \p RHS and \p Offset such that (V + Offset) Pred RHS
193 /// is true iff V is in the range. Prefers using Offset == 0 if possible.
194 void
195 getEquivalentICmp(CmpInst::Predicate &Pred, APInt &RHS, APInt &Offset) const;
196
197 /// Return the lower value for this range.
198 const APInt &getLower() const { return Lower; }
199
200 /// Return the upper value for this range.
201 const APInt &getUpper() const { return Upper; }
202
203 /// Get the bit width of this ConstantRange.
204 uint32_t getBitWidth() const { return Lower.getBitWidth(); }
205
206 /// Return true if this set contains all of the elements possible
207 /// for this data-type.
208 bool isFullSet() const;
209
210 /// Return true if this set contains no members.
211 bool isEmptySet() const;
212
213 /// Return true if this set wraps around the unsigned domain. Special cases:
214 /// * Empty set: Not wrapped.
215 /// * Full set: Not wrapped.
216 /// * [X, 0) == [X, Max]: Not wrapped.
217 bool isWrappedSet() const;
218
219 /// Return true if the exclusive upper bound wraps around the unsigned
220 /// domain. Special cases:
221 /// * Empty set: Not wrapped.
222 /// * Full set: Not wrapped.
223 /// * [X, 0): Wrapped.
224 bool isUpperWrapped() const;
225
226 /// Return true if this set wraps around the signed domain. Special cases:
227 /// * Empty set: Not wrapped.
228 /// * Full set: Not wrapped.
229 /// * [X, SignedMin) == [X, SignedMax]: Not wrapped.
230 bool isSignWrappedSet() const;
231
232 /// Return true if the (exclusive) upper bound wraps around the signed
233 /// domain. Special cases:
234 /// * Empty set: Not wrapped.
235 /// * Full set: Not wrapped.
236 /// * [X, SignedMin): Wrapped.
237 bool isUpperSignWrapped() const;
238
239 /// Return true if the specified value is in the set.
240 bool contains(const APInt &Val) const;
241
242 /// Return true if the other range is a subset of this one.
243 bool contains(const ConstantRange &CR) const;
244
245 /// If this set contains a single element, return it, otherwise return null.
246 const APInt *getSingleElement() const {
247 if (Upper == Lower + 1)
248 return &Lower;
249 return nullptr;
250 }
251
252 /// If this set contains all but a single element, return it, otherwise return
253 /// null.
254 const APInt *getSingleMissingElement() const {
255 if (Lower == Upper + 1)
256 return &Upper;
257 return nullptr;
258 }
259
260 /// Return true if this set contains exactly one member.
261 bool isSingleElement() const { return getSingleElement() != nullptr; }
262
263 /// Compare set size of this range with the range CR.
264 bool isSizeStrictlySmallerThan(const ConstantRange &CR) const;
265
266 /// Compare set size of this range with Value.
267 bool isSizeLargerThan(uint64_t MaxSize) const;
268
269 /// Return true if all values in this range are negative.
270 bool isAllNegative() const;
271
272 /// Return true if all values in this range are non-negative.
273 bool isAllNonNegative() const;
274
275 /// Return the largest unsigned value contained in the ConstantRange.
276 APInt getUnsignedMax() const;
277
278 /// Return the smallest unsigned value contained in the ConstantRange.
279 APInt getUnsignedMin() const;
280
281 /// Return the largest signed value contained in the ConstantRange.
282 APInt getSignedMax() const;
283
284 /// Return the smallest signed value contained in the ConstantRange.
285 APInt getSignedMin() const;
286
287 /// Return true if this range is equal to another range.
288 bool operator==(const ConstantRange &CR) const {
289 return Lower == CR.Lower && Upper == CR.Upper;
290 }
291 bool operator!=(const ConstantRange &CR) const {
292 return !operator==(CR);
293 }
294
295 /// Compute the maximal number of active bits needed to represent every value
296 /// in this range.
297 unsigned getActiveBits() const;
298
299 /// Compute the maximal number of bits needed to represent every value
300 /// in this signed range.
301 unsigned getMinSignedBits() const;
302
303 /// Subtract the specified constant from the endpoints of this constant range.
304 ConstantRange subtract(const APInt &CI) const;
305
306 /// Subtract the specified range from this range (aka relative complement of
307 /// the sets).
308 ConstantRange difference(const ConstantRange &CR) const;
309
310 /// If represented precisely, the result of some range operations may consist
311 /// of multiple disjoint ranges. As only a single range may be returned, any
312 /// range covering these disjoint ranges constitutes a valid result, but some
313 /// may be more useful than others depending on context. The preferred range
314 /// type specifies whether a range that is non-wrapping in the unsigned or
315 /// signed domain, or has the smallest size, is preferred. If a signedness is
316 /// preferred but all ranges are non-wrapping or all wrapping, then the
317 /// smallest set size is preferred. If there are multiple smallest sets, any
318 /// one of them may be returned.
319 enum PreferredRangeType { Smallest, Unsigned, Signed };
320
321 /// Return the range that results from the intersection of this range with
322 /// another range. If the intersection is disjoint, such that two results
323 /// are possible, the preferred range is determined by the PreferredRangeType.
324 ConstantRange intersectWith(const ConstantRange &CR,
325 PreferredRangeType Type = Smallest) const;
326
327 /// Return the range that results from the union of this range
328 /// with another range. The resultant range is guaranteed to include the
329 /// elements of both sets, but may contain more. For example, [3, 9) union
330 /// [12,15) is [3, 15), which includes 9, 10, and 11, which were not included
331 /// in either set before.
332 ConstantRange unionWith(const ConstantRange &CR,
333 PreferredRangeType Type = Smallest) const;
334
335 /// Intersect the two ranges and return the result if it can be represented
336 /// exactly, otherwise return std::nullopt.
337 std::optional<ConstantRange>
338 exactIntersectWith(const ConstantRange &CR) const;
339
340 /// Union the two ranges and return the result if it can be represented
341 /// exactly, otherwise return std::nullopt.
342 std::optional<ConstantRange> exactUnionWith(const ConstantRange &CR) const;
343
344 /// Return a new range representing the possible values resulting
345 /// from an application of the specified cast operator to this range. \p
346 /// BitWidth is the target bitwidth of the cast. For casts which don't
347 /// change bitwidth, it must be the same as the source bitwidth. For casts
348 /// which do change bitwidth, the bitwidth must be consistent with the
349 /// requested cast and source bitwidth.
350 ConstantRange castOp(Instruction::CastOps CastOp,
351 uint32_t BitWidth) const;
352
353 /// Return a new range in the specified integer type, which must
354 /// be strictly larger than the current type. The returned range will
355 /// correspond to the possible range of values if the source range had been
356 /// zero extended to BitWidth.
357 ConstantRange zeroExtend(uint32_t BitWidth) const;
358
359 /// Return a new range in the specified integer type, which must
360 /// be strictly larger than the current type. The returned range will
361 /// correspond to the possible range of values if the source range had been
362 /// sign extended to BitWidth.
363 ConstantRange signExtend(uint32_t BitWidth) const;
364
365 /// Return a new range in the specified integer type, which must be
366 /// strictly smaller than the current type. The returned range will
367 /// correspond to the possible range of values if the source range had been
368 /// truncated to the specified type.
369 ConstantRange truncate(uint32_t BitWidth) const;
370
371 /// Make this range have the bit width given by \p BitWidth. The
372 /// value is zero extended, truncated, or left alone to make it that width.
373 ConstantRange zextOrTrunc(uint32_t BitWidth) const;
374
375 /// Make this range have the bit width given by \p BitWidth. The
376 /// value is sign extended, truncated, or left alone to make it that width.
377 ConstantRange sextOrTrunc(uint32_t BitWidth) const;
378
379 /// Return a new range representing the possible values resulting
380 /// from an application of the specified binary operator to an left hand side
381 /// of this range and a right hand side of \p Other.
382 ConstantRange binaryOp(Instruction::BinaryOps BinOp,
383 const ConstantRange &Other) const;
384
385 /// Return a new range representing the possible values resulting
386 /// from an application of the specified overflowing binary operator to a
387 /// left hand side of this range and a right hand side of \p Other given
388 /// the provided knowledge about lack of wrapping \p NoWrapKind.
389 ConstantRange overflowingBinaryOp(Instruction::BinaryOps BinOp,
390 const ConstantRange &Other,
391 unsigned NoWrapKind) const;
392
393 /// Return a new range representing the possible values resulting
394 /// from an addition of a value in this range and a value in \p Other.
395 ConstantRange add(const ConstantRange &Other) const;
396
397 /// Return a new range representing the possible values resulting
398 /// from an addition with wrap type \p NoWrapKind of a value in this
399 /// range and a value in \p Other.
400 /// If the result range is disjoint, the preferred range is determined by the
401 /// \p PreferredRangeType.
402 ConstantRange addWithNoWrap(const ConstantRange &Other, unsigned NoWrapKind,
403 PreferredRangeType RangeType = Smallest) const;
404
405 /// Return a new range representing the possible values resulting
406 /// from a subtraction of a value in this range and a value in \p Other.
407 ConstantRange sub(const ConstantRange &Other) const;
408
409 /// Return a new range representing the possible values resulting
410 /// from an subtraction with wrap type \p NoWrapKind of a value in this
411 /// range and a value in \p Other.
412 /// If the result range is disjoint, the preferred range is determined by the
413 /// \p PreferredRangeType.
414 ConstantRange subWithNoWrap(const ConstantRange &Other, unsigned NoWrapKind,
415 PreferredRangeType RangeType = Smallest) const;
416
417 /// Return a new range representing the possible values resulting
418 /// from a multiplication of a value in this range and a value in \p Other,
419 /// treating both this and \p Other as unsigned ranges.
420 ConstantRange multiply(const ConstantRange &Other) const;
421
422 /// Return range of possible values for a signed multiplication of this and
423 /// \p Other. However, if overflow is possible always return a full range
424 /// rather than trying to determine a more precise result.
425 ConstantRange smul_fast(const ConstantRange &Other) const;
426
427 /// Return a new range representing the possible values resulting
428 /// from a signed maximum of a value in this range and a value in \p Other.
429 ConstantRange smax(const ConstantRange &Other) const;
430
431 /// Return a new range representing the possible values resulting
432 /// from an unsigned maximum of a value in this range and a value in \p Other.
433 ConstantRange umax(const ConstantRange &Other) const;
434
435 /// Return a new range representing the possible values resulting
436 /// from a signed minimum of a value in this range and a value in \p Other.
437 ConstantRange smin(const ConstantRange &Other) const;
438
439 /// Return a new range representing the possible values resulting
440 /// from an unsigned minimum of a value in this range and a value in \p Other.
441 ConstantRange umin(const ConstantRange &Other) const;
442
443 /// Return a new range representing the possible values resulting
444 /// from an unsigned division of a value in this range and a value in
445 /// \p Other.
446 ConstantRange udiv(const ConstantRange &Other) const;
447
448 /// Return a new range representing the possible values resulting
449 /// from a signed division of a value in this range and a value in
450 /// \p Other. Division by zero and division of SignedMin by -1 are considered
451 /// undefined behavior, in line with IR, and do not contribute towards the
452 /// result.
453 ConstantRange sdiv(const ConstantRange &Other) const;
454
455 /// Return a new range representing the possible values resulting
456 /// from an unsigned remainder operation of a value in this range and a
457 /// value in \p Other.
458 ConstantRange urem(const ConstantRange &Other) const;
459
460 /// Return a new range representing the possible values resulting
461 /// from a signed remainder operation of a value in this range and a
462 /// value in \p Other.
463 ConstantRange srem(const ConstantRange &Other) const;
464
465 /// Return a new range representing the possible values resulting from
466 /// a binary-xor of a value in this range by an all-one value,
467 /// aka bitwise complement operation.
468 ConstantRange binaryNot() const;
469
470 /// Return a new range representing the possible values resulting
471 /// from a binary-and of a value in this range by a value in \p Other.
472 ConstantRange binaryAnd(const ConstantRange &Other) const;
473
474 /// Return a new range representing the possible values resulting
475 /// from a binary-or of a value in this range by a value in \p Other.
476 ConstantRange binaryOr(const ConstantRange &Other) const;
477
478 /// Return a new range representing the possible values resulting
479 /// from a binary-xor of a value in this range by a value in \p Other.
480 ConstantRange binaryXor(const ConstantRange &Other) const;
481
482 /// Return a new range representing the possible values resulting
483 /// from a left shift of a value in this range by a value in \p Other.
484 /// TODO: This isn't fully implemented yet.
485 ConstantRange shl(const ConstantRange &Other) const;
486
487 /// Return a new range representing the possible values resulting from a
488 /// logical right shift of a value in this range and a value in \p Other.
489 ConstantRange lshr(const ConstantRange &Other) const;
490
491 /// Return a new range representing the possible values resulting from a
492 /// arithmetic right shift of a value in this range and a value in \p Other.
493 ConstantRange ashr(const ConstantRange &Other) const;
494
495 /// Perform an unsigned saturating addition of two constant ranges.
496 ConstantRange uadd_sat(const ConstantRange &Other) const;
497
498 /// Perform a signed saturating addition of two constant ranges.
499 ConstantRange sadd_sat(const ConstantRange &Other) const;
500
501 /// Perform an unsigned saturating subtraction of two constant ranges.
502 ConstantRange usub_sat(const ConstantRange &Other) const;
503
504 /// Perform a signed saturating subtraction of two constant ranges.
505 ConstantRange ssub_sat(const ConstantRange &Other) const;
506
507 /// Perform an unsigned saturating multiplication of two constant ranges.
508 ConstantRange umul_sat(const ConstantRange &Other) const;
509
510 /// Perform a signed saturating multiplication of two constant ranges.
511 ConstantRange smul_sat(const ConstantRange &Other) const;
512
513 /// Perform an unsigned saturating left shift of this constant range by a
514 /// value in \p Other.
515 ConstantRange ushl_sat(const ConstantRange &Other) const;
516
517 /// Perform a signed saturating left shift of this constant range by a
518 /// value in \p Other.
519 ConstantRange sshl_sat(const ConstantRange &Other) const;
520
521 /// Return a new range that is the logical not of the current set.
522 ConstantRange inverse() const;
523
524 /// Calculate absolute value range. If the original range contains signed
525 /// min, then the resulting range will contain signed min if and only if
526 /// \p IntMinIsPoison is false.
527 ConstantRange abs(bool IntMinIsPoison = false) const;
528
529 /// Calculate ctlz range. If \p ZeroIsPoison is set, the range is computed
530 /// ignoring a possible zero value contained in the input range.
531 ConstantRange ctlz(bool ZeroIsPoison = false) const;
532
533 /// Calculate cttz range. If \p ZeroIsPoison is set, the range is computed
534 /// ignoring a possible zero value contained in the input range.
535 ConstantRange cttz(bool ZeroIsPoison = false) const;
536
537 /// Calculate ctpop range.
538 ConstantRange ctpop() const;
539
540 /// Represents whether an operation on the given constant range is known to
541 /// always or never overflow.
542 enum class OverflowResult {
543 /// Always overflows in the direction of signed/unsigned min value.
544 AlwaysOverflowsLow,
545 /// Always overflows in the direction of signed/unsigned max value.
546 AlwaysOverflowsHigh,
547 /// May or may not overflow.
548 MayOverflow,
549 /// Never overflows.
550 NeverOverflows,
551 };
552
553 /// Return whether unsigned add of the two ranges always/never overflows.
554 OverflowResult unsignedAddMayOverflow(const ConstantRange &Other) const;
555
556 /// Return whether signed add of the two ranges always/never overflows.
557 OverflowResult signedAddMayOverflow(const ConstantRange &Other) const;
558
559 /// Return whether unsigned sub of the two ranges always/never overflows.
560 OverflowResult unsignedSubMayOverflow(const ConstantRange &Other) const;
561
562 /// Return whether signed sub of the two ranges always/never overflows.
563 OverflowResult signedSubMayOverflow(const ConstantRange &Other) const;
564
565 /// Return whether unsigned mul of the two ranges always/never overflows.
566 OverflowResult unsignedMulMayOverflow(const ConstantRange &Other) const;
567
568 /// Return known bits for values in this range.
569 KnownBits toKnownBits() const;
570
571 /// Print out the bounds to a stream.
572 void print(raw_ostream &OS) const;
573
574 /// Allow printing from a debugger easily.
575 void dump() const;
576};
577
578inline raw_ostream &operator<<(raw_ostream &OS, const ConstantRange &CR) {
579 CR.print(OS);
580 return OS;
581}
582
583/// Parse out a conservative ConstantRange from !range metadata.
584///
585/// E.g. if RangeMD is !{i32 0, i32 10, i32 15, i32 20} then return [0, 20).
586ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD);
587
588} // end namespace llvm
589
590#endif // LLVM_IR_CONSTANTRANGE_H
591

source code of llvm/include/llvm/IR/ConstantRange.h