1//===-- CFG.cpp - BasicBlock analysis --------------------------------------==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This family of functions performs analyses on basic blocks, and instructions
10// contained within basic blocks.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Analysis/CFG.h"
15#include "llvm/Analysis/LoopInfo.h"
16#include "llvm/IR/Dominators.h"
17#include "llvm/Support/CommandLine.h"
18
19using namespace llvm;
20
21// The max number of basic blocks explored during reachability analysis between
22// two basic blocks. This is kept reasonably small to limit compile time when
23// repeatedly used by clients of this analysis (such as captureTracking).
24static cl::opt<unsigned> DefaultMaxBBsToExplore(
25 "dom-tree-reachability-max-bbs-to-explore", cl::Hidden,
26 cl::desc("Max number of BBs to explore for reachability analysis"),
27 cl::init(Val: 32));
28
29/// FindFunctionBackedges - Analyze the specified function to find all of the
30/// loop backedges in the function and return them. This is a relatively cheap
31/// (compared to computing dominators and loop info) analysis.
32///
33/// The output is added to Result, as pairs of <from,to> edge info.
34void llvm::FindFunctionBackedges(const Function &F,
35 SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
36 const BasicBlock *BB = &F.getEntryBlock();
37 if (succ_empty(BB))
38 return;
39
40 SmallPtrSet<const BasicBlock*, 8> Visited;
41 SmallVector<std::pair<const BasicBlock *, const_succ_iterator>, 8> VisitStack;
42 SmallPtrSet<const BasicBlock*, 8> InStack;
43
44 Visited.insert(Ptr: BB);
45 VisitStack.push_back(Elt: std::make_pair(x&: BB, y: succ_begin(BB)));
46 InStack.insert(Ptr: BB);
47 do {
48 std::pair<const BasicBlock *, const_succ_iterator> &Top = VisitStack.back();
49 const BasicBlock *ParentBB = Top.first;
50 const_succ_iterator &I = Top.second;
51
52 bool FoundNew = false;
53 while (I != succ_end(BB: ParentBB)) {
54 BB = *I++;
55 if (Visited.insert(Ptr: BB).second) {
56 FoundNew = true;
57 break;
58 }
59 // Successor is in VisitStack, it's a back edge.
60 if (InStack.count(Ptr: BB))
61 Result.push_back(Elt: std::make_pair(x&: ParentBB, y&: BB));
62 }
63
64 if (FoundNew) {
65 // Go down one level if there is a unvisited successor.
66 InStack.insert(Ptr: BB);
67 VisitStack.push_back(Elt: std::make_pair(x&: BB, y: succ_begin(BB)));
68 } else {
69 // Go up one level.
70 InStack.erase(Ptr: VisitStack.pop_back_val().first);
71 }
72 } while (!VisitStack.empty());
73}
74
75/// GetSuccessorNumber - Search for the specified successor of basic block BB
76/// and return its position in the terminator instruction's list of
77/// successors. It is an error to call this with a block that is not a
78/// successor.
79unsigned llvm::GetSuccessorNumber(const BasicBlock *BB,
80 const BasicBlock *Succ) {
81 const Instruction *Term = BB->getTerminator();
82#ifndef NDEBUG
83 unsigned e = Term->getNumSuccessors();
84#endif
85 for (unsigned i = 0; ; ++i) {
86 assert(i != e && "Didn't find edge?");
87 if (Term->getSuccessor(Idx: i) == Succ)
88 return i;
89 }
90}
91
92/// isCriticalEdge - Return true if the specified edge is a critical edge.
93/// Critical edges are edges from a block with multiple successors to a block
94/// with multiple predecessors.
95bool llvm::isCriticalEdge(const Instruction *TI, unsigned SuccNum,
96 bool AllowIdenticalEdges) {
97 assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
98 return isCriticalEdge(TI, Succ: TI->getSuccessor(Idx: SuccNum), AllowIdenticalEdges);
99}
100
101bool llvm::isCriticalEdge(const Instruction *TI, const BasicBlock *Dest,
102 bool AllowIdenticalEdges) {
103 assert(TI->isTerminator() && "Must be a terminator to have successors!");
104 if (TI->getNumSuccessors() == 1) return false;
105
106 assert(is_contained(predecessors(Dest), TI->getParent()) &&
107 "No edge between TI's block and Dest.");
108
109 const_pred_iterator I = pred_begin(BB: Dest), E = pred_end(BB: Dest);
110
111 // If there is more than one predecessor, this is a critical edge...
112 assert(I != E && "No preds, but we have an edge to the block?");
113 const BasicBlock *FirstPred = *I;
114 ++I; // Skip one edge due to the incoming arc from TI.
115 if (!AllowIdenticalEdges)
116 return I != E;
117
118 // If AllowIdenticalEdges is true, then we allow this edge to be considered
119 // non-critical iff all preds come from TI's block.
120 for (; I != E; ++I)
121 if (*I != FirstPred)
122 return true;
123 return false;
124}
125
126// LoopInfo contains a mapping from basic block to the innermost loop. Find
127// the outermost loop in the loop nest that contains BB.
128static const Loop *getOutermostLoop(const LoopInfo *LI, const BasicBlock *BB) {
129 const Loop *L = LI->getLoopFor(BB);
130 return L ? L->getOutermostLoop() : nullptr;
131}
132
133bool llvm::isPotentiallyReachableFromMany(
134 SmallVectorImpl<BasicBlock *> &Worklist, const BasicBlock *StopBB,
135 const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT,
136 const LoopInfo *LI) {
137 // When the stop block is unreachable, it's dominated from everywhere,
138 // regardless of whether there's a path between the two blocks.
139 if (DT && !DT->isReachableFromEntry(A: StopBB))
140 DT = nullptr;
141
142 // We can't skip directly from a block that dominates the stop block if the
143 // exclusion block is potentially in between.
144 if (ExclusionSet && !ExclusionSet->empty())
145 DT = nullptr;
146
147 // Normally any block in a loop is reachable from any other block in a loop,
148 // however excluded blocks might partition the body of a loop to make that
149 // untrue.
150 SmallPtrSet<const Loop *, 8> LoopsWithHoles;
151 if (LI && ExclusionSet) {
152 for (auto *BB : *ExclusionSet) {
153 if (const Loop *L = getOutermostLoop(LI, BB))
154 LoopsWithHoles.insert(Ptr: L);
155 }
156 }
157
158 const Loop *StopLoop = LI ? getOutermostLoop(LI, BB: StopBB) : nullptr;
159
160 unsigned Limit = DefaultMaxBBsToExplore;
161 SmallPtrSet<const BasicBlock*, 32> Visited;
162 do {
163 BasicBlock *BB = Worklist.pop_back_val();
164 if (!Visited.insert(Ptr: BB).second)
165 continue;
166 if (BB == StopBB)
167 return true;
168 if (ExclusionSet && ExclusionSet->count(Ptr: BB))
169 continue;
170 if (DT && DT->dominates(A: BB, B: StopBB))
171 return true;
172
173 const Loop *Outer = nullptr;
174 if (LI) {
175 Outer = getOutermostLoop(LI, BB);
176 // If we're in a loop with a hole, not all blocks in the loop are
177 // reachable from all other blocks. That implies we can't simply jump to
178 // the loop's exit blocks, as that exit might need to pass through an
179 // excluded block. Clear Outer so we process BB's successors.
180 if (LoopsWithHoles.count(Ptr: Outer))
181 Outer = nullptr;
182 if (StopLoop && Outer == StopLoop)
183 return true;
184 }
185
186 if (!--Limit) {
187 // We haven't been able to prove it one way or the other. Conservatively
188 // answer true -- that there is potentially a path.
189 return true;
190 }
191
192 if (Outer) {
193 // All blocks in a single loop are reachable from all other blocks. From
194 // any of these blocks, we can skip directly to the exits of the loop,
195 // ignoring any other blocks inside the loop body.
196 Outer->getExitBlocks(ExitBlocks&: Worklist);
197 } else {
198 Worklist.append(in_start: succ_begin(BB), in_end: succ_end(BB));
199 }
200 } while (!Worklist.empty());
201
202 // We have exhausted all possible paths and are certain that 'To' can not be
203 // reached from 'From'.
204 return false;
205}
206
207bool llvm::isPotentiallyReachable(
208 const BasicBlock *A, const BasicBlock *B,
209 const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT,
210 const LoopInfo *LI) {
211 assert(A->getParent() == B->getParent() &&
212 "This analysis is function-local!");
213
214 if (DT) {
215 if (DT->isReachableFromEntry(A) && !DT->isReachableFromEntry(A: B))
216 return false;
217 if (!ExclusionSet || ExclusionSet->empty()) {
218 if (A->isEntryBlock() && DT->isReachableFromEntry(A: B))
219 return true;
220 if (B->isEntryBlock() && DT->isReachableFromEntry(A))
221 return false;
222 }
223 }
224
225 SmallVector<BasicBlock*, 32> Worklist;
226 Worklist.push_back(Elt: const_cast<BasicBlock*>(A));
227
228 return isPotentiallyReachableFromMany(Worklist, StopBB: B, ExclusionSet, DT, LI);
229}
230
231bool llvm::isPotentiallyReachable(
232 const Instruction *A, const Instruction *B,
233 const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT,
234 const LoopInfo *LI) {
235 assert(A->getParent()->getParent() == B->getParent()->getParent() &&
236 "This analysis is function-local!");
237
238 if (A->getParent() == B->getParent()) {
239 // The same block case is special because it's the only time we're looking
240 // within a single block to see which instruction comes first. Once we
241 // start looking at multiple blocks, the first instruction of the block is
242 // reachable, so we only need to determine reachability between whole
243 // blocks.
244 BasicBlock *BB = const_cast<BasicBlock *>(A->getParent());
245
246 // If the block is in a loop then we can reach any instruction in the block
247 // from any other instruction in the block by going around a backedge.
248 if (LI && LI->getLoopFor(BB) != nullptr)
249 return true;
250
251 // If A comes before B, then B is definitively reachable from A.
252 if (A == B || A->comesBefore(Other: B))
253 return true;
254
255 // Can't be in a loop if it's the entry block -- the entry block may not
256 // have predecessors.
257 if (BB->isEntryBlock())
258 return false;
259
260 // Otherwise, continue doing the normal per-BB CFG walk.
261 SmallVector<BasicBlock*, 32> Worklist;
262 Worklist.append(in_start: succ_begin(BB), in_end: succ_end(BB));
263 if (Worklist.empty()) {
264 // We've proven that there's no path!
265 return false;
266 }
267
268 return isPotentiallyReachableFromMany(Worklist, StopBB: B->getParent(),
269 ExclusionSet, DT, LI);
270 }
271
272 return isPotentiallyReachable(
273 A: A->getParent(), B: B->getParent(), ExclusionSet, DT, LI);
274}
275

source code of llvm/lib/Analysis/CFG.cpp