1//===- llvm/Type.h - Classes for handling data types ------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the declaration of the Type class. For more "Type"
10// stuff, look in DerivedTypes.h.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_IR_TYPE_H
15#define LLVM_IR_TYPE_H
16
17#include "llvm/ADT/APFloat.h"
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/Support/CBindingWrapping.h"
21#include "llvm/Support/Casting.h"
22#include "llvm/Support/Compiler.h"
23#include "llvm/Support/ErrorHandling.h"
24#include "llvm/Support/TypeSize.h"
25#include <cassert>
26#include <cstdint>
27#include <iterator>
28
29namespace llvm {
30
31template<class GraphType> struct GraphTraits;
32class IntegerType;
33class LLVMContext;
34class PointerType;
35class raw_ostream;
36class StringRef;
37
38/// The instances of the Type class are immutable: once they are created,
39/// they are never changed. Also note that only one instance of a particular
40/// type is ever created. Thus seeing if two types are equal is a matter of
41/// doing a trivial pointer comparison. To enforce that no two equal instances
42/// are created, Type instances can only be created via static factory methods
43/// in class Type and in derived classes. Once allocated, Types are never
44/// free'd.
45///
46class Type {
47public:
48 //===--------------------------------------------------------------------===//
49 /// Definitions of all of the base types for the Type system. Based on this
50 /// value, you can cast to a class defined in DerivedTypes.h.
51 /// Note: If you add an element to this, you need to add an element to the
52 /// Type::getPrimitiveType function, or else things will break!
53 /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding.
54 ///
55 enum TypeID {
56 // PrimitiveTypes
57 HalfTyID = 0, ///< 16-bit floating point type
58 BFloatTyID, ///< 16-bit floating point type (7-bit significand)
59 FloatTyID, ///< 32-bit floating point type
60 DoubleTyID, ///< 64-bit floating point type
61 X86_FP80TyID, ///< 80-bit floating point type (X87)
62 FP128TyID, ///< 128-bit floating point type (112-bit significand)
63 PPC_FP128TyID, ///< 128-bit floating point type (two 64-bits, PowerPC)
64 VoidTyID, ///< type with no size
65 LabelTyID, ///< Labels
66 MetadataTyID, ///< Metadata
67 X86_MMXTyID, ///< MMX vectors (64 bits, X86 specific)
68 X86_AMXTyID, ///< AMX vectors (8192 bits, X86 specific)
69 TokenTyID, ///< Tokens
70
71 // Derived types... see DerivedTypes.h file.
72 IntegerTyID, ///< Arbitrary bit width integers
73 FunctionTyID, ///< Functions
74 PointerTyID, ///< Pointers
75 StructTyID, ///< Structures
76 ArrayTyID, ///< Arrays
77 FixedVectorTyID, ///< Fixed width SIMD vector type
78 ScalableVectorTyID ///< Scalable SIMD vector type
79 };
80
81private:
82 /// This refers to the LLVMContext in which this type was uniqued.
83 LLVMContext &Context;
84
85 TypeID ID : 8; // The current base type of this type.
86 unsigned SubclassData : 24; // Space for subclasses to store data.
87 // Note that this should be synchronized with
88 // MAX_INT_BITS value in IntegerType class.
89
90protected:
91 friend class LLVMContextImpl;
92
93 explicit Type(LLVMContext &C, TypeID tid)
94 : Context(C), ID(tid), SubclassData(0) {}
95 ~Type() = default;
96
97 unsigned getSubclassData() const { return SubclassData; }
98
99 void setSubclassData(unsigned val) {
100 SubclassData = val;
101 // Ensure we don't have any accidental truncation.
102 assert(getSubclassData() == val && "Subclass data too large for field");
103 }
104
105 /// Keeps track of how many Type*'s there are in the ContainedTys list.
106 unsigned NumContainedTys = 0;
107
108 /// A pointer to the array of Types contained by this Type. For example, this
109 /// includes the arguments of a function type, the elements of a structure,
110 /// the pointee of a pointer, the element type of an array, etc. This pointer
111 /// may be 0 for types that don't contain other types (Integer, Double,
112 /// Float).
113 Type * const *ContainedTys = nullptr;
114
115public:
116 /// Print the current type.
117 /// Omit the type details if \p NoDetails == true.
118 /// E.g., let %st = type { i32, i16 }
119 /// When \p NoDetails is true, we only print %st.
120 /// Put differently, \p NoDetails prints the type as if
121 /// inlined with the operands when printing an instruction.
122 void print(raw_ostream &O, bool IsForDebug = false,
123 bool NoDetails = false) const;
124
125 void dump() const;
126
127 /// Return the LLVMContext in which this type was uniqued.
128 LLVMContext &getContext() const { return Context; }
129
130 //===--------------------------------------------------------------------===//
131 // Accessors for working with types.
132 //
133
134 /// Return the type id for the type. This will return one of the TypeID enum
135 /// elements defined above.
136 TypeID getTypeID() const { return ID; }
137
138 /// Return true if this is 'void'.
139 bool isVoidTy() const { return getTypeID() == VoidTyID; }
140
141 /// Return true if this is 'half', a 16-bit IEEE fp type.
142 bool isHalfTy() const { return getTypeID() == HalfTyID; }
143
144 /// Return true if this is 'bfloat', a 16-bit bfloat type.
145 bool isBFloatTy() const { return getTypeID() == BFloatTyID; }
146
147 /// Return true if this is 'float', a 32-bit IEEE fp type.
148 bool isFloatTy() const { return getTypeID() == FloatTyID; }
149
150 /// Return true if this is 'double', a 64-bit IEEE fp type.
151 bool isDoubleTy() const { return getTypeID() == DoubleTyID; }
152
153 /// Return true if this is x86 long double.
154 bool isX86_FP80Ty() const { return getTypeID() == X86_FP80TyID; }
155
156 /// Return true if this is 'fp128'.
157 bool isFP128Ty() const { return getTypeID() == FP128TyID; }
158
159 /// Return true if this is powerpc long double.
160 bool isPPC_FP128Ty() const { return getTypeID() == PPC_FP128TyID; }
161
162 /// Return true if this is one of the six floating-point types
163 bool isFloatingPointTy() const {
164 return getTypeID() == HalfTyID || getTypeID() == BFloatTyID ||
165 getTypeID() == FloatTyID || getTypeID() == DoubleTyID ||
166 getTypeID() == X86_FP80TyID || getTypeID() == FP128TyID ||
167 getTypeID() == PPC_FP128TyID;
168 }
169
170 const fltSemantics &getFltSemantics() const {
171 switch (getTypeID()) {
172 case HalfTyID: return APFloat::IEEEhalf();
173 case BFloatTyID: return APFloat::BFloat();
174 case FloatTyID: return APFloat::IEEEsingle();
175 case DoubleTyID: return APFloat::IEEEdouble();
176 case X86_FP80TyID: return APFloat::x87DoubleExtended();
177 case FP128TyID: return APFloat::IEEEquad();
178 case PPC_FP128TyID: return APFloat::PPCDoubleDouble();
179 default: llvm_unreachable("Invalid floating type");
180 }
181 }
182
183 /// Return true if this is X86 MMX.
184 bool isX86_MMXTy() const { return getTypeID() == X86_MMXTyID; }
185
186 /// Return true if this is X86 AMX.
187 bool isX86_AMXTy() const { return getTypeID() == X86_AMXTyID; }
188
189 /// Return true if this is a FP type or a vector of FP.
190 bool isFPOrFPVectorTy() const { return getScalarType()->isFloatingPointTy(); }
191
192 /// Return true if this is 'label'.
193 bool isLabelTy() const { return getTypeID() == LabelTyID; }
194
195 /// Return true if this is 'metadata'.
196 bool isMetadataTy() const { return getTypeID() == MetadataTyID; }
197
198 /// Return true if this is 'token'.
199 bool isTokenTy() const { return getTypeID() == TokenTyID; }
200
201 /// True if this is an instance of IntegerType.
202 bool isIntegerTy() const { return getTypeID() == IntegerTyID; }
203
204 /// Return true if this is an IntegerType of the given width.
205 bool isIntegerTy(unsigned Bitwidth) const;
206
207 /// Return true if this is an integer type or a vector of integer types.
208 bool isIntOrIntVectorTy() const { return getScalarType()->isIntegerTy(); }
209
210 /// Return true if this is an integer type or a vector of integer types of
211 /// the given width.
212 bool isIntOrIntVectorTy(unsigned BitWidth) const {
213 return getScalarType()->isIntegerTy(BitWidth);
214 }
215
216 /// Return true if this is an integer type or a pointer type.
217 bool isIntOrPtrTy() const { return isIntegerTy() || isPointerTy(); }
218
219 /// True if this is an instance of FunctionType.
220 bool isFunctionTy() const { return getTypeID() == FunctionTyID; }
221
222 /// True if this is an instance of StructType.
223 bool isStructTy() const { return getTypeID() == StructTyID; }
224
225 /// True if this is an instance of ArrayType.
226 bool isArrayTy() const { return getTypeID() == ArrayTyID; }
227
228 /// True if this is an instance of PointerType.
229 bool isPointerTy() const { return getTypeID() == PointerTyID; }
230
231 /// Return true if this is a pointer type or a vector of pointer types.
232 bool isPtrOrPtrVectorTy() const { return getScalarType()->isPointerTy(); }
233
234 /// True if this is an instance of VectorType.
235 inline bool isVectorTy() const {
236 return getTypeID() == ScalableVectorTyID || getTypeID() == FixedVectorTyID;
237 }
238
239 /// Return true if this type could be converted with a lossless BitCast to
240 /// type 'Ty'. For example, i8* to i32*. BitCasts are valid for types of the
241 /// same size only where no re-interpretation of the bits is done.
242 /// Determine if this type could be losslessly bitcast to Ty
243 bool canLosslesslyBitCastTo(Type *Ty) const;
244
245 /// Return true if this type is empty, that is, it has no elements or all of
246 /// its elements are empty.
247 bool isEmptyTy() const;
248
249 /// Return true if the type is "first class", meaning it is a valid type for a
250 /// Value.
251 bool isFirstClassType() const {
252 return getTypeID() != FunctionTyID && getTypeID() != VoidTyID;
253 }
254
255 /// Return true if the type is a valid type for a register in codegen. This
256 /// includes all first-class types except struct and array types.
257 bool isSingleValueType() const {
258 return isFloatingPointTy() || isX86_MMXTy() || isIntegerTy() ||
259 isPointerTy() || isVectorTy() || isX86_AMXTy();
260 }
261
262 /// Return true if the type is an aggregate type. This means it is valid as
263 /// the first operand of an insertvalue or extractvalue instruction. This
264 /// includes struct and array types, but does not include vector types.
265 bool isAggregateType() const {
266 return getTypeID() == StructTyID || getTypeID() == ArrayTyID;
267 }
268
269 /// Return true if it makes sense to take the size of this type. To get the
270 /// actual size for a particular target, it is reasonable to use the
271 /// DataLayout subsystem to do this.
272 bool isSized(SmallPtrSetImpl<Type*> *Visited = nullptr) const {
273 // If it's a primitive, it is always sized.
274 if (getTypeID() == IntegerTyID || isFloatingPointTy() ||
275 getTypeID() == PointerTyID || getTypeID() == X86_MMXTyID ||
276 getTypeID() == X86_AMXTyID)
277 return true;
278 // If it is not something that can have a size (e.g. a function or label),
279 // it doesn't have a size.
280 if (getTypeID() != StructTyID && getTypeID() != ArrayTyID && !isVectorTy())
281 return false;
282 // Otherwise we have to try harder to decide.
283 return isSizedDerivedType(Visited);
284 }
285
286 /// Return the basic size of this type if it is a primitive type. These are
287 /// fixed by LLVM and are not target-dependent.
288 /// This will return zero if the type does not have a size or is not a
289 /// primitive type.
290 ///
291 /// If this is a scalable vector type, the scalable property will be set and
292 /// the runtime size will be a positive integer multiple of the base size.
293 ///
294 /// Note that this may not reflect the size of memory allocated for an
295 /// instance of the type or the number of bytes that are written when an
296 /// instance of the type is stored to memory. The DataLayout class provides
297 /// additional query functions to provide this information.
298 ///
299 TypeSize getPrimitiveSizeInBits() const LLVM_READONLY;
300
301 /// If this is a vector type, return the getPrimitiveSizeInBits value for the
302 /// element type. Otherwise return the getPrimitiveSizeInBits value for this
303 /// type.
304 unsigned getScalarSizeInBits() const LLVM_READONLY;
305
306 /// Return the width of the mantissa of this type. This is only valid on
307 /// floating-point types. If the FP type does not have a stable mantissa (e.g.
308 /// ppc long double), this method returns -1.
309 int getFPMantissaWidth() const;
310
311 /// Return whether the type is IEEE compatible, as defined by the eponymous
312 /// method in APFloat.
313 bool isIEEE() const { return APFloat::getZero(getFltSemantics()).isIEEE(); }
314
315 /// If this is a vector type, return the element type, otherwise return
316 /// 'this'.
317 inline Type *getScalarType() const {
318 if (isVectorTy())
319 return getContainedType(0);
320 return const_cast<Type *>(this);
321 }
322
323 //===--------------------------------------------------------------------===//
324 // Type Iteration support.
325 //
326 using subtype_iterator = Type * const *;
327
328 subtype_iterator subtype_begin() const { return ContainedTys; }
329 subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];}
330 ArrayRef<Type*> subtypes() const {
331 return makeArrayRef(subtype_begin(), subtype_end());
332 }
333
334 using subtype_reverse_iterator = std::reverse_iterator<subtype_iterator>;
335
336 subtype_reverse_iterator subtype_rbegin() const {
337 return subtype_reverse_iterator(subtype_end());
338 }
339 subtype_reverse_iterator subtype_rend() const {
340 return subtype_reverse_iterator(subtype_begin());
341 }
342
343 /// This method is used to implement the type iterator (defined at the end of
344 /// the file). For derived types, this returns the types 'contained' in the
345 /// derived type.
346 Type *getContainedType(unsigned i) const {
347 assert(i < NumContainedTys && "Index out of range!");
348 return ContainedTys[i];
349 }
350
351 /// Return the number of types in the derived type.
352 unsigned getNumContainedTypes() const { return NumContainedTys; }
353
354 //===--------------------------------------------------------------------===//
355 // Helper methods corresponding to subclass methods. This forces a cast to
356 // the specified subclass and calls its accessor. "getArrayNumElements" (for
357 // example) is shorthand for cast<ArrayType>(Ty)->getNumElements(). This is
358 // only intended to cover the core methods that are frequently used, helper
359 // methods should not be added here.
360
361 inline unsigned getIntegerBitWidth() const;
362
363 inline Type *getFunctionParamType(unsigned i) const;
364 inline unsigned getFunctionNumParams() const;
365 inline bool isFunctionVarArg() const;
366
367 inline StringRef getStructName() const;
368 inline unsigned getStructNumElements() const;
369 inline Type *getStructElementType(unsigned N) const;
370
371 inline uint64_t getArrayNumElements() const;
372
373 Type *getArrayElementType() const {
374 assert(getTypeID() == ArrayTyID);
375 return ContainedTys[0];
376 }
377
378 Type *getPointerElementType() const {
379 assert(getTypeID() == PointerTyID);
380 return ContainedTys[0];
381 }
382
383 /// Given vector type, change the element type,
384 /// whilst keeping the old number of elements.
385 /// For non-vectors simply returns \p EltTy.
386 inline Type *getWithNewType(Type *EltTy) const;
387
388 /// Given an integer or vector type, change the lane bitwidth to NewBitwidth,
389 /// whilst keeping the old number of lanes.
390 inline Type *getWithNewBitWidth(unsigned NewBitWidth) const;
391
392 /// Given scalar/vector integer type, returns a type with elements twice as
393 /// wide as in the original type. For vectors, preserves element count.
394 inline Type *getExtendedType() const;
395
396 /// Get the address space of this pointer or pointer vector type.
397 inline unsigned getPointerAddressSpace() const;
398
399 //===--------------------------------------------------------------------===//
400 // Static members exported by the Type class itself. Useful for getting
401 // instances of Type.
402 //
403
404 /// Return a type based on an identifier.
405 static Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber);
406
407 //===--------------------------------------------------------------------===//
408 // These are the builtin types that are always available.
409 //
410 static Type *getVoidTy(LLVMContext &C);
411 static Type *getLabelTy(LLVMContext &C);
412 static Type *getHalfTy(LLVMContext &C);
413 static Type *getBFloatTy(LLVMContext &C);
414 static Type *getFloatTy(LLVMContext &C);
415 static Type *getDoubleTy(LLVMContext &C);
416 static Type *getMetadataTy(LLVMContext &C);
417 static Type *getX86_FP80Ty(LLVMContext &C);
418 static Type *getFP128Ty(LLVMContext &C);
419 static Type *getPPC_FP128Ty(LLVMContext &C);
420 static Type *getX86_MMXTy(LLVMContext &C);
421 static Type *getX86_AMXTy(LLVMContext &C);
422 static Type *getTokenTy(LLVMContext &C);
423 static IntegerType *getIntNTy(LLVMContext &C, unsigned N);
424 static IntegerType *getInt1Ty(LLVMContext &C);
425 static IntegerType *getInt8Ty(LLVMContext &C);
426 static IntegerType *getInt16Ty(LLVMContext &C);
427 static IntegerType *getInt32Ty(LLVMContext &C);
428 static IntegerType *getInt64Ty(LLVMContext &C);
429 static IntegerType *getInt128Ty(LLVMContext &C);
430 template <typename ScalarTy> static Type *getScalarTy(LLVMContext &C) {
431 int noOfBits = sizeof(ScalarTy) * CHAR_BIT;
432 if (std::is_integral<ScalarTy>::value) {
433 return (Type*) Type::getIntNTy(C, noOfBits);
434 } else if (std::is_floating_point<ScalarTy>::value) {
435 switch (noOfBits) {
436 case 32:
437 return Type::getFloatTy(C);
438 case 64:
439 return Type::getDoubleTy(C);
440 }
441 }
442 llvm_unreachable("Unsupported type in Type::getScalarTy");
443 }
444 static Type *getFloatingPointTy(LLVMContext &C, const fltSemantics &S) {
445 Type *Ty;
446 if (&S == &APFloat::IEEEhalf())
447 Ty = Type::getHalfTy(C);
448 else if (&S == &APFloat::BFloat())
449 Ty = Type::getBFloatTy(C);
450 else if (&S == &APFloat::IEEEsingle())
451 Ty = Type::getFloatTy(C);
452 else if (&S == &APFloat::IEEEdouble())
453 Ty = Type::getDoubleTy(C);
454 else if (&S == &APFloat::x87DoubleExtended())
455 Ty = Type::getX86_FP80Ty(C);
456 else if (&S == &APFloat::IEEEquad())
457 Ty = Type::getFP128Ty(C);
458 else {
459 assert(&S == &APFloat::PPCDoubleDouble() && "Unknown FP format");
460 Ty = Type::getPPC_FP128Ty(C);
461 }
462 return Ty;
463 }
464
465 //===--------------------------------------------------------------------===//
466 // Convenience methods for getting pointer types with one of the above builtin
467 // types as pointee.
468 //
469 static PointerType *getHalfPtrTy(LLVMContext &C, unsigned AS = 0);
470 static PointerType *getBFloatPtrTy(LLVMContext &C, unsigned AS = 0);
471 static PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0);
472 static PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0);
473 static PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0);
474 static PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0);
475 static PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0);
476 static PointerType *getX86_MMXPtrTy(LLVMContext &C, unsigned AS = 0);
477 static PointerType *getX86_AMXPtrTy(LLVMContext &C, unsigned AS = 0);
478 static PointerType *getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS = 0);
479 static PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0);
480 static PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0);
481 static PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0);
482 static PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0);
483 static PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0);
484
485 /// Return a pointer to the current type. This is equivalent to
486 /// PointerType::get(Foo, AddrSpace).
487 PointerType *getPointerTo(unsigned AddrSpace = 0) const;
488
489private:
490 /// Derived types like structures and arrays are sized iff all of the members
491 /// of the type are sized as well. Since asking for their size is relatively
492 /// uncommon, move this operation out-of-line.
493 bool isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited = nullptr) const;
494};
495
496// Printing of types.
497inline raw_ostream &operator<<(raw_ostream &OS, const Type &T) {
498 T.print(OS);
499 return OS;
500}
501
502// allow isa<PointerType>(x) to work without DerivedTypes.h included.
503template <> struct isa_impl<PointerType, Type> {
504 static inline bool doit(const Type &Ty) {
505 return Ty.getTypeID() == Type::PointerTyID;
506 }
507};
508
509// Create wrappers for C Binding types (see CBindingWrapping.h).
510DEFINE_ISA_CONVERSION_FUNCTIONS(Type, LLVMTypeRef)
511
512/* Specialized opaque type conversions.
513 */
514inline Type **unwrap(LLVMTypeRef* Tys) {
515 return reinterpret_cast<Type**>(Tys);
516}
517
518inline LLVMTypeRef *wrap(Type **Tys) {
519 return reinterpret_cast<LLVMTypeRef*>(const_cast<Type**>(Tys));
520}
521
522} // end namespace llvm
523
524#endif // LLVM_IR_TYPE_H
525