1 | //===- Cloning.h - Clone various parts of LLVM programs ---------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file defines various functions that are used to clone chunks of LLVM |
10 | // code for various purposes. This varies from copying whole modules into new |
11 | // modules, to cloning functions with different arguments, to inlining |
12 | // functions, to copying basic blocks to support loop unrolling or superblock |
13 | // formation, etc. |
14 | // |
15 | //===----------------------------------------------------------------------===// |
16 | |
17 | #ifndef LLVM_TRANSFORMS_UTILS_CLONING_H |
18 | #define LLVM_TRANSFORMS_UTILS_CLONING_H |
19 | |
20 | #include "llvm/ADT/SmallVector.h" |
21 | #include "llvm/ADT/Twine.h" |
22 | #include "llvm/Analysis/AssumptionCache.h" |
23 | #include "llvm/Analysis/InlineCost.h" |
24 | #include "llvm/IR/ValueHandle.h" |
25 | #include "llvm/Transforms/Utils/ValueMapper.h" |
26 | #include <functional> |
27 | #include <memory> |
28 | #include <vector> |
29 | |
30 | namespace llvm { |
31 | |
32 | class AAResults; |
33 | class AllocaInst; |
34 | class BasicBlock; |
35 | class BlockFrequencyInfo; |
36 | class CallInst; |
37 | class CallGraph; |
38 | class DebugInfoFinder; |
39 | class DominatorTree; |
40 | class Function; |
41 | class Instruction; |
42 | class InvokeInst; |
43 | class Loop; |
44 | class LoopInfo; |
45 | class Module; |
46 | class ProfileSummaryInfo; |
47 | class ReturnInst; |
48 | class DomTreeUpdater; |
49 | |
50 | /// Return an exact copy of the specified module |
51 | std::unique_ptr<Module> CloneModule(const Module &M); |
52 | std::unique_ptr<Module> CloneModule(const Module &M, ValueToValueMapTy &VMap); |
53 | |
54 | /// Return a copy of the specified module. The ShouldCloneDefinition function |
55 | /// controls whether a specific GlobalValue's definition is cloned. If the |
56 | /// function returns false, the module copy will contain an external reference |
57 | /// in place of the global definition. |
58 | std::unique_ptr<Module> |
59 | CloneModule(const Module &M, ValueToValueMapTy &VMap, |
60 | function_ref<bool(const GlobalValue *)> ShouldCloneDefinition); |
61 | |
62 | /// This struct can be used to capture information about code |
63 | /// being cloned, while it is being cloned. |
64 | struct ClonedCodeInfo { |
65 | /// This is set to true if the cloned code contains a normal call instruction. |
66 | bool ContainsCalls = false; |
67 | |
68 | /// This is set to true if the cloned code contains a 'dynamic' alloca. |
69 | /// Dynamic allocas are allocas that are either not in the entry block or they |
70 | /// are in the entry block but are not a constant size. |
71 | bool ContainsDynamicAllocas = false; |
72 | |
73 | /// All cloned call sites that have operand bundles attached are appended to |
74 | /// this vector. This vector may contain nulls or undefs if some of the |
75 | /// originally inserted callsites were DCE'ed after they were cloned. |
76 | std::vector<WeakTrackingVH> OperandBundleCallSites; |
77 | |
78 | ClonedCodeInfo() = default; |
79 | }; |
80 | |
81 | /// Return a copy of the specified basic block, but without |
82 | /// embedding the block into a particular function. The block returned is an |
83 | /// exact copy of the specified basic block, without any remapping having been |
84 | /// performed. Because of this, this is only suitable for applications where |
85 | /// the basic block will be inserted into the same function that it was cloned |
86 | /// from (loop unrolling would use this, for example). |
87 | /// |
88 | /// Also, note that this function makes a direct copy of the basic block, and |
89 | /// can thus produce illegal LLVM code. In particular, it will copy any PHI |
90 | /// nodes from the original block, even though there are no predecessors for the |
91 | /// newly cloned block (thus, phi nodes will have to be updated). Also, this |
92 | /// block will branch to the old successors of the original block: these |
93 | /// successors will have to have any PHI nodes updated to account for the new |
94 | /// incoming edges. |
95 | /// |
96 | /// The correlation between instructions in the source and result basic blocks |
97 | /// is recorded in the VMap map. |
98 | /// |
99 | /// If you have a particular suffix you'd like to use to add to any cloned |
100 | /// names, specify it as the optional third parameter. |
101 | /// |
102 | /// If you would like the basic block to be auto-inserted into the end of a |
103 | /// function, you can specify it as the optional fourth parameter. |
104 | /// |
105 | /// If you would like to collect additional information about the cloned |
106 | /// function, you can specify a ClonedCodeInfo object with the optional fifth |
107 | /// parameter. |
108 | BasicBlock *CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap, |
109 | const Twine &NameSuffix = "" , Function *F = nullptr, |
110 | ClonedCodeInfo *CodeInfo = nullptr, |
111 | DebugInfoFinder *DIFinder = nullptr); |
112 | |
113 | /// Return a copy of the specified function and add it to that |
114 | /// function's module. Also, any references specified in the VMap are changed |
115 | /// to refer to their mapped value instead of the original one. If any of the |
116 | /// arguments to the function are in the VMap, the arguments are deleted from |
117 | /// the resultant function. The VMap is updated to include mappings from all of |
118 | /// the instructions and basicblocks in the function from their old to new |
119 | /// values. The final argument captures information about the cloned code if |
120 | /// non-null. |
121 | /// |
122 | /// \pre VMap contains no non-identity GlobalValue mappings. |
123 | /// |
124 | Function *CloneFunction(Function *F, ValueToValueMapTy &VMap, |
125 | ClonedCodeInfo *CodeInfo = nullptr); |
126 | |
127 | enum class CloneFunctionChangeType { |
128 | LocalChangesOnly, |
129 | GlobalChanges, |
130 | DifferentModule, |
131 | ClonedModule, |
132 | }; |
133 | |
134 | /// Clone OldFunc into NewFunc, transforming the old arguments into references |
135 | /// to VMap values. Note that if NewFunc already has basic blocks, the ones |
136 | /// cloned into it will be added to the end of the function. This function |
137 | /// fills in a list of return instructions, and can optionally remap types |
138 | /// and/or append the specified suffix to all values cloned. |
139 | /// |
140 | /// If \p Changes is \a CloneFunctionChangeType::LocalChangesOnly, VMap is |
141 | /// required to contain no non-identity GlobalValue mappings. Otherwise, |
142 | /// referenced metadata will be cloned. |
143 | /// |
144 | /// If \p Changes is less than \a CloneFunctionChangeType::DifferentModule |
145 | /// indicating cloning into the same module (even if it's LocalChangesOnly), if |
146 | /// debug info metadata transitively references a \a DISubprogram, it will be |
147 | /// cloned, effectively upgrading \p Changes to GlobalChanges while suppressing |
148 | /// cloning of types and compile units. |
149 | /// |
150 | /// If \p Changes is \a CloneFunctionChangeType::DifferentModule, the new |
151 | /// module's \c !llvm.dbg.cu will get updated with any newly created compile |
152 | /// units. (\a CloneFunctionChangeType::ClonedModule leaves that work for the |
153 | /// caller.) |
154 | /// |
155 | /// FIXME: Consider simplifying this function by splitting out \a |
156 | /// CloneFunctionMetadataInto() and expecting / updating callers to call it |
157 | /// first when / how it's needed. |
158 | void CloneFunctionInto(Function *NewFunc, const Function *OldFunc, |
159 | ValueToValueMapTy &VMap, CloneFunctionChangeType Changes, |
160 | SmallVectorImpl<ReturnInst *> &Returns, |
161 | const char *NameSuffix = "" , |
162 | ClonedCodeInfo *CodeInfo = nullptr, |
163 | ValueMapTypeRemapper *TypeMapper = nullptr, |
164 | ValueMaterializer *Materializer = nullptr); |
165 | |
166 | void CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc, |
167 | const Instruction *StartingInst, |
168 | ValueToValueMapTy &VMap, bool ModuleLevelChanges, |
169 | SmallVectorImpl<ReturnInst *> &Returns, |
170 | const char *NameSuffix = "" , |
171 | ClonedCodeInfo *CodeInfo = nullptr); |
172 | |
173 | /// This works exactly like CloneFunctionInto, |
174 | /// except that it does some simple constant prop and DCE on the fly. The |
175 | /// effect of this is to copy significantly less code in cases where (for |
176 | /// example) a function call with constant arguments is inlined, and those |
177 | /// constant arguments cause a significant amount of code in the callee to be |
178 | /// dead. Since this doesn't produce an exactly copy of the input, it can't be |
179 | /// used for things like CloneFunction or CloneModule. |
180 | /// |
181 | /// If ModuleLevelChanges is false, VMap contains no non-identity GlobalValue |
182 | /// mappings. |
183 | /// |
184 | void CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc, |
185 | ValueToValueMapTy &VMap, bool ModuleLevelChanges, |
186 | SmallVectorImpl<ReturnInst*> &Returns, |
187 | const char *NameSuffix = "" , |
188 | ClonedCodeInfo *CodeInfo = nullptr, |
189 | Instruction *TheCall = nullptr); |
190 | |
191 | /// This class captures the data input to the InlineFunction call, and records |
192 | /// the auxiliary results produced by it. |
193 | class InlineFunctionInfo { |
194 | public: |
195 | explicit InlineFunctionInfo( |
196 | CallGraph *cg = nullptr, |
197 | function_ref<AssumptionCache &(Function &)> GetAssumptionCache = nullptr, |
198 | ProfileSummaryInfo *PSI = nullptr, |
199 | BlockFrequencyInfo *CallerBFI = nullptr, |
200 | BlockFrequencyInfo *CalleeBFI = nullptr, bool UpdateProfile = true) |
201 | : CG(cg), GetAssumptionCache(GetAssumptionCache), PSI(PSI), |
202 | CallerBFI(CallerBFI), CalleeBFI(CalleeBFI), |
203 | UpdateProfile(UpdateProfile) {} |
204 | |
205 | /// If non-null, InlineFunction will update the callgraph to reflect the |
206 | /// changes it makes. |
207 | CallGraph *CG; |
208 | function_ref<AssumptionCache &(Function &)> GetAssumptionCache; |
209 | ProfileSummaryInfo *PSI; |
210 | BlockFrequencyInfo *CallerBFI, *CalleeBFI; |
211 | |
212 | /// InlineFunction fills this in with all static allocas that get copied into |
213 | /// the caller. |
214 | SmallVector<AllocaInst *, 4> StaticAllocas; |
215 | |
216 | /// InlineFunction fills this in with callsites that were inlined from the |
217 | /// callee. This is only filled in if CG is non-null. |
218 | SmallVector<WeakTrackingVH, 8> InlinedCalls; |
219 | |
220 | /// All of the new call sites inlined into the caller. |
221 | /// |
222 | /// 'InlineFunction' fills this in by scanning the inlined instructions, and |
223 | /// only if CG is null. If CG is non-null, instead the value handle |
224 | /// `InlinedCalls` above is used. |
225 | SmallVector<CallBase *, 8> InlinedCallSites; |
226 | |
227 | /// Update profile for callee as well as cloned version. We need to do this |
228 | /// for regular inlining, but not for inlining from sample profile loader. |
229 | bool UpdateProfile; |
230 | |
231 | void reset() { |
232 | StaticAllocas.clear(); |
233 | InlinedCalls.clear(); |
234 | InlinedCallSites.clear(); |
235 | } |
236 | }; |
237 | |
238 | /// This function inlines the called function into the basic |
239 | /// block of the caller. This returns false if it is not possible to inline |
240 | /// this call. The program is still in a well defined state if this occurs |
241 | /// though. |
242 | /// |
243 | /// Note that this only does one level of inlining. For example, if the |
244 | /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now |
245 | /// exists in the instruction stream. Similarly this will inline a recursive |
246 | /// function by one level. |
247 | /// |
248 | /// Note that while this routine is allowed to cleanup and optimize the |
249 | /// *inlined* code to minimize the actual inserted code, it must not delete |
250 | /// code in the caller as users of this routine may have pointers to |
251 | /// instructions in the caller that need to remain stable. |
252 | /// |
253 | /// If ForwardVarArgsTo is passed, inlining a function with varargs is allowed |
254 | /// and all varargs at the callsite will be passed to any calls to |
255 | /// ForwardVarArgsTo. The caller of InlineFunction has to make sure any varargs |
256 | /// are only used by ForwardVarArgsTo. |
257 | InlineResult InlineFunction(CallBase &CB, InlineFunctionInfo &IFI, |
258 | AAResults *CalleeAAR = nullptr, |
259 | bool InsertLifetime = true, |
260 | Function *ForwardVarArgsTo = nullptr); |
261 | |
262 | /// Clones a loop \p OrigLoop. Returns the loop and the blocks in \p |
263 | /// Blocks. |
264 | /// |
265 | /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block |
266 | /// \p LoopDomBB. Insert the new blocks before block specified in \p Before. |
267 | /// Note: Only innermost loops are supported. |
268 | Loop *(BasicBlock *Before, BasicBlock *LoopDomBB, |
269 | Loop *OrigLoop, ValueToValueMapTy &VMap, |
270 | const Twine &NameSuffix, LoopInfo *LI, |
271 | DominatorTree *DT, |
272 | SmallVectorImpl<BasicBlock *> &Blocks); |
273 | |
274 | /// Remaps instructions in \p Blocks using the mapping in \p VMap. |
275 | void remapInstructionsInBlocks(const SmallVectorImpl<BasicBlock *> &Blocks, |
276 | ValueToValueMapTy &VMap); |
277 | |
278 | /// Split edge between BB and PredBB and duplicate all non-Phi instructions |
279 | /// from BB between its beginning and the StopAt instruction into the split |
280 | /// block. Phi nodes are not duplicated, but their uses are handled correctly: |
281 | /// we replace them with the uses of corresponding Phi inputs. ValueMapping |
282 | /// is used to map the original instructions from BB to their newly-created |
283 | /// copies. Returns the split block. |
284 | BasicBlock *DuplicateInstructionsInSplitBetween(BasicBlock *BB, |
285 | BasicBlock *PredBB, |
286 | Instruction *StopAt, |
287 | ValueToValueMapTy &ValueMapping, |
288 | DomTreeUpdater &DTU); |
289 | |
290 | /// Updates profile information by adjusting the entry count by adding |
291 | /// entryDelta then scaling callsite information by the new count divided by the |
292 | /// old count. VMap is used during inlinng to also update the new clone |
293 | void updateProfileCallee( |
294 | Function *Callee, int64_t entryDelta, |
295 | const ValueMap<const Value *, WeakTrackingVH> *VMap = nullptr); |
296 | |
297 | /// Find the 'llvm.experimental.noalias.scope.decl' intrinsics in the specified |
298 | /// basic blocks and extract their scope. These are candidates for duplication |
299 | /// when cloning. |
300 | void identifyNoAliasScopesToClone( |
301 | ArrayRef<BasicBlock *> BBs, SmallVectorImpl<MDNode *> &NoAliasDeclScopes); |
302 | |
303 | /// Find the 'llvm.experimental.noalias.scope.decl' intrinsics in the specified |
304 | /// instruction range and extract their scope. These are candidates for |
305 | /// duplication when cloning. |
306 | void identifyNoAliasScopesToClone( |
307 | BasicBlock::iterator Start, BasicBlock::iterator End, |
308 | SmallVectorImpl<MDNode *> &NoAliasDeclScopes); |
309 | |
310 | /// Duplicate the specified list of noalias decl scopes. |
311 | /// The 'Ext' string is added as an extension to the name. |
312 | /// Afterwards, the ClonedScopes contains the mapping of the original scope |
313 | /// MDNode onto the cloned scope. |
314 | /// Be aware that the cloned scopes are still part of the original scope domain. |
315 | void cloneNoAliasScopes( |
316 | ArrayRef<MDNode *> NoAliasDeclScopes, |
317 | DenseMap<MDNode *, MDNode *> &ClonedScopes, |
318 | StringRef Ext, LLVMContext &Context); |
319 | |
320 | /// Adapt the metadata for the specified instruction according to the |
321 | /// provided mapping. This is normally used after cloning an instruction, when |
322 | /// some noalias scopes needed to be cloned. |
323 | void adaptNoAliasScopes( |
324 | llvm::Instruction *I, const DenseMap<MDNode *, MDNode *> &ClonedScopes, |
325 | LLVMContext &Context); |
326 | |
327 | /// Clone the specified noalias decl scopes. Then adapt all instructions in the |
328 | /// NewBlocks basicblocks to the cloned versions. |
329 | /// 'Ext' will be added to the duplicate scope names. |
330 | void cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes, |
331 | ArrayRef<BasicBlock *> NewBlocks, |
332 | LLVMContext &Context, StringRef Ext); |
333 | |
334 | /// Clone the specified noalias decl scopes. Then adapt all instructions in the |
335 | /// [IStart, IEnd] (IEnd included !) range to the cloned versions. 'Ext' will be |
336 | /// added to the duplicate scope names. |
337 | void cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes, |
338 | Instruction *IStart, Instruction *IEnd, |
339 | LLVMContext &Context, StringRef Ext); |
340 | } // end namespace llvm |
341 | |
342 | #endif // LLVM_TRANSFORMS_UTILS_CLONING_H |
343 | |