1 | ////===- SampleProfileLoadBaseImpl.h - Profile loader base impl --*- C++-*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | /// \file |
10 | /// This file provides the interface for the sampled PGO profile loader base |
11 | /// implementation. |
12 | // |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #ifndef LLVM_TRANSFORMS_UTILS_SAMPLEPROFILELOADERBASEIMPL_H |
16 | #define LLVM_TRANSFORMS_UTILS_SAMPLEPROFILELOADERBASEIMPL_H |
17 | |
18 | #include "llvm/ADT/ArrayRef.h" |
19 | #include "llvm/ADT/DenseMap.h" |
20 | #include "llvm/ADT/DenseSet.h" |
21 | #include "llvm/ADT/SmallPtrSet.h" |
22 | #include "llvm/ADT/SmallSet.h" |
23 | #include "llvm/ADT/SmallVector.h" |
24 | #include "llvm/Analysis/LoopInfo.h" |
25 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
26 | #include "llvm/Analysis/PostDominators.h" |
27 | #include "llvm/IR/BasicBlock.h" |
28 | #include "llvm/IR/CFG.h" |
29 | #include "llvm/IR/DebugInfoMetadata.h" |
30 | #include "llvm/IR/DebugLoc.h" |
31 | #include "llvm/IR/Dominators.h" |
32 | #include "llvm/IR/Function.h" |
33 | #include "llvm/IR/Instruction.h" |
34 | #include "llvm/IR/Instructions.h" |
35 | #include "llvm/IR/Module.h" |
36 | #include "llvm/ProfileData/SampleProf.h" |
37 | #include "llvm/ProfileData/SampleProfReader.h" |
38 | #include "llvm/Support/CommandLine.h" |
39 | #include "llvm/Support/GenericDomTree.h" |
40 | #include "llvm/Support/raw_ostream.h" |
41 | #include "llvm/Transforms/Utils/SampleProfileLoaderBaseUtil.h" |
42 | |
43 | namespace llvm { |
44 | using namespace sampleprof; |
45 | using namespace sampleprofutil; |
46 | using ProfileCount = Function::ProfileCount; |
47 | |
48 | #define DEBUG_TYPE "sample-profile-impl" |
49 | |
50 | namespace afdo_detail { |
51 | |
52 | template <typename BlockT> struct IRTraits; |
53 | template <> struct IRTraits<BasicBlock> { |
54 | using InstructionT = Instruction; |
55 | using BasicBlockT = BasicBlock; |
56 | using FunctionT = Function; |
57 | using BlockFrequencyInfoT = BlockFrequencyInfo; |
58 | using LoopT = Loop; |
59 | using LoopInfoT = LoopInfo; |
60 | using = OptimizationRemarkEmitter; |
61 | using = OptimizationRemarkAnalysis; |
62 | using DominatorTreeT = DominatorTree; |
63 | using PostDominatorTreeT = PostDominatorTree; |
64 | static Function &getFunction(Function &F) { return F; } |
65 | static const BasicBlock *getEntryBB(const Function *F) { |
66 | return &F->getEntryBlock(); |
67 | } |
68 | }; |
69 | |
70 | } // end namespace afdo_detail |
71 | |
72 | extern cl::opt<unsigned> SampleProfileMaxPropagateIterations; |
73 | extern cl::opt<unsigned> SampleProfileRecordCoverage; |
74 | extern cl::opt<unsigned> SampleProfileSampleCoverage; |
75 | extern cl::opt<bool> NoWarnSampleUnused; |
76 | |
77 | template <typename BT> class SampleProfileLoaderBaseImpl { |
78 | public: |
79 | SampleProfileLoaderBaseImpl(std::string Name) : Filename(Name) {} |
80 | void dump() { Reader->dump(); } |
81 | |
82 | using InstructionT = typename afdo_detail::IRTraits<BT>::InstructionT; |
83 | using BasicBlockT = typename afdo_detail::IRTraits<BT>::BasicBlockT; |
84 | using BlockFrequencyInfoT = |
85 | typename afdo_detail::IRTraits<BT>::BlockFrequencyInfoT; |
86 | using FunctionT = typename afdo_detail::IRTraits<BT>::FunctionT; |
87 | using LoopT = typename afdo_detail::IRTraits<BT>::LoopT; |
88 | using LoopInfoT = typename afdo_detail::IRTraits<BT>::LoopInfoT; |
89 | using = |
90 | typename afdo_detail::IRTraits<BT>::OptRemarkEmitterT; |
91 | using = |
92 | typename afdo_detail::IRTraits<BT>::OptRemarkAnalysisT; |
93 | using DominatorTreeT = typename afdo_detail::IRTraits<BT>::DominatorTreeT; |
94 | using PostDominatorTreeT = |
95 | typename afdo_detail::IRTraits<BT>::PostDominatorTreeT; |
96 | |
97 | using BlockWeightMap = DenseMap<const BasicBlockT *, uint64_t>; |
98 | using EquivalenceClassMap = |
99 | DenseMap<const BasicBlockT *, const BasicBlockT *>; |
100 | using Edge = std::pair<const BasicBlockT *, const BasicBlockT *>; |
101 | using EdgeWeightMap = DenseMap<Edge, uint64_t>; |
102 | using BlockEdgeMap = |
103 | DenseMap<const BasicBlockT *, SmallVector<const BasicBlockT *, 8>>; |
104 | |
105 | protected: |
106 | ~SampleProfileLoaderBaseImpl() = default; |
107 | friend class SampleCoverageTracker; |
108 | |
109 | Function &getFunction(FunctionT &F) { |
110 | return afdo_detail::IRTraits<BT>::getFunction(F); |
111 | } |
112 | const BasicBlockT *getEntryBB(const FunctionT *F) { |
113 | return afdo_detail::IRTraits<BT>::getEntryBB(F); |
114 | } |
115 | |
116 | unsigned getFunctionLoc(FunctionT &Func); |
117 | virtual ErrorOr<uint64_t> getInstWeight(const InstructionT &Inst); |
118 | ErrorOr<uint64_t> getInstWeightImpl(const InstructionT &Inst); |
119 | ErrorOr<uint64_t> getBlockWeight(const BasicBlockT *BB); |
120 | mutable DenseMap<const DILocation *, const FunctionSamples *> |
121 | DILocation2SampleMap; |
122 | virtual const FunctionSamples * |
123 | findFunctionSamples(const InstructionT &I) const; |
124 | void printEdgeWeight(raw_ostream &OS, Edge E); |
125 | void printBlockWeight(raw_ostream &OS, const BasicBlockT *BB) const; |
126 | void printBlockEquivalence(raw_ostream &OS, const BasicBlockT *BB); |
127 | bool computeBlockWeights(FunctionT &F); |
128 | void findEquivalenceClasses(FunctionT &F); |
129 | void findEquivalencesFor(BasicBlockT *BB1, |
130 | ArrayRef<BasicBlockT *> Descendants, |
131 | PostDominatorTreeT *DomTree); |
132 | |
133 | void propagateWeights(FunctionT &F); |
134 | uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); |
135 | void buildEdges(FunctionT &F); |
136 | bool propagateThroughEdges(FunctionT &F, bool UpdateBlockCount); |
137 | void clearFunctionData(); |
138 | void computeDominanceAndLoopInfo(FunctionT &F); |
139 | bool |
140 | computeAndPropagateWeights(FunctionT &F, |
141 | const DenseSet<GlobalValue::GUID> &InlinedGUIDs); |
142 | void emitCoverageRemarks(FunctionT &F); |
143 | |
144 | /// Map basic blocks to their computed weights. |
145 | /// |
146 | /// The weight of a basic block is defined to be the maximum |
147 | /// of all the instruction weights in that block. |
148 | BlockWeightMap BlockWeights; |
149 | |
150 | /// Map edges to their computed weights. |
151 | /// |
152 | /// Edge weights are computed by propagating basic block weights in |
153 | /// SampleProfile::propagateWeights. |
154 | EdgeWeightMap EdgeWeights; |
155 | |
156 | /// Set of visited blocks during propagation. |
157 | SmallPtrSet<const BasicBlockT *, 32> VisitedBlocks; |
158 | |
159 | /// Set of visited edges during propagation. |
160 | SmallSet<Edge, 32> VisitedEdges; |
161 | |
162 | /// Equivalence classes for block weights. |
163 | /// |
164 | /// Two blocks BB1 and BB2 are in the same equivalence class if they |
165 | /// dominate and post-dominate each other, and they are in the same loop |
166 | /// nest. When this happens, the two blocks are guaranteed to execute |
167 | /// the same number of times. |
168 | EquivalenceClassMap EquivalenceClass; |
169 | |
170 | /// Dominance, post-dominance and loop information. |
171 | std::unique_ptr<DominatorTreeT> DT; |
172 | std::unique_ptr<PostDominatorTreeT> PDT; |
173 | std::unique_ptr<LoopInfoT> LI; |
174 | |
175 | /// Predecessors for each basic block in the CFG. |
176 | BlockEdgeMap Predecessors; |
177 | |
178 | /// Successors for each basic block in the CFG. |
179 | BlockEdgeMap Successors; |
180 | |
181 | /// Profile coverage tracker. |
182 | SampleCoverageTracker CoverageTracker; |
183 | |
184 | /// Profile reader object. |
185 | std::unique_ptr<SampleProfileReader> Reader; |
186 | |
187 | /// Samples collected for the body of this function. |
188 | FunctionSamples *Samples = nullptr; |
189 | |
190 | /// Name of the profile file to load. |
191 | std::string Filename; |
192 | |
193 | /// Profile Summary Info computed from sample profile. |
194 | ProfileSummaryInfo *PSI = nullptr; |
195 | |
196 | /// Optimization Remark Emitter used to emit diagnostic remarks. |
197 | OptRemarkEmitterT *ORE = nullptr; |
198 | }; |
199 | |
200 | /// Clear all the per-function data used to load samples and propagate weights. |
201 | template <typename BT> |
202 | void SampleProfileLoaderBaseImpl<BT>::clearFunctionData() { |
203 | BlockWeights.clear(); |
204 | EdgeWeights.clear(); |
205 | VisitedBlocks.clear(); |
206 | VisitedEdges.clear(); |
207 | EquivalenceClass.clear(); |
208 | DT = nullptr; |
209 | PDT = nullptr; |
210 | LI = nullptr; |
211 | Predecessors.clear(); |
212 | Successors.clear(); |
213 | CoverageTracker.clear(); |
214 | } |
215 | |
216 | #ifndef NDEBUG |
217 | /// Print the weight of edge \p E on stream \p OS. |
218 | /// |
219 | /// \param OS Stream to emit the output to. |
220 | /// \param E Edge to print. |
221 | template <typename BT> |
222 | void SampleProfileLoaderBaseImpl<BT>::printEdgeWeight(raw_ostream &OS, Edge E) { |
223 | OS << "weight[" << E.first->getName() << "->" << E.second->getName() |
224 | << "]: " << EdgeWeights[E] << "\n" ; |
225 | } |
226 | |
227 | /// Print the equivalence class of block \p BB on stream \p OS. |
228 | /// |
229 | /// \param OS Stream to emit the output to. |
230 | /// \param BB Block to print. |
231 | template <typename BT> |
232 | void SampleProfileLoaderBaseImpl<BT>::printBlockEquivalence( |
233 | raw_ostream &OS, const BasicBlockT *BB) { |
234 | const BasicBlockT *Equiv = EquivalenceClass[BB]; |
235 | OS << "equivalence[" << BB->getName() |
236 | << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE" ) << "\n" ; |
237 | } |
238 | |
239 | /// Print the weight of block \p BB on stream \p OS. |
240 | /// |
241 | /// \param OS Stream to emit the output to. |
242 | /// \param BB Block to print. |
243 | template <typename BT> |
244 | void SampleProfileLoaderBaseImpl<BT>::printBlockWeight( |
245 | raw_ostream &OS, const BasicBlockT *BB) const { |
246 | const auto &I = BlockWeights.find(BB); |
247 | uint64_t W = (I == BlockWeights.end() ? 0 : I->second); |
248 | OS << "weight[" << BB->getName() << "]: " << W << "\n" ; |
249 | } |
250 | #endif |
251 | |
252 | /// Get the weight for an instruction. |
253 | /// |
254 | /// The "weight" of an instruction \p Inst is the number of samples |
255 | /// collected on that instruction at runtime. To retrieve it, we |
256 | /// need to compute the line number of \p Inst relative to the start of its |
257 | /// function. We use HeaderLineno to compute the offset. We then |
258 | /// look up the samples collected for \p Inst using BodySamples. |
259 | /// |
260 | /// \param Inst Instruction to query. |
261 | /// |
262 | /// \returns the weight of \p Inst. |
263 | template <typename BT> |
264 | ErrorOr<uint64_t> |
265 | SampleProfileLoaderBaseImpl<BT>::getInstWeight(const InstructionT &Inst) { |
266 | return getInstWeightImpl(Inst); |
267 | } |
268 | |
269 | template <typename BT> |
270 | ErrorOr<uint64_t> |
271 | SampleProfileLoaderBaseImpl<BT>::getInstWeightImpl(const InstructionT &Inst) { |
272 | const FunctionSamples *FS = findFunctionSamples(Inst); |
273 | if (!FS) |
274 | return std::error_code(); |
275 | |
276 | const DebugLoc &DLoc = Inst.getDebugLoc(); |
277 | if (!DLoc) |
278 | return std::error_code(); |
279 | |
280 | const DILocation *DIL = DLoc; |
281 | uint32_t LineOffset = FunctionSamples::getOffset(DIL); |
282 | uint32_t Discriminator = DIL->getBaseDiscriminator(); |
283 | ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); |
284 | if (R) { |
285 | bool FirstMark = |
286 | CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); |
287 | if (FirstMark) { |
288 | ORE->emit([&]() { |
289 | OptRemarkAnalysisT (DEBUG_TYPE, "AppliedSamples" , &Inst); |
290 | Remark << "Applied " << ore::NV("NumSamples" , *R); |
291 | Remark << " samples from profile (offset: " ; |
292 | Remark << ore::NV("LineOffset" , LineOffset); |
293 | if (Discriminator) { |
294 | Remark << "." ; |
295 | Remark << ore::NV("Discriminator" , Discriminator); |
296 | } |
297 | Remark << ")" ; |
298 | return Remark; |
299 | }); |
300 | } |
301 | LLVM_DEBUG(dbgs() << " " << DLoc.getLine() << "." |
302 | << DIL->getBaseDiscriminator() << ":" << Inst |
303 | << " (line offset: " << LineOffset << "." |
304 | << DIL->getBaseDiscriminator() << " - weight: " << R.get() |
305 | << ")\n" ); |
306 | } |
307 | return R; |
308 | } |
309 | |
310 | /// Compute the weight of a basic block. |
311 | /// |
312 | /// The weight of basic block \p BB is the maximum weight of all the |
313 | /// instructions in BB. |
314 | /// |
315 | /// \param BB The basic block to query. |
316 | /// |
317 | /// \returns the weight for \p BB. |
318 | template <typename BT> |
319 | ErrorOr<uint64_t> |
320 | SampleProfileLoaderBaseImpl<BT>::getBlockWeight(const BasicBlockT *BB) { |
321 | uint64_t Max = 0; |
322 | bool HasWeight = false; |
323 | for (auto &I : *BB) { |
324 | const ErrorOr<uint64_t> &R = getInstWeight(I); |
325 | if (R) { |
326 | Max = std::max(Max, R.get()); |
327 | HasWeight = true; |
328 | } |
329 | } |
330 | return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code(); |
331 | } |
332 | |
333 | /// Compute and store the weights of every basic block. |
334 | /// |
335 | /// This populates the BlockWeights map by computing |
336 | /// the weights of every basic block in the CFG. |
337 | /// |
338 | /// \param F The function to query. |
339 | template <typename BT> |
340 | bool SampleProfileLoaderBaseImpl<BT>::computeBlockWeights(FunctionT &F) { |
341 | bool Changed = false; |
342 | LLVM_DEBUG(dbgs() << "Block weights\n" ); |
343 | for (const auto &BB : F) { |
344 | ErrorOr<uint64_t> Weight = getBlockWeight(&BB); |
345 | if (Weight) { |
346 | BlockWeights[&BB] = Weight.get(); |
347 | VisitedBlocks.insert(&BB); |
348 | Changed = true; |
349 | } |
350 | LLVM_DEBUG(printBlockWeight(dbgs(), &BB)); |
351 | } |
352 | |
353 | return Changed; |
354 | } |
355 | |
356 | /// Get the FunctionSamples for an instruction. |
357 | /// |
358 | /// The FunctionSamples of an instruction \p Inst is the inlined instance |
359 | /// in which that instruction is coming from. We traverse the inline stack |
360 | /// of that instruction, and match it with the tree nodes in the profile. |
361 | /// |
362 | /// \param Inst Instruction to query. |
363 | /// |
364 | /// \returns the FunctionSamples pointer to the inlined instance. |
365 | template <typename BT> |
366 | const FunctionSamples *SampleProfileLoaderBaseImpl<BT>::findFunctionSamples( |
367 | const InstructionT &Inst) const { |
368 | const DILocation *DIL = Inst.getDebugLoc(); |
369 | if (!DIL) |
370 | return Samples; |
371 | |
372 | auto it = DILocation2SampleMap.try_emplace(DIL, nullptr); |
373 | if (it.second) { |
374 | it.first->second = Samples->findFunctionSamples(DIL, Reader->getRemapper()); |
375 | } |
376 | return it.first->second; |
377 | } |
378 | |
379 | /// Find equivalence classes for the given block. |
380 | /// |
381 | /// This finds all the blocks that are guaranteed to execute the same |
382 | /// number of times as \p BB1. To do this, it traverses all the |
383 | /// descendants of \p BB1 in the dominator or post-dominator tree. |
384 | /// |
385 | /// A block BB2 will be in the same equivalence class as \p BB1 if |
386 | /// the following holds: |
387 | /// |
388 | /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 |
389 | /// is a descendant of \p BB1 in the dominator tree, then BB2 should |
390 | /// dominate BB1 in the post-dominator tree. |
391 | /// |
392 | /// 2- Both BB2 and \p BB1 must be in the same loop. |
393 | /// |
394 | /// For every block BB2 that meets those two requirements, we set BB2's |
395 | /// equivalence class to \p BB1. |
396 | /// |
397 | /// \param BB1 Block to check. |
398 | /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. |
399 | /// \param DomTree Opposite dominator tree. If \p Descendants is filled |
400 | /// with blocks from \p BB1's dominator tree, then |
401 | /// this is the post-dominator tree, and vice versa. |
402 | template <typename BT> |
403 | void SampleProfileLoaderBaseImpl<BT>::findEquivalencesFor( |
404 | BasicBlockT *BB1, ArrayRef<BasicBlockT *> Descendants, |
405 | PostDominatorTreeT *DomTree) { |
406 | const BasicBlockT *EC = EquivalenceClass[BB1]; |
407 | uint64_t Weight = BlockWeights[EC]; |
408 | for (const auto *BB2 : Descendants) { |
409 | bool IsDomParent = DomTree->dominates(BB2, BB1); |
410 | bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); |
411 | if (BB1 != BB2 && IsDomParent && IsInSameLoop) { |
412 | EquivalenceClass[BB2] = EC; |
413 | // If BB2 is visited, then the entire EC should be marked as visited. |
414 | if (VisitedBlocks.count(BB2)) { |
415 | VisitedBlocks.insert(EC); |
416 | } |
417 | |
418 | // If BB2 is heavier than BB1, make BB2 have the same weight |
419 | // as BB1. |
420 | // |
421 | // Note that we don't worry about the opposite situation here |
422 | // (when BB2 is lighter than BB1). We will deal with this |
423 | // during the propagation phase. Right now, we just want to |
424 | // make sure that BB1 has the largest weight of all the |
425 | // members of its equivalence set. |
426 | Weight = std::max(Weight, BlockWeights[BB2]); |
427 | } |
428 | } |
429 | const BasicBlockT *EntryBB = getEntryBB(EC->getParent()); |
430 | if (EC == EntryBB) { |
431 | BlockWeights[EC] = Samples->getHeadSamples() + 1; |
432 | } else { |
433 | BlockWeights[EC] = Weight; |
434 | } |
435 | } |
436 | |
437 | /// Find equivalence classes. |
438 | /// |
439 | /// Since samples may be missing from blocks, we can fill in the gaps by setting |
440 | /// the weights of all the blocks in the same equivalence class to the same |
441 | /// weight. To compute the concept of equivalence, we use dominance and loop |
442 | /// information. Two blocks B1 and B2 are in the same equivalence class if B1 |
443 | /// dominates B2, B2 post-dominates B1 and both are in the same loop. |
444 | /// |
445 | /// \param F The function to query. |
446 | template <typename BT> |
447 | void SampleProfileLoaderBaseImpl<BT>::findEquivalenceClasses(FunctionT &F) { |
448 | SmallVector<BasicBlockT *, 8> DominatedBBs; |
449 | LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n" ); |
450 | // Find equivalence sets based on dominance and post-dominance information. |
451 | for (auto &BB : F) { |
452 | BasicBlockT *BB1 = &BB; |
453 | |
454 | // Compute BB1's equivalence class once. |
455 | if (EquivalenceClass.count(BB1)) { |
456 | LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); |
457 | continue; |
458 | } |
459 | |
460 | // By default, blocks are in their own equivalence class. |
461 | EquivalenceClass[BB1] = BB1; |
462 | |
463 | // Traverse all the blocks dominated by BB1. We are looking for |
464 | // every basic block BB2 such that: |
465 | // |
466 | // 1- BB1 dominates BB2. |
467 | // 2- BB2 post-dominates BB1. |
468 | // 3- BB1 and BB2 are in the same loop nest. |
469 | // |
470 | // If all those conditions hold, it means that BB2 is executed |
471 | // as many times as BB1, so they are placed in the same equivalence |
472 | // class by making BB2's equivalence class be BB1. |
473 | DominatedBBs.clear(); |
474 | DT->getDescendants(BB1, DominatedBBs); |
475 | findEquivalencesFor(BB1, DominatedBBs, PDT.get()); |
476 | |
477 | LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); |
478 | } |
479 | |
480 | // Assign weights to equivalence classes. |
481 | // |
482 | // All the basic blocks in the same equivalence class will execute |
483 | // the same number of times. Since we know that the head block in |
484 | // each equivalence class has the largest weight, assign that weight |
485 | // to all the blocks in that equivalence class. |
486 | LLVM_DEBUG( |
487 | dbgs() << "\nAssign the same weight to all blocks in the same class\n" ); |
488 | for (auto &BI : F) { |
489 | const BasicBlockT *BB = &BI; |
490 | const BasicBlockT *EquivBB = EquivalenceClass[BB]; |
491 | if (BB != EquivBB) |
492 | BlockWeights[BB] = BlockWeights[EquivBB]; |
493 | LLVM_DEBUG(printBlockWeight(dbgs(), BB)); |
494 | } |
495 | } |
496 | |
497 | /// Visit the given edge to decide if it has a valid weight. |
498 | /// |
499 | /// If \p E has not been visited before, we copy to \p UnknownEdge |
500 | /// and increment the count of unknown edges. |
501 | /// |
502 | /// \param E Edge to visit. |
503 | /// \param NumUnknownEdges Current number of unknown edges. |
504 | /// \param UnknownEdge Set if E has not been visited before. |
505 | /// |
506 | /// \returns E's weight, if known. Otherwise, return 0. |
507 | template <typename BT> |
508 | uint64_t SampleProfileLoaderBaseImpl<BT>::visitEdge(Edge E, |
509 | unsigned *NumUnknownEdges, |
510 | Edge *UnknownEdge) { |
511 | if (!VisitedEdges.count(E)) { |
512 | (*NumUnknownEdges)++; |
513 | *UnknownEdge = E; |
514 | return 0; |
515 | } |
516 | |
517 | return EdgeWeights[E]; |
518 | } |
519 | |
520 | /// Propagate weights through incoming/outgoing edges. |
521 | /// |
522 | /// If the weight of a basic block is known, and there is only one edge |
523 | /// with an unknown weight, we can calculate the weight of that edge. |
524 | /// |
525 | /// Similarly, if all the edges have a known count, we can calculate the |
526 | /// count of the basic block, if needed. |
527 | /// |
528 | /// \param F Function to process. |
529 | /// \param UpdateBlockCount Whether we should update basic block counts that |
530 | /// has already been annotated. |
531 | /// |
532 | /// \returns True if new weights were assigned to edges or blocks. |
533 | template <typename BT> |
534 | bool SampleProfileLoaderBaseImpl<BT>::propagateThroughEdges( |
535 | FunctionT &F, bool UpdateBlockCount) { |
536 | bool Changed = false; |
537 | LLVM_DEBUG(dbgs() << "\nPropagation through edges\n" ); |
538 | for (const auto &BI : F) { |
539 | const BasicBlockT *BB = &BI; |
540 | const BasicBlockT *EC = EquivalenceClass[BB]; |
541 | |
542 | // Visit all the predecessor and successor edges to determine |
543 | // which ones have a weight assigned already. Note that it doesn't |
544 | // matter that we only keep track of a single unknown edge. The |
545 | // only case we are interested in handling is when only a single |
546 | // edge is unknown (see setEdgeOrBlockWeight). |
547 | for (unsigned i = 0; i < 2; i++) { |
548 | uint64_t TotalWeight = 0; |
549 | unsigned NumUnknownEdges = 0, NumTotalEdges = 0; |
550 | Edge UnknownEdge, SelfReferentialEdge, SingleEdge; |
551 | |
552 | if (i == 0) { |
553 | // First, visit all predecessor edges. |
554 | NumTotalEdges = Predecessors[BB].size(); |
555 | for (auto *Pred : Predecessors[BB]) { |
556 | Edge E = std::make_pair(Pred, BB); |
557 | TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); |
558 | if (E.first == E.second) |
559 | SelfReferentialEdge = E; |
560 | } |
561 | if (NumTotalEdges == 1) { |
562 | SingleEdge = std::make_pair(Predecessors[BB][0], BB); |
563 | } |
564 | } else { |
565 | // On the second round, visit all successor edges. |
566 | NumTotalEdges = Successors[BB].size(); |
567 | for (auto *Succ : Successors[BB]) { |
568 | Edge E = std::make_pair(BB, Succ); |
569 | TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); |
570 | } |
571 | if (NumTotalEdges == 1) { |
572 | SingleEdge = std::make_pair(BB, Successors[BB][0]); |
573 | } |
574 | } |
575 | |
576 | // After visiting all the edges, there are three cases that we |
577 | // can handle immediately: |
578 | // |
579 | // - All the edge weights are known (i.e., NumUnknownEdges == 0). |
580 | // In this case, we simply check that the sum of all the edges |
581 | // is the same as BB's weight. If not, we change BB's weight |
582 | // to match. Additionally, if BB had not been visited before, |
583 | // we mark it visited. |
584 | // |
585 | // - Only one edge is unknown and BB has already been visited. |
586 | // In this case, we can compute the weight of the edge by |
587 | // subtracting the total block weight from all the known |
588 | // edge weights. If the edges weight more than BB, then the |
589 | // edge of the last remaining edge is set to zero. |
590 | // |
591 | // - There exists a self-referential edge and the weight of BB is |
592 | // known. In this case, this edge can be based on BB's weight. |
593 | // We add up all the other known edges and set the weight on |
594 | // the self-referential edge as we did in the previous case. |
595 | // |
596 | // In any other case, we must continue iterating. Eventually, |
597 | // all edges will get a weight, or iteration will stop when |
598 | // it reaches SampleProfileMaxPropagateIterations. |
599 | if (NumUnknownEdges <= 1) { |
600 | uint64_t &BBWeight = BlockWeights[EC]; |
601 | if (NumUnknownEdges == 0) { |
602 | if (!VisitedBlocks.count(EC)) { |
603 | // If we already know the weight of all edges, the weight of the |
604 | // basic block can be computed. It should be no larger than the sum |
605 | // of all edge weights. |
606 | if (TotalWeight > BBWeight) { |
607 | BBWeight = TotalWeight; |
608 | Changed = true; |
609 | LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName() |
610 | << " known. Set weight for block: " ; |
611 | printBlockWeight(dbgs(), BB);); |
612 | } |
613 | } else if (NumTotalEdges == 1 && |
614 | EdgeWeights[SingleEdge] < BlockWeights[EC]) { |
615 | // If there is only one edge for the visited basic block, use the |
616 | // block weight to adjust edge weight if edge weight is smaller. |
617 | EdgeWeights[SingleEdge] = BlockWeights[EC]; |
618 | Changed = true; |
619 | } |
620 | } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { |
621 | // If there is a single unknown edge and the block has been |
622 | // visited, then we can compute E's weight. |
623 | if (BBWeight >= TotalWeight) |
624 | EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; |
625 | else |
626 | EdgeWeights[UnknownEdge] = 0; |
627 | const BasicBlockT *OtherEC; |
628 | if (i == 0) |
629 | OtherEC = EquivalenceClass[UnknownEdge.first]; |
630 | else |
631 | OtherEC = EquivalenceClass[UnknownEdge.second]; |
632 | // Edge weights should never exceed the BB weights it connects. |
633 | if (VisitedBlocks.count(OtherEC) && |
634 | EdgeWeights[UnknownEdge] > BlockWeights[OtherEC]) |
635 | EdgeWeights[UnknownEdge] = BlockWeights[OtherEC]; |
636 | VisitedEdges.insert(UnknownEdge); |
637 | Changed = true; |
638 | LLVM_DEBUG(dbgs() << "Set weight for edge: " ; |
639 | printEdgeWeight(dbgs(), UnknownEdge)); |
640 | } |
641 | } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) { |
642 | // If a block Weights 0, all its in/out edges should weight 0. |
643 | if (i == 0) { |
644 | for (auto *Pred : Predecessors[BB]) { |
645 | Edge E = std::make_pair(Pred, BB); |
646 | EdgeWeights[E] = 0; |
647 | VisitedEdges.insert(E); |
648 | } |
649 | } else { |
650 | for (auto *Succ : Successors[BB]) { |
651 | Edge E = std::make_pair(BB, Succ); |
652 | EdgeWeights[E] = 0; |
653 | VisitedEdges.insert(E); |
654 | } |
655 | } |
656 | } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { |
657 | uint64_t &BBWeight = BlockWeights[BB]; |
658 | // We have a self-referential edge and the weight of BB is known. |
659 | if (BBWeight >= TotalWeight) |
660 | EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; |
661 | else |
662 | EdgeWeights[SelfReferentialEdge] = 0; |
663 | VisitedEdges.insert(SelfReferentialEdge); |
664 | Changed = true; |
665 | LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: " ; |
666 | printEdgeWeight(dbgs(), SelfReferentialEdge)); |
667 | } |
668 | if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) { |
669 | BlockWeights[EC] = TotalWeight; |
670 | VisitedBlocks.insert(EC); |
671 | Changed = true; |
672 | } |
673 | } |
674 | } |
675 | |
676 | return Changed; |
677 | } |
678 | |
679 | /// Build in/out edge lists for each basic block in the CFG. |
680 | /// |
681 | /// We are interested in unique edges. If a block B1 has multiple |
682 | /// edges to another block B2, we only add a single B1->B2 edge. |
683 | template <typename BT> |
684 | void SampleProfileLoaderBaseImpl<BT>::buildEdges(FunctionT &F) { |
685 | for (auto &BI : F) { |
686 | BasicBlockT *B1 = &BI; |
687 | |
688 | // Add predecessors for B1. |
689 | SmallPtrSet<BasicBlockT *, 16> Visited; |
690 | if (!Predecessors[B1].empty()) |
691 | llvm_unreachable("Found a stale predecessors list in a basic block." ); |
692 | for (BasicBlockT *B2 : predecessors(B1)) |
693 | if (Visited.insert(B2).second) |
694 | Predecessors[B1].push_back(B2); |
695 | |
696 | // Add successors for B1. |
697 | Visited.clear(); |
698 | if (!Successors[B1].empty()) |
699 | llvm_unreachable("Found a stale successors list in a basic block." ); |
700 | for (BasicBlockT *B2 : successors(B1)) |
701 | if (Visited.insert(B2).second) |
702 | Successors[B1].push_back(B2); |
703 | } |
704 | } |
705 | |
706 | /// Propagate weights into edges |
707 | /// |
708 | /// The following rules are applied to every block BB in the CFG: |
709 | /// |
710 | /// - If BB has a single predecessor/successor, then the weight |
711 | /// of that edge is the weight of the block. |
712 | /// |
713 | /// - If all incoming or outgoing edges are known except one, and the |
714 | /// weight of the block is already known, the weight of the unknown |
715 | /// edge will be the weight of the block minus the sum of all the known |
716 | /// edges. If the sum of all the known edges is larger than BB's weight, |
717 | /// we set the unknown edge weight to zero. |
718 | /// |
719 | /// - If there is a self-referential edge, and the weight of the block is |
720 | /// known, the weight for that edge is set to the weight of the block |
721 | /// minus the weight of the other incoming edges to that block (if |
722 | /// known). |
723 | template <typename BT> |
724 | void SampleProfileLoaderBaseImpl<BT>::propagateWeights(FunctionT &F) { |
725 | bool Changed = true; |
726 | unsigned I = 0; |
727 | |
728 | // If BB weight is larger than its corresponding loop's header BB weight, |
729 | // use the BB weight to replace the loop header BB weight. |
730 | for (auto &BI : F) { |
731 | BasicBlockT *BB = &BI; |
732 | LoopT *L = LI->getLoopFor(BB); |
733 | if (!L) { |
734 | continue; |
735 | } |
736 | BasicBlockT * = L->getHeader(); |
737 | if (Header && BlockWeights[BB] > BlockWeights[Header]) { |
738 | BlockWeights[Header] = BlockWeights[BB]; |
739 | } |
740 | } |
741 | |
742 | // Before propagation starts, build, for each block, a list of |
743 | // unique predecessors and successors. This is necessary to handle |
744 | // identical edges in multiway branches. Since we visit all blocks and all |
745 | // edges of the CFG, it is cleaner to build these lists once at the start |
746 | // of the pass. |
747 | buildEdges(F); |
748 | |
749 | // Propagate until we converge or we go past the iteration limit. |
750 | while (Changed && I++ < SampleProfileMaxPropagateIterations) { |
751 | Changed = propagateThroughEdges(F, false); |
752 | } |
753 | |
754 | // The first propagation propagates BB counts from annotated BBs to unknown |
755 | // BBs. The 2nd propagation pass resets edges weights, and use all BB weights |
756 | // to propagate edge weights. |
757 | VisitedEdges.clear(); |
758 | Changed = true; |
759 | while (Changed && I++ < SampleProfileMaxPropagateIterations) { |
760 | Changed = propagateThroughEdges(F, false); |
761 | } |
762 | |
763 | // The 3rd propagation pass allows adjust annotated BB weights that are |
764 | // obviously wrong. |
765 | Changed = true; |
766 | while (Changed && I++ < SampleProfileMaxPropagateIterations) { |
767 | Changed = propagateThroughEdges(F, true); |
768 | } |
769 | } |
770 | |
771 | /// Generate branch weight metadata for all branches in \p F. |
772 | /// |
773 | /// Branch weights are computed out of instruction samples using a |
774 | /// propagation heuristic. Propagation proceeds in 3 phases: |
775 | /// |
776 | /// 1- Assignment of block weights. All the basic blocks in the function |
777 | /// are initial assigned the same weight as their most frequently |
778 | /// executed instruction. |
779 | /// |
780 | /// 2- Creation of equivalence classes. Since samples may be missing from |
781 | /// blocks, we can fill in the gaps by setting the weights of all the |
782 | /// blocks in the same equivalence class to the same weight. To compute |
783 | /// the concept of equivalence, we use dominance and loop information. |
784 | /// Two blocks B1 and B2 are in the same equivalence class if B1 |
785 | /// dominates B2, B2 post-dominates B1 and both are in the same loop. |
786 | /// |
787 | /// 3- Propagation of block weights into edges. This uses a simple |
788 | /// propagation heuristic. The following rules are applied to every |
789 | /// block BB in the CFG: |
790 | /// |
791 | /// - If BB has a single predecessor/successor, then the weight |
792 | /// of that edge is the weight of the block. |
793 | /// |
794 | /// - If all the edges are known except one, and the weight of the |
795 | /// block is already known, the weight of the unknown edge will |
796 | /// be the weight of the block minus the sum of all the known |
797 | /// edges. If the sum of all the known edges is larger than BB's weight, |
798 | /// we set the unknown edge weight to zero. |
799 | /// |
800 | /// - If there is a self-referential edge, and the weight of the block is |
801 | /// known, the weight for that edge is set to the weight of the block |
802 | /// minus the weight of the other incoming edges to that block (if |
803 | /// known). |
804 | /// |
805 | /// Since this propagation is not guaranteed to finalize for every CFG, we |
806 | /// only allow it to proceed for a limited number of iterations (controlled |
807 | /// by -sample-profile-max-propagate-iterations). |
808 | /// |
809 | /// FIXME: Try to replace this propagation heuristic with a scheme |
810 | /// that is guaranteed to finalize. A work-list approach similar to |
811 | /// the standard value propagation algorithm used by SSA-CCP might |
812 | /// work here. |
813 | /// |
814 | /// \param F The function to query. |
815 | /// |
816 | /// \returns true if \p F was modified. Returns false, otherwise. |
817 | template <typename BT> |
818 | bool SampleProfileLoaderBaseImpl<BT>::computeAndPropagateWeights( |
819 | FunctionT &F, const DenseSet<GlobalValue::GUID> &InlinedGUIDs) { |
820 | bool Changed = (InlinedGUIDs.size() != 0); |
821 | |
822 | // Compute basic block weights. |
823 | Changed |= computeBlockWeights(F); |
824 | |
825 | if (Changed) { |
826 | // Add an entry count to the function using the samples gathered at the |
827 | // function entry. |
828 | // Sets the GUIDs that are inlined in the profiled binary. This is used |
829 | // for ThinLink to make correct liveness analysis, and also make the IR |
830 | // match the profiled binary before annotation. |
831 | getFunction(F).setEntryCount( |
832 | ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real), |
833 | &InlinedGUIDs); |
834 | |
835 | // Compute dominance and loop info needed for propagation. |
836 | computeDominanceAndLoopInfo(F); |
837 | |
838 | // Find equivalence classes. |
839 | findEquivalenceClasses(F); |
840 | |
841 | // Propagate weights to all edges. |
842 | propagateWeights(F); |
843 | } |
844 | |
845 | return Changed; |
846 | } |
847 | |
848 | template <typename BT> |
849 | void SampleProfileLoaderBaseImpl<BT>::(FunctionT &F) { |
850 | // If coverage checking was requested, compute it now. |
851 | const Function &Func = getFunction(F); |
852 | if (SampleProfileRecordCoverage) { |
853 | unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI); |
854 | unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI); |
855 | unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); |
856 | if (Coverage < SampleProfileRecordCoverage) { |
857 | Func.getContext().diagnose(DiagnosticInfoSampleProfile( |
858 | Func.getSubprogram()->getFilename(), getFunctionLoc(F), |
859 | Twine(Used) + " of " + Twine(Total) + " available profile records (" + |
860 | Twine(Coverage) + "%) were applied" , |
861 | DS_Warning)); |
862 | } |
863 | } |
864 | |
865 | if (SampleProfileSampleCoverage) { |
866 | uint64_t Used = CoverageTracker.getTotalUsedSamples(); |
867 | uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI); |
868 | unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); |
869 | if (Coverage < SampleProfileSampleCoverage) { |
870 | Func.getContext().diagnose(DiagnosticInfoSampleProfile( |
871 | Func.getSubprogram()->getFilename(), getFunctionLoc(F), |
872 | Twine(Used) + " of " + Twine(Total) + " available profile samples (" + |
873 | Twine(Coverage) + "%) were applied" , |
874 | DS_Warning)); |
875 | } |
876 | } |
877 | } |
878 | |
879 | /// Get the line number for the function header. |
880 | /// |
881 | /// This looks up function \p F in the current compilation unit and |
882 | /// retrieves the line number where the function is defined. This is |
883 | /// line 0 for all the samples read from the profile file. Every line |
884 | /// number is relative to this line. |
885 | /// |
886 | /// \param F Function object to query. |
887 | /// |
888 | /// \returns the line number where \p F is defined. If it returns 0, |
889 | /// it means that there is no debug information available for \p F. |
890 | template <typename BT> |
891 | unsigned SampleProfileLoaderBaseImpl<BT>::getFunctionLoc(FunctionT &F) { |
892 | const Function &Func = getFunction(F); |
893 | if (DISubprogram *S = Func.getSubprogram()) |
894 | return S->getLine(); |
895 | |
896 | if (NoWarnSampleUnused) |
897 | return 0; |
898 | |
899 | // If the start of \p F is missing, emit a diagnostic to inform the user |
900 | // about the missed opportunity. |
901 | Func.getContext().diagnose(DiagnosticInfoSampleProfile( |
902 | "No debug information found in function " + Func.getName() + |
903 | ": Function profile not used" , |
904 | DS_Warning)); |
905 | return 0; |
906 | } |
907 | |
908 | template <typename BT> |
909 | void SampleProfileLoaderBaseImpl<BT>::computeDominanceAndLoopInfo( |
910 | FunctionT &F) { |
911 | DT.reset(new DominatorTreeT); |
912 | DT->recalculate(F); |
913 | |
914 | PDT.reset(new PostDominatorTree(F)); |
915 | |
916 | LI.reset(new LoopInfoT); |
917 | LI->analyze(*DT); |
918 | } |
919 | |
920 | #undef DEBUG_TYPE |
921 | |
922 | } // namespace llvm |
923 | #endif // LLVM_TRANSFORMS_UTILS_SAMPLEPROFILELOADERBASEIMPL_H |
924 | |