1//===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the implementation of the scalar evolution analysis
10// engine, which is used primarily to analyze expressions involving induction
11// variables in loops.
12//
13// There are several aspects to this library. First is the representation of
14// scalar expressions, which are represented as subclasses of the SCEV class.
15// These classes are used to represent certain types of subexpressions that we
16// can handle. We only create one SCEV of a particular shape, so
17// pointer-comparisons for equality are legal.
18//
19// One important aspect of the SCEV objects is that they are never cyclic, even
20// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
21// the PHI node is one of the idioms that we can represent (e.g., a polynomial
22// recurrence) then we represent it directly as a recurrence node, otherwise we
23// represent it as a SCEVUnknown node.
24//
25// In addition to being able to represent expressions of various types, we also
26// have folders that are used to build the *canonical* representation for a
27// particular expression. These folders are capable of using a variety of
28// rewrite rules to simplify the expressions.
29//
30// Once the folders are defined, we can implement the more interesting
31// higher-level code, such as the code that recognizes PHI nodes of various
32// types, computes the execution count of a loop, etc.
33//
34// TODO: We should use these routines and value representations to implement
35// dependence analysis!
36//
37//===----------------------------------------------------------------------===//
38//
39// There are several good references for the techniques used in this analysis.
40//
41// Chains of recurrences -- a method to expedite the evaluation
42// of closed-form functions
43// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44//
45// On computational properties of chains of recurrences
46// Eugene V. Zima
47//
48// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49// Robert A. van Engelen
50//
51// Efficient Symbolic Analysis for Optimizing Compilers
52// Robert A. van Engelen
53//
54// Using the chains of recurrences algebra for data dependence testing and
55// induction variable substitution
56// MS Thesis, Johnie Birch
57//
58//===----------------------------------------------------------------------===//
59
60#include "llvm/Analysis/ScalarEvolution.h"
61#include "llvm/ADT/APInt.h"
62#include "llvm/ADT/ArrayRef.h"
63#include "llvm/ADT/DenseMap.h"
64#include "llvm/ADT/DepthFirstIterator.h"
65#include "llvm/ADT/EquivalenceClasses.h"
66#include "llvm/ADT/FoldingSet.h"
67#include "llvm/ADT/STLExtras.h"
68#include "llvm/ADT/ScopeExit.h"
69#include "llvm/ADT/Sequence.h"
70#include "llvm/ADT/SmallPtrSet.h"
71#include "llvm/ADT/SmallSet.h"
72#include "llvm/ADT/SmallVector.h"
73#include "llvm/ADT/Statistic.h"
74#include "llvm/ADT/StringExtras.h"
75#include "llvm/ADT/StringRef.h"
76#include "llvm/Analysis/AssumptionCache.h"
77#include "llvm/Analysis/ConstantFolding.h"
78#include "llvm/Analysis/InstructionSimplify.h"
79#include "llvm/Analysis/LoopInfo.h"
80#include "llvm/Analysis/MemoryBuiltins.h"
81#include "llvm/Analysis/ScalarEvolutionExpressions.h"
82#include "llvm/Analysis/TargetLibraryInfo.h"
83#include "llvm/Analysis/ValueTracking.h"
84#include "llvm/Config/llvm-config.h"
85#include "llvm/IR/Argument.h"
86#include "llvm/IR/BasicBlock.h"
87#include "llvm/IR/CFG.h"
88#include "llvm/IR/Constant.h"
89#include "llvm/IR/ConstantRange.h"
90#include "llvm/IR/Constants.h"
91#include "llvm/IR/DataLayout.h"
92#include "llvm/IR/DerivedTypes.h"
93#include "llvm/IR/Dominators.h"
94#include "llvm/IR/Function.h"
95#include "llvm/IR/GlobalAlias.h"
96#include "llvm/IR/GlobalValue.h"
97#include "llvm/IR/InstIterator.h"
98#include "llvm/IR/InstrTypes.h"
99#include "llvm/IR/Instruction.h"
100#include "llvm/IR/Instructions.h"
101#include "llvm/IR/IntrinsicInst.h"
102#include "llvm/IR/Intrinsics.h"
103#include "llvm/IR/LLVMContext.h"
104#include "llvm/IR/Operator.h"
105#include "llvm/IR/PatternMatch.h"
106#include "llvm/IR/Type.h"
107#include "llvm/IR/Use.h"
108#include "llvm/IR/User.h"
109#include "llvm/IR/Value.h"
110#include "llvm/IR/Verifier.h"
111#include "llvm/InitializePasses.h"
112#include "llvm/Pass.h"
113#include "llvm/Support/Casting.h"
114#include "llvm/Support/CommandLine.h"
115#include "llvm/Support/Compiler.h"
116#include "llvm/Support/Debug.h"
117#include "llvm/Support/ErrorHandling.h"
118#include "llvm/Support/KnownBits.h"
119#include "llvm/Support/SaveAndRestore.h"
120#include "llvm/Support/raw_ostream.h"
121#include <algorithm>
122#include <cassert>
123#include <climits>
124#include <cstdint>
125#include <cstdlib>
126#include <map>
127#include <memory>
128#include <numeric>
129#include <optional>
130#include <tuple>
131#include <utility>
132#include <vector>
133
134using namespace llvm;
135using namespace PatternMatch;
136
137#define DEBUG_TYPE "scalar-evolution"
138
139STATISTIC(NumExitCountsComputed,
140 "Number of loop exits with predictable exit counts");
141STATISTIC(NumExitCountsNotComputed,
142 "Number of loop exits without predictable exit counts");
143STATISTIC(NumBruteForceTripCountsComputed,
144 "Number of loops with trip counts computed by force");
145
146#ifdef EXPENSIVE_CHECKS
147bool llvm::VerifySCEV = true;
148#else
149bool llvm::VerifySCEV = false;
150#endif
151
152static cl::opt<unsigned>
153 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
154 cl::desc("Maximum number of iterations SCEV will "
155 "symbolically execute a constant "
156 "derived loop"),
157 cl::init(Val: 100));
158
159static cl::opt<bool, true> VerifySCEVOpt(
160 "verify-scev", cl::Hidden, cl::location(L&: VerifySCEV),
161 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
162static cl::opt<bool> VerifySCEVStrict(
163 "verify-scev-strict", cl::Hidden,
164 cl::desc("Enable stricter verification with -verify-scev is passed"));
165
166static cl::opt<bool> VerifyIR(
167 "scev-verify-ir", cl::Hidden,
168 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
169 cl::init(Val: false));
170
171static cl::opt<unsigned> MulOpsInlineThreshold(
172 "scev-mulops-inline-threshold", cl::Hidden,
173 cl::desc("Threshold for inlining multiplication operands into a SCEV"),
174 cl::init(Val: 32));
175
176static cl::opt<unsigned> AddOpsInlineThreshold(
177 "scev-addops-inline-threshold", cl::Hidden,
178 cl::desc("Threshold for inlining addition operands into a SCEV"),
179 cl::init(Val: 500));
180
181static cl::opt<unsigned> MaxSCEVCompareDepth(
182 "scalar-evolution-max-scev-compare-depth", cl::Hidden,
183 cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
184 cl::init(Val: 32));
185
186static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
187 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
188 cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
189 cl::init(Val: 2));
190
191static cl::opt<unsigned> MaxValueCompareDepth(
192 "scalar-evolution-max-value-compare-depth", cl::Hidden,
193 cl::desc("Maximum depth of recursive value complexity comparisons"),
194 cl::init(Val: 2));
195
196static cl::opt<unsigned>
197 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
198 cl::desc("Maximum depth of recursive arithmetics"),
199 cl::init(Val: 32));
200
201static cl::opt<unsigned> MaxConstantEvolvingDepth(
202 "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
203 cl::desc("Maximum depth of recursive constant evolving"), cl::init(Val: 32));
204
205static cl::opt<unsigned>
206 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
207 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
208 cl::init(Val: 8));
209
210static cl::opt<unsigned>
211 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
212 cl::desc("Max coefficients in AddRec during evolving"),
213 cl::init(Val: 8));
214
215static cl::opt<unsigned>
216 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
217 cl::desc("Size of the expression which is considered huge"),
218 cl::init(Val: 4096));
219
220static cl::opt<unsigned> RangeIterThreshold(
221 "scev-range-iter-threshold", cl::Hidden,
222 cl::desc("Threshold for switching to iteratively computing SCEV ranges"),
223 cl::init(Val: 32));
224
225static cl::opt<bool>
226ClassifyExpressions("scalar-evolution-classify-expressions",
227 cl::Hidden, cl::init(Val: true),
228 cl::desc("When printing analysis, include information on every instruction"));
229
230static cl::opt<bool> UseExpensiveRangeSharpening(
231 "scalar-evolution-use-expensive-range-sharpening", cl::Hidden,
232 cl::init(Val: false),
233 cl::desc("Use more powerful methods of sharpening expression ranges. May "
234 "be costly in terms of compile time"));
235
236static cl::opt<unsigned> MaxPhiSCCAnalysisSize(
237 "scalar-evolution-max-scc-analysis-depth", cl::Hidden,
238 cl::desc("Maximum amount of nodes to process while searching SCEVUnknown "
239 "Phi strongly connected components"),
240 cl::init(Val: 8));
241
242static cl::opt<bool>
243 EnableFiniteLoopControl("scalar-evolution-finite-loop", cl::Hidden,
244 cl::desc("Handle <= and >= in finite loops"),
245 cl::init(Val: true));
246
247static cl::opt<bool> UseContextForNoWrapFlagInference(
248 "scalar-evolution-use-context-for-no-wrap-flag-strenghening", cl::Hidden,
249 cl::desc("Infer nuw/nsw flags using context where suitable"),
250 cl::init(Val: true));
251
252//===----------------------------------------------------------------------===//
253// SCEV class definitions
254//===----------------------------------------------------------------------===//
255
256//===----------------------------------------------------------------------===//
257// Implementation of the SCEV class.
258//
259
260#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
261LLVM_DUMP_METHOD void SCEV::dump() const {
262 print(OS&: dbgs());
263 dbgs() << '\n';
264}
265#endif
266
267void SCEV::print(raw_ostream &OS) const {
268 switch (getSCEVType()) {
269 case scConstant:
270 cast<SCEVConstant>(Val: this)->getValue()->printAsOperand(O&: OS, PrintType: false);
271 return;
272 case scVScale:
273 OS << "vscale";
274 return;
275 case scPtrToInt: {
276 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(Val: this);
277 const SCEV *Op = PtrToInt->getOperand();
278 OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to "
279 << *PtrToInt->getType() << ")";
280 return;
281 }
282 case scTruncate: {
283 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Val: this);
284 const SCEV *Op = Trunc->getOperand();
285 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
286 << *Trunc->getType() << ")";
287 return;
288 }
289 case scZeroExtend: {
290 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(Val: this);
291 const SCEV *Op = ZExt->getOperand();
292 OS << "(zext " << *Op->getType() << " " << *Op << " to "
293 << *ZExt->getType() << ")";
294 return;
295 }
296 case scSignExtend: {
297 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(Val: this);
298 const SCEV *Op = SExt->getOperand();
299 OS << "(sext " << *Op->getType() << " " << *Op << " to "
300 << *SExt->getType() << ")";
301 return;
302 }
303 case scAddRecExpr: {
304 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(Val: this);
305 OS << "{" << *AR->getOperand(i: 0);
306 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
307 OS << ",+," << *AR->getOperand(i);
308 OS << "}<";
309 if (AR->hasNoUnsignedWrap())
310 OS << "nuw><";
311 if (AR->hasNoSignedWrap())
312 OS << "nsw><";
313 if (AR->hasNoSelfWrap() &&
314 !AR->getNoWrapFlags(Mask: (NoWrapFlags)(FlagNUW | FlagNSW)))
315 OS << "nw><";
316 AR->getLoop()->getHeader()->printAsOperand(O&: OS, /*PrintType=*/false);
317 OS << ">";
318 return;
319 }
320 case scAddExpr:
321 case scMulExpr:
322 case scUMaxExpr:
323 case scSMaxExpr:
324 case scUMinExpr:
325 case scSMinExpr:
326 case scSequentialUMinExpr: {
327 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(Val: this);
328 const char *OpStr = nullptr;
329 switch (NAry->getSCEVType()) {
330 case scAddExpr: OpStr = " + "; break;
331 case scMulExpr: OpStr = " * "; break;
332 case scUMaxExpr: OpStr = " umax "; break;
333 case scSMaxExpr: OpStr = " smax "; break;
334 case scUMinExpr:
335 OpStr = " umin ";
336 break;
337 case scSMinExpr:
338 OpStr = " smin ";
339 break;
340 case scSequentialUMinExpr:
341 OpStr = " umin_seq ";
342 break;
343 default:
344 llvm_unreachable("There are no other nary expression types.");
345 }
346 OS << "(";
347 ListSeparator LS(OpStr);
348 for (const SCEV *Op : NAry->operands())
349 OS << LS << *Op;
350 OS << ")";
351 switch (NAry->getSCEVType()) {
352 case scAddExpr:
353 case scMulExpr:
354 if (NAry->hasNoUnsignedWrap())
355 OS << "<nuw>";
356 if (NAry->hasNoSignedWrap())
357 OS << "<nsw>";
358 break;
359 default:
360 // Nothing to print for other nary expressions.
361 break;
362 }
363 return;
364 }
365 case scUDivExpr: {
366 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(Val: this);
367 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
368 return;
369 }
370 case scUnknown:
371 cast<SCEVUnknown>(Val: this)->getValue()->printAsOperand(O&: OS, PrintType: false);
372 return;
373 case scCouldNotCompute:
374 OS << "***COULDNOTCOMPUTE***";
375 return;
376 }
377 llvm_unreachable("Unknown SCEV kind!");
378}
379
380Type *SCEV::getType() const {
381 switch (getSCEVType()) {
382 case scConstant:
383 return cast<SCEVConstant>(Val: this)->getType();
384 case scVScale:
385 return cast<SCEVVScale>(Val: this)->getType();
386 case scPtrToInt:
387 case scTruncate:
388 case scZeroExtend:
389 case scSignExtend:
390 return cast<SCEVCastExpr>(Val: this)->getType();
391 case scAddRecExpr:
392 return cast<SCEVAddRecExpr>(Val: this)->getType();
393 case scMulExpr:
394 return cast<SCEVMulExpr>(Val: this)->getType();
395 case scUMaxExpr:
396 case scSMaxExpr:
397 case scUMinExpr:
398 case scSMinExpr:
399 return cast<SCEVMinMaxExpr>(Val: this)->getType();
400 case scSequentialUMinExpr:
401 return cast<SCEVSequentialMinMaxExpr>(Val: this)->getType();
402 case scAddExpr:
403 return cast<SCEVAddExpr>(Val: this)->getType();
404 case scUDivExpr:
405 return cast<SCEVUDivExpr>(Val: this)->getType();
406 case scUnknown:
407 return cast<SCEVUnknown>(Val: this)->getType();
408 case scCouldNotCompute:
409 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
410 }
411 llvm_unreachable("Unknown SCEV kind!");
412}
413
414ArrayRef<const SCEV *> SCEV::operands() const {
415 switch (getSCEVType()) {
416 case scConstant:
417 case scVScale:
418 case scUnknown:
419 return {};
420 case scPtrToInt:
421 case scTruncate:
422 case scZeroExtend:
423 case scSignExtend:
424 return cast<SCEVCastExpr>(Val: this)->operands();
425 case scAddRecExpr:
426 case scAddExpr:
427 case scMulExpr:
428 case scUMaxExpr:
429 case scSMaxExpr:
430 case scUMinExpr:
431 case scSMinExpr:
432 case scSequentialUMinExpr:
433 return cast<SCEVNAryExpr>(Val: this)->operands();
434 case scUDivExpr:
435 return cast<SCEVUDivExpr>(Val: this)->operands();
436 case scCouldNotCompute:
437 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
438 }
439 llvm_unreachable("Unknown SCEV kind!");
440}
441
442bool SCEV::isZero() const {
443 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Val: this))
444 return SC->getValue()->isZero();
445 return false;
446}
447
448bool SCEV::isOne() const {
449 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Val: this))
450 return SC->getValue()->isOne();
451 return false;
452}
453
454bool SCEV::isAllOnesValue() const {
455 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Val: this))
456 return SC->getValue()->isMinusOne();
457 return false;
458}
459
460bool SCEV::isNonConstantNegative() const {
461 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Val: this);
462 if (!Mul) return false;
463
464 // If there is a constant factor, it will be first.
465 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Val: Mul->getOperand(i: 0));
466 if (!SC) return false;
467
468 // Return true if the value is negative, this matches things like (-42 * V).
469 return SC->getAPInt().isNegative();
470}
471
472SCEVCouldNotCompute::SCEVCouldNotCompute() :
473 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
474
475bool SCEVCouldNotCompute::classof(const SCEV *S) {
476 return S->getSCEVType() == scCouldNotCompute;
477}
478
479const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
480 FoldingSetNodeID ID;
481 ID.AddInteger(I: scConstant);
482 ID.AddPointer(Ptr: V);
483 void *IP = nullptr;
484 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP)) return S;
485 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(Allocator&: SCEVAllocator), V);
486 UniqueSCEVs.InsertNode(N: S, InsertPos: IP);
487 return S;
488}
489
490const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
491 return getConstant(V: ConstantInt::get(Context&: getContext(), V: Val));
492}
493
494const SCEV *
495ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
496 IntegerType *ITy = cast<IntegerType>(Val: getEffectiveSCEVType(Ty));
497 return getConstant(V: ConstantInt::get(Ty: ITy, V, IsSigned: isSigned));
498}
499
500const SCEV *ScalarEvolution::getVScale(Type *Ty) {
501 FoldingSetNodeID ID;
502 ID.AddInteger(I: scVScale);
503 ID.AddPointer(Ptr: Ty);
504 void *IP = nullptr;
505 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP))
506 return S;
507 SCEV *S = new (SCEVAllocator) SCEVVScale(ID.Intern(Allocator&: SCEVAllocator), Ty);
508 UniqueSCEVs.InsertNode(N: S, InsertPos: IP);
509 return S;
510}
511
512SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
513 const SCEV *op, Type *ty)
514 : SCEV(ID, SCEVTy, computeExpressionSize(Args: op)), Op(op), Ty(ty) {}
515
516SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op,
517 Type *ITy)
518 : SCEVCastExpr(ID, scPtrToInt, Op, ITy) {
519 assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() &&
520 "Must be a non-bit-width-changing pointer-to-integer cast!");
521}
522
523SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID,
524 SCEVTypes SCEVTy, const SCEV *op,
525 Type *ty)
526 : SCEVCastExpr(ID, SCEVTy, op, ty) {}
527
528SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op,
529 Type *ty)
530 : SCEVIntegralCastExpr(ID, scTruncate, op, ty) {
531 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
532 "Cannot truncate non-integer value!");
533}
534
535SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
536 const SCEV *op, Type *ty)
537 : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) {
538 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
539 "Cannot zero extend non-integer value!");
540}
541
542SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
543 const SCEV *op, Type *ty)
544 : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) {
545 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
546 "Cannot sign extend non-integer value!");
547}
548
549void SCEVUnknown::deleted() {
550 // Clear this SCEVUnknown from various maps.
551 SE->forgetMemoizedResults(SCEVs: this);
552
553 // Remove this SCEVUnknown from the uniquing map.
554 SE->UniqueSCEVs.RemoveNode(N: this);
555
556 // Release the value.
557 setValPtr(nullptr);
558}
559
560void SCEVUnknown::allUsesReplacedWith(Value *New) {
561 // Clear this SCEVUnknown from various maps.
562 SE->forgetMemoizedResults(SCEVs: this);
563
564 // Remove this SCEVUnknown from the uniquing map.
565 SE->UniqueSCEVs.RemoveNode(N: this);
566
567 // Replace the value pointer in case someone is still using this SCEVUnknown.
568 setValPtr(New);
569}
570
571//===----------------------------------------------------------------------===//
572// SCEV Utilities
573//===----------------------------------------------------------------------===//
574
575/// Compare the two values \p LV and \p RV in terms of their "complexity" where
576/// "complexity" is a partial (and somewhat ad-hoc) relation used to order
577/// operands in SCEV expressions. \p EqCache is a set of pairs of values that
578/// have been previously deemed to be "equally complex" by this routine. It is
579/// intended to avoid exponential time complexity in cases like:
580///
581/// %a = f(%x, %y)
582/// %b = f(%a, %a)
583/// %c = f(%b, %b)
584///
585/// %d = f(%x, %y)
586/// %e = f(%d, %d)
587/// %f = f(%e, %e)
588///
589/// CompareValueComplexity(%f, %c)
590///
591/// Since we do not continue running this routine on expression trees once we
592/// have seen unequal values, there is no need to track them in the cache.
593static int
594CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
595 const LoopInfo *const LI, Value *LV, Value *RV,
596 unsigned Depth) {
597 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(V1: LV, V2: RV))
598 return 0;
599
600 // Order pointer values after integer values. This helps SCEVExpander form
601 // GEPs.
602 bool LIsPointer = LV->getType()->isPointerTy(),
603 RIsPointer = RV->getType()->isPointerTy();
604 if (LIsPointer != RIsPointer)
605 return (int)LIsPointer - (int)RIsPointer;
606
607 // Compare getValueID values.
608 unsigned LID = LV->getValueID(), RID = RV->getValueID();
609 if (LID != RID)
610 return (int)LID - (int)RID;
611
612 // Sort arguments by their position.
613 if (const auto *LA = dyn_cast<Argument>(Val: LV)) {
614 const auto *RA = cast<Argument>(Val: RV);
615 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
616 return (int)LArgNo - (int)RArgNo;
617 }
618
619 if (const auto *LGV = dyn_cast<GlobalValue>(Val: LV)) {
620 const auto *RGV = cast<GlobalValue>(Val: RV);
621
622 const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
623 auto LT = GV->getLinkage();
624 return !(GlobalValue::isPrivateLinkage(Linkage: LT) ||
625 GlobalValue::isInternalLinkage(Linkage: LT));
626 };
627
628 // Use the names to distinguish the two values, but only if the
629 // names are semantically important.
630 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
631 return LGV->getName().compare(RHS: RGV->getName());
632 }
633
634 // For instructions, compare their loop depth, and their operand count. This
635 // is pretty loose.
636 if (const auto *LInst = dyn_cast<Instruction>(Val: LV)) {
637 const auto *RInst = cast<Instruction>(Val: RV);
638
639 // Compare loop depths.
640 const BasicBlock *LParent = LInst->getParent(),
641 *RParent = RInst->getParent();
642 if (LParent != RParent) {
643 unsigned LDepth = LI->getLoopDepth(BB: LParent),
644 RDepth = LI->getLoopDepth(BB: RParent);
645 if (LDepth != RDepth)
646 return (int)LDepth - (int)RDepth;
647 }
648
649 // Compare the number of operands.
650 unsigned LNumOps = LInst->getNumOperands(),
651 RNumOps = RInst->getNumOperands();
652 if (LNumOps != RNumOps)
653 return (int)LNumOps - (int)RNumOps;
654
655 for (unsigned Idx : seq(Size: LNumOps)) {
656 int Result =
657 CompareValueComplexity(EqCacheValue, LI, LV: LInst->getOperand(i: Idx),
658 RV: RInst->getOperand(i: Idx), Depth: Depth + 1);
659 if (Result != 0)
660 return Result;
661 }
662 }
663
664 EqCacheValue.unionSets(V1: LV, V2: RV);
665 return 0;
666}
667
668// Return negative, zero, or positive, if LHS is less than, equal to, or greater
669// than RHS, respectively. A three-way result allows recursive comparisons to be
670// more efficient.
671// If the max analysis depth was reached, return std::nullopt, assuming we do
672// not know if they are equivalent for sure.
673static std::optional<int>
674CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV,
675 EquivalenceClasses<const Value *> &EqCacheValue,
676 const LoopInfo *const LI, const SCEV *LHS,
677 const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) {
678 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
679 if (LHS == RHS)
680 return 0;
681
682 // Primarily, sort the SCEVs by their getSCEVType().
683 SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
684 if (LType != RType)
685 return (int)LType - (int)RType;
686
687 if (EqCacheSCEV.isEquivalent(V1: LHS, V2: RHS))
688 return 0;
689
690 if (Depth > MaxSCEVCompareDepth)
691 return std::nullopt;
692
693 // Aside from the getSCEVType() ordering, the particular ordering
694 // isn't very important except that it's beneficial to be consistent,
695 // so that (a + b) and (b + a) don't end up as different expressions.
696 switch (LType) {
697 case scUnknown: {
698 const SCEVUnknown *LU = cast<SCEVUnknown>(Val: LHS);
699 const SCEVUnknown *RU = cast<SCEVUnknown>(Val: RHS);
700
701 int X = CompareValueComplexity(EqCacheValue, LI, LV: LU->getValue(),
702 RV: RU->getValue(), Depth: Depth + 1);
703 if (X == 0)
704 EqCacheSCEV.unionSets(V1: LHS, V2: RHS);
705 return X;
706 }
707
708 case scConstant: {
709 const SCEVConstant *LC = cast<SCEVConstant>(Val: LHS);
710 const SCEVConstant *RC = cast<SCEVConstant>(Val: RHS);
711
712 // Compare constant values.
713 const APInt &LA = LC->getAPInt();
714 const APInt &RA = RC->getAPInt();
715 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
716 if (LBitWidth != RBitWidth)
717 return (int)LBitWidth - (int)RBitWidth;
718 return LA.ult(RHS: RA) ? -1 : 1;
719 }
720
721 case scVScale: {
722 const auto *LTy = cast<IntegerType>(Val: cast<SCEVVScale>(Val: LHS)->getType());
723 const auto *RTy = cast<IntegerType>(Val: cast<SCEVVScale>(Val: RHS)->getType());
724 return LTy->getBitWidth() - RTy->getBitWidth();
725 }
726
727 case scAddRecExpr: {
728 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(Val: LHS);
729 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(Val: RHS);
730
731 // There is always a dominance between two recs that are used by one SCEV,
732 // so we can safely sort recs by loop header dominance. We require such
733 // order in getAddExpr.
734 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
735 if (LLoop != RLoop) {
736 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
737 assert(LHead != RHead && "Two loops share the same header?");
738 if (DT.dominates(A: LHead, B: RHead))
739 return 1;
740 assert(DT.dominates(RHead, LHead) &&
741 "No dominance between recurrences used by one SCEV?");
742 return -1;
743 }
744
745 [[fallthrough]];
746 }
747
748 case scTruncate:
749 case scZeroExtend:
750 case scSignExtend:
751 case scPtrToInt:
752 case scAddExpr:
753 case scMulExpr:
754 case scUDivExpr:
755 case scSMaxExpr:
756 case scUMaxExpr:
757 case scSMinExpr:
758 case scUMinExpr:
759 case scSequentialUMinExpr: {
760 ArrayRef<const SCEV *> LOps = LHS->operands();
761 ArrayRef<const SCEV *> ROps = RHS->operands();
762
763 // Lexicographically compare n-ary-like expressions.
764 unsigned LNumOps = LOps.size(), RNumOps = ROps.size();
765 if (LNumOps != RNumOps)
766 return (int)LNumOps - (int)RNumOps;
767
768 for (unsigned i = 0; i != LNumOps; ++i) {
769 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS: LOps[i],
770 RHS: ROps[i], DT, Depth: Depth + 1);
771 if (X != 0)
772 return X;
773 }
774 EqCacheSCEV.unionSets(V1: LHS, V2: RHS);
775 return 0;
776 }
777
778 case scCouldNotCompute:
779 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
780 }
781 llvm_unreachable("Unknown SCEV kind!");
782}
783
784/// Given a list of SCEV objects, order them by their complexity, and group
785/// objects of the same complexity together by value. When this routine is
786/// finished, we know that any duplicates in the vector are consecutive and that
787/// complexity is monotonically increasing.
788///
789/// Note that we go take special precautions to ensure that we get deterministic
790/// results from this routine. In other words, we don't want the results of
791/// this to depend on where the addresses of various SCEV objects happened to
792/// land in memory.
793static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
794 LoopInfo *LI, DominatorTree &DT) {
795 if (Ops.size() < 2) return; // Noop
796
797 EquivalenceClasses<const SCEV *> EqCacheSCEV;
798 EquivalenceClasses<const Value *> EqCacheValue;
799
800 // Whether LHS has provably less complexity than RHS.
801 auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) {
802 auto Complexity =
803 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT);
804 return Complexity && *Complexity < 0;
805 };
806 if (Ops.size() == 2) {
807 // This is the common case, which also happens to be trivially simple.
808 // Special case it.
809 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
810 if (IsLessComplex(RHS, LHS))
811 std::swap(a&: LHS, b&: RHS);
812 return;
813 }
814
815 // Do the rough sort by complexity.
816 llvm::stable_sort(Range&: Ops, C: [&](const SCEV *LHS, const SCEV *RHS) {
817 return IsLessComplex(LHS, RHS);
818 });
819
820 // Now that we are sorted by complexity, group elements of the same
821 // complexity. Note that this is, at worst, N^2, but the vector is likely to
822 // be extremely short in practice. Note that we take this approach because we
823 // do not want to depend on the addresses of the objects we are grouping.
824 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
825 const SCEV *S = Ops[i];
826 unsigned Complexity = S->getSCEVType();
827
828 // If there are any objects of the same complexity and same value as this
829 // one, group them.
830 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
831 if (Ops[j] == S) { // Found a duplicate.
832 // Move it to immediately after i'th element.
833 std::swap(a&: Ops[i+1], b&: Ops[j]);
834 ++i; // no need to rescan it.
835 if (i == e-2) return; // Done!
836 }
837 }
838 }
839}
840
841/// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
842/// least HugeExprThreshold nodes).
843static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
844 return any_of(Range&: Ops, P: [](const SCEV *S) {
845 return S->getExpressionSize() >= HugeExprThreshold;
846 });
847}
848
849//===----------------------------------------------------------------------===//
850// Simple SCEV method implementations
851//===----------------------------------------------------------------------===//
852
853/// Compute BC(It, K). The result has width W. Assume, K > 0.
854static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
855 ScalarEvolution &SE,
856 Type *ResultTy) {
857 // Handle the simplest case efficiently.
858 if (K == 1)
859 return SE.getTruncateOrZeroExtend(V: It, Ty: ResultTy);
860
861 // We are using the following formula for BC(It, K):
862 //
863 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
864 //
865 // Suppose, W is the bitwidth of the return value. We must be prepared for
866 // overflow. Hence, we must assure that the result of our computation is
867 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
868 // safe in modular arithmetic.
869 //
870 // However, this code doesn't use exactly that formula; the formula it uses
871 // is something like the following, where T is the number of factors of 2 in
872 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
873 // exponentiation:
874 //
875 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
876 //
877 // This formula is trivially equivalent to the previous formula. However,
878 // this formula can be implemented much more efficiently. The trick is that
879 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
880 // arithmetic. To do exact division in modular arithmetic, all we have
881 // to do is multiply by the inverse. Therefore, this step can be done at
882 // width W.
883 //
884 // The next issue is how to safely do the division by 2^T. The way this
885 // is done is by doing the multiplication step at a width of at least W + T
886 // bits. This way, the bottom W+T bits of the product are accurate. Then,
887 // when we perform the division by 2^T (which is equivalent to a right shift
888 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
889 // truncated out after the division by 2^T.
890 //
891 // In comparison to just directly using the first formula, this technique
892 // is much more efficient; using the first formula requires W * K bits,
893 // but this formula less than W + K bits. Also, the first formula requires
894 // a division step, whereas this formula only requires multiplies and shifts.
895 //
896 // It doesn't matter whether the subtraction step is done in the calculation
897 // width or the input iteration count's width; if the subtraction overflows,
898 // the result must be zero anyway. We prefer here to do it in the width of
899 // the induction variable because it helps a lot for certain cases; CodeGen
900 // isn't smart enough to ignore the overflow, which leads to much less
901 // efficient code if the width of the subtraction is wider than the native
902 // register width.
903 //
904 // (It's possible to not widen at all by pulling out factors of 2 before
905 // the multiplication; for example, K=2 can be calculated as
906 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
907 // extra arithmetic, so it's not an obvious win, and it gets
908 // much more complicated for K > 3.)
909
910 // Protection from insane SCEVs; this bound is conservative,
911 // but it probably doesn't matter.
912 if (K > 1000)
913 return SE.getCouldNotCompute();
914
915 unsigned W = SE.getTypeSizeInBits(Ty: ResultTy);
916
917 // Calculate K! / 2^T and T; we divide out the factors of two before
918 // multiplying for calculating K! / 2^T to avoid overflow.
919 // Other overflow doesn't matter because we only care about the bottom
920 // W bits of the result.
921 APInt OddFactorial(W, 1);
922 unsigned T = 1;
923 for (unsigned i = 3; i <= K; ++i) {
924 APInt Mult(W, i);
925 unsigned TwoFactors = Mult.countr_zero();
926 T += TwoFactors;
927 Mult.lshrInPlace(ShiftAmt: TwoFactors);
928 OddFactorial *= Mult;
929 }
930
931 // We need at least W + T bits for the multiplication step
932 unsigned CalculationBits = W + T;
933
934 // Calculate 2^T, at width T+W.
935 APInt DivFactor = APInt::getOneBitSet(numBits: CalculationBits, BitNo: T);
936
937 // Calculate the multiplicative inverse of K! / 2^T;
938 // this multiplication factor will perform the exact division by
939 // K! / 2^T.
940 APInt Mod = APInt::getSignedMinValue(numBits: W+1);
941 APInt MultiplyFactor = OddFactorial.zext(width: W+1);
942 MultiplyFactor = MultiplyFactor.multiplicativeInverse(modulo: Mod);
943 MultiplyFactor = MultiplyFactor.trunc(width: W);
944
945 // Calculate the product, at width T+W
946 IntegerType *CalculationTy = IntegerType::get(C&: SE.getContext(),
947 NumBits: CalculationBits);
948 const SCEV *Dividend = SE.getTruncateOrZeroExtend(V: It, Ty: CalculationTy);
949 for (unsigned i = 1; i != K; ++i) {
950 const SCEV *S = SE.getMinusSCEV(LHS: It, RHS: SE.getConstant(Ty: It->getType(), V: i));
951 Dividend = SE.getMulExpr(LHS: Dividend,
952 RHS: SE.getTruncateOrZeroExtend(V: S, Ty: CalculationTy));
953 }
954
955 // Divide by 2^T
956 const SCEV *DivResult = SE.getUDivExpr(LHS: Dividend, RHS: SE.getConstant(Val: DivFactor));
957
958 // Truncate the result, and divide by K! / 2^T.
959
960 return SE.getMulExpr(LHS: SE.getConstant(Val: MultiplyFactor),
961 RHS: SE.getTruncateOrZeroExtend(V: DivResult, Ty: ResultTy));
962}
963
964/// Return the value of this chain of recurrences at the specified iteration
965/// number. We can evaluate this recurrence by multiplying each element in the
966/// chain by the binomial coefficient corresponding to it. In other words, we
967/// can evaluate {A,+,B,+,C,+,D} as:
968///
969/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
970///
971/// where BC(It, k) stands for binomial coefficient.
972const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
973 ScalarEvolution &SE) const {
974 return evaluateAtIteration(Operands: operands(), It, SE);
975}
976
977const SCEV *
978SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands,
979 const SCEV *It, ScalarEvolution &SE) {
980 assert(Operands.size() > 0);
981 const SCEV *Result = Operands[0];
982 for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
983 // The computation is correct in the face of overflow provided that the
984 // multiplication is performed _after_ the evaluation of the binomial
985 // coefficient.
986 const SCEV *Coeff = BinomialCoefficient(It, K: i, SE, ResultTy: Result->getType());
987 if (isa<SCEVCouldNotCompute>(Val: Coeff))
988 return Coeff;
989
990 Result = SE.getAddExpr(LHS: Result, RHS: SE.getMulExpr(LHS: Operands[i], RHS: Coeff));
991 }
992 return Result;
993}
994
995//===----------------------------------------------------------------------===//
996// SCEV Expression folder implementations
997//===----------------------------------------------------------------------===//
998
999const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op,
1000 unsigned Depth) {
1001 assert(Depth <= 1 &&
1002 "getLosslessPtrToIntExpr() should self-recurse at most once.");
1003
1004 // We could be called with an integer-typed operands during SCEV rewrites.
1005 // Since the operand is an integer already, just perform zext/trunc/self cast.
1006 if (!Op->getType()->isPointerTy())
1007 return Op;
1008
1009 // What would be an ID for such a SCEV cast expression?
1010 FoldingSetNodeID ID;
1011 ID.AddInteger(I: scPtrToInt);
1012 ID.AddPointer(Ptr: Op);
1013
1014 void *IP = nullptr;
1015
1016 // Is there already an expression for such a cast?
1017 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP))
1018 return S;
1019
1020 // It isn't legal for optimizations to construct new ptrtoint expressions
1021 // for non-integral pointers.
1022 if (getDataLayout().isNonIntegralPointerType(Ty: Op->getType()))
1023 return getCouldNotCompute();
1024
1025 Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType());
1026
1027 // We can only trivially model ptrtoint if SCEV's effective (integer) type
1028 // is sufficiently wide to represent all possible pointer values.
1029 // We could theoretically teach SCEV to truncate wider pointers, but
1030 // that isn't implemented for now.
1031 if (getDataLayout().getTypeSizeInBits(Ty: getEffectiveSCEVType(Ty: Op->getType())) !=
1032 getDataLayout().getTypeSizeInBits(Ty: IntPtrTy))
1033 return getCouldNotCompute();
1034
1035 // If not, is this expression something we can't reduce any further?
1036 if (auto *U = dyn_cast<SCEVUnknown>(Val: Op)) {
1037 // Perform some basic constant folding. If the operand of the ptr2int cast
1038 // is a null pointer, don't create a ptr2int SCEV expression (that will be
1039 // left as-is), but produce a zero constant.
1040 // NOTE: We could handle a more general case, but lack motivational cases.
1041 if (isa<ConstantPointerNull>(Val: U->getValue()))
1042 return getZero(Ty: IntPtrTy);
1043
1044 // Create an explicit cast node.
1045 // We can reuse the existing insert position since if we get here,
1046 // we won't have made any changes which would invalidate it.
1047 SCEV *S = new (SCEVAllocator)
1048 SCEVPtrToIntExpr(ID.Intern(Allocator&: SCEVAllocator), Op, IntPtrTy);
1049 UniqueSCEVs.InsertNode(N: S, InsertPos: IP);
1050 registerUser(User: S, Ops: Op);
1051 return S;
1052 }
1053
1054 assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for "
1055 "non-SCEVUnknown's.");
1056
1057 // Otherwise, we've got some expression that is more complex than just a
1058 // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an
1059 // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown
1060 // only, and the expressions must otherwise be integer-typed.
1061 // So sink the cast down to the SCEVUnknown's.
1062
1063 /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression,
1064 /// which computes a pointer-typed value, and rewrites the whole expression
1065 /// tree so that *all* the computations are done on integers, and the only
1066 /// pointer-typed operands in the expression are SCEVUnknown.
1067 class SCEVPtrToIntSinkingRewriter
1068 : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> {
1069 using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>;
1070
1071 public:
1072 SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {}
1073
1074 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) {
1075 SCEVPtrToIntSinkingRewriter Rewriter(SE);
1076 return Rewriter.visit(S: Scev);
1077 }
1078
1079 const SCEV *visit(const SCEV *S) {
1080 Type *STy = S->getType();
1081 // If the expression is not pointer-typed, just keep it as-is.
1082 if (!STy->isPointerTy())
1083 return S;
1084 // Else, recursively sink the cast down into it.
1085 return Base::visit(S);
1086 }
1087
1088 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
1089 SmallVector<const SCEV *, 2> Operands;
1090 bool Changed = false;
1091 for (const auto *Op : Expr->operands()) {
1092 Operands.push_back(Elt: visit(S: Op));
1093 Changed |= Op != Operands.back();
1094 }
1095 return !Changed ? Expr : SE.getAddExpr(Ops&: Operands, Flags: Expr->getNoWrapFlags());
1096 }
1097
1098 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
1099 SmallVector<const SCEV *, 2> Operands;
1100 bool Changed = false;
1101 for (const auto *Op : Expr->operands()) {
1102 Operands.push_back(Elt: visit(S: Op));
1103 Changed |= Op != Operands.back();
1104 }
1105 return !Changed ? Expr : SE.getMulExpr(Ops&: Operands, Flags: Expr->getNoWrapFlags());
1106 }
1107
1108 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
1109 assert(Expr->getType()->isPointerTy() &&
1110 "Should only reach pointer-typed SCEVUnknown's.");
1111 return SE.getLosslessPtrToIntExpr(Op: Expr, /*Depth=*/1);
1112 }
1113 };
1114
1115 // And actually perform the cast sinking.
1116 const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Scev: Op, SE&: *this);
1117 assert(IntOp->getType()->isIntegerTy() &&
1118 "We must have succeeded in sinking the cast, "
1119 "and ending up with an integer-typed expression!");
1120 return IntOp;
1121}
1122
1123const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) {
1124 assert(Ty->isIntegerTy() && "Target type must be an integer type!");
1125
1126 const SCEV *IntOp = getLosslessPtrToIntExpr(Op);
1127 if (isa<SCEVCouldNotCompute>(Val: IntOp))
1128 return IntOp;
1129
1130 return getTruncateOrZeroExtend(V: IntOp, Ty);
1131}
1132
1133const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1134 unsigned Depth) {
1135 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1136 "This is not a truncating conversion!");
1137 assert(isSCEVable(Ty) &&
1138 "This is not a conversion to a SCEVable type!");
1139 assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!");
1140 Ty = getEffectiveSCEVType(Ty);
1141
1142 FoldingSetNodeID ID;
1143 ID.AddInteger(I: scTruncate);
1144 ID.AddPointer(Ptr: Op);
1145 ID.AddPointer(Ptr: Ty);
1146 void *IP = nullptr;
1147 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP)) return S;
1148
1149 // Fold if the operand is constant.
1150 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Val: Op))
1151 return getConstant(
1152 V: cast<ConstantInt>(Val: ConstantExpr::getTrunc(C: SC->getValue(), Ty)));
1153
1154 // trunc(trunc(x)) --> trunc(x)
1155 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Val: Op))
1156 return getTruncateExpr(Op: ST->getOperand(), Ty, Depth: Depth + 1);
1157
1158 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1159 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Val: Op))
1160 return getTruncateOrSignExtend(V: SS->getOperand(), Ty, Depth: Depth + 1);
1161
1162 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1163 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Val: Op))
1164 return getTruncateOrZeroExtend(V: SZ->getOperand(), Ty, Depth: Depth + 1);
1165
1166 if (Depth > MaxCastDepth) {
1167 SCEV *S =
1168 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(Allocator&: SCEVAllocator), Op, Ty);
1169 UniqueSCEVs.InsertNode(N: S, InsertPos: IP);
1170 registerUser(User: S, Ops: Op);
1171 return S;
1172 }
1173
1174 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1175 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1176 // if after transforming we have at most one truncate, not counting truncates
1177 // that replace other casts.
1178 if (isa<SCEVAddExpr>(Val: Op) || isa<SCEVMulExpr>(Val: Op)) {
1179 auto *CommOp = cast<SCEVCommutativeExpr>(Val: Op);
1180 SmallVector<const SCEV *, 4> Operands;
1181 unsigned numTruncs = 0;
1182 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1183 ++i) {
1184 const SCEV *S = getTruncateExpr(Op: CommOp->getOperand(i), Ty, Depth: Depth + 1);
1185 if (!isa<SCEVIntegralCastExpr>(Val: CommOp->getOperand(i)) &&
1186 isa<SCEVTruncateExpr>(Val: S))
1187 numTruncs++;
1188 Operands.push_back(Elt: S);
1189 }
1190 if (numTruncs < 2) {
1191 if (isa<SCEVAddExpr>(Val: Op))
1192 return getAddExpr(Ops&: Operands);
1193 if (isa<SCEVMulExpr>(Val: Op))
1194 return getMulExpr(Ops&: Operands);
1195 llvm_unreachable("Unexpected SCEV type for Op.");
1196 }
1197 // Although we checked in the beginning that ID is not in the cache, it is
1198 // possible that during recursion and different modification ID was inserted
1199 // into the cache. So if we find it, just return it.
1200 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP))
1201 return S;
1202 }
1203
1204 // If the input value is a chrec scev, truncate the chrec's operands.
1205 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Val: Op)) {
1206 SmallVector<const SCEV *, 4> Operands;
1207 for (const SCEV *Op : AddRec->operands())
1208 Operands.push_back(Elt: getTruncateExpr(Op, Ty, Depth: Depth + 1));
1209 return getAddRecExpr(Operands, L: AddRec->getLoop(), Flags: SCEV::FlagAnyWrap);
1210 }
1211
1212 // Return zero if truncating to known zeros.
1213 uint32_t MinTrailingZeros = getMinTrailingZeros(S: Op);
1214 if (MinTrailingZeros >= getTypeSizeInBits(Ty))
1215 return getZero(Ty);
1216
1217 // The cast wasn't folded; create an explicit cast node. We can reuse
1218 // the existing insert position since if we get here, we won't have
1219 // made any changes which would invalidate it.
1220 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(Allocator&: SCEVAllocator),
1221 Op, Ty);
1222 UniqueSCEVs.InsertNode(N: S, InsertPos: IP);
1223 registerUser(User: S, Ops: Op);
1224 return S;
1225}
1226
1227// Get the limit of a recurrence such that incrementing by Step cannot cause
1228// signed overflow as long as the value of the recurrence within the
1229// loop does not exceed this limit before incrementing.
1230static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1231 ICmpInst::Predicate *Pred,
1232 ScalarEvolution *SE) {
1233 unsigned BitWidth = SE->getTypeSizeInBits(Ty: Step->getType());
1234 if (SE->isKnownPositive(S: Step)) {
1235 *Pred = ICmpInst::ICMP_SLT;
1236 return SE->getConstant(Val: APInt::getSignedMinValue(numBits: BitWidth) -
1237 SE->getSignedRangeMax(S: Step));
1238 }
1239 if (SE->isKnownNegative(S: Step)) {
1240 *Pred = ICmpInst::ICMP_SGT;
1241 return SE->getConstant(Val: APInt::getSignedMaxValue(numBits: BitWidth) -
1242 SE->getSignedRangeMin(S: Step));
1243 }
1244 return nullptr;
1245}
1246
1247// Get the limit of a recurrence such that incrementing by Step cannot cause
1248// unsigned overflow as long as the value of the recurrence within the loop does
1249// not exceed this limit before incrementing.
1250static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1251 ICmpInst::Predicate *Pred,
1252 ScalarEvolution *SE) {
1253 unsigned BitWidth = SE->getTypeSizeInBits(Ty: Step->getType());
1254 *Pred = ICmpInst::ICMP_ULT;
1255
1256 return SE->getConstant(Val: APInt::getMinValue(numBits: BitWidth) -
1257 SE->getUnsignedRangeMax(S: Step));
1258}
1259
1260namespace {
1261
1262struct ExtendOpTraitsBase {
1263 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1264 unsigned);
1265};
1266
1267// Used to make code generic over signed and unsigned overflow.
1268template <typename ExtendOp> struct ExtendOpTraits {
1269 // Members present:
1270 //
1271 // static const SCEV::NoWrapFlags WrapType;
1272 //
1273 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1274 //
1275 // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1276 // ICmpInst::Predicate *Pred,
1277 // ScalarEvolution *SE);
1278};
1279
1280template <>
1281struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1282 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1283
1284 static const GetExtendExprTy GetExtendExpr;
1285
1286 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1287 ICmpInst::Predicate *Pred,
1288 ScalarEvolution *SE) {
1289 return getSignedOverflowLimitForStep(Step, Pred, SE);
1290 }
1291};
1292
1293const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1294 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1295
1296template <>
1297struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1298 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1299
1300 static const GetExtendExprTy GetExtendExpr;
1301
1302 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1303 ICmpInst::Predicate *Pred,
1304 ScalarEvolution *SE) {
1305 return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1306 }
1307};
1308
1309const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1310 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1311
1312} // end anonymous namespace
1313
1314// The recurrence AR has been shown to have no signed/unsigned wrap or something
1315// close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1316// easily prove NSW/NUW for its preincrement or postincrement sibling. This
1317// allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1318// Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1319// expression "Step + sext/zext(PreIncAR)" is congruent with
1320// "sext/zext(PostIncAR)"
1321template <typename ExtendOpTy>
1322static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1323 ScalarEvolution *SE, unsigned Depth) {
1324 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1325 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1326
1327 const Loop *L = AR->getLoop();
1328 const SCEV *Start = AR->getStart();
1329 const SCEV *Step = AR->getStepRecurrence(SE&: *SE);
1330
1331 // Check for a simple looking step prior to loop entry.
1332 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Val: Start);
1333 if (!SA)
1334 return nullptr;
1335
1336 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1337 // subtraction is expensive. For this purpose, perform a quick and dirty
1338 // difference, by checking for Step in the operand list. Note, that
1339 // SA might have repeated ops, like %a + %a + ..., so only remove one.
1340 SmallVector<const SCEV *, 4> DiffOps(SA->operands());
1341 for (auto It = DiffOps.begin(); It != DiffOps.end(); ++It)
1342 if (*It == Step) {
1343 DiffOps.erase(CI: It);
1344 break;
1345 }
1346
1347 if (DiffOps.size() == SA->getNumOperands())
1348 return nullptr;
1349
1350 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1351 // `Step`:
1352
1353 // 1. NSW/NUW flags on the step increment.
1354 auto PreStartFlags =
1355 ScalarEvolution::maskFlags(Flags: SA->getNoWrapFlags(), Mask: SCEV::FlagNUW);
1356 const SCEV *PreStart = SE->getAddExpr(Ops&: DiffOps, Flags: PreStartFlags);
1357 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1358 Val: SE->getAddRecExpr(Start: PreStart, Step, L, Flags: SCEV::FlagAnyWrap));
1359
1360 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1361 // "S+X does not sign/unsign-overflow".
1362 //
1363
1364 const SCEV *BECount = SE->getBackedgeTakenCount(L);
1365 if (PreAR && PreAR->getNoWrapFlags(Mask: WrapType) &&
1366 !isa<SCEVCouldNotCompute>(Val: BECount) && SE->isKnownPositive(S: BECount))
1367 return PreStart;
1368
1369 // 2. Direct overflow check on the step operation's expression.
1370 unsigned BitWidth = SE->getTypeSizeInBits(Ty: AR->getType());
1371 Type *WideTy = IntegerType::get(C&: SE->getContext(), NumBits: BitWidth * 2);
1372 const SCEV *OperandExtendedStart =
1373 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1374 (SE->*GetExtendExpr)(Step, WideTy, Depth));
1375 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1376 if (PreAR && AR->getNoWrapFlags(Mask: WrapType)) {
1377 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1378 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1379 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact.
1380 SE->setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(PreAR), Flags: WrapType);
1381 }
1382 return PreStart;
1383 }
1384
1385 // 3. Loop precondition.
1386 ICmpInst::Predicate Pred;
1387 const SCEV *OverflowLimit =
1388 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1389
1390 if (OverflowLimit &&
1391 SE->isLoopEntryGuardedByCond(L, Pred, LHS: PreStart, RHS: OverflowLimit))
1392 return PreStart;
1393
1394 return nullptr;
1395}
1396
1397// Get the normalized zero or sign extended expression for this AddRec's Start.
1398template <typename ExtendOpTy>
1399static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1400 ScalarEvolution *SE,
1401 unsigned Depth) {
1402 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1403
1404 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1405 if (!PreStart)
1406 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1407
1408 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(SE&: *SE), Ty,
1409 Depth),
1410 (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1411}
1412
1413// Try to prove away overflow by looking at "nearby" add recurrences. A
1414// motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1415// does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1416//
1417// Formally:
1418//
1419// {S,+,X} == {S-T,+,X} + T
1420// => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1421//
1422// If ({S-T,+,X} + T) does not overflow ... (1)
1423//
1424// RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1425//
1426// If {S-T,+,X} does not overflow ... (2)
1427//
1428// RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1429// == {Ext(S-T)+Ext(T),+,Ext(X)}
1430//
1431// If (S-T)+T does not overflow ... (3)
1432//
1433// RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1434// == {Ext(S),+,Ext(X)} == LHS
1435//
1436// Thus, if (1), (2) and (3) are true for some T, then
1437// Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1438//
1439// (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1440// does not overflow" restricted to the 0th iteration. Therefore we only need
1441// to check for (1) and (2).
1442//
1443// In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1444// is `Delta` (defined below).
1445template <typename ExtendOpTy>
1446bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1447 const SCEV *Step,
1448 const Loop *L) {
1449 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1450
1451 // We restrict `Start` to a constant to prevent SCEV from spending too much
1452 // time here. It is correct (but more expensive) to continue with a
1453 // non-constant `Start` and do a general SCEV subtraction to compute
1454 // `PreStart` below.
1455 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Val: Start);
1456 if (!StartC)
1457 return false;
1458
1459 APInt StartAI = StartC->getAPInt();
1460
1461 for (unsigned Delta : {-2, -1, 1, 2}) {
1462 const SCEV *PreStart = getConstant(Val: StartAI - Delta);
1463
1464 FoldingSetNodeID ID;
1465 ID.AddInteger(I: scAddRecExpr);
1466 ID.AddPointer(Ptr: PreStart);
1467 ID.AddPointer(Ptr: Step);
1468 ID.AddPointer(Ptr: L);
1469 void *IP = nullptr;
1470 const auto *PreAR =
1471 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP));
1472
1473 // Give up if we don't already have the add recurrence we need because
1474 // actually constructing an add recurrence is relatively expensive.
1475 if (PreAR && PreAR->getNoWrapFlags(Mask: WrapType)) { // proves (2)
1476 const SCEV *DeltaS = getConstant(Ty: StartC->getType(), V: Delta);
1477 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1478 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1479 DeltaS, &Pred, this);
1480 if (Limit && isKnownPredicate(Pred, LHS: PreAR, RHS: Limit)) // proves (1)
1481 return true;
1482 }
1483 }
1484
1485 return false;
1486}
1487
1488// Finds an integer D for an expression (C + x + y + ...) such that the top
1489// level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1490// unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1491// maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1492// the (C + x + y + ...) expression is \p WholeAddExpr.
1493static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1494 const SCEVConstant *ConstantTerm,
1495 const SCEVAddExpr *WholeAddExpr) {
1496 const APInt &C = ConstantTerm->getAPInt();
1497 const unsigned BitWidth = C.getBitWidth();
1498 // Find number of trailing zeros of (x + y + ...) w/o the C first:
1499 uint32_t TZ = BitWidth;
1500 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1501 TZ = std::min(a: TZ, b: SE.getMinTrailingZeros(S: WholeAddExpr->getOperand(i: I)));
1502 if (TZ) {
1503 // Set D to be as many least significant bits of C as possible while still
1504 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1505 return TZ < BitWidth ? C.trunc(width: TZ).zext(width: BitWidth) : C;
1506 }
1507 return APInt(BitWidth, 0);
1508}
1509
1510// Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1511// level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1512// number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1513// ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1514static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1515 const APInt &ConstantStart,
1516 const SCEV *Step) {
1517 const unsigned BitWidth = ConstantStart.getBitWidth();
1518 const uint32_t TZ = SE.getMinTrailingZeros(S: Step);
1519 if (TZ)
1520 return TZ < BitWidth ? ConstantStart.trunc(width: TZ).zext(width: BitWidth)
1521 : ConstantStart;
1522 return APInt(BitWidth, 0);
1523}
1524
1525static void insertFoldCacheEntry(
1526 const ScalarEvolution::FoldID &ID, const SCEV *S,
1527 DenseMap<ScalarEvolution::FoldID, const SCEV *> &FoldCache,
1528 DenseMap<const SCEV *, SmallVector<ScalarEvolution::FoldID, 2>>
1529 &FoldCacheUser) {
1530 auto I = FoldCache.insert(KV: {ID, S});
1531 if (!I.second) {
1532 // Remove FoldCacheUser entry for ID when replacing an existing FoldCache
1533 // entry.
1534 auto &UserIDs = FoldCacheUser[I.first->second];
1535 assert(count(UserIDs, ID) == 1 && "unexpected duplicates in UserIDs");
1536 for (unsigned I = 0; I != UserIDs.size(); ++I)
1537 if (UserIDs[I] == ID) {
1538 std::swap(a&: UserIDs[I], b&: UserIDs.back());
1539 break;
1540 }
1541 UserIDs.pop_back();
1542 I.first->second = S;
1543 }
1544 auto R = FoldCacheUser.insert(KV: {S, {}});
1545 R.first->second.push_back(Elt: ID);
1546}
1547
1548const SCEV *
1549ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1550 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1551 "This is not an extending conversion!");
1552 assert(isSCEVable(Ty) &&
1553 "This is not a conversion to a SCEVable type!");
1554 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1555 Ty = getEffectiveSCEVType(Ty);
1556
1557 FoldID ID(scZeroExtend, Op, Ty);
1558 auto Iter = FoldCache.find(Val: ID);
1559 if (Iter != FoldCache.end())
1560 return Iter->second;
1561
1562 const SCEV *S = getZeroExtendExprImpl(Op, Ty, Depth);
1563 if (!isa<SCEVZeroExtendExpr>(Val: S))
1564 insertFoldCacheEntry(ID, S, FoldCache, FoldCacheUser);
1565 return S;
1566}
1567
1568const SCEV *ScalarEvolution::getZeroExtendExprImpl(const SCEV *Op, Type *Ty,
1569 unsigned Depth) {
1570 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1571 "This is not an extending conversion!");
1572 assert(isSCEVable(Ty) && "This is not a conversion to a SCEVable type!");
1573 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1574
1575 // Fold if the operand is constant.
1576 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Val: Op))
1577 return getConstant(Val: SC->getAPInt().zext(width: getTypeSizeInBits(Ty)));
1578
1579 // zext(zext(x)) --> zext(x)
1580 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Val: Op))
1581 return getZeroExtendExpr(Op: SZ->getOperand(), Ty, Depth: Depth + 1);
1582
1583 // Before doing any expensive analysis, check to see if we've already
1584 // computed a SCEV for this Op and Ty.
1585 FoldingSetNodeID ID;
1586 ID.AddInteger(I: scZeroExtend);
1587 ID.AddPointer(Ptr: Op);
1588 ID.AddPointer(Ptr: Ty);
1589 void *IP = nullptr;
1590 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP)) return S;
1591 if (Depth > MaxCastDepth) {
1592 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(Allocator&: SCEVAllocator),
1593 Op, Ty);
1594 UniqueSCEVs.InsertNode(N: S, InsertPos: IP);
1595 registerUser(User: S, Ops: Op);
1596 return S;
1597 }
1598
1599 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1600 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Val: Op)) {
1601 // It's possible the bits taken off by the truncate were all zero bits. If
1602 // so, we should be able to simplify this further.
1603 const SCEV *X = ST->getOperand();
1604 ConstantRange CR = getUnsignedRange(S: X);
1605 unsigned TruncBits = getTypeSizeInBits(Ty: ST->getType());
1606 unsigned NewBits = getTypeSizeInBits(Ty);
1607 if (CR.truncate(BitWidth: TruncBits).zeroExtend(BitWidth: NewBits).contains(
1608 CR: CR.zextOrTrunc(BitWidth: NewBits)))
1609 return getTruncateOrZeroExtend(V: X, Ty, Depth);
1610 }
1611
1612 // If the input value is a chrec scev, and we can prove that the value
1613 // did not overflow the old, smaller, value, we can zero extend all of the
1614 // operands (often constants). This allows analysis of something like
1615 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1616 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: Op))
1617 if (AR->isAffine()) {
1618 const SCEV *Start = AR->getStart();
1619 const SCEV *Step = AR->getStepRecurrence(SE&: *this);
1620 unsigned BitWidth = getTypeSizeInBits(Ty: AR->getType());
1621 const Loop *L = AR->getLoop();
1622
1623 // If we have special knowledge that this addrec won't overflow,
1624 // we don't need to do any further analysis.
1625 if (AR->hasNoUnsignedWrap()) {
1626 Start =
1627 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, SE: this, Depth: Depth + 1);
1628 Step = getZeroExtendExpr(Op: Step, Ty, Depth: Depth + 1);
1629 return getAddRecExpr(Start, Step, L, Flags: AR->getNoWrapFlags());
1630 }
1631
1632 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1633 // Note that this serves two purposes: It filters out loops that are
1634 // simply not analyzable, and it covers the case where this code is
1635 // being called from within backedge-taken count analysis, such that
1636 // attempting to ask for the backedge-taken count would likely result
1637 // in infinite recursion. In the later case, the analysis code will
1638 // cope with a conservative value, and it will take care to purge
1639 // that value once it has finished.
1640 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1641 if (!isa<SCEVCouldNotCompute>(Val: MaxBECount)) {
1642 // Manually compute the final value for AR, checking for overflow.
1643
1644 // Check whether the backedge-taken count can be losslessly casted to
1645 // the addrec's type. The count is always unsigned.
1646 const SCEV *CastedMaxBECount =
1647 getTruncateOrZeroExtend(V: MaxBECount, Ty: Start->getType(), Depth);
1648 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1649 V: CastedMaxBECount, Ty: MaxBECount->getType(), Depth);
1650 if (MaxBECount == RecastedMaxBECount) {
1651 Type *WideTy = IntegerType::get(C&: getContext(), NumBits: BitWidth * 2);
1652 // Check whether Start+Step*MaxBECount has no unsigned overflow.
1653 const SCEV *ZMul = getMulExpr(LHS: CastedMaxBECount, RHS: Step,
1654 Flags: SCEV::FlagAnyWrap, Depth: Depth + 1);
1655 const SCEV *ZAdd = getZeroExtendExpr(Op: getAddExpr(LHS: Start, RHS: ZMul,
1656 Flags: SCEV::FlagAnyWrap,
1657 Depth: Depth + 1),
1658 Ty: WideTy, Depth: Depth + 1);
1659 const SCEV *WideStart = getZeroExtendExpr(Op: Start, Ty: WideTy, Depth: Depth + 1);
1660 const SCEV *WideMaxBECount =
1661 getZeroExtendExpr(Op: CastedMaxBECount, Ty: WideTy, Depth: Depth + 1);
1662 const SCEV *OperandExtendedAdd =
1663 getAddExpr(LHS: WideStart,
1664 RHS: getMulExpr(LHS: WideMaxBECount,
1665 RHS: getZeroExtendExpr(Op: Step, Ty: WideTy, Depth: Depth + 1),
1666 Flags: SCEV::FlagAnyWrap, Depth: Depth + 1),
1667 Flags: SCEV::FlagAnyWrap, Depth: Depth + 1);
1668 if (ZAdd == OperandExtendedAdd) {
1669 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1670 setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(AR), Flags: SCEV::FlagNUW);
1671 // Return the expression with the addrec on the outside.
1672 Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, SE: this,
1673 Depth: Depth + 1);
1674 Step = getZeroExtendExpr(Op: Step, Ty, Depth: Depth + 1);
1675 return getAddRecExpr(Start, Step, L, Flags: AR->getNoWrapFlags());
1676 }
1677 // Similar to above, only this time treat the step value as signed.
1678 // This covers loops that count down.
1679 OperandExtendedAdd =
1680 getAddExpr(LHS: WideStart,
1681 RHS: getMulExpr(LHS: WideMaxBECount,
1682 RHS: getSignExtendExpr(Op: Step, Ty: WideTy, Depth: Depth + 1),
1683 Flags: SCEV::FlagAnyWrap, Depth: Depth + 1),
1684 Flags: SCEV::FlagAnyWrap, Depth: Depth + 1);
1685 if (ZAdd == OperandExtendedAdd) {
1686 // Cache knowledge of AR NW, which is propagated to this AddRec.
1687 // Negative step causes unsigned wrap, but it still can't self-wrap.
1688 setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(AR), Flags: SCEV::FlagNW);
1689 // Return the expression with the addrec on the outside.
1690 Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, SE: this,
1691 Depth: Depth + 1);
1692 Step = getSignExtendExpr(Op: Step, Ty, Depth: Depth + 1);
1693 return getAddRecExpr(Start, Step, L, Flags: AR->getNoWrapFlags());
1694 }
1695 }
1696 }
1697
1698 // Normally, in the cases we can prove no-overflow via a
1699 // backedge guarding condition, we can also compute a backedge
1700 // taken count for the loop. The exceptions are assumptions and
1701 // guards present in the loop -- SCEV is not great at exploiting
1702 // these to compute max backedge taken counts, but can still use
1703 // these to prove lack of overflow. Use this fact to avoid
1704 // doing extra work that may not pay off.
1705 if (!isa<SCEVCouldNotCompute>(Val: MaxBECount) || HasGuards ||
1706 !AC.assumptions().empty()) {
1707
1708 auto NewFlags = proveNoUnsignedWrapViaInduction(AR);
1709 setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(AR), Flags: NewFlags);
1710 if (AR->hasNoUnsignedWrap()) {
1711 // Same as nuw case above - duplicated here to avoid a compile time
1712 // issue. It's not clear that the order of checks does matter, but
1713 // it's one of two issue possible causes for a change which was
1714 // reverted. Be conservative for the moment.
1715 Start =
1716 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, SE: this, Depth: Depth + 1);
1717 Step = getZeroExtendExpr(Op: Step, Ty, Depth: Depth + 1);
1718 return getAddRecExpr(Start, Step, L, Flags: AR->getNoWrapFlags());
1719 }
1720
1721 // For a negative step, we can extend the operands iff doing so only
1722 // traverses values in the range zext([0,UINT_MAX]).
1723 if (isKnownNegative(S: Step)) {
1724 const SCEV *N = getConstant(Val: APInt::getMaxValue(numBits: BitWidth) -
1725 getSignedRangeMin(S: Step));
1726 if (isLoopBackedgeGuardedByCond(L, Pred: ICmpInst::ICMP_UGT, LHS: AR, RHS: N) ||
1727 isKnownOnEveryIteration(Pred: ICmpInst::ICMP_UGT, LHS: AR, RHS: N)) {
1728 // Cache knowledge of AR NW, which is propagated to this
1729 // AddRec. Negative step causes unsigned wrap, but it
1730 // still can't self-wrap.
1731 setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(AR), Flags: SCEV::FlagNW);
1732 // Return the expression with the addrec on the outside.
1733 Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, SE: this,
1734 Depth: Depth + 1);
1735 Step = getSignExtendExpr(Op: Step, Ty, Depth: Depth + 1);
1736 return getAddRecExpr(Start, Step, L, Flags: AR->getNoWrapFlags());
1737 }
1738 }
1739 }
1740
1741 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1742 // if D + (C - D + Step * n) could be proven to not unsigned wrap
1743 // where D maximizes the number of trailing zeros of (C - D + Step * n)
1744 if (const auto *SC = dyn_cast<SCEVConstant>(Val: Start)) {
1745 const APInt &C = SC->getAPInt();
1746 const APInt &D = extractConstantWithoutWrapping(SE&: *this, ConstantStart: C, Step);
1747 if (D != 0) {
1748 const SCEV *SZExtD = getZeroExtendExpr(Op: getConstant(Val: D), Ty, Depth);
1749 const SCEV *SResidual =
1750 getAddRecExpr(Start: getConstant(Val: C - D), Step, L, Flags: AR->getNoWrapFlags());
1751 const SCEV *SZExtR = getZeroExtendExpr(Op: SResidual, Ty, Depth: Depth + 1);
1752 return getAddExpr(LHS: SZExtD, RHS: SZExtR,
1753 Flags: (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1754 Depth: Depth + 1);
1755 }
1756 }
1757
1758 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1759 setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(AR), Flags: SCEV::FlagNUW);
1760 Start =
1761 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, SE: this, Depth: Depth + 1);
1762 Step = getZeroExtendExpr(Op: Step, Ty, Depth: Depth + 1);
1763 return getAddRecExpr(Start, Step, L, Flags: AR->getNoWrapFlags());
1764 }
1765 }
1766
1767 // zext(A % B) --> zext(A) % zext(B)
1768 {
1769 const SCEV *LHS;
1770 const SCEV *RHS;
1771 if (matchURem(Expr: Op, LHS, RHS))
1772 return getURemExpr(LHS: getZeroExtendExpr(Op: LHS, Ty, Depth: Depth + 1),
1773 RHS: getZeroExtendExpr(Op: RHS, Ty, Depth: Depth + 1));
1774 }
1775
1776 // zext(A / B) --> zext(A) / zext(B).
1777 if (auto *Div = dyn_cast<SCEVUDivExpr>(Val: Op))
1778 return getUDivExpr(LHS: getZeroExtendExpr(Op: Div->getLHS(), Ty, Depth: Depth + 1),
1779 RHS: getZeroExtendExpr(Op: Div->getRHS(), Ty, Depth: Depth + 1));
1780
1781 if (auto *SA = dyn_cast<SCEVAddExpr>(Val: Op)) {
1782 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1783 if (SA->hasNoUnsignedWrap()) {
1784 // If the addition does not unsign overflow then we can, by definition,
1785 // commute the zero extension with the addition operation.
1786 SmallVector<const SCEV *, 4> Ops;
1787 for (const auto *Op : SA->operands())
1788 Ops.push_back(Elt: getZeroExtendExpr(Op, Ty, Depth: Depth + 1));
1789 return getAddExpr(Ops, Flags: SCEV::FlagNUW, Depth: Depth + 1);
1790 }
1791
1792 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1793 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1794 // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1795 //
1796 // Often address arithmetics contain expressions like
1797 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1798 // This transformation is useful while proving that such expressions are
1799 // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1800 if (const auto *SC = dyn_cast<SCEVConstant>(Val: SA->getOperand(i: 0))) {
1801 const APInt &D = extractConstantWithoutWrapping(SE&: *this, ConstantTerm: SC, WholeAddExpr: SA);
1802 if (D != 0) {
1803 const SCEV *SZExtD = getZeroExtendExpr(Op: getConstant(Val: D), Ty, Depth);
1804 const SCEV *SResidual =
1805 getAddExpr(LHS: getConstant(Val: -D), RHS: SA, Flags: SCEV::FlagAnyWrap, Depth);
1806 const SCEV *SZExtR = getZeroExtendExpr(Op: SResidual, Ty, Depth: Depth + 1);
1807 return getAddExpr(LHS: SZExtD, RHS: SZExtR,
1808 Flags: (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1809 Depth: Depth + 1);
1810 }
1811 }
1812 }
1813
1814 if (auto *SM = dyn_cast<SCEVMulExpr>(Val: Op)) {
1815 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1816 if (SM->hasNoUnsignedWrap()) {
1817 // If the multiply does not unsign overflow then we can, by definition,
1818 // commute the zero extension with the multiply operation.
1819 SmallVector<const SCEV *, 4> Ops;
1820 for (const auto *Op : SM->operands())
1821 Ops.push_back(Elt: getZeroExtendExpr(Op, Ty, Depth: Depth + 1));
1822 return getMulExpr(Ops, Flags: SCEV::FlagNUW, Depth: Depth + 1);
1823 }
1824
1825 // zext(2^K * (trunc X to iN)) to iM ->
1826 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1827 //
1828 // Proof:
1829 //
1830 // zext(2^K * (trunc X to iN)) to iM
1831 // = zext((trunc X to iN) << K) to iM
1832 // = zext((trunc X to i{N-K}) << K)<nuw> to iM
1833 // (because shl removes the top K bits)
1834 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1835 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1836 //
1837 if (SM->getNumOperands() == 2)
1838 if (auto *MulLHS = dyn_cast<SCEVConstant>(Val: SM->getOperand(i: 0)))
1839 if (MulLHS->getAPInt().isPowerOf2())
1840 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(Val: SM->getOperand(i: 1))) {
1841 int NewTruncBits = getTypeSizeInBits(Ty: TruncRHS->getType()) -
1842 MulLHS->getAPInt().logBase2();
1843 Type *NewTruncTy = IntegerType::get(C&: getContext(), NumBits: NewTruncBits);
1844 return getMulExpr(
1845 LHS: getZeroExtendExpr(Op: MulLHS, Ty),
1846 RHS: getZeroExtendExpr(
1847 Op: getTruncateExpr(Op: TruncRHS->getOperand(), Ty: NewTruncTy), Ty),
1848 Flags: SCEV::FlagNUW, Depth: Depth + 1);
1849 }
1850 }
1851
1852 // zext(umin(x, y)) -> umin(zext(x), zext(y))
1853 // zext(umax(x, y)) -> umax(zext(x), zext(y))
1854 if (isa<SCEVUMinExpr>(Val: Op) || isa<SCEVUMaxExpr>(Val: Op)) {
1855 auto *MinMax = cast<SCEVMinMaxExpr>(Val: Op);
1856 SmallVector<const SCEV *, 4> Operands;
1857 for (auto *Operand : MinMax->operands())
1858 Operands.push_back(Elt: getZeroExtendExpr(Op: Operand, Ty));
1859 if (isa<SCEVUMinExpr>(Val: MinMax))
1860 return getUMinExpr(Operands);
1861 return getUMaxExpr(Operands);
1862 }
1863
1864 // zext(umin_seq(x, y)) -> umin_seq(zext(x), zext(y))
1865 if (auto *MinMax = dyn_cast<SCEVSequentialMinMaxExpr>(Val: Op)) {
1866 assert(isa<SCEVSequentialUMinExpr>(MinMax) && "Not supported!");
1867 SmallVector<const SCEV *, 4> Operands;
1868 for (auto *Operand : MinMax->operands())
1869 Operands.push_back(Elt: getZeroExtendExpr(Op: Operand, Ty));
1870 return getUMinExpr(Operands, /*Sequential*/ true);
1871 }
1872
1873 // The cast wasn't folded; create an explicit cast node.
1874 // Recompute the insert position, as it may have been invalidated.
1875 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP)) return S;
1876 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(Allocator&: SCEVAllocator),
1877 Op, Ty);
1878 UniqueSCEVs.InsertNode(N: S, InsertPos: IP);
1879 registerUser(User: S, Ops: Op);
1880 return S;
1881}
1882
1883const SCEV *
1884ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1885 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1886 "This is not an extending conversion!");
1887 assert(isSCEVable(Ty) &&
1888 "This is not a conversion to a SCEVable type!");
1889 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1890 Ty = getEffectiveSCEVType(Ty);
1891
1892 FoldID ID(scSignExtend, Op, Ty);
1893 auto Iter = FoldCache.find(Val: ID);
1894 if (Iter != FoldCache.end())
1895 return Iter->second;
1896
1897 const SCEV *S = getSignExtendExprImpl(Op, Ty, Depth);
1898 if (!isa<SCEVSignExtendExpr>(Val: S))
1899 insertFoldCacheEntry(ID, S, FoldCache, FoldCacheUser);
1900 return S;
1901}
1902
1903const SCEV *ScalarEvolution::getSignExtendExprImpl(const SCEV *Op, Type *Ty,
1904 unsigned Depth) {
1905 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1906 "This is not an extending conversion!");
1907 assert(isSCEVable(Ty) && "This is not a conversion to a SCEVable type!");
1908 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1909 Ty = getEffectiveSCEVType(Ty);
1910
1911 // Fold if the operand is constant.
1912 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Val: Op))
1913 return getConstant(Val: SC->getAPInt().sext(width: getTypeSizeInBits(Ty)));
1914
1915 // sext(sext(x)) --> sext(x)
1916 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Val: Op))
1917 return getSignExtendExpr(Op: SS->getOperand(), Ty, Depth: Depth + 1);
1918
1919 // sext(zext(x)) --> zext(x)
1920 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Val: Op))
1921 return getZeroExtendExpr(Op: SZ->getOperand(), Ty, Depth: Depth + 1);
1922
1923 // Before doing any expensive analysis, check to see if we've already
1924 // computed a SCEV for this Op and Ty.
1925 FoldingSetNodeID ID;
1926 ID.AddInteger(I: scSignExtend);
1927 ID.AddPointer(Ptr: Op);
1928 ID.AddPointer(Ptr: Ty);
1929 void *IP = nullptr;
1930 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP)) return S;
1931 // Limit recursion depth.
1932 if (Depth > MaxCastDepth) {
1933 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(Allocator&: SCEVAllocator),
1934 Op, Ty);
1935 UniqueSCEVs.InsertNode(N: S, InsertPos: IP);
1936 registerUser(User: S, Ops: Op);
1937 return S;
1938 }
1939
1940 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1941 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Val: Op)) {
1942 // It's possible the bits taken off by the truncate were all sign bits. If
1943 // so, we should be able to simplify this further.
1944 const SCEV *X = ST->getOperand();
1945 ConstantRange CR = getSignedRange(S: X);
1946 unsigned TruncBits = getTypeSizeInBits(Ty: ST->getType());
1947 unsigned NewBits = getTypeSizeInBits(Ty);
1948 if (CR.truncate(BitWidth: TruncBits).signExtend(BitWidth: NewBits).contains(
1949 CR: CR.sextOrTrunc(BitWidth: NewBits)))
1950 return getTruncateOrSignExtend(V: X, Ty, Depth);
1951 }
1952
1953 if (auto *SA = dyn_cast<SCEVAddExpr>(Val: Op)) {
1954 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1955 if (SA->hasNoSignedWrap()) {
1956 // If the addition does not sign overflow then we can, by definition,
1957 // commute the sign extension with the addition operation.
1958 SmallVector<const SCEV *, 4> Ops;
1959 for (const auto *Op : SA->operands())
1960 Ops.push_back(Elt: getSignExtendExpr(Op, Ty, Depth: Depth + 1));
1961 return getAddExpr(Ops, Flags: SCEV::FlagNSW, Depth: Depth + 1);
1962 }
1963
1964 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1965 // if D + (C - D + x + y + ...) could be proven to not signed wrap
1966 // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1967 //
1968 // For instance, this will bring two seemingly different expressions:
1969 // 1 + sext(5 + 20 * %x + 24 * %y) and
1970 // sext(6 + 20 * %x + 24 * %y)
1971 // to the same form:
1972 // 2 + sext(4 + 20 * %x + 24 * %y)
1973 if (const auto *SC = dyn_cast<SCEVConstant>(Val: SA->getOperand(i: 0))) {
1974 const APInt &D = extractConstantWithoutWrapping(SE&: *this, ConstantTerm: SC, WholeAddExpr: SA);
1975 if (D != 0) {
1976 const SCEV *SSExtD = getSignExtendExpr(Op: getConstant(Val: D), Ty, Depth);
1977 const SCEV *SResidual =
1978 getAddExpr(LHS: getConstant(Val: -D), RHS: SA, Flags: SCEV::FlagAnyWrap, Depth);
1979 const SCEV *SSExtR = getSignExtendExpr(Op: SResidual, Ty, Depth: Depth + 1);
1980 return getAddExpr(LHS: SSExtD, RHS: SSExtR,
1981 Flags: (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1982 Depth: Depth + 1);
1983 }
1984 }
1985 }
1986 // If the input value is a chrec scev, and we can prove that the value
1987 // did not overflow the old, smaller, value, we can sign extend all of the
1988 // operands (often constants). This allows analysis of something like
1989 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
1990 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: Op))
1991 if (AR->isAffine()) {
1992 const SCEV *Start = AR->getStart();
1993 const SCEV *Step = AR->getStepRecurrence(SE&: *this);
1994 unsigned BitWidth = getTypeSizeInBits(Ty: AR->getType());
1995 const Loop *L = AR->getLoop();
1996
1997 // If we have special knowledge that this addrec won't overflow,
1998 // we don't need to do any further analysis.
1999 if (AR->hasNoSignedWrap()) {
2000 Start =
2001 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, SE: this, Depth: Depth + 1);
2002 Step = getSignExtendExpr(Op: Step, Ty, Depth: Depth + 1);
2003 return getAddRecExpr(Start, Step, L, Flags: SCEV::FlagNSW);
2004 }
2005
2006 // Check whether the backedge-taken count is SCEVCouldNotCompute.
2007 // Note that this serves two purposes: It filters out loops that are
2008 // simply not analyzable, and it covers the case where this code is
2009 // being called from within backedge-taken count analysis, such that
2010 // attempting to ask for the backedge-taken count would likely result
2011 // in infinite recursion. In the later case, the analysis code will
2012 // cope with a conservative value, and it will take care to purge
2013 // that value once it has finished.
2014 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
2015 if (!isa<SCEVCouldNotCompute>(Val: MaxBECount)) {
2016 // Manually compute the final value for AR, checking for
2017 // overflow.
2018
2019 // Check whether the backedge-taken count can be losslessly casted to
2020 // the addrec's type. The count is always unsigned.
2021 const SCEV *CastedMaxBECount =
2022 getTruncateOrZeroExtend(V: MaxBECount, Ty: Start->getType(), Depth);
2023 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
2024 V: CastedMaxBECount, Ty: MaxBECount->getType(), Depth);
2025 if (MaxBECount == RecastedMaxBECount) {
2026 Type *WideTy = IntegerType::get(C&: getContext(), NumBits: BitWidth * 2);
2027 // Check whether Start+Step*MaxBECount has no signed overflow.
2028 const SCEV *SMul = getMulExpr(LHS: CastedMaxBECount, RHS: Step,
2029 Flags: SCEV::FlagAnyWrap, Depth: Depth + 1);
2030 const SCEV *SAdd = getSignExtendExpr(Op: getAddExpr(LHS: Start, RHS: SMul,
2031 Flags: SCEV::FlagAnyWrap,
2032 Depth: Depth + 1),
2033 Ty: WideTy, Depth: Depth + 1);
2034 const SCEV *WideStart = getSignExtendExpr(Op: Start, Ty: WideTy, Depth: Depth + 1);
2035 const SCEV *WideMaxBECount =
2036 getZeroExtendExpr(Op: CastedMaxBECount, Ty: WideTy, Depth: Depth + 1);
2037 const SCEV *OperandExtendedAdd =
2038 getAddExpr(LHS: WideStart,
2039 RHS: getMulExpr(LHS: WideMaxBECount,
2040 RHS: getSignExtendExpr(Op: Step, Ty: WideTy, Depth: Depth + 1),
2041 Flags: SCEV::FlagAnyWrap, Depth: Depth + 1),
2042 Flags: SCEV::FlagAnyWrap, Depth: Depth + 1);
2043 if (SAdd == OperandExtendedAdd) {
2044 // Cache knowledge of AR NSW, which is propagated to this AddRec.
2045 setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(AR), Flags: SCEV::FlagNSW);
2046 // Return the expression with the addrec on the outside.
2047 Start = getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, SE: this,
2048 Depth: Depth + 1);
2049 Step = getSignExtendExpr(Op: Step, Ty, Depth: Depth + 1);
2050 return getAddRecExpr(Start, Step, L, Flags: AR->getNoWrapFlags());
2051 }
2052 // Similar to above, only this time treat the step value as unsigned.
2053 // This covers loops that count up with an unsigned step.
2054 OperandExtendedAdd =
2055 getAddExpr(LHS: WideStart,
2056 RHS: getMulExpr(LHS: WideMaxBECount,
2057 RHS: getZeroExtendExpr(Op: Step, Ty: WideTy, Depth: Depth + 1),
2058 Flags: SCEV::FlagAnyWrap, Depth: Depth + 1),
2059 Flags: SCEV::FlagAnyWrap, Depth: Depth + 1);
2060 if (SAdd == OperandExtendedAdd) {
2061 // If AR wraps around then
2062 //
2063 // abs(Step) * MaxBECount > unsigned-max(AR->getType())
2064 // => SAdd != OperandExtendedAdd
2065 //
2066 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2067 // (SAdd == OperandExtendedAdd => AR is NW)
2068
2069 setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(AR), Flags: SCEV::FlagNW);
2070
2071 // Return the expression with the addrec on the outside.
2072 Start = getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, SE: this,
2073 Depth: Depth + 1);
2074 Step = getZeroExtendExpr(Op: Step, Ty, Depth: Depth + 1);
2075 return getAddRecExpr(Start, Step, L, Flags: AR->getNoWrapFlags());
2076 }
2077 }
2078 }
2079
2080 auto NewFlags = proveNoSignedWrapViaInduction(AR);
2081 setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(AR), Flags: NewFlags);
2082 if (AR->hasNoSignedWrap()) {
2083 // Same as nsw case above - duplicated here to avoid a compile time
2084 // issue. It's not clear that the order of checks does matter, but
2085 // it's one of two issue possible causes for a change which was
2086 // reverted. Be conservative for the moment.
2087 Start =
2088 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, SE: this, Depth: Depth + 1);
2089 Step = getSignExtendExpr(Op: Step, Ty, Depth: Depth + 1);
2090 return getAddRecExpr(Start, Step, L, Flags: AR->getNoWrapFlags());
2091 }
2092
2093 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2094 // if D + (C - D + Step * n) could be proven to not signed wrap
2095 // where D maximizes the number of trailing zeros of (C - D + Step * n)
2096 if (const auto *SC = dyn_cast<SCEVConstant>(Val: Start)) {
2097 const APInt &C = SC->getAPInt();
2098 const APInt &D = extractConstantWithoutWrapping(SE&: *this, ConstantStart: C, Step);
2099 if (D != 0) {
2100 const SCEV *SSExtD = getSignExtendExpr(Op: getConstant(Val: D), Ty, Depth);
2101 const SCEV *SResidual =
2102 getAddRecExpr(Start: getConstant(Val: C - D), Step, L, Flags: AR->getNoWrapFlags());
2103 const SCEV *SSExtR = getSignExtendExpr(Op: SResidual, Ty, Depth: Depth + 1);
2104 return getAddExpr(LHS: SSExtD, RHS: SSExtR,
2105 Flags: (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2106 Depth: Depth + 1);
2107 }
2108 }
2109
2110 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2111 setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(AR), Flags: SCEV::FlagNSW);
2112 Start =
2113 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, SE: this, Depth: Depth + 1);
2114 Step = getSignExtendExpr(Op: Step, Ty, Depth: Depth + 1);
2115 return getAddRecExpr(Start, Step, L, Flags: AR->getNoWrapFlags());
2116 }
2117 }
2118
2119 // If the input value is provably positive and we could not simplify
2120 // away the sext build a zext instead.
2121 if (isKnownNonNegative(S: Op))
2122 return getZeroExtendExpr(Op, Ty, Depth: Depth + 1);
2123
2124 // sext(smin(x, y)) -> smin(sext(x), sext(y))
2125 // sext(smax(x, y)) -> smax(sext(x), sext(y))
2126 if (isa<SCEVSMinExpr>(Val: Op) || isa<SCEVSMaxExpr>(Val: Op)) {
2127 auto *MinMax = cast<SCEVMinMaxExpr>(Val: Op);
2128 SmallVector<const SCEV *, 4> Operands;
2129 for (auto *Operand : MinMax->operands())
2130 Operands.push_back(Elt: getSignExtendExpr(Op: Operand, Ty));
2131 if (isa<SCEVSMinExpr>(Val: MinMax))
2132 return getSMinExpr(Operands);
2133 return getSMaxExpr(Operands);
2134 }
2135
2136 // The cast wasn't folded; create an explicit cast node.
2137 // Recompute the insert position, as it may have been invalidated.
2138 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP)) return S;
2139 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(Allocator&: SCEVAllocator),
2140 Op, Ty);
2141 UniqueSCEVs.InsertNode(N: S, InsertPos: IP);
2142 registerUser(User: S, Ops: { Op });
2143 return S;
2144}
2145
2146const SCEV *ScalarEvolution::getCastExpr(SCEVTypes Kind, const SCEV *Op,
2147 Type *Ty) {
2148 switch (Kind) {
2149 case scTruncate:
2150 return getTruncateExpr(Op, Ty);
2151 case scZeroExtend:
2152 return getZeroExtendExpr(Op, Ty);
2153 case scSignExtend:
2154 return getSignExtendExpr(Op, Ty);
2155 case scPtrToInt:
2156 return getPtrToIntExpr(Op, Ty);
2157 default:
2158 llvm_unreachable("Not a SCEV cast expression!");
2159 }
2160}
2161
2162/// getAnyExtendExpr - Return a SCEV for the given operand extended with
2163/// unspecified bits out to the given type.
2164const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2165 Type *Ty) {
2166 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2167 "This is not an extending conversion!");
2168 assert(isSCEVable(Ty) &&
2169 "This is not a conversion to a SCEVable type!");
2170 Ty = getEffectiveSCEVType(Ty);
2171
2172 // Sign-extend negative constants.
2173 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Val: Op))
2174 if (SC->getAPInt().isNegative())
2175 return getSignExtendExpr(Op, Ty);
2176
2177 // Peel off a truncate cast.
2178 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Val: Op)) {
2179 const SCEV *NewOp = T->getOperand();
2180 if (getTypeSizeInBits(Ty: NewOp->getType()) < getTypeSizeInBits(Ty))
2181 return getAnyExtendExpr(Op: NewOp, Ty);
2182 return getTruncateOrNoop(V: NewOp, Ty);
2183 }
2184
2185 // Next try a zext cast. If the cast is folded, use it.
2186 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2187 if (!isa<SCEVZeroExtendExpr>(Val: ZExt))
2188 return ZExt;
2189
2190 // Next try a sext cast. If the cast is folded, use it.
2191 const SCEV *SExt = getSignExtendExpr(Op, Ty);
2192 if (!isa<SCEVSignExtendExpr>(Val: SExt))
2193 return SExt;
2194
2195 // Force the cast to be folded into the operands of an addrec.
2196 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: Op)) {
2197 SmallVector<const SCEV *, 4> Ops;
2198 for (const SCEV *Op : AR->operands())
2199 Ops.push_back(Elt: getAnyExtendExpr(Op, Ty));
2200 return getAddRecExpr(Operands&: Ops, L: AR->getLoop(), Flags: SCEV::FlagNW);
2201 }
2202
2203 // If the expression is obviously signed, use the sext cast value.
2204 if (isa<SCEVSMaxExpr>(Val: Op))
2205 return SExt;
2206
2207 // Absent any other information, use the zext cast value.
2208 return ZExt;
2209}
2210
2211/// Process the given Ops list, which is a list of operands to be added under
2212/// the given scale, update the given map. This is a helper function for
2213/// getAddRecExpr. As an example of what it does, given a sequence of operands
2214/// that would form an add expression like this:
2215///
2216/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2217///
2218/// where A and B are constants, update the map with these values:
2219///
2220/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2221///
2222/// and add 13 + A*B*29 to AccumulatedConstant.
2223/// This will allow getAddRecExpr to produce this:
2224///
2225/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2226///
2227/// This form often exposes folding opportunities that are hidden in
2228/// the original operand list.
2229///
2230/// Return true iff it appears that any interesting folding opportunities
2231/// may be exposed. This helps getAddRecExpr short-circuit extra work in
2232/// the common case where no interesting opportunities are present, and
2233/// is also used as a check to avoid infinite recursion.
2234static bool
2235CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2236 SmallVectorImpl<const SCEV *> &NewOps,
2237 APInt &AccumulatedConstant,
2238 ArrayRef<const SCEV *> Ops, const APInt &Scale,
2239 ScalarEvolution &SE) {
2240 bool Interesting = false;
2241
2242 // Iterate over the add operands. They are sorted, with constants first.
2243 unsigned i = 0;
2244 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Val: Ops[i])) {
2245 ++i;
2246 // Pull a buried constant out to the outside.
2247 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2248 Interesting = true;
2249 AccumulatedConstant += Scale * C->getAPInt();
2250 }
2251
2252 // Next comes everything else. We're especially interested in multiplies
2253 // here, but they're in the middle, so just visit the rest with one loop.
2254 for (; i != Ops.size(); ++i) {
2255 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Val: Ops[i]);
2256 if (Mul && isa<SCEVConstant>(Val: Mul->getOperand(i: 0))) {
2257 APInt NewScale =
2258 Scale * cast<SCEVConstant>(Val: Mul->getOperand(i: 0))->getAPInt();
2259 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Val: Mul->getOperand(i: 1))) {
2260 // A multiplication of a constant with another add; recurse.
2261 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Val: Mul->getOperand(i: 1));
2262 Interesting |=
2263 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2264 Ops: Add->operands(), Scale: NewScale, SE);
2265 } else {
2266 // A multiplication of a constant with some other value. Update
2267 // the map.
2268 SmallVector<const SCEV *, 4> MulOps(drop_begin(RangeOrContainer: Mul->operands()));
2269 const SCEV *Key = SE.getMulExpr(Ops&: MulOps);
2270 auto Pair = M.insert(KV: {Key, NewScale});
2271 if (Pair.second) {
2272 NewOps.push_back(Elt: Pair.first->first);
2273 } else {
2274 Pair.first->second += NewScale;
2275 // The map already had an entry for this value, which may indicate
2276 // a folding opportunity.
2277 Interesting = true;
2278 }
2279 }
2280 } else {
2281 // An ordinary operand. Update the map.
2282 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2283 M.insert(KV: {Ops[i], Scale});
2284 if (Pair.second) {
2285 NewOps.push_back(Elt: Pair.first->first);
2286 } else {
2287 Pair.first->second += Scale;
2288 // The map already had an entry for this value, which may indicate
2289 // a folding opportunity.
2290 Interesting = true;
2291 }
2292 }
2293 }
2294
2295 return Interesting;
2296}
2297
2298bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed,
2299 const SCEV *LHS, const SCEV *RHS,
2300 const Instruction *CtxI) {
2301 const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *,
2302 SCEV::NoWrapFlags, unsigned);
2303 switch (BinOp) {
2304 default:
2305 llvm_unreachable("Unsupported binary op");
2306 case Instruction::Add:
2307 Operation = &ScalarEvolution::getAddExpr;
2308 break;
2309 case Instruction::Sub:
2310 Operation = &ScalarEvolution::getMinusSCEV;
2311 break;
2312 case Instruction::Mul:
2313 Operation = &ScalarEvolution::getMulExpr;
2314 break;
2315 }
2316
2317 const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) =
2318 Signed ? &ScalarEvolution::getSignExtendExpr
2319 : &ScalarEvolution::getZeroExtendExpr;
2320
2321 // Check ext(LHS op RHS) == ext(LHS) op ext(RHS)
2322 auto *NarrowTy = cast<IntegerType>(Val: LHS->getType());
2323 auto *WideTy =
2324 IntegerType::get(C&: NarrowTy->getContext(), NumBits: NarrowTy->getBitWidth() * 2);
2325
2326 const SCEV *A = (this->*Extension)(
2327 (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0);
2328 const SCEV *LHSB = (this->*Extension)(LHS, WideTy, 0);
2329 const SCEV *RHSB = (this->*Extension)(RHS, WideTy, 0);
2330 const SCEV *B = (this->*Operation)(LHSB, RHSB, SCEV::FlagAnyWrap, 0);
2331 if (A == B)
2332 return true;
2333 // Can we use context to prove the fact we need?
2334 if (!CtxI)
2335 return false;
2336 // TODO: Support mul.
2337 if (BinOp == Instruction::Mul)
2338 return false;
2339 auto *RHSC = dyn_cast<SCEVConstant>(Val: RHS);
2340 // TODO: Lift this limitation.
2341 if (!RHSC)
2342 return false;
2343 APInt C = RHSC->getAPInt();
2344 unsigned NumBits = C.getBitWidth();
2345 bool IsSub = (BinOp == Instruction::Sub);
2346 bool IsNegativeConst = (Signed && C.isNegative());
2347 // Compute the direction and magnitude by which we need to check overflow.
2348 bool OverflowDown = IsSub ^ IsNegativeConst;
2349 APInt Magnitude = C;
2350 if (IsNegativeConst) {
2351 if (C == APInt::getSignedMinValue(numBits: NumBits))
2352 // TODO: SINT_MIN on inversion gives the same negative value, we don't
2353 // want to deal with that.
2354 return false;
2355 Magnitude = -C;
2356 }
2357
2358 ICmpInst::Predicate Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
2359 if (OverflowDown) {
2360 // To avoid overflow down, we need to make sure that MIN + Magnitude <= LHS.
2361 APInt Min = Signed ? APInt::getSignedMinValue(numBits: NumBits)
2362 : APInt::getMinValue(numBits: NumBits);
2363 APInt Limit = Min + Magnitude;
2364 return isKnownPredicateAt(Pred, LHS: getConstant(Val: Limit), RHS: LHS, CtxI);
2365 } else {
2366 // To avoid overflow up, we need to make sure that LHS <= MAX - Magnitude.
2367 APInt Max = Signed ? APInt::getSignedMaxValue(numBits: NumBits)
2368 : APInt::getMaxValue(numBits: NumBits);
2369 APInt Limit = Max - Magnitude;
2370 return isKnownPredicateAt(Pred, LHS, RHS: getConstant(Val: Limit), CtxI);
2371 }
2372}
2373
2374std::optional<SCEV::NoWrapFlags>
2375ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp(
2376 const OverflowingBinaryOperator *OBO) {
2377 // It cannot be done any better.
2378 if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap())
2379 return std::nullopt;
2380
2381 SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap;
2382
2383 if (OBO->hasNoUnsignedWrap())
2384 Flags = ScalarEvolution::setFlags(Flags, OnFlags: SCEV::FlagNUW);
2385 if (OBO->hasNoSignedWrap())
2386 Flags = ScalarEvolution::setFlags(Flags, OnFlags: SCEV::FlagNSW);
2387
2388 bool Deduced = false;
2389
2390 if (OBO->getOpcode() != Instruction::Add &&
2391 OBO->getOpcode() != Instruction::Sub &&
2392 OBO->getOpcode() != Instruction::Mul)
2393 return std::nullopt;
2394
2395 const SCEV *LHS = getSCEV(V: OBO->getOperand(i_nocapture: 0));
2396 const SCEV *RHS = getSCEV(V: OBO->getOperand(i_nocapture: 1));
2397
2398 const Instruction *CtxI =
2399 UseContextForNoWrapFlagInference ? dyn_cast<Instruction>(Val: OBO) : nullptr;
2400 if (!OBO->hasNoUnsignedWrap() &&
2401 willNotOverflow(BinOp: (Instruction::BinaryOps)OBO->getOpcode(),
2402 /* Signed */ false, LHS, RHS, CtxI)) {
2403 Flags = ScalarEvolution::setFlags(Flags, OnFlags: SCEV::FlagNUW);
2404 Deduced = true;
2405 }
2406
2407 if (!OBO->hasNoSignedWrap() &&
2408 willNotOverflow(BinOp: (Instruction::BinaryOps)OBO->getOpcode(),
2409 /* Signed */ true, LHS, RHS, CtxI)) {
2410 Flags = ScalarEvolution::setFlags(Flags, OnFlags: SCEV::FlagNSW);
2411 Deduced = true;
2412 }
2413
2414 if (Deduced)
2415 return Flags;
2416 return std::nullopt;
2417}
2418
2419// We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2420// `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
2421// can't-overflow flags for the operation if possible.
2422static SCEV::NoWrapFlags
2423StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2424 const ArrayRef<const SCEV *> Ops,
2425 SCEV::NoWrapFlags Flags) {
2426 using namespace std::placeholders;
2427
2428 using OBO = OverflowingBinaryOperator;
2429
2430 bool CanAnalyze =
2431 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2432 (void)CanAnalyze;
2433 assert(CanAnalyze && "don't call from other places!");
2434
2435 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2436 SCEV::NoWrapFlags SignOrUnsignWrap =
2437 ScalarEvolution::maskFlags(Flags, Mask: SignOrUnsignMask);
2438
2439 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2440 auto IsKnownNonNegative = [&](const SCEV *S) {
2441 return SE->isKnownNonNegative(S);
2442 };
2443
2444 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Range: Ops, P: IsKnownNonNegative))
2445 Flags =
2446 ScalarEvolution::setFlags(Flags, OnFlags: (SCEV::NoWrapFlags)SignOrUnsignMask);
2447
2448 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, Mask: SignOrUnsignMask);
2449
2450 if (SignOrUnsignWrap != SignOrUnsignMask &&
2451 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2452 isa<SCEVConstant>(Val: Ops[0])) {
2453
2454 auto Opcode = [&] {
2455 switch (Type) {
2456 case scAddExpr:
2457 return Instruction::Add;
2458 case scMulExpr:
2459 return Instruction::Mul;
2460 default:
2461 llvm_unreachable("Unexpected SCEV op.");
2462 }
2463 }();
2464
2465 const APInt &C = cast<SCEVConstant>(Val: Ops[0])->getAPInt();
2466
2467 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2468 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2469 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2470 BinOp: Opcode, Other: C, NoWrapKind: OBO::NoSignedWrap);
2471 if (NSWRegion.contains(CR: SE->getSignedRange(S: Ops[1])))
2472 Flags = ScalarEvolution::setFlags(Flags, OnFlags: SCEV::FlagNSW);
2473 }
2474
2475 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2476 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2477 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2478 BinOp: Opcode, Other: C, NoWrapKind: OBO::NoUnsignedWrap);
2479 if (NUWRegion.contains(CR: SE->getUnsignedRange(S: Ops[1])))
2480 Flags = ScalarEvolution::setFlags(Flags, OnFlags: SCEV::FlagNUW);
2481 }
2482 }
2483
2484 // <0,+,nonnegative><nw> is also nuw
2485 // TODO: Add corresponding nsw case
2486 if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, TestFlags: SCEV::FlagNW) &&
2487 !ScalarEvolution::hasFlags(Flags, TestFlags: SCEV::FlagNUW) && Ops.size() == 2 &&
2488 Ops[0]->isZero() && IsKnownNonNegative(Ops[1]))
2489 Flags = ScalarEvolution::setFlags(Flags, OnFlags: SCEV::FlagNUW);
2490
2491 // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW
2492 if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, TestFlags: SCEV::FlagNUW) &&
2493 Ops.size() == 2) {
2494 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Val: Ops[0]))
2495 if (UDiv->getOperand(i: 1) == Ops[1])
2496 Flags = ScalarEvolution::setFlags(Flags, OnFlags: SCEV::FlagNUW);
2497 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Val: Ops[1]))
2498 if (UDiv->getOperand(i: 1) == Ops[0])
2499 Flags = ScalarEvolution::setFlags(Flags, OnFlags: SCEV::FlagNUW);
2500 }
2501
2502 return Flags;
2503}
2504
2505bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2506 return isLoopInvariant(S, L) && properlyDominates(S, BB: L->getHeader());
2507}
2508
2509/// Get a canonical add expression, or something simpler if possible.
2510const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2511 SCEV::NoWrapFlags OrigFlags,
2512 unsigned Depth) {
2513 assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2514 "only nuw or nsw allowed");
2515 assert(!Ops.empty() && "Cannot get empty add!");
2516 if (Ops.size() == 1) return Ops[0];
2517#ifndef NDEBUG
2518 Type *ETy = getEffectiveSCEVType(Ty: Ops[0]->getType());
2519 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2520 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2521 "SCEVAddExpr operand types don't match!");
2522 unsigned NumPtrs = count_if(
2523 Range&: Ops, P: [](const SCEV *Op) { return Op->getType()->isPointerTy(); });
2524 assert(NumPtrs <= 1 && "add has at most one pointer operand");
2525#endif
2526
2527 // Sort by complexity, this groups all similar expression types together.
2528 GroupByComplexity(Ops, LI: &LI, DT);
2529
2530 // If there are any constants, fold them together.
2531 unsigned Idx = 0;
2532 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Val: Ops[0])) {
2533 ++Idx;
2534 assert(Idx < Ops.size());
2535 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Val: Ops[Idx])) {
2536 // We found two constants, fold them together!
2537 Ops[0] = getConstant(Val: LHSC->getAPInt() + RHSC->getAPInt());
2538 if (Ops.size() == 2) return Ops[0];
2539 Ops.erase(CI: Ops.begin()+1); // Erase the folded element
2540 LHSC = cast<SCEVConstant>(Val: Ops[0]);
2541 }
2542
2543 // If we are left with a constant zero being added, strip it off.
2544 if (LHSC->getValue()->isZero()) {
2545 Ops.erase(CI: Ops.begin());
2546 --Idx;
2547 }
2548
2549 if (Ops.size() == 1) return Ops[0];
2550 }
2551
2552 // Delay expensive flag strengthening until necessary.
2553 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
2554 return StrengthenNoWrapFlags(SE: this, Type: scAddExpr, Ops, Flags: OrigFlags);
2555 };
2556
2557 // Limit recursion calls depth.
2558 if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2559 return getOrCreateAddExpr(Ops, Flags: ComputeFlags(Ops));
2560
2561 if (SCEV *S = findExistingSCEVInCache(SCEVType: scAddExpr, Ops)) {
2562 // Don't strengthen flags if we have no new information.
2563 SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S);
2564 if (Add->getNoWrapFlags(Mask: OrigFlags) != OrigFlags)
2565 Add->setNoWrapFlags(ComputeFlags(Ops));
2566 return S;
2567 }
2568
2569 // Okay, check to see if the same value occurs in the operand list more than
2570 // once. If so, merge them together into an multiply expression. Since we
2571 // sorted the list, these values are required to be adjacent.
2572 Type *Ty = Ops[0]->getType();
2573 bool FoundMatch = false;
2574 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2575 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
2576 // Scan ahead to count how many equal operands there are.
2577 unsigned Count = 2;
2578 while (i+Count != e && Ops[i+Count] == Ops[i])
2579 ++Count;
2580 // Merge the values into a multiply.
2581 const SCEV *Scale = getConstant(Ty, V: Count);
2582 const SCEV *Mul = getMulExpr(LHS: Scale, RHS: Ops[i], Flags: SCEV::FlagAnyWrap, Depth: Depth + 1);
2583 if (Ops.size() == Count)
2584 return Mul;
2585 Ops[i] = Mul;
2586 Ops.erase(CS: Ops.begin()+i+1, CE: Ops.begin()+i+Count);
2587 --i; e -= Count - 1;
2588 FoundMatch = true;
2589 }
2590 if (FoundMatch)
2591 return getAddExpr(Ops, OrigFlags, Depth: Depth + 1);
2592
2593 // Check for truncates. If all the operands are truncated from the same
2594 // type, see if factoring out the truncate would permit the result to be
2595 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2596 // if the contents of the resulting outer trunc fold to something simple.
2597 auto FindTruncSrcType = [&]() -> Type * {
2598 // We're ultimately looking to fold an addrec of truncs and muls of only
2599 // constants and truncs, so if we find any other types of SCEV
2600 // as operands of the addrec then we bail and return nullptr here.
2601 // Otherwise, we return the type of the operand of a trunc that we find.
2602 if (auto *T = dyn_cast<SCEVTruncateExpr>(Val: Ops[Idx]))
2603 return T->getOperand()->getType();
2604 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Val: Ops[Idx])) {
2605 const auto *LastOp = Mul->getOperand(i: Mul->getNumOperands() - 1);
2606 if (const auto *T = dyn_cast<SCEVTruncateExpr>(Val: LastOp))
2607 return T->getOperand()->getType();
2608 }
2609 return nullptr;
2610 };
2611 if (auto *SrcType = FindTruncSrcType()) {
2612 SmallVector<const SCEV *, 8> LargeOps;
2613 bool Ok = true;
2614 // Check all the operands to see if they can be represented in the
2615 // source type of the truncate.
2616 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2617 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Val: Ops[i])) {
2618 if (T->getOperand()->getType() != SrcType) {
2619 Ok = false;
2620 break;
2621 }
2622 LargeOps.push_back(Elt: T->getOperand());
2623 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Val: Ops[i])) {
2624 LargeOps.push_back(Elt: getAnyExtendExpr(Op: C, Ty: SrcType));
2625 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Val: Ops[i])) {
2626 SmallVector<const SCEV *, 8> LargeMulOps;
2627 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2628 if (const SCEVTruncateExpr *T =
2629 dyn_cast<SCEVTruncateExpr>(Val: M->getOperand(i: j))) {
2630 if (T->getOperand()->getType() != SrcType) {
2631 Ok = false;
2632 break;
2633 }
2634 LargeMulOps.push_back(Elt: T->getOperand());
2635 } else if (const auto *C = dyn_cast<SCEVConstant>(Val: M->getOperand(i: j))) {
2636 LargeMulOps.push_back(Elt: getAnyExtendExpr(Op: C, Ty: SrcType));
2637 } else {
2638 Ok = false;
2639 break;
2640 }
2641 }
2642 if (Ok)
2643 LargeOps.push_back(Elt: getMulExpr(Ops&: LargeMulOps, Flags: SCEV::FlagAnyWrap, Depth: Depth + 1));
2644 } else {
2645 Ok = false;
2646 break;
2647 }
2648 }
2649 if (Ok) {
2650 // Evaluate the expression in the larger type.
2651 const SCEV *Fold = getAddExpr(Ops&: LargeOps, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1);
2652 // If it folds to something simple, use it. Otherwise, don't.
2653 if (isa<SCEVConstant>(Val: Fold) || isa<SCEVUnknown>(Val: Fold))
2654 return getTruncateExpr(Op: Fold, Ty);
2655 }
2656 }
2657
2658 if (Ops.size() == 2) {
2659 // Check if we have an expression of the form ((X + C1) - C2), where C1 and
2660 // C2 can be folded in a way that allows retaining wrapping flags of (X +
2661 // C1).
2662 const SCEV *A = Ops[0];
2663 const SCEV *B = Ops[1];
2664 auto *AddExpr = dyn_cast<SCEVAddExpr>(Val: B);
2665 auto *C = dyn_cast<SCEVConstant>(Val: A);
2666 if (AddExpr && C && isa<SCEVConstant>(Val: AddExpr->getOperand(i: 0))) {
2667 auto C1 = cast<SCEVConstant>(Val: AddExpr->getOperand(i: 0))->getAPInt();
2668 auto C2 = C->getAPInt();
2669 SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap;
2670
2671 APInt ConstAdd = C1 + C2;
2672 auto AddFlags = AddExpr->getNoWrapFlags();
2673 // Adding a smaller constant is NUW if the original AddExpr was NUW.
2674 if (ScalarEvolution::hasFlags(Flags: AddFlags, TestFlags: SCEV::FlagNUW) &&
2675 ConstAdd.ule(RHS: C1)) {
2676 PreservedFlags =
2677 ScalarEvolution::setFlags(Flags: PreservedFlags, OnFlags: SCEV::FlagNUW);
2678 }
2679
2680 // Adding a constant with the same sign and small magnitude is NSW, if the
2681 // original AddExpr was NSW.
2682 if (ScalarEvolution::hasFlags(Flags: AddFlags, TestFlags: SCEV::FlagNSW) &&
2683 C1.isSignBitSet() == ConstAdd.isSignBitSet() &&
2684 ConstAdd.abs().ule(RHS: C1.abs())) {
2685 PreservedFlags =
2686 ScalarEvolution::setFlags(Flags: PreservedFlags, OnFlags: SCEV::FlagNSW);
2687 }
2688
2689 if (PreservedFlags != SCEV::FlagAnyWrap) {
2690 SmallVector<const SCEV *, 4> NewOps(AddExpr->operands());
2691 NewOps[0] = getConstant(Val: ConstAdd);
2692 return getAddExpr(Ops&: NewOps, OrigFlags: PreservedFlags);
2693 }
2694 }
2695 }
2696
2697 // Canonicalize (-1 * urem X, Y) + X --> (Y * X/Y)
2698 if (Ops.size() == 2) {
2699 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Val: Ops[0]);
2700 if (Mul && Mul->getNumOperands() == 2 &&
2701 Mul->getOperand(i: 0)->isAllOnesValue()) {
2702 const SCEV *X;
2703 const SCEV *Y;
2704 if (matchURem(Expr: Mul->getOperand(i: 1), LHS&: X, RHS&: Y) && X == Ops[1]) {
2705 return getMulExpr(LHS: Y, RHS: getUDivExpr(LHS: X, RHS: Y));
2706 }
2707 }
2708 }
2709
2710 // Skip past any other cast SCEVs.
2711 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2712 ++Idx;
2713
2714 // If there are add operands they would be next.
2715 if (Idx < Ops.size()) {
2716 bool DeletedAdd = false;
2717 // If the original flags and all inlined SCEVAddExprs are NUW, use the
2718 // common NUW flag for expression after inlining. Other flags cannot be
2719 // preserved, because they may depend on the original order of operations.
2720 SCEV::NoWrapFlags CommonFlags = maskFlags(Flags: OrigFlags, Mask: SCEV::FlagNUW);
2721 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Val: Ops[Idx])) {
2722 if (Ops.size() > AddOpsInlineThreshold ||
2723 Add->getNumOperands() > AddOpsInlineThreshold)
2724 break;
2725 // If we have an add, expand the add operands onto the end of the operands
2726 // list.
2727 Ops.erase(CI: Ops.begin()+Idx);
2728 append_range(C&: Ops, R: Add->operands());
2729 DeletedAdd = true;
2730 CommonFlags = maskFlags(Flags: CommonFlags, Mask: Add->getNoWrapFlags());
2731 }
2732
2733 // If we deleted at least one add, we added operands to the end of the list,
2734 // and they are not necessarily sorted. Recurse to resort and resimplify
2735 // any operands we just acquired.
2736 if (DeletedAdd)
2737 return getAddExpr(Ops, OrigFlags: CommonFlags, Depth: Depth + 1);
2738 }
2739
2740 // Skip over the add expression until we get to a multiply.
2741 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2742 ++Idx;
2743
2744 // Check to see if there are any folding opportunities present with
2745 // operands multiplied by constant values.
2746 if (Idx < Ops.size() && isa<SCEVMulExpr>(Val: Ops[Idx])) {
2747 uint64_t BitWidth = getTypeSizeInBits(Ty);
2748 DenseMap<const SCEV *, APInt> M;
2749 SmallVector<const SCEV *, 8> NewOps;
2750 APInt AccumulatedConstant(BitWidth, 0);
2751 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2752 Ops, Scale: APInt(BitWidth, 1), SE&: *this)) {
2753 struct APIntCompare {
2754 bool operator()(const APInt &LHS, const APInt &RHS) const {
2755 return LHS.ult(RHS);
2756 }
2757 };
2758
2759 // Some interesting folding opportunity is present, so its worthwhile to
2760 // re-generate the operands list. Group the operands by constant scale,
2761 // to avoid multiplying by the same constant scale multiple times.
2762 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2763 for (const SCEV *NewOp : NewOps)
2764 MulOpLists[M.find(Val: NewOp)->second].push_back(Elt: NewOp);
2765 // Re-generate the operands list.
2766 Ops.clear();
2767 if (AccumulatedConstant != 0)
2768 Ops.push_back(Elt: getConstant(Val: AccumulatedConstant));
2769 for (auto &MulOp : MulOpLists) {
2770 if (MulOp.first == 1) {
2771 Ops.push_back(Elt: getAddExpr(Ops&: MulOp.second, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1));
2772 } else if (MulOp.first != 0) {
2773 Ops.push_back(Elt: getMulExpr(
2774 LHS: getConstant(Val: MulOp.first),
2775 RHS: getAddExpr(Ops&: MulOp.second, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1),
2776 Flags: SCEV::FlagAnyWrap, Depth: Depth + 1));
2777 }
2778 }
2779 if (Ops.empty())
2780 return getZero(Ty);
2781 if (Ops.size() == 1)
2782 return Ops[0];
2783 return getAddExpr(Ops, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1);
2784 }
2785 }
2786
2787 // If we are adding something to a multiply expression, make sure the
2788 // something is not already an operand of the multiply. If so, merge it into
2789 // the multiply.
2790 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Val: Ops[Idx]); ++Idx) {
2791 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Val: Ops[Idx]);
2792 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2793 const SCEV *MulOpSCEV = Mul->getOperand(i: MulOp);
2794 if (isa<SCEVConstant>(Val: MulOpSCEV))
2795 continue;
2796 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2797 if (MulOpSCEV == Ops[AddOp]) {
2798 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
2799 const SCEV *InnerMul = Mul->getOperand(i: MulOp == 0);
2800 if (Mul->getNumOperands() != 2) {
2801 // If the multiply has more than two operands, we must get the
2802 // Y*Z term.
2803 SmallVector<const SCEV *, 4> MulOps(
2804 Mul->operands().take_front(N: MulOp));
2805 append_range(C&: MulOps, R: Mul->operands().drop_front(N: MulOp + 1));
2806 InnerMul = getMulExpr(Ops&: MulOps, Flags: SCEV::FlagAnyWrap, Depth: Depth + 1);
2807 }
2808 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2809 const SCEV *AddOne = getAddExpr(Ops&: TwoOps, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1);
2810 const SCEV *OuterMul = getMulExpr(LHS: AddOne, RHS: MulOpSCEV,
2811 Flags: SCEV::FlagAnyWrap, Depth: Depth + 1);
2812 if (Ops.size() == 2) return OuterMul;
2813 if (AddOp < Idx) {
2814 Ops.erase(CI: Ops.begin()+AddOp);
2815 Ops.erase(CI: Ops.begin()+Idx-1);
2816 } else {
2817 Ops.erase(CI: Ops.begin()+Idx);
2818 Ops.erase(CI: Ops.begin()+AddOp-1);
2819 }
2820 Ops.push_back(Elt: OuterMul);
2821 return getAddExpr(Ops, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1);
2822 }
2823
2824 // Check this multiply against other multiplies being added together.
2825 for (unsigned OtherMulIdx = Idx+1;
2826 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Val: Ops[OtherMulIdx]);
2827 ++OtherMulIdx) {
2828 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Val: Ops[OtherMulIdx]);
2829 // If MulOp occurs in OtherMul, we can fold the two multiplies
2830 // together.
2831 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2832 OMulOp != e; ++OMulOp)
2833 if (OtherMul->getOperand(i: OMulOp) == MulOpSCEV) {
2834 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2835 const SCEV *InnerMul1 = Mul->getOperand(i: MulOp == 0);
2836 if (Mul->getNumOperands() != 2) {
2837 SmallVector<const SCEV *, 4> MulOps(
2838 Mul->operands().take_front(N: MulOp));
2839 append_range(C&: MulOps, R: Mul->operands().drop_front(N: MulOp+1));
2840 InnerMul1 = getMulExpr(Ops&: MulOps, Flags: SCEV::FlagAnyWrap, Depth: Depth + 1);
2841 }
2842 const SCEV *InnerMul2 = OtherMul->getOperand(i: OMulOp == 0);
2843 if (OtherMul->getNumOperands() != 2) {
2844 SmallVector<const SCEV *, 4> MulOps(
2845 OtherMul->operands().take_front(N: OMulOp));
2846 append_range(C&: MulOps, R: OtherMul->operands().drop_front(N: OMulOp+1));
2847 InnerMul2 = getMulExpr(Ops&: MulOps, Flags: SCEV::FlagAnyWrap, Depth: Depth + 1);
2848 }
2849 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2850 const SCEV *InnerMulSum =
2851 getAddExpr(Ops&: TwoOps, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1);
2852 const SCEV *OuterMul = getMulExpr(LHS: MulOpSCEV, RHS: InnerMulSum,
2853 Flags: SCEV::FlagAnyWrap, Depth: Depth + 1);
2854 if (Ops.size() == 2) return OuterMul;
2855 Ops.erase(CI: Ops.begin()+Idx);
2856 Ops.erase(CI: Ops.begin()+OtherMulIdx-1);
2857 Ops.push_back(Elt: OuterMul);
2858 return getAddExpr(Ops, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1);
2859 }
2860 }
2861 }
2862 }
2863
2864 // If there are any add recurrences in the operands list, see if any other
2865 // added values are loop invariant. If so, we can fold them into the
2866 // recurrence.
2867 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2868 ++Idx;
2869
2870 // Scan over all recurrences, trying to fold loop invariants into them.
2871 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Val: Ops[Idx]); ++Idx) {
2872 // Scan all of the other operands to this add and add them to the vector if
2873 // they are loop invariant w.r.t. the recurrence.
2874 SmallVector<const SCEV *, 8> LIOps;
2875 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Val: Ops[Idx]);
2876 const Loop *AddRecLoop = AddRec->getLoop();
2877 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2878 if (isAvailableAtLoopEntry(S: Ops[i], L: AddRecLoop)) {
2879 LIOps.push_back(Elt: Ops[i]);
2880 Ops.erase(CI: Ops.begin()+i);
2881 --i; --e;
2882 }
2883
2884 // If we found some loop invariants, fold them into the recurrence.
2885 if (!LIOps.empty()) {
2886 // Compute nowrap flags for the addition of the loop-invariant ops and
2887 // the addrec. Temporarily push it as an operand for that purpose. These
2888 // flags are valid in the scope of the addrec only.
2889 LIOps.push_back(Elt: AddRec);
2890 SCEV::NoWrapFlags Flags = ComputeFlags(LIOps);
2891 LIOps.pop_back();
2892
2893 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
2894 LIOps.push_back(Elt: AddRec->getStart());
2895
2896 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2897
2898 // It is not in general safe to propagate flags valid on an add within
2899 // the addrec scope to one outside it. We must prove that the inner
2900 // scope is guaranteed to execute if the outer one does to be able to
2901 // safely propagate. We know the program is undefined if poison is
2902 // produced on the inner scoped addrec. We also know that *for this use*
2903 // the outer scoped add can't overflow (because of the flags we just
2904 // computed for the inner scoped add) without the program being undefined.
2905 // Proving that entry to the outer scope neccesitates entry to the inner
2906 // scope, thus proves the program undefined if the flags would be violated
2907 // in the outer scope.
2908 SCEV::NoWrapFlags AddFlags = Flags;
2909 if (AddFlags != SCEV::FlagAnyWrap) {
2910 auto *DefI = getDefiningScopeBound(Ops: LIOps);
2911 auto *ReachI = &*AddRecLoop->getHeader()->begin();
2912 if (!isGuaranteedToTransferExecutionTo(A: DefI, B: ReachI))
2913 AddFlags = SCEV::FlagAnyWrap;
2914 }
2915 AddRecOps[0] = getAddExpr(Ops&: LIOps, OrigFlags: AddFlags, Depth: Depth + 1);
2916
2917 // Build the new addrec. Propagate the NUW and NSW flags if both the
2918 // outer add and the inner addrec are guaranteed to have no overflow.
2919 // Always propagate NW.
2920 Flags = AddRec->getNoWrapFlags(Mask: setFlags(Flags, OnFlags: SCEV::FlagNW));
2921 const SCEV *NewRec = getAddRecExpr(Operands&: AddRecOps, L: AddRecLoop, Flags);
2922
2923 // If all of the other operands were loop invariant, we are done.
2924 if (Ops.size() == 1) return NewRec;
2925
2926 // Otherwise, add the folded AddRec by the non-invariant parts.
2927 for (unsigned i = 0;; ++i)
2928 if (Ops[i] == AddRec) {
2929 Ops[i] = NewRec;
2930 break;
2931 }
2932 return getAddExpr(Ops, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1);
2933 }
2934
2935 // Okay, if there weren't any loop invariants to be folded, check to see if
2936 // there are multiple AddRec's with the same loop induction variable being
2937 // added together. If so, we can fold them.
2938 for (unsigned OtherIdx = Idx+1;
2939 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Val: Ops[OtherIdx]);
2940 ++OtherIdx) {
2941 // We expect the AddRecExpr's to be sorted in reverse dominance order,
2942 // so that the 1st found AddRecExpr is dominated by all others.
2943 assert(DT.dominates(
2944 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2945 AddRec->getLoop()->getHeader()) &&
2946 "AddRecExprs are not sorted in reverse dominance order?");
2947 if (AddRecLoop == cast<SCEVAddRecExpr>(Val: Ops[OtherIdx])->getLoop()) {
2948 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2949 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2950 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Val: Ops[OtherIdx]);
2951 ++OtherIdx) {
2952 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Val: Ops[OtherIdx]);
2953 if (OtherAddRec->getLoop() == AddRecLoop) {
2954 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2955 i != e; ++i) {
2956 if (i >= AddRecOps.size()) {
2957 append_range(C&: AddRecOps, R: OtherAddRec->operands().drop_front(N: i));
2958 break;
2959 }
2960 SmallVector<const SCEV *, 2> TwoOps = {
2961 AddRecOps[i], OtherAddRec->getOperand(i)};
2962 AddRecOps[i] = getAddExpr(Ops&: TwoOps, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1);
2963 }
2964 Ops.erase(CI: Ops.begin() + OtherIdx); --OtherIdx;
2965 }
2966 }
2967 // Step size has changed, so we cannot guarantee no self-wraparound.
2968 Ops[Idx] = getAddRecExpr(Operands&: AddRecOps, L: AddRecLoop, Flags: SCEV::FlagAnyWrap);
2969 return getAddExpr(Ops, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1);
2970 }
2971 }
2972
2973 // Otherwise couldn't fold anything into this recurrence. Move onto the
2974 // next one.
2975 }
2976
2977 // Okay, it looks like we really DO need an add expr. Check to see if we
2978 // already have one, otherwise create a new one.
2979 return getOrCreateAddExpr(Ops, Flags: ComputeFlags(Ops));
2980}
2981
2982const SCEV *
2983ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2984 SCEV::NoWrapFlags Flags) {
2985 FoldingSetNodeID ID;
2986 ID.AddInteger(I: scAddExpr);
2987 for (const SCEV *Op : Ops)
2988 ID.AddPointer(Ptr: Op);
2989 void *IP = nullptr;
2990 SCEVAddExpr *S =
2991 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP));
2992 if (!S) {
2993 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Num: Ops.size());
2994 std::uninitialized_copy(first: Ops.begin(), last: Ops.end(), result: O);
2995 S = new (SCEVAllocator)
2996 SCEVAddExpr(ID.Intern(Allocator&: SCEVAllocator), O, Ops.size());
2997 UniqueSCEVs.InsertNode(N: S, InsertPos: IP);
2998 registerUser(User: S, Ops);
2999 }
3000 S->setNoWrapFlags(Flags);
3001 return S;
3002}
3003
3004const SCEV *
3005ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
3006 const Loop *L, SCEV::NoWrapFlags Flags) {
3007 FoldingSetNodeID ID;
3008 ID.AddInteger(I: scAddRecExpr);
3009 for (const SCEV *Op : Ops)
3010 ID.AddPointer(Ptr: Op);
3011 ID.AddPointer(Ptr: L);
3012 void *IP = nullptr;
3013 SCEVAddRecExpr *S =
3014 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP));
3015 if (!S) {
3016 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Num: Ops.size());
3017 std::uninitialized_copy(first: Ops.begin(), last: Ops.end(), result: O);
3018 S = new (SCEVAllocator)
3019 SCEVAddRecExpr(ID.Intern(Allocator&: SCEVAllocator), O, Ops.size(), L);
3020 UniqueSCEVs.InsertNode(N: S, InsertPos: IP);
3021 LoopUsers[L].push_back(Elt: S);
3022 registerUser(User: S, Ops);
3023 }
3024 setNoWrapFlags(AddRec: S, Flags);
3025 return S;
3026}
3027
3028const SCEV *
3029ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
3030 SCEV::NoWrapFlags Flags) {
3031 FoldingSetNodeID ID;
3032 ID.AddInteger(I: scMulExpr);
3033 for (const SCEV *Op : Ops)
3034 ID.AddPointer(Ptr: Op);
3035 void *IP = nullptr;
3036 SCEVMulExpr *S =
3037 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP));
3038 if (!S) {
3039 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Num: Ops.size());
3040 std::uninitialized_copy(first: Ops.begin(), last: Ops.end(), result: O);
3041 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(Allocator&: SCEVAllocator),
3042 O, Ops.size());
3043 UniqueSCEVs.InsertNode(N: S, InsertPos: IP);
3044 registerUser(User: S, Ops);
3045 }
3046 S->setNoWrapFlags(Flags);
3047 return S;
3048}
3049
3050static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
3051 uint64_t k = i*j;
3052 if (j > 1 && k / j != i) Overflow = true;
3053 return k;
3054}
3055
3056/// Compute the result of "n choose k", the binomial coefficient. If an
3057/// intermediate computation overflows, Overflow will be set and the return will
3058/// be garbage. Overflow is not cleared on absence of overflow.
3059static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
3060 // We use the multiplicative formula:
3061 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
3062 // At each iteration, we take the n-th term of the numeral and divide by the
3063 // (k-n)th term of the denominator. This division will always produce an
3064 // integral result, and helps reduce the chance of overflow in the
3065 // intermediate computations. However, we can still overflow even when the
3066 // final result would fit.
3067
3068 if (n == 0 || n == k) return 1;
3069 if (k > n) return 0;
3070
3071 if (k > n/2)
3072 k = n-k;
3073
3074 uint64_t r = 1;
3075 for (uint64_t i = 1; i <= k; ++i) {
3076 r = umul_ov(i: r, j: n-(i-1), Overflow);
3077 r /= i;
3078 }
3079 return r;
3080}
3081
3082/// Determine if any of the operands in this SCEV are a constant or if
3083/// any of the add or multiply expressions in this SCEV contain a constant.
3084static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
3085 struct FindConstantInAddMulChain {
3086 bool FoundConstant = false;
3087
3088 bool follow(const SCEV *S) {
3089 FoundConstant |= isa<SCEVConstant>(Val: S);
3090 return isa<SCEVAddExpr>(Val: S) || isa<SCEVMulExpr>(Val: S);
3091 }
3092
3093 bool isDone() const {
3094 return FoundConstant;
3095 }
3096 };
3097
3098 FindConstantInAddMulChain F;
3099 SCEVTraversal<FindConstantInAddMulChain> ST(F);
3100 ST.visitAll(Root: StartExpr);
3101 return F.FoundConstant;
3102}
3103
3104/// Get a canonical multiply expression, or something simpler if possible.
3105const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
3106 SCEV::NoWrapFlags OrigFlags,
3107 unsigned Depth) {
3108 assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) &&
3109 "only nuw or nsw allowed");
3110 assert(!Ops.empty() && "Cannot get empty mul!");
3111 if (Ops.size() == 1) return Ops[0];
3112#ifndef NDEBUG
3113 Type *ETy = Ops[0]->getType();
3114 assert(!ETy->isPointerTy());
3115 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3116 assert(Ops[i]->getType() == ETy &&
3117 "SCEVMulExpr operand types don't match!");
3118#endif
3119
3120 // Sort by complexity, this groups all similar expression types together.
3121 GroupByComplexity(Ops, LI: &LI, DT);
3122
3123 // If there are any constants, fold them together.
3124 unsigned Idx = 0;
3125 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Val: Ops[0])) {
3126 ++Idx;
3127 assert(Idx < Ops.size());
3128 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Val: Ops[Idx])) {
3129 // We found two constants, fold them together!
3130 Ops[0] = getConstant(Val: LHSC->getAPInt() * RHSC->getAPInt());
3131 if (Ops.size() == 2) return Ops[0];
3132 Ops.erase(CI: Ops.begin()+1); // Erase the folded element
3133 LHSC = cast<SCEVConstant>(Val: Ops[0]);
3134 }
3135
3136 // If we have a multiply of zero, it will always be zero.
3137 if (LHSC->getValue()->isZero())
3138 return LHSC;
3139
3140 // If we are left with a constant one being multiplied, strip it off.
3141 if (LHSC->getValue()->isOne()) {
3142 Ops.erase(CI: Ops.begin());
3143 --Idx;
3144 }
3145
3146 if (Ops.size() == 1)
3147 return Ops[0];
3148 }
3149
3150 // Delay expensive flag strengthening until necessary.
3151 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
3152 return StrengthenNoWrapFlags(SE: this, Type: scMulExpr, Ops, Flags: OrigFlags);
3153 };
3154
3155 // Limit recursion calls depth.
3156 if (Depth > MaxArithDepth || hasHugeExpression(Ops))
3157 return getOrCreateMulExpr(Ops, Flags: ComputeFlags(Ops));
3158
3159 if (SCEV *S = findExistingSCEVInCache(SCEVType: scMulExpr, Ops)) {
3160 // Don't strengthen flags if we have no new information.
3161 SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S);
3162 if (Mul->getNoWrapFlags(Mask: OrigFlags) != OrigFlags)
3163 Mul->setNoWrapFlags(ComputeFlags(Ops));
3164 return S;
3165 }
3166
3167 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Val: Ops[0])) {
3168 if (Ops.size() == 2) {
3169 // C1*(C2+V) -> C1*C2 + C1*V
3170 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Val: Ops[1]))
3171 // If any of Add's ops are Adds or Muls with a constant, apply this
3172 // transformation as well.
3173 //
3174 // TODO: There are some cases where this transformation is not
3175 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of
3176 // this transformation should be narrowed down.
3177 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(StartExpr: Add)) {
3178 const SCEV *LHS = getMulExpr(LHS: LHSC, RHS: Add->getOperand(i: 0),
3179 Flags: SCEV::FlagAnyWrap, Depth: Depth + 1);
3180 const SCEV *RHS = getMulExpr(LHS: LHSC, RHS: Add->getOperand(i: 1),
3181 Flags: SCEV::FlagAnyWrap, Depth: Depth + 1);
3182 return getAddExpr(LHS, RHS, Flags: SCEV::FlagAnyWrap, Depth: Depth + 1);
3183 }
3184
3185 if (Ops[0]->isAllOnesValue()) {
3186 // If we have a mul by -1 of an add, try distributing the -1 among the
3187 // add operands.
3188 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Val: Ops[1])) {
3189 SmallVector<const SCEV *, 4> NewOps;
3190 bool AnyFolded = false;
3191 for (const SCEV *AddOp : Add->operands()) {
3192 const SCEV *Mul = getMulExpr(LHS: Ops[0], RHS: AddOp, Flags: SCEV::FlagAnyWrap,
3193 Depth: Depth + 1);
3194 if (!isa<SCEVMulExpr>(Val: Mul)) AnyFolded = true;
3195 NewOps.push_back(Elt: Mul);
3196 }
3197 if (AnyFolded)
3198 return getAddExpr(Ops&: NewOps, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1);
3199 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Val: Ops[1])) {
3200 // Negation preserves a recurrence's no self-wrap property.
3201 SmallVector<const SCEV *, 4> Operands;
3202 for (const SCEV *AddRecOp : AddRec->operands())
3203 Operands.push_back(Elt: getMulExpr(LHS: Ops[0], RHS: AddRecOp, Flags: SCEV::FlagAnyWrap,
3204 Depth: Depth + 1));
3205 // Let M be the minimum representable signed value. AddRec with nsw
3206 // multiplied by -1 can have signed overflow if and only if it takes a
3207 // value of M: M * (-1) would stay M and (M + 1) * (-1) would be the
3208 // maximum signed value. In all other cases signed overflow is
3209 // impossible.
3210 auto FlagsMask = SCEV::FlagNW;
3211 if (hasFlags(Flags: AddRec->getNoWrapFlags(), TestFlags: SCEV::FlagNSW)) {
3212 auto MinInt =
3213 APInt::getSignedMinValue(numBits: getTypeSizeInBits(Ty: AddRec->getType()));
3214 if (getSignedRangeMin(S: AddRec) != MinInt)
3215 FlagsMask = setFlags(Flags: FlagsMask, OnFlags: SCEV::FlagNSW);
3216 }
3217 return getAddRecExpr(Operands, L: AddRec->getLoop(),
3218 Flags: AddRec->getNoWrapFlags(Mask: FlagsMask));
3219 }
3220 }
3221 }
3222 }
3223
3224 // Skip over the add expression until we get to a multiply.
3225 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
3226 ++Idx;
3227
3228 // If there are mul operands inline them all into this expression.
3229 if (Idx < Ops.size()) {
3230 bool DeletedMul = false;
3231 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Val: Ops[Idx])) {
3232 if (Ops.size() > MulOpsInlineThreshold)
3233 break;
3234 // If we have an mul, expand the mul operands onto the end of the
3235 // operands list.
3236 Ops.erase(CI: Ops.begin()+Idx);
3237 append_range(C&: Ops, R: Mul->operands());
3238 DeletedMul = true;
3239 }
3240
3241 // If we deleted at least one mul, we added operands to the end of the
3242 // list, and they are not necessarily sorted. Recurse to resort and
3243 // resimplify any operands we just acquired.
3244 if (DeletedMul)
3245 return getMulExpr(Ops, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1);
3246 }
3247
3248 // If there are any add recurrences in the operands list, see if any other
3249 // added values are loop invariant. If so, we can fold them into the
3250 // recurrence.
3251 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
3252 ++Idx;
3253
3254 // Scan over all recurrences, trying to fold loop invariants into them.
3255 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Val: Ops[Idx]); ++Idx) {
3256 // Scan all of the other operands to this mul and add them to the vector
3257 // if they are loop invariant w.r.t. the recurrence.
3258 SmallVector<const SCEV *, 8> LIOps;
3259 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Val: Ops[Idx]);
3260 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3261 if (isAvailableAtLoopEntry(S: Ops[i], L: AddRec->getLoop())) {
3262 LIOps.push_back(Elt: Ops[i]);
3263 Ops.erase(CI: Ops.begin()+i);
3264 --i; --e;
3265 }
3266
3267 // If we found some loop invariants, fold them into the recurrence.
3268 if (!LIOps.empty()) {
3269 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
3270 SmallVector<const SCEV *, 4> NewOps;
3271 NewOps.reserve(N: AddRec->getNumOperands());
3272 const SCEV *Scale = getMulExpr(Ops&: LIOps, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1);
3273
3274 // If both the mul and addrec are nuw, we can preserve nuw.
3275 // If both the mul and addrec are nsw, we can only preserve nsw if either
3276 // a) they are also nuw, or
3277 // b) all multiplications of addrec operands with scale are nsw.
3278 SCEV::NoWrapFlags Flags =
3279 AddRec->getNoWrapFlags(Mask: ComputeFlags({Scale, AddRec}));
3280
3281 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3282 NewOps.push_back(Elt: getMulExpr(LHS: Scale, RHS: AddRec->getOperand(i),
3283 Flags: SCEV::FlagAnyWrap, Depth: Depth + 1));
3284
3285 if (hasFlags(Flags, TestFlags: SCEV::FlagNSW) && !hasFlags(Flags, TestFlags: SCEV::FlagNUW)) {
3286 ConstantRange NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
3287 BinOp: Instruction::Mul, Other: getSignedRange(S: Scale),
3288 NoWrapKind: OverflowingBinaryOperator::NoSignedWrap);
3289 if (!NSWRegion.contains(CR: getSignedRange(S: AddRec->getOperand(i))))
3290 Flags = clearFlags(Flags, OffFlags: SCEV::FlagNSW);
3291 }
3292 }
3293
3294 const SCEV *NewRec = getAddRecExpr(Operands&: NewOps, L: AddRec->getLoop(), Flags);
3295
3296 // If all of the other operands were loop invariant, we are done.
3297 if (Ops.size() == 1) return NewRec;
3298
3299 // Otherwise, multiply the folded AddRec by the non-invariant parts.
3300 for (unsigned i = 0;; ++i)
3301 if (Ops[i] == AddRec) {
3302 Ops[i] = NewRec;
3303 break;
3304 }
3305 return getMulExpr(Ops, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1);
3306 }
3307
3308 // Okay, if there weren't any loop invariants to be folded, check to see
3309 // if there are multiple AddRec's with the same loop induction variable
3310 // being multiplied together. If so, we can fold them.
3311
3312 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3313 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3314 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3315 // ]]],+,...up to x=2n}.
3316 // Note that the arguments to choose() are always integers with values
3317 // known at compile time, never SCEV objects.
3318 //
3319 // The implementation avoids pointless extra computations when the two
3320 // addrec's are of different length (mathematically, it's equivalent to
3321 // an infinite stream of zeros on the right).
3322 bool OpsModified = false;
3323 for (unsigned OtherIdx = Idx+1;
3324 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Val: Ops[OtherIdx]);
3325 ++OtherIdx) {
3326 const SCEVAddRecExpr *OtherAddRec =
3327 dyn_cast<SCEVAddRecExpr>(Val: Ops[OtherIdx]);
3328 if (!OtherAddRec || OtherAddRec->getLoop() != AddRec->getLoop())
3329 continue;
3330
3331 // Limit max number of arguments to avoid creation of unreasonably big
3332 // SCEVAddRecs with very complex operands.
3333 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3334 MaxAddRecSize || hasHugeExpression(Ops: {AddRec, OtherAddRec}))
3335 continue;
3336
3337 bool Overflow = false;
3338 Type *Ty = AddRec->getType();
3339 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3340 SmallVector<const SCEV*, 7> AddRecOps;
3341 for (int x = 0, xe = AddRec->getNumOperands() +
3342 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3343 SmallVector <const SCEV *, 7> SumOps;
3344 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3345 uint64_t Coeff1 = Choose(n: x, k: 2*x - y, Overflow);
3346 for (int z = std::max(a: y-x, b: y-(int)AddRec->getNumOperands()+1),
3347 ze = std::min(a: x+1, b: (int)OtherAddRec->getNumOperands());
3348 z < ze && !Overflow; ++z) {
3349 uint64_t Coeff2 = Choose(n: 2*x - y, k: x-z, Overflow);
3350 uint64_t Coeff;
3351 if (LargerThan64Bits)
3352 Coeff = umul_ov(i: Coeff1, j: Coeff2, Overflow);
3353 else
3354 Coeff = Coeff1*Coeff2;
3355 const SCEV *CoeffTerm = getConstant(Ty, V: Coeff);
3356 const SCEV *Term1 = AddRec->getOperand(i: y-z);
3357 const SCEV *Term2 = OtherAddRec->getOperand(i: z);
3358 SumOps.push_back(Elt: getMulExpr(Op0: CoeffTerm, Op1: Term1, Op2: Term2,
3359 Flags: SCEV::FlagAnyWrap, Depth: Depth + 1));
3360 }
3361 }
3362 if (SumOps.empty())
3363 SumOps.push_back(Elt: getZero(Ty));
3364 AddRecOps.push_back(Elt: getAddExpr(Ops&: SumOps, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1));
3365 }
3366 if (!Overflow) {
3367 const SCEV *NewAddRec = getAddRecExpr(Operands&: AddRecOps, L: AddRec->getLoop(),
3368 Flags: SCEV::FlagAnyWrap);
3369 if (Ops.size() == 2) return NewAddRec;
3370 Ops[Idx] = NewAddRec;
3371 Ops.erase(CI: Ops.begin() + OtherIdx); --OtherIdx;
3372 OpsModified = true;
3373 AddRec = dyn_cast<SCEVAddRecExpr>(Val: NewAddRec);
3374 if (!AddRec)
3375 break;
3376 }
3377 }
3378 if (OpsModified)
3379 return getMulExpr(Ops, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1);
3380
3381 // Otherwise couldn't fold anything into this recurrence. Move onto the
3382 // next one.
3383 }
3384
3385 // Okay, it looks like we really DO need an mul expr. Check to see if we
3386 // already have one, otherwise create a new one.
3387 return getOrCreateMulExpr(Ops, Flags: ComputeFlags(Ops));
3388}
3389
3390/// Represents an unsigned remainder expression based on unsigned division.
3391const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3392 const SCEV *RHS) {
3393 assert(getEffectiveSCEVType(LHS->getType()) ==
3394 getEffectiveSCEVType(RHS->getType()) &&
3395 "SCEVURemExpr operand types don't match!");
3396
3397 // Short-circuit easy cases
3398 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Val: RHS)) {
3399 // If constant is one, the result is trivial
3400 if (RHSC->getValue()->isOne())
3401 return getZero(Ty: LHS->getType()); // X urem 1 --> 0
3402
3403 // If constant is a power of two, fold into a zext(trunc(LHS)).
3404 if (RHSC->getAPInt().isPowerOf2()) {
3405 Type *FullTy = LHS->getType();
3406 Type *TruncTy =
3407 IntegerType::get(C&: getContext(), NumBits: RHSC->getAPInt().logBase2());
3408 return getZeroExtendExpr(Op: getTruncateExpr(Op: LHS, Ty: TruncTy), Ty: FullTy);
3409 }
3410 }
3411
3412 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3413 const SCEV *UDiv = getUDivExpr(LHS, RHS);
3414 const SCEV *Mult = getMulExpr(LHS: UDiv, RHS, Flags: SCEV::FlagNUW);
3415 return getMinusSCEV(LHS, RHS: Mult, Flags: SCEV::FlagNUW);
3416}
3417
3418/// Get a canonical unsigned division expression, or something simpler if
3419/// possible.
3420const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3421 const SCEV *RHS) {
3422 assert(!LHS->getType()->isPointerTy() &&
3423 "SCEVUDivExpr operand can't be pointer!");
3424 assert(LHS->getType() == RHS->getType() &&
3425 "SCEVUDivExpr operand types don't match!");
3426
3427 FoldingSetNodeID ID;
3428 ID.AddInteger(I: scUDivExpr);
3429 ID.AddPointer(Ptr: LHS);
3430 ID.AddPointer(Ptr: RHS);
3431 void *IP = nullptr;
3432 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP))
3433 return S;
3434
3435 // 0 udiv Y == 0
3436 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Val: LHS))
3437 if (LHSC->getValue()->isZero())
3438 return LHS;
3439
3440 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Val: RHS)) {
3441 if (RHSC->getValue()->isOne())
3442 return LHS; // X udiv 1 --> x
3443 // If the denominator is zero, the result of the udiv is undefined. Don't
3444 // try to analyze it, because the resolution chosen here may differ from
3445 // the resolution chosen in other parts of the compiler.
3446 if (!RHSC->getValue()->isZero()) {
3447 // Determine if the division can be folded into the operands of
3448 // its operands.
3449 // TODO: Generalize this to non-constants by using known-bits information.
3450 Type *Ty = LHS->getType();
3451 unsigned LZ = RHSC->getAPInt().countl_zero();
3452 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3453 // For non-power-of-two values, effectively round the value up to the
3454 // nearest power of two.
3455 if (!RHSC->getAPInt().isPowerOf2())
3456 ++MaxShiftAmt;
3457 IntegerType *ExtTy =
3458 IntegerType::get(C&: getContext(), NumBits: getTypeSizeInBits(Ty) + MaxShiftAmt);
3459 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: LHS))
3460 if (const SCEVConstant *Step =
3461 dyn_cast<SCEVConstant>(Val: AR->getStepRecurrence(SE&: *this))) {
3462 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3463 const APInt &StepInt = Step->getAPInt();
3464 const APInt &DivInt = RHSC->getAPInt();
3465 if (!StepInt.urem(RHS: DivInt) &&
3466 getZeroExtendExpr(Op: AR, Ty: ExtTy) ==
3467 getAddRecExpr(Start: getZeroExtendExpr(Op: AR->getStart(), Ty: ExtTy),
3468 Step: getZeroExtendExpr(Op: Step, Ty: ExtTy),
3469 L: AR->getLoop(), Flags: SCEV::FlagAnyWrap)) {
3470 SmallVector<const SCEV *, 4> Operands;
3471 for (const SCEV *Op : AR->operands())
3472 Operands.push_back(Elt: getUDivExpr(LHS: Op, RHS));
3473 return getAddRecExpr(Operands, L: AR->getLoop(), Flags: SCEV::FlagNW);
3474 }
3475 /// Get a canonical UDivExpr for a recurrence.
3476 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3477 // We can currently only fold X%N if X is constant.
3478 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Val: AR->getStart());
3479 if (StartC && !DivInt.urem(RHS: StepInt) &&
3480 getZeroExtendExpr(Op: AR, Ty: ExtTy) ==
3481 getAddRecExpr(Start: getZeroExtendExpr(Op: AR->getStart(), Ty: ExtTy),
3482 Step: getZeroExtendExpr(Op: Step, Ty: ExtTy),
3483 L: AR->getLoop(), Flags: SCEV::FlagAnyWrap)) {
3484 const APInt &StartInt = StartC->getAPInt();
3485 const APInt &StartRem = StartInt.urem(RHS: StepInt);
3486 if (StartRem != 0) {
3487 const SCEV *NewLHS =
3488 getAddRecExpr(Start: getConstant(Val: StartInt - StartRem), Step,
3489 L: AR->getLoop(), Flags: SCEV::FlagNW);
3490 if (LHS != NewLHS) {
3491 LHS = NewLHS;
3492
3493 // Reset the ID to include the new LHS, and check if it is
3494 // already cached.
3495 ID.clear();
3496 ID.AddInteger(I: scUDivExpr);
3497 ID.AddPointer(Ptr: LHS);
3498 ID.AddPointer(Ptr: RHS);
3499 IP = nullptr;
3500 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP))
3501 return S;
3502 }
3503 }
3504 }
3505 }
3506 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3507 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Val: LHS)) {
3508 SmallVector<const SCEV *, 4> Operands;
3509 for (const SCEV *Op : M->operands())
3510 Operands.push_back(Elt: getZeroExtendExpr(Op, Ty: ExtTy));
3511 if (getZeroExtendExpr(Op: M, Ty: ExtTy) == getMulExpr(Ops&: Operands))
3512 // Find an operand that's safely divisible.
3513 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3514 const SCEV *Op = M->getOperand(i);
3515 const SCEV *Div = getUDivExpr(LHS: Op, RHS: RHSC);
3516 if (!isa<SCEVUDivExpr>(Val: Div) && getMulExpr(LHS: Div, RHS: RHSC) == Op) {
3517 Operands = SmallVector<const SCEV *, 4>(M->operands());
3518 Operands[i] = Div;
3519 return getMulExpr(Ops&: Operands);
3520 }
3521 }
3522 }
3523
3524 // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3525 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(Val: LHS)) {
3526 if (auto *DivisorConstant =
3527 dyn_cast<SCEVConstant>(Val: OtherDiv->getRHS())) {
3528 bool Overflow = false;
3529 APInt NewRHS =
3530 DivisorConstant->getAPInt().umul_ov(RHS: RHSC->getAPInt(), Overflow);
3531 if (Overflow) {
3532 return getConstant(Ty: RHSC->getType(), V: 0, isSigned: false);
3533 }
3534 return getUDivExpr(LHS: OtherDiv->getLHS(), RHS: getConstant(Val: NewRHS));
3535 }
3536 }
3537
3538 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3539 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Val: LHS)) {
3540 SmallVector<const SCEV *, 4> Operands;
3541 for (const SCEV *Op : A->operands())
3542 Operands.push_back(Elt: getZeroExtendExpr(Op, Ty: ExtTy));
3543 if (getZeroExtendExpr(Op: A, Ty: ExtTy) == getAddExpr(Ops&: Operands)) {
3544 Operands.clear();
3545 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3546 const SCEV *Op = getUDivExpr(LHS: A->getOperand(i), RHS);
3547 if (isa<SCEVUDivExpr>(Val: Op) ||
3548 getMulExpr(LHS: Op, RHS) != A->getOperand(i))
3549 break;
3550 Operands.push_back(Elt: Op);
3551 }
3552 if (Operands.size() == A->getNumOperands())
3553 return getAddExpr(Ops&: Operands);
3554 }
3555 }
3556
3557 // Fold if both operands are constant.
3558 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Val: LHS))
3559 return getConstant(Val: LHSC->getAPInt().udiv(RHS: RHSC->getAPInt()));
3560 }
3561 }
3562
3563 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3564 // changes). Make sure we get a new one.
3565 IP = nullptr;
3566 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP)) return S;
3567 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(Allocator&: SCEVAllocator),
3568 LHS, RHS);
3569 UniqueSCEVs.InsertNode(N: S, InsertPos: IP);
3570 registerUser(User: S, Ops: {LHS, RHS});
3571 return S;
3572}
3573
3574APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3575 APInt A = C1->getAPInt().abs();
3576 APInt B = C2->getAPInt().abs();
3577 uint32_t ABW = A.getBitWidth();
3578 uint32_t BBW = B.getBitWidth();
3579
3580 if (ABW > BBW)
3581 B = B.zext(width: ABW);
3582 else if (ABW < BBW)
3583 A = A.zext(width: BBW);
3584
3585 return APIntOps::GreatestCommonDivisor(A: std::move(A), B: std::move(B));
3586}
3587
3588/// Get a canonical unsigned division expression, or something simpler if
3589/// possible. There is no representation for an exact udiv in SCEV IR, but we
3590/// can attempt to remove factors from the LHS and RHS. We can't do this when
3591/// it's not exact because the udiv may be clearing bits.
3592const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3593 const SCEV *RHS) {
3594 // TODO: we could try to find factors in all sorts of things, but for now we
3595 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3596 // end of this file for inspiration.
3597
3598 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Val: LHS);
3599 if (!Mul || !Mul->hasNoUnsignedWrap())
3600 return getUDivExpr(LHS, RHS);
3601
3602 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(Val: RHS)) {
3603 // If the mulexpr multiplies by a constant, then that constant must be the
3604 // first element of the mulexpr.
3605 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Val: Mul->getOperand(i: 0))) {
3606 if (LHSCst == RHSCst) {
3607 SmallVector<const SCEV *, 2> Operands(drop_begin(RangeOrContainer: Mul->operands()));
3608 return getMulExpr(Ops&: Operands);
3609 }
3610
3611 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3612 // that there's a factor provided by one of the other terms. We need to
3613 // check.
3614 APInt Factor = gcd(C1: LHSCst, C2: RHSCst);
3615 if (!Factor.isIntN(N: 1)) {
3616 LHSCst =
3617 cast<SCEVConstant>(Val: getConstant(Val: LHSCst->getAPInt().udiv(RHS: Factor)));
3618 RHSCst =
3619 cast<SCEVConstant>(Val: getConstant(Val: RHSCst->getAPInt().udiv(RHS: Factor)));
3620 SmallVector<const SCEV *, 2> Operands;
3621 Operands.push_back(Elt: LHSCst);
3622 append_range(C&: Operands, R: Mul->operands().drop_front());
3623 LHS = getMulExpr(Ops&: Operands);
3624 RHS = RHSCst;
3625 Mul = dyn_cast<SCEVMulExpr>(Val: LHS);
3626 if (!Mul)
3627 return getUDivExactExpr(LHS, RHS);
3628 }
3629 }
3630 }
3631
3632 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3633 if (Mul->getOperand(i) == RHS) {
3634 SmallVector<const SCEV *, 2> Operands;
3635 append_range(C&: Operands, R: Mul->operands().take_front(N: i));
3636 append_range(C&: Operands, R: Mul->operands().drop_front(N: i + 1));
3637 return getMulExpr(Ops&: Operands);
3638 }
3639 }
3640
3641 return getUDivExpr(LHS, RHS);
3642}
3643
3644/// Get an add recurrence expression for the specified loop. Simplify the
3645/// expression as much as possible.
3646const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3647 const Loop *L,
3648 SCEV::NoWrapFlags Flags) {
3649 SmallVector<const SCEV *, 4> Operands;
3650 Operands.push_back(Elt: Start);
3651 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Val: Step))
3652 if (StepChrec->getLoop() == L) {
3653 append_range(C&: Operands, R: StepChrec->operands());
3654 return getAddRecExpr(Operands, L, Flags: maskFlags(Flags, Mask: SCEV::FlagNW));
3655 }
3656
3657 Operands.push_back(Elt: Step);
3658 return getAddRecExpr(Operands, L, Flags);
3659}
3660
3661/// Get an add recurrence expression for the specified loop. Simplify the
3662/// expression as much as possible.
3663const SCEV *
3664ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3665 const Loop *L, SCEV::NoWrapFlags Flags) {
3666 if (Operands.size() == 1) return Operands[0];
3667#ifndef NDEBUG
3668 Type *ETy = getEffectiveSCEVType(Ty: Operands[0]->getType());
3669 for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
3670 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3671 "SCEVAddRecExpr operand types don't match!");
3672 assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer");
3673 }
3674 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3675 assert(isAvailableAtLoopEntry(Operands[i], L) &&
3676 "SCEVAddRecExpr operand is not available at loop entry!");
3677#endif
3678
3679 if (Operands.back()->isZero()) {
3680 Operands.pop_back();
3681 return getAddRecExpr(Operands, L, Flags: SCEV::FlagAnyWrap); // {X,+,0} --> X
3682 }
3683
3684 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3685 // use that information to infer NUW and NSW flags. However, computing a
3686 // BE count requires calling getAddRecExpr, so we may not yet have a
3687 // meaningful BE count at this point (and if we don't, we'd be stuck
3688 // with a SCEVCouldNotCompute as the cached BE count).
3689
3690 Flags = StrengthenNoWrapFlags(SE: this, Type: scAddRecExpr, Ops: Operands, Flags);
3691
3692 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3693 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Val: Operands[0])) {
3694 const Loop *NestedLoop = NestedAR->getLoop();
3695 if (L->contains(L: NestedLoop)
3696 ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3697 : (!NestedLoop->contains(L) &&
3698 DT.dominates(A: L->getHeader(), B: NestedLoop->getHeader()))) {
3699 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands());
3700 Operands[0] = NestedAR->getStart();
3701 // AddRecs require their operands be loop-invariant with respect to their
3702 // loops. Don't perform this transformation if it would break this
3703 // requirement.
3704 bool AllInvariant = all_of(
3705 Range&: Operands, P: [&](const SCEV *Op) { return isLoopInvariant(S: Op, L); });
3706
3707 if (AllInvariant) {
3708 // Create a recurrence for the outer loop with the same step size.
3709 //
3710 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3711 // inner recurrence has the same property.
3712 SCEV::NoWrapFlags OuterFlags =
3713 maskFlags(Flags, Mask: SCEV::FlagNW | NestedAR->getNoWrapFlags());
3714
3715 NestedOperands[0] = getAddRecExpr(Operands, L, Flags: OuterFlags);
3716 AllInvariant = all_of(Range&: NestedOperands, P: [&](const SCEV *Op) {
3717 return isLoopInvariant(S: Op, L: NestedLoop);
3718 });
3719
3720 if (AllInvariant) {
3721 // Ok, both add recurrences are valid after the transformation.
3722 //
3723 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3724 // the outer recurrence has the same property.
3725 SCEV::NoWrapFlags InnerFlags =
3726 maskFlags(Flags: NestedAR->getNoWrapFlags(), Mask: SCEV::FlagNW | Flags);
3727 return getAddRecExpr(Operands&: NestedOperands, L: NestedLoop, Flags: InnerFlags);
3728 }
3729 }
3730 // Reset Operands to its original state.
3731 Operands[0] = NestedAR;
3732 }
3733 }
3734
3735 // Okay, it looks like we really DO need an addrec expr. Check to see if we
3736 // already have one, otherwise create a new one.
3737 return getOrCreateAddRecExpr(Ops: Operands, L, Flags);
3738}
3739
3740const SCEV *
3741ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3742 const SmallVectorImpl<const SCEV *> &IndexExprs) {
3743 const SCEV *BaseExpr = getSCEV(V: GEP->getPointerOperand());
3744 // getSCEV(Base)->getType() has the same address space as Base->getType()
3745 // because SCEV::getType() preserves the address space.
3746 Type *IntIdxTy = getEffectiveSCEVType(Ty: BaseExpr->getType());
3747 const bool AssumeInBoundsFlags = [&]() {
3748 if (!GEP->isInBounds())
3749 return false;
3750
3751 // We'd like to propagate flags from the IR to the corresponding SCEV nodes,
3752 // but to do that, we have to ensure that said flag is valid in the entire
3753 // defined scope of the SCEV.
3754 auto *GEPI = dyn_cast<Instruction>(Val: GEP);
3755 // TODO: non-instructions have global scope. We might be able to prove
3756 // some global scope cases
3757 return GEPI && isSCEVExprNeverPoison(I: GEPI);
3758 }();
3759
3760 SCEV::NoWrapFlags OffsetWrap =
3761 AssumeInBoundsFlags ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3762
3763 Type *CurTy = GEP->getType();
3764 bool FirstIter = true;
3765 SmallVector<const SCEV *, 4> Offsets;
3766 for (const SCEV *IndexExpr : IndexExprs) {
3767 // Compute the (potentially symbolic) offset in bytes for this index.
3768 if (StructType *STy = dyn_cast<StructType>(Val: CurTy)) {
3769 // For a struct, add the member offset.
3770 ConstantInt *Index = cast<SCEVConstant>(Val: IndexExpr)->getValue();
3771 unsigned FieldNo = Index->getZExtValue();
3772 const SCEV *FieldOffset = getOffsetOfExpr(IntTy: IntIdxTy, STy, FieldNo);
3773 Offsets.push_back(Elt: FieldOffset);
3774
3775 // Update CurTy to the type of the field at Index.
3776 CurTy = STy->getTypeAtIndex(V: Index);
3777 } else {
3778 // Update CurTy to its element type.
3779 if (FirstIter) {
3780 assert(isa<PointerType>(CurTy) &&
3781 "The first index of a GEP indexes a pointer");
3782 CurTy = GEP->getSourceElementType();
3783 FirstIter = false;
3784 } else {
3785 CurTy = GetElementPtrInst::getTypeAtIndex(Ty: CurTy, Idx: (uint64_t)0);
3786 }
3787 // For an array, add the element offset, explicitly scaled.
3788 const SCEV *ElementSize = getSizeOfExpr(IntTy: IntIdxTy, AllocTy: CurTy);
3789 // Getelementptr indices are signed.
3790 IndexExpr = getTruncateOrSignExtend(V: IndexExpr, Ty: IntIdxTy);
3791
3792 // Multiply the index by the element size to compute the element offset.
3793 const SCEV *LocalOffset = getMulExpr(LHS: IndexExpr, RHS: ElementSize, Flags: OffsetWrap);
3794 Offsets.push_back(Elt: LocalOffset);
3795 }
3796 }
3797
3798 // Handle degenerate case of GEP without offsets.
3799 if (Offsets.empty())
3800 return BaseExpr;
3801
3802 // Add the offsets together, assuming nsw if inbounds.
3803 const SCEV *Offset = getAddExpr(Ops&: Offsets, OrigFlags: OffsetWrap);
3804 // Add the base address and the offset. We cannot use the nsw flag, as the
3805 // base address is unsigned. However, if we know that the offset is
3806 // non-negative, we can use nuw.
3807 SCEV::NoWrapFlags BaseWrap = AssumeInBoundsFlags && isKnownNonNegative(S: Offset)
3808 ? SCEV::FlagNUW : SCEV::FlagAnyWrap;
3809 auto *GEPExpr = getAddExpr(LHS: BaseExpr, RHS: Offset, Flags: BaseWrap);
3810 assert(BaseExpr->getType() == GEPExpr->getType() &&
3811 "GEP should not change type mid-flight.");
3812 return GEPExpr;
3813}
3814
3815SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType,
3816 ArrayRef<const SCEV *> Ops) {
3817 FoldingSetNodeID ID;
3818 ID.AddInteger(I: SCEVType);
3819 for (const SCEV *Op : Ops)
3820 ID.AddPointer(Ptr: Op);
3821 void *IP = nullptr;
3822 return UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP);
3823}
3824
3825const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) {
3826 SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3827 return getSMaxExpr(LHS: Op, RHS: getNegativeSCEV(V: Op, Flags));
3828}
3829
3830const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind,
3831 SmallVectorImpl<const SCEV *> &Ops) {
3832 assert(SCEVMinMaxExpr::isMinMaxType(Kind) && "Not a SCEVMinMaxExpr!");
3833 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3834 if (Ops.size() == 1) return Ops[0];
3835#ifndef NDEBUG
3836 Type *ETy = getEffectiveSCEVType(Ty: Ops[0]->getType());
3837 for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
3838 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3839 "Operand types don't match!");
3840 assert(Ops[0]->getType()->isPointerTy() ==
3841 Ops[i]->getType()->isPointerTy() &&
3842 "min/max should be consistently pointerish");
3843 }
3844#endif
3845
3846 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3847 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3848
3849 // Sort by complexity, this groups all similar expression types together.
3850 GroupByComplexity(Ops, LI: &LI, DT);
3851
3852 // Check if we have created the same expression before.
3853 if (const SCEV *S = findExistingSCEVInCache(SCEVType: Kind, Ops)) {
3854 return S;
3855 }
3856
3857 // If there are any constants, fold them together.
3858 unsigned Idx = 0;
3859 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Val: Ops[0])) {
3860 ++Idx;
3861 assert(Idx < Ops.size());
3862 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3863 switch (Kind) {
3864 case scSMaxExpr:
3865 return APIntOps::smax(A: LHS, B: RHS);
3866 case scSMinExpr:
3867 return APIntOps::smin(A: LHS, B: RHS);
3868 case scUMaxExpr:
3869 return APIntOps::umax(A: LHS, B: RHS);
3870 case scUMinExpr:
3871 return APIntOps::umin(A: LHS, B: RHS);
3872 default:
3873 llvm_unreachable("Unknown SCEV min/max opcode");
3874 }
3875 };
3876
3877 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Val: Ops[Idx])) {
3878 // We found two constants, fold them together!
3879 ConstantInt *Fold = ConstantInt::get(
3880 Context&: getContext(), V: FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3881 Ops[0] = getConstant(V: Fold);
3882 Ops.erase(CI: Ops.begin()+1); // Erase the folded element
3883 if (Ops.size() == 1) return Ops[0];
3884 LHSC = cast<SCEVConstant>(Val: Ops[0]);
3885 }
3886
3887 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3888 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3889
3890 if (IsMax ? IsMinV : IsMaxV) {
3891 // If we are left with a constant minimum(/maximum)-int, strip it off.
3892 Ops.erase(CI: Ops.begin());
3893 --Idx;
3894 } else if (IsMax ? IsMaxV : IsMinV) {
3895 // If we have a max(/min) with a constant maximum(/minimum)-int,
3896 // it will always be the extremum.
3897 return LHSC;
3898 }
3899
3900 if (Ops.size() == 1) return Ops[0];
3901 }
3902
3903 // Find the first operation of the same kind
3904 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3905 ++Idx;
3906
3907 // Check to see if one of the operands is of the same kind. If so, expand its
3908 // operands onto our operand list, and recurse to simplify.
3909 if (Idx < Ops.size()) {
3910 bool DeletedAny = false;
3911 while (Ops[Idx]->getSCEVType() == Kind) {
3912 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Val: Ops[Idx]);
3913 Ops.erase(CI: Ops.begin()+Idx);
3914 append_range(C&: Ops, R: SMME->operands());
3915 DeletedAny = true;
3916 }
3917
3918 if (DeletedAny)
3919 return getMinMaxExpr(Kind, Ops);
3920 }
3921
3922 // Okay, check to see if the same value occurs in the operand list twice. If
3923 // so, delete one. Since we sorted the list, these values are required to
3924 // be adjacent.
3925 llvm::CmpInst::Predicate GEPred =
3926 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3927 llvm::CmpInst::Predicate LEPred =
3928 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3929 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3930 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3931 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3932 if (Ops[i] == Ops[i + 1] ||
3933 isKnownViaNonRecursiveReasoning(Pred: FirstPred, LHS: Ops[i], RHS: Ops[i + 1])) {
3934 // X op Y op Y --> X op Y
3935 // X op Y --> X, if we know X, Y are ordered appropriately
3936 Ops.erase(CS: Ops.begin() + i + 1, CE: Ops.begin() + i + 2);
3937 --i;
3938 --e;
3939 } else if (isKnownViaNonRecursiveReasoning(Pred: SecondPred, LHS: Ops[i],
3940 RHS: Ops[i + 1])) {
3941 // X op Y --> Y, if we know X, Y are ordered appropriately
3942 Ops.erase(CS: Ops.begin() + i, CE: Ops.begin() + i + 1);
3943 --i;
3944 --e;
3945 }
3946 }
3947
3948 if (Ops.size() == 1) return Ops[0];
3949
3950 assert(!Ops.empty() && "Reduced smax down to nothing!");
3951
3952 // Okay, it looks like we really DO need an expr. Check to see if we
3953 // already have one, otherwise create a new one.
3954 FoldingSetNodeID ID;
3955 ID.AddInteger(I: Kind);
3956 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3957 ID.AddPointer(Ptr: Ops[i]);
3958 void *IP = nullptr;
3959 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP);
3960 if (ExistingSCEV)
3961 return ExistingSCEV;
3962 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Num: Ops.size());
3963 std::uninitialized_copy(first: Ops.begin(), last: Ops.end(), result: O);
3964 SCEV *S = new (SCEVAllocator)
3965 SCEVMinMaxExpr(ID.Intern(Allocator&: SCEVAllocator), Kind, O, Ops.size());
3966
3967 UniqueSCEVs.InsertNode(N: S, InsertPos: IP);
3968 registerUser(User: S, Ops);
3969 return S;
3970}
3971
3972namespace {
3973
3974class SCEVSequentialMinMaxDeduplicatingVisitor final
3975 : public SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor,
3976 std::optional<const SCEV *>> {
3977 using RetVal = std::optional<const SCEV *>;
3978 using Base = SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, RetVal>;
3979
3980 ScalarEvolution &SE;
3981 const SCEVTypes RootKind; // Must be a sequential min/max expression.
3982 const SCEVTypes NonSequentialRootKind; // Non-sequential variant of RootKind.
3983 SmallPtrSet<const SCEV *, 16> SeenOps;
3984
3985 bool canRecurseInto(SCEVTypes Kind) const {
3986 // We can only recurse into the SCEV expression of the same effective type
3987 // as the type of our root SCEV expression.
3988 return RootKind == Kind || NonSequentialRootKind == Kind;
3989 };
3990
3991 RetVal visitAnyMinMaxExpr(const SCEV *S) {
3992 assert((isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) &&
3993 "Only for min/max expressions.");
3994 SCEVTypes Kind = S->getSCEVType();
3995
3996 if (!canRecurseInto(Kind))
3997 return S;
3998
3999 auto *NAry = cast<SCEVNAryExpr>(Val: S);
4000 SmallVector<const SCEV *> NewOps;
4001 bool Changed = visit(Kind, OrigOps: NAry->operands(), NewOps);
4002
4003 if (!Changed)
4004 return S;
4005 if (NewOps.empty())
4006 return std::nullopt;
4007
4008 return isa<SCEVSequentialMinMaxExpr>(Val: S)
4009 ? SE.getSequentialMinMaxExpr(Kind, Operands&: NewOps)
4010 : SE.getMinMaxExpr(Kind, Ops&: NewOps);
4011 }
4012
4013 RetVal visit(const SCEV *S) {
4014 // Has the whole operand been seen already?
4015 if (!SeenOps.insert(Ptr: S).second)
4016 return std::nullopt;
4017 return Base::visit(S);
4018 }
4019
4020public:
4021 SCEVSequentialMinMaxDeduplicatingVisitor(ScalarEvolution &SE,
4022 SCEVTypes RootKind)
4023 : SE(SE), RootKind(RootKind),
4024 NonSequentialRootKind(
4025 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(
4026 Ty: RootKind)) {}
4027
4028 bool /*Changed*/ visit(SCEVTypes Kind, ArrayRef<const SCEV *> OrigOps,
4029 SmallVectorImpl<const SCEV *> &NewOps) {
4030 bool Changed = false;
4031 SmallVector<const SCEV *> Ops;
4032 Ops.reserve(N: OrigOps.size());
4033
4034 for (const SCEV *Op : OrigOps) {
4035 RetVal NewOp = visit(S: Op);
4036 if (NewOp != Op)
4037 Changed = true;
4038 if (NewOp)
4039 Ops.emplace_back(Args&: *NewOp);
4040 }
4041
4042 if (Changed)
4043 NewOps = std::move(Ops);
4044 return Changed;
4045 }
4046
4047 RetVal visitConstant(const SCEVConstant *Constant) { return Constant; }
4048
4049 RetVal visitVScale(const SCEVVScale *VScale) { return VScale; }
4050
4051 RetVal visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) { return Expr; }
4052
4053 RetVal visitTruncateExpr(const SCEVTruncateExpr *Expr) { return Expr; }
4054
4055 RetVal visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { return Expr; }
4056
4057 RetVal visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { return Expr; }
4058
4059 RetVal visitAddExpr(const SCEVAddExpr *Expr) { return Expr; }
4060
4061 RetVal visitMulExpr(const SCEVMulExpr *Expr) { return Expr; }
4062
4063 RetVal visitUDivExpr(const SCEVUDivExpr *Expr) { return Expr; }
4064
4065 RetVal visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
4066
4067 RetVal visitSMaxExpr(const SCEVSMaxExpr *Expr) {
4068 return visitAnyMinMaxExpr(S: Expr);
4069 }
4070
4071 RetVal visitUMaxExpr(const SCEVUMaxExpr *Expr) {
4072 return visitAnyMinMaxExpr(S: Expr);
4073 }
4074
4075 RetVal visitSMinExpr(const SCEVSMinExpr *Expr) {
4076 return visitAnyMinMaxExpr(S: Expr);
4077 }
4078
4079 RetVal visitUMinExpr(const SCEVUMinExpr *Expr) {
4080 return visitAnyMinMaxExpr(S: Expr);
4081 }
4082
4083 RetVal visitSequentialUMinExpr(const SCEVSequentialUMinExpr *Expr) {
4084 return visitAnyMinMaxExpr(S: Expr);
4085 }
4086
4087 RetVal visitUnknown(const SCEVUnknown *Expr) { return Expr; }
4088
4089 RetVal visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { return Expr; }
4090};
4091
4092} // namespace
4093
4094static bool scevUnconditionallyPropagatesPoisonFromOperands(SCEVTypes Kind) {
4095 switch (Kind) {
4096 case scConstant:
4097 case scVScale:
4098 case scTruncate:
4099 case scZeroExtend:
4100 case scSignExtend:
4101 case scPtrToInt:
4102 case scAddExpr:
4103 case scMulExpr:
4104 case scUDivExpr:
4105 case scAddRecExpr:
4106 case scUMaxExpr:
4107 case scSMaxExpr:
4108 case scUMinExpr:
4109 case scSMinExpr:
4110 case scUnknown:
4111 // If any operand is poison, the whole expression is poison.
4112 return true;
4113 case scSequentialUMinExpr:
4114 // FIXME: if the *first* operand is poison, the whole expression is poison.
4115 return false; // Pessimistically, say that it does not propagate poison.
4116 case scCouldNotCompute:
4117 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
4118 }
4119 llvm_unreachable("Unknown SCEV kind!");
4120}
4121
4122namespace {
4123// The only way poison may be introduced in a SCEV expression is from a
4124// poison SCEVUnknown (ConstantExprs are also represented as SCEVUnknown,
4125// not SCEVConstant). Notably, nowrap flags in SCEV nodes can *not*
4126// introduce poison -- they encode guaranteed, non-speculated knowledge.
4127//
4128// Additionally, all SCEV nodes propagate poison from inputs to outputs,
4129// with the notable exception of umin_seq, where only poison from the first
4130// operand is (unconditionally) propagated.
4131struct SCEVPoisonCollector {
4132 bool LookThroughMaybePoisonBlocking;
4133 SmallPtrSet<const SCEVUnknown *, 4> MaybePoison;
4134 SCEVPoisonCollector(bool LookThroughMaybePoisonBlocking)
4135 : LookThroughMaybePoisonBlocking(LookThroughMaybePoisonBlocking) {}
4136
4137 bool follow(const SCEV *S) {
4138 if (!LookThroughMaybePoisonBlocking &&
4139 !scevUnconditionallyPropagatesPoisonFromOperands(Kind: S->getSCEVType()))
4140 return false;
4141
4142 if (auto *SU = dyn_cast<SCEVUnknown>(Val: S)) {
4143 if (!isGuaranteedNotToBePoison(V: SU->getValue()))
4144 MaybePoison.insert(Ptr: SU);
4145 }
4146 return true;
4147 }
4148 bool isDone() const { return false; }
4149};
4150} // namespace
4151
4152/// Return true if V is poison given that AssumedPoison is already poison.
4153static bool impliesPoison(const SCEV *AssumedPoison, const SCEV *S) {
4154 // First collect all SCEVs that might result in AssumedPoison to be poison.
4155 // We need to look through potentially poison-blocking operations here,
4156 // because we want to find all SCEVs that *might* result in poison, not only
4157 // those that are *required* to.
4158 SCEVPoisonCollector PC1(/* LookThroughMaybePoisonBlocking */ true);
4159 visitAll(Root: AssumedPoison, Visitor&: PC1);
4160
4161 // AssumedPoison is never poison. As the assumption is false, the implication
4162 // is true. Don't bother walking the other SCEV in this case.
4163 if (PC1.MaybePoison.empty())
4164 return true;
4165
4166 // Collect all SCEVs in S that, if poison, *will* result in S being poison
4167 // as well. We cannot look through potentially poison-blocking operations
4168 // here, as their arguments only *may* make the result poison.
4169 SCEVPoisonCollector PC2(/* LookThroughMaybePoisonBlocking */ false);
4170 visitAll(Root: S, Visitor&: PC2);
4171
4172 // Make sure that no matter which SCEV in PC1.MaybePoison is actually poison,
4173 // it will also make S poison by being part of PC2.MaybePoison.
4174 return all_of(Range&: PC1.MaybePoison, P: [&](const SCEVUnknown *S) {
4175 return PC2.MaybePoison.contains(Ptr: S);
4176 });
4177}
4178
4179void ScalarEvolution::getPoisonGeneratingValues(
4180 SmallPtrSetImpl<const Value *> &Result, const SCEV *S) {
4181 SCEVPoisonCollector PC(/* LookThroughMaybePoisonBlocking */ false);
4182 visitAll(Root: S, Visitor&: PC);
4183 for (const SCEVUnknown *SU : PC.MaybePoison)
4184 Result.insert(Ptr: SU->getValue());
4185}
4186
4187bool ScalarEvolution::canReuseInstruction(
4188 const SCEV *S, Instruction *I,
4189 SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts) {
4190 // If the instruction cannot be poison, it's always safe to reuse.
4191 if (programUndefinedIfPoison(Inst: I))
4192 return true;
4193
4194 // Otherwise, it is possible that I is more poisonous that S. Collect the
4195 // poison-contributors of S, and then check whether I has any additional
4196 // poison-contributors. Poison that is contributed through poison-generating
4197 // flags is handled by dropping those flags instead.
4198 SmallPtrSet<const Value *, 8> PoisonVals;
4199 getPoisonGeneratingValues(Result&: PoisonVals, S);
4200
4201 SmallVector<Value *> Worklist;
4202 SmallPtrSet<Value *, 8> Visited;
4203 Worklist.push_back(Elt: I);
4204 while (!Worklist.empty()) {
4205 Value *V = Worklist.pop_back_val();
4206 if (!Visited.insert(Ptr: V).second)
4207 continue;
4208
4209 // Avoid walking large instruction graphs.
4210 if (Visited.size() > 16)
4211 return false;
4212
4213 // Either the value can't be poison, or the S would also be poison if it
4214 // is.
4215 if (PoisonVals.contains(Ptr: V) || isGuaranteedNotToBePoison(V))
4216 continue;
4217
4218 auto *I = dyn_cast<Instruction>(Val: V);
4219 if (!I)
4220 return false;
4221
4222 // Disjoint or instructions are interpreted as adds by SCEV. However, we
4223 // can't replace an arbitrary add with disjoint or, even if we drop the
4224 // flag. We would need to convert the or into an add.
4225 if (auto *PDI = dyn_cast<PossiblyDisjointInst>(Val: I))
4226 if (PDI->isDisjoint())
4227 return false;
4228
4229 // FIXME: Ignore vscale, even though it technically could be poison. Do this
4230 // because SCEV currently assumes it can't be poison. Remove this special
4231 // case once we proper model when vscale can be poison.
4232 if (auto *II = dyn_cast<IntrinsicInst>(Val: I);
4233 II && II->getIntrinsicID() == Intrinsic::vscale)
4234 continue;
4235
4236 if (canCreatePoison(Op: cast<Operator>(Val: I), /*ConsiderFlagsAndMetadata*/ false))
4237 return false;
4238
4239 // If the instruction can't create poison, we can recurse to its operands.
4240 if (I->hasPoisonGeneratingFlagsOrMetadata())
4241 DropPoisonGeneratingInsts.push_back(Elt: I);
4242
4243 for (Value *Op : I->operands())
4244 Worklist.push_back(Elt: Op);
4245 }
4246 return true;
4247}
4248
4249const SCEV *
4250ScalarEvolution::getSequentialMinMaxExpr(SCEVTypes Kind,
4251 SmallVectorImpl<const SCEV *> &Ops) {
4252 assert(SCEVSequentialMinMaxExpr::isSequentialMinMaxType(Kind) &&
4253 "Not a SCEVSequentialMinMaxExpr!");
4254 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
4255 if (Ops.size() == 1)
4256 return Ops[0];
4257#ifndef NDEBUG
4258 Type *ETy = getEffectiveSCEVType(Ty: Ops[0]->getType());
4259 for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
4260 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
4261 "Operand types don't match!");
4262 assert(Ops[0]->getType()->isPointerTy() ==
4263 Ops[i]->getType()->isPointerTy() &&
4264 "min/max should be consistently pointerish");
4265 }
4266#endif
4267
4268 // Note that SCEVSequentialMinMaxExpr is *NOT* commutative,
4269 // so we can *NOT* do any kind of sorting of the expressions!
4270
4271 // Check if we have created the same expression before.
4272 if (const SCEV *S = findExistingSCEVInCache(SCEVType: Kind, Ops))
4273 return S;
4274
4275 // FIXME: there are *some* simplifications that we can do here.
4276
4277 // Keep only the first instance of an operand.
4278 {
4279 SCEVSequentialMinMaxDeduplicatingVisitor Deduplicator(*this, Kind);
4280 bool Changed = Deduplicator.visit(Kind, OrigOps: Ops, NewOps&: Ops);
4281 if (Changed)
4282 return getSequentialMinMaxExpr(Kind, Ops);
4283 }
4284
4285 // Check to see if one of the operands is of the same kind. If so, expand its
4286 // operands onto our operand list, and recurse to simplify.
4287 {
4288 unsigned Idx = 0;
4289 bool DeletedAny = false;
4290 while (Idx < Ops.size()) {
4291 if (Ops[Idx]->getSCEVType() != Kind) {
4292 ++Idx;
4293 continue;
4294 }
4295 const auto *SMME = cast<SCEVSequentialMinMaxExpr>(Val: Ops[Idx]);
4296 Ops.erase(CI: Ops.begin() + Idx);
4297 Ops.insert(I: Ops.begin() + Idx, From: SMME->operands().begin(),
4298 To: SMME->operands().end());
4299 DeletedAny = true;
4300 }
4301
4302 if (DeletedAny)
4303 return getSequentialMinMaxExpr(Kind, Ops);
4304 }
4305
4306 const SCEV *SaturationPoint;
4307 ICmpInst::Predicate Pred;
4308 switch (Kind) {
4309 case scSequentialUMinExpr:
4310 SaturationPoint = getZero(Ty: Ops[0]->getType());
4311 Pred = ICmpInst::ICMP_ULE;
4312 break;
4313 default:
4314 llvm_unreachable("Not a sequential min/max type.");
4315 }
4316
4317 for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
4318 // We can replace %x umin_seq %y with %x umin %y if either:
4319 // * %y being poison implies %x is also poison.
4320 // * %x cannot be the saturating value (e.g. zero for umin).
4321 if (::impliesPoison(AssumedPoison: Ops[i], S: Ops[i - 1]) ||
4322 isKnownViaNonRecursiveReasoning(Pred: ICmpInst::ICMP_NE, LHS: Ops[i - 1],
4323 RHS: SaturationPoint)) {
4324 SmallVector<const SCEV *> SeqOps = {Ops[i - 1], Ops[i]};
4325 Ops[i - 1] = getMinMaxExpr(
4326 Kind: SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(Ty: Kind),
4327 Ops&: SeqOps);
4328 Ops.erase(CI: Ops.begin() + i);
4329 return getSequentialMinMaxExpr(Kind, Ops);
4330 }
4331 // Fold %x umin_seq %y to %x if %x ule %y.
4332 // TODO: We might be able to prove the predicate for a later operand.
4333 if (isKnownViaNonRecursiveReasoning(Pred, LHS: Ops[i - 1], RHS: Ops[i])) {
4334 Ops.erase(CI: Ops.begin() + i);
4335 return getSequentialMinMaxExpr(Kind, Ops);
4336 }
4337 }
4338
4339 // Okay, it looks like we really DO need an expr. Check to see if we
4340 // already have one, otherwise create a new one.
4341 FoldingSetNodeID ID;
4342 ID.AddInteger(I: Kind);
4343 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
4344 ID.AddPointer(Ptr: Ops[i]);
4345 void *IP = nullptr;
4346 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP);
4347 if (ExistingSCEV)
4348 return ExistingSCEV;
4349
4350 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Num: Ops.size());
4351 std::uninitialized_copy(first: Ops.begin(), last: Ops.end(), result: O);
4352 SCEV *S = new (SCEVAllocator)
4353 SCEVSequentialMinMaxExpr(ID.Intern(Allocator&: SCEVAllocator), Kind, O, Ops.size());
4354
4355 UniqueSCEVs.InsertNode(N: S, InsertPos: IP);
4356 registerUser(User: S, Ops);
4357 return S;
4358}
4359
4360const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
4361 SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
4362 return getSMaxExpr(Operands&: Ops);
4363}
4364
4365const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
4366 return getMinMaxExpr(Kind: scSMaxExpr, Ops);
4367}
4368
4369const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
4370 SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
4371 return getUMaxExpr(Operands&: Ops);
4372}
4373
4374const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
4375 return getMinMaxExpr(Kind: scUMaxExpr, Ops);
4376}
4377
4378const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
4379 const SCEV *RHS) {
4380 SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4381 return getSMinExpr(Operands&: Ops);
4382}
4383
4384const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
4385 return getMinMaxExpr(Kind: scSMinExpr, Ops);
4386}
4387
4388const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, const SCEV *RHS,
4389 bool Sequential) {
4390 SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4391 return getUMinExpr(Operands&: Ops, Sequential);
4392}
4393
4394const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops,
4395 bool Sequential) {
4396 return Sequential ? getSequentialMinMaxExpr(Kind: scSequentialUMinExpr, Ops)
4397 : getMinMaxExpr(Kind: scUMinExpr, Ops);
4398}
4399
4400const SCEV *
4401ScalarEvolution::getSizeOfExpr(Type *IntTy, TypeSize Size) {
4402 const SCEV *Res = getConstant(Ty: IntTy, V: Size.getKnownMinValue());
4403 if (Size.isScalable())
4404 Res = getMulExpr(LHS: Res, RHS: getVScale(Ty: IntTy));
4405 return Res;
4406}
4407
4408const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
4409 return getSizeOfExpr(IntTy, Size: getDataLayout().getTypeAllocSize(Ty: AllocTy));
4410}
4411
4412const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) {
4413 return getSizeOfExpr(IntTy, Size: getDataLayout().getTypeStoreSize(Ty: StoreTy));
4414}
4415
4416const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
4417 StructType *STy,
4418 unsigned FieldNo) {
4419 // We can bypass creating a target-independent constant expression and then
4420 // folding it back into a ConstantInt. This is just a compile-time
4421 // optimization.
4422 const StructLayout *SL = getDataLayout().getStructLayout(Ty: STy);
4423 assert(!SL->getSizeInBits().isScalable() &&
4424 "Cannot get offset for structure containing scalable vector types");
4425 return getConstant(Ty: IntTy, V: SL->getElementOffset(Idx: FieldNo));
4426}
4427
4428const SCEV *ScalarEvolution::getUnknown(Value *V) {
4429 // Don't attempt to do anything other than create a SCEVUnknown object
4430 // here. createSCEV only calls getUnknown after checking for all other
4431 // interesting possibilities, and any other code that calls getUnknown
4432 // is doing so in order to hide a value from SCEV canonicalization.
4433
4434 FoldingSetNodeID ID;
4435 ID.AddInteger(I: scUnknown);
4436 ID.AddPointer(Ptr: V);
4437 void *IP = nullptr;
4438 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP)) {
4439 assert(cast<SCEVUnknown>(S)->getValue() == V &&
4440 "Stale SCEVUnknown in uniquing map!");
4441 return S;
4442 }
4443 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(Allocator&: SCEVAllocator), V, this,
4444 FirstUnknown);
4445 FirstUnknown = cast<SCEVUnknown>(Val: S);
4446 UniqueSCEVs.InsertNode(N: S, InsertPos: IP);
4447 return S;
4448}
4449
4450//===----------------------------------------------------------------------===//
4451// Basic SCEV Analysis and PHI Idiom Recognition Code
4452//
4453
4454/// Test if values of the given type are analyzable within the SCEV
4455/// framework. This primarily includes integer types, and it can optionally
4456/// include pointer types if the ScalarEvolution class has access to
4457/// target-specific information.
4458bool ScalarEvolution::isSCEVable(Type *Ty) const {
4459 // Integers and pointers are always SCEVable.
4460 return Ty->isIntOrPtrTy();
4461}
4462
4463/// Return the size in bits of the specified type, for which isSCEVable must
4464/// return true.
4465uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
4466 assert(isSCEVable(Ty) && "Type is not SCEVable!");
4467 if (Ty->isPointerTy())
4468 return getDataLayout().getIndexTypeSizeInBits(Ty);
4469 return getDataLayout().getTypeSizeInBits(Ty);
4470}
4471
4472/// Return a type with the same bitwidth as the given type and which represents
4473/// how SCEV will treat the given type, for which isSCEVable must return
4474/// true. For pointer types, this is the pointer index sized integer type.
4475Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
4476 assert(isSCEVable(Ty) && "Type is not SCEVable!");
4477
4478 if (Ty->isIntegerTy())
4479 return Ty;
4480
4481 // The only other support type is pointer.
4482 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
4483 return getDataLayout().getIndexType(PtrTy: Ty);
4484}
4485
4486Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
4487 return getTypeSizeInBits(Ty: T1) >= getTypeSizeInBits(Ty: T2) ? T1 : T2;
4488}
4489
4490bool ScalarEvolution::instructionCouldExistWithOperands(const SCEV *A,
4491 const SCEV *B) {
4492 /// For a valid use point to exist, the defining scope of one operand
4493 /// must dominate the other.
4494 bool PreciseA, PreciseB;
4495 auto *ScopeA = getDefiningScopeBound(Ops: {A}, Precise&: PreciseA);
4496 auto *ScopeB = getDefiningScopeBound(Ops: {B}, Precise&: PreciseB);
4497 if (!PreciseA || !PreciseB)
4498 // Can't tell.
4499 return false;
4500 return (ScopeA == ScopeB) || DT.dominates(Def: ScopeA, User: ScopeB) ||
4501 DT.dominates(Def: ScopeB, User: ScopeA);
4502}
4503
4504const SCEV *ScalarEvolution::getCouldNotCompute() {
4505 return CouldNotCompute.get();
4506}
4507
4508bool ScalarEvolution::checkValidity(const SCEV *S) const {
4509 bool ContainsNulls = SCEVExprContains(Root: S, Pred: [](const SCEV *S) {
4510 auto *SU = dyn_cast<SCEVUnknown>(Val: S);
4511 return SU && SU->getValue() == nullptr;
4512 });
4513
4514 return !ContainsNulls;
4515}
4516
4517bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
4518 HasRecMapType::iterator I = HasRecMap.find(Val: S);
4519 if (I != HasRecMap.end())
4520 return I->second;
4521
4522 bool FoundAddRec =
4523 SCEVExprContains(Root: S, Pred: [](const SCEV *S) { return isa<SCEVAddRecExpr>(Val: S); });
4524 HasRecMap.insert(KV: {S, FoundAddRec});
4525 return FoundAddRec;
4526}
4527
4528/// Return the ValueOffsetPair set for \p S. \p S can be represented
4529/// by the value and offset from any ValueOffsetPair in the set.
4530ArrayRef<Value *> ScalarEvolution::getSCEVValues(const SCEV *S) {
4531 ExprValueMapType::iterator SI = ExprValueMap.find_as(Val: S);
4532 if (SI == ExprValueMap.end())
4533 return std::nullopt;
4534 return SI->second.getArrayRef();
4535}
4536
4537/// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
4538/// cannot be used separately. eraseValueFromMap should be used to remove
4539/// V from ValueExprMap and ExprValueMap at the same time.
4540void ScalarEvolution::eraseValueFromMap(Value *V) {
4541 ValueExprMapType::iterator I = ValueExprMap.find_as(Val: V);
4542 if (I != ValueExprMap.end()) {
4543 auto EVIt = ExprValueMap.find(Val: I->second);
4544 bool Removed = EVIt->second.remove(X: V);
4545 (void) Removed;
4546 assert(Removed && "Value not in ExprValueMap?");
4547 ValueExprMap.erase(I);
4548 }
4549}
4550
4551void ScalarEvolution::insertValueToMap(Value *V, const SCEV *S) {
4552 // A recursive query may have already computed the SCEV. It should be
4553 // equivalent, but may not necessarily be exactly the same, e.g. due to lazily
4554 // inferred nowrap flags.
4555 auto It = ValueExprMap.find_as(Val: V);
4556 if (It == ValueExprMap.end()) {
4557 ValueExprMap.insert(KV: {SCEVCallbackVH(V, this), S});
4558 ExprValueMap[S].insert(X: V);
4559 }
4560}
4561
4562/// Return an existing SCEV if it exists, otherwise analyze the expression and
4563/// create a new one.
4564const SCEV *ScalarEvolution::getSCEV(Value *V) {
4565 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4566
4567 if (const SCEV *S = getExistingSCEV(V))
4568 return S;
4569 return createSCEVIter(V);
4570}
4571
4572const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
4573 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4574
4575 ValueExprMapType::iterator I = ValueExprMap.find_as(Val: V);
4576 if (I != ValueExprMap.end()) {
4577 const SCEV *S = I->second;
4578 assert(checkValidity(S) &&
4579 "existing SCEV has not been properly invalidated");
4580 return S;
4581 }
4582 return nullptr;
4583}
4584
4585/// Return a SCEV corresponding to -V = -1*V
4586const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
4587 SCEV::NoWrapFlags Flags) {
4588 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(Val: V))
4589 return getConstant(
4590 V: cast<ConstantInt>(Val: ConstantExpr::getNeg(C: VC->getValue())));
4591
4592 Type *Ty = V->getType();
4593 Ty = getEffectiveSCEVType(Ty);
4594 return getMulExpr(LHS: V, RHS: getMinusOne(Ty), Flags);
4595}
4596
4597/// If Expr computes ~A, return A else return nullptr
4598static const SCEV *MatchNotExpr(const SCEV *Expr) {
4599 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Val: Expr);
4600 if (!Add || Add->getNumOperands() != 2 ||
4601 !Add->getOperand(i: 0)->isAllOnesValue())
4602 return nullptr;
4603
4604 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Val: Add->getOperand(i: 1));
4605 if (!AddRHS || AddRHS->getNumOperands() != 2 ||
4606 !AddRHS->getOperand(i: 0)->isAllOnesValue())
4607 return nullptr;
4608
4609 return AddRHS->getOperand(i: 1);
4610}
4611
4612/// Return a SCEV corresponding to ~V = -1-V
4613const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
4614 assert(!V->getType()->isPointerTy() && "Can't negate pointer");
4615
4616 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(Val: V))
4617 return getConstant(
4618 V: cast<ConstantInt>(Val: ConstantExpr::getNot(C: VC->getValue())));
4619
4620 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
4621 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(Val: V)) {
4622 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
4623 SmallVector<const SCEV *, 2> MatchedOperands;
4624 for (const SCEV *Operand : MME->operands()) {
4625 const SCEV *Matched = MatchNotExpr(Expr: Operand);
4626 if (!Matched)
4627 return (const SCEV *)nullptr;
4628 MatchedOperands.push_back(Elt: Matched);
4629 }
4630 return getMinMaxExpr(Kind: SCEVMinMaxExpr::negate(T: MME->getSCEVType()),
4631 Ops&: MatchedOperands);
4632 };
4633 if (const SCEV *Replaced = MatchMinMaxNegation(MME))
4634 return Replaced;
4635 }
4636
4637 Type *Ty = V->getType();
4638 Ty = getEffectiveSCEVType(Ty);
4639 return getMinusSCEV(LHS: getMinusOne(Ty), RHS: V);
4640}
4641
4642const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) {
4643 assert(P->getType()->isPointerTy());
4644
4645 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Val: P)) {
4646 // The base of an AddRec is the first operand.
4647 SmallVector<const SCEV *> Ops{AddRec->operands()};
4648 Ops[0] = removePointerBase(P: Ops[0]);
4649 // Don't try to transfer nowrap flags for now. We could in some cases
4650 // (for example, if pointer operand of the AddRec is a SCEVUnknown).
4651 return getAddRecExpr(Operands&: Ops, L: AddRec->getLoop(), Flags: SCEV::FlagAnyWrap);
4652 }
4653 if (auto *Add = dyn_cast<SCEVAddExpr>(Val: P)) {
4654 // The base of an Add is the pointer operand.
4655 SmallVector<const SCEV *> Ops{Add->operands()};
4656 const SCEV **PtrOp = nullptr;
4657 for (const SCEV *&AddOp : Ops) {
4658 if (AddOp->getType()->isPointerTy()) {
4659 assert(!PtrOp && "Cannot have multiple pointer ops");
4660 PtrOp = &AddOp;
4661 }
4662 }
4663 *PtrOp = removePointerBase(P: *PtrOp);
4664 // Don't try to transfer nowrap flags for now. We could in some cases
4665 // (for example, if the pointer operand of the Add is a SCEVUnknown).
4666 return getAddExpr(Ops);
4667 }
4668 // Any other expression must be a pointer base.
4669 return getZero(Ty: P->getType());
4670}
4671
4672const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
4673 SCEV::NoWrapFlags Flags,
4674 unsigned Depth) {
4675 // Fast path: X - X --> 0.
4676 if (LHS == RHS)
4677 return getZero(Ty: LHS->getType());
4678
4679 // If we subtract two pointers with different pointer bases, bail.
4680 // Eventually, we're going to add an assertion to getMulExpr that we
4681 // can't multiply by a pointer.
4682 if (RHS->getType()->isPointerTy()) {
4683 if (!LHS->getType()->isPointerTy() ||
4684 getPointerBase(V: LHS) != getPointerBase(V: RHS))
4685 return getCouldNotCompute();
4686 LHS = removePointerBase(P: LHS);
4687 RHS = removePointerBase(P: RHS);
4688 }
4689
4690 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
4691 // makes it so that we cannot make much use of NUW.
4692 auto AddFlags = SCEV::FlagAnyWrap;
4693 const bool RHSIsNotMinSigned =
4694 !getSignedRangeMin(S: RHS).isMinSignedValue();
4695 if (hasFlags(Flags, TestFlags: SCEV::FlagNSW)) {
4696 // Let M be the minimum representable signed value. Then (-1)*RHS
4697 // signed-wraps if and only if RHS is M. That can happen even for
4698 // a NSW subtraction because e.g. (-1)*M signed-wraps even though
4699 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
4700 // (-1)*RHS, we need to prove that RHS != M.
4701 //
4702 // If LHS is non-negative and we know that LHS - RHS does not
4703 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4704 // either by proving that RHS > M or that LHS >= 0.
4705 if (RHSIsNotMinSigned || isKnownNonNegative(S: LHS)) {
4706 AddFlags = SCEV::FlagNSW;
4707 }
4708 }
4709
4710 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4711 // RHS is NSW and LHS >= 0.
4712 //
4713 // The difficulty here is that the NSW flag may have been proven
4714 // relative to a loop that is to be found in a recurrence in LHS and
4715 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4716 // larger scope than intended.
4717 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4718
4719 return getAddExpr(LHS, RHS: getNegativeSCEV(V: RHS, Flags: NegFlags), Flags: AddFlags, Depth);
4720}
4721
4722const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4723 unsigned Depth) {
4724 Type *SrcTy = V->getType();
4725 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4726 "Cannot truncate or zero extend with non-integer arguments!");
4727 if (getTypeSizeInBits(Ty: SrcTy) == getTypeSizeInBits(Ty))
4728 return V; // No conversion
4729 if (getTypeSizeInBits(Ty: SrcTy) > getTypeSizeInBits(Ty))
4730 return getTruncateExpr(Op: V, Ty, Depth);
4731 return getZeroExtendExpr(Op: V, Ty, Depth);
4732}
4733
4734const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4735 unsigned Depth) {
4736 Type *SrcTy = V->getType();
4737 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4738 "Cannot truncate or zero extend with non-integer arguments!");
4739 if (getTypeSizeInBits(Ty: SrcTy) == getTypeSizeInBits(Ty))
4740 return V; // No conversion
4741 if (getTypeSizeInBits(Ty: SrcTy) > getTypeSizeInBits(Ty))
4742 return getTruncateExpr(Op: V, Ty, Depth);
4743 return getSignExtendExpr(Op: V, Ty, Depth);
4744}
4745
4746const SCEV *
4747ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4748 Type *SrcTy = V->getType();
4749 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4750 "Cannot noop or zero extend with non-integer arguments!");
4751 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4752 "getNoopOrZeroExtend cannot truncate!");
4753 if (getTypeSizeInBits(Ty: SrcTy) == getTypeSizeInBits(Ty))
4754 return V; // No conversion
4755 return getZeroExtendExpr(Op: V, Ty);
4756}
4757
4758const SCEV *
4759ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4760 Type *SrcTy = V->getType();
4761 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4762 "Cannot noop or sign extend with non-integer arguments!");
4763 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4764 "getNoopOrSignExtend cannot truncate!");
4765 if (getTypeSizeInBits(Ty: SrcTy) == getTypeSizeInBits(Ty))
4766 return V; // No conversion
4767 return getSignExtendExpr(Op: V, Ty);
4768}
4769
4770const SCEV *
4771ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4772 Type *SrcTy = V->getType();
4773 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4774 "Cannot noop or any extend with non-integer arguments!");
4775 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4776 "getNoopOrAnyExtend cannot truncate!");
4777 if (getTypeSizeInBits(Ty: SrcTy) == getTypeSizeInBits(Ty))
4778 return V; // No conversion
4779 return getAnyExtendExpr(Op: V, Ty);
4780}
4781
4782const SCEV *
4783ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4784 Type *SrcTy = V->getType();
4785 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4786 "Cannot truncate or noop with non-integer arguments!");
4787 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4788 "getTruncateOrNoop cannot extend!");
4789 if (getTypeSizeInBits(Ty: SrcTy) == getTypeSizeInBits(Ty))
4790 return V; // No conversion
4791 return getTruncateExpr(Op: V, Ty);
4792}
4793
4794const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4795 const SCEV *RHS) {
4796 const SCEV *PromotedLHS = LHS;
4797 const SCEV *PromotedRHS = RHS;
4798
4799 if (getTypeSizeInBits(Ty: LHS->getType()) > getTypeSizeInBits(Ty: RHS->getType()))
4800 PromotedRHS = getZeroExtendExpr(Op: RHS, Ty: LHS->getType());
4801 else
4802 PromotedLHS = getNoopOrZeroExtend(V: LHS, Ty: RHS->getType());
4803
4804 return getUMaxExpr(LHS: PromotedLHS, RHS: PromotedRHS);
4805}
4806
4807const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4808 const SCEV *RHS,
4809 bool Sequential) {
4810 SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4811 return getUMinFromMismatchedTypes(Ops, Sequential);
4812}
4813
4814const SCEV *
4815ScalarEvolution::getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops,
4816 bool Sequential) {
4817 assert(!Ops.empty() && "At least one operand must be!");
4818 // Trivial case.
4819 if (Ops.size() == 1)
4820 return Ops[0];
4821
4822 // Find the max type first.
4823 Type *MaxType = nullptr;
4824 for (const auto *S : Ops)
4825 if (MaxType)
4826 MaxType = getWiderType(T1: MaxType, T2: S->getType());
4827 else
4828 MaxType = S->getType();
4829 assert(MaxType && "Failed to find maximum type!");
4830
4831 // Extend all ops to max type.
4832 SmallVector<const SCEV *, 2> PromotedOps;
4833 for (const auto *S : Ops)
4834 PromotedOps.push_back(Elt: getNoopOrZeroExtend(V: S, Ty: MaxType));
4835
4836 // Generate umin.
4837 return getUMinExpr(Ops&: PromotedOps, Sequential);
4838}
4839
4840const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4841 // A pointer operand may evaluate to a nonpointer expression, such as null.
4842 if (!V->getType()->isPointerTy())
4843 return V;
4844
4845 while (true) {
4846 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Val: V)) {
4847 V = AddRec->getStart();
4848 } else if (auto *Add = dyn_cast<SCEVAddExpr>(Val: V)) {
4849 const SCEV *PtrOp = nullptr;
4850 for (const SCEV *AddOp : Add->operands()) {
4851 if (AddOp->getType()->isPointerTy()) {
4852 assert(!PtrOp && "Cannot have multiple pointer ops");
4853 PtrOp = AddOp;
4854 }
4855 }
4856 assert(PtrOp && "Must have pointer op");
4857 V = PtrOp;
4858 } else // Not something we can look further into.
4859 return V;
4860 }
4861}
4862
4863/// Push users of the given Instruction onto the given Worklist.
4864static void PushDefUseChildren(Instruction *I,
4865 SmallVectorImpl<Instruction *> &Worklist,
4866 SmallPtrSetImpl<Instruction *> &Visited) {
4867 // Push the def-use children onto the Worklist stack.
4868 for (User *U : I->users()) {
4869 auto *UserInsn = cast<Instruction>(Val: U);
4870 if (Visited.insert(Ptr: UserInsn).second)
4871 Worklist.push_back(Elt: UserInsn);
4872 }
4873}
4874
4875namespace {
4876
4877/// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4878/// expression in case its Loop is L. If it is not L then
4879/// if IgnoreOtherLoops is true then use AddRec itself
4880/// otherwise rewrite cannot be done.
4881/// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4882class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4883public:
4884 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4885 bool IgnoreOtherLoops = true) {
4886 SCEVInitRewriter Rewriter(L, SE);
4887 const SCEV *Result = Rewriter.visit(S);
4888 if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4889 return SE.getCouldNotCompute();
4890 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4891 ? SE.getCouldNotCompute()
4892 : Result;
4893 }
4894
4895 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4896 if (!SE.isLoopInvariant(S: Expr, L))
4897 SeenLoopVariantSCEVUnknown = true;
4898 return Expr;
4899 }
4900
4901 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4902 // Only re-write AddRecExprs for this loop.
4903 if (Expr->getLoop() == L)
4904 return Expr->getStart();
4905 SeenOtherLoops = true;
4906 return Expr;
4907 }
4908
4909 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4910
4911 bool hasSeenOtherLoops() { return SeenOtherLoops; }
4912
4913private:
4914 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4915 : SCEVRewriteVisitor(SE), L(L) {}
4916
4917 const Loop *L;
4918 bool SeenLoopVariantSCEVUnknown = false;
4919 bool SeenOtherLoops = false;
4920};
4921
4922/// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4923/// increment expression in case its Loop is L. If it is not L then
4924/// use AddRec itself.
4925/// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4926class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4927public:
4928 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4929 SCEVPostIncRewriter Rewriter(L, SE);
4930 const SCEV *Result = Rewriter.visit(S);
4931 return Rewriter.hasSeenLoopVariantSCEVUnknown()
4932 ? SE.getCouldNotCompute()
4933 : Result;
4934 }
4935
4936 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4937 if (!SE.isLoopInvariant(S: Expr, L))
4938 SeenLoopVariantSCEVUnknown = true;
4939 return Expr;
4940 }
4941
4942 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4943 // Only re-write AddRecExprs for this loop.
4944 if (Expr->getLoop() == L)
4945 return Expr->getPostIncExpr(SE);
4946 SeenOtherLoops = true;
4947 return Expr;
4948 }
4949
4950 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4951
4952 bool hasSeenOtherLoops() { return SeenOtherLoops; }
4953
4954private:
4955 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4956 : SCEVRewriteVisitor(SE), L(L) {}
4957
4958 const Loop *L;
4959 bool SeenLoopVariantSCEVUnknown = false;
4960 bool SeenOtherLoops = false;
4961};
4962
4963/// This class evaluates the compare condition by matching it against the
4964/// condition of loop latch. If there is a match we assume a true value
4965/// for the condition while building SCEV nodes.
4966class SCEVBackedgeConditionFolder
4967 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4968public:
4969 static const SCEV *rewrite(const SCEV *S, const Loop *L,
4970 ScalarEvolution &SE) {
4971 bool IsPosBECond = false;
4972 Value *BECond = nullptr;
4973 if (BasicBlock *Latch = L->getLoopLatch()) {
4974 BranchInst *BI = dyn_cast<BranchInst>(Val: Latch->getTerminator());
4975 if (BI && BI->isConditional()) {
4976 assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4977 "Both outgoing branches should not target same header!");
4978 BECond = BI->getCondition();
4979 IsPosBECond = BI->getSuccessor(i: 0) == L->getHeader();
4980 } else {
4981 return S;
4982 }
4983 }
4984 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4985 return Rewriter.visit(S);
4986 }
4987
4988 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4989 const SCEV *Result = Expr;
4990 bool InvariantF = SE.isLoopInvariant(S: Expr, L);
4991
4992 if (!InvariantF) {
4993 Instruction *I = cast<Instruction>(Val: Expr->getValue());
4994 switch (I->getOpcode()) {
4995 case Instruction::Select: {
4996 SelectInst *SI = cast<SelectInst>(Val: I);
4997 std::optional<const SCEV *> Res =
4998 compareWithBackedgeCondition(IC: SI->getCondition());
4999 if (Res) {
5000 bool IsOne = cast<SCEVConstant>(Val: *Res)->getValue()->isOne();
5001 Result = SE.getSCEV(V: IsOne ? SI->getTrueValue() : SI->getFalseValue());
5002 }
5003 break;
5004 }
5005 default: {
5006 std::optional<const SCEV *> Res = compareWithBackedgeCondition(IC: I);
5007 if (Res)
5008 Result = *Res;
5009 break;
5010 }
5011 }
5012 }
5013 return Result;
5014 }
5015
5016private:
5017 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
5018 bool IsPosBECond, ScalarEvolution &SE)
5019 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
5020 IsPositiveBECond(IsPosBECond) {}
5021
5022 std::optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
5023
5024 const Loop *L;
5025 /// Loop back condition.
5026 Value *BackedgeCond = nullptr;
5027 /// Set to true if loop back is on positive branch condition.
5028 bool IsPositiveBECond;
5029};
5030
5031std::optional<const SCEV *>
5032SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
5033
5034 // If value matches the backedge condition for loop latch,
5035 // then return a constant evolution node based on loopback
5036 // branch taken.
5037 if (BackedgeCond == IC)
5038 return IsPositiveBECond ? SE.getOne(Ty: Type::getInt1Ty(C&: SE.getContext()))
5039 : SE.getZero(Ty: Type::getInt1Ty(C&: SE.getContext()));
5040 return std::nullopt;
5041}
5042
5043class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
5044public:
5045 static const SCEV *rewrite(const SCEV *S, const Loop *L,
5046 ScalarEvolution &SE) {
5047 SCEVShiftRewriter Rewriter(L, SE);
5048 const SCEV *Result = Rewriter.visit(S);
5049 return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
5050 }
5051
5052 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
5053 // Only allow AddRecExprs for this loop.
5054 if (!SE.isLoopInvariant(S: Expr, L))
5055 Valid = false;
5056 return Expr;
5057 }
5058
5059 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
5060 if (Expr->getLoop() == L && Expr->isAffine())
5061 return SE.getMinusSCEV(LHS: Expr, RHS: Expr->getStepRecurrence(SE));
5062 Valid = false;
5063 return Expr;
5064 }
5065
5066 bool isValid() { return Valid; }
5067
5068private:
5069 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
5070 : SCEVRewriteVisitor(SE), L(L) {}
5071
5072 const Loop *L;
5073 bool Valid = true;
5074};
5075
5076} // end anonymous namespace
5077
5078SCEV::NoWrapFlags
5079ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
5080 if (!AR->isAffine())
5081 return SCEV::FlagAnyWrap;
5082
5083 using OBO = OverflowingBinaryOperator;
5084
5085 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
5086
5087 if (!AR->hasNoSelfWrap()) {
5088 const SCEV *BECount = getConstantMaxBackedgeTakenCount(L: AR->getLoop());
5089 if (const SCEVConstant *BECountMax = dyn_cast<SCEVConstant>(Val: BECount)) {
5090 ConstantRange StepCR = getSignedRange(S: AR->getStepRecurrence(SE&: *this));
5091 const APInt &BECountAP = BECountMax->getAPInt();
5092 unsigned NoOverflowBitWidth =
5093 BECountAP.getActiveBits() + StepCR.getMinSignedBits();
5094 if (NoOverflowBitWidth <= getTypeSizeInBits(Ty: AR->getType()))
5095 Result = ScalarEvolution::setFlags(Flags: Result, OnFlags: SCEV::FlagNW);
5096 }
5097 }
5098
5099 if (!AR->hasNoSignedWrap()) {
5100 ConstantRange AddRecRange = getSignedRange(S: AR);
5101 ConstantRange IncRange = getSignedRange(S: AR->getStepRecurrence(SE&: *this));
5102
5103 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
5104 BinOp: Instruction::Add, Other: IncRange, NoWrapKind: OBO::NoSignedWrap);
5105 if (NSWRegion.contains(CR: AddRecRange))
5106 Result = ScalarEvolution::setFlags(Flags: Result, OnFlags: SCEV::FlagNSW);
5107 }
5108
5109 if (!AR->hasNoUnsignedWrap()) {
5110 ConstantRange AddRecRange = getUnsignedRange(S: AR);
5111 ConstantRange IncRange = getUnsignedRange(S: AR->getStepRecurrence(SE&: *this));
5112
5113 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
5114 BinOp: Instruction::Add, Other: IncRange, NoWrapKind: OBO::NoUnsignedWrap);
5115 if (NUWRegion.contains(CR: AddRecRange))
5116 Result = ScalarEvolution::setFlags(Flags: Result, OnFlags: SCEV::FlagNUW);
5117 }
5118
5119 return Result;
5120}
5121
5122SCEV::NoWrapFlags
5123ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) {
5124 SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
5125
5126 if (AR->hasNoSignedWrap())
5127 return Result;
5128
5129 if (!AR->isAffine())
5130 return Result;
5131
5132 // This function can be expensive, only try to prove NSW once per AddRec.
5133 if (!SignedWrapViaInductionTried.insert(Ptr: AR).second)
5134 return Result;
5135
5136 const SCEV *Step = AR->getStepRecurrence(SE&: *this);
5137 const Loop *L = AR->getLoop();
5138
5139 // Check whether the backedge-taken count is SCEVCouldNotCompute.
5140 // Note that this serves two purposes: It filters out loops that are
5141 // simply not analyzable, and it covers the case where this code is
5142 // being called from within backedge-taken count analysis, such that
5143 // attempting to ask for the backedge-taken count would likely result
5144 // in infinite recursion. In the later case, the analysis code will
5145 // cope with a conservative value, and it will take care to purge
5146 // that value once it has finished.
5147 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
5148
5149 // Normally, in the cases we can prove no-overflow via a
5150 // backedge guarding condition, we can also compute a backedge
5151 // taken count for the loop. The exceptions are assumptions and
5152 // guards present in the loop -- SCEV is not great at exploiting
5153 // these to compute max backedge taken counts, but can still use
5154 // these to prove lack of overflow. Use this fact to avoid
5155 // doing extra work that may not pay off.
5156
5157 if (isa<SCEVCouldNotCompute>(Val: MaxBECount) && !HasGuards &&
5158 AC.assumptions().empty())
5159 return Result;
5160
5161 // If the backedge is guarded by a comparison with the pre-inc value the
5162 // addrec is safe. Also, if the entry is guarded by a comparison with the
5163 // start value and the backedge is guarded by a comparison with the post-inc
5164 // value, the addrec is safe.
5165 ICmpInst::Predicate Pred;
5166 const SCEV *OverflowLimit =
5167 getSignedOverflowLimitForStep(Step, Pred: &Pred, SE: this);
5168 if (OverflowLimit &&
5169 (isLoopBackedgeGuardedByCond(L, Pred, LHS: AR, RHS: OverflowLimit) ||
5170 isKnownOnEveryIteration(Pred, LHS: AR, RHS: OverflowLimit))) {
5171 Result = setFlags(Flags: Result, OnFlags: SCEV::FlagNSW);
5172 }
5173 return Result;
5174}
5175SCEV::NoWrapFlags
5176ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) {
5177 SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
5178
5179 if (AR->hasNoUnsignedWrap())
5180 return Result;
5181
5182 if (!AR->isAffine())
5183 return Result;
5184
5185 // This function can be expensive, only try to prove NUW once per AddRec.
5186 if (!UnsignedWrapViaInductionTried.insert(Ptr: AR).second)
5187 return Result;
5188
5189 const SCEV *Step = AR->getStepRecurrence(SE&: *this);
5190 unsigned BitWidth = getTypeSizeInBits(Ty: AR->getType());
5191 const Loop *L = AR->getLoop();
5192
5193 // Check whether the backedge-taken count is SCEVCouldNotCompute.
5194 // Note that this serves two purposes: It filters out loops that are
5195 // simply not analyzable, and it covers the case where this code is
5196 // being called from within backedge-taken count analysis, such that
5197 // attempting to ask for the backedge-taken count would likely result
5198 // in infinite recursion. In the later case, the analysis code will
5199 // cope with a conservative value, and it will take care to purge
5200 // that value once it has finished.
5201 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
5202
5203 // Normally, in the cases we can prove no-overflow via a
5204 // backedge guarding condition, we can also compute a backedge
5205 // taken count for the loop. The exceptions are assumptions and
5206 // guards present in the loop -- SCEV is not great at exploiting
5207 // these to compute max backedge taken counts, but can still use
5208 // these to prove lack of overflow. Use this fact to avoid
5209 // doing extra work that may not pay off.
5210
5211 if (isa<SCEVCouldNotCompute>(Val: MaxBECount) && !HasGuards &&
5212 AC.assumptions().empty())
5213 return Result;
5214
5215 // If the backedge is guarded by a comparison with the pre-inc value the
5216 // addrec is safe. Also, if the entry is guarded by a comparison with the
5217 // start value and the backedge is guarded by a comparison with the post-inc
5218 // value, the addrec is safe.
5219 if (isKnownPositive(S: Step)) {
5220 const SCEV *N = getConstant(Val: APInt::getMinValue(numBits: BitWidth) -
5221 getUnsignedRangeMax(S: Step));
5222 if (isLoopBackedgeGuardedByCond(L, Pred: ICmpInst::ICMP_ULT, LHS: AR, RHS: N) ||
5223 isKnownOnEveryIteration(Pred: ICmpInst::ICMP_ULT, LHS: AR, RHS: N)) {
5224 Result = setFlags(Flags: Result, OnFlags: SCEV::FlagNUW);
5225 }
5226 }
5227
5228 return Result;
5229}
5230
5231namespace {
5232
5233/// Represents an abstract binary operation. This may exist as a
5234/// normal instruction or constant expression, or may have been
5235/// derived from an expression tree.
5236struct BinaryOp {
5237 unsigned Opcode;
5238 Value *LHS;
5239 Value *RHS;
5240 bool IsNSW = false;
5241 bool IsNUW = false;
5242
5243 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
5244 /// constant expression.
5245 Operator *Op = nullptr;
5246
5247 explicit BinaryOp(Operator *Op)
5248 : Opcode(Op->getOpcode()), LHS(Op->getOperand(i: 0)), RHS(Op->getOperand(i: 1)),
5249 Op(Op) {
5250 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Val: Op)) {
5251 IsNSW = OBO->hasNoSignedWrap();
5252 IsNUW = OBO->hasNoUnsignedWrap();
5253 }
5254 }
5255
5256 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
5257 bool IsNUW = false)
5258 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
5259};
5260
5261} // end anonymous namespace
5262
5263/// Try to map \p V into a BinaryOp, and return \c std::nullopt on failure.
5264static std::optional<BinaryOp> MatchBinaryOp(Value *V, const DataLayout &DL,
5265 AssumptionCache &AC,
5266 const DominatorTree &DT,
5267 const Instruction *CxtI) {
5268 auto *Op = dyn_cast<Operator>(Val: V);
5269 if (!Op)
5270 return std::nullopt;
5271
5272 // Implementation detail: all the cleverness here should happen without
5273 // creating new SCEV expressions -- our caller knowns tricks to avoid creating
5274 // SCEV expressions when possible, and we should not break that.
5275
5276 switch (Op->getOpcode()) {
5277 case Instruction::Add:
5278 case Instruction::Sub:
5279 case Instruction::Mul:
5280 case Instruction::UDiv:
5281 case Instruction::URem:
5282 case Instruction::And:
5283 case Instruction::AShr:
5284 case Instruction::Shl:
5285 return BinaryOp(Op);
5286
5287 case Instruction::Or: {
5288 // Convert or disjoint into add nuw nsw.
5289 if (cast<PossiblyDisjointInst>(Val: Op)->isDisjoint())
5290 return BinaryOp(Instruction::Add, Op->getOperand(i: 0), Op->getOperand(i: 1),
5291 /*IsNSW=*/true, /*IsNUW=*/true);
5292 return BinaryOp(Op);
5293 }
5294
5295 case Instruction::Xor:
5296 if (auto *RHSC = dyn_cast<ConstantInt>(Val: Op->getOperand(i: 1)))
5297 // If the RHS of the xor is a signmask, then this is just an add.
5298 // Instcombine turns add of signmask into xor as a strength reduction step.
5299 if (RHSC->getValue().isSignMask())
5300 return BinaryOp(Instruction::Add, Op->getOperand(i: 0), Op->getOperand(i: 1));
5301 // Binary `xor` is a bit-wise `add`.
5302 if (V->getType()->isIntegerTy(Bitwidth: 1))
5303 return BinaryOp(Instruction::Add, Op->getOperand(i: 0), Op->getOperand(i: 1));
5304 return BinaryOp(Op);
5305
5306 case Instruction::LShr:
5307 // Turn logical shift right of a constant into a unsigned divide.
5308 if (ConstantInt *SA = dyn_cast<ConstantInt>(Val: Op->getOperand(i: 1))) {
5309 uint32_t BitWidth = cast<IntegerType>(Val: Op->getType())->getBitWidth();
5310
5311 // If the shift count is not less than the bitwidth, the result of
5312 // the shift is undefined. Don't try to analyze it, because the
5313 // resolution chosen here may differ from the resolution chosen in
5314 // other parts of the compiler.
5315 if (SA->getValue().ult(RHS: BitWidth)) {
5316 Constant *X =
5317 ConstantInt::get(Context&: SA->getContext(),
5318 V: APInt::getOneBitSet(numBits: BitWidth, BitNo: SA->getZExtValue()));
5319 return BinaryOp(Instruction::UDiv, Op->getOperand(i: 0), X);
5320 }
5321 }
5322 return BinaryOp(Op);
5323
5324 case Instruction::ExtractValue: {
5325 auto *EVI = cast<ExtractValueInst>(Val: Op);
5326 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
5327 break;
5328
5329 auto *WO = dyn_cast<WithOverflowInst>(Val: EVI->getAggregateOperand());
5330 if (!WO)
5331 break;
5332
5333 Instruction::BinaryOps BinOp = WO->getBinaryOp();
5334 bool Signed = WO->isSigned();
5335 // TODO: Should add nuw/nsw flags for mul as well.
5336 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
5337 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
5338
5339 // Now that we know that all uses of the arithmetic-result component of
5340 // CI are guarded by the overflow check, we can go ahead and pretend
5341 // that the arithmetic is non-overflowing.
5342 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
5343 /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
5344 }
5345
5346 default:
5347 break;
5348 }
5349
5350 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
5351 // semantics as a Sub, return a binary sub expression.
5352 if (auto *II = dyn_cast<IntrinsicInst>(Val: V))
5353 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
5354 return BinaryOp(Instruction::Sub, II->getOperand(i_nocapture: 0), II->getOperand(i_nocapture: 1));
5355
5356 return std::nullopt;
5357}
5358
5359/// Helper function to createAddRecFromPHIWithCasts. We have a phi
5360/// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
5361/// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
5362/// way. This function checks if \p Op, an operand of this SCEVAddExpr,
5363/// follows one of the following patterns:
5364/// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
5365/// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
5366/// If the SCEV expression of \p Op conforms with one of the expected patterns
5367/// we return the type of the truncation operation, and indicate whether the
5368/// truncated type should be treated as signed/unsigned by setting
5369/// \p Signed to true/false, respectively.
5370static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
5371 bool &Signed, ScalarEvolution &SE) {
5372 // The case where Op == SymbolicPHI (that is, with no type conversions on
5373 // the way) is handled by the regular add recurrence creating logic and
5374 // would have already been triggered in createAddRecForPHI. Reaching it here
5375 // means that createAddRecFromPHI had failed for this PHI before (e.g.,
5376 // because one of the other operands of the SCEVAddExpr updating this PHI is
5377 // not invariant).
5378 //
5379 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
5380 // this case predicates that allow us to prove that Op == SymbolicPHI will
5381 // be added.
5382 if (Op == SymbolicPHI)
5383 return nullptr;
5384
5385 unsigned SourceBits = SE.getTypeSizeInBits(Ty: SymbolicPHI->getType());
5386 unsigned NewBits = SE.getTypeSizeInBits(Ty: Op->getType());
5387 if (SourceBits != NewBits)
5388 return nullptr;
5389
5390 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Val: Op);
5391 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Val: Op);
5392 if (!SExt && !ZExt)
5393 return nullptr;
5394 const SCEVTruncateExpr *Trunc =
5395 SExt ? dyn_cast<SCEVTruncateExpr>(Val: SExt->getOperand())
5396 : dyn_cast<SCEVTruncateExpr>(Val: ZExt->getOperand());
5397 if (!Trunc)
5398 return nullptr;
5399 const SCEV *X = Trunc->getOperand();
5400 if (X != SymbolicPHI)
5401 return nullptr;
5402 Signed = SExt != nullptr;
5403 return Trunc->getType();
5404}
5405
5406static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
5407 if (!PN->getType()->isIntegerTy())
5408 return nullptr;
5409 const Loop *L = LI.getLoopFor(BB: PN->getParent());
5410 if (!L || L->getHeader() != PN->getParent())
5411 return nullptr;
5412 return L;
5413}
5414
5415// Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
5416// computation that updates the phi follows the following pattern:
5417// (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
5418// which correspond to a phi->trunc->sext/zext->add->phi update chain.
5419// If so, try to see if it can be rewritten as an AddRecExpr under some
5420// Predicates. If successful, return them as a pair. Also cache the results
5421// of the analysis.
5422//
5423// Example usage scenario:
5424// Say the Rewriter is called for the following SCEV:
5425// 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
5426// where:
5427// %X = phi i64 (%Start, %BEValue)
5428// It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
5429// and call this function with %SymbolicPHI = %X.
5430//
5431// The analysis will find that the value coming around the backedge has
5432// the following SCEV:
5433// BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
5434// Upon concluding that this matches the desired pattern, the function
5435// will return the pair {NewAddRec, SmallPredsVec} where:
5436// NewAddRec = {%Start,+,%Step}
5437// SmallPredsVec = {P1, P2, P3} as follows:
5438// P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
5439// P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
5440// P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
5441// The returned pair means that SymbolicPHI can be rewritten into NewAddRec
5442// under the predicates {P1,P2,P3}.
5443// This predicated rewrite will be cached in PredicatedSCEVRewrites:
5444// PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
5445//
5446// TODO's:
5447//
5448// 1) Extend the Induction descriptor to also support inductions that involve
5449// casts: When needed (namely, when we are called in the context of the
5450// vectorizer induction analysis), a Set of cast instructions will be
5451// populated by this method, and provided back to isInductionPHI. This is
5452// needed to allow the vectorizer to properly record them to be ignored by
5453// the cost model and to avoid vectorizing them (otherwise these casts,
5454// which are redundant under the runtime overflow checks, will be
5455// vectorized, which can be costly).
5456//
5457// 2) Support additional induction/PHISCEV patterns: We also want to support
5458// inductions where the sext-trunc / zext-trunc operations (partly) occur
5459// after the induction update operation (the induction increment):
5460//
5461// (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
5462// which correspond to a phi->add->trunc->sext/zext->phi update chain.
5463//
5464// (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
5465// which correspond to a phi->trunc->add->sext/zext->phi update chain.
5466//
5467// 3) Outline common code with createAddRecFromPHI to avoid duplication.
5468std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5469ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
5470 SmallVector<const SCEVPredicate *, 3> Predicates;
5471
5472 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
5473 // return an AddRec expression under some predicate.
5474
5475 auto *PN = cast<PHINode>(Val: SymbolicPHI->getValue());
5476 const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5477 assert(L && "Expecting an integer loop header phi");
5478
5479 // The loop may have multiple entrances or multiple exits; we can analyze
5480 // this phi as an addrec if it has a unique entry value and a unique
5481 // backedge value.
5482 Value *BEValueV = nullptr, *StartValueV = nullptr;
5483 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5484 Value *V = PN->getIncomingValue(i);
5485 if (L->contains(BB: PN->getIncomingBlock(i))) {
5486 if (!BEValueV) {
5487 BEValueV = V;
5488 } else if (BEValueV != V) {
5489 BEValueV = nullptr;
5490 break;
5491 }
5492 } else if (!StartValueV) {
5493 StartValueV = V;
5494 } else if (StartValueV != V) {
5495 StartValueV = nullptr;
5496 break;
5497 }
5498 }
5499 if (!BEValueV || !StartValueV)
5500 return std::nullopt;
5501
5502 const SCEV *BEValue = getSCEV(V: BEValueV);
5503
5504 // If the value coming around the backedge is an add with the symbolic
5505 // value we just inserted, possibly with casts that we can ignore under
5506 // an appropriate runtime guard, then we found a simple induction variable!
5507 const auto *Add = dyn_cast<SCEVAddExpr>(Val: BEValue);
5508 if (!Add)
5509 return std::nullopt;
5510
5511 // If there is a single occurrence of the symbolic value, possibly
5512 // casted, replace it with a recurrence.
5513 unsigned FoundIndex = Add->getNumOperands();
5514 Type *TruncTy = nullptr;
5515 bool Signed;
5516 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5517 if ((TruncTy =
5518 isSimpleCastedPHI(Op: Add->getOperand(i), SymbolicPHI, Signed, SE&: *this)))
5519 if (FoundIndex == e) {
5520 FoundIndex = i;
5521 break;
5522 }
5523
5524 if (FoundIndex == Add->getNumOperands())
5525 return std::nullopt;
5526
5527 // Create an add with everything but the specified operand.
5528 SmallVector<const SCEV *, 8> Ops;
5529 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5530 if (i != FoundIndex)
5531 Ops.push_back(Elt: Add->getOperand(i));
5532 const SCEV *Accum = getAddExpr(Ops);
5533
5534 // The runtime checks will not be valid if the step amount is
5535 // varying inside the loop.
5536 if (!isLoopInvariant(S: Accum, L))
5537 return std::nullopt;
5538
5539 // *** Part2: Create the predicates
5540
5541 // Analysis was successful: we have a phi-with-cast pattern for which we
5542 // can return an AddRec expression under the following predicates:
5543 //
5544 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
5545 // fits within the truncated type (does not overflow) for i = 0 to n-1.
5546 // P2: An Equal predicate that guarantees that
5547 // Start = (Ext ix (Trunc iy (Start) to ix) to iy)
5548 // P3: An Equal predicate that guarantees that
5549 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
5550 //
5551 // As we next prove, the above predicates guarantee that:
5552 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
5553 //
5554 //
5555 // More formally, we want to prove that:
5556 // Expr(i+1) = Start + (i+1) * Accum
5557 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5558 //
5559 // Given that:
5560 // 1) Expr(0) = Start
5561 // 2) Expr(1) = Start + Accum
5562 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
5563 // 3) Induction hypothesis (step i):
5564 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
5565 //
5566 // Proof:
5567 // Expr(i+1) =
5568 // = Start + (i+1)*Accum
5569 // = (Start + i*Accum) + Accum
5570 // = Expr(i) + Accum
5571 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
5572 // :: from step i
5573 //
5574 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
5575 //
5576 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
5577 // + (Ext ix (Trunc iy (Accum) to ix) to iy)
5578 // + Accum :: from P3
5579 //
5580 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
5581 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
5582 //
5583 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
5584 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5585 //
5586 // By induction, the same applies to all iterations 1<=i<n:
5587 //
5588
5589 // Create a truncated addrec for which we will add a no overflow check (P1).
5590 const SCEV *StartVal = getSCEV(V: StartValueV);
5591 const SCEV *PHISCEV =
5592 getAddRecExpr(Start: getTruncateExpr(Op: StartVal, Ty: TruncTy),
5593 Step: getTruncateExpr(Op: Accum, Ty: TruncTy), L, Flags: SCEV::FlagAnyWrap);
5594
5595 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
5596 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
5597 // will be constant.
5598 //
5599 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
5600 // add P1.
5601 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(Val: PHISCEV)) {
5602 SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
5603 Signed ? SCEVWrapPredicate::IncrementNSSW
5604 : SCEVWrapPredicate::IncrementNUSW;
5605 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
5606 Predicates.push_back(Elt: AddRecPred);
5607 }
5608
5609 // Create the Equal Predicates P2,P3:
5610
5611 // It is possible that the predicates P2 and/or P3 are computable at
5612 // compile time due to StartVal and/or Accum being constants.
5613 // If either one is, then we can check that now and escape if either P2
5614 // or P3 is false.
5615
5616 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
5617 // for each of StartVal and Accum
5618 auto getExtendedExpr = [&](const SCEV *Expr,
5619 bool CreateSignExtend) -> const SCEV * {
5620 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
5621 const SCEV *TruncatedExpr = getTruncateExpr(Op: Expr, Ty: TruncTy);
5622 const SCEV *ExtendedExpr =
5623 CreateSignExtend ? getSignExtendExpr(Op: TruncatedExpr, Ty: Expr->getType())
5624 : getZeroExtendExpr(Op: TruncatedExpr, Ty: Expr->getType());
5625 return ExtendedExpr;
5626 };
5627
5628 // Given:
5629 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
5630 // = getExtendedExpr(Expr)
5631 // Determine whether the predicate P: Expr == ExtendedExpr
5632 // is known to be false at compile time
5633 auto PredIsKnownFalse = [&](const SCEV *Expr,
5634 const SCEV *ExtendedExpr) -> bool {
5635 return Expr != ExtendedExpr &&
5636 isKnownPredicate(Pred: ICmpInst::ICMP_NE, LHS: Expr, RHS: ExtendedExpr);
5637 };
5638
5639 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
5640 if (PredIsKnownFalse(StartVal, StartExtended)) {
5641 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
5642 return std::nullopt;
5643 }
5644
5645 // The Step is always Signed (because the overflow checks are either
5646 // NSSW or NUSW)
5647 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
5648 if (PredIsKnownFalse(Accum, AccumExtended)) {
5649 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
5650 return std::nullopt;
5651 }
5652
5653 auto AppendPredicate = [&](const SCEV *Expr,
5654 const SCEV *ExtendedExpr) -> void {
5655 if (Expr != ExtendedExpr &&
5656 !isKnownPredicate(Pred: ICmpInst::ICMP_EQ, LHS: Expr, RHS: ExtendedExpr)) {
5657 const SCEVPredicate *Pred = getEqualPredicate(LHS: Expr, RHS: ExtendedExpr);
5658 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
5659 Predicates.push_back(Elt: Pred);
5660 }
5661 };
5662
5663 AppendPredicate(StartVal, StartExtended);
5664 AppendPredicate(Accum, AccumExtended);
5665
5666 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
5667 // which the casts had been folded away. The caller can rewrite SymbolicPHI
5668 // into NewAR if it will also add the runtime overflow checks specified in
5669 // Predicates.
5670 auto *NewAR = getAddRecExpr(Start: StartVal, Step: Accum, L, Flags: SCEV::FlagAnyWrap);
5671
5672 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
5673 std::make_pair(x&: NewAR, y&: Predicates);
5674 // Remember the result of the analysis for this SCEV at this locayyytion.
5675 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
5676 return PredRewrite;
5677}
5678
5679std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5680ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
5681 auto *PN = cast<PHINode>(Val: SymbolicPHI->getValue());
5682 const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5683 if (!L)
5684 return std::nullopt;
5685
5686 // Check to see if we already analyzed this PHI.
5687 auto I = PredicatedSCEVRewrites.find(Val: {SymbolicPHI, L});
5688 if (I != PredicatedSCEVRewrites.end()) {
5689 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
5690 I->second;
5691 // Analysis was done before and failed to create an AddRec:
5692 if (Rewrite.first == SymbolicPHI)
5693 return std::nullopt;
5694 // Analysis was done before and succeeded to create an AddRec under
5695 // a predicate:
5696 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
5697 assert(!(Rewrite.second).empty() && "Expected to find Predicates");
5698 return Rewrite;
5699 }
5700
5701 std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5702 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
5703
5704 // Record in the cache that the analysis failed
5705 if (!Rewrite) {
5706 SmallVector<const SCEVPredicate *, 3> Predicates;
5707 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
5708 return std::nullopt;
5709 }
5710
5711 return Rewrite;
5712}
5713
5714// FIXME: This utility is currently required because the Rewriter currently
5715// does not rewrite this expression:
5716// {0, +, (sext ix (trunc iy to ix) to iy)}
5717// into {0, +, %step},
5718// even when the following Equal predicate exists:
5719// "%step == (sext ix (trunc iy to ix) to iy)".
5720bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
5721 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
5722 if (AR1 == AR2)
5723 return true;
5724
5725 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
5726 if (Expr1 != Expr2 && !Preds->implies(N: SE.getEqualPredicate(LHS: Expr1, RHS: Expr2)) &&
5727 !Preds->implies(N: SE.getEqualPredicate(LHS: Expr2, RHS: Expr1)))
5728 return false;
5729 return true;
5730 };
5731
5732 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
5733 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
5734 return false;
5735 return true;
5736}
5737
5738/// A helper function for createAddRecFromPHI to handle simple cases.
5739///
5740/// This function tries to find an AddRec expression for the simplest (yet most
5741/// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
5742/// If it fails, createAddRecFromPHI will use a more general, but slow,
5743/// technique for finding the AddRec expression.
5744const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
5745 Value *BEValueV,
5746 Value *StartValueV) {
5747 const Loop *L = LI.getLoopFor(BB: PN->getParent());
5748 assert(L && L->getHeader() == PN->getParent());
5749 assert(BEValueV && StartValueV);
5750
5751 auto BO = MatchBinaryOp(V: BEValueV, DL: getDataLayout(), AC, DT, CxtI: PN);
5752 if (!BO)
5753 return nullptr;
5754
5755 if (BO->Opcode != Instruction::Add)
5756 return nullptr;
5757
5758 const SCEV *Accum = nullptr;
5759 if (BO->LHS == PN && L->isLoopInvariant(V: BO->RHS))
5760 Accum = getSCEV(V: BO->RHS);
5761 else if (BO->RHS == PN && L->isLoopInvariant(V: BO->LHS))
5762 Accum = getSCEV(V: BO->LHS);
5763
5764 if (!Accum)
5765 return nullptr;
5766
5767 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5768 if (BO->IsNUW)
5769 Flags = setFlags(Flags, OnFlags: SCEV::FlagNUW);
5770 if (BO->IsNSW)
5771 Flags = setFlags(Flags, OnFlags: SCEV::FlagNSW);
5772
5773 const SCEV *StartVal = getSCEV(V: StartValueV);
5774 const SCEV *PHISCEV = getAddRecExpr(Start: StartVal, Step: Accum, L, Flags);
5775 insertValueToMap(V: PN, S: PHISCEV);
5776
5777 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Val: PHISCEV)) {
5778 setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(AR),
5779 Flags: (SCEV::NoWrapFlags)(AR->getNoWrapFlags() |
5780 proveNoWrapViaConstantRanges(AR)));
5781 }
5782
5783 // We can add Flags to the post-inc expression only if we
5784 // know that it is *undefined behavior* for BEValueV to
5785 // overflow.
5786 if (auto *BEInst = dyn_cast<Instruction>(Val: BEValueV)) {
5787 assert(isLoopInvariant(Accum, L) &&
5788 "Accum is defined outside L, but is not invariant?");
5789 if (isAddRecNeverPoison(I: BEInst, L))
5790 (void)getAddRecExpr(Start: getAddExpr(LHS: StartVal, RHS: Accum), Step: Accum, L, Flags);
5791 }
5792
5793 return PHISCEV;
5794}
5795
5796const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5797 const Loop *L = LI.getLoopFor(BB: PN->getParent());
5798 if (!L || L->getHeader() != PN->getParent())
5799 return nullptr;
5800
5801 // The loop may have multiple entrances or multiple exits; we can analyze
5802 // this phi as an addrec if it has a unique entry value and a unique
5803 // backedge value.
5804 Value *BEValueV = nullptr, *StartValueV = nullptr;
5805 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5806 Value *V = PN->getIncomingValue(i);
5807 if (L->contains(BB: PN->getIncomingBlock(i))) {
5808 if (!BEValueV) {
5809 BEValueV = V;
5810 } else if (BEValueV != V) {
5811 BEValueV = nullptr;
5812 break;
5813 }
5814 } else if (!StartValueV) {
5815 StartValueV = V;
5816 } else if (StartValueV != V) {
5817 StartValueV = nullptr;
5818 break;
5819 }
5820 }
5821 if (!BEValueV || !StartValueV)
5822 return nullptr;
5823
5824 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5825 "PHI node already processed?");
5826
5827 // First, try to find AddRec expression without creating a fictituos symbolic
5828 // value for PN.
5829 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5830 return S;
5831
5832 // Handle PHI node value symbolically.
5833 const SCEV *SymbolicName = getUnknown(V: PN);
5834 insertValueToMap(V: PN, S: SymbolicName);
5835
5836 // Using this symbolic name for the PHI, analyze the value coming around
5837 // the back-edge.
5838 const SCEV *BEValue = getSCEV(V: BEValueV);
5839
5840 // NOTE: If BEValue is loop invariant, we know that the PHI node just
5841 // has a special value for the first iteration of the loop.
5842
5843 // If the value coming around the backedge is an add with the symbolic
5844 // value we just inserted, then we found a simple induction variable!
5845 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Val: BEValue)) {
5846 // If there is a single occurrence of the symbolic value, replace it
5847 // with a recurrence.
5848 unsigned FoundIndex = Add->getNumOperands();
5849 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5850 if (Add->getOperand(i) == SymbolicName)
5851 if (FoundIndex == e) {
5852 FoundIndex = i;
5853 break;
5854 }
5855
5856 if (FoundIndex != Add->getNumOperands()) {
5857 // Create an add with everything but the specified operand.
5858 SmallVector<const SCEV *, 8> Ops;
5859 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5860 if (i != FoundIndex)
5861 Ops.push_back(Elt: SCEVBackedgeConditionFolder::rewrite(S: Add->getOperand(i),
5862 L, SE&: *this));
5863 const SCEV *Accum = getAddExpr(Ops);
5864
5865 // This is not a valid addrec if the step amount is varying each
5866 // loop iteration, but is not itself an addrec in this loop.
5867 if (isLoopInvariant(S: Accum, L) ||
5868 (isa<SCEVAddRecExpr>(Val: Accum) &&
5869 cast<SCEVAddRecExpr>(Val: Accum)->getLoop() == L)) {
5870 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5871
5872 if (auto BO = MatchBinaryOp(V: BEValueV, DL: getDataLayout(), AC, DT, CxtI: PN)) {
5873 if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5874 if (BO->IsNUW)
5875 Flags = setFlags(Flags, OnFlags: SCEV::FlagNUW);
5876 if (BO->IsNSW)
5877 Flags = setFlags(Flags, OnFlags: SCEV::FlagNSW);
5878 }
5879 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(Val: BEValueV)) {
5880 // If the increment is an inbounds GEP, then we know the address
5881 // space cannot be wrapped around. We cannot make any guarantee
5882 // about signed or unsigned overflow because pointers are
5883 // unsigned but we may have a negative index from the base
5884 // pointer. We can guarantee that no unsigned wrap occurs if the
5885 // indices form a positive value.
5886 if (GEP->isInBounds() && GEP->getOperand(i_nocapture: 0) == PN) {
5887 Flags = setFlags(Flags, OnFlags: SCEV::FlagNW);
5888 if (isKnownPositive(S: Accum))
5889 Flags = setFlags(Flags, OnFlags: SCEV::FlagNUW);
5890 }
5891
5892 // We cannot transfer nuw and nsw flags from subtraction
5893 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5894 // for instance.
5895 }
5896
5897 const SCEV *StartVal = getSCEV(V: StartValueV);
5898 const SCEV *PHISCEV = getAddRecExpr(Start: StartVal, Step: Accum, L, Flags);
5899
5900 // Okay, for the entire analysis of this edge we assumed the PHI
5901 // to be symbolic. We now need to go back and purge all of the
5902 // entries for the scalars that use the symbolic expression.
5903 forgetMemoizedResults(SCEVs: SymbolicName);
5904 insertValueToMap(V: PN, S: PHISCEV);
5905
5906 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Val: PHISCEV)) {
5907 setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(AR),
5908 Flags: (SCEV::NoWrapFlags)(AR->getNoWrapFlags() |
5909 proveNoWrapViaConstantRanges(AR)));
5910 }
5911
5912 // We can add Flags to the post-inc expression only if we
5913 // know that it is *undefined behavior* for BEValueV to
5914 // overflow.
5915 if (auto *BEInst = dyn_cast<Instruction>(Val: BEValueV))
5916 if (isLoopInvariant(S: Accum, L) && isAddRecNeverPoison(I: BEInst, L))
5917 (void)getAddRecExpr(Start: getAddExpr(LHS: StartVal, RHS: Accum), Step: Accum, L, Flags);
5918
5919 return PHISCEV;
5920 }
5921 }
5922 } else {
5923 // Otherwise, this could be a loop like this:
5924 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
5925 // In this case, j = {1,+,1} and BEValue is j.
5926 // Because the other in-value of i (0) fits the evolution of BEValue
5927 // i really is an addrec evolution.
5928 //
5929 // We can generalize this saying that i is the shifted value of BEValue
5930 // by one iteration:
5931 // PHI(f(0), f({1,+,1})) --> f({0,+,1})
5932 const SCEV *Shifted = SCEVShiftRewriter::rewrite(S: BEValue, L, SE&: *this);
5933 const SCEV *Start = SCEVInitRewriter::rewrite(S: Shifted, L, SE&: *this, IgnoreOtherLoops: false);
5934 if (Shifted != getCouldNotCompute() &&
5935 Start != getCouldNotCompute()) {
5936 const SCEV *StartVal = getSCEV(V: StartValueV);
5937 if (Start == StartVal) {
5938 // Okay, for the entire analysis of this edge we assumed the PHI
5939 // to be symbolic. We now need to go back and purge all of the
5940 // entries for the scalars that use the symbolic expression.
5941 forgetMemoizedResults(SCEVs: SymbolicName);
5942 insertValueToMap(V: PN, S: Shifted);
5943 return Shifted;
5944 }
5945 }
5946 }
5947
5948 // Remove the temporary PHI node SCEV that has been inserted while intending
5949 // to create an AddRecExpr for this PHI node. We can not keep this temporary
5950 // as it will prevent later (possibly simpler) SCEV expressions to be added
5951 // to the ValueExprMap.
5952 eraseValueFromMap(V: PN);
5953
5954 return nullptr;
5955}
5956
5957// Try to match a control flow sequence that branches out at BI and merges back
5958// at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful
5959// match.
5960static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5961 Value *&C, Value *&LHS, Value *&RHS) {
5962 C = BI->getCondition();
5963
5964 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(i: 0));
5965 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(i: 1));
5966
5967 if (!LeftEdge.isSingleEdge())
5968 return false;
5969
5970 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5971
5972 Use &LeftUse = Merge->getOperandUse(i: 0);
5973 Use &RightUse = Merge->getOperandUse(i: 1);
5974
5975 if (DT.dominates(BBE: LeftEdge, U: LeftUse) && DT.dominates(BBE: RightEdge, U: RightUse)) {
5976 LHS = LeftUse;
5977 RHS = RightUse;
5978 return true;
5979 }
5980
5981 if (DT.dominates(BBE: LeftEdge, U: RightUse) && DT.dominates(BBE: RightEdge, U: LeftUse)) {
5982 LHS = RightUse;
5983 RHS = LeftUse;
5984 return true;
5985 }
5986
5987 return false;
5988}
5989
5990const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5991 auto IsReachable =
5992 [&](BasicBlock *BB) { return DT.isReachableFromEntry(A: BB); };
5993 if (PN->getNumIncomingValues() == 2 && all_of(Range: PN->blocks(), P: IsReachable)) {
5994 // Try to match
5995 //
5996 // br %cond, label %left, label %right
5997 // left:
5998 // br label %merge
5999 // right:
6000 // br label %merge
6001 // merge:
6002 // V = phi [ %x, %left ], [ %y, %right ]
6003 //
6004 // as "select %cond, %x, %y"
6005
6006 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
6007 assert(IDom && "At least the entry block should dominate PN");
6008
6009 auto *BI = dyn_cast<BranchInst>(Val: IDom->getTerminator());
6010 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
6011
6012 if (BI && BI->isConditional() &&
6013 BrPHIToSelect(DT, BI, Merge: PN, C&: Cond, LHS, RHS) &&
6014 properlyDominates(S: getSCEV(V: LHS), BB: PN->getParent()) &&
6015 properlyDominates(S: getSCEV(V: RHS), BB: PN->getParent()))
6016 return createNodeForSelectOrPHI(V: PN, Cond, TrueVal: LHS, FalseVal: RHS);
6017 }
6018
6019 return nullptr;
6020}
6021
6022const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
6023 if (const SCEV *S = createAddRecFromPHI(PN))
6024 return S;
6025
6026 if (Value *V = simplifyInstruction(I: PN, Q: {getDataLayout(), &TLI, &DT, &AC}))
6027 return getSCEV(V);
6028
6029 if (const SCEV *S = createNodeFromSelectLikePHI(PN))
6030 return S;
6031
6032 // If it's not a loop phi, we can't handle it yet.
6033 return getUnknown(V: PN);
6034}
6035
6036bool SCEVMinMaxExprContains(const SCEV *Root, const SCEV *OperandToFind,
6037 SCEVTypes RootKind) {
6038 struct FindClosure {
6039 const SCEV *OperandToFind;
6040 const SCEVTypes RootKind; // Must be a sequential min/max expression.
6041 const SCEVTypes NonSequentialRootKind; // Non-seq variant of RootKind.
6042
6043 bool Found = false;
6044
6045 bool canRecurseInto(SCEVTypes Kind) const {
6046 // We can only recurse into the SCEV expression of the same effective type
6047 // as the type of our root SCEV expression, and into zero-extensions.
6048 return RootKind == Kind || NonSequentialRootKind == Kind ||
6049 scZeroExtend == Kind;
6050 };
6051
6052 FindClosure(const SCEV *OperandToFind, SCEVTypes RootKind)
6053 : OperandToFind(OperandToFind), RootKind(RootKind),
6054 NonSequentialRootKind(
6055 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(
6056 Ty: RootKind)) {}
6057
6058 bool follow(const SCEV *S) {
6059 Found = S == OperandToFind;
6060
6061 return !isDone() && canRecurseInto(Kind: S->getSCEVType());
6062 }
6063
6064 bool isDone() const { return Found; }
6065 };
6066
6067 FindClosure FC(OperandToFind, RootKind);
6068 visitAll(Root, Visitor&: FC);
6069 return FC.Found;
6070}
6071
6072std::optional<const SCEV *>
6073ScalarEvolution::createNodeForSelectOrPHIInstWithICmpInstCond(Type *Ty,
6074 ICmpInst *Cond,
6075 Value *TrueVal,
6076 Value *FalseVal) {
6077 // Try to match some simple smax or umax patterns.
6078 auto *ICI = Cond;
6079
6080 Value *LHS = ICI->getOperand(i_nocapture: 0);
6081 Value *RHS = ICI->getOperand(i_nocapture: 1);
6082
6083 switch (ICI->getPredicate()) {
6084 case ICmpInst::ICMP_SLT:
6085 case ICmpInst::ICMP_SLE:
6086 case ICmpInst::ICMP_ULT:
6087 case ICmpInst::ICMP_ULE:
6088 std::swap(a&: LHS, b&: RHS);
6089 [[fallthrough]];
6090 case ICmpInst::ICMP_SGT:
6091 case ICmpInst::ICMP_SGE:
6092 case ICmpInst::ICMP_UGT:
6093 case ICmpInst::ICMP_UGE:
6094 // a > b ? a+x : b+x -> max(a, b)+x
6095 // a > b ? b+x : a+x -> min(a, b)+x
6096 if (getTypeSizeInBits(Ty: LHS->getType()) <= getTypeSizeInBits(Ty)) {
6097 bool Signed = ICI->isSigned();
6098 const SCEV *LA = getSCEV(V: TrueVal);
6099 const SCEV *RA = getSCEV(V: FalseVal);
6100 const SCEV *LS = getSCEV(V: LHS);
6101 const SCEV *RS = getSCEV(V: RHS);
6102 if (LA->getType()->isPointerTy()) {
6103 // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA.
6104 // Need to make sure we can't produce weird expressions involving
6105 // negated pointers.
6106 if (LA == LS && RA == RS)
6107 return Signed ? getSMaxExpr(LHS: LS, RHS: RS) : getUMaxExpr(LHS: LS, RHS: RS);
6108 if (LA == RS && RA == LS)
6109 return Signed ? getSMinExpr(LHS: LS, RHS: RS) : getUMinExpr(LHS: LS, RHS: RS);
6110 }
6111 auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * {
6112 if (Op->getType()->isPointerTy()) {
6113 Op = getLosslessPtrToIntExpr(Op);
6114 if (isa<SCEVCouldNotCompute>(Val: Op))
6115 return Op;
6116 }
6117 if (Signed)
6118 Op = getNoopOrSignExtend(V: Op, Ty);
6119 else
6120 Op = getNoopOrZeroExtend(V: Op, Ty);
6121 return Op;
6122 };
6123 LS = CoerceOperand(LS);
6124 RS = CoerceOperand(RS);
6125 if (isa<SCEVCouldNotCompute>(Val: LS) || isa<SCEVCouldNotCompute>(Val: RS))
6126 break;
6127 const SCEV *LDiff = getMinusSCEV(LHS: LA, RHS: LS);
6128 const SCEV *RDiff = getMinusSCEV(LHS: RA, RHS: RS);
6129 if (LDiff == RDiff)
6130 return getAddExpr(LHS: Signed ? getSMaxExpr(LHS: LS, RHS: RS) : getUMaxExpr(LHS: LS, RHS: RS),
6131 RHS: LDiff);
6132 LDiff = getMinusSCEV(LHS: LA, RHS: RS);
6133 RDiff = getMinusSCEV(LHS: RA, RHS: LS);
6134 if (LDiff == RDiff)
6135 return getAddExpr(LHS: Signed ? getSMinExpr(LHS: LS, RHS: RS) : getUMinExpr(LHS: LS, RHS: RS),
6136 RHS: LDiff);
6137 }
6138 break;
6139 case ICmpInst::ICMP_NE:
6140 // x != 0 ? x+y : C+y -> x == 0 ? C+y : x+y
6141 std::swap(a&: TrueVal, b&: FalseVal);
6142 [[fallthrough]];
6143 case ICmpInst::ICMP_EQ:
6144 // x == 0 ? C+y : x+y -> umax(x, C)+y iff C u<= 1
6145 if (getTypeSizeInBits(Ty: LHS->getType()) <= getTypeSizeInBits(Ty) &&
6146 isa<ConstantInt>(Val: RHS) && cast<ConstantInt>(Val: RHS)->isZero()) {
6147 const SCEV *X = getNoopOrZeroExtend(V: getSCEV(V: LHS), Ty);
6148 const SCEV *TrueValExpr = getSCEV(V: TrueVal); // C+y
6149 const SCEV *FalseValExpr = getSCEV(V: FalseVal); // x+y
6150 const SCEV *Y = getMinusSCEV(LHS: FalseValExpr, RHS: X); // y = (x+y)-x
6151 const SCEV *C = getMinusSCEV(LHS: TrueValExpr, RHS: Y); // C = (C+y)-y
6152 if (isa<SCEVConstant>(Val: C) && cast<SCEVConstant>(Val: C)->getAPInt().ule(RHS: 1))
6153 return getAddExpr(LHS: getUMaxExpr(LHS: X, RHS: C), RHS: Y);
6154 }
6155 // x == 0 ? 0 : umin (..., x, ...) -> umin_seq(x, umin (...))
6156 // x == 0 ? 0 : umin_seq(..., x, ...) -> umin_seq(x, umin_seq(...))
6157 // x == 0 ? 0 : umin (..., umin_seq(..., x, ...), ...)
6158 // -> umin_seq(x, umin (..., umin_seq(...), ...))
6159 if (isa<ConstantInt>(Val: RHS) && cast<ConstantInt>(Val: RHS)->isZero() &&
6160 isa<ConstantInt>(Val: TrueVal) && cast<ConstantInt>(Val: TrueVal)->isZero()) {
6161 const SCEV *X = getSCEV(V: LHS);
6162 while (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Val: X))
6163 X = ZExt->getOperand();
6164 if (getTypeSizeInBits(Ty: X->getType()) <= getTypeSizeInBits(Ty)) {
6165 const SCEV *FalseValExpr = getSCEV(V: FalseVal);
6166 if (SCEVMinMaxExprContains(Root: FalseValExpr, OperandToFind: X, RootKind: scSequentialUMinExpr))
6167 return getUMinExpr(LHS: getNoopOrZeroExtend(V: X, Ty), RHS: FalseValExpr,
6168 /*Sequential=*/true);
6169 }
6170 }
6171 break;
6172 default:
6173 break;
6174 }
6175
6176 return std::nullopt;
6177}
6178
6179static std::optional<const SCEV *>
6180createNodeForSelectViaUMinSeq(ScalarEvolution *SE, const SCEV *CondExpr,
6181 const SCEV *TrueExpr, const SCEV *FalseExpr) {
6182 assert(CondExpr->getType()->isIntegerTy(1) &&
6183 TrueExpr->getType() == FalseExpr->getType() &&
6184 TrueExpr->getType()->isIntegerTy(1) &&
6185 "Unexpected operands of a select.");
6186
6187 // i1 cond ? i1 x : i1 C --> C + (i1 cond ? (i1 x - i1 C) : i1 0)
6188 // --> C + (umin_seq cond, x - C)
6189 //
6190 // i1 cond ? i1 C : i1 x --> C + (i1 cond ? i1 0 : (i1 x - i1 C))
6191 // --> C + (i1 ~cond ? (i1 x - i1 C) : i1 0)
6192 // --> C + (umin_seq ~cond, x - C)
6193
6194 // FIXME: while we can't legally model the case where both of the hands
6195 // are fully variable, we only require that the *difference* is constant.
6196 if (!isa<SCEVConstant>(Val: TrueExpr) && !isa<SCEVConstant>(Val: FalseExpr))
6197 return std::nullopt;
6198
6199 const SCEV *X, *C;
6200 if (isa<SCEVConstant>(Val: TrueExpr)) {
6201 CondExpr = SE->getNotSCEV(V: CondExpr);
6202 X = FalseExpr;
6203 C = TrueExpr;
6204 } else {
6205 X = TrueExpr;
6206 C = FalseExpr;
6207 }
6208 return SE->getAddExpr(LHS: C, RHS: SE->getUMinExpr(LHS: CondExpr, RHS: SE->getMinusSCEV(LHS: X, RHS: C),
6209 /*Sequential=*/true));
6210}
6211
6212static std::optional<const SCEV *>
6213createNodeForSelectViaUMinSeq(ScalarEvolution *SE, Value *Cond, Value *TrueVal,
6214 Value *FalseVal) {
6215 if (!isa<ConstantInt>(Val: TrueVal) && !isa<ConstantInt>(Val: FalseVal))
6216 return std::nullopt;
6217
6218 const auto *SECond = SE->getSCEV(V: Cond);
6219 const auto *SETrue = SE->getSCEV(V: TrueVal);
6220 const auto *SEFalse = SE->getSCEV(V: FalseVal);
6221 return createNodeForSelectViaUMinSeq(SE, CondExpr: SECond, TrueExpr: SETrue, FalseExpr: SEFalse);
6222}
6223
6224const SCEV *ScalarEvolution::createNodeForSelectOrPHIViaUMinSeq(
6225 Value *V, Value *Cond, Value *TrueVal, Value *FalseVal) {
6226 assert(Cond->getType()->isIntegerTy(1) && "Select condition is not an i1?");
6227 assert(TrueVal->getType() == FalseVal->getType() &&
6228 V->getType() == TrueVal->getType() &&
6229 "Types of select hands and of the result must match.");
6230
6231 // For now, only deal with i1-typed `select`s.
6232 if (!V->getType()->isIntegerTy(Bitwidth: 1))
6233 return getUnknown(V);
6234
6235 if (std::optional<const SCEV *> S =
6236 createNodeForSelectViaUMinSeq(SE: this, Cond, TrueVal, FalseVal))
6237 return *S;
6238
6239 return getUnknown(V);
6240}
6241
6242const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Value *V, Value *Cond,
6243 Value *TrueVal,
6244 Value *FalseVal) {
6245 // Handle "constant" branch or select. This can occur for instance when a
6246 // loop pass transforms an inner loop and moves on to process the outer loop.
6247 if (auto *CI = dyn_cast<ConstantInt>(Val: Cond))
6248 return getSCEV(V: CI->isOne() ? TrueVal : FalseVal);
6249
6250 if (auto *I = dyn_cast<Instruction>(Val: V)) {
6251 if (auto *ICI = dyn_cast<ICmpInst>(Val: Cond)) {
6252 if (std::optional<const SCEV *> S =
6253 createNodeForSelectOrPHIInstWithICmpInstCond(Ty: I->getType(), Cond: ICI,
6254 TrueVal, FalseVal))
6255 return *S;
6256 }
6257 }
6258
6259 return createNodeForSelectOrPHIViaUMinSeq(V, Cond, TrueVal, FalseVal);
6260}
6261
6262/// Expand GEP instructions into add and multiply operations. This allows them
6263/// to be analyzed by regular SCEV code.
6264const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
6265 assert(GEP->getSourceElementType()->isSized() &&
6266 "GEP source element type must be sized");
6267
6268 SmallVector<const SCEV *, 4> IndexExprs;
6269 for (Value *Index : GEP->indices())
6270 IndexExprs.push_back(Elt: getSCEV(V: Index));
6271 return getGEPExpr(GEP, IndexExprs);
6272}
6273
6274APInt ScalarEvolution::getConstantMultipleImpl(const SCEV *S) {
6275 uint64_t BitWidth = getTypeSizeInBits(Ty: S->getType());
6276 auto GetShiftedByZeros = [BitWidth](uint32_t TrailingZeros) {
6277 return TrailingZeros >= BitWidth
6278 ? APInt::getZero(numBits: BitWidth)
6279 : APInt::getOneBitSet(numBits: BitWidth, BitNo: TrailingZeros);
6280 };
6281 auto GetGCDMultiple = [this](const SCEVNAryExpr *N) {
6282 // The result is GCD of all operands results.
6283 APInt Res = getConstantMultiple(S: N->getOperand(i: 0));
6284 for (unsigned I = 1, E = N->getNumOperands(); I < E && Res != 1; ++I)
6285 Res = APIntOps::GreatestCommonDivisor(
6286 A: Res, B: getConstantMultiple(S: N->getOperand(i: I)));
6287 return Res;
6288 };
6289
6290 switch (S->getSCEVType()) {
6291 case scConstant:
6292 return cast<SCEVConstant>(Val: S)->getAPInt();
6293 case scPtrToInt:
6294 return getConstantMultiple(S: cast<SCEVPtrToIntExpr>(Val: S)->getOperand());
6295 case scUDivExpr:
6296 case scVScale:
6297 return APInt(BitWidth, 1);
6298 case scTruncate: {
6299 // Only multiples that are a power of 2 will hold after truncation.
6300 const SCEVTruncateExpr *T = cast<SCEVTruncateExpr>(Val: S);
6301 uint32_t TZ = getMinTrailingZeros(S: T->getOperand());
6302 return GetShiftedByZeros(TZ);
6303 }
6304 case scZeroExtend: {
6305 const SCEVZeroExtendExpr *Z = cast<SCEVZeroExtendExpr>(Val: S);
6306 return getConstantMultiple(S: Z->getOperand()).zext(width: BitWidth);
6307 }
6308 case scSignExtend: {
6309 const SCEVSignExtendExpr *E = cast<SCEVSignExtendExpr>(Val: S);
6310 return getConstantMultiple(S: E->getOperand()).sext(width: BitWidth);
6311 }
6312 case scMulExpr: {
6313 const SCEVMulExpr *M = cast<SCEVMulExpr>(Val: S);
6314 if (M->hasNoUnsignedWrap()) {
6315 // The result is the product of all operand results.
6316 APInt Res = getConstantMultiple(S: M->getOperand(i: 0));
6317 for (const SCEV *Operand : M->operands().drop_front())
6318 Res = Res * getConstantMultiple(S: Operand);
6319 return Res;
6320 }
6321
6322 // If there are no wrap guarentees, find the trailing zeros, which is the
6323 // sum of trailing zeros for all its operands.
6324 uint32_t TZ = 0;
6325 for (const SCEV *Operand : M->operands())
6326 TZ += getMinTrailingZeros(S: Operand);
6327 return GetShiftedByZeros(TZ);
6328 }
6329 case scAddExpr:
6330 case scAddRecExpr: {
6331 const SCEVNAryExpr *N = cast<SCEVNAryExpr>(Val: S);
6332 if (N->hasNoUnsignedWrap())
6333 return GetGCDMultiple(N);
6334 // Find the trailing bits, which is the minimum of its operands.
6335 uint32_t TZ = getMinTrailingZeros(S: N->getOperand(i: 0));
6336 for (const SCEV *Operand : N->operands().drop_front())
6337 TZ = std::min(a: TZ, b: getMinTrailingZeros(S: Operand));
6338 return GetShiftedByZeros(TZ);
6339 }
6340 case scUMaxExpr:
6341 case scSMaxExpr:
6342 case scUMinExpr:
6343 case scSMinExpr:
6344 case scSequentialUMinExpr:
6345 return GetGCDMultiple(cast<SCEVNAryExpr>(Val: S));
6346 case scUnknown: {
6347 // ask ValueTracking for known bits
6348 const SCEVUnknown *U = cast<SCEVUnknown>(Val: S);
6349 unsigned Known =
6350 computeKnownBits(V: U->getValue(), DL: getDataLayout(), Depth: 0, AC: &AC, CxtI: nullptr, DT: &DT)
6351 .countMinTrailingZeros();
6352 return GetShiftedByZeros(Known);
6353 }
6354 case scCouldNotCompute:
6355 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6356 }
6357 llvm_unreachable("Unknown SCEV kind!");
6358}
6359
6360APInt ScalarEvolution::getConstantMultiple(const SCEV *S) {
6361 auto I = ConstantMultipleCache.find(Val: S);
6362 if (I != ConstantMultipleCache.end())
6363 return I->second;
6364
6365 APInt Result = getConstantMultipleImpl(S);
6366 auto InsertPair = ConstantMultipleCache.insert(KV: {S, Result});
6367 assert(InsertPair.second && "Should insert a new key");
6368 return InsertPair.first->second;
6369}
6370
6371APInt ScalarEvolution::getNonZeroConstantMultiple(const SCEV *S) {
6372 APInt Multiple = getConstantMultiple(S);
6373 return Multiple == 0 ? APInt(Multiple.getBitWidth(), 1) : Multiple;
6374}
6375
6376uint32_t ScalarEvolution::getMinTrailingZeros(const SCEV *S) {
6377 return std::min(a: getConstantMultiple(S).countTrailingZeros(),
6378 b: (unsigned)getTypeSizeInBits(Ty: S->getType()));
6379}
6380
6381/// Helper method to assign a range to V from metadata present in the IR.
6382static std::optional<ConstantRange> GetRangeFromMetadata(Value *V) {
6383 if (Instruction *I = dyn_cast<Instruction>(Val: V))
6384 if (MDNode *MD = I->getMetadata(KindID: LLVMContext::MD_range))
6385 return getConstantRangeFromMetadata(RangeMD: *MD);
6386
6387 return std::nullopt;
6388}
6389
6390void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec,
6391 SCEV::NoWrapFlags Flags) {
6392 if (AddRec->getNoWrapFlags(Mask: Flags) != Flags) {
6393 AddRec->setNoWrapFlags(Flags);
6394 UnsignedRanges.erase(Val: AddRec);
6395 SignedRanges.erase(Val: AddRec);
6396 ConstantMultipleCache.erase(Val: AddRec);
6397 }
6398}
6399
6400ConstantRange ScalarEvolution::
6401getRangeForUnknownRecurrence(const SCEVUnknown *U) {
6402 const DataLayout &DL = getDataLayout();
6403
6404 unsigned BitWidth = getTypeSizeInBits(Ty: U->getType());
6405 const ConstantRange FullSet(BitWidth, /*isFullSet=*/true);
6406
6407 // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then
6408 // use information about the trip count to improve our available range. Note
6409 // that the trip count independent cases are already handled by known bits.
6410 // WARNING: The definition of recurrence used here is subtly different than
6411 // the one used by AddRec (and thus most of this file). Step is allowed to
6412 // be arbitrarily loop varying here, where AddRec allows only loop invariant
6413 // and other addrecs in the same loop (for non-affine addrecs). The code
6414 // below intentionally handles the case where step is not loop invariant.
6415 auto *P = dyn_cast<PHINode>(Val: U->getValue());
6416 if (!P)
6417 return FullSet;
6418
6419 // Make sure that no Phi input comes from an unreachable block. Otherwise,
6420 // even the values that are not available in these blocks may come from them,
6421 // and this leads to false-positive recurrence test.
6422 for (auto *Pred : predecessors(BB: P->getParent()))
6423 if (!DT.isReachableFromEntry(A: Pred))
6424 return FullSet;
6425
6426 BinaryOperator *BO;
6427 Value *Start, *Step;
6428 if (!matchSimpleRecurrence(P, BO, Start, Step))
6429 return FullSet;
6430
6431 // If we found a recurrence in reachable code, we must be in a loop. Note
6432 // that BO might be in some subloop of L, and that's completely okay.
6433 auto *L = LI.getLoopFor(BB: P->getParent());
6434 assert(L && L->getHeader() == P->getParent());
6435 if (!L->contains(BB: BO->getParent()))
6436 // NOTE: This bailout should be an assert instead. However, asserting
6437 // the condition here exposes a case where LoopFusion is querying SCEV
6438 // with malformed loop information during the midst of the transform.
6439 // There doesn't appear to be an obvious fix, so for the moment bailout
6440 // until the caller issue can be fixed. PR49566 tracks the bug.
6441 return FullSet;
6442
6443 // TODO: Extend to other opcodes such as mul, and div
6444 switch (BO->getOpcode()) {
6445 default:
6446 return FullSet;
6447 case Instruction::AShr:
6448 case Instruction::LShr:
6449 case Instruction::Shl:
6450 break;
6451 };
6452
6453 if (BO->getOperand(i_nocapture: 0) != P)
6454 // TODO: Handle the power function forms some day.
6455 return FullSet;
6456
6457 unsigned TC = getSmallConstantMaxTripCount(L);
6458 if (!TC || TC >= BitWidth)
6459 return FullSet;
6460
6461 auto KnownStart = computeKnownBits(V: Start, DL, Depth: 0, AC: &AC, CxtI: nullptr, DT: &DT);
6462 auto KnownStep = computeKnownBits(V: Step, DL, Depth: 0, AC: &AC, CxtI: nullptr, DT: &DT);
6463 assert(KnownStart.getBitWidth() == BitWidth &&
6464 KnownStep.getBitWidth() == BitWidth);
6465
6466 // Compute total shift amount, being careful of overflow and bitwidths.
6467 auto MaxShiftAmt = KnownStep.getMaxValue();
6468 APInt TCAP(BitWidth, TC-1);
6469 bool Overflow = false;
6470 auto TotalShift = MaxShiftAmt.umul_ov(RHS: TCAP, Overflow);
6471 if (Overflow)
6472 return FullSet;
6473
6474 switch (BO->getOpcode()) {
6475 default:
6476 llvm_unreachable("filtered out above");
6477 case Instruction::AShr: {
6478 // For each ashr, three cases:
6479 // shift = 0 => unchanged value
6480 // saturation => 0 or -1
6481 // other => a value closer to zero (of the same sign)
6482 // Thus, the end value is closer to zero than the start.
6483 auto KnownEnd = KnownBits::ashr(LHS: KnownStart,
6484 RHS: KnownBits::makeConstant(C: TotalShift));
6485 if (KnownStart.isNonNegative())
6486 // Analogous to lshr (simply not yet canonicalized)
6487 return ConstantRange::getNonEmpty(Lower: KnownEnd.getMinValue(),
6488 Upper: KnownStart.getMaxValue() + 1);
6489 if (KnownStart.isNegative())
6490 // End >=u Start && End <=s Start
6491 return ConstantRange::getNonEmpty(Lower: KnownStart.getMinValue(),
6492 Upper: KnownEnd.getMaxValue() + 1);
6493 break;
6494 }
6495 case Instruction::LShr: {
6496 // For each lshr, three cases:
6497 // shift = 0 => unchanged value
6498 // saturation => 0
6499 // other => a smaller positive number
6500 // Thus, the low end of the unsigned range is the last value produced.
6501 auto KnownEnd = KnownBits::lshr(LHS: KnownStart,
6502 RHS: KnownBits::makeConstant(C: TotalShift));
6503 return ConstantRange::getNonEmpty(Lower: KnownEnd.getMinValue(),
6504 Upper: KnownStart.getMaxValue() + 1);
6505 }
6506 case Instruction::Shl: {
6507 // Iff no bits are shifted out, value increases on every shift.
6508 auto KnownEnd = KnownBits::shl(LHS: KnownStart,
6509 RHS: KnownBits::makeConstant(C: TotalShift));
6510 if (TotalShift.ult(RHS: KnownStart.countMinLeadingZeros()))
6511 return ConstantRange(KnownStart.getMinValue(),
6512 KnownEnd.getMaxValue() + 1);
6513 break;
6514 }
6515 };
6516 return FullSet;
6517}
6518
6519const ConstantRange &
6520ScalarEvolution::getRangeRefIter(const SCEV *S,
6521 ScalarEvolution::RangeSignHint SignHint) {
6522 DenseMap<const SCEV *, ConstantRange> &Cache =
6523 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
6524 : SignedRanges;
6525 SmallVector<const SCEV *> WorkList;
6526 SmallPtrSet<const SCEV *, 8> Seen;
6527
6528 // Add Expr to the worklist, if Expr is either an N-ary expression or a
6529 // SCEVUnknown PHI node.
6530 auto AddToWorklist = [&WorkList, &Seen, &Cache](const SCEV *Expr) {
6531 if (!Seen.insert(Ptr: Expr).second)
6532 return;
6533 if (Cache.contains(Val: Expr))
6534 return;
6535 switch (Expr->getSCEVType()) {
6536 case scUnknown:
6537 if (!isa<PHINode>(Val: cast<SCEVUnknown>(Val: Expr)->getValue()))
6538 break;
6539 [[fallthrough]];
6540 case scConstant:
6541 case scVScale:
6542 case scTruncate:
6543 case scZeroExtend:
6544 case scSignExtend:
6545 case scPtrToInt:
6546 case scAddExpr:
6547 case scMulExpr:
6548 case scUDivExpr:
6549 case scAddRecExpr:
6550 case scUMaxExpr:
6551 case scSMaxExpr:
6552 case scUMinExpr:
6553 case scSMinExpr:
6554 case scSequentialUMinExpr:
6555 WorkList.push_back(Elt: Expr);
6556 break;
6557 case scCouldNotCompute:
6558 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6559 }
6560 };
6561 AddToWorklist(S);
6562
6563 // Build worklist by queuing operands of N-ary expressions and phi nodes.
6564 for (unsigned I = 0; I != WorkList.size(); ++I) {
6565 const SCEV *P = WorkList[I];
6566 auto *UnknownS = dyn_cast<SCEVUnknown>(Val: P);
6567 // If it is not a `SCEVUnknown`, just recurse into operands.
6568 if (!UnknownS) {
6569 for (const SCEV *Op : P->operands())
6570 AddToWorklist(Op);
6571 continue;
6572 }
6573 // `SCEVUnknown`'s require special treatment.
6574 if (const PHINode *P = dyn_cast<PHINode>(Val: UnknownS->getValue())) {
6575 if (!PendingPhiRangesIter.insert(Ptr: P).second)
6576 continue;
6577 for (auto &Op : reverse(C: P->operands()))
6578 AddToWorklist(getSCEV(V: Op));
6579 }
6580 }
6581
6582 if (!WorkList.empty()) {
6583 // Use getRangeRef to compute ranges for items in the worklist in reverse
6584 // order. This will force ranges for earlier operands to be computed before
6585 // their users in most cases.
6586 for (const SCEV *P : reverse(C: drop_begin(RangeOrContainer&: WorkList))) {
6587 getRangeRef(S: P, Hint: SignHint);
6588
6589 if (auto *UnknownS = dyn_cast<SCEVUnknown>(Val: P))
6590 if (const PHINode *P = dyn_cast<PHINode>(Val: UnknownS->getValue()))
6591 PendingPhiRangesIter.erase(Ptr: P);
6592 }
6593 }
6594
6595 return getRangeRef(S, Hint: SignHint, Depth: 0);
6596}
6597
6598/// Determine the range for a particular SCEV. If SignHint is
6599/// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
6600/// with a "cleaner" unsigned (resp. signed) representation.
6601const ConstantRange &ScalarEvolution::getRangeRef(
6602 const SCEV *S, ScalarEvolution::RangeSignHint SignHint, unsigned Depth) {
6603 DenseMap<const SCEV *, ConstantRange> &Cache =
6604 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
6605 : SignedRanges;
6606 ConstantRange::PreferredRangeType RangeType =
6607 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? ConstantRange::Unsigned
6608 : ConstantRange::Signed;
6609
6610 // See if we've computed this range already.
6611 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(Val: S);
6612 if (I != Cache.end())
6613 return I->second;
6614
6615 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Val: S))
6616 return setRange(S: C, Hint: SignHint, CR: ConstantRange(C->getAPInt()));
6617
6618 // Switch to iteratively computing the range for S, if it is part of a deeply
6619 // nested expression.
6620 if (Depth > RangeIterThreshold)
6621 return getRangeRefIter(S, SignHint);
6622
6623 unsigned BitWidth = getTypeSizeInBits(Ty: S->getType());
6624 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
6625 using OBO = OverflowingBinaryOperator;
6626
6627 // If the value has known zeros, the maximum value will have those known zeros
6628 // as well.
6629 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
6630 APInt Multiple = getNonZeroConstantMultiple(S);
6631 APInt Remainder = APInt::getMaxValue(numBits: BitWidth).urem(RHS: Multiple);
6632 if (!Remainder.isZero())
6633 ConservativeResult =
6634 ConstantRange(APInt::getMinValue(numBits: BitWidth),
6635 APInt::getMaxValue(numBits: BitWidth) - Remainder + 1);
6636 }
6637 else {
6638 uint32_t TZ = getMinTrailingZeros(S);
6639 if (TZ != 0) {
6640 ConservativeResult = ConstantRange(
6641 APInt::getSignedMinValue(numBits: BitWidth),
6642 APInt::getSignedMaxValue(numBits: BitWidth).ashr(ShiftAmt: TZ).shl(shiftAmt: TZ) + 1);
6643 }
6644 }
6645
6646 switch (S->getSCEVType()) {
6647 case scConstant:
6648 llvm_unreachable("Already handled above.");
6649 case scVScale:
6650 return setRange(S, Hint: SignHint, CR: getVScaleRange(F: &F, BitWidth));
6651 case scTruncate: {
6652 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Val: S);
6653 ConstantRange X = getRangeRef(S: Trunc->getOperand(), SignHint, Depth: Depth + 1);
6654 return setRange(
6655 S: Trunc, Hint: SignHint,
6656 CR: ConservativeResult.intersectWith(CR: X.truncate(BitWidth), Type: RangeType));
6657 }
6658 case scZeroExtend: {
6659 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(Val: S);
6660 ConstantRange X = getRangeRef(S: ZExt->getOperand(), SignHint, Depth: Depth + 1);
6661 return setRange(
6662 S: ZExt, Hint: SignHint,
6663 CR: ConservativeResult.intersectWith(CR: X.zeroExtend(BitWidth), Type: RangeType));
6664 }
6665 case scSignExtend: {
6666 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(Val: S);
6667 ConstantRange X = getRangeRef(S: SExt->getOperand(), SignHint, Depth: Depth + 1);
6668 return setRange(
6669 S: SExt, Hint: SignHint,
6670 CR: ConservativeResult.intersectWith(CR: X.signExtend(BitWidth), Type: RangeType));
6671 }
6672 case scPtrToInt: {
6673 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(Val: S);
6674 ConstantRange X = getRangeRef(S: PtrToInt->getOperand(), SignHint, Depth: Depth + 1);
6675 return setRange(S: PtrToInt, Hint: SignHint, CR: X);
6676 }
6677 case scAddExpr: {
6678 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Val: S);
6679 ConstantRange X = getRangeRef(S: Add->getOperand(i: 0), SignHint, Depth: Depth + 1);
6680 unsigned WrapType = OBO::AnyWrap;
6681 if (Add->hasNoSignedWrap())
6682 WrapType |= OBO::NoSignedWrap;
6683 if (Add->hasNoUnsignedWrap())
6684 WrapType |= OBO::NoUnsignedWrap;
6685 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
6686 X = X.addWithNoWrap(Other: getRangeRef(S: Add->getOperand(i), SignHint, Depth: Depth + 1),
6687 NoWrapKind: WrapType, RangeType);
6688 return setRange(S: Add, Hint: SignHint,
6689 CR: ConservativeResult.intersectWith(CR: X, Type: RangeType));
6690 }
6691 case scMulExpr: {
6692 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Val: S);
6693 ConstantRange X = getRangeRef(S: Mul->getOperand(i: 0), SignHint, Depth: Depth + 1);
6694 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
6695 X = X.multiply(Other: getRangeRef(S: Mul->getOperand(i), SignHint, Depth: Depth + 1));
6696 return setRange(S: Mul, Hint: SignHint,
6697 CR: ConservativeResult.intersectWith(CR: X, Type: RangeType));
6698 }
6699 case scUDivExpr: {
6700 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(Val: S);
6701 ConstantRange X = getRangeRef(S: UDiv->getLHS(), SignHint, Depth: Depth + 1);
6702 ConstantRange Y = getRangeRef(S: UDiv->getRHS(), SignHint, Depth: Depth + 1);
6703 return setRange(S: UDiv, Hint: SignHint,
6704 CR: ConservativeResult.intersectWith(CR: X.udiv(Other: Y), Type: RangeType));
6705 }
6706 case scAddRecExpr: {
6707 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Val: S);
6708 // If there's no unsigned wrap, the value will never be less than its
6709 // initial value.
6710 if (AddRec->hasNoUnsignedWrap()) {
6711 APInt UnsignedMinValue = getUnsignedRangeMin(S: AddRec->getStart());
6712 if (!UnsignedMinValue.isZero())
6713 ConservativeResult = ConservativeResult.intersectWith(
6714 CR: ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), Type: RangeType);
6715 }
6716
6717 // If there's no signed wrap, and all the operands except initial value have
6718 // the same sign or zero, the value won't ever be:
6719 // 1: smaller than initial value if operands are non negative,
6720 // 2: bigger than initial value if operands are non positive.
6721 // For both cases, value can not cross signed min/max boundary.
6722 if (AddRec->hasNoSignedWrap()) {
6723 bool AllNonNeg = true;
6724 bool AllNonPos = true;
6725 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
6726 if (!isKnownNonNegative(S: AddRec->getOperand(i)))
6727 AllNonNeg = false;
6728 if (!isKnownNonPositive(S: AddRec->getOperand(i)))
6729 AllNonPos = false;
6730 }
6731 if (AllNonNeg)
6732 ConservativeResult = ConservativeResult.intersectWith(
6733 CR: ConstantRange::getNonEmpty(Lower: getSignedRangeMin(S: AddRec->getStart()),
6734 Upper: APInt::getSignedMinValue(numBits: BitWidth)),
6735 Type: RangeType);
6736 else if (AllNonPos)
6737 ConservativeResult = ConservativeResult.intersectWith(
6738 CR: ConstantRange::getNonEmpty(Lower: APInt::getSignedMinValue(numBits: BitWidth),
6739 Upper: getSignedRangeMax(S: AddRec->getStart()) +
6740 1),
6741 Type: RangeType);
6742 }
6743
6744 // TODO: non-affine addrec
6745 if (AddRec->isAffine()) {
6746 const SCEV *MaxBEScev =
6747 getConstantMaxBackedgeTakenCount(L: AddRec->getLoop());
6748 if (!isa<SCEVCouldNotCompute>(Val: MaxBEScev)) {
6749 APInt MaxBECount = cast<SCEVConstant>(Val: MaxBEScev)->getAPInt();
6750
6751 // Adjust MaxBECount to the same bitwidth as AddRec. We can truncate if
6752 // MaxBECount's active bits are all <= AddRec's bit width.
6753 if (MaxBECount.getBitWidth() > BitWidth &&
6754 MaxBECount.getActiveBits() <= BitWidth)
6755 MaxBECount = MaxBECount.trunc(width: BitWidth);
6756 else if (MaxBECount.getBitWidth() < BitWidth)
6757 MaxBECount = MaxBECount.zext(width: BitWidth);
6758
6759 if (MaxBECount.getBitWidth() == BitWidth) {
6760 auto RangeFromAffine = getRangeForAffineAR(
6761 Start: AddRec->getStart(), Step: AddRec->getStepRecurrence(SE&: *this), MaxBECount);
6762 ConservativeResult =
6763 ConservativeResult.intersectWith(CR: RangeFromAffine, Type: RangeType);
6764
6765 auto RangeFromFactoring = getRangeViaFactoring(
6766 Start: AddRec->getStart(), Step: AddRec->getStepRecurrence(SE&: *this), MaxBECount);
6767 ConservativeResult =
6768 ConservativeResult.intersectWith(CR: RangeFromFactoring, Type: RangeType);
6769 }
6770 }
6771
6772 // Now try symbolic BE count and more powerful methods.
6773 if (UseExpensiveRangeSharpening) {
6774 const SCEV *SymbolicMaxBECount =
6775 getSymbolicMaxBackedgeTakenCount(L: AddRec->getLoop());
6776 if (!isa<SCEVCouldNotCompute>(Val: SymbolicMaxBECount) &&
6777 getTypeSizeInBits(Ty: MaxBEScev->getType()) <= BitWidth &&
6778 AddRec->hasNoSelfWrap()) {
6779 auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR(
6780 AddRec, MaxBECount: SymbolicMaxBECount, BitWidth, SignHint);
6781 ConservativeResult =
6782 ConservativeResult.intersectWith(CR: RangeFromAffineNew, Type: RangeType);
6783 }
6784 }
6785 }
6786
6787 return setRange(S: AddRec, Hint: SignHint, CR: std::move(ConservativeResult));
6788 }
6789 case scUMaxExpr:
6790 case scSMaxExpr:
6791 case scUMinExpr:
6792 case scSMinExpr:
6793 case scSequentialUMinExpr: {
6794 Intrinsic::ID ID;
6795 switch (S->getSCEVType()) {
6796 case scUMaxExpr:
6797 ID = Intrinsic::umax;
6798 break;
6799 case scSMaxExpr:
6800 ID = Intrinsic::smax;
6801 break;
6802 case scUMinExpr:
6803 case scSequentialUMinExpr:
6804 ID = Intrinsic::umin;
6805 break;
6806 case scSMinExpr:
6807 ID = Intrinsic::smin;
6808 break;
6809 default:
6810 llvm_unreachable("Unknown SCEVMinMaxExpr/SCEVSequentialMinMaxExpr.");
6811 }
6812
6813 const auto *NAry = cast<SCEVNAryExpr>(Val: S);
6814 ConstantRange X = getRangeRef(S: NAry->getOperand(i: 0), SignHint, Depth: Depth + 1);
6815 for (unsigned i = 1, e = NAry->getNumOperands(); i != e; ++i)
6816 X = X.intrinsic(
6817 IntrinsicID: ID, Ops: {X, getRangeRef(S: NAry->getOperand(i), SignHint, Depth: Depth + 1)});
6818 return setRange(S, Hint: SignHint,
6819 CR: ConservativeResult.intersectWith(CR: X, Type: RangeType));
6820 }
6821 case scUnknown: {
6822 const SCEVUnknown *U = cast<SCEVUnknown>(Val: S);
6823 Value *V = U->getValue();
6824
6825 // Check if the IR explicitly contains !range metadata.
6826 std::optional<ConstantRange> MDRange = GetRangeFromMetadata(V);
6827 if (MDRange)
6828 ConservativeResult =
6829 ConservativeResult.intersectWith(CR: *MDRange, Type: RangeType);
6830
6831 // Use facts about recurrences in the underlying IR. Note that add
6832 // recurrences are AddRecExprs and thus don't hit this path. This
6833 // primarily handles shift recurrences.
6834 auto CR = getRangeForUnknownRecurrence(U);
6835 ConservativeResult = ConservativeResult.intersectWith(CR);
6836
6837 // See if ValueTracking can give us a useful range.
6838 const DataLayout &DL = getDataLayout();
6839 KnownBits Known = computeKnownBits(V, DL, Depth: 0, AC: &AC, CxtI: nullptr, DT: &DT);
6840 if (Known.getBitWidth() != BitWidth)
6841 Known = Known.zextOrTrunc(BitWidth);
6842
6843 // ValueTracking may be able to compute a tighter result for the number of
6844 // sign bits than for the value of those sign bits.
6845 unsigned NS = ComputeNumSignBits(Op: V, DL, Depth: 0, AC: &AC, CxtI: nullptr, DT: &DT);
6846 if (U->getType()->isPointerTy()) {
6847 // If the pointer size is larger than the index size type, this can cause
6848 // NS to be larger than BitWidth. So compensate for this.
6849 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
6850 int ptrIdxDiff = ptrSize - BitWidth;
6851 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
6852 NS -= ptrIdxDiff;
6853 }
6854
6855 if (NS > 1) {
6856 // If we know any of the sign bits, we know all of the sign bits.
6857 if (!Known.Zero.getHiBits(numBits: NS).isZero())
6858 Known.Zero.setHighBits(NS);
6859 if (!Known.One.getHiBits(numBits: NS).isZero())
6860 Known.One.setHighBits(NS);
6861 }
6862
6863 if (Known.getMinValue() != Known.getMaxValue() + 1)
6864 ConservativeResult = ConservativeResult.intersectWith(
6865 CR: ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
6866 Type: RangeType);
6867 if (NS > 1)
6868 ConservativeResult = ConservativeResult.intersectWith(
6869 CR: ConstantRange(APInt::getSignedMinValue(numBits: BitWidth).ashr(ShiftAmt: NS - 1),
6870 APInt::getSignedMaxValue(numBits: BitWidth).ashr(ShiftAmt: NS - 1) + 1),
6871 Type: RangeType);
6872
6873 if (U->getType()->isPointerTy() && SignHint == HINT_RANGE_UNSIGNED) {
6874 // Strengthen the range if the underlying IR value is a
6875 // global/alloca/heap allocation using the size of the object.
6876 ObjectSizeOpts Opts;
6877 Opts.RoundToAlign = false;
6878 Opts.NullIsUnknownSize = true;
6879 uint64_t ObjSize;
6880 if ((isa<GlobalVariable>(Val: V) || isa<AllocaInst>(Val: V) ||
6881 isAllocationFn(V, TLI: &TLI)) &&
6882 getObjectSize(Ptr: V, Size&: ObjSize, DL, TLI: &TLI, Opts) && ObjSize > 1) {
6883 // The highest address the object can start is ObjSize bytes before the
6884 // end (unsigned max value). If this value is not a multiple of the
6885 // alignment, the last possible start value is the next lowest multiple
6886 // of the alignment. Note: The computations below cannot overflow,
6887 // because if they would there's no possible start address for the
6888 // object.
6889 APInt MaxVal = APInt::getMaxValue(numBits: BitWidth) - APInt(BitWidth, ObjSize);
6890 uint64_t Align = U->getValue()->getPointerAlignment(DL).value();
6891 uint64_t Rem = MaxVal.urem(RHS: Align);
6892 MaxVal -= APInt(BitWidth, Rem);
6893 APInt MinVal = APInt::getZero(numBits: BitWidth);
6894 if (llvm::isKnownNonZero(V, DL))
6895 MinVal = Align;
6896 ConservativeResult = ConservativeResult.intersectWith(
6897 CR: ConstantRange::getNonEmpty(Lower: MinVal, Upper: MaxVal + 1), Type: RangeType);
6898 }
6899 }
6900
6901 // A range of Phi is a subset of union of all ranges of its input.
6902 if (PHINode *Phi = dyn_cast<PHINode>(Val: V)) {
6903 // Make sure that we do not run over cycled Phis.
6904 if (PendingPhiRanges.insert(Ptr: Phi).second) {
6905 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
6906
6907 for (const auto &Op : Phi->operands()) {
6908 auto OpRange = getRangeRef(S: getSCEV(V: Op), SignHint, Depth: Depth + 1);
6909 RangeFromOps = RangeFromOps.unionWith(CR: OpRange);
6910 // No point to continue if we already have a full set.
6911 if (RangeFromOps.isFullSet())
6912 break;
6913 }
6914 ConservativeResult =
6915 ConservativeResult.intersectWith(CR: RangeFromOps, Type: RangeType);
6916 bool Erased = PendingPhiRanges.erase(Ptr: Phi);
6917 assert(Erased && "Failed to erase Phi properly?");
6918 (void)Erased;
6919 }
6920 }
6921
6922 // vscale can't be equal to zero
6923 if (const auto *II = dyn_cast<IntrinsicInst>(Val: V))
6924 if (II->getIntrinsicID() == Intrinsic::vscale) {
6925 ConstantRange Disallowed = APInt::getZero(numBits: BitWidth);
6926 ConservativeResult = ConservativeResult.difference(CR: Disallowed);
6927 }
6928
6929 return setRange(S: U, Hint: SignHint, CR: std::move(ConservativeResult));
6930 }
6931 case scCouldNotCompute:
6932 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6933 }
6934
6935 return setRange(S, Hint: SignHint, CR: std::move(ConservativeResult));
6936}
6937
6938// Given a StartRange, Step and MaxBECount for an expression compute a range of
6939// values that the expression can take. Initially, the expression has a value
6940// from StartRange and then is changed by Step up to MaxBECount times. Signed
6941// argument defines if we treat Step as signed or unsigned.
6942static ConstantRange getRangeForAffineARHelper(APInt Step,
6943 const ConstantRange &StartRange,
6944 const APInt &MaxBECount,
6945 bool Signed) {
6946 unsigned BitWidth = Step.getBitWidth();
6947 assert(BitWidth == StartRange.getBitWidth() &&
6948 BitWidth == MaxBECount.getBitWidth() && "mismatched bit widths");
6949 // If either Step or MaxBECount is 0, then the expression won't change, and we
6950 // just need to return the initial range.
6951 if (Step == 0 || MaxBECount == 0)
6952 return StartRange;
6953
6954 // If we don't know anything about the initial value (i.e. StartRange is
6955 // FullRange), then we don't know anything about the final range either.
6956 // Return FullRange.
6957 if (StartRange.isFullSet())
6958 return ConstantRange::getFull(BitWidth);
6959
6960 // If Step is signed and negative, then we use its absolute value, but we also
6961 // note that we're moving in the opposite direction.
6962 bool Descending = Signed && Step.isNegative();
6963
6964 if (Signed)
6965 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
6966 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
6967 // This equations hold true due to the well-defined wrap-around behavior of
6968 // APInt.
6969 Step = Step.abs();
6970
6971 // Check if Offset is more than full span of BitWidth. If it is, the
6972 // expression is guaranteed to overflow.
6973 if (APInt::getMaxValue(numBits: StartRange.getBitWidth()).udiv(RHS: Step).ult(RHS: MaxBECount))
6974 return ConstantRange::getFull(BitWidth);
6975
6976 // Offset is by how much the expression can change. Checks above guarantee no
6977 // overflow here.
6978 APInt Offset = Step * MaxBECount;
6979
6980 // Minimum value of the final range will match the minimal value of StartRange
6981 // if the expression is increasing and will be decreased by Offset otherwise.
6982 // Maximum value of the final range will match the maximal value of StartRange
6983 // if the expression is decreasing and will be increased by Offset otherwise.
6984 APInt StartLower = StartRange.getLower();
6985 APInt StartUpper = StartRange.getUpper() - 1;
6986 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
6987 : (StartUpper + std::move(Offset));
6988
6989 // It's possible that the new minimum/maximum value will fall into the initial
6990 // range (due to wrap around). This means that the expression can take any
6991 // value in this bitwidth, and we have to return full range.
6992 if (StartRange.contains(Val: MovedBoundary))
6993 return ConstantRange::getFull(BitWidth);
6994
6995 APInt NewLower =
6996 Descending ? std::move(MovedBoundary) : std::move(StartLower);
6997 APInt NewUpper =
6998 Descending ? std::move(StartUpper) : std::move(MovedBoundary);
6999 NewUpper += 1;
7000
7001 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
7002 return ConstantRange::getNonEmpty(Lower: std::move(NewLower), Upper: std::move(NewUpper));
7003}
7004
7005ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
7006 const SCEV *Step,
7007 const APInt &MaxBECount) {
7008 assert(getTypeSizeInBits(Start->getType()) ==
7009 getTypeSizeInBits(Step->getType()) &&
7010 getTypeSizeInBits(Start->getType()) == MaxBECount.getBitWidth() &&
7011 "mismatched bit widths");
7012
7013 // First, consider step signed.
7014 ConstantRange StartSRange = getSignedRange(S: Start);
7015 ConstantRange StepSRange = getSignedRange(S: Step);
7016
7017 // If Step can be both positive and negative, we need to find ranges for the
7018 // maximum absolute step values in both directions and union them.
7019 ConstantRange SR = getRangeForAffineARHelper(
7020 Step: StepSRange.getSignedMin(), StartRange: StartSRange, MaxBECount, /* Signed = */ true);
7021 SR = SR.unionWith(CR: getRangeForAffineARHelper(Step: StepSRange.getSignedMax(),
7022 StartRange: StartSRange, MaxBECount,
7023 /* Signed = */ true));
7024
7025 // Next, consider step unsigned.
7026 ConstantRange UR = getRangeForAffineARHelper(
7027 Step: getUnsignedRangeMax(S: Step), StartRange: getUnsignedRange(S: Start), MaxBECount,
7028 /* Signed = */ false);
7029
7030 // Finally, intersect signed and unsigned ranges.
7031 return SR.intersectWith(CR: UR, Type: ConstantRange::Smallest);
7032}
7033
7034ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR(
7035 const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth,
7036 ScalarEvolution::RangeSignHint SignHint) {
7037 assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n");
7038 assert(AddRec->hasNoSelfWrap() &&
7039 "This only works for non-self-wrapping AddRecs!");
7040 const bool IsSigned = SignHint == HINT_RANGE_SIGNED;
7041 const SCEV *Step = AddRec->getStepRecurrence(SE&: *this);
7042 // Only deal with constant step to save compile time.
7043 if (!isa<SCEVConstant>(Val: Step))
7044 return ConstantRange::getFull(BitWidth);
7045 // Let's make sure that we can prove that we do not self-wrap during
7046 // MaxBECount iterations. We need this because MaxBECount is a maximum
7047 // iteration count estimate, and we might infer nw from some exit for which we
7048 // do not know max exit count (or any other side reasoning).
7049 // TODO: Turn into assert at some point.
7050 if (getTypeSizeInBits(Ty: MaxBECount->getType()) >
7051 getTypeSizeInBits(Ty: AddRec->getType()))
7052 return ConstantRange::getFull(BitWidth);
7053 MaxBECount = getNoopOrZeroExtend(V: MaxBECount, Ty: AddRec->getType());
7054 const SCEV *RangeWidth = getMinusOne(Ty: AddRec->getType());
7055 const SCEV *StepAbs = getUMinExpr(LHS: Step, RHS: getNegativeSCEV(V: Step));
7056 const SCEV *MaxItersWithoutWrap = getUDivExpr(LHS: RangeWidth, RHS: StepAbs);
7057 if (!isKnownPredicateViaConstantRanges(Pred: ICmpInst::ICMP_ULE, LHS: MaxBECount,
7058 RHS: MaxItersWithoutWrap))
7059 return ConstantRange::getFull(BitWidth);
7060
7061 ICmpInst::Predicate LEPred =
7062 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
7063 ICmpInst::Predicate GEPred =
7064 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
7065 const SCEV *End = AddRec->evaluateAtIteration(It: MaxBECount, SE&: *this);
7066
7067 // We know that there is no self-wrap. Let's take Start and End values and
7068 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during
7069 // the iteration. They either lie inside the range [Min(Start, End),
7070 // Max(Start, End)] or outside it:
7071 //
7072 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax;
7073 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax;
7074 //
7075 // No self wrap flag guarantees that the intermediate values cannot be BOTH
7076 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that
7077 // knowledge, let's try to prove that we are dealing with Case 1. It is so if
7078 // Start <= End and step is positive, or Start >= End and step is negative.
7079 const SCEV *Start = applyLoopGuards(Expr: AddRec->getStart(), L: AddRec->getLoop());
7080 ConstantRange StartRange = getRangeRef(S: Start, SignHint);
7081 ConstantRange EndRange = getRangeRef(S: End, SignHint);
7082 ConstantRange RangeBetween = StartRange.unionWith(CR: EndRange);
7083 // If they already cover full iteration space, we will know nothing useful
7084 // even if we prove what we want to prove.
7085 if (RangeBetween.isFullSet())
7086 return RangeBetween;
7087 // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax).
7088 bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet()
7089 : RangeBetween.isWrappedSet();
7090 if (IsWrappedSet)
7091 return ConstantRange::getFull(BitWidth);
7092
7093 if (isKnownPositive(S: Step) &&
7094 isKnownPredicateViaConstantRanges(Pred: LEPred, LHS: Start, RHS: End))
7095 return RangeBetween;
7096 if (isKnownNegative(S: Step) &&
7097 isKnownPredicateViaConstantRanges(Pred: GEPred, LHS: Start, RHS: End))
7098 return RangeBetween;
7099 return ConstantRange::getFull(BitWidth);
7100}
7101
7102ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
7103 const SCEV *Step,
7104 const APInt &MaxBECount) {
7105 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
7106 // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
7107
7108 unsigned BitWidth = MaxBECount.getBitWidth();
7109 assert(getTypeSizeInBits(Start->getType()) == BitWidth &&
7110 getTypeSizeInBits(Step->getType()) == BitWidth &&
7111 "mismatched bit widths");
7112
7113 struct SelectPattern {
7114 Value *Condition = nullptr;
7115 APInt TrueValue;
7116 APInt FalseValue;
7117
7118 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
7119 const SCEV *S) {
7120 std::optional<unsigned> CastOp;
7121 APInt Offset(BitWidth, 0);
7122
7123 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
7124 "Should be!");
7125
7126 // Peel off a constant offset:
7127 if (auto *SA = dyn_cast<SCEVAddExpr>(Val: S)) {
7128 // In the future we could consider being smarter here and handle
7129 // {Start+Step,+,Step} too.
7130 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(Val: SA->getOperand(i: 0)))
7131 return;
7132
7133 Offset = cast<SCEVConstant>(Val: SA->getOperand(i: 0))->getAPInt();
7134 S = SA->getOperand(i: 1);
7135 }
7136
7137 // Peel off a cast operation
7138 if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(Val: S)) {
7139 CastOp = SCast->getSCEVType();
7140 S = SCast->getOperand();
7141 }
7142
7143 using namespace llvm::PatternMatch;
7144
7145 auto *SU = dyn_cast<SCEVUnknown>(Val: S);
7146 const APInt *TrueVal, *FalseVal;
7147 if (!SU ||
7148 !match(V: SU->getValue(), P: m_Select(C: m_Value(V&: Condition), L: m_APInt(Res&: TrueVal),
7149 R: m_APInt(Res&: FalseVal)))) {
7150 Condition = nullptr;
7151 return;
7152 }
7153
7154 TrueValue = *TrueVal;
7155 FalseValue = *FalseVal;
7156
7157 // Re-apply the cast we peeled off earlier
7158 if (CastOp)
7159 switch (*CastOp) {
7160 default:
7161 llvm_unreachable("Unknown SCEV cast type!");
7162
7163 case scTruncate:
7164 TrueValue = TrueValue.trunc(width: BitWidth);
7165 FalseValue = FalseValue.trunc(width: BitWidth);
7166 break;
7167 case scZeroExtend:
7168 TrueValue = TrueValue.zext(width: BitWidth);
7169 FalseValue = FalseValue.zext(width: BitWidth);
7170 break;
7171 case scSignExtend:
7172 TrueValue = TrueValue.sext(width: BitWidth);
7173 FalseValue = FalseValue.sext(width: BitWidth);
7174 break;
7175 }
7176
7177 // Re-apply the constant offset we peeled off earlier
7178 TrueValue += Offset;
7179 FalseValue += Offset;
7180 }
7181
7182 bool isRecognized() { return Condition != nullptr; }
7183 };
7184
7185 SelectPattern StartPattern(*this, BitWidth, Start);
7186 if (!StartPattern.isRecognized())
7187 return ConstantRange::getFull(BitWidth);
7188
7189 SelectPattern StepPattern(*this, BitWidth, Step);
7190 if (!StepPattern.isRecognized())
7191 return ConstantRange::getFull(BitWidth);
7192
7193 if (StartPattern.Condition != StepPattern.Condition) {
7194 // We don't handle this case today; but we could, by considering four
7195 // possibilities below instead of two. I'm not sure if there are cases where
7196 // that will help over what getRange already does, though.
7197 return ConstantRange::getFull(BitWidth);
7198 }
7199
7200 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
7201 // construct arbitrary general SCEV expressions here. This function is called
7202 // from deep in the call stack, and calling getSCEV (on a sext instruction,
7203 // say) can end up caching a suboptimal value.
7204
7205 // FIXME: without the explicit `this` receiver below, MSVC errors out with
7206 // C2352 and C2512 (otherwise it isn't needed).
7207
7208 const SCEV *TrueStart = this->getConstant(Val: StartPattern.TrueValue);
7209 const SCEV *TrueStep = this->getConstant(Val: StepPattern.TrueValue);
7210 const SCEV *FalseStart = this->getConstant(Val: StartPattern.FalseValue);
7211 const SCEV *FalseStep = this->getConstant(Val: StepPattern.FalseValue);
7212
7213 ConstantRange TrueRange =
7214 this->getRangeForAffineAR(Start: TrueStart, Step: TrueStep, MaxBECount);
7215 ConstantRange FalseRange =
7216 this->getRangeForAffineAR(Start: FalseStart, Step: FalseStep, MaxBECount);
7217
7218 return TrueRange.unionWith(CR: FalseRange);
7219}
7220
7221SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
7222 if (isa<ConstantExpr>(Val: V)) return SCEV::FlagAnyWrap;
7223 const BinaryOperator *BinOp = cast<BinaryOperator>(Val: V);
7224
7225 // Return early if there are no flags to propagate to the SCEV.
7226 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
7227 if (BinOp->hasNoUnsignedWrap())
7228 Flags = ScalarEvolution::setFlags(Flags, OnFlags: SCEV::FlagNUW);
7229 if (BinOp->hasNoSignedWrap())
7230 Flags = ScalarEvolution::setFlags(Flags, OnFlags: SCEV::FlagNSW);
7231 if (Flags == SCEV::FlagAnyWrap)
7232 return SCEV::FlagAnyWrap;
7233
7234 return isSCEVExprNeverPoison(I: BinOp) ? Flags : SCEV::FlagAnyWrap;
7235}
7236
7237const Instruction *
7238ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV *S) {
7239 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Val: S))
7240 return &*AddRec->getLoop()->getHeader()->begin();
7241 if (auto *U = dyn_cast<SCEVUnknown>(Val: S))
7242 if (auto *I = dyn_cast<Instruction>(Val: U->getValue()))
7243 return I;
7244 return nullptr;
7245}
7246
7247const Instruction *
7248ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops,
7249 bool &Precise) {
7250 Precise = true;
7251 // Do a bounded search of the def relation of the requested SCEVs.
7252 SmallSet<const SCEV *, 16> Visited;
7253 SmallVector<const SCEV *> Worklist;
7254 auto pushOp = [&](const SCEV *S) {
7255 if (!Visited.insert(Ptr: S).second)
7256 return;
7257 // Threshold of 30 here is arbitrary.
7258 if (Visited.size() > 30) {
7259 Precise = false;
7260 return;
7261 }
7262 Worklist.push_back(Elt: S);
7263 };
7264
7265 for (const auto *S : Ops)
7266 pushOp(S);
7267
7268 const Instruction *Bound = nullptr;
7269 while (!Worklist.empty()) {
7270 auto *S = Worklist.pop_back_val();
7271 if (auto *DefI = getNonTrivialDefiningScopeBound(S)) {
7272 if (!Bound || DT.dominates(Def: Bound, User: DefI))
7273 Bound = DefI;
7274 } else {
7275 for (const auto *Op : S->operands())
7276 pushOp(Op);
7277 }
7278 }
7279 return Bound ? Bound : &*F.getEntryBlock().begin();
7280}
7281
7282const Instruction *
7283ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops) {
7284 bool Discard;
7285 return getDefiningScopeBound(Ops, Precise&: Discard);
7286}
7287
7288bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction *A,
7289 const Instruction *B) {
7290 if (A->getParent() == B->getParent() &&
7291 isGuaranteedToTransferExecutionToSuccessor(Begin: A->getIterator(),
7292 End: B->getIterator()))
7293 return true;
7294
7295 auto *BLoop = LI.getLoopFor(BB: B->getParent());
7296 if (BLoop && BLoop->getHeader() == B->getParent() &&
7297 BLoop->getLoopPreheader() == A->getParent() &&
7298 isGuaranteedToTransferExecutionToSuccessor(Begin: A->getIterator(),
7299 End: A->getParent()->end()) &&
7300 isGuaranteedToTransferExecutionToSuccessor(Begin: B->getParent()->begin(),
7301 End: B->getIterator()))
7302 return true;
7303 return false;
7304}
7305
7306
7307bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
7308 // Only proceed if we can prove that I does not yield poison.
7309 if (!programUndefinedIfPoison(Inst: I))
7310 return false;
7311
7312 // At this point we know that if I is executed, then it does not wrap
7313 // according to at least one of NSW or NUW. If I is not executed, then we do
7314 // not know if the calculation that I represents would wrap. Multiple
7315 // instructions can map to the same SCEV. If we apply NSW or NUW from I to
7316 // the SCEV, we must guarantee no wrapping for that SCEV also when it is
7317 // derived from other instructions that map to the same SCEV. We cannot make
7318 // that guarantee for cases where I is not executed. So we need to find a
7319 // upper bound on the defining scope for the SCEV, and prove that I is
7320 // executed every time we enter that scope. When the bounding scope is a
7321 // loop (the common case), this is equivalent to proving I executes on every
7322 // iteration of that loop.
7323 SmallVector<const SCEV *> SCEVOps;
7324 for (const Use &Op : I->operands()) {
7325 // I could be an extractvalue from a call to an overflow intrinsic.
7326 // TODO: We can do better here in some cases.
7327 if (isSCEVable(Ty: Op->getType()))
7328 SCEVOps.push_back(Elt: getSCEV(V: Op));
7329 }
7330 auto *DefI = getDefiningScopeBound(Ops: SCEVOps);
7331 return isGuaranteedToTransferExecutionTo(A: DefI, B: I);
7332}
7333
7334bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
7335 // If we know that \c I can never be poison period, then that's enough.
7336 if (isSCEVExprNeverPoison(I))
7337 return true;
7338
7339 // If the loop only has one exit, then we know that, if the loop is entered,
7340 // any instruction dominating that exit will be executed. If any such
7341 // instruction would result in UB, the addrec cannot be poison.
7342 //
7343 // This is basically the same reasoning as in isSCEVExprNeverPoison(), but
7344 // also handles uses outside the loop header (they just need to dominate the
7345 // single exit).
7346
7347 auto *ExitingBB = L->getExitingBlock();
7348 if (!ExitingBB || !loopHasNoAbnormalExits(L))
7349 return false;
7350
7351 SmallPtrSet<const Value *, 16> KnownPoison;
7352 SmallVector<const Instruction *, 8> Worklist;
7353
7354 // We start by assuming \c I, the post-inc add recurrence, is poison. Only
7355 // things that are known to be poison under that assumption go on the
7356 // Worklist.
7357 KnownPoison.insert(Ptr: I);
7358 Worklist.push_back(Elt: I);
7359
7360 while (!Worklist.empty()) {
7361 const Instruction *Poison = Worklist.pop_back_val();
7362
7363 for (const Use &U : Poison->uses()) {
7364 const Instruction *PoisonUser = cast<Instruction>(Val: U.getUser());
7365 if (mustTriggerUB(I: PoisonUser, KnownPoison) &&
7366 DT.dominates(A: PoisonUser->getParent(), B: ExitingBB))
7367 return true;
7368
7369 if (propagatesPoison(PoisonOp: U) && L->contains(Inst: PoisonUser))
7370 if (KnownPoison.insert(Ptr: PoisonUser).second)
7371 Worklist.push_back(Elt: PoisonUser);
7372 }
7373 }
7374
7375 return false;
7376}
7377
7378ScalarEvolution::LoopProperties
7379ScalarEvolution::getLoopProperties(const Loop *L) {
7380 using LoopProperties = ScalarEvolution::LoopProperties;
7381
7382 auto Itr = LoopPropertiesCache.find(Val: L);
7383 if (Itr == LoopPropertiesCache.end()) {
7384 auto HasSideEffects = [](Instruction *I) {
7385 if (auto *SI = dyn_cast<StoreInst>(Val: I))
7386 return !SI->isSimple();
7387
7388 return I->mayThrow() || I->mayWriteToMemory();
7389 };
7390
7391 LoopProperties LP = {/* HasNoAbnormalExits */ true,
7392 /*HasNoSideEffects*/ true};
7393
7394 for (auto *BB : L->getBlocks())
7395 for (auto &I : *BB) {
7396 if (!isGuaranteedToTransferExecutionToSuccessor(I: &I))
7397 LP.HasNoAbnormalExits = false;
7398 if (HasSideEffects(&I))
7399 LP.HasNoSideEffects = false;
7400 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
7401 break; // We're already as pessimistic as we can get.
7402 }
7403
7404 auto InsertPair = LoopPropertiesCache.insert(KV: {L, LP});
7405 assert(InsertPair.second && "We just checked!");
7406 Itr = InsertPair.first;
7407 }
7408
7409 return Itr->second;
7410}
7411
7412bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) {
7413 // A mustprogress loop without side effects must be finite.
7414 // TODO: The check used here is very conservative. It's only *specific*
7415 // side effects which are well defined in infinite loops.
7416 return isFinite(L) || (isMustProgress(L) && loopHasNoSideEffects(L));
7417}
7418
7419const SCEV *ScalarEvolution::createSCEVIter(Value *V) {
7420 // Worklist item with a Value and a bool indicating whether all operands have
7421 // been visited already.
7422 using PointerTy = PointerIntPair<Value *, 1, bool>;
7423 SmallVector<PointerTy> Stack;
7424
7425 Stack.emplace_back(Args&: V, Args: true);
7426 Stack.emplace_back(Args&: V, Args: false);
7427 while (!Stack.empty()) {
7428 auto E = Stack.pop_back_val();
7429 Value *CurV = E.getPointer();
7430
7431 if (getExistingSCEV(V: CurV))
7432 continue;
7433
7434 SmallVector<Value *> Ops;
7435 const SCEV *CreatedSCEV = nullptr;
7436 // If all operands have been visited already, create the SCEV.
7437 if (E.getInt()) {
7438 CreatedSCEV = createSCEV(V: CurV);
7439 } else {
7440 // Otherwise get the operands we need to create SCEV's for before creating
7441 // the SCEV for CurV. If the SCEV for CurV can be constructed trivially,
7442 // just use it.
7443 CreatedSCEV = getOperandsToCreate(V: CurV, Ops);
7444 }
7445
7446 if (CreatedSCEV) {
7447 insertValueToMap(V: CurV, S: CreatedSCEV);
7448 } else {
7449 // Queue CurV for SCEV creation, followed by its's operands which need to
7450 // be constructed first.
7451 Stack.emplace_back(Args&: CurV, Args: true);
7452 for (Value *Op : Ops)
7453 Stack.emplace_back(Args&: Op, Args: false);
7454 }
7455 }
7456
7457 return getExistingSCEV(V);
7458}
7459
7460const SCEV *
7461ScalarEvolution::getOperandsToCreate(Value *V, SmallVectorImpl<Value *> &Ops) {
7462 if (!isSCEVable(Ty: V->getType()))
7463 return getUnknown(V);
7464
7465 if (Instruction *I = dyn_cast<Instruction>(Val: V)) {
7466 // Don't attempt to analyze instructions in blocks that aren't
7467 // reachable. Such instructions don't matter, and they aren't required
7468 // to obey basic rules for definitions dominating uses which this
7469 // analysis depends on.
7470 if (!DT.isReachableFromEntry(A: I->getParent()))
7471 return getUnknown(V: PoisonValue::get(T: V->getType()));
7472 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: V))
7473 return getConstant(V: CI);
7474 else if (isa<GlobalAlias>(Val: V))
7475 return getUnknown(V);
7476 else if (!isa<ConstantExpr>(Val: V))
7477 return getUnknown(V);
7478
7479 Operator *U = cast<Operator>(Val: V);
7480 if (auto BO =
7481 MatchBinaryOp(V: U, DL: getDataLayout(), AC, DT, CxtI: dyn_cast<Instruction>(Val: V))) {
7482 bool IsConstArg = isa<ConstantInt>(Val: BO->RHS);
7483 switch (BO->Opcode) {
7484 case Instruction::Add:
7485 case Instruction::Mul: {
7486 // For additions and multiplications, traverse add/mul chains for which we
7487 // can potentially create a single SCEV, to reduce the number of
7488 // get{Add,Mul}Expr calls.
7489 do {
7490 if (BO->Op) {
7491 if (BO->Op != V && getExistingSCEV(V: BO->Op)) {
7492 Ops.push_back(Elt: BO->Op);
7493 break;
7494 }
7495 }
7496 Ops.push_back(Elt: BO->RHS);
7497 auto NewBO = MatchBinaryOp(V: BO->LHS, DL: getDataLayout(), AC, DT,
7498 CxtI: dyn_cast<Instruction>(Val: V));
7499 if (!NewBO ||
7500 (BO->Opcode == Instruction::Add &&
7501 (NewBO->Opcode != Instruction::Add &&
7502 NewBO->Opcode != Instruction::Sub)) ||
7503 (BO->Opcode == Instruction::Mul &&
7504 NewBO->Opcode != Instruction::Mul)) {
7505 Ops.push_back(Elt: BO->LHS);
7506 break;
7507 }
7508 // CreateSCEV calls getNoWrapFlagsFromUB, which under certain conditions
7509 // requires a SCEV for the LHS.
7510 if (BO->Op && (BO->IsNSW || BO->IsNUW)) {
7511 auto *I = dyn_cast<Instruction>(Val: BO->Op);
7512 if (I && programUndefinedIfPoison(Inst: I)) {
7513 Ops.push_back(Elt: BO->LHS);
7514 break;
7515 }
7516 }
7517 BO = NewBO;
7518 } while (true);
7519 return nullptr;
7520 }
7521 case Instruction::Sub:
7522 case Instruction::UDiv:
7523 case Instruction::URem:
7524 break;
7525 case Instruction::AShr:
7526 case Instruction::Shl:
7527 case Instruction::Xor:
7528 if (!IsConstArg)
7529 return nullptr;
7530 break;
7531 case Instruction::And:
7532 case Instruction::Or:
7533 if (!IsConstArg && !BO->LHS->getType()->isIntegerTy(Bitwidth: 1))
7534 return nullptr;
7535 break;
7536 case Instruction::LShr:
7537 return getUnknown(V);
7538 default:
7539 llvm_unreachable("Unhandled binop");
7540 break;
7541 }
7542
7543 Ops.push_back(Elt: BO->LHS);
7544 Ops.push_back(Elt: BO->RHS);
7545 return nullptr;
7546 }
7547
7548 switch (U->getOpcode()) {
7549 case Instruction::Trunc:
7550 case Instruction::ZExt:
7551 case Instruction::SExt:
7552 case Instruction::PtrToInt:
7553 Ops.push_back(Elt: U->getOperand(i: 0));
7554 return nullptr;
7555
7556 case Instruction::BitCast:
7557 if (isSCEVable(Ty: U->getType()) && isSCEVable(Ty: U->getOperand(i: 0)->getType())) {
7558 Ops.push_back(Elt: U->getOperand(i: 0));
7559 return nullptr;
7560 }
7561 return getUnknown(V);
7562
7563 case Instruction::SDiv:
7564 case Instruction::SRem:
7565 Ops.push_back(Elt: U->getOperand(i: 0));
7566 Ops.push_back(Elt: U->getOperand(i: 1));
7567 return nullptr;
7568
7569 case Instruction::GetElementPtr:
7570 assert(cast<GEPOperator>(U)->getSourceElementType()->isSized() &&
7571 "GEP source element type must be sized");
7572 for (Value *Index : U->operands())
7573 Ops.push_back(Elt: Index);
7574 return nullptr;
7575
7576 case Instruction::IntToPtr:
7577 return getUnknown(V);
7578
7579 case Instruction::PHI:
7580 // Keep constructing SCEVs' for phis recursively for now.
7581 return nullptr;
7582
7583 case Instruction::Select: {
7584 // Check if U is a select that can be simplified to a SCEVUnknown.
7585 auto CanSimplifyToUnknown = [this, U]() {
7586 if (U->getType()->isIntegerTy(Bitwidth: 1) || isa<ConstantInt>(Val: U->getOperand(i: 0)))
7587 return false;
7588
7589 auto *ICI = dyn_cast<ICmpInst>(Val: U->getOperand(i: 0));
7590 if (!ICI)
7591 return false;
7592 Value *LHS = ICI->getOperand(i_nocapture: 0);
7593 Value *RHS = ICI->getOperand(i_nocapture: 1);
7594 if (ICI->getPredicate() == CmpInst::ICMP_EQ ||
7595 ICI->getPredicate() == CmpInst::ICMP_NE) {
7596 if (!(isa<ConstantInt>(Val: RHS) && cast<ConstantInt>(Val: RHS)->isZero()))
7597 return true;
7598 } else if (getTypeSizeInBits(Ty: LHS->getType()) >
7599 getTypeSizeInBits(Ty: U->getType()))
7600 return true;
7601 return false;
7602 };
7603 if (CanSimplifyToUnknown())
7604 return getUnknown(V: U);
7605
7606 for (Value *Inc : U->operands())
7607 Ops.push_back(Elt: Inc);
7608 return nullptr;
7609 break;
7610 }
7611 case Instruction::Call:
7612 case Instruction::Invoke:
7613 if (Value *RV = cast<CallBase>(Val: U)->getReturnedArgOperand()) {
7614 Ops.push_back(Elt: RV);
7615 return nullptr;
7616 }
7617
7618 if (auto *II = dyn_cast<IntrinsicInst>(Val: U)) {
7619 switch (II->getIntrinsicID()) {
7620 case Intrinsic::abs:
7621 Ops.push_back(Elt: II->getArgOperand(i: 0));
7622 return nullptr;
7623 case Intrinsic::umax:
7624 case Intrinsic::umin:
7625 case Intrinsic::smax:
7626 case Intrinsic::smin:
7627 case Intrinsic::usub_sat:
7628 case Intrinsic::uadd_sat:
7629 Ops.push_back(Elt: II->getArgOperand(i: 0));
7630 Ops.push_back(Elt: II->getArgOperand(i: 1));
7631 return nullptr;
7632 case Intrinsic::start_loop_iterations:
7633 case Intrinsic::annotation:
7634 case Intrinsic::ptr_annotation:
7635 Ops.push_back(Elt: II->getArgOperand(i: 0));
7636 return nullptr;
7637 default:
7638 break;
7639 }
7640 }
7641 break;
7642 }
7643
7644 return nullptr;
7645}
7646
7647const SCEV *ScalarEvolution::createSCEV(Value *V) {
7648 if (!isSCEVable(Ty: V->getType()))
7649 return getUnknown(V);
7650
7651 if (Instruction *I = dyn_cast<Instruction>(Val: V)) {
7652 // Don't attempt to analyze instructions in blocks that aren't
7653 // reachable. Such instructions don't matter, and they aren't required
7654 // to obey basic rules for definitions dominating uses which this
7655 // analysis depends on.
7656 if (!DT.isReachableFromEntry(A: I->getParent()))
7657 return getUnknown(V: PoisonValue::get(T: V->getType()));
7658 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: V))
7659 return getConstant(V: CI);
7660 else if (isa<GlobalAlias>(Val: V))
7661 return getUnknown(V);
7662 else if (!isa<ConstantExpr>(Val: V))
7663 return getUnknown(V);
7664
7665 const SCEV *LHS;
7666 const SCEV *RHS;
7667
7668 Operator *U = cast<Operator>(Val: V);
7669 if (auto BO =
7670 MatchBinaryOp(V: U, DL: getDataLayout(), AC, DT, CxtI: dyn_cast<Instruction>(Val: V))) {
7671 switch (BO->Opcode) {
7672 case Instruction::Add: {
7673 // The simple thing to do would be to just call getSCEV on both operands
7674 // and call getAddExpr with the result. However if we're looking at a
7675 // bunch of things all added together, this can be quite inefficient,
7676 // because it leads to N-1 getAddExpr calls for N ultimate operands.
7677 // Instead, gather up all the operands and make a single getAddExpr call.
7678 // LLVM IR canonical form means we need only traverse the left operands.
7679 SmallVector<const SCEV *, 4> AddOps;
7680 do {
7681 if (BO->Op) {
7682 if (auto *OpSCEV = getExistingSCEV(V: BO->Op)) {
7683 AddOps.push_back(Elt: OpSCEV);
7684 break;
7685 }
7686
7687 // If a NUW or NSW flag can be applied to the SCEV for this
7688 // addition, then compute the SCEV for this addition by itself
7689 // with a separate call to getAddExpr. We need to do that
7690 // instead of pushing the operands of the addition onto AddOps,
7691 // since the flags are only known to apply to this particular
7692 // addition - they may not apply to other additions that can be
7693 // formed with operands from AddOps.
7694 const SCEV *RHS = getSCEV(V: BO->RHS);
7695 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(V: BO->Op);
7696 if (Flags != SCEV::FlagAnyWrap) {
7697 const SCEV *LHS = getSCEV(V: BO->LHS);
7698 if (BO->Opcode == Instruction::Sub)
7699 AddOps.push_back(Elt: getMinusSCEV(LHS, RHS, Flags));
7700 else
7701 AddOps.push_back(Elt: getAddExpr(LHS, RHS, Flags));
7702 break;
7703 }
7704 }
7705
7706 if (BO->Opcode == Instruction::Sub)
7707 AddOps.push_back(Elt: getNegativeSCEV(V: getSCEV(V: BO->RHS)));
7708 else
7709 AddOps.push_back(Elt: getSCEV(V: BO->RHS));
7710
7711 auto NewBO = MatchBinaryOp(V: BO->LHS, DL: getDataLayout(), AC, DT,
7712 CxtI: dyn_cast<Instruction>(Val: V));
7713 if (!NewBO || (NewBO->Opcode != Instruction::Add &&
7714 NewBO->Opcode != Instruction::Sub)) {
7715 AddOps.push_back(Elt: getSCEV(V: BO->LHS));
7716 break;
7717 }
7718 BO = NewBO;
7719 } while (true);
7720
7721 return getAddExpr(Ops&: AddOps);
7722 }
7723
7724 case Instruction::Mul: {
7725 SmallVector<const SCEV *, 4> MulOps;
7726 do {
7727 if (BO->Op) {
7728 if (auto *OpSCEV = getExistingSCEV(V: BO->Op)) {
7729 MulOps.push_back(Elt: OpSCEV);
7730 break;
7731 }
7732
7733 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(V: BO->Op);
7734 if (Flags != SCEV::FlagAnyWrap) {
7735 LHS = getSCEV(V: BO->LHS);
7736 RHS = getSCEV(V: BO->RHS);
7737 MulOps.push_back(Elt: getMulExpr(LHS, RHS, Flags));
7738 break;
7739 }
7740 }
7741
7742 MulOps.push_back(Elt: getSCEV(V: BO->RHS));
7743 auto NewBO = MatchBinaryOp(V: BO->LHS, DL: getDataLayout(), AC, DT,
7744 CxtI: dyn_cast<Instruction>(Val: V));
7745 if (!NewBO || NewBO->Opcode != Instruction::Mul) {
7746 MulOps.push_back(Elt: getSCEV(V: BO->LHS));
7747 break;
7748 }
7749 BO = NewBO;
7750 } while (true);
7751
7752 return getMulExpr(Ops&: MulOps);
7753 }
7754 case Instruction::UDiv:
7755 LHS = getSCEV(V: BO->LHS);
7756 RHS = getSCEV(V: BO->RHS);
7757 return getUDivExpr(LHS, RHS);
7758 case Instruction::URem:
7759 LHS = getSCEV(V: BO->LHS);
7760 RHS = getSCEV(V: BO->RHS);
7761 return getURemExpr(LHS, RHS);
7762 case Instruction::Sub: {
7763 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
7764 if (BO->Op)
7765 Flags = getNoWrapFlagsFromUB(V: BO->Op);
7766 LHS = getSCEV(V: BO->LHS);
7767 RHS = getSCEV(V: BO->RHS);
7768 return getMinusSCEV(LHS, RHS, Flags);
7769 }
7770 case Instruction::And:
7771 // For an expression like x&255 that merely masks off the high bits,
7772 // use zext(trunc(x)) as the SCEV expression.
7773 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: BO->RHS)) {
7774 if (CI->isZero())
7775 return getSCEV(V: BO->RHS);
7776 if (CI->isMinusOne())
7777 return getSCEV(V: BO->LHS);
7778 const APInt &A = CI->getValue();
7779
7780 // Instcombine's ShrinkDemandedConstant may strip bits out of
7781 // constants, obscuring what would otherwise be a low-bits mask.
7782 // Use computeKnownBits to compute what ShrinkDemandedConstant
7783 // knew about to reconstruct a low-bits mask value.
7784 unsigned LZ = A.countl_zero();
7785 unsigned TZ = A.countr_zero();
7786 unsigned BitWidth = A.getBitWidth();
7787 KnownBits Known(BitWidth);
7788 computeKnownBits(V: BO->LHS, Known, DL: getDataLayout(),
7789 Depth: 0, AC: &AC, CxtI: nullptr, DT: &DT);
7790
7791 APInt EffectiveMask =
7792 APInt::getLowBitsSet(numBits: BitWidth, loBitsSet: BitWidth - LZ - TZ).shl(shiftAmt: TZ);
7793 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
7794 const SCEV *MulCount = getConstant(Val: APInt::getOneBitSet(numBits: BitWidth, BitNo: TZ));
7795 const SCEV *LHS = getSCEV(V: BO->LHS);
7796 const SCEV *ShiftedLHS = nullptr;
7797 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(Val: LHS)) {
7798 if (auto *OpC = dyn_cast<SCEVConstant>(Val: LHSMul->getOperand(i: 0))) {
7799 // For an expression like (x * 8) & 8, simplify the multiply.
7800 unsigned MulZeros = OpC->getAPInt().countr_zero();
7801 unsigned GCD = std::min(a: MulZeros, b: TZ);
7802 APInt DivAmt = APInt::getOneBitSet(numBits: BitWidth, BitNo: TZ - GCD);
7803 SmallVector<const SCEV*, 4> MulOps;
7804 MulOps.push_back(Elt: getConstant(Val: OpC->getAPInt().lshr(shiftAmt: GCD)));
7805 append_range(C&: MulOps, R: LHSMul->operands().drop_front());
7806 auto *NewMul = getMulExpr(Ops&: MulOps, OrigFlags: LHSMul->getNoWrapFlags());
7807 ShiftedLHS = getUDivExpr(LHS: NewMul, RHS: getConstant(Val: DivAmt));
7808 }
7809 }
7810 if (!ShiftedLHS)
7811 ShiftedLHS = getUDivExpr(LHS, RHS: MulCount);
7812 return getMulExpr(
7813 LHS: getZeroExtendExpr(
7814 Op: getTruncateExpr(Op: ShiftedLHS,
7815 Ty: IntegerType::get(C&: getContext(), NumBits: BitWidth - LZ - TZ)),
7816 Ty: BO->LHS->getType()),
7817 RHS: MulCount);
7818 }
7819 }
7820 // Binary `and` is a bit-wise `umin`.
7821 if (BO->LHS->getType()->isIntegerTy(Bitwidth: 1)) {
7822 LHS = getSCEV(V: BO->LHS);
7823 RHS = getSCEV(V: BO->RHS);
7824 return getUMinExpr(LHS, RHS);
7825 }
7826 break;
7827
7828 case Instruction::Or:
7829 // Binary `or` is a bit-wise `umax`.
7830 if (BO->LHS->getType()->isIntegerTy(Bitwidth: 1)) {
7831 LHS = getSCEV(V: BO->LHS);
7832 RHS = getSCEV(V: BO->RHS);
7833 return getUMaxExpr(LHS, RHS);
7834 }
7835 break;
7836
7837 case Instruction::Xor:
7838 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: BO->RHS)) {
7839 // If the RHS of xor is -1, then this is a not operation.
7840 if (CI->isMinusOne())
7841 return getNotSCEV(V: getSCEV(V: BO->LHS));
7842
7843 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
7844 // This is a variant of the check for xor with -1, and it handles
7845 // the case where instcombine has trimmed non-demanded bits out
7846 // of an xor with -1.
7847 if (auto *LBO = dyn_cast<BinaryOperator>(Val: BO->LHS))
7848 if (ConstantInt *LCI = dyn_cast<ConstantInt>(Val: LBO->getOperand(i_nocapture: 1)))
7849 if (LBO->getOpcode() == Instruction::And &&
7850 LCI->getValue() == CI->getValue())
7851 if (const SCEVZeroExtendExpr *Z =
7852 dyn_cast<SCEVZeroExtendExpr>(Val: getSCEV(V: BO->LHS))) {
7853 Type *UTy = BO->LHS->getType();
7854 const SCEV *Z0 = Z->getOperand();
7855 Type *Z0Ty = Z0->getType();
7856 unsigned Z0TySize = getTypeSizeInBits(Ty: Z0Ty);
7857
7858 // If C is a low-bits mask, the zero extend is serving to
7859 // mask off the high bits. Complement the operand and
7860 // re-apply the zext.
7861 if (CI->getValue().isMask(numBits: Z0TySize))
7862 return getZeroExtendExpr(Op: getNotSCEV(V: Z0), Ty: UTy);
7863
7864 // If C is a single bit, it may be in the sign-bit position
7865 // before the zero-extend. In this case, represent the xor
7866 // using an add, which is equivalent, and re-apply the zext.
7867 APInt Trunc = CI->getValue().trunc(width: Z0TySize);
7868 if (Trunc.zext(width: getTypeSizeInBits(Ty: UTy)) == CI->getValue() &&
7869 Trunc.isSignMask())
7870 return getZeroExtendExpr(Op: getAddExpr(LHS: Z0, RHS: getConstant(Val: Trunc)),
7871 Ty: UTy);
7872 }
7873 }
7874 break;
7875
7876 case Instruction::Shl:
7877 // Turn shift left of a constant amount into a multiply.
7878 if (ConstantInt *SA = dyn_cast<ConstantInt>(Val: BO->RHS)) {
7879 uint32_t BitWidth = cast<IntegerType>(Val: SA->getType())->getBitWidth();
7880
7881 // If the shift count is not less than the bitwidth, the result of
7882 // the shift is undefined. Don't try to analyze it, because the
7883 // resolution chosen here may differ from the resolution chosen in
7884 // other parts of the compiler.
7885 if (SA->getValue().uge(RHS: BitWidth))
7886 break;
7887
7888 // We can safely preserve the nuw flag in all cases. It's also safe to
7889 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
7890 // requires special handling. It can be preserved as long as we're not
7891 // left shifting by bitwidth - 1.
7892 auto Flags = SCEV::FlagAnyWrap;
7893 if (BO->Op) {
7894 auto MulFlags = getNoWrapFlagsFromUB(V: BO->Op);
7895 if ((MulFlags & SCEV::FlagNSW) &&
7896 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(RHS: BitWidth - 1)))
7897 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW);
7898 if (MulFlags & SCEV::FlagNUW)
7899 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW);
7900 }
7901
7902 ConstantInt *X = ConstantInt::get(
7903 Context&: getContext(), V: APInt::getOneBitSet(numBits: BitWidth, BitNo: SA->getZExtValue()));
7904 return getMulExpr(LHS: getSCEV(V: BO->LHS), RHS: getConstant(V: X), Flags);
7905 }
7906 break;
7907
7908 case Instruction::AShr:
7909 // AShr X, C, where C is a constant.
7910 ConstantInt *CI = dyn_cast<ConstantInt>(Val: BO->RHS);
7911 if (!CI)
7912 break;
7913
7914 Type *OuterTy = BO->LHS->getType();
7915 uint64_t BitWidth = getTypeSizeInBits(Ty: OuterTy);
7916 // If the shift count is not less than the bitwidth, the result of
7917 // the shift is undefined. Don't try to analyze it, because the
7918 // resolution chosen here may differ from the resolution chosen in
7919 // other parts of the compiler.
7920 if (CI->getValue().uge(RHS: BitWidth))
7921 break;
7922
7923 if (CI->isZero())
7924 return getSCEV(V: BO->LHS); // shift by zero --> noop
7925
7926 uint64_t AShrAmt = CI->getZExtValue();
7927 Type *TruncTy = IntegerType::get(C&: getContext(), NumBits: BitWidth - AShrAmt);
7928
7929 Operator *L = dyn_cast<Operator>(Val: BO->LHS);
7930 const SCEV *AddTruncateExpr = nullptr;
7931 ConstantInt *ShlAmtCI = nullptr;
7932 const SCEV *AddConstant = nullptr;
7933
7934 if (L && L->getOpcode() == Instruction::Add) {
7935 // X = Shl A, n
7936 // Y = Add X, c
7937 // Z = AShr Y, m
7938 // n, c and m are constants.
7939
7940 Operator *LShift = dyn_cast<Operator>(Val: L->getOperand(i: 0));
7941 ConstantInt *AddOperandCI = dyn_cast<ConstantInt>(Val: L->getOperand(i: 1));
7942 if (LShift && LShift->getOpcode() == Instruction::Shl) {
7943 if (AddOperandCI) {
7944 const SCEV *ShlOp0SCEV = getSCEV(V: LShift->getOperand(i: 0));
7945 ShlAmtCI = dyn_cast<ConstantInt>(Val: LShift->getOperand(i: 1));
7946 // since we truncate to TruncTy, the AddConstant should be of the
7947 // same type, so create a new Constant with type same as TruncTy.
7948 // Also, the Add constant should be shifted right by AShr amount.
7949 APInt AddOperand = AddOperandCI->getValue().ashr(ShiftAmt: AShrAmt);
7950 AddConstant = getConstant(Val: AddOperand.trunc(width: BitWidth - AShrAmt));
7951 // we model the expression as sext(add(trunc(A), c << n)), since the
7952 // sext(trunc) part is already handled below, we create a
7953 // AddExpr(TruncExp) which will be used later.
7954 AddTruncateExpr = getTruncateExpr(Op: ShlOp0SCEV, Ty: TruncTy);
7955 }
7956 }
7957 } else if (L && L->getOpcode() == Instruction::Shl) {
7958 // X = Shl A, n
7959 // Y = AShr X, m
7960 // Both n and m are constant.
7961
7962 const SCEV *ShlOp0SCEV = getSCEV(V: L->getOperand(i: 0));
7963 ShlAmtCI = dyn_cast<ConstantInt>(Val: L->getOperand(i: 1));
7964 AddTruncateExpr = getTruncateExpr(Op: ShlOp0SCEV, Ty: TruncTy);
7965 }
7966
7967 if (AddTruncateExpr && ShlAmtCI) {
7968 // We can merge the two given cases into a single SCEV statement,
7969 // incase n = m, the mul expression will be 2^0, so it gets resolved to
7970 // a simpler case. The following code handles the two cases:
7971 //
7972 // 1) For a two-shift sext-inreg, i.e. n = m,
7973 // use sext(trunc(x)) as the SCEV expression.
7974 //
7975 // 2) When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
7976 // expression. We already checked that ShlAmt < BitWidth, so
7977 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
7978 // ShlAmt - AShrAmt < Amt.
7979 const APInt &ShlAmt = ShlAmtCI->getValue();
7980 if (ShlAmt.ult(RHS: BitWidth) && ShlAmt.uge(RHS: AShrAmt)) {
7981 APInt Mul = APInt::getOneBitSet(numBits: BitWidth - AShrAmt,
7982 BitNo: ShlAmtCI->getZExtValue() - AShrAmt);
7983 const SCEV *CompositeExpr =
7984 getMulExpr(LHS: AddTruncateExpr, RHS: getConstant(Val: Mul));
7985 if (L->getOpcode() != Instruction::Shl)
7986 CompositeExpr = getAddExpr(LHS: CompositeExpr, RHS: AddConstant);
7987
7988 return getSignExtendExpr(Op: CompositeExpr, Ty: OuterTy);
7989 }
7990 }
7991 break;
7992 }
7993 }
7994
7995 switch (U->getOpcode()) {
7996 case Instruction::Trunc:
7997 return getTruncateExpr(Op: getSCEV(V: U->getOperand(i: 0)), Ty: U->getType());
7998
7999 case Instruction::ZExt:
8000 return getZeroExtendExpr(Op: getSCEV(V: U->getOperand(i: 0)), Ty: U->getType());
8001
8002 case Instruction::SExt:
8003 if (auto BO = MatchBinaryOp(V: U->getOperand(i: 0), DL: getDataLayout(), AC, DT,
8004 CxtI: dyn_cast<Instruction>(Val: V))) {
8005 // The NSW flag of a subtract does not always survive the conversion to
8006 // A + (-1)*B. By pushing sign extension onto its operands we are much
8007 // more likely to preserve NSW and allow later AddRec optimisations.
8008 //
8009 // NOTE: This is effectively duplicating this logic from getSignExtend:
8010 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
8011 // but by that point the NSW information has potentially been lost.
8012 if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
8013 Type *Ty = U->getType();
8014 auto *V1 = getSignExtendExpr(Op: getSCEV(V: BO->LHS), Ty);
8015 auto *V2 = getSignExtendExpr(Op: getSCEV(V: BO->RHS), Ty);
8016 return getMinusSCEV(LHS: V1, RHS: V2, Flags: SCEV::FlagNSW);
8017 }
8018 }
8019 return getSignExtendExpr(Op: getSCEV(V: U->getOperand(i: 0)), Ty: U->getType());
8020
8021 case Instruction::BitCast:
8022 // BitCasts are no-op casts so we just eliminate the cast.
8023 if (isSCEVable(Ty: U->getType()) && isSCEVable(Ty: U->getOperand(i: 0)->getType()))
8024 return getSCEV(V: U->getOperand(i: 0));
8025 break;
8026
8027 case Instruction::PtrToInt: {
8028 // Pointer to integer cast is straight-forward, so do model it.
8029 const SCEV *Op = getSCEV(V: U->getOperand(i: 0));
8030 Type *DstIntTy = U->getType();
8031 // But only if effective SCEV (integer) type is wide enough to represent
8032 // all possible pointer values.
8033 const SCEV *IntOp = getPtrToIntExpr(Op, Ty: DstIntTy);
8034 if (isa<SCEVCouldNotCompute>(Val: IntOp))
8035 return getUnknown(V);
8036 return IntOp;
8037 }
8038 case Instruction::IntToPtr:
8039 // Just don't deal with inttoptr casts.
8040 return getUnknown(V);
8041
8042 case Instruction::SDiv:
8043 // If both operands are non-negative, this is just an udiv.
8044 if (isKnownNonNegative(S: getSCEV(V: U->getOperand(i: 0))) &&
8045 isKnownNonNegative(S: getSCEV(V: U->getOperand(i: 1))))
8046 return getUDivExpr(LHS: getSCEV(V: U->getOperand(i: 0)), RHS: getSCEV(V: U->getOperand(i: 1)));
8047 break;
8048
8049 case Instruction::SRem:
8050 // If both operands are non-negative, this is just an urem.
8051 if (isKnownNonNegative(S: getSCEV(V: U->getOperand(i: 0))) &&
8052 isKnownNonNegative(S: getSCEV(V: U->getOperand(i: 1))))
8053 return getURemExpr(LHS: getSCEV(V: U->getOperand(i: 0)), RHS: getSCEV(V: U->getOperand(i: 1)));
8054 break;
8055
8056 case Instruction::GetElementPtr:
8057 return createNodeForGEP(GEP: cast<GEPOperator>(Val: U));
8058
8059 case Instruction::PHI:
8060 return createNodeForPHI(PN: cast<PHINode>(Val: U));
8061
8062 case Instruction::Select:
8063 return createNodeForSelectOrPHI(V: U, Cond: U->getOperand(i: 0), TrueVal: U->getOperand(i: 1),
8064 FalseVal: U->getOperand(i: 2));
8065
8066 case Instruction::Call:
8067 case Instruction::Invoke:
8068 if (Value *RV = cast<CallBase>(Val: U)->getReturnedArgOperand())
8069 return getSCEV(V: RV);
8070
8071 if (auto *II = dyn_cast<IntrinsicInst>(Val: U)) {
8072 switch (II->getIntrinsicID()) {
8073 case Intrinsic::abs:
8074 return getAbsExpr(
8075 Op: getSCEV(V: II->getArgOperand(i: 0)),
8076 /*IsNSW=*/cast<ConstantInt>(Val: II->getArgOperand(i: 1))->isOne());
8077 case Intrinsic::umax:
8078 LHS = getSCEV(V: II->getArgOperand(i: 0));
8079 RHS = getSCEV(V: II->getArgOperand(i: 1));
8080 return getUMaxExpr(LHS, RHS);
8081 case Intrinsic::umin:
8082 LHS = getSCEV(V: II->getArgOperand(i: 0));
8083 RHS = getSCEV(V: II->getArgOperand(i: 1));
8084 return getUMinExpr(LHS, RHS);
8085 case Intrinsic::smax:
8086 LHS = getSCEV(V: II->getArgOperand(i: 0));
8087 RHS = getSCEV(V: II->getArgOperand(i: 1));
8088 return getSMaxExpr(LHS, RHS);
8089 case Intrinsic::smin:
8090 LHS = getSCEV(V: II->getArgOperand(i: 0));
8091 RHS = getSCEV(V: II->getArgOperand(i: 1));
8092 return getSMinExpr(LHS, RHS);
8093 case Intrinsic::usub_sat: {
8094 const SCEV *X = getSCEV(V: II->getArgOperand(i: 0));
8095 const SCEV *Y = getSCEV(V: II->getArgOperand(i: 1));
8096 const SCEV *ClampedY = getUMinExpr(LHS: X, RHS: Y);
8097 return getMinusSCEV(LHS: X, RHS: ClampedY, Flags: SCEV::FlagNUW);
8098 }
8099 case Intrinsic::uadd_sat: {
8100 const SCEV *X = getSCEV(V: II->getArgOperand(i: 0));
8101 const SCEV *Y = getSCEV(V: II->getArgOperand(i: 1));
8102 const SCEV *ClampedX = getUMinExpr(LHS: X, RHS: getNotSCEV(V: Y));
8103 return getAddExpr(LHS: ClampedX, RHS: Y, Flags: SCEV::FlagNUW);
8104 }
8105 case Intrinsic::start_loop_iterations:
8106 case Intrinsic::annotation:
8107 case Intrinsic::ptr_annotation:
8108 // A start_loop_iterations or llvm.annotation or llvm.prt.annotation is
8109 // just eqivalent to the first operand for SCEV purposes.
8110 return getSCEV(V: II->getArgOperand(i: 0));
8111 case Intrinsic::vscale:
8112 return getVScale(Ty: II->getType());
8113 default:
8114 break;
8115 }
8116 }
8117 break;
8118 }
8119
8120 return getUnknown(V);
8121}
8122
8123//===----------------------------------------------------------------------===//
8124// Iteration Count Computation Code
8125//
8126
8127const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount) {
8128 if (isa<SCEVCouldNotCompute>(Val: ExitCount))
8129 return getCouldNotCompute();
8130
8131 auto *ExitCountType = ExitCount->getType();
8132 assert(ExitCountType->isIntegerTy());
8133 auto *EvalTy = Type::getIntNTy(C&: ExitCountType->getContext(),
8134 N: 1 + ExitCountType->getScalarSizeInBits());
8135 return getTripCountFromExitCount(ExitCount, EvalTy, L: nullptr);
8136}
8137
8138const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount,
8139 Type *EvalTy,
8140 const Loop *L) {
8141 if (isa<SCEVCouldNotCompute>(Val: ExitCount))
8142 return getCouldNotCompute();
8143
8144 unsigned ExitCountSize = getTypeSizeInBits(Ty: ExitCount->getType());
8145 unsigned EvalSize = EvalTy->getPrimitiveSizeInBits();
8146
8147 auto CanAddOneWithoutOverflow = [&]() {
8148 ConstantRange ExitCountRange =
8149 getRangeRef(S: ExitCount, SignHint: RangeSignHint::HINT_RANGE_UNSIGNED);
8150 if (!ExitCountRange.contains(Val: APInt::getMaxValue(numBits: ExitCountSize)))
8151 return true;
8152
8153 return L && isLoopEntryGuardedByCond(L, Pred: ICmpInst::ICMP_NE, LHS: ExitCount,
8154 RHS: getMinusOne(Ty: ExitCount->getType()));
8155 };
8156
8157 // If we need to zero extend the backedge count, check if we can add one to
8158 // it prior to zero extending without overflow. Provided this is safe, it
8159 // allows better simplification of the +1.
8160 if (EvalSize > ExitCountSize && CanAddOneWithoutOverflow())
8161 return getZeroExtendExpr(
8162 Op: getAddExpr(LHS: ExitCount, RHS: getOne(Ty: ExitCount->getType())), Ty: EvalTy);
8163
8164 // Get the total trip count from the count by adding 1. This may wrap.
8165 return getAddExpr(LHS: getTruncateOrZeroExtend(V: ExitCount, Ty: EvalTy), RHS: getOne(Ty: EvalTy));
8166}
8167
8168static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
8169 if (!ExitCount)
8170 return 0;
8171
8172 ConstantInt *ExitConst = ExitCount->getValue();
8173
8174 // Guard against huge trip counts.
8175 if (ExitConst->getValue().getActiveBits() > 32)
8176 return 0;
8177
8178 // In case of integer overflow, this returns 0, which is correct.
8179 return ((unsigned)ExitConst->getZExtValue()) + 1;
8180}
8181
8182unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
8183 auto *ExitCount = dyn_cast<SCEVConstant>(Val: getBackedgeTakenCount(L, Kind: Exact));
8184 return getConstantTripCount(ExitCount);
8185}
8186
8187unsigned
8188ScalarEvolution::getSmallConstantTripCount(const Loop *L,
8189 const BasicBlock *ExitingBlock) {
8190 assert(ExitingBlock && "Must pass a non-null exiting block!");
8191 assert(L->isLoopExiting(ExitingBlock) &&
8192 "Exiting block must actually branch out of the loop!");
8193 const SCEVConstant *ExitCount =
8194 dyn_cast<SCEVConstant>(Val: getExitCount(L, ExitingBlock));
8195 return getConstantTripCount(ExitCount);
8196}
8197
8198unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
8199 const auto *MaxExitCount =
8200 dyn_cast<SCEVConstant>(Val: getConstantMaxBackedgeTakenCount(L));
8201 return getConstantTripCount(ExitCount: MaxExitCount);
8202}
8203
8204unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
8205 SmallVector<BasicBlock *, 8> ExitingBlocks;
8206 L->getExitingBlocks(ExitingBlocks);
8207
8208 std::optional<unsigned> Res;
8209 for (auto *ExitingBB : ExitingBlocks) {
8210 unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBlock: ExitingBB);
8211 if (!Res)
8212 Res = Multiple;
8213 Res = (unsigned)std::gcd(m: *Res, n: Multiple);
8214 }
8215 return Res.value_or(u: 1);
8216}
8217
8218unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
8219 const SCEV *ExitCount) {
8220 if (ExitCount == getCouldNotCompute())
8221 return 1;
8222
8223 // Get the trip count
8224 const SCEV *TCExpr = getTripCountFromExitCount(ExitCount: applyLoopGuards(Expr: ExitCount, L));
8225
8226 APInt Multiple = getNonZeroConstantMultiple(S: TCExpr);
8227 // If a trip multiple is huge (>=2^32), the trip count is still divisible by
8228 // the greatest power of 2 divisor less than 2^32.
8229 return Multiple.getActiveBits() > 32
8230 ? 1U << std::min(a: (unsigned)31, b: Multiple.countTrailingZeros())
8231 : (unsigned)Multiple.zextOrTrunc(width: 32).getZExtValue();
8232}
8233
8234/// Returns the largest constant divisor of the trip count of this loop as a
8235/// normal unsigned value, if possible. This means that the actual trip count is
8236/// always a multiple of the returned value (don't forget the trip count could
8237/// very well be zero as well!).
8238///
8239/// Returns 1 if the trip count is unknown or not guaranteed to be the
8240/// multiple of a constant (which is also the case if the trip count is simply
8241/// constant, use getSmallConstantTripCount for that case), Will also return 1
8242/// if the trip count is very large (>= 2^32).
8243///
8244/// As explained in the comments for getSmallConstantTripCount, this assumes
8245/// that control exits the loop via ExitingBlock.
8246unsigned
8247ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
8248 const BasicBlock *ExitingBlock) {
8249 assert(ExitingBlock && "Must pass a non-null exiting block!");
8250 assert(L->isLoopExiting(ExitingBlock) &&
8251 "Exiting block must actually branch out of the loop!");
8252 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
8253 return getSmallConstantTripMultiple(L, ExitCount);
8254}
8255
8256const SCEV *ScalarEvolution::getExitCount(const Loop *L,
8257 const BasicBlock *ExitingBlock,
8258 ExitCountKind Kind) {
8259 switch (Kind) {
8260 case Exact:
8261 return getBackedgeTakenInfo(L).getExact(ExitingBlock, SE: this);
8262 case SymbolicMaximum:
8263 return getBackedgeTakenInfo(L).getSymbolicMax(ExitingBlock, SE: this);
8264 case ConstantMaximum:
8265 return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, SE: this);
8266 };
8267 llvm_unreachable("Invalid ExitCountKind!");
8268}
8269
8270const SCEV *
8271ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
8272 SmallVector<const SCEVPredicate *, 4> &Preds) {
8273 return getPredicatedBackedgeTakenInfo(L).getExact(L, SE: this, Predicates: &Preds);
8274}
8275
8276const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
8277 ExitCountKind Kind) {
8278 switch (Kind) {
8279 case Exact:
8280 return getBackedgeTakenInfo(L).getExact(L, SE: this);
8281 case ConstantMaximum:
8282 return getBackedgeTakenInfo(L).getConstantMax(SE: this);
8283 case SymbolicMaximum:
8284 return getBackedgeTakenInfo(L).getSymbolicMax(L, SE: this);
8285 };
8286 llvm_unreachable("Invalid ExitCountKind!");
8287}
8288
8289bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
8290 return getBackedgeTakenInfo(L).isConstantMaxOrZero(SE: this);
8291}
8292
8293/// Push PHI nodes in the header of the given loop onto the given Worklist.
8294static void PushLoopPHIs(const Loop *L,
8295 SmallVectorImpl<Instruction *> &Worklist,
8296 SmallPtrSetImpl<Instruction *> &Visited) {
8297 BasicBlock *Header = L->getHeader();
8298
8299 // Push all Loop-header PHIs onto the Worklist stack.
8300 for (PHINode &PN : Header->phis())
8301 if (Visited.insert(Ptr: &PN).second)
8302 Worklist.push_back(Elt: &PN);
8303}
8304
8305const ScalarEvolution::BackedgeTakenInfo &
8306ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
8307 auto &BTI = getBackedgeTakenInfo(L);
8308 if (BTI.hasFullInfo())
8309 return BTI;
8310
8311 auto Pair = PredicatedBackedgeTakenCounts.insert(KV: {L, BackedgeTakenInfo()});
8312
8313 if (!Pair.second)
8314 return Pair.first->second;
8315
8316 BackedgeTakenInfo Result =
8317 computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
8318
8319 return PredicatedBackedgeTakenCounts.find(Val: L)->second = std::move(Result);
8320}
8321
8322ScalarEvolution::BackedgeTakenInfo &
8323ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
8324 // Initially insert an invalid entry for this loop. If the insertion
8325 // succeeds, proceed to actually compute a backedge-taken count and
8326 // update the value. The temporary CouldNotCompute value tells SCEV
8327 // code elsewhere that it shouldn't attempt to request a new
8328 // backedge-taken count, which could result in infinite recursion.
8329 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
8330 BackedgeTakenCounts.insert(KV: {L, BackedgeTakenInfo()});
8331 if (!Pair.second)
8332 return Pair.first->second;
8333
8334 // computeBackedgeTakenCount may allocate memory for its result. Inserting it
8335 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
8336 // must be cleared in this scope.
8337 BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
8338
8339 // Now that we know more about the trip count for this loop, forget any
8340 // existing SCEV values for PHI nodes in this loop since they are only
8341 // conservative estimates made without the benefit of trip count
8342 // information. This invalidation is not necessary for correctness, and is
8343 // only done to produce more precise results.
8344 if (Result.hasAnyInfo()) {
8345 // Invalidate any expression using an addrec in this loop.
8346 SmallVector<const SCEV *, 8> ToForget;
8347 auto LoopUsersIt = LoopUsers.find(Val: L);
8348 if (LoopUsersIt != LoopUsers.end())
8349 append_range(C&: ToForget, R&: LoopUsersIt->second);
8350 forgetMemoizedResults(SCEVs: ToForget);
8351
8352 // Invalidate constant-evolved loop header phis.
8353 for (PHINode &PN : L->getHeader()->phis())
8354 ConstantEvolutionLoopExitValue.erase(Val: &PN);
8355 }
8356
8357 // Re-lookup the insert position, since the call to
8358 // computeBackedgeTakenCount above could result in a
8359 // recusive call to getBackedgeTakenInfo (on a different
8360 // loop), which would invalidate the iterator computed
8361 // earlier.
8362 return BackedgeTakenCounts.find(Val: L)->second = std::move(Result);
8363}
8364
8365void ScalarEvolution::forgetAllLoops() {
8366 // This method is intended to forget all info about loops. It should
8367 // invalidate caches as if the following happened:
8368 // - The trip counts of all loops have changed arbitrarily
8369 // - Every llvm::Value has been updated in place to produce a different
8370 // result.
8371 BackedgeTakenCounts.clear();
8372 PredicatedBackedgeTakenCounts.clear();
8373 BECountUsers.clear();
8374 LoopPropertiesCache.clear();
8375 ConstantEvolutionLoopExitValue.clear();
8376 ValueExprMap.clear();
8377 ValuesAtScopes.clear();
8378 ValuesAtScopesUsers.clear();
8379 LoopDispositions.clear();
8380 BlockDispositions.clear();
8381 UnsignedRanges.clear();
8382 SignedRanges.clear();
8383 ExprValueMap.clear();
8384 HasRecMap.clear();
8385 ConstantMultipleCache.clear();
8386 PredicatedSCEVRewrites.clear();
8387 FoldCache.clear();
8388 FoldCacheUser.clear();
8389}
8390void ScalarEvolution::visitAndClearUsers(
8391 SmallVectorImpl<Instruction *> &Worklist,
8392 SmallPtrSetImpl<Instruction *> &Visited,
8393 SmallVectorImpl<const SCEV *> &ToForget) {
8394 while (!Worklist.empty()) {
8395 Instruction *I = Worklist.pop_back_val();
8396 if (!isSCEVable(Ty: I->getType()))
8397 continue;
8398
8399 ValueExprMapType::iterator It =
8400 ValueExprMap.find_as(Val: static_cast<Value *>(I));
8401 if (It != ValueExprMap.end()) {
8402 eraseValueFromMap(V: It->first);
8403 ToForget.push_back(Elt: It->second);
8404 if (PHINode *PN = dyn_cast<PHINode>(Val: I))
8405 ConstantEvolutionLoopExitValue.erase(Val: PN);
8406 }
8407
8408 PushDefUseChildren(I, Worklist, Visited);
8409 }
8410}
8411
8412void ScalarEvolution::forgetLoop(const Loop *L) {
8413 SmallVector<const Loop *, 16> LoopWorklist(1, L);
8414 SmallVector<Instruction *, 32> Worklist;
8415 SmallPtrSet<Instruction *, 16> Visited;
8416 SmallVector<const SCEV *, 16> ToForget;
8417
8418 // Iterate over all the loops and sub-loops to drop SCEV information.
8419 while (!LoopWorklist.empty()) {
8420 auto *CurrL = LoopWorklist.pop_back_val();
8421
8422 // Drop any stored trip count value.
8423 forgetBackedgeTakenCounts(L: CurrL, /* Predicated */ false);
8424 forgetBackedgeTakenCounts(L: CurrL, /* Predicated */ true);
8425
8426 // Drop information about predicated SCEV rewrites for this loop.
8427 for (auto I = PredicatedSCEVRewrites.begin();
8428 I != PredicatedSCEVRewrites.end();) {
8429 std::pair<const SCEV *, const Loop *> Entry = I->first;
8430 if (Entry.second == CurrL)
8431 PredicatedSCEVRewrites.erase(I: I++);
8432 else
8433 ++I;
8434 }
8435
8436 auto LoopUsersItr = LoopUsers.find(Val: CurrL);
8437 if (LoopUsersItr != LoopUsers.end()) {
8438 ToForget.insert(I: ToForget.end(), From: LoopUsersItr->second.begin(),
8439 To: LoopUsersItr->second.end());
8440 }
8441
8442 // Drop information about expressions based on loop-header PHIs.
8443 PushLoopPHIs(L: CurrL, Worklist, Visited);
8444 visitAndClearUsers(Worklist, Visited, ToForget);
8445
8446 LoopPropertiesCache.erase(Val: CurrL);
8447 // Forget all contained loops too, to avoid dangling entries in the
8448 // ValuesAtScopes map.
8449 LoopWorklist.append(in_start: CurrL->begin(), in_end: CurrL->end());
8450 }
8451 forgetMemoizedResults(SCEVs: ToForget);
8452}
8453
8454void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
8455 forgetLoop(L: L->getOutermostLoop());
8456}
8457
8458void ScalarEvolution::forgetValue(Value *V) {
8459 Instruction *I = dyn_cast<Instruction>(Val: V);
8460 if (!I) return;
8461
8462 // Drop information about expressions based on loop-header PHIs.
8463 SmallVector<Instruction *, 16> Worklist;
8464 SmallPtrSet<Instruction *, 8> Visited;
8465 SmallVector<const SCEV *, 8> ToForget;
8466 Worklist.push_back(Elt: I);
8467 Visited.insert(Ptr: I);
8468 visitAndClearUsers(Worklist, Visited, ToForget);
8469
8470 forgetMemoizedResults(SCEVs: ToForget);
8471}
8472
8473void ScalarEvolution::forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V) {
8474 if (!isSCEVable(Ty: V->getType()))
8475 return;
8476
8477 // If SCEV looked through a trivial LCSSA phi node, we might have SCEV's
8478 // directly using a SCEVUnknown/SCEVAddRec defined in the loop. After an
8479 // extra predecessor is added, this is no longer valid. Find all Unknowns and
8480 // AddRecs defined in the loop and invalidate any SCEV's making use of them.
8481 if (const SCEV *S = getExistingSCEV(V)) {
8482 struct InvalidationRootCollector {
8483 Loop *L;
8484 SmallVector<const SCEV *, 8> Roots;
8485
8486 InvalidationRootCollector(Loop *L) : L(L) {}
8487
8488 bool follow(const SCEV *S) {
8489 if (auto *SU = dyn_cast<SCEVUnknown>(Val: S)) {
8490 if (auto *I = dyn_cast<Instruction>(Val: SU->getValue()))
8491 if (L->contains(Inst: I))
8492 Roots.push_back(Elt: S);
8493 } else if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Val: S)) {
8494 if (L->contains(L: AddRec->getLoop()))
8495 Roots.push_back(Elt: S);
8496 }
8497 return true;
8498 }
8499 bool isDone() const { return false; }
8500 };
8501
8502 InvalidationRootCollector C(L);
8503 visitAll(Root: S, Visitor&: C);
8504 forgetMemoizedResults(SCEVs: C.Roots);
8505 }
8506
8507 // Also perform the normal invalidation.
8508 forgetValue(V);
8509}
8510
8511void ScalarEvolution::forgetLoopDispositions() { LoopDispositions.clear(); }
8512
8513void ScalarEvolution::forgetBlockAndLoopDispositions(Value *V) {
8514 // Unless a specific value is passed to invalidation, completely clear both
8515 // caches.
8516 if (!V) {
8517 BlockDispositions.clear();
8518 LoopDispositions.clear();
8519 return;
8520 }
8521
8522 if (!isSCEVable(Ty: V->getType()))
8523 return;
8524
8525 const SCEV *S = getExistingSCEV(V);
8526 if (!S)
8527 return;
8528
8529 // Invalidate the block and loop dispositions cached for S. Dispositions of
8530 // S's users may change if S's disposition changes (i.e. a user may change to
8531 // loop-invariant, if S changes to loop invariant), so also invalidate
8532 // dispositions of S's users recursively.
8533 SmallVector<const SCEV *, 8> Worklist = {S};
8534 SmallPtrSet<const SCEV *, 8> Seen = {S};
8535 while (!Worklist.empty()) {
8536 const SCEV *Curr = Worklist.pop_back_val();
8537 bool LoopDispoRemoved = LoopDispositions.erase(Val: Curr);
8538 bool BlockDispoRemoved = BlockDispositions.erase(Val: Curr);
8539 if (!LoopDispoRemoved && !BlockDispoRemoved)
8540 continue;
8541 auto Users = SCEVUsers.find(Val: Curr);
8542 if (Users != SCEVUsers.end())
8543 for (const auto *User : Users->second)
8544 if (Seen.insert(Ptr: User).second)
8545 Worklist.push_back(Elt: User);
8546 }
8547}
8548
8549/// Get the exact loop backedge taken count considering all loop exits. A
8550/// computable result can only be returned for loops with all exiting blocks
8551/// dominating the latch. howFarToZero assumes that the limit of each loop test
8552/// is never skipped. This is a valid assumption as long as the loop exits via
8553/// that test. For precise results, it is the caller's responsibility to specify
8554/// the relevant loop exiting block using getExact(ExitingBlock, SE).
8555const SCEV *
8556ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
8557 SmallVector<const SCEVPredicate *, 4> *Preds) const {
8558 // If any exits were not computable, the loop is not computable.
8559 if (!isComplete() || ExitNotTaken.empty())
8560 return SE->getCouldNotCompute();
8561
8562 const BasicBlock *Latch = L->getLoopLatch();
8563 // All exiting blocks we have collected must dominate the only backedge.
8564 if (!Latch)
8565 return SE->getCouldNotCompute();
8566
8567 // All exiting blocks we have gathered dominate loop's latch, so exact trip
8568 // count is simply a minimum out of all these calculated exit counts.
8569 SmallVector<const SCEV *, 2> Ops;
8570 for (const auto &ENT : ExitNotTaken) {
8571 const SCEV *BECount = ENT.ExactNotTaken;
8572 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
8573 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
8574 "We should only have known counts for exiting blocks that dominate "
8575 "latch!");
8576
8577 Ops.push_back(Elt: BECount);
8578
8579 if (Preds)
8580 for (const auto *P : ENT.Predicates)
8581 Preds->push_back(Elt: P);
8582
8583 assert((Preds || ENT.hasAlwaysTruePredicate()) &&
8584 "Predicate should be always true!");
8585 }
8586
8587 // If an earlier exit exits on the first iteration (exit count zero), then
8588 // a later poison exit count should not propagate into the result. This are
8589 // exactly the semantics provided by umin_seq.
8590 return SE->getUMinFromMismatchedTypes(Ops, /* Sequential */ true);
8591}
8592
8593/// Get the exact not taken count for this loop exit.
8594const SCEV *
8595ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock,
8596 ScalarEvolution *SE) const {
8597 for (const auto &ENT : ExitNotTaken)
8598 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
8599 return ENT.ExactNotTaken;
8600
8601 return SE->getCouldNotCompute();
8602}
8603
8604const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax(
8605 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const {
8606 for (const auto &ENT : ExitNotTaken)
8607 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
8608 return ENT.ConstantMaxNotTaken;
8609
8610 return SE->getCouldNotCompute();
8611}
8612
8613const SCEV *ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(
8614 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const {
8615 for (const auto &ENT : ExitNotTaken)
8616 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
8617 return ENT.SymbolicMaxNotTaken;
8618
8619 return SE->getCouldNotCompute();
8620}
8621
8622/// getConstantMax - Get the constant max backedge taken count for the loop.
8623const SCEV *
8624ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const {
8625 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
8626 return !ENT.hasAlwaysTruePredicate();
8627 };
8628
8629 if (!getConstantMax() || any_of(Range: ExitNotTaken, P: PredicateNotAlwaysTrue))
8630 return SE->getCouldNotCompute();
8631
8632 assert((isa<SCEVCouldNotCompute>(getConstantMax()) ||
8633 isa<SCEVConstant>(getConstantMax())) &&
8634 "No point in having a non-constant max backedge taken count!");
8635 return getConstantMax();
8636}
8637
8638const SCEV *
8639ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L,
8640 ScalarEvolution *SE) {
8641 if (!SymbolicMax)
8642 SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L);
8643 return SymbolicMax;
8644}
8645
8646bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero(
8647 ScalarEvolution *SE) const {
8648 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
8649 return !ENT.hasAlwaysTruePredicate();
8650 };
8651 return MaxOrZero && !any_of(Range: ExitNotTaken, P: PredicateNotAlwaysTrue);
8652}
8653
8654ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
8655 : ExitLimit(E, E, E, false, std::nullopt) {}
8656
8657ScalarEvolution::ExitLimit::ExitLimit(
8658 const SCEV *E, const SCEV *ConstantMaxNotTaken,
8659 const SCEV *SymbolicMaxNotTaken, bool MaxOrZero,
8660 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
8661 : ExactNotTaken(E), ConstantMaxNotTaken(ConstantMaxNotTaken),
8662 SymbolicMaxNotTaken(SymbolicMaxNotTaken), MaxOrZero(MaxOrZero) {
8663 // If we prove the max count is zero, so is the symbolic bound. This happens
8664 // in practice due to differences in a) how context sensitive we've chosen
8665 // to be and b) how we reason about bounds implied by UB.
8666 if (ConstantMaxNotTaken->isZero()) {
8667 this->ExactNotTaken = E = ConstantMaxNotTaken;
8668 this->SymbolicMaxNotTaken = SymbolicMaxNotTaken = ConstantMaxNotTaken;
8669 }
8670
8671 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
8672 !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) &&
8673 "Exact is not allowed to be less precise than Constant Max");
8674 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
8675 !isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken)) &&
8676 "Exact is not allowed to be less precise than Symbolic Max");
8677 assert((isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken) ||
8678 !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) &&
8679 "Symbolic Max is not allowed to be less precise than Constant Max");
8680 assert((isa<SCEVCouldNotCompute>(ConstantMaxNotTaken) ||
8681 isa<SCEVConstant>(ConstantMaxNotTaken)) &&
8682 "No point in having a non-constant max backedge taken count!");
8683 for (const auto *PredSet : PredSetList)
8684 for (const auto *P : *PredSet)
8685 addPredicate(P);
8686 assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) &&
8687 "Backedge count should be int");
8688 assert((isa<SCEVCouldNotCompute>(ConstantMaxNotTaken) ||
8689 !ConstantMaxNotTaken->getType()->isPointerTy()) &&
8690 "Max backedge count should be int");
8691}
8692
8693ScalarEvolution::ExitLimit::ExitLimit(
8694 const SCEV *E, const SCEV *ConstantMaxNotTaken,
8695 const SCEV *SymbolicMaxNotTaken, bool MaxOrZero,
8696 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
8697 : ExitLimit(E, ConstantMaxNotTaken, SymbolicMaxNotTaken, MaxOrZero,
8698 { &PredSet }) {}
8699
8700/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
8701/// computable exit into a persistent ExitNotTakenInfo array.
8702ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
8703 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts,
8704 bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero)
8705 : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) {
8706 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
8707
8708 ExitNotTaken.reserve(N: ExitCounts.size());
8709 std::transform(first: ExitCounts.begin(), last: ExitCounts.end(),
8710 result: std::back_inserter(x&: ExitNotTaken),
8711 unary_op: [&](const EdgeExitInfo &EEI) {
8712 BasicBlock *ExitBB = EEI.first;
8713 const ExitLimit &EL = EEI.second;
8714 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken,
8715 EL.ConstantMaxNotTaken, EL.SymbolicMaxNotTaken,
8716 EL.Predicates);
8717 });
8718 assert((isa<SCEVCouldNotCompute>(ConstantMax) ||
8719 isa<SCEVConstant>(ConstantMax)) &&
8720 "No point in having a non-constant max backedge taken count!");
8721}
8722
8723/// Compute the number of times the backedge of the specified loop will execute.
8724ScalarEvolution::BackedgeTakenInfo
8725ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
8726 bool AllowPredicates) {
8727 SmallVector<BasicBlock *, 8> ExitingBlocks;
8728 L->getExitingBlocks(ExitingBlocks);
8729
8730 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
8731
8732 SmallVector<EdgeExitInfo, 4> ExitCounts;
8733 bool CouldComputeBECount = true;
8734 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
8735 const SCEV *MustExitMaxBECount = nullptr;
8736 const SCEV *MayExitMaxBECount = nullptr;
8737 bool MustExitMaxOrZero = false;
8738
8739 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
8740 // and compute maxBECount.
8741 // Do a union of all the predicates here.
8742 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
8743 BasicBlock *ExitBB = ExitingBlocks[i];
8744
8745 // We canonicalize untaken exits to br (constant), ignore them so that
8746 // proving an exit untaken doesn't negatively impact our ability to reason
8747 // about the loop as whole.
8748 if (auto *BI = dyn_cast<BranchInst>(Val: ExitBB->getTerminator()))
8749 if (auto *CI = dyn_cast<ConstantInt>(Val: BI->getCondition())) {
8750 bool ExitIfTrue = !L->contains(BB: BI->getSuccessor(i: 0));
8751 if (ExitIfTrue == CI->isZero())
8752 continue;
8753 }
8754
8755 ExitLimit EL = computeExitLimit(L, ExitingBlock: ExitBB, AllowPredicates);
8756
8757 assert((AllowPredicates || EL.Predicates.empty()) &&
8758 "Predicated exit limit when predicates are not allowed!");
8759
8760 // 1. For each exit that can be computed, add an entry to ExitCounts.
8761 // CouldComputeBECount is true only if all exits can be computed.
8762 if (EL.ExactNotTaken != getCouldNotCompute())
8763 ++NumExitCountsComputed;
8764 else
8765 // We couldn't compute an exact value for this exit, so
8766 // we won't be able to compute an exact value for the loop.
8767 CouldComputeBECount = false;
8768 // Remember exit count if either exact or symbolic is known. Because
8769 // Exact always implies symbolic, only check symbolic.
8770 if (EL.SymbolicMaxNotTaken != getCouldNotCompute())
8771 ExitCounts.emplace_back(Args&: ExitBB, Args&: EL);
8772 else {
8773 assert(EL.ExactNotTaken == getCouldNotCompute() &&
8774 "Exact is known but symbolic isn't?");
8775 ++NumExitCountsNotComputed;
8776 }
8777
8778 // 2. Derive the loop's MaxBECount from each exit's max number of
8779 // non-exiting iterations. Partition the loop exits into two kinds:
8780 // LoopMustExits and LoopMayExits.
8781 //
8782 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
8783 // is a LoopMayExit. If any computable LoopMustExit is found, then
8784 // MaxBECount is the minimum EL.ConstantMaxNotTaken of computable
8785 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
8786 // EL.ConstantMaxNotTaken, where CouldNotCompute is considered greater than
8787 // any
8788 // computable EL.ConstantMaxNotTaken.
8789 if (EL.ConstantMaxNotTaken != getCouldNotCompute() && Latch &&
8790 DT.dominates(A: ExitBB, B: Latch)) {
8791 if (!MustExitMaxBECount) {
8792 MustExitMaxBECount = EL.ConstantMaxNotTaken;
8793 MustExitMaxOrZero = EL.MaxOrZero;
8794 } else {
8795 MustExitMaxBECount = getUMinFromMismatchedTypes(LHS: MustExitMaxBECount,
8796 RHS: EL.ConstantMaxNotTaken);
8797 }
8798 } else if (MayExitMaxBECount != getCouldNotCompute()) {
8799 if (!MayExitMaxBECount || EL.ConstantMaxNotTaken == getCouldNotCompute())
8800 MayExitMaxBECount = EL.ConstantMaxNotTaken;
8801 else {
8802 MayExitMaxBECount = getUMaxFromMismatchedTypes(LHS: MayExitMaxBECount,
8803 RHS: EL.ConstantMaxNotTaken);
8804 }
8805 }
8806 }
8807 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
8808 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
8809 // The loop backedge will be taken the maximum or zero times if there's
8810 // a single exit that must be taken the maximum or zero times.
8811 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
8812
8813 // Remember which SCEVs are used in exit limits for invalidation purposes.
8814 // We only care about non-constant SCEVs here, so we can ignore
8815 // EL.ConstantMaxNotTaken
8816 // and MaxBECount, which must be SCEVConstant.
8817 for (const auto &Pair : ExitCounts) {
8818 if (!isa<SCEVConstant>(Val: Pair.second.ExactNotTaken))
8819 BECountUsers[Pair.second.ExactNotTaken].insert(Ptr: {L, AllowPredicates});
8820 if (!isa<SCEVConstant>(Val: Pair.second.SymbolicMaxNotTaken))
8821 BECountUsers[Pair.second.SymbolicMaxNotTaken].insert(
8822 Ptr: {L, AllowPredicates});
8823 }
8824 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
8825 MaxBECount, MaxOrZero);
8826}
8827
8828ScalarEvolution::ExitLimit
8829ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
8830 bool AllowPredicates) {
8831 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
8832 // If our exiting block does not dominate the latch, then its connection with
8833 // loop's exit limit may be far from trivial.
8834 const BasicBlock *Latch = L->getLoopLatch();
8835 if (!Latch || !DT.dominates(A: ExitingBlock, B: Latch))
8836 return getCouldNotCompute();
8837
8838 bool IsOnlyExit = (L->getExitingBlock() != nullptr);
8839 Instruction *Term = ExitingBlock->getTerminator();
8840 if (BranchInst *BI = dyn_cast<BranchInst>(Val: Term)) {
8841 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
8842 bool ExitIfTrue = !L->contains(BB: BI->getSuccessor(i: 0));
8843 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
8844 "It should have one successor in loop and one exit block!");
8845 // Proceed to the next level to examine the exit condition expression.
8846 return computeExitLimitFromCond(L, ExitCond: BI->getCondition(), ExitIfTrue,
8847 /*ControlsOnlyExit=*/IsOnlyExit,
8848 AllowPredicates);
8849 }
8850
8851 if (SwitchInst *SI = dyn_cast<SwitchInst>(Val: Term)) {
8852 // For switch, make sure that there is a single exit from the loop.
8853 BasicBlock *Exit = nullptr;
8854 for (auto *SBB : successors(BB: ExitingBlock))
8855 if (!L->contains(BB: SBB)) {
8856 if (Exit) // Multiple exit successors.
8857 return getCouldNotCompute();
8858 Exit = SBB;
8859 }
8860 assert(Exit && "Exiting block must have at least one exit");
8861 return computeExitLimitFromSingleExitSwitch(
8862 L, Switch: SI, ExitingBB: Exit,
8863 /*ControlsOnlyExit=*/IsSubExpr: IsOnlyExit);
8864 }
8865
8866 return getCouldNotCompute();
8867}
8868
8869ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
8870 const Loop *L, Value *ExitCond, bool ExitIfTrue, bool ControlsOnlyExit,
8871 bool AllowPredicates) {
8872 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
8873 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
8874 ControlsOnlyExit, AllowPredicates);
8875}
8876
8877std::optional<ScalarEvolution::ExitLimit>
8878ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
8879 bool ExitIfTrue, bool ControlsOnlyExit,
8880 bool AllowPredicates) {
8881 (void)this->L;
8882 (void)this->ExitIfTrue;
8883 (void)this->AllowPredicates;
8884
8885 assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
8886 this->AllowPredicates == AllowPredicates &&
8887 "Variance in assumed invariant key components!");
8888 auto Itr = TripCountMap.find(Val: {ExitCond, ControlsOnlyExit});
8889 if (Itr == TripCountMap.end())
8890 return std::nullopt;
8891 return Itr->second;
8892}
8893
8894void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
8895 bool ExitIfTrue,
8896 bool ControlsOnlyExit,
8897 bool AllowPredicates,
8898 const ExitLimit &EL) {
8899 assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
8900 this->AllowPredicates == AllowPredicates &&
8901 "Variance in assumed invariant key components!");
8902
8903 auto InsertResult = TripCountMap.insert(KV: {{ExitCond, ControlsOnlyExit}, EL});
8904 assert(InsertResult.second && "Expected successful insertion!");
8905 (void)InsertResult;
8906 (void)ExitIfTrue;
8907}
8908
8909ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
8910 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
8911 bool ControlsOnlyExit, bool AllowPredicates) {
8912
8913 if (auto MaybeEL = Cache.find(L, ExitCond, ExitIfTrue, ControlsOnlyExit,
8914 AllowPredicates))
8915 return *MaybeEL;
8916
8917 ExitLimit EL = computeExitLimitFromCondImpl(
8918 Cache, L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates);
8919 Cache.insert(L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates, EL);
8920 return EL;
8921}
8922
8923ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
8924 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
8925 bool ControlsOnlyExit, bool AllowPredicates) {
8926 // Handle BinOp conditions (And, Or).
8927 if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp(
8928 Cache, L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates))
8929 return *LimitFromBinOp;
8930
8931 // With an icmp, it may be feasible to compute an exact backedge-taken count.
8932 // Proceed to the next level to examine the icmp.
8933 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(Val: ExitCond)) {
8934 ExitLimit EL =
8935 computeExitLimitFromICmp(L, ExitCond: ExitCondICmp, ExitIfTrue, IsSubExpr: ControlsOnlyExit);
8936 if (EL.hasFullInfo() || !AllowPredicates)
8937 return EL;
8938
8939 // Try again, but use SCEV predicates this time.
8940 return computeExitLimitFromICmp(L, ExitCond: ExitCondICmp, ExitIfTrue,
8941 IsSubExpr: ControlsOnlyExit,
8942 /*AllowPredicates=*/true);
8943 }
8944
8945 // Check for a constant condition. These are normally stripped out by
8946 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
8947 // preserve the CFG and is temporarily leaving constant conditions
8948 // in place.
8949 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: ExitCond)) {
8950 if (ExitIfTrue == !CI->getZExtValue())
8951 // The backedge is always taken.
8952 return getCouldNotCompute();
8953 // The backedge is never taken.
8954 return getZero(Ty: CI->getType());
8955 }
8956
8957 // If we're exiting based on the overflow flag of an x.with.overflow intrinsic
8958 // with a constant step, we can form an equivalent icmp predicate and figure
8959 // out how many iterations will be taken before we exit.
8960 const WithOverflowInst *WO;
8961 const APInt *C;
8962 if (match(V: ExitCond, P: m_ExtractValue<1>(V: m_WithOverflowInst(I&: WO))) &&
8963 match(V: WO->getRHS(), P: m_APInt(Res&: C))) {
8964 ConstantRange NWR =
8965 ConstantRange::makeExactNoWrapRegion(BinOp: WO->getBinaryOp(), Other: *C,
8966 NoWrapKind: WO->getNoWrapKind());
8967 CmpInst::Predicate Pred;
8968 APInt NewRHSC, Offset;
8969 NWR.getEquivalentICmp(Pred, RHS&: NewRHSC, Offset);
8970 if (!ExitIfTrue)
8971 Pred = ICmpInst::getInversePredicate(pred: Pred);
8972 auto *LHS = getSCEV(V: WO->getLHS());
8973 if (Offset != 0)
8974 LHS = getAddExpr(LHS, RHS: getConstant(Val: Offset));
8975 auto EL = computeExitLimitFromICmp(L, Pred, LHS, RHS: getConstant(Val: NewRHSC),
8976 IsSubExpr: ControlsOnlyExit, AllowPredicates);
8977 if (EL.hasAnyInfo())
8978 return EL;
8979 }
8980
8981 // If it's not an integer or pointer comparison then compute it the hard way.
8982 return computeExitCountExhaustively(L, Cond: ExitCond, ExitWhen: ExitIfTrue);
8983}
8984
8985std::optional<ScalarEvolution::ExitLimit>
8986ScalarEvolution::computeExitLimitFromCondFromBinOp(
8987 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
8988 bool ControlsOnlyExit, bool AllowPredicates) {
8989 // Check if the controlling expression for this loop is an And or Or.
8990 Value *Op0, *Op1;
8991 bool IsAnd = false;
8992 if (match(V: ExitCond, P: m_LogicalAnd(L: m_Value(V&: Op0), R: m_Value(V&: Op1))))
8993 IsAnd = true;
8994 else if (match(V: ExitCond, P: m_LogicalOr(L: m_Value(V&: Op0), R: m_Value(V&: Op1))))
8995 IsAnd = false;
8996 else
8997 return std::nullopt;
8998
8999 // EitherMayExit is true in these two cases:
9000 // br (and Op0 Op1), loop, exit
9001 // br (or Op0 Op1), exit, loop
9002 bool EitherMayExit = IsAnd ^ ExitIfTrue;
9003 ExitLimit EL0 = computeExitLimitFromCondCached(
9004 Cache, L, ExitCond: Op0, ExitIfTrue, ControlsOnlyExit: ControlsOnlyExit && !EitherMayExit,
9005 AllowPredicates);
9006 ExitLimit EL1 = computeExitLimitFromCondCached(
9007 Cache, L, ExitCond: Op1, ExitIfTrue, ControlsOnlyExit: ControlsOnlyExit && !EitherMayExit,
9008 AllowPredicates);
9009
9010 // Be robust against unsimplified IR for the form "op i1 X, NeutralElement"
9011 const Constant *NeutralElement = ConstantInt::get(Ty: ExitCond->getType(), V: IsAnd);
9012 if (isa<ConstantInt>(Val: Op1))
9013 return Op1 == NeutralElement ? EL0 : EL1;
9014 if (isa<ConstantInt>(Val: Op0))
9015 return Op0 == NeutralElement ? EL1 : EL0;
9016
9017 const SCEV *BECount = getCouldNotCompute();
9018 const SCEV *ConstantMaxBECount = getCouldNotCompute();
9019 const SCEV *SymbolicMaxBECount = getCouldNotCompute();
9020 if (EitherMayExit) {
9021 bool UseSequentialUMin = !isa<BinaryOperator>(Val: ExitCond);
9022 // Both conditions must be same for the loop to continue executing.
9023 // Choose the less conservative count.
9024 if (EL0.ExactNotTaken != getCouldNotCompute() &&
9025 EL1.ExactNotTaken != getCouldNotCompute()) {
9026 BECount = getUMinFromMismatchedTypes(LHS: EL0.ExactNotTaken, RHS: EL1.ExactNotTaken,
9027 Sequential: UseSequentialUMin);
9028 }
9029 if (EL0.ConstantMaxNotTaken == getCouldNotCompute())
9030 ConstantMaxBECount = EL1.ConstantMaxNotTaken;
9031 else if (EL1.ConstantMaxNotTaken == getCouldNotCompute())
9032 ConstantMaxBECount = EL0.ConstantMaxNotTaken;
9033 else
9034 ConstantMaxBECount = getUMinFromMismatchedTypes(LHS: EL0.ConstantMaxNotTaken,
9035 RHS: EL1.ConstantMaxNotTaken);
9036 if (EL0.SymbolicMaxNotTaken == getCouldNotCompute())
9037 SymbolicMaxBECount = EL1.SymbolicMaxNotTaken;
9038 else if (EL1.SymbolicMaxNotTaken == getCouldNotCompute())
9039 SymbolicMaxBECount = EL0.SymbolicMaxNotTaken;
9040 else
9041 SymbolicMaxBECount = getUMinFromMismatchedTypes(
9042 LHS: EL0.SymbolicMaxNotTaken, RHS: EL1.SymbolicMaxNotTaken, Sequential: UseSequentialUMin);
9043 } else {
9044 // Both conditions must be same at the same time for the loop to exit.
9045 // For now, be conservative.
9046 if (EL0.ExactNotTaken == EL1.ExactNotTaken)
9047 BECount = EL0.ExactNotTaken;
9048 }
9049
9050 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
9051 // to be more aggressive when computing BECount than when computing
9052 // ConstantMaxBECount. In these cases it is possible for EL0.ExactNotTaken
9053 // and
9054 // EL1.ExactNotTaken to match, but for EL0.ConstantMaxNotTaken and
9055 // EL1.ConstantMaxNotTaken to not.
9056 if (isa<SCEVCouldNotCompute>(Val: ConstantMaxBECount) &&
9057 !isa<SCEVCouldNotCompute>(Val: BECount))
9058 ConstantMaxBECount = getConstant(Val: getUnsignedRangeMax(S: BECount));
9059 if (isa<SCEVCouldNotCompute>(Val: SymbolicMaxBECount))
9060 SymbolicMaxBECount =
9061 isa<SCEVCouldNotCompute>(Val: BECount) ? ConstantMaxBECount : BECount;
9062 return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, false,
9063 { &EL0.Predicates, &EL1.Predicates });
9064}
9065
9066ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromICmp(
9067 const Loop *L, ICmpInst *ExitCond, bool ExitIfTrue, bool ControlsOnlyExit,
9068 bool AllowPredicates) {
9069 // If the condition was exit on true, convert the condition to exit on false
9070 ICmpInst::Predicate Pred;
9071 if (!ExitIfTrue)
9072 Pred = ExitCond->getPredicate();
9073 else
9074 Pred = ExitCond->getInversePredicate();
9075 const ICmpInst::Predicate OriginalPred = Pred;
9076
9077 const SCEV *LHS = getSCEV(V: ExitCond->getOperand(i_nocapture: 0));
9078 const SCEV *RHS = getSCEV(V: ExitCond->getOperand(i_nocapture: 1));
9079
9080 ExitLimit EL = computeExitLimitFromICmp(L, Pred, LHS, RHS, IsSubExpr: ControlsOnlyExit,
9081 AllowPredicates);
9082 if (EL.hasAnyInfo())
9083 return EL;
9084
9085 auto *ExhaustiveCount =
9086 computeExitCountExhaustively(L, Cond: ExitCond, ExitWhen: ExitIfTrue);
9087
9088 if (!isa<SCEVCouldNotCompute>(Val: ExhaustiveCount))
9089 return ExhaustiveCount;
9090
9091 return computeShiftCompareExitLimit(LHS: ExitCond->getOperand(i_nocapture: 0),
9092 RHS: ExitCond->getOperand(i_nocapture: 1), L, Pred: OriginalPred);
9093}
9094ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromICmp(
9095 const Loop *L, ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
9096 bool ControlsOnlyExit, bool AllowPredicates) {
9097
9098 // Try to evaluate any dependencies out of the loop.
9099 LHS = getSCEVAtScope(S: LHS, L);
9100 RHS = getSCEVAtScope(S: RHS, L);
9101
9102 // At this point, we would like to compute how many iterations of the
9103 // loop the predicate will return true for these inputs.
9104 if (isLoopInvariant(S: LHS, L) && !isLoopInvariant(S: RHS, L)) {
9105 // If there is a loop-invariant, force it into the RHS.
9106 std::swap(a&: LHS, b&: RHS);
9107 Pred = ICmpInst::getSwappedPredicate(pred: Pred);
9108 }
9109
9110 bool ControllingFiniteLoop = ControlsOnlyExit && loopHasNoAbnormalExits(L) &&
9111 loopIsFiniteByAssumption(L);
9112 // Simplify the operands before analyzing them.
9113 (void)SimplifyICmpOperands(Pred, LHS, RHS, /*Depth=*/0);
9114
9115 // If we have a comparison of a chrec against a constant, try to use value
9116 // ranges to answer this query.
9117 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Val: RHS))
9118 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Val: LHS))
9119 if (AddRec->getLoop() == L) {
9120 // Form the constant range.
9121 ConstantRange CompRange =
9122 ConstantRange::makeExactICmpRegion(Pred, Other: RHSC->getAPInt());
9123
9124 const SCEV *Ret = AddRec->getNumIterationsInRange(Range: CompRange, SE&: *this);
9125 if (!isa<SCEVCouldNotCompute>(Val: Ret)) return Ret;
9126 }
9127
9128 // If this loop must exit based on this condition (or execute undefined
9129 // behaviour), and we can prove the test sequence produced must repeat
9130 // the same values on self-wrap of the IV, then we can infer that IV
9131 // doesn't self wrap because if it did, we'd have an infinite (undefined)
9132 // loop.
9133 if (ControllingFiniteLoop && isLoopInvariant(S: RHS, L)) {
9134 // TODO: We can peel off any functions which are invertible *in L*. Loop
9135 // invariant terms are effectively constants for our purposes here.
9136 auto *InnerLHS = LHS;
9137 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Val: LHS))
9138 InnerLHS = ZExt->getOperand();
9139 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: InnerLHS)) {
9140 auto *StrideC = dyn_cast<SCEVConstant>(Val: AR->getStepRecurrence(SE&: *this));
9141 if (!AR->hasNoSelfWrap() && AR->getLoop() == L && AR->isAffine() &&
9142 StrideC && StrideC->getAPInt().isPowerOf2()) {
9143 auto Flags = AR->getNoWrapFlags();
9144 Flags = setFlags(Flags, OnFlags: SCEV::FlagNW);
9145 SmallVector<const SCEV*> Operands{AR->operands()};
9146 Flags = StrengthenNoWrapFlags(SE: this, Type: scAddRecExpr, Ops: Operands, Flags);
9147 setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(AR), Flags);
9148 }
9149 }
9150 }
9151
9152 switch (Pred) {
9153 case ICmpInst::ICMP_NE: { // while (X != Y)
9154 // Convert to: while (X-Y != 0)
9155 if (LHS->getType()->isPointerTy()) {
9156 LHS = getLosslessPtrToIntExpr(Op: LHS);
9157 if (isa<SCEVCouldNotCompute>(Val: LHS))
9158 return LHS;
9159 }
9160 if (RHS->getType()->isPointerTy()) {
9161 RHS = getLosslessPtrToIntExpr(Op: RHS);
9162 if (isa<SCEVCouldNotCompute>(Val: RHS))
9163 return RHS;
9164 }
9165 ExitLimit EL = howFarToZero(V: getMinusSCEV(LHS, RHS), L, IsSubExpr: ControlsOnlyExit,
9166 AllowPredicates);
9167 if (EL.hasAnyInfo())
9168 return EL;
9169 break;
9170 }
9171 case ICmpInst::ICMP_EQ: { // while (X == Y)
9172 // Convert to: while (X-Y == 0)
9173 if (LHS->getType()->isPointerTy()) {
9174 LHS = getLosslessPtrToIntExpr(Op: LHS);
9175 if (isa<SCEVCouldNotCompute>(Val: LHS))
9176 return LHS;
9177 }
9178 if (RHS->getType()->isPointerTy()) {
9179 RHS = getLosslessPtrToIntExpr(Op: RHS);
9180 if (isa<SCEVCouldNotCompute>(Val: RHS))
9181 return RHS;
9182 }
9183 ExitLimit EL = howFarToNonZero(V: getMinusSCEV(LHS, RHS), L);
9184 if (EL.hasAnyInfo()) return EL;
9185 break;
9186 }
9187 case ICmpInst::ICMP_SLE:
9188 case ICmpInst::ICMP_ULE:
9189 // Since the loop is finite, an invariant RHS cannot include the boundary
9190 // value, otherwise it would loop forever.
9191 if (!EnableFiniteLoopControl || !ControllingFiniteLoop ||
9192 !isLoopInvariant(S: RHS, L))
9193 break;
9194 RHS = getAddExpr(LHS: getOne(Ty: RHS->getType()), RHS);
9195 [[fallthrough]];
9196 case ICmpInst::ICMP_SLT:
9197 case ICmpInst::ICMP_ULT: { // while (X < Y)
9198 bool IsSigned = ICmpInst::isSigned(predicate: Pred);
9199 ExitLimit EL = howManyLessThans(LHS, RHS, L, isSigned: IsSigned, ControlsOnlyExit,
9200 AllowPredicates);
9201 if (EL.hasAnyInfo())
9202 return EL;
9203 break;
9204 }
9205 case ICmpInst::ICMP_SGE:
9206 case ICmpInst::ICMP_UGE:
9207 // Since the loop is finite, an invariant RHS cannot include the boundary
9208 // value, otherwise it would loop forever.
9209 if (!EnableFiniteLoopControl || !ControllingFiniteLoop ||
9210 !isLoopInvariant(S: RHS, L))
9211 break;
9212 RHS = getAddExpr(LHS: getMinusOne(Ty: RHS->getType()), RHS);
9213 [[fallthrough]];
9214 case ICmpInst::ICMP_SGT:
9215 case ICmpInst::ICMP_UGT: { // while (X > Y)
9216 bool IsSigned = ICmpInst::isSigned(predicate: Pred);
9217 ExitLimit EL = howManyGreaterThans(LHS, RHS, L, isSigned: IsSigned, IsSubExpr: ControlsOnlyExit,
9218 AllowPredicates);
9219 if (EL.hasAnyInfo())
9220 return EL;
9221 break;
9222 }
9223 default:
9224 break;
9225 }
9226
9227 return getCouldNotCompute();
9228}
9229
9230ScalarEvolution::ExitLimit
9231ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
9232 SwitchInst *Switch,
9233 BasicBlock *ExitingBlock,
9234 bool ControlsOnlyExit) {
9235 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
9236
9237 // Give up if the exit is the default dest of a switch.
9238 if (Switch->getDefaultDest() == ExitingBlock)
9239 return getCouldNotCompute();
9240
9241 assert(L->contains(Switch->getDefaultDest()) &&
9242 "Default case must not exit the loop!");
9243 const SCEV *LHS = getSCEVAtScope(V: Switch->getCondition(), L);
9244 const SCEV *RHS = getConstant(V: Switch->findCaseDest(BB: ExitingBlock));
9245
9246 // while (X != Y) --> while (X-Y != 0)
9247 ExitLimit EL = howFarToZero(V: getMinusSCEV(LHS, RHS), L, IsSubExpr: ControlsOnlyExit);
9248 if (EL.hasAnyInfo())
9249 return EL;
9250
9251 return getCouldNotCompute();
9252}
9253
9254static ConstantInt *
9255EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
9256 ScalarEvolution &SE) {
9257 const SCEV *InVal = SE.getConstant(V: C);
9258 const SCEV *Val = AddRec->evaluateAtIteration(It: InVal, SE);
9259 assert(isa<SCEVConstant>(Val) &&
9260 "Evaluation of SCEV at constant didn't fold correctly?");
9261 return cast<SCEVConstant>(Val)->getValue();
9262}
9263
9264ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
9265 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
9266 ConstantInt *RHS = dyn_cast<ConstantInt>(Val: RHSV);
9267 if (!RHS)
9268 return getCouldNotCompute();
9269
9270 const BasicBlock *Latch = L->getLoopLatch();
9271 if (!Latch)
9272 return getCouldNotCompute();
9273
9274 const BasicBlock *Predecessor = L->getLoopPredecessor();
9275 if (!Predecessor)
9276 return getCouldNotCompute();
9277
9278 // Return true if V is of the form "LHS `shift_op` <positive constant>".
9279 // Return LHS in OutLHS and shift_opt in OutOpCode.
9280 auto MatchPositiveShift =
9281 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
9282
9283 using namespace PatternMatch;
9284
9285 ConstantInt *ShiftAmt;
9286 if (match(V, P: m_LShr(L: m_Value(V&: OutLHS), R: m_ConstantInt(CI&: ShiftAmt))))
9287 OutOpCode = Instruction::LShr;
9288 else if (match(V, P: m_AShr(L: m_Value(V&: OutLHS), R: m_ConstantInt(CI&: ShiftAmt))))
9289 OutOpCode = Instruction::AShr;
9290 else if (match(V, P: m_Shl(L: m_Value(V&: OutLHS), R: m_ConstantInt(CI&: ShiftAmt))))
9291 OutOpCode = Instruction::Shl;
9292 else
9293 return false;
9294
9295 return ShiftAmt->getValue().isStrictlyPositive();
9296 };
9297
9298 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
9299 //
9300 // loop:
9301 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
9302 // %iv.shifted = lshr i32 %iv, <positive constant>
9303 //
9304 // Return true on a successful match. Return the corresponding PHI node (%iv
9305 // above) in PNOut and the opcode of the shift operation in OpCodeOut.
9306 auto MatchShiftRecurrence =
9307 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
9308 std::optional<Instruction::BinaryOps> PostShiftOpCode;
9309
9310 {
9311 Instruction::BinaryOps OpC;
9312 Value *V;
9313
9314 // If we encounter a shift instruction, "peel off" the shift operation,
9315 // and remember that we did so. Later when we inspect %iv's backedge
9316 // value, we will make sure that the backedge value uses the same
9317 // operation.
9318 //
9319 // Note: the peeled shift operation does not have to be the same
9320 // instruction as the one feeding into the PHI's backedge value. We only
9321 // really care about it being the same *kind* of shift instruction --
9322 // that's all that is required for our later inferences to hold.
9323 if (MatchPositiveShift(LHS, V, OpC)) {
9324 PostShiftOpCode = OpC;
9325 LHS = V;
9326 }
9327 }
9328
9329 PNOut = dyn_cast<PHINode>(Val: LHS);
9330 if (!PNOut || PNOut->getParent() != L->getHeader())
9331 return false;
9332
9333 Value *BEValue = PNOut->getIncomingValueForBlock(BB: Latch);
9334 Value *OpLHS;
9335
9336 return
9337 // The backedge value for the PHI node must be a shift by a positive
9338 // amount
9339 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
9340
9341 // of the PHI node itself
9342 OpLHS == PNOut &&
9343
9344 // and the kind of shift should be match the kind of shift we peeled
9345 // off, if any.
9346 (!PostShiftOpCode || *PostShiftOpCode == OpCodeOut);
9347 };
9348
9349 PHINode *PN;
9350 Instruction::BinaryOps OpCode;
9351 if (!MatchShiftRecurrence(LHS, PN, OpCode))
9352 return getCouldNotCompute();
9353
9354 const DataLayout &DL = getDataLayout();
9355
9356 // The key rationale for this optimization is that for some kinds of shift
9357 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
9358 // within a finite number of iterations. If the condition guarding the
9359 // backedge (in the sense that the backedge is taken if the condition is true)
9360 // is false for the value the shift recurrence stabilizes to, then we know
9361 // that the backedge is taken only a finite number of times.
9362
9363 ConstantInt *StableValue = nullptr;
9364 switch (OpCode) {
9365 default:
9366 llvm_unreachable("Impossible case!");
9367
9368 case Instruction::AShr: {
9369 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
9370 // bitwidth(K) iterations.
9371 Value *FirstValue = PN->getIncomingValueForBlock(BB: Predecessor);
9372 KnownBits Known = computeKnownBits(V: FirstValue, DL, Depth: 0, AC: &AC,
9373 CxtI: Predecessor->getTerminator(), DT: &DT);
9374 auto *Ty = cast<IntegerType>(Val: RHS->getType());
9375 if (Known.isNonNegative())
9376 StableValue = ConstantInt::get(Ty, V: 0);
9377 else if (Known.isNegative())
9378 StableValue = ConstantInt::get(Ty, V: -1, IsSigned: true);
9379 else
9380 return getCouldNotCompute();
9381
9382 break;
9383 }
9384 case Instruction::LShr:
9385 case Instruction::Shl:
9386 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
9387 // stabilize to 0 in at most bitwidth(K) iterations.
9388 StableValue = ConstantInt::get(Ty: cast<IntegerType>(Val: RHS->getType()), V: 0);
9389 break;
9390 }
9391
9392 auto *Result =
9393 ConstantFoldCompareInstOperands(Predicate: Pred, LHS: StableValue, RHS, DL, TLI: &TLI);
9394 assert(Result->getType()->isIntegerTy(1) &&
9395 "Otherwise cannot be an operand to a branch instruction");
9396
9397 if (Result->isZeroValue()) {
9398 unsigned BitWidth = getTypeSizeInBits(Ty: RHS->getType());
9399 const SCEV *UpperBound =
9400 getConstant(Ty: getEffectiveSCEVType(Ty: RHS->getType()), V: BitWidth);
9401 return ExitLimit(getCouldNotCompute(), UpperBound, UpperBound, false);
9402 }
9403
9404 return getCouldNotCompute();
9405}
9406
9407/// Return true if we can constant fold an instruction of the specified type,
9408/// assuming that all operands were constants.
9409static bool CanConstantFold(const Instruction *I) {
9410 if (isa<BinaryOperator>(Val: I) || isa<CmpInst>(Val: I) ||
9411 isa<SelectInst>(Val: I) || isa<CastInst>(Val: I) || isa<GetElementPtrInst>(Val: I) ||
9412 isa<LoadInst>(Val: I) || isa<ExtractValueInst>(Val: I))
9413 return true;
9414
9415 if (const CallInst *CI = dyn_cast<CallInst>(Val: I))
9416 if (const Function *F = CI->getCalledFunction())
9417 return canConstantFoldCallTo(Call: CI, F);
9418 return false;
9419}
9420
9421/// Determine whether this instruction can constant evolve within this loop
9422/// assuming its operands can all constant evolve.
9423static bool canConstantEvolve(Instruction *I, const Loop *L) {
9424 // An instruction outside of the loop can't be derived from a loop PHI.
9425 if (!L->contains(Inst: I)) return false;
9426
9427 if (isa<PHINode>(Val: I)) {
9428 // We don't currently keep track of the control flow needed to evaluate
9429 // PHIs, so we cannot handle PHIs inside of loops.
9430 return L->getHeader() == I->getParent();
9431 }
9432
9433 // If we won't be able to constant fold this expression even if the operands
9434 // are constants, bail early.
9435 return CanConstantFold(I);
9436}
9437
9438/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
9439/// recursing through each instruction operand until reaching a loop header phi.
9440static PHINode *
9441getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
9442 DenseMap<Instruction *, PHINode *> &PHIMap,
9443 unsigned Depth) {
9444 if (Depth > MaxConstantEvolvingDepth)
9445 return nullptr;
9446
9447 // Otherwise, we can evaluate this instruction if all of its operands are
9448 // constant or derived from a PHI node themselves.
9449 PHINode *PHI = nullptr;
9450 for (Value *Op : UseInst->operands()) {
9451 if (isa<Constant>(Val: Op)) continue;
9452
9453 Instruction *OpInst = dyn_cast<Instruction>(Val: Op);
9454 if (!OpInst || !canConstantEvolve(I: OpInst, L)) return nullptr;
9455
9456 PHINode *P = dyn_cast<PHINode>(Val: OpInst);
9457 if (!P)
9458 // If this operand is already visited, reuse the prior result.
9459 // We may have P != PHI if this is the deepest point at which the
9460 // inconsistent paths meet.
9461 P = PHIMap.lookup(Val: OpInst);
9462 if (!P) {
9463 // Recurse and memoize the results, whether a phi is found or not.
9464 // This recursive call invalidates pointers into PHIMap.
9465 P = getConstantEvolvingPHIOperands(UseInst: OpInst, L, PHIMap, Depth: Depth + 1);
9466 PHIMap[OpInst] = P;
9467 }
9468 if (!P)
9469 return nullptr; // Not evolving from PHI
9470 if (PHI && PHI != P)
9471 return nullptr; // Evolving from multiple different PHIs.
9472 PHI = P;
9473 }
9474 // This is a expression evolving from a constant PHI!
9475 return PHI;
9476}
9477
9478/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
9479/// in the loop that V is derived from. We allow arbitrary operations along the
9480/// way, but the operands of an operation must either be constants or a value
9481/// derived from a constant PHI. If this expression does not fit with these
9482/// constraints, return null.
9483static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
9484 Instruction *I = dyn_cast<Instruction>(Val: V);
9485 if (!I || !canConstantEvolve(I, L)) return nullptr;
9486
9487 if (PHINode *PN = dyn_cast<PHINode>(Val: I))
9488 return PN;
9489
9490 // Record non-constant instructions contained by the loop.
9491 DenseMap<Instruction *, PHINode *> PHIMap;
9492 return getConstantEvolvingPHIOperands(UseInst: I, L, PHIMap, Depth: 0);
9493}
9494
9495/// EvaluateExpression - Given an expression that passes the
9496/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
9497/// in the loop has the value PHIVal. If we can't fold this expression for some
9498/// reason, return null.
9499static Constant *EvaluateExpression(Value *V, const Loop *L,
9500 DenseMap<Instruction *, Constant *> &Vals,
9501 const DataLayout &DL,
9502 const TargetLibraryInfo *TLI) {
9503 // Convenient constant check, but redundant for recursive calls.
9504 if (Constant *C = dyn_cast<Constant>(Val: V)) return C;
9505 Instruction *I = dyn_cast<Instruction>(Val: V);
9506 if (!I) return nullptr;
9507
9508 if (Constant *C = Vals.lookup(Val: I)) return C;
9509
9510 // An instruction inside the loop depends on a value outside the loop that we
9511 // weren't given a mapping for, or a value such as a call inside the loop.
9512 if (!canConstantEvolve(I, L)) return nullptr;
9513
9514 // An unmapped PHI can be due to a branch or another loop inside this loop,
9515 // or due to this not being the initial iteration through a loop where we
9516 // couldn't compute the evolution of this particular PHI last time.
9517 if (isa<PHINode>(Val: I)) return nullptr;
9518
9519 std::vector<Constant*> Operands(I->getNumOperands());
9520
9521 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
9522 Instruction *Operand = dyn_cast<Instruction>(Val: I->getOperand(i));
9523 if (!Operand) {
9524 Operands[i] = dyn_cast<Constant>(Val: I->getOperand(i));
9525 if (!Operands[i]) return nullptr;
9526 continue;
9527 }
9528 Constant *C = EvaluateExpression(V: Operand, L, Vals, DL, TLI);
9529 Vals[Operand] = C;
9530 if (!C) return nullptr;
9531 Operands[i] = C;
9532 }
9533
9534 return ConstantFoldInstOperands(I, Ops: Operands, DL, TLI);
9535}
9536
9537
9538// If every incoming value to PN except the one for BB is a specific Constant,
9539// return that, else return nullptr.
9540static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
9541 Constant *IncomingVal = nullptr;
9542
9543 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
9544 if (PN->getIncomingBlock(i) == BB)
9545 continue;
9546
9547 auto *CurrentVal = dyn_cast<Constant>(Val: PN->getIncomingValue(i));
9548 if (!CurrentVal)
9549 return nullptr;
9550
9551 if (IncomingVal != CurrentVal) {
9552 if (IncomingVal)
9553 return nullptr;
9554 IncomingVal = CurrentVal;
9555 }
9556 }
9557
9558 return IncomingVal;
9559}
9560
9561/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
9562/// in the header of its containing loop, we know the loop executes a
9563/// constant number of times, and the PHI node is just a recurrence
9564/// involving constants, fold it.
9565Constant *
9566ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
9567 const APInt &BEs,
9568 const Loop *L) {
9569 auto I = ConstantEvolutionLoopExitValue.find(Val: PN);
9570 if (I != ConstantEvolutionLoopExitValue.end())
9571 return I->second;
9572
9573 if (BEs.ugt(RHS: MaxBruteForceIterations))
9574 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
9575
9576 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
9577
9578 DenseMap<Instruction *, Constant *> CurrentIterVals;
9579 BasicBlock *Header = L->getHeader();
9580 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
9581
9582 BasicBlock *Latch = L->getLoopLatch();
9583 if (!Latch)
9584 return nullptr;
9585
9586 for (PHINode &PHI : Header->phis()) {
9587 if (auto *StartCST = getOtherIncomingValue(PN: &PHI, BB: Latch))
9588 CurrentIterVals[&PHI] = StartCST;
9589 }
9590 if (!CurrentIterVals.count(Val: PN))
9591 return RetVal = nullptr;
9592
9593 Value *BEValue = PN->getIncomingValueForBlock(BB: Latch);
9594
9595 // Execute the loop symbolically to determine the exit value.
9596 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
9597 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
9598
9599 unsigned NumIterations = BEs.getZExtValue(); // must be in range
9600 unsigned IterationNum = 0;
9601 const DataLayout &DL = getDataLayout();
9602 for (; ; ++IterationNum) {
9603 if (IterationNum == NumIterations)
9604 return RetVal = CurrentIterVals[PN]; // Got exit value!
9605
9606 // Compute the value of the PHIs for the next iteration.
9607 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
9608 DenseMap<Instruction *, Constant *> NextIterVals;
9609 Constant *NextPHI =
9610 EvaluateExpression(V: BEValue, L, Vals&: CurrentIterVals, DL, TLI: &TLI);
9611 if (!NextPHI)
9612 return nullptr; // Couldn't evaluate!
9613 NextIterVals[PN] = NextPHI;
9614
9615 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
9616
9617 // Also evaluate the other PHI nodes. However, we don't get to stop if we
9618 // cease to be able to evaluate one of them or if they stop evolving,
9619 // because that doesn't necessarily prevent us from computing PN.
9620 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
9621 for (const auto &I : CurrentIterVals) {
9622 PHINode *PHI = dyn_cast<PHINode>(Val: I.first);
9623 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
9624 PHIsToCompute.emplace_back(Args&: PHI, Args: I.second);
9625 }
9626 // We use two distinct loops because EvaluateExpression may invalidate any
9627 // iterators into CurrentIterVals.
9628 for (const auto &I : PHIsToCompute) {
9629 PHINode *PHI = I.first;
9630 Constant *&NextPHI = NextIterVals[PHI];
9631 if (!NextPHI) { // Not already computed.
9632 Value *BEValue = PHI->getIncomingValueForBlock(BB: Latch);
9633 NextPHI = EvaluateExpression(V: BEValue, L, Vals&: CurrentIterVals, DL, TLI: &TLI);
9634 }
9635 if (NextPHI != I.second)
9636 StoppedEvolving = false;
9637 }
9638
9639 // If all entries in CurrentIterVals == NextIterVals then we can stop
9640 // iterating, the loop can't continue to change.
9641 if (StoppedEvolving)
9642 return RetVal = CurrentIterVals[PN];
9643
9644 CurrentIterVals.swap(RHS&: NextIterVals);
9645 }
9646}
9647
9648const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
9649 Value *Cond,
9650 bool ExitWhen) {
9651 PHINode *PN = getConstantEvolvingPHI(V: Cond, L);
9652 if (!PN) return getCouldNotCompute();
9653
9654 // If the loop is canonicalized, the PHI will have exactly two entries.
9655 // That's the only form we support here.
9656 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
9657
9658 DenseMap<Instruction *, Constant *> CurrentIterVals;
9659 BasicBlock *Header = L->getHeader();
9660 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
9661
9662 BasicBlock *Latch = L->getLoopLatch();
9663 assert(Latch && "Should follow from NumIncomingValues == 2!");
9664
9665 for (PHINode &PHI : Header->phis()) {
9666 if (auto *StartCST = getOtherIncomingValue(PN: &PHI, BB: Latch))
9667 CurrentIterVals[&PHI] = StartCST;
9668 }
9669 if (!CurrentIterVals.count(Val: PN))
9670 return getCouldNotCompute();
9671
9672 // Okay, we find a PHI node that defines the trip count of this loop. Execute
9673 // the loop symbolically to determine when the condition gets a value of
9674 // "ExitWhen".
9675 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
9676 const DataLayout &DL = getDataLayout();
9677 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
9678 auto *CondVal = dyn_cast_or_null<ConstantInt>(
9679 Val: EvaluateExpression(V: Cond, L, Vals&: CurrentIterVals, DL, TLI: &TLI));
9680
9681 // Couldn't symbolically evaluate.
9682 if (!CondVal) return getCouldNotCompute();
9683
9684 if (CondVal->getValue() == uint64_t(ExitWhen)) {
9685 ++NumBruteForceTripCountsComputed;
9686 return getConstant(Ty: Type::getInt32Ty(C&: getContext()), V: IterationNum);
9687 }
9688
9689 // Update all the PHI nodes for the next iteration.
9690 DenseMap<Instruction *, Constant *> NextIterVals;
9691
9692 // Create a list of which PHIs we need to compute. We want to do this before
9693 // calling EvaluateExpression on them because that may invalidate iterators
9694 // into CurrentIterVals.
9695 SmallVector<PHINode *, 8> PHIsToCompute;
9696 for (const auto &I : CurrentIterVals) {
9697 PHINode *PHI = dyn_cast<PHINode>(Val: I.first);
9698 if (!PHI || PHI->getParent() != Header) continue;
9699 PHIsToCompute.push_back(Elt: PHI);
9700 }
9701 for (PHINode *PHI : PHIsToCompute) {
9702 Constant *&NextPHI = NextIterVals[PHI];
9703 if (NextPHI) continue; // Already computed!
9704
9705 Value *BEValue = PHI->getIncomingValueForBlock(BB: Latch);
9706 NextPHI = EvaluateExpression(V: BEValue, L, Vals&: CurrentIterVals, DL, TLI: &TLI);
9707 }
9708 CurrentIterVals.swap(RHS&: NextIterVals);
9709 }
9710
9711 // Too many iterations were needed to evaluate.
9712 return getCouldNotCompute();
9713}
9714
9715const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
9716 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
9717 ValuesAtScopes[V];
9718 // Check to see if we've folded this expression at this loop before.
9719 for (auto &LS : Values)
9720 if (LS.first == L)
9721 return LS.second ? LS.second : V;
9722
9723 Values.emplace_back(Args&: L, Args: nullptr);
9724
9725 // Otherwise compute it.
9726 const SCEV *C = computeSCEVAtScope(S: V, L);
9727 for (auto &LS : reverse(C&: ValuesAtScopes[V]))
9728 if (LS.first == L) {
9729 LS.second = C;
9730 if (!isa<SCEVConstant>(Val: C))
9731 ValuesAtScopesUsers[C].push_back(Elt: {L, V});
9732 break;
9733 }
9734 return C;
9735}
9736
9737/// This builds up a Constant using the ConstantExpr interface. That way, we
9738/// will return Constants for objects which aren't represented by a
9739/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
9740/// Returns NULL if the SCEV isn't representable as a Constant.
9741static Constant *BuildConstantFromSCEV(const SCEV *V) {
9742 switch (V->getSCEVType()) {
9743 case scCouldNotCompute:
9744 case scAddRecExpr:
9745 case scVScale:
9746 return nullptr;
9747 case scConstant:
9748 return cast<SCEVConstant>(Val: V)->getValue();
9749 case scUnknown:
9750 return dyn_cast<Constant>(Val: cast<SCEVUnknown>(Val: V)->getValue());
9751 case scPtrToInt: {
9752 const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(Val: V);
9753 if (Constant *CastOp = BuildConstantFromSCEV(V: P2I->getOperand()))
9754 return ConstantExpr::getPtrToInt(C: CastOp, Ty: P2I->getType());
9755
9756 return nullptr;
9757 }
9758 case scTruncate: {
9759 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(Val: V);
9760 if (Constant *CastOp = BuildConstantFromSCEV(V: ST->getOperand()))
9761 return ConstantExpr::getTrunc(C: CastOp, Ty: ST->getType());
9762 return nullptr;
9763 }
9764 case scAddExpr: {
9765 const SCEVAddExpr *SA = cast<SCEVAddExpr>(Val: V);
9766 Constant *C = nullptr;
9767 for (const SCEV *Op : SA->operands()) {
9768 Constant *OpC = BuildConstantFromSCEV(V: Op);
9769 if (!OpC)
9770 return nullptr;
9771 if (!C) {
9772 C = OpC;
9773 continue;
9774 }
9775 assert(!C->getType()->isPointerTy() &&
9776 "Can only have one pointer, and it must be last");
9777 if (OpC->getType()->isPointerTy()) {
9778 // The offsets have been converted to bytes. We can add bytes using
9779 // an i8 GEP.
9780 C = ConstantExpr::getGetElementPtr(Ty: Type::getInt8Ty(C&: C->getContext()),
9781 C: OpC, Idx: C);
9782 } else {
9783 C = ConstantExpr::getAdd(C1: C, C2: OpC);
9784 }
9785 }
9786 return C;
9787 }
9788 case scMulExpr:
9789 case scSignExtend:
9790 case scZeroExtend:
9791 case scUDivExpr:
9792 case scSMaxExpr:
9793 case scUMaxExpr:
9794 case scSMinExpr:
9795 case scUMinExpr:
9796 case scSequentialUMinExpr:
9797 return nullptr;
9798 }
9799 llvm_unreachable("Unknown SCEV kind!");
9800}
9801
9802const SCEV *
9803ScalarEvolution::getWithOperands(const SCEV *S,
9804 SmallVectorImpl<const SCEV *> &NewOps) {
9805 switch (S->getSCEVType()) {
9806 case scTruncate:
9807 case scZeroExtend:
9808 case scSignExtend:
9809 case scPtrToInt:
9810 return getCastExpr(Kind: S->getSCEVType(), Op: NewOps[0], Ty: S->getType());
9811 case scAddRecExpr: {
9812 auto *AddRec = cast<SCEVAddRecExpr>(Val: S);
9813 return getAddRecExpr(Operands&: NewOps, L: AddRec->getLoop(), Flags: AddRec->getNoWrapFlags());
9814 }
9815 case scAddExpr:
9816 return getAddExpr(Ops&: NewOps, OrigFlags: cast<SCEVAddExpr>(Val: S)->getNoWrapFlags());
9817 case scMulExpr:
9818 return getMulExpr(Ops&: NewOps, OrigFlags: cast<SCEVMulExpr>(Val: S)->getNoWrapFlags());
9819 case scUDivExpr:
9820 return getUDivExpr(LHS: NewOps[0], RHS: NewOps[1]);
9821 case scUMaxExpr:
9822 case scSMaxExpr:
9823 case scUMinExpr:
9824 case scSMinExpr:
9825 return getMinMaxExpr(Kind: S->getSCEVType(), Ops&: NewOps);
9826 case scSequentialUMinExpr:
9827 return getSequentialMinMaxExpr(Kind: S->getSCEVType(), Ops&: NewOps);
9828 case scConstant:
9829 case scVScale:
9830 case scUnknown:
9831 return S;
9832 case scCouldNotCompute:
9833 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
9834 }
9835 llvm_unreachable("Unknown SCEV kind!");
9836}
9837
9838const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
9839 switch (V->getSCEVType()) {
9840 case scConstant:
9841 case scVScale:
9842 return V;
9843 case scAddRecExpr: {
9844 // If this is a loop recurrence for a loop that does not contain L, then we
9845 // are dealing with the final value computed by the loop.
9846 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Val: V);
9847 // First, attempt to evaluate each operand.
9848 // Avoid performing the look-up in the common case where the specified
9849 // expression has no loop-variant portions.
9850 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
9851 const SCEV *OpAtScope = getSCEVAtScope(V: AddRec->getOperand(i), L);
9852 if (OpAtScope == AddRec->getOperand(i))
9853 continue;
9854
9855 // Okay, at least one of these operands is loop variant but might be
9856 // foldable. Build a new instance of the folded commutative expression.
9857 SmallVector<const SCEV *, 8> NewOps;
9858 NewOps.reserve(N: AddRec->getNumOperands());
9859 append_range(C&: NewOps, R: AddRec->operands().take_front(N: i));
9860 NewOps.push_back(Elt: OpAtScope);
9861 for (++i; i != e; ++i)
9862 NewOps.push_back(Elt: getSCEVAtScope(V: AddRec->getOperand(i), L));
9863
9864 const SCEV *FoldedRec = getAddRecExpr(
9865 Operands&: NewOps, L: AddRec->getLoop(), Flags: AddRec->getNoWrapFlags(Mask: SCEV::FlagNW));
9866 AddRec = dyn_cast<SCEVAddRecExpr>(Val: FoldedRec);
9867 // The addrec may be folded to a nonrecurrence, for example, if the
9868 // induction variable is multiplied by zero after constant folding. Go
9869 // ahead and return the folded value.
9870 if (!AddRec)
9871 return FoldedRec;
9872 break;
9873 }
9874
9875 // If the scope is outside the addrec's loop, evaluate it by using the
9876 // loop exit value of the addrec.
9877 if (!AddRec->getLoop()->contains(L)) {
9878 // To evaluate this recurrence, we need to know how many times the AddRec
9879 // loop iterates. Compute this now.
9880 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(L: AddRec->getLoop());
9881 if (BackedgeTakenCount == getCouldNotCompute())
9882 return AddRec;
9883
9884 // Then, evaluate the AddRec.
9885 return AddRec->evaluateAtIteration(It: BackedgeTakenCount, SE&: *this);
9886 }
9887
9888 return AddRec;
9889 }
9890 case scTruncate:
9891 case scZeroExtend:
9892 case scSignExtend:
9893 case scPtrToInt:
9894 case scAddExpr:
9895 case scMulExpr:
9896 case scUDivExpr:
9897 case scUMaxExpr:
9898 case scSMaxExpr:
9899 case scUMinExpr:
9900 case scSMinExpr:
9901 case scSequentialUMinExpr: {
9902 ArrayRef<const SCEV *> Ops = V->operands();
9903 // Avoid performing the look-up in the common case where the specified
9904 // expression has no loop-variant portions.
9905 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
9906 const SCEV *OpAtScope = getSCEVAtScope(V: Ops[i], L);
9907 if (OpAtScope != Ops[i]) {
9908 // Okay, at least one of these operands is loop variant but might be
9909 // foldable. Build a new instance of the folded commutative expression.
9910 SmallVector<const SCEV *, 8> NewOps;
9911 NewOps.reserve(N: Ops.size());
9912 append_range(C&: NewOps, R: Ops.take_front(N: i));
9913 NewOps.push_back(Elt: OpAtScope);
9914
9915 for (++i; i != e; ++i) {
9916 OpAtScope = getSCEVAtScope(V: Ops[i], L);
9917 NewOps.push_back(Elt: OpAtScope);
9918 }
9919
9920 return getWithOperands(S: V, NewOps);
9921 }
9922 }
9923 // If we got here, all operands are loop invariant.
9924 return V;
9925 }
9926 case scUnknown: {
9927 // If this instruction is evolved from a constant-evolving PHI, compute the
9928 // exit value from the loop without using SCEVs.
9929 const SCEVUnknown *SU = cast<SCEVUnknown>(Val: V);
9930 Instruction *I = dyn_cast<Instruction>(Val: SU->getValue());
9931 if (!I)
9932 return V; // This is some other type of SCEVUnknown, just return it.
9933
9934 if (PHINode *PN = dyn_cast<PHINode>(Val: I)) {
9935 const Loop *CurrLoop = this->LI[I->getParent()];
9936 // Looking for loop exit value.
9937 if (CurrLoop && CurrLoop->getParentLoop() == L &&
9938 PN->getParent() == CurrLoop->getHeader()) {
9939 // Okay, there is no closed form solution for the PHI node. Check
9940 // to see if the loop that contains it has a known backedge-taken
9941 // count. If so, we may be able to force computation of the exit
9942 // value.
9943 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(L: CurrLoop);
9944 // This trivial case can show up in some degenerate cases where
9945 // the incoming IR has not yet been fully simplified.
9946 if (BackedgeTakenCount->isZero()) {
9947 Value *InitValue = nullptr;
9948 bool MultipleInitValues = false;
9949 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
9950 if (!CurrLoop->contains(BB: PN->getIncomingBlock(i))) {
9951 if (!InitValue)
9952 InitValue = PN->getIncomingValue(i);
9953 else if (InitValue != PN->getIncomingValue(i)) {
9954 MultipleInitValues = true;
9955 break;
9956 }
9957 }
9958 }
9959 if (!MultipleInitValues && InitValue)
9960 return getSCEV(V: InitValue);
9961 }
9962 // Do we have a loop invariant value flowing around the backedge
9963 // for a loop which must execute the backedge?
9964 if (!isa<SCEVCouldNotCompute>(Val: BackedgeTakenCount) &&
9965 isKnownNonZero(S: BackedgeTakenCount) &&
9966 PN->getNumIncomingValues() == 2) {
9967
9968 unsigned InLoopPred =
9969 CurrLoop->contains(BB: PN->getIncomingBlock(i: 0)) ? 0 : 1;
9970 Value *BackedgeVal = PN->getIncomingValue(i: InLoopPred);
9971 if (CurrLoop->isLoopInvariant(V: BackedgeVal))
9972 return getSCEV(V: BackedgeVal);
9973 }
9974 if (auto *BTCC = dyn_cast<SCEVConstant>(Val: BackedgeTakenCount)) {
9975 // Okay, we know how many times the containing loop executes. If
9976 // this is a constant evolving PHI node, get the final value at
9977 // the specified iteration number.
9978 Constant *RV =
9979 getConstantEvolutionLoopExitValue(PN, BEs: BTCC->getAPInt(), L: CurrLoop);
9980 if (RV)
9981 return getSCEV(V: RV);
9982 }
9983 }
9984 }
9985
9986 // Okay, this is an expression that we cannot symbolically evaluate
9987 // into a SCEV. Check to see if it's possible to symbolically evaluate
9988 // the arguments into constants, and if so, try to constant propagate the
9989 // result. This is particularly useful for computing loop exit values.
9990 if (!CanConstantFold(I))
9991 return V; // This is some other type of SCEVUnknown, just return it.
9992
9993 SmallVector<Constant *, 4> Operands;
9994 Operands.reserve(N: I->getNumOperands());
9995 bool MadeImprovement = false;
9996 for (Value *Op : I->operands()) {
9997 if (Constant *C = dyn_cast<Constant>(Val: Op)) {
9998 Operands.push_back(Elt: C);
9999 continue;
10000 }
10001
10002 // If any of the operands is non-constant and if they are
10003 // non-integer and non-pointer, don't even try to analyze them
10004 // with scev techniques.
10005 if (!isSCEVable(Ty: Op->getType()))
10006 return V;
10007
10008 const SCEV *OrigV = getSCEV(V: Op);
10009 const SCEV *OpV = getSCEVAtScope(V: OrigV, L);
10010 MadeImprovement |= OrigV != OpV;
10011
10012 Constant *C = BuildConstantFromSCEV(V: OpV);
10013 if (!C)
10014 return V;
10015 assert(C->getType() == Op->getType() && "Type mismatch");
10016 Operands.push_back(Elt: C);
10017 }
10018
10019 // Check to see if getSCEVAtScope actually made an improvement.
10020 if (!MadeImprovement)
10021 return V; // This is some other type of SCEVUnknown, just return it.
10022
10023 Constant *C = nullptr;
10024 const DataLayout &DL = getDataLayout();
10025 C = ConstantFoldInstOperands(I, Ops: Operands, DL, TLI: &TLI);
10026 if (!C)
10027 return V;
10028 return getSCEV(V: C);
10029 }
10030 case scCouldNotCompute:
10031 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
10032 }
10033 llvm_unreachable("Unknown SCEV type!");
10034}
10035
10036const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
10037 return getSCEVAtScope(V: getSCEV(V), L);
10038}
10039
10040const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
10041 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Val: S))
10042 return stripInjectiveFunctions(S: ZExt->getOperand());
10043 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Val: S))
10044 return stripInjectiveFunctions(S: SExt->getOperand());
10045 return S;
10046}
10047
10048/// Finds the minimum unsigned root of the following equation:
10049///
10050/// A * X = B (mod N)
10051///
10052/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
10053/// A and B isn't important.
10054///
10055/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
10056static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
10057 ScalarEvolution &SE) {
10058 uint32_t BW = A.getBitWidth();
10059 assert(BW == SE.getTypeSizeInBits(B->getType()));
10060 assert(A != 0 && "A must be non-zero.");
10061
10062 // 1. D = gcd(A, N)
10063 //
10064 // The gcd of A and N may have only one prime factor: 2. The number of
10065 // trailing zeros in A is its multiplicity
10066 uint32_t Mult2 = A.countr_zero();
10067 // D = 2^Mult2
10068
10069 // 2. Check if B is divisible by D.
10070 //
10071 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
10072 // is not less than multiplicity of this prime factor for D.
10073 if (SE.getMinTrailingZeros(S: B) < Mult2)
10074 return SE.getCouldNotCompute();
10075
10076 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
10077 // modulo (N / D).
10078 //
10079 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
10080 // (N / D) in general. The inverse itself always fits into BW bits, though,
10081 // so we immediately truncate it.
10082 APInt AD = A.lshr(shiftAmt: Mult2).zext(width: BW + 1); // AD = A / D
10083 APInt Mod(BW + 1, 0);
10084 Mod.setBit(BW - Mult2); // Mod = N / D
10085 APInt I = AD.multiplicativeInverse(modulo: Mod).trunc(width: BW);
10086
10087 // 4. Compute the minimum unsigned root of the equation:
10088 // I * (B / D) mod (N / D)
10089 // To simplify the computation, we factor out the divide by D:
10090 // (I * B mod N) / D
10091 const SCEV *D = SE.getConstant(Val: APInt::getOneBitSet(numBits: BW, BitNo: Mult2));
10092 return SE.getUDivExactExpr(LHS: SE.getMulExpr(LHS: B, RHS: SE.getConstant(Val: I)), RHS: D);
10093}
10094
10095/// For a given quadratic addrec, generate coefficients of the corresponding
10096/// quadratic equation, multiplied by a common value to ensure that they are
10097/// integers.
10098/// The returned value is a tuple { A, B, C, M, BitWidth }, where
10099/// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
10100/// were multiplied by, and BitWidth is the bit width of the original addrec
10101/// coefficients.
10102/// This function returns std::nullopt if the addrec coefficients are not
10103/// compile- time constants.
10104static std::optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
10105GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
10106 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
10107 const SCEVConstant *LC = dyn_cast<SCEVConstant>(Val: AddRec->getOperand(i: 0));
10108 const SCEVConstant *MC = dyn_cast<SCEVConstant>(Val: AddRec->getOperand(i: 1));
10109 const SCEVConstant *NC = dyn_cast<SCEVConstant>(Val: AddRec->getOperand(i: 2));
10110 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
10111 << *AddRec << '\n');
10112
10113 // We currently can only solve this if the coefficients are constants.
10114 if (!LC || !MC || !NC) {
10115 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
10116 return std::nullopt;
10117 }
10118
10119 APInt L = LC->getAPInt();
10120 APInt M = MC->getAPInt();
10121 APInt N = NC->getAPInt();
10122 assert(!N.isZero() && "This is not a quadratic addrec");
10123
10124 unsigned BitWidth = LC->getAPInt().getBitWidth();
10125 unsigned NewWidth = BitWidth + 1;
10126 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
10127 << BitWidth << '\n');
10128 // The sign-extension (as opposed to a zero-extension) here matches the
10129 // extension used in SolveQuadraticEquationWrap (with the same motivation).
10130 N = N.sext(width: NewWidth);
10131 M = M.sext(width: NewWidth);
10132 L = L.sext(width: NewWidth);
10133
10134 // The increments are M, M+N, M+2N, ..., so the accumulated values are
10135 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
10136 // L+M, L+2M+N, L+3M+3N, ...
10137 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
10138 //
10139 // The equation Acc = 0 is then
10140 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0.
10141 // In a quadratic form it becomes:
10142 // N n^2 + (2M-N) n + 2L = 0.
10143
10144 APInt A = N;
10145 APInt B = 2 * M - A;
10146 APInt C = 2 * L;
10147 APInt T = APInt(NewWidth, 2);
10148 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
10149 << "x + " << C << ", coeff bw: " << NewWidth
10150 << ", multiplied by " << T << '\n');
10151 return std::make_tuple(args&: A, args&: B, args&: C, args&: T, args&: BitWidth);
10152}
10153
10154/// Helper function to compare optional APInts:
10155/// (a) if X and Y both exist, return min(X, Y),
10156/// (b) if neither X nor Y exist, return std::nullopt,
10157/// (c) if exactly one of X and Y exists, return that value.
10158static std::optional<APInt> MinOptional(std::optional<APInt> X,
10159 std::optional<APInt> Y) {
10160 if (X && Y) {
10161 unsigned W = std::max(a: X->getBitWidth(), b: Y->getBitWidth());
10162 APInt XW = X->sext(width: W);
10163 APInt YW = Y->sext(width: W);
10164 return XW.slt(RHS: YW) ? *X : *Y;
10165 }
10166 if (!X && !Y)
10167 return std::nullopt;
10168 return X ? *X : *Y;
10169}
10170
10171/// Helper function to truncate an optional APInt to a given BitWidth.
10172/// When solving addrec-related equations, it is preferable to return a value
10173/// that has the same bit width as the original addrec's coefficients. If the
10174/// solution fits in the original bit width, truncate it (except for i1).
10175/// Returning a value of a different bit width may inhibit some optimizations.
10176///
10177/// In general, a solution to a quadratic equation generated from an addrec
10178/// may require BW+1 bits, where BW is the bit width of the addrec's
10179/// coefficients. The reason is that the coefficients of the quadratic
10180/// equation are BW+1 bits wide (to avoid truncation when converting from
10181/// the addrec to the equation).
10182static std::optional<APInt> TruncIfPossible(std::optional<APInt> X,
10183 unsigned BitWidth) {
10184 if (!X)
10185 return std::nullopt;
10186 unsigned W = X->getBitWidth();
10187 if (BitWidth > 1 && BitWidth < W && X->isIntN(N: BitWidth))
10188 return X->trunc(width: BitWidth);
10189 return X;
10190}
10191
10192/// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
10193/// iterations. The values L, M, N are assumed to be signed, and they
10194/// should all have the same bit widths.
10195/// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
10196/// where BW is the bit width of the addrec's coefficients.
10197/// If the calculated value is a BW-bit integer (for BW > 1), it will be
10198/// returned as such, otherwise the bit width of the returned value may
10199/// be greater than BW.
10200///
10201/// This function returns std::nullopt if
10202/// (a) the addrec coefficients are not constant, or
10203/// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
10204/// like x^2 = 5, no integer solutions exist, in other cases an integer
10205/// solution may exist, but SolveQuadraticEquationWrap may fail to find it.
10206static std::optional<APInt>
10207SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
10208 APInt A, B, C, M;
10209 unsigned BitWidth;
10210 auto T = GetQuadraticEquation(AddRec);
10211 if (!T)
10212 return std::nullopt;
10213
10214 std::tie(args&: A, args&: B, args&: C, args&: M, args&: BitWidth) = *T;
10215 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
10216 std::optional<APInt> X =
10217 APIntOps::SolveQuadraticEquationWrap(A, B, C, RangeWidth: BitWidth + 1);
10218 if (!X)
10219 return std::nullopt;
10220
10221 ConstantInt *CX = ConstantInt::get(Context&: SE.getContext(), V: *X);
10222 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, C: CX, SE);
10223 if (!V->isZero())
10224 return std::nullopt;
10225
10226 return TruncIfPossible(X, BitWidth);
10227}
10228
10229/// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
10230/// iterations. The values M, N are assumed to be signed, and they
10231/// should all have the same bit widths.
10232/// Find the least n such that c(n) does not belong to the given range,
10233/// while c(n-1) does.
10234///
10235/// This function returns std::nullopt if
10236/// (a) the addrec coefficients are not constant, or
10237/// (b) SolveQuadraticEquationWrap was unable to find a solution for the
10238/// bounds of the range.
10239static std::optional<APInt>
10240SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
10241 const ConstantRange &Range, ScalarEvolution &SE) {
10242 assert(AddRec->getOperand(0)->isZero() &&
10243 "Starting value of addrec should be 0");
10244 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
10245 << Range << ", addrec " << *AddRec << '\n');
10246 // This case is handled in getNumIterationsInRange. Here we can assume that
10247 // we start in the range.
10248 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
10249 "Addrec's initial value should be in range");
10250
10251 APInt A, B, C, M;
10252 unsigned BitWidth;
10253 auto T = GetQuadraticEquation(AddRec);
10254 if (!T)
10255 return std::nullopt;
10256
10257 // Be careful about the return value: there can be two reasons for not
10258 // returning an actual number. First, if no solutions to the equations
10259 // were found, and second, if the solutions don't leave the given range.
10260 // The first case means that the actual solution is "unknown", the second
10261 // means that it's known, but not valid. If the solution is unknown, we
10262 // cannot make any conclusions.
10263 // Return a pair: the optional solution and a flag indicating if the
10264 // solution was found.
10265 auto SolveForBoundary =
10266 [&](APInt Bound) -> std::pair<std::optional<APInt>, bool> {
10267 // Solve for signed overflow and unsigned overflow, pick the lower
10268 // solution.
10269 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
10270 << Bound << " (before multiplying by " << M << ")\n");
10271 Bound *= M; // The quadratic equation multiplier.
10272
10273 std::optional<APInt> SO;
10274 if (BitWidth > 1) {
10275 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
10276 "signed overflow\n");
10277 SO = APIntOps::SolveQuadraticEquationWrap(A, B, C: -Bound, RangeWidth: BitWidth);
10278 }
10279 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
10280 "unsigned overflow\n");
10281 std::optional<APInt> UO =
10282 APIntOps::SolveQuadraticEquationWrap(A, B, C: -Bound, RangeWidth: BitWidth + 1);
10283
10284 auto LeavesRange = [&] (const APInt &X) {
10285 ConstantInt *C0 = ConstantInt::get(Context&: SE.getContext(), V: X);
10286 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C: C0, SE);
10287 if (Range.contains(Val: V0->getValue()))
10288 return false;
10289 // X should be at least 1, so X-1 is non-negative.
10290 ConstantInt *C1 = ConstantInt::get(Context&: SE.getContext(), V: X-1);
10291 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C: C1, SE);
10292 if (Range.contains(Val: V1->getValue()))
10293 return true;
10294 return false;
10295 };
10296
10297 // If SolveQuadraticEquationWrap returns std::nullopt, it means that there
10298 // can be a solution, but the function failed to find it. We cannot treat it
10299 // as "no solution".
10300 if (!SO || !UO)
10301 return {std::nullopt, false};
10302
10303 // Check the smaller value first to see if it leaves the range.
10304 // At this point, both SO and UO must have values.
10305 std::optional<APInt> Min = MinOptional(X: SO, Y: UO);
10306 if (LeavesRange(*Min))
10307 return { Min, true };
10308 std::optional<APInt> Max = Min == SO ? UO : SO;
10309 if (LeavesRange(*Max))
10310 return { Max, true };
10311
10312 // Solutions were found, but were eliminated, hence the "true".
10313 return {std::nullopt, true};
10314 };
10315
10316 std::tie(args&: A, args&: B, args&: C, args&: M, args&: BitWidth) = *T;
10317 // Lower bound is inclusive, subtract 1 to represent the exiting value.
10318 APInt Lower = Range.getLower().sext(width: A.getBitWidth()) - 1;
10319 APInt Upper = Range.getUpper().sext(width: A.getBitWidth());
10320 auto SL = SolveForBoundary(Lower);
10321 auto SU = SolveForBoundary(Upper);
10322 // If any of the solutions was unknown, no meaninigful conclusions can
10323 // be made.
10324 if (!SL.second || !SU.second)
10325 return std::nullopt;
10326
10327 // Claim: The correct solution is not some value between Min and Max.
10328 //
10329 // Justification: Assuming that Min and Max are different values, one of
10330 // them is when the first signed overflow happens, the other is when the
10331 // first unsigned overflow happens. Crossing the range boundary is only
10332 // possible via an overflow (treating 0 as a special case of it, modeling
10333 // an overflow as crossing k*2^W for some k).
10334 //
10335 // The interesting case here is when Min was eliminated as an invalid
10336 // solution, but Max was not. The argument is that if there was another
10337 // overflow between Min and Max, it would also have been eliminated if
10338 // it was considered.
10339 //
10340 // For a given boundary, it is possible to have two overflows of the same
10341 // type (signed/unsigned) without having the other type in between: this
10342 // can happen when the vertex of the parabola is between the iterations
10343 // corresponding to the overflows. This is only possible when the two
10344 // overflows cross k*2^W for the same k. In such case, if the second one
10345 // left the range (and was the first one to do so), the first overflow
10346 // would have to enter the range, which would mean that either we had left
10347 // the range before or that we started outside of it. Both of these cases
10348 // are contradictions.
10349 //
10350 // Claim: In the case where SolveForBoundary returns std::nullopt, the correct
10351 // solution is not some value between the Max for this boundary and the
10352 // Min of the other boundary.
10353 //
10354 // Justification: Assume that we had such Max_A and Min_B corresponding
10355 // to range boundaries A and B and such that Max_A < Min_B. If there was
10356 // a solution between Max_A and Min_B, it would have to be caused by an
10357 // overflow corresponding to either A or B. It cannot correspond to B,
10358 // since Min_B is the first occurrence of such an overflow. If it
10359 // corresponded to A, it would have to be either a signed or an unsigned
10360 // overflow that is larger than both eliminated overflows for A. But
10361 // between the eliminated overflows and this overflow, the values would
10362 // cover the entire value space, thus crossing the other boundary, which
10363 // is a contradiction.
10364
10365 return TruncIfPossible(X: MinOptional(X: SL.first, Y: SU.first), BitWidth);
10366}
10367
10368ScalarEvolution::ExitLimit ScalarEvolution::howFarToZero(const SCEV *V,
10369 const Loop *L,
10370 bool ControlsOnlyExit,
10371 bool AllowPredicates) {
10372
10373 // This is only used for loops with a "x != y" exit test. The exit condition
10374 // is now expressed as a single expression, V = x-y. So the exit test is
10375 // effectively V != 0. We know and take advantage of the fact that this
10376 // expression only being used in a comparison by zero context.
10377
10378 SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10379 // If the value is a constant
10380 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Val: V)) {
10381 // If the value is already zero, the branch will execute zero times.
10382 if (C->getValue()->isZero()) return C;
10383 return getCouldNotCompute(); // Otherwise it will loop infinitely.
10384 }
10385
10386 const SCEVAddRecExpr *AddRec =
10387 dyn_cast<SCEVAddRecExpr>(Val: stripInjectiveFunctions(S: V));
10388
10389 if (!AddRec && AllowPredicates)
10390 // Try to make this an AddRec using runtime tests, in the first X
10391 // iterations of this loop, where X is the SCEV expression found by the
10392 // algorithm below.
10393 AddRec = convertSCEVToAddRecWithPredicates(S: V, L, Preds&: Predicates);
10394
10395 if (!AddRec || AddRec->getLoop() != L)
10396 return getCouldNotCompute();
10397
10398 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
10399 // the quadratic equation to solve it.
10400 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
10401 // We can only use this value if the chrec ends up with an exact zero
10402 // value at this index. When solving for "X*X != 5", for example, we
10403 // should not accept a root of 2.
10404 if (auto S = SolveQuadraticAddRecExact(AddRec, SE&: *this)) {
10405 const auto *R = cast<SCEVConstant>(Val: getConstant(Val: *S));
10406 return ExitLimit(R, R, R, false, Predicates);
10407 }
10408 return getCouldNotCompute();
10409 }
10410
10411 // Otherwise we can only handle this if it is affine.
10412 if (!AddRec->isAffine())
10413 return getCouldNotCompute();
10414
10415 // If this is an affine expression, the execution count of this branch is
10416 // the minimum unsigned root of the following equation:
10417 //
10418 // Start + Step*N = 0 (mod 2^BW)
10419 //
10420 // equivalent to:
10421 //
10422 // Step*N = -Start (mod 2^BW)
10423 //
10424 // where BW is the common bit width of Start and Step.
10425
10426 // Get the initial value for the loop.
10427 const SCEV *Start = getSCEVAtScope(V: AddRec->getStart(), L: L->getParentLoop());
10428 const SCEV *Step = getSCEVAtScope(V: AddRec->getOperand(i: 1), L: L->getParentLoop());
10429
10430 // For now we handle only constant steps.
10431 //
10432 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
10433 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
10434 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
10435 // We have not yet seen any such cases.
10436 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Val: Step);
10437 if (!StepC || StepC->getValue()->isZero())
10438 return getCouldNotCompute();
10439
10440 // For positive steps (counting up until unsigned overflow):
10441 // N = -Start/Step (as unsigned)
10442 // For negative steps (counting down to zero):
10443 // N = Start/-Step
10444 // First compute the unsigned distance from zero in the direction of Step.
10445 bool CountDown = StepC->getAPInt().isNegative();
10446 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(V: Start);
10447
10448 // Handle unitary steps, which cannot wraparound.
10449 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
10450 // N = Distance (as unsigned)
10451 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
10452 APInt MaxBECount = getUnsignedRangeMax(S: applyLoopGuards(Expr: Distance, L));
10453 MaxBECount = APIntOps::umin(A: MaxBECount, B: getUnsignedRangeMax(S: Distance));
10454
10455 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
10456 // we end up with a loop whose backedge-taken count is n - 1. Detect this
10457 // case, and see if we can improve the bound.
10458 //
10459 // Explicitly handling this here is necessary because getUnsignedRange
10460 // isn't context-sensitive; it doesn't know that we only care about the
10461 // range inside the loop.
10462 const SCEV *Zero = getZero(Ty: Distance->getType());
10463 const SCEV *One = getOne(Ty: Distance->getType());
10464 const SCEV *DistancePlusOne = getAddExpr(LHS: Distance, RHS: One);
10465 if (isLoopEntryGuardedByCond(L, Pred: ICmpInst::ICMP_NE, LHS: DistancePlusOne, RHS: Zero)) {
10466 // If Distance + 1 doesn't overflow, we can compute the maximum distance
10467 // as "unsigned_max(Distance + 1) - 1".
10468 ConstantRange CR = getUnsignedRange(S: DistancePlusOne);
10469 MaxBECount = APIntOps::umin(A: MaxBECount, B: CR.getUnsignedMax() - 1);
10470 }
10471 return ExitLimit(Distance, getConstant(Val: MaxBECount), Distance, false,
10472 Predicates);
10473 }
10474
10475 // If the condition controls loop exit (the loop exits only if the expression
10476 // is true) and the addition is no-wrap we can use unsigned divide to
10477 // compute the backedge count. In this case, the step may not divide the
10478 // distance, but we don't care because if the condition is "missed" the loop
10479 // will have undefined behavior due to wrapping.
10480 if (ControlsOnlyExit && AddRec->hasNoSelfWrap() &&
10481 loopHasNoAbnormalExits(L: AddRec->getLoop())) {
10482 const SCEV *Exact =
10483 getUDivExpr(LHS: Distance, RHS: CountDown ? getNegativeSCEV(V: Step) : Step);
10484 const SCEV *ConstantMax = getCouldNotCompute();
10485 if (Exact != getCouldNotCompute()) {
10486 APInt MaxInt = getUnsignedRangeMax(S: applyLoopGuards(Expr: Exact, L));
10487 ConstantMax =
10488 getConstant(Val: APIntOps::umin(A: MaxInt, B: getUnsignedRangeMax(S: Exact)));
10489 }
10490 const SCEV *SymbolicMax =
10491 isa<SCEVCouldNotCompute>(Val: Exact) ? ConstantMax : Exact;
10492 return ExitLimit(Exact, ConstantMax, SymbolicMax, false, Predicates);
10493 }
10494
10495 // Solve the general equation.
10496 const SCEV *E = SolveLinEquationWithOverflow(A: StepC->getAPInt(),
10497 B: getNegativeSCEV(V: Start), SE&: *this);
10498
10499 const SCEV *M = E;
10500 if (E != getCouldNotCompute()) {
10501 APInt MaxWithGuards = getUnsignedRangeMax(S: applyLoopGuards(Expr: E, L));
10502 M = getConstant(Val: APIntOps::umin(A: MaxWithGuards, B: getUnsignedRangeMax(S: E)));
10503 }
10504 auto *S = isa<SCEVCouldNotCompute>(Val: E) ? M : E;
10505 return ExitLimit(E, M, S, false, Predicates);
10506}
10507
10508ScalarEvolution::ExitLimit
10509ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
10510 // Loops that look like: while (X == 0) are very strange indeed. We don't
10511 // handle them yet except for the trivial case. This could be expanded in the
10512 // future as needed.
10513
10514 // If the value is a constant, check to see if it is known to be non-zero
10515 // already. If so, the backedge will execute zero times.
10516 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Val: V)) {
10517 if (!C->getValue()->isZero())
10518 return getZero(Ty: C->getType());
10519 return getCouldNotCompute(); // Otherwise it will loop infinitely.
10520 }
10521
10522 // We could implement others, but I really doubt anyone writes loops like
10523 // this, and if they did, they would already be constant folded.
10524 return getCouldNotCompute();
10525}
10526
10527std::pair<const BasicBlock *, const BasicBlock *>
10528ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB)
10529 const {
10530 // If the block has a unique predecessor, then there is no path from the
10531 // predecessor to the block that does not go through the direct edge
10532 // from the predecessor to the block.
10533 if (const BasicBlock *Pred = BB->getSinglePredecessor())
10534 return {Pred, BB};
10535
10536 // A loop's header is defined to be a block that dominates the loop.
10537 // If the header has a unique predecessor outside the loop, it must be
10538 // a block that has exactly one successor that can reach the loop.
10539 if (const Loop *L = LI.getLoopFor(BB))
10540 return {L->getLoopPredecessor(), L->getHeader()};
10541
10542 return {nullptr, nullptr};
10543}
10544
10545/// SCEV structural equivalence is usually sufficient for testing whether two
10546/// expressions are equal, however for the purposes of looking for a condition
10547/// guarding a loop, it can be useful to be a little more general, since a
10548/// front-end may have replicated the controlling expression.
10549static bool HasSameValue(const SCEV *A, const SCEV *B) {
10550 // Quick check to see if they are the same SCEV.
10551 if (A == B) return true;
10552
10553 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
10554 // Not all instructions that are "identical" compute the same value. For
10555 // instance, two distinct alloca instructions allocating the same type are
10556 // identical and do not read memory; but compute distinct values.
10557 return A->isIdenticalTo(I: B) && (isa<BinaryOperator>(Val: A) || isa<GetElementPtrInst>(Val: A));
10558 };
10559
10560 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
10561 // two different instructions with the same value. Check for this case.
10562 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(Val: A))
10563 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(Val: B))
10564 if (const Instruction *AI = dyn_cast<Instruction>(Val: AU->getValue()))
10565 if (const Instruction *BI = dyn_cast<Instruction>(Val: BU->getValue()))
10566 if (ComputesEqualValues(AI, BI))
10567 return true;
10568
10569 // Otherwise assume they may have a different value.
10570 return false;
10571}
10572
10573bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
10574 const SCEV *&LHS, const SCEV *&RHS,
10575 unsigned Depth) {
10576 bool Changed = false;
10577 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
10578 // '0 != 0'.
10579 auto TrivialCase = [&](bool TriviallyTrue) {
10580 LHS = RHS = getConstant(V: ConstantInt::getFalse(Context&: getContext()));
10581 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
10582 return true;
10583 };
10584 // If we hit the max recursion limit bail out.
10585 if (Depth >= 3)
10586 return false;
10587
10588 // Canonicalize a constant to the right side.
10589 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Val: LHS)) {
10590 // Check for both operands constant.
10591 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Val: RHS)) {
10592 if (ConstantExpr::getICmp(pred: Pred,
10593 LHS: LHSC->getValue(),
10594 RHS: RHSC->getValue())->isNullValue())
10595 return TrivialCase(false);
10596 return TrivialCase(true);
10597 }
10598 // Otherwise swap the operands to put the constant on the right.
10599 std::swap(a&: LHS, b&: RHS);
10600 Pred = ICmpInst::getSwappedPredicate(pred: Pred);
10601 Changed = true;
10602 }
10603
10604 // If we're comparing an addrec with a value which is loop-invariant in the
10605 // addrec's loop, put the addrec on the left. Also make a dominance check,
10606 // as both operands could be addrecs loop-invariant in each other's loop.
10607 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: RHS)) {
10608 const Loop *L = AR->getLoop();
10609 if (isLoopInvariant(S: LHS, L) && properlyDominates(S: LHS, BB: L->getHeader())) {
10610 std::swap(a&: LHS, b&: RHS);
10611 Pred = ICmpInst::getSwappedPredicate(pred: Pred);
10612 Changed = true;
10613 }
10614 }
10615
10616 // If there's a constant operand, canonicalize comparisons with boundary
10617 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
10618 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(Val: RHS)) {
10619 const APInt &RA = RC->getAPInt();
10620
10621 bool SimplifiedByConstantRange = false;
10622
10623 if (!ICmpInst::isEquality(P: Pred)) {
10624 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, Other: RA);
10625 if (ExactCR.isFullSet())
10626 return TrivialCase(true);
10627 if (ExactCR.isEmptySet())
10628 return TrivialCase(false);
10629
10630 APInt NewRHS;
10631 CmpInst::Predicate NewPred;
10632 if (ExactCR.getEquivalentICmp(Pred&: NewPred, RHS&: NewRHS) &&
10633 ICmpInst::isEquality(P: NewPred)) {
10634 // We were able to convert an inequality to an equality.
10635 Pred = NewPred;
10636 RHS = getConstant(Val: NewRHS);
10637 Changed = SimplifiedByConstantRange = true;
10638 }
10639 }
10640
10641 if (!SimplifiedByConstantRange) {
10642 switch (Pred) {
10643 default:
10644 break;
10645 case ICmpInst::ICMP_EQ:
10646 case ICmpInst::ICMP_NE:
10647 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
10648 if (!RA)
10649 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(Val: LHS))
10650 if (const SCEVMulExpr *ME =
10651 dyn_cast<SCEVMulExpr>(Val: AE->getOperand(i: 0)))
10652 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
10653 ME->getOperand(i: 0)->isAllOnesValue()) {
10654 RHS = AE->getOperand(i: 1);
10655 LHS = ME->getOperand(i: 1);
10656 Changed = true;
10657 }
10658 break;
10659
10660
10661 // The "Should have been caught earlier!" messages refer to the fact
10662 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
10663 // should have fired on the corresponding cases, and canonicalized the
10664 // check to trivial case.
10665
10666 case ICmpInst::ICMP_UGE:
10667 assert(!RA.isMinValue() && "Should have been caught earlier!");
10668 Pred = ICmpInst::ICMP_UGT;
10669 RHS = getConstant(Val: RA - 1);
10670 Changed = true;
10671 break;
10672 case ICmpInst::ICMP_ULE:
10673 assert(!RA.isMaxValue() && "Should have been caught earlier!");
10674 Pred = ICmpInst::ICMP_ULT;
10675 RHS = getConstant(Val: RA + 1);
10676 Changed = true;
10677 break;
10678 case ICmpInst::ICMP_SGE:
10679 assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
10680 Pred = ICmpInst::ICMP_SGT;
10681 RHS = getConstant(Val: RA - 1);
10682 Changed = true;
10683 break;
10684 case ICmpInst::ICMP_SLE:
10685 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
10686 Pred = ICmpInst::ICMP_SLT;
10687 RHS = getConstant(Val: RA + 1);
10688 Changed = true;
10689 break;
10690 }
10691 }
10692 }
10693
10694 // Check for obvious equality.
10695 if (HasSameValue(A: LHS, B: RHS)) {
10696 if (ICmpInst::isTrueWhenEqual(predicate: Pred))
10697 return TrivialCase(true);
10698 if (ICmpInst::isFalseWhenEqual(predicate: Pred))
10699 return TrivialCase(false);
10700 }
10701
10702 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
10703 // adding or subtracting 1 from one of the operands.
10704 switch (Pred) {
10705 case ICmpInst::ICMP_SLE:
10706 if (!getSignedRangeMax(S: RHS).isMaxSignedValue()) {
10707 RHS = getAddExpr(LHS: getConstant(Ty: RHS->getType(), V: 1, isSigned: true), RHS,
10708 Flags: SCEV::FlagNSW);
10709 Pred = ICmpInst::ICMP_SLT;
10710 Changed = true;
10711 } else if (!getSignedRangeMin(S: LHS).isMinSignedValue()) {
10712 LHS = getAddExpr(LHS: getConstant(Ty: RHS->getType(), V: (uint64_t)-1, isSigned: true), RHS: LHS,
10713 Flags: SCEV::FlagNSW);
10714 Pred = ICmpInst::ICMP_SLT;
10715 Changed = true;
10716 }
10717 break;
10718 case ICmpInst::ICMP_SGE:
10719 if (!getSignedRangeMin(S: RHS).isMinSignedValue()) {
10720 RHS = getAddExpr(LHS: getConstant(Ty: RHS->getType(), V: (uint64_t)-1, isSigned: true), RHS,
10721 Flags: SCEV::FlagNSW);
10722 Pred = ICmpInst::ICMP_SGT;
10723 Changed = true;
10724 } else if (!getSignedRangeMax(S: LHS).isMaxSignedValue()) {
10725 LHS = getAddExpr(LHS: getConstant(Ty: RHS->getType(), V: 1, isSigned: true), RHS: LHS,
10726 Flags: SCEV::FlagNSW);
10727 Pred = ICmpInst::ICMP_SGT;
10728 Changed = true;
10729 }
10730 break;
10731 case ICmpInst::ICMP_ULE:
10732 if (!getUnsignedRangeMax(S: RHS).isMaxValue()) {
10733 RHS = getAddExpr(LHS: getConstant(Ty: RHS->getType(), V: 1, isSigned: true), RHS,
10734 Flags: SCEV::FlagNUW);
10735 Pred = ICmpInst::ICMP_ULT;
10736 Changed = true;
10737 } else if (!getUnsignedRangeMin(S: LHS).isMinValue()) {
10738 LHS = getAddExpr(LHS: getConstant(Ty: RHS->getType(), V: (uint64_t)-1, isSigned: true), RHS: LHS);
10739 Pred = ICmpInst::ICMP_ULT;
10740 Changed = true;
10741 }
10742 break;
10743 case ICmpInst::ICMP_UGE:
10744 if (!getUnsignedRangeMin(S: RHS).isMinValue()) {
10745 RHS = getAddExpr(LHS: getConstant(Ty: RHS->getType(), V: (uint64_t)-1, isSigned: true), RHS);
10746 Pred = ICmpInst::ICMP_UGT;
10747 Changed = true;
10748 } else if (!getUnsignedRangeMax(S: LHS).isMaxValue()) {
10749 LHS = getAddExpr(LHS: getConstant(Ty: RHS->getType(), V: 1, isSigned: true), RHS: LHS,
10750 Flags: SCEV::FlagNUW);
10751 Pred = ICmpInst::ICMP_UGT;
10752 Changed = true;
10753 }
10754 break;
10755 default:
10756 break;
10757 }
10758
10759 // TODO: More simplifications are possible here.
10760
10761 // Recursively simplify until we either hit a recursion limit or nothing
10762 // changes.
10763 if (Changed)
10764 return SimplifyICmpOperands(Pred, LHS, RHS, Depth: Depth + 1);
10765
10766 return Changed;
10767}
10768
10769bool ScalarEvolution::isKnownNegative(const SCEV *S) {
10770 return getSignedRangeMax(S).isNegative();
10771}
10772
10773bool ScalarEvolution::isKnownPositive(const SCEV *S) {
10774 return getSignedRangeMin(S).isStrictlyPositive();
10775}
10776
10777bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
10778 return !getSignedRangeMin(S).isNegative();
10779}
10780
10781bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
10782 return !getSignedRangeMax(S).isStrictlyPositive();
10783}
10784
10785bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
10786 // Query push down for cases where the unsigned range is
10787 // less than sufficient.
10788 if (const auto *SExt = dyn_cast<SCEVSignExtendExpr>(Val: S))
10789 return isKnownNonZero(S: SExt->getOperand(i: 0));
10790 return getUnsignedRangeMin(S) != 0;
10791}
10792
10793std::pair<const SCEV *, const SCEV *>
10794ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
10795 // Compute SCEV on entry of loop L.
10796 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, SE&: *this);
10797 if (Start == getCouldNotCompute())
10798 return { Start, Start };
10799 // Compute post increment SCEV for loop L.
10800 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, SE&: *this);
10801 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
10802 return { Start, PostInc };
10803}
10804
10805bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
10806 const SCEV *LHS, const SCEV *RHS) {
10807 // First collect all loops.
10808 SmallPtrSet<const Loop *, 8> LoopsUsed;
10809 getUsedLoops(S: LHS, LoopsUsed);
10810 getUsedLoops(S: RHS, LoopsUsed);
10811
10812 if (LoopsUsed.empty())
10813 return false;
10814
10815 // Domination relationship must be a linear order on collected loops.
10816#ifndef NDEBUG
10817 for (const auto *L1 : LoopsUsed)
10818 for (const auto *L2 : LoopsUsed)
10819 assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
10820 DT.dominates(L2->getHeader(), L1->getHeader())) &&
10821 "Domination relationship is not a linear order");
10822#endif
10823
10824 const Loop *MDL =
10825 *std::max_element(first: LoopsUsed.begin(), last: LoopsUsed.end(),
10826 comp: [&](const Loop *L1, const Loop *L2) {
10827 return DT.properlyDominates(A: L1->getHeader(), B: L2->getHeader());
10828 });
10829
10830 // Get init and post increment value for LHS.
10831 auto SplitLHS = SplitIntoInitAndPostInc(L: MDL, S: LHS);
10832 // if LHS contains unknown non-invariant SCEV then bail out.
10833 if (SplitLHS.first == getCouldNotCompute())
10834 return false;
10835 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
10836 // Get init and post increment value for RHS.
10837 auto SplitRHS = SplitIntoInitAndPostInc(L: MDL, S: RHS);
10838 // if RHS contains unknown non-invariant SCEV then bail out.
10839 if (SplitRHS.first == getCouldNotCompute())
10840 return false;
10841 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
10842 // It is possible that init SCEV contains an invariant load but it does
10843 // not dominate MDL and is not available at MDL loop entry, so we should
10844 // check it here.
10845 if (!isAvailableAtLoopEntry(S: SplitLHS.first, L: MDL) ||
10846 !isAvailableAtLoopEntry(S: SplitRHS.first, L: MDL))
10847 return false;
10848
10849 // It seems backedge guard check is faster than entry one so in some cases
10850 // it can speed up whole estimation by short circuit
10851 return isLoopBackedgeGuardedByCond(L: MDL, Pred, LHS: SplitLHS.second,
10852 RHS: SplitRHS.second) &&
10853 isLoopEntryGuardedByCond(L: MDL, Pred, LHS: SplitLHS.first, RHS: SplitRHS.first);
10854}
10855
10856bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
10857 const SCEV *LHS, const SCEV *RHS) {
10858 // Canonicalize the inputs first.
10859 (void)SimplifyICmpOperands(Pred, LHS, RHS);
10860
10861 if (isKnownViaInduction(Pred, LHS, RHS))
10862 return true;
10863
10864 if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
10865 return true;
10866
10867 // Otherwise see what can be done with some simple reasoning.
10868 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
10869}
10870
10871std::optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred,
10872 const SCEV *LHS,
10873 const SCEV *RHS) {
10874 if (isKnownPredicate(Pred, LHS, RHS))
10875 return true;
10876 if (isKnownPredicate(Pred: ICmpInst::getInversePredicate(pred: Pred), LHS, RHS))
10877 return false;
10878 return std::nullopt;
10879}
10880
10881bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred,
10882 const SCEV *LHS, const SCEV *RHS,
10883 const Instruction *CtxI) {
10884 // TODO: Analyze guards and assumes from Context's block.
10885 return isKnownPredicate(Pred, LHS, RHS) ||
10886 isBasicBlockEntryGuardedByCond(BB: CtxI->getParent(), Pred, LHS, RHS);
10887}
10888
10889std::optional<bool>
10890ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS,
10891 const SCEV *RHS, const Instruction *CtxI) {
10892 std::optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS);
10893 if (KnownWithoutContext)
10894 return KnownWithoutContext;
10895
10896 if (isBasicBlockEntryGuardedByCond(BB: CtxI->getParent(), Pred, LHS, RHS))
10897 return true;
10898 if (isBasicBlockEntryGuardedByCond(BB: CtxI->getParent(),
10899 Pred: ICmpInst::getInversePredicate(pred: Pred),
10900 LHS, RHS))
10901 return false;
10902 return std::nullopt;
10903}
10904
10905bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
10906 const SCEVAddRecExpr *LHS,
10907 const SCEV *RHS) {
10908 const Loop *L = LHS->getLoop();
10909 return isLoopEntryGuardedByCond(L, Pred, LHS: LHS->getStart(), RHS) &&
10910 isLoopBackedgeGuardedByCond(L, Pred, LHS: LHS->getPostIncExpr(SE&: *this), RHS);
10911}
10912
10913std::optional<ScalarEvolution::MonotonicPredicateType>
10914ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
10915 ICmpInst::Predicate Pred) {
10916 auto Result = getMonotonicPredicateTypeImpl(LHS, Pred);
10917
10918#ifndef NDEBUG
10919 // Verify an invariant: inverting the predicate should turn a monotonically
10920 // increasing change to a monotonically decreasing one, and vice versa.
10921 if (Result) {
10922 auto ResultSwapped =
10923 getMonotonicPredicateTypeImpl(LHS, Pred: ICmpInst::getSwappedPredicate(pred: Pred));
10924
10925 assert(*ResultSwapped != *Result &&
10926 "monotonicity should flip as we flip the predicate");
10927 }
10928#endif
10929
10930 return Result;
10931}
10932
10933std::optional<ScalarEvolution::MonotonicPredicateType>
10934ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
10935 ICmpInst::Predicate Pred) {
10936 // A zero step value for LHS means the induction variable is essentially a
10937 // loop invariant value. We don't really depend on the predicate actually
10938 // flipping from false to true (for increasing predicates, and the other way
10939 // around for decreasing predicates), all we care about is that *if* the
10940 // predicate changes then it only changes from false to true.
10941 //
10942 // A zero step value in itself is not very useful, but there may be places
10943 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
10944 // as general as possible.
10945
10946 // Only handle LE/LT/GE/GT predicates.
10947 if (!ICmpInst::isRelational(P: Pred))
10948 return std::nullopt;
10949
10950 bool IsGreater = ICmpInst::isGE(P: Pred) || ICmpInst::isGT(P: Pred);
10951 assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) &&
10952 "Should be greater or less!");
10953
10954 // Check that AR does not wrap.
10955 if (ICmpInst::isUnsigned(predicate: Pred)) {
10956 if (!LHS->hasNoUnsignedWrap())
10957 return std::nullopt;
10958 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10959 }
10960 assert(ICmpInst::isSigned(Pred) &&
10961 "Relational predicate is either signed or unsigned!");
10962 if (!LHS->hasNoSignedWrap())
10963 return std::nullopt;
10964
10965 const SCEV *Step = LHS->getStepRecurrence(SE&: *this);
10966
10967 if (isKnownNonNegative(S: Step))
10968 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10969
10970 if (isKnownNonPositive(S: Step))
10971 return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10972
10973 return std::nullopt;
10974}
10975
10976std::optional<ScalarEvolution::LoopInvariantPredicate>
10977ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred,
10978 const SCEV *LHS, const SCEV *RHS,
10979 const Loop *L,
10980 const Instruction *CtxI) {
10981 // If there is a loop-invariant, force it into the RHS, otherwise bail out.
10982 if (!isLoopInvariant(S: RHS, L)) {
10983 if (!isLoopInvariant(S: LHS, L))
10984 return std::nullopt;
10985
10986 std::swap(a&: LHS, b&: RHS);
10987 Pred = ICmpInst::getSwappedPredicate(pred: Pred);
10988 }
10989
10990 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(Val: LHS);
10991 if (!ArLHS || ArLHS->getLoop() != L)
10992 return std::nullopt;
10993
10994 auto MonotonicType = getMonotonicPredicateType(LHS: ArLHS, Pred);
10995 if (!MonotonicType)
10996 return std::nullopt;
10997 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
10998 // true as the loop iterates, and the backedge is control dependent on
10999 // "ArLHS `Pred` RHS" == true then we can reason as follows:
11000 //
11001 // * if the predicate was false in the first iteration then the predicate
11002 // is never evaluated again, since the loop exits without taking the
11003 // backedge.
11004 // * if the predicate was true in the first iteration then it will
11005 // continue to be true for all future iterations since it is
11006 // monotonically increasing.
11007 //
11008 // For both the above possibilities, we can replace the loop varying
11009 // predicate with its value on the first iteration of the loop (which is
11010 // loop invariant).
11011 //
11012 // A similar reasoning applies for a monotonically decreasing predicate, by
11013 // replacing true with false and false with true in the above two bullets.
11014 bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing;
11015 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(pred: Pred);
11016
11017 if (isLoopBackedgeGuardedByCond(L, Pred: P, LHS, RHS))
11018 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(),
11019 RHS);
11020
11021 if (!CtxI)
11022 return std::nullopt;
11023 // Try to prove via context.
11024 // TODO: Support other cases.
11025 switch (Pred) {
11026 default:
11027 break;
11028 case ICmpInst::ICMP_ULE:
11029 case ICmpInst::ICMP_ULT: {
11030 assert(ArLHS->hasNoUnsignedWrap() && "Is a requirement of monotonicity!");
11031 // Given preconditions
11032 // (1) ArLHS does not cross the border of positive and negative parts of
11033 // range because of:
11034 // - Positive step; (TODO: lift this limitation)
11035 // - nuw - does not cross zero boundary;
11036 // - nsw - does not cross SINT_MAX boundary;
11037 // (2) ArLHS <s RHS
11038 // (3) RHS >=s 0
11039 // we can replace the loop variant ArLHS <u RHS condition with loop
11040 // invariant Start(ArLHS) <u RHS.
11041 //
11042 // Because of (1) there are two options:
11043 // - ArLHS is always negative. It means that ArLHS <u RHS is always false;
11044 // - ArLHS is always non-negative. Because of (3) RHS is also non-negative.
11045 // It means that ArLHS <s RHS <=> ArLHS <u RHS.
11046 // Because of (2) ArLHS <u RHS is trivially true.
11047 // All together it means that ArLHS <u RHS <=> Start(ArLHS) >=s 0.
11048 // We can strengthen this to Start(ArLHS) <u RHS.
11049 auto SignFlippedPred = ICmpInst::getFlippedSignednessPredicate(pred: Pred);
11050 if (ArLHS->hasNoSignedWrap() && ArLHS->isAffine() &&
11051 isKnownPositive(S: ArLHS->getStepRecurrence(SE&: *this)) &&
11052 isKnownNonNegative(S: RHS) &&
11053 isKnownPredicateAt(Pred: SignFlippedPred, LHS: ArLHS, RHS, CtxI))
11054 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(),
11055 RHS);
11056 }
11057 }
11058
11059 return std::nullopt;
11060}
11061
11062std::optional<ScalarEvolution::LoopInvariantPredicate>
11063ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations(
11064 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
11065 const Instruction *CtxI, const SCEV *MaxIter) {
11066 if (auto LIP = getLoopInvariantExitCondDuringFirstIterationsImpl(
11067 Pred, LHS, RHS, L, CtxI, MaxIter))
11068 return LIP;
11069 if (auto *UMin = dyn_cast<SCEVUMinExpr>(Val: MaxIter))
11070 // Number of iterations expressed as UMIN isn't always great for expressing
11071 // the value on the last iteration. If the straightforward approach didn't
11072 // work, try the following trick: if the a predicate is invariant for X, it
11073 // is also invariant for umin(X, ...). So try to find something that works
11074 // among subexpressions of MaxIter expressed as umin.
11075 for (auto *Op : UMin->operands())
11076 if (auto LIP = getLoopInvariantExitCondDuringFirstIterationsImpl(
11077 Pred, LHS, RHS, L, CtxI, MaxIter: Op))
11078 return LIP;
11079 return std::nullopt;
11080}
11081
11082std::optional<ScalarEvolution::LoopInvariantPredicate>
11083ScalarEvolution::getLoopInvariantExitCondDuringFirstIterationsImpl(
11084 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
11085 const Instruction *CtxI, const SCEV *MaxIter) {
11086 // Try to prove the following set of facts:
11087 // - The predicate is monotonic in the iteration space.
11088 // - If the check does not fail on the 1st iteration:
11089 // - No overflow will happen during first MaxIter iterations;
11090 // - It will not fail on the MaxIter'th iteration.
11091 // If the check does fail on the 1st iteration, we leave the loop and no
11092 // other checks matter.
11093
11094 // If there is a loop-invariant, force it into the RHS, otherwise bail out.
11095 if (!isLoopInvariant(S: RHS, L)) {
11096 if (!isLoopInvariant(S: LHS, L))
11097 return std::nullopt;
11098
11099 std::swap(a&: LHS, b&: RHS);
11100 Pred = ICmpInst::getSwappedPredicate(pred: Pred);
11101 }
11102
11103 auto *AR = dyn_cast<SCEVAddRecExpr>(Val: LHS);
11104 if (!AR || AR->getLoop() != L)
11105 return std::nullopt;
11106
11107 // The predicate must be relational (i.e. <, <=, >=, >).
11108 if (!ICmpInst::isRelational(P: Pred))
11109 return std::nullopt;
11110
11111 // TODO: Support steps other than +/- 1.
11112 const SCEV *Step = AR->getStepRecurrence(SE&: *this);
11113 auto *One = getOne(Ty: Step->getType());
11114 auto *MinusOne = getNegativeSCEV(V: One);
11115 if (Step != One && Step != MinusOne)
11116 return std::nullopt;
11117
11118 // Type mismatch here means that MaxIter is potentially larger than max
11119 // unsigned value in start type, which mean we cannot prove no wrap for the
11120 // indvar.
11121 if (AR->getType() != MaxIter->getType())
11122 return std::nullopt;
11123
11124 // Value of IV on suggested last iteration.
11125 const SCEV *Last = AR->evaluateAtIteration(It: MaxIter, SE&: *this);
11126 // Does it still meet the requirement?
11127 if (!isLoopBackedgeGuardedByCond(L, Pred, LHS: Last, RHS))
11128 return std::nullopt;
11129 // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does
11130 // not exceed max unsigned value of this type), this effectively proves
11131 // that there is no wrap during the iteration. To prove that there is no
11132 // signed/unsigned wrap, we need to check that
11133 // Start <= Last for step = 1 or Start >= Last for step = -1.
11134 ICmpInst::Predicate NoOverflowPred =
11135 CmpInst::isSigned(predicate: Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
11136 if (Step == MinusOne)
11137 NoOverflowPred = CmpInst::getSwappedPredicate(pred: NoOverflowPred);
11138 const SCEV *Start = AR->getStart();
11139 if (!isKnownPredicateAt(Pred: NoOverflowPred, LHS: Start, RHS: Last, CtxI))
11140 return std::nullopt;
11141
11142 // Everything is fine.
11143 return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS);
11144}
11145
11146bool ScalarEvolution::isKnownPredicateViaConstantRanges(
11147 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
11148 if (HasSameValue(A: LHS, B: RHS))
11149 return ICmpInst::isTrueWhenEqual(predicate: Pred);
11150
11151 // This code is split out from isKnownPredicate because it is called from
11152 // within isLoopEntryGuardedByCond.
11153
11154 auto CheckRanges = [&](const ConstantRange &RangeLHS,
11155 const ConstantRange &RangeRHS) {
11156 return RangeLHS.icmp(Pred, Other: RangeRHS);
11157 };
11158
11159 // The check at the top of the function catches the case where the values are
11160 // known to be equal.
11161 if (Pred == CmpInst::ICMP_EQ)
11162 return false;
11163
11164 if (Pred == CmpInst::ICMP_NE) {
11165 auto SL = getSignedRange(S: LHS);
11166 auto SR = getSignedRange(S: RHS);
11167 if (CheckRanges(SL, SR))
11168 return true;
11169 auto UL = getUnsignedRange(S: LHS);
11170 auto UR = getUnsignedRange(S: RHS);
11171 if (CheckRanges(UL, UR))
11172 return true;
11173 auto *Diff = getMinusSCEV(LHS, RHS);
11174 return !isa<SCEVCouldNotCompute>(Val: Diff) && isKnownNonZero(S: Diff);
11175 }
11176
11177 if (CmpInst::isSigned(predicate: Pred)) {
11178 auto SL = getSignedRange(S: LHS);
11179 auto SR = getSignedRange(S: RHS);
11180 return CheckRanges(SL, SR);
11181 }
11182
11183 auto UL = getUnsignedRange(S: LHS);
11184 auto UR = getUnsignedRange(S: RHS);
11185 return CheckRanges(UL, UR);
11186}
11187
11188bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
11189 const SCEV *LHS,
11190 const SCEV *RHS) {
11191 // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where
11192 // C1 and C2 are constant integers. If either X or Y are not add expressions,
11193 // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via
11194 // OutC1 and OutC2.
11195 auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y,
11196 APInt &OutC1, APInt &OutC2,
11197 SCEV::NoWrapFlags ExpectedFlags) {
11198 const SCEV *XNonConstOp, *XConstOp;
11199 const SCEV *YNonConstOp, *YConstOp;
11200 SCEV::NoWrapFlags XFlagsPresent;
11201 SCEV::NoWrapFlags YFlagsPresent;
11202
11203 if (!splitBinaryAdd(Expr: X, L&: XConstOp, R&: XNonConstOp, Flags&: XFlagsPresent)) {
11204 XConstOp = getZero(Ty: X->getType());
11205 XNonConstOp = X;
11206 XFlagsPresent = ExpectedFlags;
11207 }
11208 if (!isa<SCEVConstant>(Val: XConstOp) ||
11209 (XFlagsPresent & ExpectedFlags) != ExpectedFlags)
11210 return false;
11211
11212 if (!splitBinaryAdd(Expr: Y, L&: YConstOp, R&: YNonConstOp, Flags&: YFlagsPresent)) {
11213 YConstOp = getZero(Ty: Y->getType());
11214 YNonConstOp = Y;
11215 YFlagsPresent = ExpectedFlags;
11216 }
11217
11218 if (!isa<SCEVConstant>(Val: YConstOp) ||
11219 (YFlagsPresent & ExpectedFlags) != ExpectedFlags)
11220 return false;
11221
11222 if (YNonConstOp != XNonConstOp)
11223 return false;
11224
11225 OutC1 = cast<SCEVConstant>(Val: XConstOp)->getAPInt();
11226 OutC2 = cast<SCEVConstant>(Val: YConstOp)->getAPInt();
11227
11228 return true;
11229 };
11230
11231 APInt C1;
11232 APInt C2;
11233
11234 switch (Pred) {
11235 default:
11236 break;
11237
11238 case ICmpInst::ICMP_SGE:
11239 std::swap(a&: LHS, b&: RHS);
11240 [[fallthrough]];
11241 case ICmpInst::ICMP_SLE:
11242 // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2.
11243 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(RHS: C2))
11244 return true;
11245
11246 break;
11247
11248 case ICmpInst::ICMP_SGT:
11249 std::swap(a&: LHS, b&: RHS);
11250 [[fallthrough]];
11251 case ICmpInst::ICMP_SLT:
11252 // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2.
11253 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(RHS: C2))
11254 return true;
11255
11256 break;
11257
11258 case ICmpInst::ICMP_UGE:
11259 std::swap(a&: LHS, b&: RHS);
11260 [[fallthrough]];
11261 case ICmpInst::ICMP_ULE:
11262 // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2.
11263 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(RHS: C2))
11264 return true;
11265
11266 break;
11267
11268 case ICmpInst::ICMP_UGT:
11269 std::swap(a&: LHS, b&: RHS);
11270 [[fallthrough]];
11271 case ICmpInst::ICMP_ULT:
11272 // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2.
11273 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(RHS: C2))
11274 return true;
11275 break;
11276 }
11277
11278 return false;
11279}
11280
11281bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
11282 const SCEV *LHS,
11283 const SCEV *RHS) {
11284 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
11285 return false;
11286
11287 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
11288 // the stack can result in exponential time complexity.
11289 SaveAndRestore Restore(ProvingSplitPredicate, true);
11290
11291 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
11292 //
11293 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
11294 // isKnownPredicate. isKnownPredicate is more powerful, but also more
11295 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
11296 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to
11297 // use isKnownPredicate later if needed.
11298 return isKnownNonNegative(S: RHS) &&
11299 isKnownPredicate(Pred: CmpInst::ICMP_SGE, LHS, RHS: getZero(Ty: LHS->getType())) &&
11300 isKnownPredicate(Pred: CmpInst::ICMP_SLT, LHS, RHS);
11301}
11302
11303bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB,
11304 ICmpInst::Predicate Pred,
11305 const SCEV *LHS, const SCEV *RHS) {
11306 // No need to even try if we know the module has no guards.
11307 if (!HasGuards)
11308 return false;
11309
11310 return any_of(Range: *BB, P: [&](const Instruction &I) {
11311 using namespace llvm::PatternMatch;
11312
11313 Value *Condition;
11314 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
11315 m_Value(Condition))) &&
11316 isImpliedCond(Pred, LHS, RHS, Condition, false);
11317 });
11318}
11319
11320/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
11321/// protected by a conditional between LHS and RHS. This is used to
11322/// to eliminate casts.
11323bool
11324ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
11325 ICmpInst::Predicate Pred,
11326 const SCEV *LHS, const SCEV *RHS) {
11327 // Interpret a null as meaning no loop, where there is obviously no guard
11328 // (interprocedural conditions notwithstanding). Do not bother about
11329 // unreachable loops.
11330 if (!L || !DT.isReachableFromEntry(A: L->getHeader()))
11331 return true;
11332
11333 if (VerifyIR)
11334 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
11335 "This cannot be done on broken IR!");
11336
11337
11338 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
11339 return true;
11340
11341 BasicBlock *Latch = L->getLoopLatch();
11342 if (!Latch)
11343 return false;
11344
11345 BranchInst *LoopContinuePredicate =
11346 dyn_cast<BranchInst>(Val: Latch->getTerminator());
11347 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
11348 isImpliedCond(Pred, LHS, RHS,
11349 FoundCondValue: LoopContinuePredicate->getCondition(),
11350 Inverse: LoopContinuePredicate->getSuccessor(i: 0) != L->getHeader()))
11351 return true;
11352
11353 // We don't want more than one activation of the following loops on the stack
11354 // -- that can lead to O(n!) time complexity.
11355 if (WalkingBEDominatingConds)
11356 return false;
11357
11358 SaveAndRestore ClearOnExit(WalkingBEDominatingConds, true);
11359
11360 // See if we can exploit a trip count to prove the predicate.
11361 const auto &BETakenInfo = getBackedgeTakenInfo(L);
11362 const SCEV *LatchBECount = BETakenInfo.getExact(ExitingBlock: Latch, SE: this);
11363 if (LatchBECount != getCouldNotCompute()) {
11364 // We know that Latch branches back to the loop header exactly
11365 // LatchBECount times. This means the backdege condition at Latch is
11366 // equivalent to "{0,+,1} u< LatchBECount".
11367 Type *Ty = LatchBECount->getType();
11368 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
11369 const SCEV *LoopCounter =
11370 getAddRecExpr(Start: getZero(Ty), Step: getOne(Ty), L, Flags: NoWrapFlags);
11371 if (isImpliedCond(Pred, LHS, RHS, FoundPred: ICmpInst::ICMP_ULT, FoundLHS: LoopCounter,
11372 FoundRHS: LatchBECount))
11373 return true;
11374 }
11375
11376 // Check conditions due to any @llvm.assume intrinsics.
11377 for (auto &AssumeVH : AC.assumptions()) {
11378 if (!AssumeVH)
11379 continue;
11380 auto *CI = cast<CallInst>(Val&: AssumeVH);
11381 if (!DT.dominates(Def: CI, User: Latch->getTerminator()))
11382 continue;
11383
11384 if (isImpliedCond(Pred, LHS, RHS, FoundCondValue: CI->getArgOperand(i: 0), Inverse: false))
11385 return true;
11386 }
11387
11388 if (isImpliedViaGuard(BB: Latch, Pred, LHS, RHS))
11389 return true;
11390
11391 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
11392 DTN != HeaderDTN; DTN = DTN->getIDom()) {
11393 assert(DTN && "should reach the loop header before reaching the root!");
11394
11395 BasicBlock *BB = DTN->getBlock();
11396 if (isImpliedViaGuard(BB, Pred, LHS, RHS))
11397 return true;
11398
11399 BasicBlock *PBB = BB->getSinglePredecessor();
11400 if (!PBB)
11401 continue;
11402
11403 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(Val: PBB->getTerminator());
11404 if (!ContinuePredicate || !ContinuePredicate->isConditional())
11405 continue;
11406
11407 Value *Condition = ContinuePredicate->getCondition();
11408
11409 // If we have an edge `E` within the loop body that dominates the only
11410 // latch, the condition guarding `E` also guards the backedge. This
11411 // reasoning works only for loops with a single latch.
11412
11413 BasicBlockEdge DominatingEdge(PBB, BB);
11414 if (DominatingEdge.isSingleEdge()) {
11415 // We're constructively (and conservatively) enumerating edges within the
11416 // loop body that dominate the latch. The dominator tree better agree
11417 // with us on this:
11418 assert(DT.dominates(DominatingEdge, Latch) && "should be!");
11419
11420 if (isImpliedCond(Pred, LHS, RHS, FoundCondValue: Condition,
11421 Inverse: BB != ContinuePredicate->getSuccessor(i: 0)))
11422 return true;
11423 }
11424 }
11425
11426 return false;
11427}
11428
11429bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
11430 ICmpInst::Predicate Pred,
11431 const SCEV *LHS,
11432 const SCEV *RHS) {
11433 // Do not bother proving facts for unreachable code.
11434 if (!DT.isReachableFromEntry(A: BB))
11435 return true;
11436 if (VerifyIR)
11437 assert(!verifyFunction(*BB->getParent(), &dbgs()) &&
11438 "This cannot be done on broken IR!");
11439
11440 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
11441 // the facts (a >= b && a != b) separately. A typical situation is when the
11442 // non-strict comparison is known from ranges and non-equality is known from
11443 // dominating predicates. If we are proving strict comparison, we always try
11444 // to prove non-equality and non-strict comparison separately.
11445 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(pred: Pred);
11446 const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
11447 bool ProvedNonStrictComparison = false;
11448 bool ProvedNonEquality = false;
11449
11450 auto SplitAndProve =
11451 [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool {
11452 if (!ProvedNonStrictComparison)
11453 ProvedNonStrictComparison = Fn(NonStrictPredicate);
11454 if (!ProvedNonEquality)
11455 ProvedNonEquality = Fn(ICmpInst::ICMP_NE);
11456 if (ProvedNonStrictComparison && ProvedNonEquality)
11457 return true;
11458 return false;
11459 };
11460
11461 if (ProvingStrictComparison) {
11462 auto ProofFn = [&](ICmpInst::Predicate P) {
11463 return isKnownViaNonRecursiveReasoning(Pred: P, LHS, RHS);
11464 };
11465 if (SplitAndProve(ProofFn))
11466 return true;
11467 }
11468
11469 // Try to prove (Pred, LHS, RHS) using isImpliedCond.
11470 auto ProveViaCond = [&](const Value *Condition, bool Inverse) {
11471 const Instruction *CtxI = &BB->front();
11472 if (isImpliedCond(Pred, LHS, RHS, FoundCondValue: Condition, Inverse, Context: CtxI))
11473 return true;
11474 if (ProvingStrictComparison) {
11475 auto ProofFn = [&](ICmpInst::Predicate P) {
11476 return isImpliedCond(Pred: P, LHS, RHS, FoundCondValue: Condition, Inverse, Context: CtxI);
11477 };
11478 if (SplitAndProve(ProofFn))
11479 return true;
11480 }
11481 return false;
11482 };
11483
11484 // Starting at the block's predecessor, climb up the predecessor chain, as long
11485 // as there are predecessors that can be found that have unique successors
11486 // leading to the original block.
11487 const Loop *ContainingLoop = LI.getLoopFor(BB);
11488 const BasicBlock *PredBB;
11489 if (ContainingLoop && ContainingLoop->getHeader() == BB)
11490 PredBB = ContainingLoop->getLoopPredecessor();
11491 else
11492 PredBB = BB->getSinglePredecessor();
11493 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB);
11494 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(BB: Pair.first)) {
11495 const BranchInst *BlockEntryPredicate =
11496 dyn_cast<BranchInst>(Val: Pair.first->getTerminator());
11497 if (!BlockEntryPredicate || BlockEntryPredicate->isUnconditional())
11498 continue;
11499
11500 if (ProveViaCond(BlockEntryPredicate->getCondition(),
11501 BlockEntryPredicate->getSuccessor(i: 0) != Pair.second))
11502 return true;
11503 }
11504
11505 // Check conditions due to any @llvm.assume intrinsics.
11506 for (auto &AssumeVH : AC.assumptions()) {
11507 if (!AssumeVH)
11508 continue;
11509 auto *CI = cast<CallInst>(Val&: AssumeVH);
11510 if (!DT.dominates(Def: CI, BB))
11511 continue;
11512
11513 if (ProveViaCond(CI->getArgOperand(i: 0), false))
11514 return true;
11515 }
11516
11517 // Check conditions due to any @llvm.experimental.guard intrinsics.
11518 auto *GuardDecl = F.getParent()->getFunction(
11519 Intrinsic::getName(Intrinsic::experimental_guard));
11520 if (GuardDecl)
11521 for (const auto *GU : GuardDecl->users())
11522 if (const auto *Guard = dyn_cast<IntrinsicInst>(GU))
11523 if (Guard->getFunction() == BB->getParent() && DT.dominates(Guard, BB))
11524 if (ProveViaCond(Guard->getArgOperand(0), false))
11525 return true;
11526 return false;
11527}
11528
11529bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
11530 ICmpInst::Predicate Pred,
11531 const SCEV *LHS,
11532 const SCEV *RHS) {
11533 // Interpret a null as meaning no loop, where there is obviously no guard
11534 // (interprocedural conditions notwithstanding).
11535 if (!L)
11536 return false;
11537
11538 // Both LHS and RHS must be available at loop entry.
11539 assert(isAvailableAtLoopEntry(LHS, L) &&
11540 "LHS is not available at Loop Entry");
11541 assert(isAvailableAtLoopEntry(RHS, L) &&
11542 "RHS is not available at Loop Entry");
11543
11544 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
11545 return true;
11546
11547 return isBasicBlockEntryGuardedByCond(BB: L->getHeader(), Pred, LHS, RHS);
11548}
11549
11550bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
11551 const SCEV *RHS,
11552 const Value *FoundCondValue, bool Inverse,
11553 const Instruction *CtxI) {
11554 // False conditions implies anything. Do not bother analyzing it further.
11555 if (FoundCondValue ==
11556 ConstantInt::getBool(Context&: FoundCondValue->getContext(), V: Inverse))
11557 return true;
11558
11559 if (!PendingLoopPredicates.insert(Ptr: FoundCondValue).second)
11560 return false;
11561
11562 auto ClearOnExit =
11563 make_scope_exit(F: [&]() { PendingLoopPredicates.erase(Ptr: FoundCondValue); });
11564
11565 // Recursively handle And and Or conditions.
11566 const Value *Op0, *Op1;
11567 if (match(V: FoundCondValue, P: m_LogicalAnd(L: m_Value(V&: Op0), R: m_Value(V&: Op1)))) {
11568 if (!Inverse)
11569 return isImpliedCond(Pred, LHS, RHS, FoundCondValue: Op0, Inverse, CtxI) ||
11570 isImpliedCond(Pred, LHS, RHS, FoundCondValue: Op1, Inverse, CtxI);
11571 } else if (match(V: FoundCondValue, P: m_LogicalOr(L: m_Value(V&: Op0), R: m_Value(V&: Op1)))) {
11572 if (Inverse)
11573 return isImpliedCond(Pred, LHS, RHS, FoundCondValue: Op0, Inverse, CtxI) ||
11574 isImpliedCond(Pred, LHS, RHS, FoundCondValue: Op1, Inverse, CtxI);
11575 }
11576
11577 const ICmpInst *ICI = dyn_cast<ICmpInst>(Val: FoundCondValue);
11578 if (!ICI) return false;
11579
11580 // Now that we found a conditional branch that dominates the loop or controls
11581 // the loop latch. Check to see if it is the comparison we are looking for.
11582 ICmpInst::Predicate FoundPred;
11583 if (Inverse)
11584 FoundPred = ICI->getInversePredicate();
11585 else
11586 FoundPred = ICI->getPredicate();
11587
11588 const SCEV *FoundLHS = getSCEV(V: ICI->getOperand(i_nocapture: 0));
11589 const SCEV *FoundRHS = getSCEV(V: ICI->getOperand(i_nocapture: 1));
11590
11591 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, Context: CtxI);
11592}
11593
11594bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
11595 const SCEV *RHS,
11596 ICmpInst::Predicate FoundPred,
11597 const SCEV *FoundLHS, const SCEV *FoundRHS,
11598 const Instruction *CtxI) {
11599 // Balance the types.
11600 if (getTypeSizeInBits(Ty: LHS->getType()) <
11601 getTypeSizeInBits(Ty: FoundLHS->getType())) {
11602 // For unsigned and equality predicates, try to prove that both found
11603 // operands fit into narrow unsigned range. If so, try to prove facts in
11604 // narrow types.
11605 if (!CmpInst::isSigned(predicate: FoundPred) && !FoundLHS->getType()->isPointerTy() &&
11606 !FoundRHS->getType()->isPointerTy()) {
11607 auto *NarrowType = LHS->getType();
11608 auto *WideType = FoundLHS->getType();
11609 auto BitWidth = getTypeSizeInBits(Ty: NarrowType);
11610 const SCEV *MaxValue = getZeroExtendExpr(
11611 Op: getConstant(Val: APInt::getMaxValue(numBits: BitWidth)), Ty: WideType);
11612 if (isKnownViaNonRecursiveReasoning(Pred: ICmpInst::ICMP_ULE, LHS: FoundLHS,
11613 RHS: MaxValue) &&
11614 isKnownViaNonRecursiveReasoning(Pred: ICmpInst::ICMP_ULE, LHS: FoundRHS,
11615 RHS: MaxValue)) {
11616 const SCEV *TruncFoundLHS = getTruncateExpr(Op: FoundLHS, Ty: NarrowType);
11617 const SCEV *TruncFoundRHS = getTruncateExpr(Op: FoundRHS, Ty: NarrowType);
11618 if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS: TruncFoundLHS,
11619 FoundRHS: TruncFoundRHS, CtxI))
11620 return true;
11621 }
11622 }
11623
11624 if (LHS->getType()->isPointerTy() || RHS->getType()->isPointerTy())
11625 return false;
11626 if (CmpInst::isSigned(predicate: Pred)) {
11627 LHS = getSignExtendExpr(Op: LHS, Ty: FoundLHS->getType());
11628 RHS = getSignExtendExpr(Op: RHS, Ty: FoundLHS->getType());
11629 } else {
11630 LHS = getZeroExtendExpr(Op: LHS, Ty: FoundLHS->getType());
11631 RHS = getZeroExtendExpr(Op: RHS, Ty: FoundLHS->getType());
11632 }
11633 } else if (getTypeSizeInBits(Ty: LHS->getType()) >
11634 getTypeSizeInBits(Ty: FoundLHS->getType())) {
11635 if (FoundLHS->getType()->isPointerTy() || FoundRHS->getType()->isPointerTy())
11636 return false;
11637 if (CmpInst::isSigned(predicate: FoundPred)) {
11638 FoundLHS = getSignExtendExpr(Op: FoundLHS, Ty: LHS->getType());
11639 FoundRHS = getSignExtendExpr(Op: FoundRHS, Ty: LHS->getType());
11640 } else {
11641 FoundLHS = getZeroExtendExpr(Op: FoundLHS, Ty: LHS->getType());
11642 FoundRHS = getZeroExtendExpr(Op: FoundRHS, Ty: LHS->getType());
11643 }
11644 }
11645 return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS,
11646 FoundRHS, CtxI);
11647}
11648
11649bool ScalarEvolution::isImpliedCondBalancedTypes(
11650 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
11651 ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS,
11652 const Instruction *CtxI) {
11653 assert(getTypeSizeInBits(LHS->getType()) ==
11654 getTypeSizeInBits(FoundLHS->getType()) &&
11655 "Types should be balanced!");
11656 // Canonicalize the query to match the way instcombine will have
11657 // canonicalized the comparison.
11658 if (SimplifyICmpOperands(Pred, LHS, RHS))
11659 if (LHS == RHS)
11660 return CmpInst::isTrueWhenEqual(predicate: Pred);
11661 if (SimplifyICmpOperands(Pred&: FoundPred, LHS&: FoundLHS, RHS&: FoundRHS))
11662 if (FoundLHS == FoundRHS)
11663 return CmpInst::isFalseWhenEqual(predicate: FoundPred);
11664
11665 // Check to see if we can make the LHS or RHS match.
11666 if (LHS == FoundRHS || RHS == FoundLHS) {
11667 if (isa<SCEVConstant>(Val: RHS)) {
11668 std::swap(a&: FoundLHS, b&: FoundRHS);
11669 FoundPred = ICmpInst::getSwappedPredicate(pred: FoundPred);
11670 } else {
11671 std::swap(a&: LHS, b&: RHS);
11672 Pred = ICmpInst::getSwappedPredicate(pred: Pred);
11673 }
11674 }
11675
11676 // Check whether the found predicate is the same as the desired predicate.
11677 if (FoundPred == Pred)
11678 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context: CtxI);
11679
11680 // Check whether swapping the found predicate makes it the same as the
11681 // desired predicate.
11682 if (ICmpInst::getSwappedPredicate(pred: FoundPred) == Pred) {
11683 // We can write the implication
11684 // 0. LHS Pred RHS <- FoundLHS SwapPred FoundRHS
11685 // using one of the following ways:
11686 // 1. LHS Pred RHS <- FoundRHS Pred FoundLHS
11687 // 2. RHS SwapPred LHS <- FoundLHS SwapPred FoundRHS
11688 // 3. LHS Pred RHS <- ~FoundLHS Pred ~FoundRHS
11689 // 4. ~LHS SwapPred ~RHS <- FoundLHS SwapPred FoundRHS
11690 // Forms 1. and 2. require swapping the operands of one condition. Don't
11691 // do this if it would break canonical constant/addrec ordering.
11692 if (!isa<SCEVConstant>(Val: RHS) && !isa<SCEVAddRecExpr>(Val: LHS))
11693 return isImpliedCondOperands(Pred: FoundPred, LHS: RHS, RHS: LHS, FoundLHS, FoundRHS,
11694 Context: CtxI);
11695 if (!isa<SCEVConstant>(Val: FoundRHS) && !isa<SCEVAddRecExpr>(Val: FoundLHS))
11696 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS: FoundRHS, FoundRHS: FoundLHS, Context: CtxI);
11697
11698 // There's no clear preference between forms 3. and 4., try both. Avoid
11699 // forming getNotSCEV of pointer values as the resulting subtract is
11700 // not legal.
11701 if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() &&
11702 isImpliedCondOperands(Pred: FoundPred, LHS: getNotSCEV(V: LHS), RHS: getNotSCEV(V: RHS),
11703 FoundLHS, FoundRHS, Context: CtxI))
11704 return true;
11705
11706 if (!FoundLHS->getType()->isPointerTy() &&
11707 !FoundRHS->getType()->isPointerTy() &&
11708 isImpliedCondOperands(Pred, LHS, RHS, FoundLHS: getNotSCEV(V: FoundLHS),
11709 FoundRHS: getNotSCEV(V: FoundRHS), Context: CtxI))
11710 return true;
11711
11712 return false;
11713 }
11714
11715 auto IsSignFlippedPredicate = [](CmpInst::Predicate P1,
11716 CmpInst::Predicate P2) {
11717 assert(P1 != P2 && "Handled earlier!");
11718 return CmpInst::isRelational(P: P2) &&
11719 P1 == CmpInst::getFlippedSignednessPredicate(pred: P2);
11720 };
11721 if (IsSignFlippedPredicate(Pred, FoundPred)) {
11722 // Unsigned comparison is the same as signed comparison when both the
11723 // operands are non-negative or negative.
11724 if ((isKnownNonNegative(S: FoundLHS) && isKnownNonNegative(S: FoundRHS)) ||
11725 (isKnownNegative(S: FoundLHS) && isKnownNegative(S: FoundRHS)))
11726 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context: CtxI);
11727 // Create local copies that we can freely swap and canonicalize our
11728 // conditions to "le/lt".
11729 ICmpInst::Predicate CanonicalPred = Pred, CanonicalFoundPred = FoundPred;
11730 const SCEV *CanonicalLHS = LHS, *CanonicalRHS = RHS,
11731 *CanonicalFoundLHS = FoundLHS, *CanonicalFoundRHS = FoundRHS;
11732 if (ICmpInst::isGT(P: CanonicalPred) || ICmpInst::isGE(P: CanonicalPred)) {
11733 CanonicalPred = ICmpInst::getSwappedPredicate(pred: CanonicalPred);
11734 CanonicalFoundPred = ICmpInst::getSwappedPredicate(pred: CanonicalFoundPred);
11735 std::swap(a&: CanonicalLHS, b&: CanonicalRHS);
11736 std::swap(a&: CanonicalFoundLHS, b&: CanonicalFoundRHS);
11737 }
11738 assert((ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) &&
11739 "Must be!");
11740 assert((ICmpInst::isLT(CanonicalFoundPred) ||
11741 ICmpInst::isLE(CanonicalFoundPred)) &&
11742 "Must be!");
11743 if (ICmpInst::isSigned(predicate: CanonicalPred) && isKnownNonNegative(S: CanonicalRHS))
11744 // Use implication:
11745 // x <u y && y >=s 0 --> x <s y.
11746 // If we can prove the left part, the right part is also proven.
11747 return isImpliedCondOperands(Pred: CanonicalFoundPred, LHS: CanonicalLHS,
11748 RHS: CanonicalRHS, FoundLHS: CanonicalFoundLHS,
11749 FoundRHS: CanonicalFoundRHS);
11750 if (ICmpInst::isUnsigned(predicate: CanonicalPred) && isKnownNegative(S: CanonicalRHS))
11751 // Use implication:
11752 // x <s y && y <s 0 --> x <u y.
11753 // If we can prove the left part, the right part is also proven.
11754 return isImpliedCondOperands(Pred: CanonicalFoundPred, LHS: CanonicalLHS,
11755 RHS: CanonicalRHS, FoundLHS: CanonicalFoundLHS,
11756 FoundRHS: CanonicalFoundRHS);
11757 }
11758
11759 // Check if we can make progress by sharpening ranges.
11760 if (FoundPred == ICmpInst::ICMP_NE &&
11761 (isa<SCEVConstant>(Val: FoundLHS) || isa<SCEVConstant>(Val: FoundRHS))) {
11762
11763 const SCEVConstant *C = nullptr;
11764 const SCEV *V = nullptr;
11765
11766 if (isa<SCEVConstant>(Val: FoundLHS)) {
11767 C = cast<SCEVConstant>(Val: FoundLHS);
11768 V = FoundRHS;
11769 } else {
11770 C = cast<SCEVConstant>(Val: FoundRHS);
11771 V = FoundLHS;
11772 }
11773
11774 // The guarding predicate tells us that C != V. If the known range
11775 // of V is [C, t), we can sharpen the range to [C + 1, t). The
11776 // range we consider has to correspond to same signedness as the
11777 // predicate we're interested in folding.
11778
11779 APInt Min = ICmpInst::isSigned(predicate: Pred) ?
11780 getSignedRangeMin(S: V) : getUnsignedRangeMin(S: V);
11781
11782 if (Min == C->getAPInt()) {
11783 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
11784 // This is true even if (Min + 1) wraps around -- in case of
11785 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
11786
11787 APInt SharperMin = Min + 1;
11788
11789 switch (Pred) {
11790 case ICmpInst::ICMP_SGE:
11791 case ICmpInst::ICMP_UGE:
11792 // We know V `Pred` SharperMin. If this implies LHS `Pred`
11793 // RHS, we're done.
11794 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS: V, FoundRHS: getConstant(Val: SharperMin),
11795 Context: CtxI))
11796 return true;
11797 [[fallthrough]];
11798
11799 case ICmpInst::ICMP_SGT:
11800 case ICmpInst::ICMP_UGT:
11801 // We know from the range information that (V `Pred` Min ||
11802 // V == Min). We know from the guarding condition that !(V
11803 // == Min). This gives us
11804 //
11805 // V `Pred` Min || V == Min && !(V == Min)
11806 // => V `Pred` Min
11807 //
11808 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
11809
11810 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS: V, FoundRHS: getConstant(Val: Min), Context: CtxI))
11811 return true;
11812 break;
11813
11814 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively.
11815 case ICmpInst::ICMP_SLE:
11816 case ICmpInst::ICMP_ULE:
11817 if (isImpliedCondOperands(Pred: CmpInst::getSwappedPredicate(pred: Pred), LHS: RHS,
11818 RHS: LHS, FoundLHS: V, FoundRHS: getConstant(Val: SharperMin), Context: CtxI))
11819 return true;
11820 [[fallthrough]];
11821
11822 case ICmpInst::ICMP_SLT:
11823 case ICmpInst::ICMP_ULT:
11824 if (isImpliedCondOperands(Pred: CmpInst::getSwappedPredicate(pred: Pred), LHS: RHS,
11825 RHS: LHS, FoundLHS: V, FoundRHS: getConstant(Val: Min), Context: CtxI))
11826 return true;
11827 break;
11828
11829 default:
11830 // No change
11831 break;
11832 }
11833 }
11834 }
11835
11836 // Check whether the actual condition is beyond sufficient.
11837 if (FoundPred == ICmpInst::ICMP_EQ)
11838 if (ICmpInst::isTrueWhenEqual(predicate: Pred))
11839 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context: CtxI))
11840 return true;
11841 if (Pred == ICmpInst::ICMP_NE)
11842 if (!ICmpInst::isTrueWhenEqual(predicate: FoundPred))
11843 if (isImpliedCondOperands(Pred: FoundPred, LHS, RHS, FoundLHS, FoundRHS, Context: CtxI))
11844 return true;
11845
11846 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS))
11847 return true;
11848
11849 // Otherwise assume the worst.
11850 return false;
11851}
11852
11853bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
11854 const SCEV *&L, const SCEV *&R,
11855 SCEV::NoWrapFlags &Flags) {
11856 const auto *AE = dyn_cast<SCEVAddExpr>(Val: Expr);
11857 if (!AE || AE->getNumOperands() != 2)
11858 return false;
11859
11860 L = AE->getOperand(i: 0);
11861 R = AE->getOperand(i: 1);
11862 Flags = AE->getNoWrapFlags();
11863 return true;
11864}
11865
11866std::optional<APInt>
11867ScalarEvolution::computeConstantDifference(const SCEV *More, const SCEV *Less) {
11868 // We avoid subtracting expressions here because this function is usually
11869 // fairly deep in the call stack (i.e. is called many times).
11870
11871 // X - X = 0.
11872 if (More == Less)
11873 return APInt(getTypeSizeInBits(Ty: More->getType()), 0);
11874
11875 if (isa<SCEVAddRecExpr>(Val: Less) && isa<SCEVAddRecExpr>(Val: More)) {
11876 const auto *LAR = cast<SCEVAddRecExpr>(Val: Less);
11877 const auto *MAR = cast<SCEVAddRecExpr>(Val: More);
11878
11879 if (LAR->getLoop() != MAR->getLoop())
11880 return std::nullopt;
11881
11882 // We look at affine expressions only; not for correctness but to keep
11883 // getStepRecurrence cheap.
11884 if (!LAR->isAffine() || !MAR->isAffine())
11885 return std::nullopt;
11886
11887 if (LAR->getStepRecurrence(SE&: *this) != MAR->getStepRecurrence(SE&: *this))
11888 return std::nullopt;
11889
11890 Less = LAR->getStart();
11891 More = MAR->getStart();
11892
11893 // fall through
11894 }
11895
11896 if (isa<SCEVConstant>(Val: Less) && isa<SCEVConstant>(Val: More)) {
11897 const auto &M = cast<SCEVConstant>(Val: More)->getAPInt();
11898 const auto &L = cast<SCEVConstant>(Val: Less)->getAPInt();
11899 return M - L;
11900 }
11901
11902 SCEV::NoWrapFlags Flags;
11903 const SCEV *LLess = nullptr, *RLess = nullptr;
11904 const SCEV *LMore = nullptr, *RMore = nullptr;
11905 const SCEVConstant *C1 = nullptr, *C2 = nullptr;
11906 // Compare (X + C1) vs X.
11907 if (splitBinaryAdd(Expr: Less, L&: LLess, R&: RLess, Flags))
11908 if ((C1 = dyn_cast<SCEVConstant>(Val: LLess)))
11909 if (RLess == More)
11910 return -(C1->getAPInt());
11911
11912 // Compare X vs (X + C2).
11913 if (splitBinaryAdd(Expr: More, L&: LMore, R&: RMore, Flags))
11914 if ((C2 = dyn_cast<SCEVConstant>(Val: LMore)))
11915 if (RMore == Less)
11916 return C2->getAPInt();
11917
11918 // Compare (X + C1) vs (X + C2).
11919 if (C1 && C2 && RLess == RMore)
11920 return C2->getAPInt() - C1->getAPInt();
11921
11922 return std::nullopt;
11923}
11924
11925bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart(
11926 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
11927 const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) {
11928 // Try to recognize the following pattern:
11929 //
11930 // FoundRHS = ...
11931 // ...
11932 // loop:
11933 // FoundLHS = {Start,+,W}
11934 // context_bb: // Basic block from the same loop
11935 // known(Pred, FoundLHS, FoundRHS)
11936 //
11937 // If some predicate is known in the context of a loop, it is also known on
11938 // each iteration of this loop, including the first iteration. Therefore, in
11939 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to
11940 // prove the original pred using this fact.
11941 if (!CtxI)
11942 return false;
11943 const BasicBlock *ContextBB = CtxI->getParent();
11944 // Make sure AR varies in the context block.
11945 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Val: FoundLHS)) {
11946 const Loop *L = AR->getLoop();
11947 // Make sure that context belongs to the loop and executes on 1st iteration
11948 // (if it ever executes at all).
11949 if (!L->contains(BB: ContextBB) || !DT.dominates(A: ContextBB, B: L->getLoopLatch()))
11950 return false;
11951 if (!isAvailableAtLoopEntry(S: FoundRHS, L: AR->getLoop()))
11952 return false;
11953 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS: AR->getStart(), FoundRHS);
11954 }
11955
11956 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Val: FoundRHS)) {
11957 const Loop *L = AR->getLoop();
11958 // Make sure that context belongs to the loop and executes on 1st iteration
11959 // (if it ever executes at all).
11960 if (!L->contains(BB: ContextBB) || !DT.dominates(A: ContextBB, B: L->getLoopLatch()))
11961 return false;
11962 if (!isAvailableAtLoopEntry(S: FoundLHS, L: AR->getLoop()))
11963 return false;
11964 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS: AR->getStart());
11965 }
11966
11967 return false;
11968}
11969
11970bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
11971 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
11972 const SCEV *FoundLHS, const SCEV *FoundRHS) {
11973 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
11974 return false;
11975
11976 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(Val: LHS);
11977 if (!AddRecLHS)
11978 return false;
11979
11980 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(Val: FoundLHS);
11981 if (!AddRecFoundLHS)
11982 return false;
11983
11984 // We'd like to let SCEV reason about control dependencies, so we constrain
11985 // both the inequalities to be about add recurrences on the same loop. This
11986 // way we can use isLoopEntryGuardedByCond later.
11987
11988 const Loop *L = AddRecFoundLHS->getLoop();
11989 if (L != AddRecLHS->getLoop())
11990 return false;
11991
11992 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1)
11993 //
11994 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
11995 // ... (2)
11996 //
11997 // Informal proof for (2), assuming (1) [*]:
11998 //
11999 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
12000 //
12001 // Then
12002 //
12003 // FoundLHS s< FoundRHS s< INT_MIN - C
12004 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ]
12005 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
12006 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s<
12007 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
12008 // <=> FoundLHS + C s< FoundRHS + C
12009 //
12010 // [*]: (1) can be proved by ruling out overflow.
12011 //
12012 // [**]: This can be proved by analyzing all the four possibilities:
12013 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
12014 // (A s>= 0, B s>= 0).
12015 //
12016 // Note:
12017 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
12018 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS
12019 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS
12020 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is
12021 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
12022 // C)".
12023
12024 std::optional<APInt> LDiff = computeConstantDifference(More: LHS, Less: FoundLHS);
12025 std::optional<APInt> RDiff = computeConstantDifference(More: RHS, Less: FoundRHS);
12026 if (!LDiff || !RDiff || *LDiff != *RDiff)
12027 return false;
12028
12029 if (LDiff->isMinValue())
12030 return true;
12031
12032 APInt FoundRHSLimit;
12033
12034 if (Pred == CmpInst::ICMP_ULT) {
12035 FoundRHSLimit = -(*RDiff);
12036 } else {
12037 assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
12038 FoundRHSLimit = APInt::getSignedMinValue(numBits: getTypeSizeInBits(Ty: RHS->getType())) - *RDiff;
12039 }
12040
12041 // Try to prove (1) or (2), as needed.
12042 return isAvailableAtLoopEntry(S: FoundRHS, L) &&
12043 isLoopEntryGuardedByCond(L, Pred, LHS: FoundRHS,
12044 RHS: getConstant(Val: FoundRHSLimit));
12045}
12046
12047bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
12048 const SCEV *LHS, const SCEV *RHS,
12049 const SCEV *FoundLHS,
12050 const SCEV *FoundRHS, unsigned Depth) {
12051 const PHINode *LPhi = nullptr, *RPhi = nullptr;
12052
12053 auto ClearOnExit = make_scope_exit(F: [&]() {
12054 if (LPhi) {
12055 bool Erased = PendingMerges.erase(Ptr: LPhi);
12056 assert(Erased && "Failed to erase LPhi!");
12057 (void)Erased;
12058 }
12059 if (RPhi) {
12060 bool Erased = PendingMerges.erase(Ptr: RPhi);
12061 assert(Erased && "Failed to erase RPhi!");
12062 (void)Erased;
12063 }
12064 });
12065
12066 // Find respective Phis and check that they are not being pending.
12067 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(Val: LHS))
12068 if (auto *Phi = dyn_cast<PHINode>(Val: LU->getValue())) {
12069 if (!PendingMerges.insert(Ptr: Phi).second)
12070 return false;
12071 LPhi = Phi;
12072 }
12073 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(Val: RHS))
12074 if (auto *Phi = dyn_cast<PHINode>(Val: RU->getValue())) {
12075 // If we detect a loop of Phi nodes being processed by this method, for
12076 // example:
12077 //
12078 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
12079 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
12080 //
12081 // we don't want to deal with a case that complex, so return conservative
12082 // answer false.
12083 if (!PendingMerges.insert(Ptr: Phi).second)
12084 return false;
12085 RPhi = Phi;
12086 }
12087
12088 // If none of LHS, RHS is a Phi, nothing to do here.
12089 if (!LPhi && !RPhi)
12090 return false;
12091
12092 // If there is a SCEVUnknown Phi we are interested in, make it left.
12093 if (!LPhi) {
12094 std::swap(a&: LHS, b&: RHS);
12095 std::swap(a&: FoundLHS, b&: FoundRHS);
12096 std::swap(a&: LPhi, b&: RPhi);
12097 Pred = ICmpInst::getSwappedPredicate(pred: Pred);
12098 }
12099
12100 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
12101 const BasicBlock *LBB = LPhi->getParent();
12102 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(Val: RHS);
12103
12104 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
12105 return isKnownViaNonRecursiveReasoning(Pred, LHS: S1, RHS: S2) ||
12106 isImpliedCondOperandsViaRanges(Pred, LHS: S1, RHS: S2, FoundPred: Pred, FoundLHS, FoundRHS) ||
12107 isImpliedViaOperations(Pred, LHS: S1, RHS: S2, FoundLHS, FoundRHS, Depth);
12108 };
12109
12110 if (RPhi && RPhi->getParent() == LBB) {
12111 // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
12112 // If we compare two Phis from the same block, and for each entry block
12113 // the predicate is true for incoming values from this block, then the
12114 // predicate is also true for the Phis.
12115 for (const BasicBlock *IncBB : predecessors(BB: LBB)) {
12116 const SCEV *L = getSCEV(V: LPhi->getIncomingValueForBlock(BB: IncBB));
12117 const SCEV *R = getSCEV(V: RPhi->getIncomingValueForBlock(BB: IncBB));
12118 if (!ProvedEasily(L, R))
12119 return false;
12120 }
12121 } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
12122 // Case two: RHS is also a Phi from the same basic block, and it is an
12123 // AddRec. It means that there is a loop which has both AddRec and Unknown
12124 // PHIs, for it we can compare incoming values of AddRec from above the loop
12125 // and latch with their respective incoming values of LPhi.
12126 // TODO: Generalize to handle loops with many inputs in a header.
12127 if (LPhi->getNumIncomingValues() != 2) return false;
12128
12129 auto *RLoop = RAR->getLoop();
12130 auto *Predecessor = RLoop->getLoopPredecessor();
12131 assert(Predecessor && "Loop with AddRec with no predecessor?");
12132 const SCEV *L1 = getSCEV(V: LPhi->getIncomingValueForBlock(BB: Predecessor));
12133 if (!ProvedEasily(L1, RAR->getStart()))
12134 return false;
12135 auto *Latch = RLoop->getLoopLatch();
12136 assert(Latch && "Loop with AddRec with no latch?");
12137 const SCEV *L2 = getSCEV(V: LPhi->getIncomingValueForBlock(BB: Latch));
12138 if (!ProvedEasily(L2, RAR->getPostIncExpr(SE&: *this)))
12139 return false;
12140 } else {
12141 // In all other cases go over inputs of LHS and compare each of them to RHS,
12142 // the predicate is true for (LHS, RHS) if it is true for all such pairs.
12143 // At this point RHS is either a non-Phi, or it is a Phi from some block
12144 // different from LBB.
12145 for (const BasicBlock *IncBB : predecessors(BB: LBB)) {
12146 // Check that RHS is available in this block.
12147 if (!dominates(S: RHS, BB: IncBB))
12148 return false;
12149 const SCEV *L = getSCEV(V: LPhi->getIncomingValueForBlock(BB: IncBB));
12150 // Make sure L does not refer to a value from a potentially previous
12151 // iteration of a loop.
12152 if (!properlyDominates(S: L, BB: LBB))
12153 return false;
12154 if (!ProvedEasily(L, RHS))
12155 return false;
12156 }
12157 }
12158 return true;
12159}
12160
12161bool ScalarEvolution::isImpliedCondOperandsViaShift(ICmpInst::Predicate Pred,
12162 const SCEV *LHS,
12163 const SCEV *RHS,
12164 const SCEV *FoundLHS,
12165 const SCEV *FoundRHS) {
12166 // We want to imply LHS < RHS from LHS < (RHS >> shiftvalue). First, make
12167 // sure that we are dealing with same LHS.
12168 if (RHS == FoundRHS) {
12169 std::swap(a&: LHS, b&: RHS);
12170 std::swap(a&: FoundLHS, b&: FoundRHS);
12171 Pred = ICmpInst::getSwappedPredicate(pred: Pred);
12172 }
12173 if (LHS != FoundLHS)
12174 return false;
12175
12176 auto *SUFoundRHS = dyn_cast<SCEVUnknown>(Val: FoundRHS);
12177 if (!SUFoundRHS)
12178 return false;
12179
12180 Value *Shiftee, *ShiftValue;
12181
12182 using namespace PatternMatch;
12183 if (match(V: SUFoundRHS->getValue(),
12184 P: m_LShr(L: m_Value(V&: Shiftee), R: m_Value(V&: ShiftValue)))) {
12185 auto *ShifteeS = getSCEV(V: Shiftee);
12186 // Prove one of the following:
12187 // LHS <u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <u RHS
12188 // LHS <=u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <=u RHS
12189 // LHS <s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0
12190 // ---> LHS <s RHS
12191 // LHS <=s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0
12192 // ---> LHS <=s RHS
12193 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
12194 return isKnownPredicate(Pred: ICmpInst::ICMP_ULE, LHS: ShifteeS, RHS);
12195 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
12196 if (isKnownNonNegative(S: ShifteeS))
12197 return isKnownPredicate(Pred: ICmpInst::ICMP_SLE, LHS: ShifteeS, RHS);
12198 }
12199
12200 return false;
12201}
12202
12203bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
12204 const SCEV *LHS, const SCEV *RHS,
12205 const SCEV *FoundLHS,
12206 const SCEV *FoundRHS,
12207 const Instruction *CtxI) {
12208 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundPred: Pred, FoundLHS, FoundRHS))
12209 return true;
12210
12211 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
12212 return true;
12213
12214 if (isImpliedCondOperandsViaShift(Pred, LHS, RHS, FoundLHS, FoundRHS))
12215 return true;
12216
12217 if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS,
12218 CtxI))
12219 return true;
12220
12221 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
12222 FoundLHS, FoundRHS);
12223}
12224
12225/// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
12226template <typename MinMaxExprType>
12227static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
12228 const SCEV *Candidate) {
12229 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
12230 if (!MinMaxExpr)
12231 return false;
12232
12233 return is_contained(MinMaxExpr->operands(), Candidate);
12234}
12235
12236static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
12237 ICmpInst::Predicate Pred,
12238 const SCEV *LHS, const SCEV *RHS) {
12239 // If both sides are affine addrecs for the same loop, with equal
12240 // steps, and we know the recurrences don't wrap, then we only
12241 // need to check the predicate on the starting values.
12242
12243 if (!ICmpInst::isRelational(P: Pred))
12244 return false;
12245
12246 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(Val: LHS);
12247 if (!LAR)
12248 return false;
12249 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(Val: RHS);
12250 if (!RAR)
12251 return false;
12252 if (LAR->getLoop() != RAR->getLoop())
12253 return false;
12254 if (!LAR->isAffine() || !RAR->isAffine())
12255 return false;
12256
12257 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
12258 return false;
12259
12260 SCEV::NoWrapFlags NW = ICmpInst::isSigned(predicate: Pred) ?
12261 SCEV::FlagNSW : SCEV::FlagNUW;
12262 if (!LAR->getNoWrapFlags(Mask: NW) || !RAR->getNoWrapFlags(Mask: NW))
12263 return false;
12264
12265 return SE.isKnownPredicate(Pred, LHS: LAR->getStart(), RHS: RAR->getStart());
12266}
12267
12268/// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
12269/// expression?
12270static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
12271 ICmpInst::Predicate Pred,
12272 const SCEV *LHS, const SCEV *RHS) {
12273 switch (Pred) {
12274 default:
12275 return false;
12276
12277 case ICmpInst::ICMP_SGE:
12278 std::swap(a&: LHS, b&: RHS);
12279 [[fallthrough]];
12280 case ICmpInst::ICMP_SLE:
12281 return
12282 // min(A, ...) <= A
12283 IsMinMaxConsistingOf<SCEVSMinExpr>(MaybeMinMaxExpr: LHS, Candidate: RHS) ||
12284 // A <= max(A, ...)
12285 IsMinMaxConsistingOf<SCEVSMaxExpr>(MaybeMinMaxExpr: RHS, Candidate: LHS);
12286
12287 case ICmpInst::ICMP_UGE:
12288 std::swap(a&: LHS, b&: RHS);
12289 [[fallthrough]];
12290 case ICmpInst::ICMP_ULE:
12291 return
12292 // min(A, ...) <= A
12293 // FIXME: what about umin_seq?
12294 IsMinMaxConsistingOf<SCEVUMinExpr>(MaybeMinMaxExpr: LHS, Candidate: RHS) ||
12295 // A <= max(A, ...)
12296 IsMinMaxConsistingOf<SCEVUMaxExpr>(MaybeMinMaxExpr: RHS, Candidate: LHS);
12297 }
12298
12299 llvm_unreachable("covered switch fell through?!");
12300}
12301
12302bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
12303 const SCEV *LHS, const SCEV *RHS,
12304 const SCEV *FoundLHS,
12305 const SCEV *FoundRHS,
12306 unsigned Depth) {
12307 assert(getTypeSizeInBits(LHS->getType()) ==
12308 getTypeSizeInBits(RHS->getType()) &&
12309 "LHS and RHS have different sizes?");
12310 assert(getTypeSizeInBits(FoundLHS->getType()) ==
12311 getTypeSizeInBits(FoundRHS->getType()) &&
12312 "FoundLHS and FoundRHS have different sizes?");
12313 // We want to avoid hurting the compile time with analysis of too big trees.
12314 if (Depth > MaxSCEVOperationsImplicationDepth)
12315 return false;
12316
12317 // We only want to work with GT comparison so far.
12318 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) {
12319 Pred = CmpInst::getSwappedPredicate(pred: Pred);
12320 std::swap(a&: LHS, b&: RHS);
12321 std::swap(a&: FoundLHS, b&: FoundRHS);
12322 }
12323
12324 // For unsigned, try to reduce it to corresponding signed comparison.
12325 if (Pred == ICmpInst::ICMP_UGT)
12326 // We can replace unsigned predicate with its signed counterpart if all
12327 // involved values are non-negative.
12328 // TODO: We could have better support for unsigned.
12329 if (isKnownNonNegative(S: FoundLHS) && isKnownNonNegative(S: FoundRHS)) {
12330 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing
12331 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us
12332 // use this fact to prove that LHS and RHS are non-negative.
12333 const SCEV *MinusOne = getMinusOne(Ty: LHS->getType());
12334 if (isImpliedCondOperands(Pred: ICmpInst::ICMP_SGT, LHS, RHS: MinusOne, FoundLHS,
12335 FoundRHS) &&
12336 isImpliedCondOperands(Pred: ICmpInst::ICMP_SGT, LHS: RHS, RHS: MinusOne, FoundLHS,
12337 FoundRHS))
12338 Pred = ICmpInst::ICMP_SGT;
12339 }
12340
12341 if (Pred != ICmpInst::ICMP_SGT)
12342 return false;
12343
12344 auto GetOpFromSExt = [&](const SCEV *S) {
12345 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(Val: S))
12346 return Ext->getOperand();
12347 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
12348 // the constant in some cases.
12349 return S;
12350 };
12351
12352 // Acquire values from extensions.
12353 auto *OrigLHS = LHS;
12354 auto *OrigFoundLHS = FoundLHS;
12355 LHS = GetOpFromSExt(LHS);
12356 FoundLHS = GetOpFromSExt(FoundLHS);
12357
12358 // Is the SGT predicate can be proved trivially or using the found context.
12359 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
12360 return isKnownViaNonRecursiveReasoning(Pred: ICmpInst::ICMP_SGT, LHS: S1, RHS: S2) ||
12361 isImpliedViaOperations(Pred: ICmpInst::ICMP_SGT, LHS: S1, RHS: S2, FoundLHS: OrigFoundLHS,
12362 FoundRHS, Depth: Depth + 1);
12363 };
12364
12365 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(Val: LHS)) {
12366 // We want to avoid creation of any new non-constant SCEV. Since we are
12367 // going to compare the operands to RHS, we should be certain that we don't
12368 // need any size extensions for this. So let's decline all cases when the
12369 // sizes of types of LHS and RHS do not match.
12370 // TODO: Maybe try to get RHS from sext to catch more cases?
12371 if (getTypeSizeInBits(Ty: LHS->getType()) != getTypeSizeInBits(Ty: RHS->getType()))
12372 return false;
12373
12374 // Should not overflow.
12375 if (!LHSAddExpr->hasNoSignedWrap())
12376 return false;
12377
12378 auto *LL = LHSAddExpr->getOperand(i: 0);
12379 auto *LR = LHSAddExpr->getOperand(i: 1);
12380 auto *MinusOne = getMinusOne(Ty: RHS->getType());
12381
12382 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
12383 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
12384 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
12385 };
12386 // Try to prove the following rule:
12387 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
12388 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
12389 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
12390 return true;
12391 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(Val: LHS)) {
12392 Value *LL, *LR;
12393 // FIXME: Once we have SDiv implemented, we can get rid of this matching.
12394
12395 using namespace llvm::PatternMatch;
12396
12397 if (match(V: LHSUnknownExpr->getValue(), P: m_SDiv(L: m_Value(V&: LL), R: m_Value(V&: LR)))) {
12398 // Rules for division.
12399 // We are going to perform some comparisons with Denominator and its
12400 // derivative expressions. In general case, creating a SCEV for it may
12401 // lead to a complex analysis of the entire graph, and in particular it
12402 // can request trip count recalculation for the same loop. This would
12403 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
12404 // this, we only want to create SCEVs that are constants in this section.
12405 // So we bail if Denominator is not a constant.
12406 if (!isa<ConstantInt>(Val: LR))
12407 return false;
12408
12409 auto *Denominator = cast<SCEVConstant>(Val: getSCEV(V: LR));
12410
12411 // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
12412 // then a SCEV for the numerator already exists and matches with FoundLHS.
12413 auto *Numerator = getExistingSCEV(V: LL);
12414 if (!Numerator || Numerator->getType() != FoundLHS->getType())
12415 return false;
12416
12417 // Make sure that the numerator matches with FoundLHS and the denominator
12418 // is positive.
12419 if (!HasSameValue(A: Numerator, B: FoundLHS) || !isKnownPositive(S: Denominator))
12420 return false;
12421
12422 auto *DTy = Denominator->getType();
12423 auto *FRHSTy = FoundRHS->getType();
12424 if (DTy->isPointerTy() != FRHSTy->isPointerTy())
12425 // One of types is a pointer and another one is not. We cannot extend
12426 // them properly to a wider type, so let us just reject this case.
12427 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
12428 // to avoid this check.
12429 return false;
12430
12431 // Given that:
12432 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
12433 auto *WTy = getWiderType(T1: DTy, T2: FRHSTy);
12434 auto *DenominatorExt = getNoopOrSignExtend(V: Denominator, Ty: WTy);
12435 auto *FoundRHSExt = getNoopOrSignExtend(V: FoundRHS, Ty: WTy);
12436
12437 // Try to prove the following rule:
12438 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
12439 // For example, given that FoundLHS > 2. It means that FoundLHS is at
12440 // least 3. If we divide it by Denominator < 4, we will have at least 1.
12441 auto *DenomMinusTwo = getMinusSCEV(LHS: DenominatorExt, RHS: getConstant(Ty: WTy, V: 2));
12442 if (isKnownNonPositive(S: RHS) &&
12443 IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
12444 return true;
12445
12446 // Try to prove the following rule:
12447 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
12448 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
12449 // If we divide it by Denominator > 2, then:
12450 // 1. If FoundLHS is negative, then the result is 0.
12451 // 2. If FoundLHS is non-negative, then the result is non-negative.
12452 // Anyways, the result is non-negative.
12453 auto *MinusOne = getMinusOne(Ty: WTy);
12454 auto *NegDenomMinusOne = getMinusSCEV(LHS: MinusOne, RHS: DenominatorExt);
12455 if (isKnownNegative(S: RHS) &&
12456 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
12457 return true;
12458 }
12459 }
12460
12461 // If our expression contained SCEVUnknown Phis, and we split it down and now
12462 // need to prove something for them, try to prove the predicate for every
12463 // possible incoming values of those Phis.
12464 if (isImpliedViaMerge(Pred, LHS: OrigLHS, RHS, FoundLHS: OrigFoundLHS, FoundRHS, Depth: Depth + 1))
12465 return true;
12466
12467 return false;
12468}
12469
12470static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
12471 const SCEV *LHS, const SCEV *RHS) {
12472 // zext x u<= sext x, sext x s<= zext x
12473 switch (Pred) {
12474 case ICmpInst::ICMP_SGE:
12475 std::swap(a&: LHS, b&: RHS);
12476 [[fallthrough]];
12477 case ICmpInst::ICMP_SLE: {
12478 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt.
12479 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Val: LHS);
12480 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Val: RHS);
12481 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
12482 return true;
12483 break;
12484 }
12485 case ICmpInst::ICMP_UGE:
12486 std::swap(a&: LHS, b&: RHS);
12487 [[fallthrough]];
12488 case ICmpInst::ICMP_ULE: {
12489 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt.
12490 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Val: LHS);
12491 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Val: RHS);
12492 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
12493 return true;
12494 break;
12495 }
12496 default:
12497 break;
12498 };
12499 return false;
12500}
12501
12502bool
12503ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
12504 const SCEV *LHS, const SCEV *RHS) {
12505 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
12506 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
12507 IsKnownPredicateViaMinOrMax(SE&: *this, Pred, LHS, RHS) ||
12508 IsKnownPredicateViaAddRecStart(SE&: *this, Pred, LHS, RHS) ||
12509 isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
12510}
12511
12512bool
12513ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
12514 const SCEV *LHS, const SCEV *RHS,
12515 const SCEV *FoundLHS,
12516 const SCEV *FoundRHS) {
12517 switch (Pred) {
12518 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
12519 case ICmpInst::ICMP_EQ:
12520 case ICmpInst::ICMP_NE:
12521 if (HasSameValue(A: LHS, B: FoundLHS) && HasSameValue(A: RHS, B: FoundRHS))
12522 return true;
12523 break;
12524 case ICmpInst::ICMP_SLT:
12525 case ICmpInst::ICMP_SLE:
12526 if (isKnownViaNonRecursiveReasoning(Pred: ICmpInst::ICMP_SLE, LHS, RHS: FoundLHS) &&
12527 isKnownViaNonRecursiveReasoning(Pred: ICmpInst::ICMP_SGE, LHS: RHS, RHS: FoundRHS))
12528 return true;
12529 break;
12530 case ICmpInst::ICMP_SGT:
12531 case ICmpInst::ICMP_SGE:
12532 if (isKnownViaNonRecursiveReasoning(Pred: ICmpInst::ICMP_SGE, LHS, RHS: FoundLHS) &&
12533 isKnownViaNonRecursiveReasoning(Pred: ICmpInst::ICMP_SLE, LHS: RHS, RHS: FoundRHS))
12534 return true;
12535 break;
12536 case ICmpInst::ICMP_ULT:
12537 case ICmpInst::ICMP_ULE:
12538 if (isKnownViaNonRecursiveReasoning(Pred: ICmpInst::ICMP_ULE, LHS, RHS: FoundLHS) &&
12539 isKnownViaNonRecursiveReasoning(Pred: ICmpInst::ICMP_UGE, LHS: RHS, RHS: FoundRHS))
12540 return true;
12541 break;
12542 case ICmpInst::ICMP_UGT:
12543 case ICmpInst::ICMP_UGE:
12544 if (isKnownViaNonRecursiveReasoning(Pred: ICmpInst::ICMP_UGE, LHS, RHS: FoundLHS) &&
12545 isKnownViaNonRecursiveReasoning(Pred: ICmpInst::ICMP_ULE, LHS: RHS, RHS: FoundRHS))
12546 return true;
12547 break;
12548 }
12549
12550 // Maybe it can be proved via operations?
12551 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
12552 return true;
12553
12554 return false;
12555}
12556
12557bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
12558 const SCEV *LHS,
12559 const SCEV *RHS,
12560 ICmpInst::Predicate FoundPred,
12561 const SCEV *FoundLHS,
12562 const SCEV *FoundRHS) {
12563 if (!isa<SCEVConstant>(Val: RHS) || !isa<SCEVConstant>(Val: FoundRHS))
12564 // The restriction on `FoundRHS` be lifted easily -- it exists only to
12565 // reduce the compile time impact of this optimization.
12566 return false;
12567
12568 std::optional<APInt> Addend = computeConstantDifference(More: LHS, Less: FoundLHS);
12569 if (!Addend)
12570 return false;
12571
12572 const APInt &ConstFoundRHS = cast<SCEVConstant>(Val: FoundRHS)->getAPInt();
12573
12574 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
12575 // antecedent "`FoundLHS` `FoundPred` `FoundRHS`".
12576 ConstantRange FoundLHSRange =
12577 ConstantRange::makeExactICmpRegion(Pred: FoundPred, Other: ConstFoundRHS);
12578
12579 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
12580 ConstantRange LHSRange = FoundLHSRange.add(Other: ConstantRange(*Addend));
12581
12582 // We can also compute the range of values for `LHS` that satisfy the
12583 // consequent, "`LHS` `Pred` `RHS`":
12584 const APInt &ConstRHS = cast<SCEVConstant>(Val: RHS)->getAPInt();
12585 // The antecedent implies the consequent if every value of `LHS` that
12586 // satisfies the antecedent also satisfies the consequent.
12587 return LHSRange.icmp(Pred, Other: ConstRHS);
12588}
12589
12590bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
12591 bool IsSigned) {
12592 assert(isKnownPositive(Stride) && "Positive stride expected!");
12593
12594 unsigned BitWidth = getTypeSizeInBits(Ty: RHS->getType());
12595 const SCEV *One = getOne(Ty: Stride->getType());
12596
12597 if (IsSigned) {
12598 APInt MaxRHS = getSignedRangeMax(S: RHS);
12599 APInt MaxValue = APInt::getSignedMaxValue(numBits: BitWidth);
12600 APInt MaxStrideMinusOne = getSignedRangeMax(S: getMinusSCEV(LHS: Stride, RHS: One));
12601
12602 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
12603 return (std::move(MaxValue) - MaxStrideMinusOne).slt(RHS: MaxRHS);
12604 }
12605
12606 APInt MaxRHS = getUnsignedRangeMax(S: RHS);
12607 APInt MaxValue = APInt::getMaxValue(numBits: BitWidth);
12608 APInt MaxStrideMinusOne = getUnsignedRangeMax(S: getMinusSCEV(LHS: Stride, RHS: One));
12609
12610 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
12611 return (std::move(MaxValue) - MaxStrideMinusOne).ult(RHS: MaxRHS);
12612}
12613
12614bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
12615 bool IsSigned) {
12616
12617 unsigned BitWidth = getTypeSizeInBits(Ty: RHS->getType());
12618 const SCEV *One = getOne(Ty: Stride->getType());
12619
12620 if (IsSigned) {
12621 APInt MinRHS = getSignedRangeMin(S: RHS);
12622 APInt MinValue = APInt::getSignedMinValue(numBits: BitWidth);
12623 APInt MaxStrideMinusOne = getSignedRangeMax(S: getMinusSCEV(LHS: Stride, RHS: One));
12624
12625 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
12626 return (std::move(MinValue) + MaxStrideMinusOne).sgt(RHS: MinRHS);
12627 }
12628
12629 APInt MinRHS = getUnsignedRangeMin(S: RHS);
12630 APInt MinValue = APInt::getMinValue(numBits: BitWidth);
12631 APInt MaxStrideMinusOne = getUnsignedRangeMax(S: getMinusSCEV(LHS: Stride, RHS: One));
12632
12633 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
12634 return (std::move(MinValue) + MaxStrideMinusOne).ugt(RHS: MinRHS);
12635}
12636
12637const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) {
12638 // umin(N, 1) + floor((N - umin(N, 1)) / D)
12639 // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin
12640 // expression fixes the case of N=0.
12641 const SCEV *MinNOne = getUMinExpr(LHS: N, RHS: getOne(Ty: N->getType()));
12642 const SCEV *NMinusOne = getMinusSCEV(LHS: N, RHS: MinNOne);
12643 return getAddExpr(LHS: MinNOne, RHS: getUDivExpr(LHS: NMinusOne, RHS: D));
12644}
12645
12646const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
12647 const SCEV *Stride,
12648 const SCEV *End,
12649 unsigned BitWidth,
12650 bool IsSigned) {
12651 // The logic in this function assumes we can represent a positive stride.
12652 // If we can't, the backedge-taken count must be zero.
12653 if (IsSigned && BitWidth == 1)
12654 return getZero(Ty: Stride->getType());
12655
12656 // This code below only been closely audited for negative strides in the
12657 // unsigned comparison case, it may be correct for signed comparison, but
12658 // that needs to be established.
12659 if (IsSigned && isKnownNegative(S: Stride))
12660 return getCouldNotCompute();
12661
12662 // Calculate the maximum backedge count based on the range of values
12663 // permitted by Start, End, and Stride.
12664 APInt MinStart =
12665 IsSigned ? getSignedRangeMin(S: Start) : getUnsignedRangeMin(S: Start);
12666
12667 APInt MinStride =
12668 IsSigned ? getSignedRangeMin(S: Stride) : getUnsignedRangeMin(S: Stride);
12669
12670 // We assume either the stride is positive, or the backedge-taken count
12671 // is zero. So force StrideForMaxBECount to be at least one.
12672 APInt One(BitWidth, 1);
12673 APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(A: One, B: MinStride)
12674 : APIntOps::umax(A: One, B: MinStride);
12675
12676 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(numBits: BitWidth)
12677 : APInt::getMaxValue(numBits: BitWidth);
12678 APInt Limit = MaxValue - (StrideForMaxBECount - 1);
12679
12680 // Although End can be a MAX expression we estimate MaxEnd considering only
12681 // the case End = RHS of the loop termination condition. This is safe because
12682 // in the other case (End - Start) is zero, leading to a zero maximum backedge
12683 // taken count.
12684 APInt MaxEnd = IsSigned ? APIntOps::smin(A: getSignedRangeMax(S: End), B: Limit)
12685 : APIntOps::umin(A: getUnsignedRangeMax(S: End), B: Limit);
12686
12687 // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride)
12688 MaxEnd = IsSigned ? APIntOps::smax(A: MaxEnd, B: MinStart)
12689 : APIntOps::umax(A: MaxEnd, B: MinStart);
12690
12691 return getUDivCeilSCEV(N: getConstant(Val: MaxEnd - MinStart) /* Delta */,
12692 D: getConstant(Val: StrideForMaxBECount) /* Step */);
12693}
12694
12695ScalarEvolution::ExitLimit
12696ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
12697 const Loop *L, bool IsSigned,
12698 bool ControlsOnlyExit, bool AllowPredicates) {
12699 SmallPtrSet<const SCEVPredicate *, 4> Predicates;
12700
12701 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(Val: LHS);
12702 bool PredicatedIV = false;
12703
12704 auto canAssumeNoSelfWrap = [&](const SCEVAddRecExpr *AR) {
12705 // Can we prove this loop *must* be UB if overflow of IV occurs?
12706 // Reasoning goes as follows:
12707 // * Suppose the IV did self wrap.
12708 // * If Stride evenly divides the iteration space, then once wrap
12709 // occurs, the loop must revisit the same values.
12710 // * We know that RHS is invariant, and that none of those values
12711 // caused this exit to be taken previously. Thus, this exit is
12712 // dynamically dead.
12713 // * If this is the sole exit, then a dead exit implies the loop
12714 // must be infinite if there are no abnormal exits.
12715 // * If the loop were infinite, then it must either not be mustprogress
12716 // or have side effects. Otherwise, it must be UB.
12717 // * It can't (by assumption), be UB so we have contradicted our
12718 // premise and can conclude the IV did not in fact self-wrap.
12719 if (!isLoopInvariant(S: RHS, L))
12720 return false;
12721
12722 auto *StrideC = dyn_cast<SCEVConstant>(Val: AR->getStepRecurrence(SE&: *this));
12723 if (!StrideC || !StrideC->getAPInt().isPowerOf2())
12724 return false;
12725
12726 if (!ControlsOnlyExit || !loopHasNoAbnormalExits(L))
12727 return false;
12728
12729 return loopIsFiniteByAssumption(L);
12730 };
12731
12732 if (!IV) {
12733 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Val: LHS)) {
12734 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: ZExt->getOperand());
12735 if (AR && AR->getLoop() == L && AR->isAffine()) {
12736 auto canProveNUW = [&]() {
12737 // We can use the comparison to infer no-wrap flags only if it fully
12738 // controls the loop exit.
12739 if (!ControlsOnlyExit)
12740 return false;
12741
12742 if (!isLoopInvariant(S: RHS, L))
12743 return false;
12744
12745 if (!isKnownNonZero(S: AR->getStepRecurrence(SE&: *this)))
12746 // We need the sequence defined by AR to strictly increase in the
12747 // unsigned integer domain for the logic below to hold.
12748 return false;
12749
12750 const unsigned InnerBitWidth = getTypeSizeInBits(Ty: AR->getType());
12751 const unsigned OuterBitWidth = getTypeSizeInBits(Ty: RHS->getType());
12752 // If RHS <=u Limit, then there must exist a value V in the sequence
12753 // defined by AR (e.g. {Start,+,Step}) such that V >u RHS, and
12754 // V <=u UINT_MAX. Thus, we must exit the loop before unsigned
12755 // overflow occurs. This limit also implies that a signed comparison
12756 // (in the wide bitwidth) is equivalent to an unsigned comparison as
12757 // the high bits on both sides must be zero.
12758 APInt StrideMax = getUnsignedRangeMax(S: AR->getStepRecurrence(SE&: *this));
12759 APInt Limit = APInt::getMaxValue(numBits: InnerBitWidth) - (StrideMax - 1);
12760 Limit = Limit.zext(width: OuterBitWidth);
12761 return getUnsignedRangeMax(S: applyLoopGuards(Expr: RHS, L)).ule(RHS: Limit);
12762 };
12763 auto Flags = AR->getNoWrapFlags();
12764 if (!hasFlags(Flags, TestFlags: SCEV::FlagNUW) && canProveNUW())
12765 Flags = setFlags(Flags, OnFlags: SCEV::FlagNUW);
12766
12767 setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(AR), Flags);
12768 if (AR->hasNoUnsignedWrap()) {
12769 // Emulate what getZeroExtendExpr would have done during construction
12770 // if we'd been able to infer the fact just above at that time.
12771 const SCEV *Step = AR->getStepRecurrence(SE&: *this);
12772 Type *Ty = ZExt->getType();
12773 auto *S = getAddRecExpr(
12774 Start: getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, SE: this, Depth: 0),
12775 Step: getZeroExtendExpr(Op: Step, Ty, Depth: 0), L, Flags: AR->getNoWrapFlags());
12776 IV = dyn_cast<SCEVAddRecExpr>(Val: S);
12777 }
12778 }
12779 }
12780 }
12781
12782
12783 if (!IV && AllowPredicates) {
12784 // Try to make this an AddRec using runtime tests, in the first X
12785 // iterations of this loop, where X is the SCEV expression found by the
12786 // algorithm below.
12787 IV = convertSCEVToAddRecWithPredicates(S: LHS, L, Preds&: Predicates);
12788 PredicatedIV = true;
12789 }
12790
12791 // Avoid weird loops
12792 if (!IV || IV->getLoop() != L || !IV->isAffine())
12793 return getCouldNotCompute();
12794
12795 // A precondition of this method is that the condition being analyzed
12796 // reaches an exiting branch which dominates the latch. Given that, we can
12797 // assume that an increment which violates the nowrap specification and
12798 // produces poison must cause undefined behavior when the resulting poison
12799 // value is branched upon and thus we can conclude that the backedge is
12800 // taken no more often than would be required to produce that poison value.
12801 // Note that a well defined loop can exit on the iteration which violates
12802 // the nowrap specification if there is another exit (either explicit or
12803 // implicit/exceptional) which causes the loop to execute before the
12804 // exiting instruction we're analyzing would trigger UB.
12805 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
12806 bool NoWrap = ControlsOnlyExit && IV->getNoWrapFlags(Mask: WrapType);
12807 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
12808
12809 const SCEV *Stride = IV->getStepRecurrence(SE&: *this);
12810
12811 bool PositiveStride = isKnownPositive(S: Stride);
12812
12813 // Avoid negative or zero stride values.
12814 if (!PositiveStride) {
12815 // We can compute the correct backedge taken count for loops with unknown
12816 // strides if we can prove that the loop is not an infinite loop with side
12817 // effects. Here's the loop structure we are trying to handle -
12818 //
12819 // i = start
12820 // do {
12821 // A[i] = i;
12822 // i += s;
12823 // } while (i < end);
12824 //
12825 // The backedge taken count for such loops is evaluated as -
12826 // (max(end, start + stride) - start - 1) /u stride
12827 //
12828 // The additional preconditions that we need to check to prove correctness
12829 // of the above formula is as follows -
12830 //
12831 // a) IV is either nuw or nsw depending upon signedness (indicated by the
12832 // NoWrap flag).
12833 // b) the loop is guaranteed to be finite (e.g. is mustprogress and has
12834 // no side effects within the loop)
12835 // c) loop has a single static exit (with no abnormal exits)
12836 //
12837 // Precondition a) implies that if the stride is negative, this is a single
12838 // trip loop. The backedge taken count formula reduces to zero in this case.
12839 //
12840 // Precondition b) and c) combine to imply that if rhs is invariant in L,
12841 // then a zero stride means the backedge can't be taken without executing
12842 // undefined behavior.
12843 //
12844 // The positive stride case is the same as isKnownPositive(Stride) returning
12845 // true (original behavior of the function).
12846 //
12847 if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) ||
12848 !loopHasNoAbnormalExits(L))
12849 return getCouldNotCompute();
12850
12851 if (!isKnownNonZero(S: Stride)) {
12852 // If we have a step of zero, and RHS isn't invariant in L, we don't know
12853 // if it might eventually be greater than start and if so, on which
12854 // iteration. We can't even produce a useful upper bound.
12855 if (!isLoopInvariant(S: RHS, L))
12856 return getCouldNotCompute();
12857
12858 // We allow a potentially zero stride, but we need to divide by stride
12859 // below. Since the loop can't be infinite and this check must control
12860 // the sole exit, we can infer the exit must be taken on the first
12861 // iteration (e.g. backedge count = 0) if the stride is zero. Given that,
12862 // we know the numerator in the divides below must be zero, so we can
12863 // pick an arbitrary non-zero value for the denominator (e.g. stride)
12864 // and produce the right result.
12865 // FIXME: Handle the case where Stride is poison?
12866 auto wouldZeroStrideBeUB = [&]() {
12867 // Proof by contradiction. Suppose the stride were zero. If we can
12868 // prove that the backedge *is* taken on the first iteration, then since
12869 // we know this condition controls the sole exit, we must have an
12870 // infinite loop. We can't have a (well defined) infinite loop per
12871 // check just above.
12872 // Note: The (Start - Stride) term is used to get the start' term from
12873 // (start' + stride,+,stride). Remember that we only care about the
12874 // result of this expression when stride == 0 at runtime.
12875 auto *StartIfZero = getMinusSCEV(LHS: IV->getStart(), RHS: Stride);
12876 return isLoopEntryGuardedByCond(L, Pred: Cond, LHS: StartIfZero, RHS);
12877 };
12878 if (!wouldZeroStrideBeUB()) {
12879 Stride = getUMaxExpr(LHS: Stride, RHS: getOne(Ty: Stride->getType()));
12880 }
12881 }
12882 } else if (!Stride->isOne() && !NoWrap) {
12883 auto isUBOnWrap = [&]() {
12884 // From no-self-wrap, we need to then prove no-(un)signed-wrap. This
12885 // follows trivially from the fact that every (un)signed-wrapped, but
12886 // not self-wrapped value must be LT than the last value before
12887 // (un)signed wrap. Since we know that last value didn't exit, nor
12888 // will any smaller one.
12889 return canAssumeNoSelfWrap(IV);
12890 };
12891
12892 // Avoid proven overflow cases: this will ensure that the backedge taken
12893 // count will not generate any unsigned overflow. Relaxed no-overflow
12894 // conditions exploit NoWrapFlags, allowing to optimize in presence of
12895 // undefined behaviors like the case of C language.
12896 if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap())
12897 return getCouldNotCompute();
12898 }
12899
12900 // On all paths just preceeding, we established the following invariant:
12901 // IV can be assumed not to overflow up to and including the exiting
12902 // iteration. We proved this in one of two ways:
12903 // 1) We can show overflow doesn't occur before the exiting iteration
12904 // 1a) canIVOverflowOnLT, and b) step of one
12905 // 2) We can show that if overflow occurs, the loop must execute UB
12906 // before any possible exit.
12907 // Note that we have not yet proved RHS invariant (in general).
12908
12909 const SCEV *Start = IV->getStart();
12910
12911 // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond.
12912 // If we convert to integers, isLoopEntryGuardedByCond will miss some cases.
12913 // Use integer-typed versions for actual computation; we can't subtract
12914 // pointers in general.
12915 const SCEV *OrigStart = Start;
12916 const SCEV *OrigRHS = RHS;
12917 if (Start->getType()->isPointerTy()) {
12918 Start = getLosslessPtrToIntExpr(Op: Start);
12919 if (isa<SCEVCouldNotCompute>(Val: Start))
12920 return Start;
12921 }
12922 if (RHS->getType()->isPointerTy()) {
12923 RHS = getLosslessPtrToIntExpr(Op: RHS);
12924 if (isa<SCEVCouldNotCompute>(Val: RHS))
12925 return RHS;
12926 }
12927
12928 // When the RHS is not invariant, we do not know the end bound of the loop and
12929 // cannot calculate the ExactBECount needed by ExitLimit. However, we can
12930 // calculate the MaxBECount, given the start, stride and max value for the end
12931 // bound of the loop (RHS), and the fact that IV does not overflow (which is
12932 // checked above).
12933 if (!isLoopInvariant(S: RHS, L)) {
12934 const SCEV *MaxBECount = computeMaxBECountForLT(
12935 Start, Stride, End: RHS, BitWidth: getTypeSizeInBits(Ty: LHS->getType()), IsSigned);
12936 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
12937 MaxBECount, false /*MaxOrZero*/, Predicates);
12938 }
12939
12940 // We use the expression (max(End,Start)-Start)/Stride to describe the
12941 // backedge count, as if the backedge is taken at least once max(End,Start)
12942 // is End and so the result is as above, and if not max(End,Start) is Start
12943 // so we get a backedge count of zero.
12944 const SCEV *BECount = nullptr;
12945 auto *OrigStartMinusStride = getMinusSCEV(LHS: OrigStart, RHS: Stride);
12946 assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!");
12947 assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!");
12948 assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!");
12949 // Can we prove (max(RHS,Start) > Start - Stride?
12950 if (isLoopEntryGuardedByCond(L, Pred: Cond, LHS: OrigStartMinusStride, RHS: OrigStart) &&
12951 isLoopEntryGuardedByCond(L, Pred: Cond, LHS: OrigStartMinusStride, RHS: OrigRHS)) {
12952 // In this case, we can use a refined formula for computing backedge taken
12953 // count. The general formula remains:
12954 // "End-Start /uceiling Stride" where "End = max(RHS,Start)"
12955 // We want to use the alternate formula:
12956 // "((End - 1) - (Start - Stride)) /u Stride"
12957 // Let's do a quick case analysis to show these are equivalent under
12958 // our precondition that max(RHS,Start) > Start - Stride.
12959 // * For RHS <= Start, the backedge-taken count must be zero.
12960 // "((End - 1) - (Start - Stride)) /u Stride" reduces to
12961 // "((Start - 1) - (Start - Stride)) /u Stride" which simplies to
12962 // "Stride - 1 /u Stride" which is indeed zero for all non-zero values
12963 // of Stride. For 0 stride, we've use umin(1,Stride) above, reducing
12964 // this to the stride of 1 case.
12965 // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride".
12966 // "((End - 1) - (Start - Stride)) /u Stride" reduces to
12967 // "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to
12968 // "((RHS - (Start - Stride) - 1) /u Stride".
12969 // Our preconditions trivially imply no overflow in that form.
12970 const SCEV *MinusOne = getMinusOne(Ty: Stride->getType());
12971 const SCEV *Numerator =
12972 getMinusSCEV(LHS: getAddExpr(LHS: RHS, RHS: MinusOne), RHS: getMinusSCEV(LHS: Start, RHS: Stride));
12973 BECount = getUDivExpr(LHS: Numerator, RHS: Stride);
12974 }
12975
12976 const SCEV *BECountIfBackedgeTaken = nullptr;
12977 if (!BECount) {
12978 auto canProveRHSGreaterThanEqualStart = [&]() {
12979 auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
12980 const SCEV *GuardedRHS = applyLoopGuards(Expr: OrigRHS, L);
12981 const SCEV *GuardedStart = applyLoopGuards(Expr: OrigStart, L);
12982
12983 if (isLoopEntryGuardedByCond(L, Pred: CondGE, LHS: OrigRHS, RHS: OrigStart) ||
12984 isKnownPredicate(Pred: CondGE, LHS: GuardedRHS, RHS: GuardedStart))
12985 return true;
12986
12987 // (RHS > Start - 1) implies RHS >= Start.
12988 // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if
12989 // "Start - 1" doesn't overflow.
12990 // * For signed comparison, if Start - 1 does overflow, it's equal
12991 // to INT_MAX, and "RHS >s INT_MAX" is trivially false.
12992 // * For unsigned comparison, if Start - 1 does overflow, it's equal
12993 // to UINT_MAX, and "RHS >u UINT_MAX" is trivially false.
12994 //
12995 // FIXME: Should isLoopEntryGuardedByCond do this for us?
12996 auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
12997 auto *StartMinusOne = getAddExpr(LHS: OrigStart,
12998 RHS: getMinusOne(Ty: OrigStart->getType()));
12999 return isLoopEntryGuardedByCond(L, Pred: CondGT, LHS: OrigRHS, RHS: StartMinusOne);
13000 };
13001
13002 // If we know that RHS >= Start in the context of loop, then we know that
13003 // max(RHS, Start) = RHS at this point.
13004 const SCEV *End;
13005 if (canProveRHSGreaterThanEqualStart()) {
13006 End = RHS;
13007 } else {
13008 // If RHS < Start, the backedge will be taken zero times. So in
13009 // general, we can write the backedge-taken count as:
13010 //
13011 // RHS >= Start ? ceil(RHS - Start) / Stride : 0
13012 //
13013 // We convert it to the following to make it more convenient for SCEV:
13014 //
13015 // ceil(max(RHS, Start) - Start) / Stride
13016 End = IsSigned ? getSMaxExpr(LHS: RHS, RHS: Start) : getUMaxExpr(LHS: RHS, RHS: Start);
13017
13018 // See what would happen if we assume the backedge is taken. This is
13019 // used to compute MaxBECount.
13020 BECountIfBackedgeTaken = getUDivCeilSCEV(N: getMinusSCEV(LHS: RHS, RHS: Start), D: Stride);
13021 }
13022
13023 // At this point, we know:
13024 //
13025 // 1. If IsSigned, Start <=s End; otherwise, Start <=u End
13026 // 2. The index variable doesn't overflow.
13027 //
13028 // Therefore, we know N exists such that
13029 // (Start + Stride * N) >= End, and computing "(Start + Stride * N)"
13030 // doesn't overflow.
13031 //
13032 // Using this information, try to prove whether the addition in
13033 // "(Start - End) + (Stride - 1)" has unsigned overflow.
13034 const SCEV *One = getOne(Ty: Stride->getType());
13035 bool MayAddOverflow = [&] {
13036 if (auto *StrideC = dyn_cast<SCEVConstant>(Val: Stride)) {
13037 if (StrideC->getAPInt().isPowerOf2()) {
13038 // Suppose Stride is a power of two, and Start/End are unsigned
13039 // integers. Let UMAX be the largest representable unsigned
13040 // integer.
13041 //
13042 // By the preconditions of this function, we know
13043 // "(Start + Stride * N) >= End", and this doesn't overflow.
13044 // As a formula:
13045 //
13046 // End <= (Start + Stride * N) <= UMAX
13047 //
13048 // Subtracting Start from all the terms:
13049 //
13050 // End - Start <= Stride * N <= UMAX - Start
13051 //
13052 // Since Start is unsigned, UMAX - Start <= UMAX. Therefore:
13053 //
13054 // End - Start <= Stride * N <= UMAX
13055 //
13056 // Stride * N is a multiple of Stride. Therefore,
13057 //
13058 // End - Start <= Stride * N <= UMAX - (UMAX mod Stride)
13059 //
13060 // Since Stride is a power of two, UMAX + 1 is divisible by Stride.
13061 // Therefore, UMAX mod Stride == Stride - 1. So we can write:
13062 //
13063 // End - Start <= Stride * N <= UMAX - Stride - 1
13064 //
13065 // Dropping the middle term:
13066 //
13067 // End - Start <= UMAX - Stride - 1
13068 //
13069 // Adding Stride - 1 to both sides:
13070 //
13071 // (End - Start) + (Stride - 1) <= UMAX
13072 //
13073 // In other words, the addition doesn't have unsigned overflow.
13074 //
13075 // A similar proof works if we treat Start/End as signed values.
13076 // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to
13077 // use signed max instead of unsigned max. Note that we're trying
13078 // to prove a lack of unsigned overflow in either case.
13079 return false;
13080 }
13081 }
13082 if (Start == Stride || Start == getMinusSCEV(LHS: Stride, RHS: One)) {
13083 // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1.
13084 // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End.
13085 // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End.
13086 //
13087 // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End.
13088 return false;
13089 }
13090 return true;
13091 }();
13092
13093 const SCEV *Delta = getMinusSCEV(LHS: End, RHS: Start);
13094 if (!MayAddOverflow) {
13095 // floor((D + (S - 1)) / S)
13096 // We prefer this formulation if it's legal because it's fewer operations.
13097 BECount =
13098 getUDivExpr(LHS: getAddExpr(LHS: Delta, RHS: getMinusSCEV(LHS: Stride, RHS: One)), RHS: Stride);
13099 } else {
13100 BECount = getUDivCeilSCEV(N: Delta, D: Stride);
13101 }
13102 }
13103
13104 const SCEV *ConstantMaxBECount;
13105 bool MaxOrZero = false;
13106 if (isa<SCEVConstant>(Val: BECount)) {
13107 ConstantMaxBECount = BECount;
13108 } else if (BECountIfBackedgeTaken &&
13109 isa<SCEVConstant>(Val: BECountIfBackedgeTaken)) {
13110 // If we know exactly how many times the backedge will be taken if it's
13111 // taken at least once, then the backedge count will either be that or
13112 // zero.
13113 ConstantMaxBECount = BECountIfBackedgeTaken;
13114 MaxOrZero = true;
13115 } else {
13116 ConstantMaxBECount = computeMaxBECountForLT(
13117 Start, Stride, End: RHS, BitWidth: getTypeSizeInBits(Ty: LHS->getType()), IsSigned);
13118 }
13119
13120 if (isa<SCEVCouldNotCompute>(Val: ConstantMaxBECount) &&
13121 !isa<SCEVCouldNotCompute>(Val: BECount))
13122 ConstantMaxBECount = getConstant(Val: getUnsignedRangeMax(S: BECount));
13123
13124 const SCEV *SymbolicMaxBECount =
13125 isa<SCEVCouldNotCompute>(Val: BECount) ? ConstantMaxBECount : BECount;
13126 return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, MaxOrZero,
13127 Predicates);
13128}
13129
13130ScalarEvolution::ExitLimit ScalarEvolution::howManyGreaterThans(
13131 const SCEV *LHS, const SCEV *RHS, const Loop *L, bool IsSigned,
13132 bool ControlsOnlyExit, bool AllowPredicates) {
13133 SmallPtrSet<const SCEVPredicate *, 4> Predicates;
13134 // We handle only IV > Invariant
13135 if (!isLoopInvariant(S: RHS, L))
13136 return getCouldNotCompute();
13137
13138 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(Val: LHS);
13139 if (!IV && AllowPredicates)
13140 // Try to make this an AddRec using runtime tests, in the first X
13141 // iterations of this loop, where X is the SCEV expression found by the
13142 // algorithm below.
13143 IV = convertSCEVToAddRecWithPredicates(S: LHS, L, Preds&: Predicates);
13144
13145 // Avoid weird loops
13146 if (!IV || IV->getLoop() != L || !IV->isAffine())
13147 return getCouldNotCompute();
13148
13149 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
13150 bool NoWrap = ControlsOnlyExit && IV->getNoWrapFlags(Mask: WrapType);
13151 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
13152
13153 const SCEV *Stride = getNegativeSCEV(V: IV->getStepRecurrence(SE&: *this));
13154
13155 // Avoid negative or zero stride values
13156 if (!isKnownPositive(S: Stride))
13157 return getCouldNotCompute();
13158
13159 // Avoid proven overflow cases: this will ensure that the backedge taken count
13160 // will not generate any unsigned overflow. Relaxed no-overflow conditions
13161 // exploit NoWrapFlags, allowing to optimize in presence of undefined
13162 // behaviors like the case of C language.
13163 if (!Stride->isOne() && !NoWrap)
13164 if (canIVOverflowOnGT(RHS, Stride, IsSigned))
13165 return getCouldNotCompute();
13166
13167 const SCEV *Start = IV->getStart();
13168 const SCEV *End = RHS;
13169 if (!isLoopEntryGuardedByCond(L, Pred: Cond, LHS: getAddExpr(LHS: Start, RHS: Stride), RHS)) {
13170 // If we know that Start >= RHS in the context of loop, then we know that
13171 // min(RHS, Start) = RHS at this point.
13172 if (isLoopEntryGuardedByCond(
13173 L, Pred: IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, LHS: Start, RHS))
13174 End = RHS;
13175 else
13176 End = IsSigned ? getSMinExpr(LHS: RHS, RHS: Start) : getUMinExpr(LHS: RHS, RHS: Start);
13177 }
13178
13179 if (Start->getType()->isPointerTy()) {
13180 Start = getLosslessPtrToIntExpr(Op: Start);
13181 if (isa<SCEVCouldNotCompute>(Val: Start))
13182 return Start;
13183 }
13184 if (End->getType()->isPointerTy()) {
13185 End = getLosslessPtrToIntExpr(Op: End);
13186 if (isa<SCEVCouldNotCompute>(Val: End))
13187 return End;
13188 }
13189
13190 // Compute ((Start - End) + (Stride - 1)) / Stride.
13191 // FIXME: This can overflow. Holding off on fixing this for now;
13192 // howManyGreaterThans will hopefully be gone soon.
13193 const SCEV *One = getOne(Ty: Stride->getType());
13194 const SCEV *BECount = getUDivExpr(
13195 LHS: getAddExpr(LHS: getMinusSCEV(LHS: Start, RHS: End), RHS: getMinusSCEV(LHS: Stride, RHS: One)), RHS: Stride);
13196
13197 APInt MaxStart = IsSigned ? getSignedRangeMax(S: Start)
13198 : getUnsignedRangeMax(S: Start);
13199
13200 APInt MinStride = IsSigned ? getSignedRangeMin(S: Stride)
13201 : getUnsignedRangeMin(S: Stride);
13202
13203 unsigned BitWidth = getTypeSizeInBits(Ty: LHS->getType());
13204 APInt Limit = IsSigned ? APInt::getSignedMinValue(numBits: BitWidth) + (MinStride - 1)
13205 : APInt::getMinValue(numBits: BitWidth) + (MinStride - 1);
13206
13207 // Although End can be a MIN expression we estimate MinEnd considering only
13208 // the case End = RHS. This is safe because in the other case (Start - End)
13209 // is zero, leading to a zero maximum backedge taken count.
13210 APInt MinEnd =
13211 IsSigned ? APIntOps::smax(A: getSignedRangeMin(S: RHS), B: Limit)
13212 : APIntOps::umax(A: getUnsignedRangeMin(S: RHS), B: Limit);
13213
13214 const SCEV *ConstantMaxBECount =
13215 isa<SCEVConstant>(Val: BECount)
13216 ? BECount
13217 : getUDivCeilSCEV(N: getConstant(Val: MaxStart - MinEnd),
13218 D: getConstant(Val: MinStride));
13219
13220 if (isa<SCEVCouldNotCompute>(Val: ConstantMaxBECount))
13221 ConstantMaxBECount = BECount;
13222 const SCEV *SymbolicMaxBECount =
13223 isa<SCEVCouldNotCompute>(Val: BECount) ? ConstantMaxBECount : BECount;
13224
13225 return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, false,
13226 Predicates);
13227}
13228
13229const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
13230 ScalarEvolution &SE) const {
13231 if (Range.isFullSet()) // Infinite loop.
13232 return SE.getCouldNotCompute();
13233
13234 // If the start is a non-zero constant, shift the range to simplify things.
13235 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Val: getStart()))
13236 if (!SC->getValue()->isZero()) {
13237 SmallVector<const SCEV *, 4> Operands(operands());
13238 Operands[0] = SE.getZero(Ty: SC->getType());
13239 const SCEV *Shifted = SE.getAddRecExpr(Operands, L: getLoop(),
13240 Flags: getNoWrapFlags(Mask: FlagNW));
13241 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Val: Shifted))
13242 return ShiftedAddRec->getNumIterationsInRange(
13243 Range: Range.subtract(CI: SC->getAPInt()), SE);
13244 // This is strange and shouldn't happen.
13245 return SE.getCouldNotCompute();
13246 }
13247
13248 // The only time we can solve this is when we have all constant indices.
13249 // Otherwise, we cannot determine the overflow conditions.
13250 if (any_of(Range: operands(), P: [](const SCEV *Op) { return !isa<SCEVConstant>(Val: Op); }))
13251 return SE.getCouldNotCompute();
13252
13253 // Okay at this point we know that all elements of the chrec are constants and
13254 // that the start element is zero.
13255
13256 // First check to see if the range contains zero. If not, the first
13257 // iteration exits.
13258 unsigned BitWidth = SE.getTypeSizeInBits(Ty: getType());
13259 if (!Range.contains(Val: APInt(BitWidth, 0)))
13260 return SE.getZero(Ty: getType());
13261
13262 if (isAffine()) {
13263 // If this is an affine expression then we have this situation:
13264 // Solve {0,+,A} in Range === Ax in Range
13265
13266 // We know that zero is in the range. If A is positive then we know that
13267 // the upper value of the range must be the first possible exit value.
13268 // If A is negative then the lower of the range is the last possible loop
13269 // value. Also note that we already checked for a full range.
13270 APInt A = cast<SCEVConstant>(Val: getOperand(i: 1))->getAPInt();
13271 APInt End = A.sge(RHS: 1) ? (Range.getUpper() - 1) : Range.getLower();
13272
13273 // The exit value should be (End+A)/A.
13274 APInt ExitVal = (End + A).udiv(RHS: A);
13275 ConstantInt *ExitValue = ConstantInt::get(Context&: SE.getContext(), V: ExitVal);
13276
13277 // Evaluate at the exit value. If we really did fall out of the valid
13278 // range, then we computed our trip count, otherwise wrap around or other
13279 // things must have happened.
13280 ConstantInt *Val = EvaluateConstantChrecAtConstant(AddRec: this, C: ExitValue, SE);
13281 if (Range.contains(Val: Val->getValue()))
13282 return SE.getCouldNotCompute(); // Something strange happened
13283
13284 // Ensure that the previous value is in the range.
13285 assert(Range.contains(
13286 EvaluateConstantChrecAtConstant(this,
13287 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
13288 "Linear scev computation is off in a bad way!");
13289 return SE.getConstant(V: ExitValue);
13290 }
13291
13292 if (isQuadratic()) {
13293 if (auto S = SolveQuadraticAddRecRange(AddRec: this, Range, SE))
13294 return SE.getConstant(Val: *S);
13295 }
13296
13297 return SE.getCouldNotCompute();
13298}
13299
13300const SCEVAddRecExpr *
13301SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
13302 assert(getNumOperands() > 1 && "AddRec with zero step?");
13303 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
13304 // but in this case we cannot guarantee that the value returned will be an
13305 // AddRec because SCEV does not have a fixed point where it stops
13306 // simplification: it is legal to return ({rec1} + {rec2}). For example, it
13307 // may happen if we reach arithmetic depth limit while simplifying. So we
13308 // construct the returned value explicitly.
13309 SmallVector<const SCEV *, 3> Ops;
13310 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
13311 // (this + Step) is {A+B,+,B+C,+...,+,N}.
13312 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
13313 Ops.push_back(Elt: SE.getAddExpr(LHS: getOperand(i), RHS: getOperand(i: i + 1)));
13314 // We know that the last operand is not a constant zero (otherwise it would
13315 // have been popped out earlier). This guarantees us that if the result has
13316 // the same last operand, then it will also not be popped out, meaning that
13317 // the returned value will be an AddRec.
13318 const SCEV *Last = getOperand(i: getNumOperands() - 1);
13319 assert(!Last->isZero() && "Recurrency with zero step?");
13320 Ops.push_back(Elt: Last);
13321 return cast<SCEVAddRecExpr>(Val: SE.getAddRecExpr(Operands&: Ops, L: getLoop(),
13322 Flags: SCEV::FlagAnyWrap));
13323}
13324
13325// Return true when S contains at least an undef value.
13326bool ScalarEvolution::containsUndefs(const SCEV *S) const {
13327 return SCEVExprContains(Root: S, Pred: [](const SCEV *S) {
13328 if (const auto *SU = dyn_cast<SCEVUnknown>(Val: S))
13329 return isa<UndefValue>(Val: SU->getValue());
13330 return false;
13331 });
13332}
13333
13334// Return true when S contains a value that is a nullptr.
13335bool ScalarEvolution::containsErasedValue(const SCEV *S) const {
13336 return SCEVExprContains(Root: S, Pred: [](const SCEV *S) {
13337 if (const auto *SU = dyn_cast<SCEVUnknown>(Val: S))
13338 return SU->getValue() == nullptr;
13339 return false;
13340 });
13341}
13342
13343/// Return the size of an element read or written by Inst.
13344const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
13345 Type *Ty;
13346 if (StoreInst *Store = dyn_cast<StoreInst>(Val: Inst))
13347 Ty = Store->getValueOperand()->getType();
13348 else if (LoadInst *Load = dyn_cast<LoadInst>(Val: Inst))
13349 Ty = Load->getType();
13350 else
13351 return nullptr;
13352
13353 Type *ETy = getEffectiveSCEVType(Ty: PointerType::getUnqual(ElementType: Ty));
13354 return getSizeOfExpr(IntTy: ETy, AllocTy: Ty);
13355}
13356
13357//===----------------------------------------------------------------------===//
13358// SCEVCallbackVH Class Implementation
13359//===----------------------------------------------------------------------===//
13360
13361void ScalarEvolution::SCEVCallbackVH::deleted() {
13362 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
13363 if (PHINode *PN = dyn_cast<PHINode>(Val: getValPtr()))
13364 SE->ConstantEvolutionLoopExitValue.erase(Val: PN);
13365 SE->eraseValueFromMap(V: getValPtr());
13366 // this now dangles!
13367}
13368
13369void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
13370 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
13371
13372 // Forget all the expressions associated with users of the old value,
13373 // so that future queries will recompute the expressions using the new
13374 // value.
13375 SE->forgetValue(V: getValPtr());
13376 // this now dangles!
13377}
13378
13379ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
13380 : CallbackVH(V), SE(se) {}
13381
13382//===----------------------------------------------------------------------===//
13383// ScalarEvolution Class Implementation
13384//===----------------------------------------------------------------------===//
13385
13386ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
13387 AssumptionCache &AC, DominatorTree &DT,
13388 LoopInfo &LI)
13389 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
13390 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
13391 LoopDispositions(64), BlockDispositions(64) {
13392 // To use guards for proving predicates, we need to scan every instruction in
13393 // relevant basic blocks, and not just terminators. Doing this is a waste of
13394 // time if the IR does not actually contain any calls to
13395 // @llvm.experimental.guard, so do a quick check and remember this beforehand.
13396 //
13397 // This pessimizes the case where a pass that preserves ScalarEvolution wants
13398 // to _add_ guards to the module when there weren't any before, and wants
13399 // ScalarEvolution to optimize based on those guards. For now we prefer to be
13400 // efficient in lieu of being smart in that rather obscure case.
13401
13402 auto *GuardDecl = F.getParent()->getFunction(
13403 Intrinsic::getName(Intrinsic::experimental_guard));
13404 HasGuards = GuardDecl && !GuardDecl->use_empty();
13405}
13406
13407ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
13408 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
13409 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
13410 ValueExprMap(std::move(Arg.ValueExprMap)),
13411 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
13412 PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
13413 PendingMerges(std::move(Arg.PendingMerges)),
13414 ConstantMultipleCache(std::move(Arg.ConstantMultipleCache)),
13415 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
13416 PredicatedBackedgeTakenCounts(
13417 std::move(Arg.PredicatedBackedgeTakenCounts)),
13418 BECountUsers(std::move(Arg.BECountUsers)),
13419 ConstantEvolutionLoopExitValue(
13420 std::move(Arg.ConstantEvolutionLoopExitValue)),
13421 ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
13422 ValuesAtScopesUsers(std::move(Arg.ValuesAtScopesUsers)),
13423 LoopDispositions(std::move(Arg.LoopDispositions)),
13424 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
13425 BlockDispositions(std::move(Arg.BlockDispositions)),
13426 SCEVUsers(std::move(Arg.SCEVUsers)),
13427 UnsignedRanges(std::move(Arg.UnsignedRanges)),
13428 SignedRanges(std::move(Arg.SignedRanges)),
13429 UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
13430 UniquePreds(std::move(Arg.UniquePreds)),
13431 SCEVAllocator(std::move(Arg.SCEVAllocator)),
13432 LoopUsers(std::move(Arg.LoopUsers)),
13433 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
13434 FirstUnknown(Arg.FirstUnknown) {
13435 Arg.FirstUnknown = nullptr;
13436}
13437
13438ScalarEvolution::~ScalarEvolution() {
13439 // Iterate through all the SCEVUnknown instances and call their
13440 // destructors, so that they release their references to their values.
13441 for (SCEVUnknown *U = FirstUnknown; U;) {
13442 SCEVUnknown *Tmp = U;
13443 U = U->Next;
13444 Tmp->~SCEVUnknown();
13445 }
13446 FirstUnknown = nullptr;
13447
13448 ExprValueMap.clear();
13449 ValueExprMap.clear();
13450 HasRecMap.clear();
13451 BackedgeTakenCounts.clear();
13452 PredicatedBackedgeTakenCounts.clear();
13453
13454 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
13455 assert(PendingPhiRanges.empty() && "getRangeRef garbage");
13456 assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
13457 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
13458 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
13459}
13460
13461bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
13462 return !isa<SCEVCouldNotCompute>(Val: getBackedgeTakenCount(L));
13463}
13464
13465static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
13466 const Loop *L) {
13467 // Print all inner loops first
13468 for (Loop *I : *L)
13469 PrintLoopInfo(OS, SE, L: I);
13470
13471 OS << "Loop ";
13472 L->getHeader()->printAsOperand(O&: OS, /*PrintType=*/false);
13473 OS << ": ";
13474
13475 SmallVector<BasicBlock *, 8> ExitingBlocks;
13476 L->getExitingBlocks(ExitingBlocks);
13477 if (ExitingBlocks.size() != 1)
13478 OS << "<multiple exits> ";
13479
13480 if (SE->hasLoopInvariantBackedgeTakenCount(L))
13481 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
13482 else
13483 OS << "Unpredictable backedge-taken count.\n";
13484
13485 if (ExitingBlocks.size() > 1)
13486 for (BasicBlock *ExitingBlock : ExitingBlocks) {
13487 OS << " exit count for " << ExitingBlock->getName() << ": "
13488 << *SE->getExitCount(L, ExitingBlock) << "\n";
13489 }
13490
13491 OS << "Loop ";
13492 L->getHeader()->printAsOperand(O&: OS, /*PrintType=*/false);
13493 OS << ": ";
13494
13495 auto *ConstantBTC = SE->getConstantMaxBackedgeTakenCount(L);
13496 if (!isa<SCEVCouldNotCompute>(Val: ConstantBTC)) {
13497 OS << "constant max backedge-taken count is " << *ConstantBTC;
13498 if (SE->isBackedgeTakenCountMaxOrZero(L))
13499 OS << ", actual taken count either this or zero.";
13500 } else {
13501 OS << "Unpredictable constant max backedge-taken count. ";
13502 }
13503
13504 OS << "\n"
13505 "Loop ";
13506 L->getHeader()->printAsOperand(O&: OS, /*PrintType=*/false);
13507 OS << ": ";
13508
13509 auto *SymbolicBTC = SE->getSymbolicMaxBackedgeTakenCount(L);
13510 if (!isa<SCEVCouldNotCompute>(Val: SymbolicBTC)) {
13511 OS << "symbolic max backedge-taken count is " << *SymbolicBTC;
13512 if (SE->isBackedgeTakenCountMaxOrZero(L))
13513 OS << ", actual taken count either this or zero.";
13514 } else {
13515 OS << "Unpredictable symbolic max backedge-taken count. ";
13516 }
13517
13518 OS << "\n";
13519 if (ExitingBlocks.size() > 1)
13520 for (BasicBlock *ExitingBlock : ExitingBlocks) {
13521 OS << " symbolic max exit count for " << ExitingBlock->getName() << ": "
13522 << *SE->getExitCount(L, ExitingBlock, Kind: ScalarEvolution::SymbolicMaximum)
13523 << "\n";
13524 }
13525
13526 OS << "Loop ";
13527 L->getHeader()->printAsOperand(O&: OS, /*PrintType=*/false);
13528 OS << ": ";
13529
13530 SmallVector<const SCEVPredicate *, 4> Preds;
13531 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Preds);
13532 if (!isa<SCEVCouldNotCompute>(Val: PBT)) {
13533 OS << "Predicated backedge-taken count is " << *PBT << "\n";
13534 OS << " Predicates:\n";
13535 for (const auto *P : Preds)
13536 P->print(OS, Depth: 4);
13537 } else {
13538 OS << "Unpredictable predicated backedge-taken count.\n";
13539 }
13540
13541 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
13542 OS << "Loop ";
13543 L->getHeader()->printAsOperand(O&: OS, /*PrintType=*/false);
13544 OS << ": ";
13545 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
13546 }
13547}
13548
13549namespace llvm {
13550raw_ostream &operator<<(raw_ostream &OS, ScalarEvolution::LoopDisposition LD) {
13551 switch (LD) {
13552 case ScalarEvolution::LoopVariant:
13553 OS << "Variant";
13554 break;
13555 case ScalarEvolution::LoopInvariant:
13556 OS << "Invariant";
13557 break;
13558 case ScalarEvolution::LoopComputable:
13559 OS << "Computable";
13560 break;
13561 }
13562 return OS;
13563}
13564
13565raw_ostream &operator<<(raw_ostream &OS, ScalarEvolution::BlockDisposition BD) {
13566 switch (BD) {
13567 case ScalarEvolution::DoesNotDominateBlock:
13568 OS << "DoesNotDominate";
13569 break;
13570 case ScalarEvolution::DominatesBlock:
13571 OS << "Dominates";
13572 break;
13573 case ScalarEvolution::ProperlyDominatesBlock:
13574 OS << "ProperlyDominates";
13575 break;
13576 }
13577 return OS;
13578}
13579}
13580
13581void ScalarEvolution::print(raw_ostream &OS) const {
13582 // ScalarEvolution's implementation of the print method is to print
13583 // out SCEV values of all instructions that are interesting. Doing
13584 // this potentially causes it to create new SCEV objects though,
13585 // which technically conflicts with the const qualifier. This isn't
13586 // observable from outside the class though, so casting away the
13587 // const isn't dangerous.
13588 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
13589
13590 if (ClassifyExpressions) {
13591 OS << "Classifying expressions for: ";
13592 F.printAsOperand(O&: OS, /*PrintType=*/false);
13593 OS << "\n";
13594 for (Instruction &I : instructions(F))
13595 if (isSCEVable(Ty: I.getType()) && !isa<CmpInst>(Val: I)) {
13596 OS << I << '\n';
13597 OS << " --> ";
13598 const SCEV *SV = SE.getSCEV(V: &I);
13599 SV->print(OS);
13600 if (!isa<SCEVCouldNotCompute>(Val: SV)) {
13601 OS << " U: ";
13602 SE.getUnsignedRange(S: SV).print(OS);
13603 OS << " S: ";
13604 SE.getSignedRange(S: SV).print(OS);
13605 }
13606
13607 const Loop *L = LI.getLoopFor(BB: I.getParent());
13608
13609 const SCEV *AtUse = SE.getSCEVAtScope(V: SV, L);
13610 if (AtUse != SV) {
13611 OS << " --> ";
13612 AtUse->print(OS);
13613 if (!isa<SCEVCouldNotCompute>(Val: AtUse)) {
13614 OS << " U: ";
13615 SE.getUnsignedRange(S: AtUse).print(OS);
13616 OS << " S: ";
13617 SE.getSignedRange(S: AtUse).print(OS);
13618 }
13619 }
13620
13621 if (L) {
13622 OS << "\t\t" "Exits: ";
13623 const SCEV *ExitValue = SE.getSCEVAtScope(V: SV, L: L->getParentLoop());
13624 if (!SE.isLoopInvariant(S: ExitValue, L)) {
13625 OS << "<<Unknown>>";
13626 } else {
13627 OS << *ExitValue;
13628 }
13629
13630 bool First = true;
13631 for (const auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
13632 if (First) {
13633 OS << "\t\t" "LoopDispositions: { ";
13634 First = false;
13635 } else {
13636 OS << ", ";
13637 }
13638
13639 Iter->getHeader()->printAsOperand(O&: OS, /*PrintType=*/false);
13640 OS << ": " << SE.getLoopDisposition(S: SV, L: Iter);
13641 }
13642
13643 for (const auto *InnerL : depth_first(G: L)) {
13644 if (InnerL == L)
13645 continue;
13646 if (First) {
13647 OS << "\t\t" "LoopDispositions: { ";
13648 First = false;
13649 } else {
13650 OS << ", ";
13651 }
13652
13653 InnerL->getHeader()->printAsOperand(O&: OS, /*PrintType=*/false);
13654 OS << ": " << SE.getLoopDisposition(S: SV, L: InnerL);
13655 }
13656
13657 OS << " }";
13658 }
13659
13660 OS << "\n";
13661 }
13662 }
13663
13664 OS << "Determining loop execution counts for: ";
13665 F.printAsOperand(O&: OS, /*PrintType=*/false);
13666 OS << "\n";
13667 for (Loop *I : LI)
13668 PrintLoopInfo(OS, SE: &SE, L: I);
13669}
13670
13671ScalarEvolution::LoopDisposition
13672ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
13673 auto &Values = LoopDispositions[S];
13674 for (auto &V : Values) {
13675 if (V.getPointer() == L)
13676 return V.getInt();
13677 }
13678 Values.emplace_back(Args&: L, Args: LoopVariant);
13679 LoopDisposition D = computeLoopDisposition(S, L);
13680 auto &Values2 = LoopDispositions[S];
13681 for (auto &V : llvm::reverse(C&: Values2)) {
13682 if (V.getPointer() == L) {
13683 V.setInt(D);
13684 break;
13685 }
13686 }
13687 return D;
13688}
13689
13690ScalarEvolution::LoopDisposition
13691ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
13692 switch (S->getSCEVType()) {
13693 case scConstant:
13694 case scVScale:
13695 return LoopInvariant;
13696 case scAddRecExpr: {
13697 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(Val: S);
13698
13699 // If L is the addrec's loop, it's computable.
13700 if (AR->getLoop() == L)
13701 return LoopComputable;
13702
13703 // Add recurrences are never invariant in the function-body (null loop).
13704 if (!L)
13705 return LoopVariant;
13706
13707 // Everything that is not defined at loop entry is variant.
13708 if (DT.dominates(A: L->getHeader(), B: AR->getLoop()->getHeader()))
13709 return LoopVariant;
13710 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
13711 " dominate the contained loop's header?");
13712
13713 // This recurrence is invariant w.r.t. L if AR's loop contains L.
13714 if (AR->getLoop()->contains(L))
13715 return LoopInvariant;
13716
13717 // This recurrence is variant w.r.t. L if any of its operands
13718 // are variant.
13719 for (const auto *Op : AR->operands())
13720 if (!isLoopInvariant(S: Op, L))
13721 return LoopVariant;
13722
13723 // Otherwise it's loop-invariant.
13724 return LoopInvariant;
13725 }
13726 case scTruncate:
13727 case scZeroExtend:
13728 case scSignExtend:
13729 case scPtrToInt:
13730 case scAddExpr:
13731 case scMulExpr:
13732 case scUDivExpr:
13733 case scUMaxExpr:
13734 case scSMaxExpr:
13735 case scUMinExpr:
13736 case scSMinExpr:
13737 case scSequentialUMinExpr: {
13738 bool HasVarying = false;
13739 for (const auto *Op : S->operands()) {
13740 LoopDisposition D = getLoopDisposition(S: Op, L);
13741 if (D == LoopVariant)
13742 return LoopVariant;
13743 if (D == LoopComputable)
13744 HasVarying = true;
13745 }
13746 return HasVarying ? LoopComputable : LoopInvariant;
13747 }
13748 case scUnknown:
13749 // All non-instruction values are loop invariant. All instructions are loop
13750 // invariant if they are not contained in the specified loop.
13751 // Instructions are never considered invariant in the function body
13752 // (null loop) because they are defined within the "loop".
13753 if (auto *I = dyn_cast<Instruction>(Val: cast<SCEVUnknown>(Val: S)->getValue()))
13754 return (L && !L->contains(Inst: I)) ? LoopInvariant : LoopVariant;
13755 return LoopInvariant;
13756 case scCouldNotCompute:
13757 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
13758 }
13759 llvm_unreachable("Unknown SCEV kind!");
13760}
13761
13762bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
13763 return getLoopDisposition(S, L) == LoopInvariant;
13764}
13765
13766bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
13767 return getLoopDisposition(S, L) == LoopComputable;
13768}
13769
13770ScalarEvolution::BlockDisposition
13771ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
13772 auto &Values = BlockDispositions[S];
13773 for (auto &V : Values) {
13774 if (V.getPointer() == BB)
13775 return V.getInt();
13776 }
13777 Values.emplace_back(Args&: BB, Args: DoesNotDominateBlock);
13778 BlockDisposition D = computeBlockDisposition(S, BB);
13779 auto &Values2 = BlockDispositions[S];
13780 for (auto &V : llvm::reverse(C&: Values2)) {
13781 if (V.getPointer() == BB) {
13782 V.setInt(D);
13783 break;
13784 }
13785 }
13786 return D;
13787}
13788
13789ScalarEvolution::BlockDisposition
13790ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
13791 switch (S->getSCEVType()) {
13792 case scConstant:
13793 case scVScale:
13794 return ProperlyDominatesBlock;
13795 case scAddRecExpr: {
13796 // This uses a "dominates" query instead of "properly dominates" query
13797 // to test for proper dominance too, because the instruction which
13798 // produces the addrec's value is a PHI, and a PHI effectively properly
13799 // dominates its entire containing block.
13800 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(Val: S);
13801 if (!DT.dominates(A: AR->getLoop()->getHeader(), B: BB))
13802 return DoesNotDominateBlock;
13803
13804 // Fall through into SCEVNAryExpr handling.
13805 [[fallthrough]];
13806 }
13807 case scTruncate:
13808 case scZeroExtend:
13809 case scSignExtend:
13810 case scPtrToInt:
13811 case scAddExpr:
13812 case scMulExpr:
13813 case scUDivExpr:
13814 case scUMaxExpr:
13815 case scSMaxExpr:
13816 case scUMinExpr:
13817 case scSMinExpr:
13818 case scSequentialUMinExpr: {
13819 bool Proper = true;
13820 for (const SCEV *NAryOp : S->operands()) {
13821 BlockDisposition D = getBlockDisposition(S: NAryOp, BB);
13822 if (D == DoesNotDominateBlock)
13823 return DoesNotDominateBlock;
13824 if (D == DominatesBlock)
13825 Proper = false;
13826 }
13827 return Proper ? ProperlyDominatesBlock : DominatesBlock;
13828 }
13829 case scUnknown:
13830 if (Instruction *I =
13831 dyn_cast<Instruction>(Val: cast<SCEVUnknown>(Val: S)->getValue())) {
13832 if (I->getParent() == BB)
13833 return DominatesBlock;
13834 if (DT.properlyDominates(A: I->getParent(), B: BB))
13835 return ProperlyDominatesBlock;
13836 return DoesNotDominateBlock;
13837 }
13838 return ProperlyDominatesBlock;
13839 case scCouldNotCompute:
13840 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
13841 }
13842 llvm_unreachable("Unknown SCEV kind!");
13843}
13844
13845bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
13846 return getBlockDisposition(S, BB) >= DominatesBlock;
13847}
13848
13849bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
13850 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
13851}
13852
13853bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
13854 return SCEVExprContains(Root: S, Pred: [&](const SCEV *Expr) { return Expr == Op; });
13855}
13856
13857void ScalarEvolution::forgetBackedgeTakenCounts(const Loop *L,
13858 bool Predicated) {
13859 auto &BECounts =
13860 Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts;
13861 auto It = BECounts.find(Val: L);
13862 if (It != BECounts.end()) {
13863 for (const ExitNotTakenInfo &ENT : It->second.ExitNotTaken) {
13864 for (const SCEV *S : {ENT.ExactNotTaken, ENT.SymbolicMaxNotTaken}) {
13865 if (!isa<SCEVConstant>(Val: S)) {
13866 auto UserIt = BECountUsers.find(Val: S);
13867 assert(UserIt != BECountUsers.end());
13868 UserIt->second.erase(Ptr: {L, Predicated});
13869 }
13870 }
13871 }
13872 BECounts.erase(I: It);
13873 }
13874}
13875
13876void ScalarEvolution::forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs) {
13877 SmallPtrSet<const SCEV *, 8> ToForget(SCEVs.begin(), SCEVs.end());
13878 SmallVector<const SCEV *, 8> Worklist(ToForget.begin(), ToForget.end());
13879
13880 while (!Worklist.empty()) {
13881 const SCEV *Curr = Worklist.pop_back_val();
13882 auto Users = SCEVUsers.find(Val: Curr);
13883 if (Users != SCEVUsers.end())
13884 for (const auto *User : Users->second)
13885 if (ToForget.insert(Ptr: User).second)
13886 Worklist.push_back(Elt: User);
13887 }
13888
13889 for (const auto *S : ToForget)
13890 forgetMemoizedResultsImpl(S);
13891
13892 for (auto I = PredicatedSCEVRewrites.begin();
13893 I != PredicatedSCEVRewrites.end();) {
13894 std::pair<const SCEV *, const Loop *> Entry = I->first;
13895 if (ToForget.count(Ptr: Entry.first))
13896 PredicatedSCEVRewrites.erase(I: I++);
13897 else
13898 ++I;
13899 }
13900}
13901
13902void ScalarEvolution::forgetMemoizedResultsImpl(const SCEV *S) {
13903 LoopDispositions.erase(Val: S);
13904 BlockDispositions.erase(Val: S);
13905 UnsignedRanges.erase(Val: S);
13906 SignedRanges.erase(Val: S);
13907 HasRecMap.erase(Val: S);
13908 ConstantMultipleCache.erase(Val: S);
13909
13910 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Val: S)) {
13911 UnsignedWrapViaInductionTried.erase(Ptr: AR);
13912 SignedWrapViaInductionTried.erase(Ptr: AR);
13913 }
13914
13915 auto ExprIt = ExprValueMap.find(Val: S);
13916 if (ExprIt != ExprValueMap.end()) {
13917 for (Value *V : ExprIt->second) {
13918 auto ValueIt = ValueExprMap.find_as(Val: V);
13919 if (ValueIt != ValueExprMap.end())
13920 ValueExprMap.erase(I: ValueIt);
13921 }
13922 ExprValueMap.erase(I: ExprIt);
13923 }
13924
13925 auto ScopeIt = ValuesAtScopes.find(Val: S);
13926 if (ScopeIt != ValuesAtScopes.end()) {
13927 for (const auto &Pair : ScopeIt->second)
13928 if (!isa_and_nonnull<SCEVConstant>(Val: Pair.second))
13929 llvm::erase(C&: ValuesAtScopesUsers[Pair.second],
13930 V: std::make_pair(x: Pair.first, y&: S));
13931 ValuesAtScopes.erase(I: ScopeIt);
13932 }
13933
13934 auto ScopeUserIt = ValuesAtScopesUsers.find(Val: S);
13935 if (ScopeUserIt != ValuesAtScopesUsers.end()) {
13936 for (const auto &Pair : ScopeUserIt->second)
13937 llvm::erase(C&: ValuesAtScopes[Pair.second], V: std::make_pair(x: Pair.first, y&: S));
13938 ValuesAtScopesUsers.erase(I: ScopeUserIt);
13939 }
13940
13941 auto BEUsersIt = BECountUsers.find(Val: S);
13942 if (BEUsersIt != BECountUsers.end()) {
13943 // Work on a copy, as forgetBackedgeTakenCounts() will modify the original.
13944 auto Copy = BEUsersIt->second;
13945 for (const auto &Pair : Copy)
13946 forgetBackedgeTakenCounts(L: Pair.getPointer(), Predicated: Pair.getInt());
13947 BECountUsers.erase(I: BEUsersIt);
13948 }
13949
13950 auto FoldUser = FoldCacheUser.find(Val: S);
13951 if (FoldUser != FoldCacheUser.end())
13952 for (auto &KV : FoldUser->second)
13953 FoldCache.erase(Val: KV);
13954 FoldCacheUser.erase(Val: S);
13955}
13956
13957void
13958ScalarEvolution::getUsedLoops(const SCEV *S,
13959 SmallPtrSetImpl<const Loop *> &LoopsUsed) {
13960 struct FindUsedLoops {
13961 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
13962 : LoopsUsed(LoopsUsed) {}
13963 SmallPtrSetImpl<const Loop *> &LoopsUsed;
13964 bool follow(const SCEV *S) {
13965 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Val: S))
13966 LoopsUsed.insert(Ptr: AR->getLoop());
13967 return true;
13968 }
13969
13970 bool isDone() const { return false; }
13971 };
13972
13973 FindUsedLoops F(LoopsUsed);
13974 SCEVTraversal<FindUsedLoops>(F).visitAll(Root: S);
13975}
13976
13977void ScalarEvolution::getReachableBlocks(
13978 SmallPtrSetImpl<BasicBlock *> &Reachable, Function &F) {
13979 SmallVector<BasicBlock *> Worklist;
13980 Worklist.push_back(Elt: &F.getEntryBlock());
13981 while (!Worklist.empty()) {
13982 BasicBlock *BB = Worklist.pop_back_val();
13983 if (!Reachable.insert(Ptr: BB).second)
13984 continue;
13985
13986 Value *Cond;
13987 BasicBlock *TrueBB, *FalseBB;
13988 if (match(V: BB->getTerminator(), P: m_Br(C: m_Value(V&: Cond), T: m_BasicBlock(V&: TrueBB),
13989 F: m_BasicBlock(V&: FalseBB)))) {
13990 if (auto *C = dyn_cast<ConstantInt>(Val: Cond)) {
13991 Worklist.push_back(Elt: C->isOne() ? TrueBB : FalseBB);
13992 continue;
13993 }
13994
13995 if (auto *Cmp = dyn_cast<ICmpInst>(Val: Cond)) {
13996 const SCEV *L = getSCEV(V: Cmp->getOperand(i_nocapture: 0));
13997 const SCEV *R = getSCEV(V: Cmp->getOperand(i_nocapture: 1));
13998 if (isKnownPredicateViaConstantRanges(Pred: Cmp->getPredicate(), LHS: L, RHS: R)) {
13999 Worklist.push_back(Elt: TrueBB);
14000 continue;
14001 }
14002 if (isKnownPredicateViaConstantRanges(Pred: Cmp->getInversePredicate(), LHS: L,
14003 RHS: R)) {
14004 Worklist.push_back(Elt: FalseBB);
14005 continue;
14006 }
14007 }
14008 }
14009
14010 append_range(C&: Worklist, R: successors(BB));
14011 }
14012}
14013
14014void ScalarEvolution::verify() const {
14015 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
14016 ScalarEvolution SE2(F, TLI, AC, DT, LI);
14017
14018 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
14019
14020 // Map's SCEV expressions from one ScalarEvolution "universe" to another.
14021 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
14022 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
14023
14024 const SCEV *visitConstant(const SCEVConstant *Constant) {
14025 return SE.getConstant(Val: Constant->getAPInt());
14026 }
14027
14028 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
14029 return SE.getUnknown(V: Expr->getValue());
14030 }
14031
14032 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
14033 return SE.getCouldNotCompute();
14034 }
14035 };
14036
14037 SCEVMapper SCM(SE2);
14038 SmallPtrSet<BasicBlock *, 16> ReachableBlocks;
14039 SE2.getReachableBlocks(Reachable&: ReachableBlocks, F);
14040
14041 auto GetDelta = [&](const SCEV *Old, const SCEV *New) -> const SCEV * {
14042 if (containsUndefs(S: Old) || containsUndefs(S: New)) {
14043 // SCEV treats "undef" as an unknown but consistent value (i.e. it does
14044 // not propagate undef aggressively). This means we can (and do) fail
14045 // verification in cases where a transform makes a value go from "undef"
14046 // to "undef+1" (say). The transform is fine, since in both cases the
14047 // result is "undef", but SCEV thinks the value increased by 1.
14048 return nullptr;
14049 }
14050
14051 // Unless VerifySCEVStrict is set, we only compare constant deltas.
14052 const SCEV *Delta = SE2.getMinusSCEV(LHS: Old, RHS: New);
14053 if (!VerifySCEVStrict && !isa<SCEVConstant>(Val: Delta))
14054 return nullptr;
14055
14056 return Delta;
14057 };
14058
14059 while (!LoopStack.empty()) {
14060 auto *L = LoopStack.pop_back_val();
14061 llvm::append_range(C&: LoopStack, R&: *L);
14062
14063 // Only verify BECounts in reachable loops. For an unreachable loop,
14064 // any BECount is legal.
14065 if (!ReachableBlocks.contains(Ptr: L->getHeader()))
14066 continue;
14067
14068 // Only verify cached BECounts. Computing new BECounts may change the
14069 // results of subsequent SCEV uses.
14070 auto It = BackedgeTakenCounts.find(Val: L);
14071 if (It == BackedgeTakenCounts.end())
14072 continue;
14073
14074 auto *CurBECount =
14075 SCM.visit(S: It->second.getExact(L, SE: const_cast<ScalarEvolution *>(this)));
14076 auto *NewBECount = SE2.getBackedgeTakenCount(L);
14077
14078 if (CurBECount == SE2.getCouldNotCompute() ||
14079 NewBECount == SE2.getCouldNotCompute()) {
14080 // NB! This situation is legal, but is very suspicious -- whatever pass
14081 // change the loop to make a trip count go from could not compute to
14082 // computable or vice-versa *should have* invalidated SCEV. However, we
14083 // choose not to assert here (for now) since we don't want false
14084 // positives.
14085 continue;
14086 }
14087
14088 if (SE.getTypeSizeInBits(Ty: CurBECount->getType()) >
14089 SE.getTypeSizeInBits(Ty: NewBECount->getType()))
14090 NewBECount = SE2.getZeroExtendExpr(Op: NewBECount, Ty: CurBECount->getType());
14091 else if (SE.getTypeSizeInBits(Ty: CurBECount->getType()) <
14092 SE.getTypeSizeInBits(Ty: NewBECount->getType()))
14093 CurBECount = SE2.getZeroExtendExpr(Op: CurBECount, Ty: NewBECount->getType());
14094
14095 const SCEV *Delta = GetDelta(CurBECount, NewBECount);
14096 if (Delta && !Delta->isZero()) {
14097 dbgs() << "Trip Count for " << *L << " Changed!\n";
14098 dbgs() << "Old: " << *CurBECount << "\n";
14099 dbgs() << "New: " << *NewBECount << "\n";
14100 dbgs() << "Delta: " << *Delta << "\n";
14101 std::abort();
14102 }
14103 }
14104
14105 // Collect all valid loops currently in LoopInfo.
14106 SmallPtrSet<Loop *, 32> ValidLoops;
14107 SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end());
14108 while (!Worklist.empty()) {
14109 Loop *L = Worklist.pop_back_val();
14110 if (ValidLoops.insert(Ptr: L).second)
14111 Worklist.append(in_start: L->begin(), in_end: L->end());
14112 }
14113 for (const auto &KV : ValueExprMap) {
14114#ifndef NDEBUG
14115 // Check for SCEV expressions referencing invalid/deleted loops.
14116 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Val: KV.second)) {
14117 assert(ValidLoops.contains(AR->getLoop()) &&
14118 "AddRec references invalid loop");
14119 }
14120#endif
14121
14122 // Check that the value is also part of the reverse map.
14123 auto It = ExprValueMap.find(Val: KV.second);
14124 if (It == ExprValueMap.end() || !It->second.contains(key: KV.first)) {
14125 dbgs() << "Value " << *KV.first
14126 << " is in ValueExprMap but not in ExprValueMap\n";
14127 std::abort();
14128 }
14129
14130 if (auto *I = dyn_cast<Instruction>(Val: &*KV.first)) {
14131 if (!ReachableBlocks.contains(Ptr: I->getParent()))
14132 continue;
14133 const SCEV *OldSCEV = SCM.visit(S: KV.second);
14134 const SCEV *NewSCEV = SE2.getSCEV(V: I);
14135 const SCEV *Delta = GetDelta(OldSCEV, NewSCEV);
14136 if (Delta && !Delta->isZero()) {
14137 dbgs() << "SCEV for value " << *I << " changed!\n"
14138 << "Old: " << *OldSCEV << "\n"
14139 << "New: " << *NewSCEV << "\n"
14140 << "Delta: " << *Delta << "\n";
14141 std::abort();
14142 }
14143 }
14144 }
14145
14146 for (const auto &KV : ExprValueMap) {
14147 for (Value *V : KV.second) {
14148 auto It = ValueExprMap.find_as(Val: V);
14149 if (It == ValueExprMap.end()) {
14150 dbgs() << "Value " << *V
14151 << " is in ExprValueMap but not in ValueExprMap\n";
14152 std::abort();
14153 }
14154 if (It->second != KV.first) {
14155 dbgs() << "Value " << *V << " mapped to " << *It->second
14156 << " rather than " << *KV.first << "\n";
14157 std::abort();
14158 }
14159 }
14160 }
14161
14162 // Verify integrity of SCEV users.
14163 for (const auto &S : UniqueSCEVs) {
14164 for (const auto *Op : S.operands()) {
14165 // We do not store dependencies of constants.
14166 if (isa<SCEVConstant>(Val: Op))
14167 continue;
14168 auto It = SCEVUsers.find(Val: Op);
14169 if (It != SCEVUsers.end() && It->second.count(Ptr: &S))
14170 continue;
14171 dbgs() << "Use of operand " << *Op << " by user " << S
14172 << " is not being tracked!\n";
14173 std::abort();
14174 }
14175 }
14176
14177 // Verify integrity of ValuesAtScopes users.
14178 for (const auto &ValueAndVec : ValuesAtScopes) {
14179 const SCEV *Value = ValueAndVec.first;
14180 for (const auto &LoopAndValueAtScope : ValueAndVec.second) {
14181 const Loop *L = LoopAndValueAtScope.first;
14182 const SCEV *ValueAtScope = LoopAndValueAtScope.second;
14183 if (!isa<SCEVConstant>(Val: ValueAtScope)) {
14184 auto It = ValuesAtScopesUsers.find(Val: ValueAtScope);
14185 if (It != ValuesAtScopesUsers.end() &&
14186 is_contained(Range: It->second, Element: std::make_pair(x&: L, y&: Value)))
14187 continue;
14188 dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: "
14189 << *ValueAtScope << " missing in ValuesAtScopesUsers\n";
14190 std::abort();
14191 }
14192 }
14193 }
14194
14195 for (const auto &ValueAtScopeAndVec : ValuesAtScopesUsers) {
14196 const SCEV *ValueAtScope = ValueAtScopeAndVec.first;
14197 for (const auto &LoopAndValue : ValueAtScopeAndVec.second) {
14198 const Loop *L = LoopAndValue.first;
14199 const SCEV *Value = LoopAndValue.second;
14200 assert(!isa<SCEVConstant>(Value));
14201 auto It = ValuesAtScopes.find(Val: Value);
14202 if (It != ValuesAtScopes.end() &&
14203 is_contained(Range: It->second, Element: std::make_pair(x&: L, y&: ValueAtScope)))
14204 continue;
14205 dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: "
14206 << *ValueAtScope << " missing in ValuesAtScopes\n";
14207 std::abort();
14208 }
14209 }
14210
14211 // Verify integrity of BECountUsers.
14212 auto VerifyBECountUsers = [&](bool Predicated) {
14213 auto &BECounts =
14214 Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts;
14215 for (const auto &LoopAndBEInfo : BECounts) {
14216 for (const ExitNotTakenInfo &ENT : LoopAndBEInfo.second.ExitNotTaken) {
14217 for (const SCEV *S : {ENT.ExactNotTaken, ENT.SymbolicMaxNotTaken}) {
14218 if (!isa<SCEVConstant>(Val: S)) {
14219 auto UserIt = BECountUsers.find(Val: S);
14220 if (UserIt != BECountUsers.end() &&
14221 UserIt->second.contains(Ptr: { LoopAndBEInfo.first, Predicated }))
14222 continue;
14223 dbgs() << "Value " << *S << " for loop " << *LoopAndBEInfo.first
14224 << " missing from BECountUsers\n";
14225 std::abort();
14226 }
14227 }
14228 }
14229 }
14230 };
14231 VerifyBECountUsers(/* Predicated */ false);
14232 VerifyBECountUsers(/* Predicated */ true);
14233
14234 // Verify intergity of loop disposition cache.
14235 for (auto &[S, Values] : LoopDispositions) {
14236 for (auto [Loop, CachedDisposition] : Values) {
14237 const auto RecomputedDisposition = SE2.getLoopDisposition(S, L: Loop);
14238 if (CachedDisposition != RecomputedDisposition) {
14239 dbgs() << "Cached disposition of " << *S << " for loop " << *Loop
14240 << " is incorrect: cached " << CachedDisposition << ", actual "
14241 << RecomputedDisposition << "\n";
14242 std::abort();
14243 }
14244 }
14245 }
14246
14247 // Verify integrity of the block disposition cache.
14248 for (auto &[S, Values] : BlockDispositions) {
14249 for (auto [BB, CachedDisposition] : Values) {
14250 const auto RecomputedDisposition = SE2.getBlockDisposition(S, BB);
14251 if (CachedDisposition != RecomputedDisposition) {
14252 dbgs() << "Cached disposition of " << *S << " for block %"
14253 << BB->getName() << " is incorrect: cached " << CachedDisposition
14254 << ", actual " << RecomputedDisposition << "\n";
14255 std::abort();
14256 }
14257 }
14258 }
14259
14260 // Verify FoldCache/FoldCacheUser caches.
14261 for (auto [FoldID, Expr] : FoldCache) {
14262 auto I = FoldCacheUser.find(Val: Expr);
14263 if (I == FoldCacheUser.end()) {
14264 dbgs() << "Missing entry in FoldCacheUser for cached expression " << *Expr
14265 << "!\n";
14266 std::abort();
14267 }
14268 if (!is_contained(Range: I->second, Element: FoldID)) {
14269 dbgs() << "Missing FoldID in cached users of " << *Expr << "!\n";
14270 std::abort();
14271 }
14272 }
14273 for (auto [Expr, IDs] : FoldCacheUser) {
14274 for (auto &FoldID : IDs) {
14275 auto I = FoldCache.find(Val: FoldID);
14276 if (I == FoldCache.end()) {
14277 dbgs() << "Missing entry in FoldCache for expression " << *Expr
14278 << "!\n";
14279 std::abort();
14280 }
14281 if (I->second != Expr) {
14282 dbgs() << "Entry in FoldCache doesn't match FoldCacheUser: "
14283 << *I->second << " != " << *Expr << "!\n";
14284 std::abort();
14285 }
14286 }
14287 }
14288
14289 // Verify that ConstantMultipleCache computations are correct. We check that
14290 // cached multiples and recomputed multiples are multiples of each other to
14291 // verify correctness. It is possible that a recomputed multiple is different
14292 // from the cached multiple due to strengthened no wrap flags or changes in
14293 // KnownBits computations.
14294 for (auto [S, Multiple] : ConstantMultipleCache) {
14295 APInt RecomputedMultiple = SE2.getConstantMultiple(S);
14296 if ((Multiple != 0 && RecomputedMultiple != 0 &&
14297 Multiple.urem(RHS: RecomputedMultiple) != 0 &&
14298 RecomputedMultiple.urem(RHS: Multiple) != 0)) {
14299 dbgs() << "Incorrect cached computation in ConstantMultipleCache for "
14300 << *S << " : Computed " << RecomputedMultiple
14301 << " but cache contains " << Multiple << "!\n";
14302 std::abort();
14303 }
14304 }
14305}
14306
14307bool ScalarEvolution::invalidate(
14308 Function &F, const PreservedAnalyses &PA,
14309 FunctionAnalysisManager::Invalidator &Inv) {
14310 // Invalidate the ScalarEvolution object whenever it isn't preserved or one
14311 // of its dependencies is invalidated.
14312 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
14313 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
14314 Inv.invalidate<AssumptionAnalysis>(IR&: F, PA) ||
14315 Inv.invalidate<DominatorTreeAnalysis>(IR&: F, PA) ||
14316 Inv.invalidate<LoopAnalysis>(IR&: F, PA);
14317}
14318
14319AnalysisKey ScalarEvolutionAnalysis::Key;
14320
14321ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
14322 FunctionAnalysisManager &AM) {
14323 auto &TLI = AM.getResult<TargetLibraryAnalysis>(IR&: F);
14324 auto &AC = AM.getResult<AssumptionAnalysis>(IR&: F);
14325 auto &DT = AM.getResult<DominatorTreeAnalysis>(IR&: F);
14326 auto &LI = AM.getResult<LoopAnalysis>(IR&: F);
14327 return ScalarEvolution(F, TLI, AC, DT, LI);
14328}
14329
14330PreservedAnalyses
14331ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
14332 AM.getResult<ScalarEvolutionAnalysis>(IR&: F).verify();
14333 return PreservedAnalyses::all();
14334}
14335
14336PreservedAnalyses
14337ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
14338 // For compatibility with opt's -analyze feature under legacy pass manager
14339 // which was not ported to NPM. This keeps tests using
14340 // update_analyze_test_checks.py working.
14341 OS << "Printing analysis 'Scalar Evolution Analysis' for function '"
14342 << F.getName() << "':\n";
14343 AM.getResult<ScalarEvolutionAnalysis>(IR&: F).print(OS);
14344 return PreservedAnalyses::all();
14345}
14346
14347INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
14348 "Scalar Evolution Analysis", false, true)
14349INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
14350INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
14351INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
14352INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
14353INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
14354 "Scalar Evolution Analysis", false, true)
14355
14356char ScalarEvolutionWrapperPass::ID = 0;
14357
14358ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
14359 initializeScalarEvolutionWrapperPassPass(Registry&: *PassRegistry::getPassRegistry());
14360}
14361
14362bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
14363 SE.reset(p: new ScalarEvolution(
14364 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
14365 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
14366 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
14367 getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
14368 return false;
14369}
14370
14371void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
14372
14373void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
14374 SE->print(OS);
14375}
14376
14377void ScalarEvolutionWrapperPass::verifyAnalysis() const {
14378 if (!VerifySCEV)
14379 return;
14380
14381 SE->verify();
14382}
14383
14384void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
14385 AU.setPreservesAll();
14386 AU.addRequiredTransitive<AssumptionCacheTracker>();
14387 AU.addRequiredTransitive<LoopInfoWrapperPass>();
14388 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
14389 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
14390}
14391
14392const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
14393 const SCEV *RHS) {
14394 return getComparePredicate(Pred: ICmpInst::ICMP_EQ, LHS, RHS);
14395}
14396
14397const SCEVPredicate *
14398ScalarEvolution::getComparePredicate(const ICmpInst::Predicate Pred,
14399 const SCEV *LHS, const SCEV *RHS) {
14400 FoldingSetNodeID ID;
14401 assert(LHS->getType() == RHS->getType() &&
14402 "Type mismatch between LHS and RHS");
14403 // Unique this node based on the arguments
14404 ID.AddInteger(I: SCEVPredicate::P_Compare);
14405 ID.AddInteger(I: Pred);
14406 ID.AddPointer(Ptr: LHS);
14407 ID.AddPointer(Ptr: RHS);
14408 void *IP = nullptr;
14409 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, InsertPos&: IP))
14410 return S;
14411 SCEVComparePredicate *Eq = new (SCEVAllocator)
14412 SCEVComparePredicate(ID.Intern(Allocator&: SCEVAllocator), Pred, LHS, RHS);
14413 UniquePreds.InsertNode(N: Eq, InsertPos: IP);
14414 return Eq;
14415}
14416
14417const SCEVPredicate *ScalarEvolution::getWrapPredicate(
14418 const SCEVAddRecExpr *AR,
14419 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
14420 FoldingSetNodeID ID;
14421 // Unique this node based on the arguments
14422 ID.AddInteger(I: SCEVPredicate::P_Wrap);
14423 ID.AddPointer(Ptr: AR);
14424 ID.AddInteger(I: AddedFlags);
14425 void *IP = nullptr;
14426 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, InsertPos&: IP))
14427 return S;
14428 auto *OF = new (SCEVAllocator)
14429 SCEVWrapPredicate(ID.Intern(Allocator&: SCEVAllocator), AR, AddedFlags);
14430 UniquePreds.InsertNode(N: OF, InsertPos: IP);
14431 return OF;
14432}
14433
14434namespace {
14435
14436class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
14437public:
14438
14439 /// Rewrites \p S in the context of a loop L and the SCEV predication
14440 /// infrastructure.
14441 ///
14442 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
14443 /// equivalences present in \p Pred.
14444 ///
14445 /// If \p NewPreds is non-null, rewrite is free to add further predicates to
14446 /// \p NewPreds such that the result will be an AddRecExpr.
14447 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
14448 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
14449 const SCEVPredicate *Pred) {
14450 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
14451 return Rewriter.visit(S);
14452 }
14453
14454 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
14455 if (Pred) {
14456 if (auto *U = dyn_cast<SCEVUnionPredicate>(Val: Pred)) {
14457 for (const auto *Pred : U->getPredicates())
14458 if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Val: Pred))
14459 if (IPred->getLHS() == Expr &&
14460 IPred->getPredicate() == ICmpInst::ICMP_EQ)
14461 return IPred->getRHS();
14462 } else if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Val: Pred)) {
14463 if (IPred->getLHS() == Expr &&
14464 IPred->getPredicate() == ICmpInst::ICMP_EQ)
14465 return IPred->getRHS();
14466 }
14467 }
14468 return convertToAddRecWithPreds(Expr);
14469 }
14470
14471 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
14472 const SCEV *Operand = visit(S: Expr->getOperand());
14473 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: Operand);
14474 if (AR && AR->getLoop() == L && AR->isAffine()) {
14475 // This couldn't be folded because the operand didn't have the nuw
14476 // flag. Add the nusw flag as an assumption that we could make.
14477 const SCEV *Step = AR->getStepRecurrence(SE);
14478 Type *Ty = Expr->getType();
14479 if (addOverflowAssumption(AR, AddedFlags: SCEVWrapPredicate::IncrementNUSW))
14480 return SE.getAddRecExpr(Start: SE.getZeroExtendExpr(Op: AR->getStart(), Ty),
14481 Step: SE.getSignExtendExpr(Op: Step, Ty), L,
14482 Flags: AR->getNoWrapFlags());
14483 }
14484 return SE.getZeroExtendExpr(Op: Operand, Ty: Expr->getType());
14485 }
14486
14487 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
14488 const SCEV *Operand = visit(S: Expr->getOperand());
14489 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: Operand);
14490 if (AR && AR->getLoop() == L && AR->isAffine()) {
14491 // This couldn't be folded because the operand didn't have the nsw
14492 // flag. Add the nssw flag as an assumption that we could make.
14493 const SCEV *Step = AR->getStepRecurrence(SE);
14494 Type *Ty = Expr->getType();
14495 if (addOverflowAssumption(AR, AddedFlags: SCEVWrapPredicate::IncrementNSSW))
14496 return SE.getAddRecExpr(Start: SE.getSignExtendExpr(Op: AR->getStart(), Ty),
14497 Step: SE.getSignExtendExpr(Op: Step, Ty), L,
14498 Flags: AR->getNoWrapFlags());
14499 }
14500 return SE.getSignExtendExpr(Op: Operand, Ty: Expr->getType());
14501 }
14502
14503private:
14504 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
14505 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
14506 const SCEVPredicate *Pred)
14507 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
14508
14509 bool addOverflowAssumption(const SCEVPredicate *P) {
14510 if (!NewPreds) {
14511 // Check if we've already made this assumption.
14512 return Pred && Pred->implies(N: P);
14513 }
14514 NewPreds->insert(Ptr: P);
14515 return true;
14516 }
14517
14518 bool addOverflowAssumption(const SCEVAddRecExpr *AR,
14519 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
14520 auto *A = SE.getWrapPredicate(AR, AddedFlags);
14521 return addOverflowAssumption(P: A);
14522 }
14523
14524 // If \p Expr represents a PHINode, we try to see if it can be represented
14525 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
14526 // to add this predicate as a runtime overflow check, we return the AddRec.
14527 // If \p Expr does not meet these conditions (is not a PHI node, or we
14528 // couldn't create an AddRec for it, or couldn't add the predicate), we just
14529 // return \p Expr.
14530 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
14531 if (!isa<PHINode>(Val: Expr->getValue()))
14532 return Expr;
14533 std::optional<
14534 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
14535 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(SymbolicPHI: Expr);
14536 if (!PredicatedRewrite)
14537 return Expr;
14538 for (const auto *P : PredicatedRewrite->second){
14539 // Wrap predicates from outer loops are not supported.
14540 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(Val: P)) {
14541 if (L != WP->getExpr()->getLoop())
14542 return Expr;
14543 }
14544 if (!addOverflowAssumption(P))
14545 return Expr;
14546 }
14547 return PredicatedRewrite->first;
14548 }
14549
14550 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
14551 const SCEVPredicate *Pred;
14552 const Loop *L;
14553};
14554
14555} // end anonymous namespace
14556
14557const SCEV *
14558ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
14559 const SCEVPredicate &Preds) {
14560 return SCEVPredicateRewriter::rewrite(S, L, SE&: *this, NewPreds: nullptr, Pred: &Preds);
14561}
14562
14563const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
14564 const SCEV *S, const Loop *L,
14565 SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
14566 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
14567 S = SCEVPredicateRewriter::rewrite(S, L, SE&: *this, NewPreds: &TransformPreds, Pred: nullptr);
14568 auto *AddRec = dyn_cast<SCEVAddRecExpr>(Val: S);
14569
14570 if (!AddRec)
14571 return nullptr;
14572
14573 // Since the transformation was successful, we can now transfer the SCEV
14574 // predicates.
14575 for (const auto *P : TransformPreds)
14576 Preds.insert(Ptr: P);
14577
14578 return AddRec;
14579}
14580
14581/// SCEV predicates
14582SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
14583 SCEVPredicateKind Kind)
14584 : FastID(ID), Kind(Kind) {}
14585
14586SCEVComparePredicate::SCEVComparePredicate(const FoldingSetNodeIDRef ID,
14587 const ICmpInst::Predicate Pred,
14588 const SCEV *LHS, const SCEV *RHS)
14589 : SCEVPredicate(ID, P_Compare), Pred(Pred), LHS(LHS), RHS(RHS) {
14590 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
14591 assert(LHS != RHS && "LHS and RHS are the same SCEV");
14592}
14593
14594bool SCEVComparePredicate::implies(const SCEVPredicate *N) const {
14595 const auto *Op = dyn_cast<SCEVComparePredicate>(Val: N);
14596
14597 if (!Op)
14598 return false;
14599
14600 if (Pred != ICmpInst::ICMP_EQ)
14601 return false;
14602
14603 return Op->LHS == LHS && Op->RHS == RHS;
14604}
14605
14606bool SCEVComparePredicate::isAlwaysTrue() const { return false; }
14607
14608void SCEVComparePredicate::print(raw_ostream &OS, unsigned Depth) const {
14609 if (Pred == ICmpInst::ICMP_EQ)
14610 OS.indent(NumSpaces: Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
14611 else
14612 OS.indent(NumSpaces: Depth) << "Compare predicate: " << *LHS << " " << Pred << ") "
14613 << *RHS << "\n";
14614
14615}
14616
14617SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
14618 const SCEVAddRecExpr *AR,
14619 IncrementWrapFlags Flags)
14620 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
14621
14622const SCEVAddRecExpr *SCEVWrapPredicate::getExpr() const { return AR; }
14623
14624bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
14625 const auto *Op = dyn_cast<SCEVWrapPredicate>(Val: N);
14626
14627 return Op && Op->AR == AR && setFlags(Flags, OnFlags: Op->Flags) == Flags;
14628}
14629
14630bool SCEVWrapPredicate::isAlwaysTrue() const {
14631 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
14632 IncrementWrapFlags IFlags = Flags;
14633
14634 if (ScalarEvolution::setFlags(Flags: ScevFlags, OnFlags: SCEV::FlagNSW) == ScevFlags)
14635 IFlags = clearFlags(Flags: IFlags, OffFlags: IncrementNSSW);
14636
14637 return IFlags == IncrementAnyWrap;
14638}
14639
14640void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
14641 OS.indent(NumSpaces: Depth) << *getExpr() << " Added Flags: ";
14642 if (SCEVWrapPredicate::IncrementNUSW & getFlags())
14643 OS << "<nusw>";
14644 if (SCEVWrapPredicate::IncrementNSSW & getFlags())
14645 OS << "<nssw>";
14646 OS << "\n";
14647}
14648
14649SCEVWrapPredicate::IncrementWrapFlags
14650SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
14651 ScalarEvolution &SE) {
14652 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
14653 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
14654
14655 // We can safely transfer the NSW flag as NSSW.
14656 if (ScalarEvolution::setFlags(Flags: StaticFlags, OnFlags: SCEV::FlagNSW) == StaticFlags)
14657 ImpliedFlags = IncrementNSSW;
14658
14659 if (ScalarEvolution::setFlags(Flags: StaticFlags, OnFlags: SCEV::FlagNUW) == StaticFlags) {
14660 // If the increment is positive, the SCEV NUW flag will also imply the
14661 // WrapPredicate NUSW flag.
14662 if (const auto *Step = dyn_cast<SCEVConstant>(Val: AR->getStepRecurrence(SE)))
14663 if (Step->getValue()->getValue().isNonNegative())
14664 ImpliedFlags = setFlags(Flags: ImpliedFlags, OnFlags: IncrementNUSW);
14665 }
14666
14667 return ImpliedFlags;
14668}
14669
14670/// Union predicates don't get cached so create a dummy set ID for it.
14671SCEVUnionPredicate::SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds)
14672 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {
14673 for (const auto *P : Preds)
14674 add(N: P);
14675}
14676
14677bool SCEVUnionPredicate::isAlwaysTrue() const {
14678 return all_of(Range: Preds,
14679 P: [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
14680}
14681
14682bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
14683 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(Val: N))
14684 return all_of(Range: Set->Preds,
14685 P: [this](const SCEVPredicate *I) { return this->implies(N: I); });
14686
14687 return any_of(Range: Preds,
14688 P: [N](const SCEVPredicate *I) { return I->implies(N); });
14689}
14690
14691void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
14692 for (const auto *Pred : Preds)
14693 Pred->print(OS, Depth);
14694}
14695
14696void SCEVUnionPredicate::add(const SCEVPredicate *N) {
14697 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(Val: N)) {
14698 for (const auto *Pred : Set->Preds)
14699 add(N: Pred);
14700 return;
14701 }
14702
14703 Preds.push_back(Elt: N);
14704}
14705
14706PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
14707 Loop &L)
14708 : SE(SE), L(L) {
14709 SmallVector<const SCEVPredicate*, 4> Empty;
14710 Preds = std::make_unique<SCEVUnionPredicate>(args&: Empty);
14711}
14712
14713void ScalarEvolution::registerUser(const SCEV *User,
14714 ArrayRef<const SCEV *> Ops) {
14715 for (const auto *Op : Ops)
14716 // We do not expect that forgetting cached data for SCEVConstants will ever
14717 // open any prospects for sharpening or introduce any correctness issues,
14718 // so we don't bother storing their dependencies.
14719 if (!isa<SCEVConstant>(Val: Op))
14720 SCEVUsers[Op].insert(Ptr: User);
14721}
14722
14723const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
14724 const SCEV *Expr = SE.getSCEV(V);
14725 RewriteEntry &Entry = RewriteMap[Expr];
14726
14727 // If we already have an entry and the version matches, return it.
14728 if (Entry.second && Generation == Entry.first)
14729 return Entry.second;
14730
14731 // We found an entry but it's stale. Rewrite the stale entry
14732 // according to the current predicate.
14733 if (Entry.second)
14734 Expr = Entry.second;
14735
14736 const SCEV *NewSCEV = SE.rewriteUsingPredicate(S: Expr, L: &L, Preds: *Preds);
14737 Entry = {Generation, NewSCEV};
14738
14739 return NewSCEV;
14740}
14741
14742const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
14743 if (!BackedgeCount) {
14744 SmallVector<const SCEVPredicate *, 4> Preds;
14745 BackedgeCount = SE.getPredicatedBackedgeTakenCount(L: &L, Preds);
14746 for (const auto *P : Preds)
14747 addPredicate(Pred: *P);
14748 }
14749 return BackedgeCount;
14750}
14751
14752void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
14753 if (Preds->implies(N: &Pred))
14754 return;
14755
14756 auto &OldPreds = Preds->getPredicates();
14757 SmallVector<const SCEVPredicate*, 4> NewPreds(OldPreds.begin(), OldPreds.end());
14758 NewPreds.push_back(Elt: &Pred);
14759 Preds = std::make_unique<SCEVUnionPredicate>(args&: NewPreds);
14760 updateGeneration();
14761}
14762
14763const SCEVPredicate &PredicatedScalarEvolution::getPredicate() const {
14764 return *Preds;
14765}
14766
14767void PredicatedScalarEvolution::updateGeneration() {
14768 // If the generation number wrapped recompute everything.
14769 if (++Generation == 0) {
14770 for (auto &II : RewriteMap) {
14771 const SCEV *Rewritten = II.second.second;
14772 II.second = {Generation, SE.rewriteUsingPredicate(S: Rewritten, L: &L, Preds: *Preds)};
14773 }
14774 }
14775}
14776
14777void PredicatedScalarEvolution::setNoOverflow(
14778 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
14779 const SCEV *Expr = getSCEV(V);
14780 const auto *AR = cast<SCEVAddRecExpr>(Val: Expr);
14781
14782 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
14783
14784 // Clear the statically implied flags.
14785 Flags = SCEVWrapPredicate::clearFlags(Flags, OffFlags: ImpliedFlags);
14786 addPredicate(Pred: *SE.getWrapPredicate(AR, AddedFlags: Flags));
14787
14788 auto II = FlagsMap.insert(KV: {V, Flags});
14789 if (!II.second)
14790 II.first->second = SCEVWrapPredicate::setFlags(Flags, OnFlags: II.first->second);
14791}
14792
14793bool PredicatedScalarEvolution::hasNoOverflow(
14794 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
14795 const SCEV *Expr = getSCEV(V);
14796 const auto *AR = cast<SCEVAddRecExpr>(Val: Expr);
14797
14798 Flags = SCEVWrapPredicate::clearFlags(
14799 Flags, OffFlags: SCEVWrapPredicate::getImpliedFlags(AR, SE));
14800
14801 auto II = FlagsMap.find(Val: V);
14802
14803 if (II != FlagsMap.end())
14804 Flags = SCEVWrapPredicate::clearFlags(Flags, OffFlags: II->second);
14805
14806 return Flags == SCEVWrapPredicate::IncrementAnyWrap;
14807}
14808
14809const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
14810 const SCEV *Expr = this->getSCEV(V);
14811 SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
14812 auto *New = SE.convertSCEVToAddRecWithPredicates(S: Expr, L: &L, Preds&: NewPreds);
14813
14814 if (!New)
14815 return nullptr;
14816
14817 for (const auto *P : NewPreds)
14818 addPredicate(Pred: *P);
14819
14820 RewriteMap[SE.getSCEV(V)] = {Generation, New};
14821 return New;
14822}
14823
14824PredicatedScalarEvolution::PredicatedScalarEvolution(
14825 const PredicatedScalarEvolution &Init)
14826 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L),
14827 Preds(std::make_unique<SCEVUnionPredicate>(args: Init.Preds->getPredicates())),
14828 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
14829 for (auto I : Init.FlagsMap)
14830 FlagsMap.insert(KV: I);
14831}
14832
14833void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
14834 // For each block.
14835 for (auto *BB : L.getBlocks())
14836 for (auto &I : *BB) {
14837 if (!SE.isSCEVable(Ty: I.getType()))
14838 continue;
14839
14840 auto *Expr = SE.getSCEV(V: &I);
14841 auto II = RewriteMap.find(Val: Expr);
14842
14843 if (II == RewriteMap.end())
14844 continue;
14845
14846 // Don't print things that are not interesting.
14847 if (II->second.second == Expr)
14848 continue;
14849
14850 OS.indent(NumSpaces: Depth) << "[PSE]" << I << ":\n";
14851 OS.indent(NumSpaces: Depth + 2) << *Expr << "\n";
14852 OS.indent(NumSpaces: Depth + 2) << "--> " << *II->second.second << "\n";
14853 }
14854}
14855
14856// Match the mathematical pattern A - (A / B) * B, where A and B can be
14857// arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used
14858// for URem with constant power-of-2 second operands.
14859// It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
14860// 4, A / B becomes X / 8).
14861bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
14862 const SCEV *&RHS) {
14863 // Try to match 'zext (trunc A to iB) to iY', which is used
14864 // for URem with constant power-of-2 second operands. Make sure the size of
14865 // the operand A matches the size of the whole expressions.
14866 if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Val: Expr))
14867 if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(Val: ZExt->getOperand(i: 0))) {
14868 LHS = Trunc->getOperand();
14869 // Bail out if the type of the LHS is larger than the type of the
14870 // expression for now.
14871 if (getTypeSizeInBits(Ty: LHS->getType()) >
14872 getTypeSizeInBits(Ty: Expr->getType()))
14873 return false;
14874 if (LHS->getType() != Expr->getType())
14875 LHS = getZeroExtendExpr(Op: LHS, Ty: Expr->getType());
14876 RHS = getConstant(Val: APInt(getTypeSizeInBits(Ty: Expr->getType()), 1)
14877 << getTypeSizeInBits(Ty: Trunc->getType()));
14878 return true;
14879 }
14880 const auto *Add = dyn_cast<SCEVAddExpr>(Val: Expr);
14881 if (Add == nullptr || Add->getNumOperands() != 2)
14882 return false;
14883
14884 const SCEV *A = Add->getOperand(i: 1);
14885 const auto *Mul = dyn_cast<SCEVMulExpr>(Val: Add->getOperand(i: 0));
14886
14887 if (Mul == nullptr)
14888 return false;
14889
14890 const auto MatchURemWithDivisor = [&](const SCEV *B) {
14891 // (SomeExpr + (-(SomeExpr / B) * B)).
14892 if (Expr == getURemExpr(LHS: A, RHS: B)) {
14893 LHS = A;
14894 RHS = B;
14895 return true;
14896 }
14897 return false;
14898 };
14899
14900 // (SomeExpr + (-1 * (SomeExpr / B) * B)).
14901 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Val: Mul->getOperand(i: 0)))
14902 return MatchURemWithDivisor(Mul->getOperand(i: 1)) ||
14903 MatchURemWithDivisor(Mul->getOperand(i: 2));
14904
14905 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
14906 if (Mul->getNumOperands() == 2)
14907 return MatchURemWithDivisor(Mul->getOperand(i: 1)) ||
14908 MatchURemWithDivisor(Mul->getOperand(i: 0)) ||
14909 MatchURemWithDivisor(getNegativeSCEV(V: Mul->getOperand(i: 1))) ||
14910 MatchURemWithDivisor(getNegativeSCEV(V: Mul->getOperand(i: 0)));
14911 return false;
14912}
14913
14914const SCEV *
14915ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) {
14916 SmallVector<BasicBlock*, 16> ExitingBlocks;
14917 L->getExitingBlocks(ExitingBlocks);
14918
14919 // Form an expression for the maximum exit count possible for this loop. We
14920 // merge the max and exact information to approximate a version of
14921 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants.
14922 SmallVector<const SCEV*, 4> ExitCounts;
14923 for (BasicBlock *ExitingBB : ExitingBlocks) {
14924 const SCEV *ExitCount =
14925 getExitCount(L, ExitingBlock: ExitingBB, Kind: ScalarEvolution::SymbolicMaximum);
14926 if (!isa<SCEVCouldNotCompute>(Val: ExitCount)) {
14927 assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
14928 "We should only have known counts for exiting blocks that "
14929 "dominate latch!");
14930 ExitCounts.push_back(Elt: ExitCount);
14931 }
14932 }
14933 if (ExitCounts.empty())
14934 return getCouldNotCompute();
14935 return getUMinFromMismatchedTypes(Ops&: ExitCounts, /*Sequential*/ true);
14936}
14937
14938/// A rewriter to replace SCEV expressions in Map with the corresponding entry
14939/// in the map. It skips AddRecExpr because we cannot guarantee that the
14940/// replacement is loop invariant in the loop of the AddRec.
14941class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> {
14942 const DenseMap<const SCEV *, const SCEV *> &Map;
14943
14944public:
14945 SCEVLoopGuardRewriter(ScalarEvolution &SE,
14946 DenseMap<const SCEV *, const SCEV *> &M)
14947 : SCEVRewriteVisitor(SE), Map(M) {}
14948
14949 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
14950
14951 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
14952 auto I = Map.find(Val: Expr);
14953 if (I == Map.end())
14954 return Expr;
14955 return I->second;
14956 }
14957
14958 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
14959 auto I = Map.find(Val: Expr);
14960 if (I == Map.end()) {
14961 // If we didn't find the extact ZExt expr in the map, check if there's an
14962 // entry for a smaller ZExt we can use instead.
14963 Type *Ty = Expr->getType();
14964 const SCEV *Op = Expr->getOperand(i: 0);
14965 unsigned Bitwidth = Ty->getScalarSizeInBits() / 2;
14966 while (Bitwidth % 8 == 0 && Bitwidth >= 8 &&
14967 Bitwidth > Op->getType()->getScalarSizeInBits()) {
14968 Type *NarrowTy = IntegerType::get(C&: SE.getContext(), NumBits: Bitwidth);
14969 auto *NarrowExt = SE.getZeroExtendExpr(Op, Ty: NarrowTy);
14970 auto I = Map.find(Val: NarrowExt);
14971 if (I != Map.end())
14972 return SE.getZeroExtendExpr(Op: I->second, Ty);
14973 Bitwidth = Bitwidth / 2;
14974 }
14975
14976 return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitZeroExtendExpr(
14977 Expr);
14978 }
14979 return I->second;
14980 }
14981
14982 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
14983 auto I = Map.find(Val: Expr);
14984 if (I == Map.end())
14985 return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitSignExtendExpr(
14986 Expr);
14987 return I->second;
14988 }
14989
14990 const SCEV *visitUMinExpr(const SCEVUMinExpr *Expr) {
14991 auto I = Map.find(Val: Expr);
14992 if (I == Map.end())
14993 return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitUMinExpr(Expr);
14994 return I->second;
14995 }
14996
14997 const SCEV *visitSMinExpr(const SCEVSMinExpr *Expr) {
14998 auto I = Map.find(Val: Expr);
14999 if (I == Map.end())
15000 return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitSMinExpr(Expr);
15001 return I->second;
15002 }
15003};
15004
15005const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) {
15006 SmallVector<const SCEV *> ExprsToRewrite;
15007 auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS,
15008 const SCEV *RHS,
15009 DenseMap<const SCEV *, const SCEV *>
15010 &RewriteMap) {
15011 // WARNING: It is generally unsound to apply any wrap flags to the proposed
15012 // replacement SCEV which isn't directly implied by the structure of that
15013 // SCEV. In particular, using contextual facts to imply flags is *NOT*
15014 // legal. See the scoping rules for flags in the header to understand why.
15015
15016 // If LHS is a constant, apply information to the other expression.
15017 if (isa<SCEVConstant>(Val: LHS)) {
15018 std::swap(a&: LHS, b&: RHS);
15019 Predicate = CmpInst::getSwappedPredicate(pred: Predicate);
15020 }
15021
15022 // Check for a condition of the form (-C1 + X < C2). InstCombine will
15023 // create this form when combining two checks of the form (X u< C2 + C1) and
15024 // (X >=u C1).
15025 auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap,
15026 &ExprsToRewrite]() {
15027 auto *AddExpr = dyn_cast<SCEVAddExpr>(Val: LHS);
15028 if (!AddExpr || AddExpr->getNumOperands() != 2)
15029 return false;
15030
15031 auto *C1 = dyn_cast<SCEVConstant>(Val: AddExpr->getOperand(i: 0));
15032 auto *LHSUnknown = dyn_cast<SCEVUnknown>(Val: AddExpr->getOperand(i: 1));
15033 auto *C2 = dyn_cast<SCEVConstant>(Val: RHS);
15034 if (!C1 || !C2 || !LHSUnknown)
15035 return false;
15036
15037 auto ExactRegion =
15038 ConstantRange::makeExactICmpRegion(Pred: Predicate, Other: C2->getAPInt())
15039 .sub(Other: C1->getAPInt());
15040
15041 // Bail out, unless we have a non-wrapping, monotonic range.
15042 if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet())
15043 return false;
15044 auto I = RewriteMap.find(Val: LHSUnknown);
15045 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown;
15046 RewriteMap[LHSUnknown] = getUMaxExpr(
15047 LHS: getConstant(Val: ExactRegion.getUnsignedMin()),
15048 RHS: getUMinExpr(LHS: RewrittenLHS, RHS: getConstant(Val: ExactRegion.getUnsignedMax())));
15049 ExprsToRewrite.push_back(Elt: LHSUnknown);
15050 return true;
15051 };
15052 if (MatchRangeCheckIdiom())
15053 return;
15054
15055 // Return true if \p Expr is a MinMax SCEV expression with a non-negative
15056 // constant operand. If so, return in \p SCTy the SCEV type and in \p RHS
15057 // the non-constant operand and in \p LHS the constant operand.
15058 auto IsMinMaxSCEVWithNonNegativeConstant =
15059 [&](const SCEV *Expr, SCEVTypes &SCTy, const SCEV *&LHS,
15060 const SCEV *&RHS) {
15061 if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Val: Expr)) {
15062 if (MinMax->getNumOperands() != 2)
15063 return false;
15064 if (auto *C = dyn_cast<SCEVConstant>(Val: MinMax->getOperand(i: 0))) {
15065 if (C->getAPInt().isNegative())
15066 return false;
15067 SCTy = MinMax->getSCEVType();
15068 LHS = MinMax->getOperand(i: 0);
15069 RHS = MinMax->getOperand(i: 1);
15070 return true;
15071 }
15072 }
15073 return false;
15074 };
15075
15076 // Checks whether Expr is a non-negative constant, and Divisor is a positive
15077 // constant, and returns their APInt in ExprVal and in DivisorVal.
15078 auto GetNonNegExprAndPosDivisor = [&](const SCEV *Expr, const SCEV *Divisor,
15079 APInt &ExprVal, APInt &DivisorVal) {
15080 auto *ConstExpr = dyn_cast<SCEVConstant>(Val: Expr);
15081 auto *ConstDivisor = dyn_cast<SCEVConstant>(Val: Divisor);
15082 if (!ConstExpr || !ConstDivisor)
15083 return false;
15084 ExprVal = ConstExpr->getAPInt();
15085 DivisorVal = ConstDivisor->getAPInt();
15086 return ExprVal.isNonNegative() && !DivisorVal.isNonPositive();
15087 };
15088
15089 // Return a new SCEV that modifies \p Expr to the closest number divides by
15090 // \p Divisor and greater or equal than Expr.
15091 // For now, only handle constant Expr and Divisor.
15092 auto GetNextSCEVDividesByDivisor = [&](const SCEV *Expr,
15093 const SCEV *Divisor) {
15094 APInt ExprVal;
15095 APInt DivisorVal;
15096 if (!GetNonNegExprAndPosDivisor(Expr, Divisor, ExprVal, DivisorVal))
15097 return Expr;
15098 APInt Rem = ExprVal.urem(RHS: DivisorVal);
15099 if (!Rem.isZero())
15100 // return the SCEV: Expr + Divisor - Expr % Divisor
15101 return getConstant(Val: ExprVal + DivisorVal - Rem);
15102 return Expr;
15103 };
15104
15105 // Return a new SCEV that modifies \p Expr to the closest number divides by
15106 // \p Divisor and less or equal than Expr.
15107 // For now, only handle constant Expr and Divisor.
15108 auto GetPreviousSCEVDividesByDivisor = [&](const SCEV *Expr,
15109 const SCEV *Divisor) {
15110 APInt ExprVal;
15111 APInt DivisorVal;
15112 if (!GetNonNegExprAndPosDivisor(Expr, Divisor, ExprVal, DivisorVal))
15113 return Expr;
15114 APInt Rem = ExprVal.urem(RHS: DivisorVal);
15115 // return the SCEV: Expr - Expr % Divisor
15116 return getConstant(Val: ExprVal - Rem);
15117 };
15118
15119 // Apply divisibilty by \p Divisor on MinMaxExpr with constant values,
15120 // recursively. This is done by aligning up/down the constant value to the
15121 // Divisor.
15122 std::function<const SCEV *(const SCEV *, const SCEV *)>
15123 ApplyDivisibiltyOnMinMaxExpr = [&](const SCEV *MinMaxExpr,
15124 const SCEV *Divisor) {
15125 const SCEV *MinMaxLHS = nullptr, *MinMaxRHS = nullptr;
15126 SCEVTypes SCTy;
15127 if (!IsMinMaxSCEVWithNonNegativeConstant(MinMaxExpr, SCTy, MinMaxLHS,
15128 MinMaxRHS))
15129 return MinMaxExpr;
15130 auto IsMin =
15131 isa<SCEVSMinExpr>(Val: MinMaxExpr) || isa<SCEVUMinExpr>(Val: MinMaxExpr);
15132 assert(isKnownNonNegative(MinMaxLHS) &&
15133 "Expected non-negative operand!");
15134 auto *DivisibleExpr =
15135 IsMin ? GetPreviousSCEVDividesByDivisor(MinMaxLHS, Divisor)
15136 : GetNextSCEVDividesByDivisor(MinMaxLHS, Divisor);
15137 SmallVector<const SCEV *> Ops = {
15138 ApplyDivisibiltyOnMinMaxExpr(MinMaxRHS, Divisor), DivisibleExpr};
15139 return getMinMaxExpr(Kind: SCTy, Ops);
15140 };
15141
15142 // If we have LHS == 0, check if LHS is computing a property of some unknown
15143 // SCEV %v which we can rewrite %v to express explicitly.
15144 const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Val: RHS);
15145 if (Predicate == CmpInst::ICMP_EQ && RHSC &&
15146 RHSC->getValue()->isNullValue()) {
15147 // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to
15148 // explicitly express that.
15149 const SCEV *URemLHS = nullptr;
15150 const SCEV *URemRHS = nullptr;
15151 if (matchURem(Expr: LHS, LHS&: URemLHS, RHS&: URemRHS)) {
15152 if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(Val: URemLHS)) {
15153 auto I = RewriteMap.find(Val: LHSUnknown);
15154 const SCEV *RewrittenLHS =
15155 I != RewriteMap.end() ? I->second : LHSUnknown;
15156 RewrittenLHS = ApplyDivisibiltyOnMinMaxExpr(RewrittenLHS, URemRHS);
15157 const auto *Multiple =
15158 getMulExpr(LHS: getUDivExpr(LHS: RewrittenLHS, RHS: URemRHS), RHS: URemRHS);
15159 RewriteMap[LHSUnknown] = Multiple;
15160 ExprsToRewrite.push_back(Elt: LHSUnknown);
15161 return;
15162 }
15163 }
15164 }
15165
15166 // Do not apply information for constants or if RHS contains an AddRec.
15167 if (isa<SCEVConstant>(Val: LHS) || containsAddRecurrence(S: RHS))
15168 return;
15169
15170 // If RHS is SCEVUnknown, make sure the information is applied to it.
15171 if (!isa<SCEVUnknown>(Val: LHS) && isa<SCEVUnknown>(Val: RHS)) {
15172 std::swap(a&: LHS, b&: RHS);
15173 Predicate = CmpInst::getSwappedPredicate(pred: Predicate);
15174 }
15175
15176 // Puts rewrite rule \p From -> \p To into the rewrite map. Also if \p From
15177 // and \p FromRewritten are the same (i.e. there has been no rewrite
15178 // registered for \p From), then puts this value in the list of rewritten
15179 // expressions.
15180 auto AddRewrite = [&](const SCEV *From, const SCEV *FromRewritten,
15181 const SCEV *To) {
15182 if (From == FromRewritten)
15183 ExprsToRewrite.push_back(Elt: From);
15184 RewriteMap[From] = To;
15185 };
15186
15187 // Checks whether \p S has already been rewritten. In that case returns the
15188 // existing rewrite because we want to chain further rewrites onto the
15189 // already rewritten value. Otherwise returns \p S.
15190 auto GetMaybeRewritten = [&](const SCEV *S) {
15191 auto I = RewriteMap.find(Val: S);
15192 return I != RewriteMap.end() ? I->second : S;
15193 };
15194
15195 // Check for the SCEV expression (A /u B) * B while B is a constant, inside
15196 // \p Expr. The check is done recuresively on \p Expr, which is assumed to
15197 // be a composition of Min/Max SCEVs. Return whether the SCEV expression (A
15198 // /u B) * B was found, and return the divisor B in \p DividesBy. For
15199 // example, if Expr = umin (umax ((A /u 8) * 8, 16), 64), return true since
15200 // (A /u 8) * 8 matched the pattern, and return the constant SCEV 8 in \p
15201 // DividesBy.
15202 std::function<bool(const SCEV *, const SCEV *&)> HasDivisibiltyInfo =
15203 [&](const SCEV *Expr, const SCEV *&DividesBy) {
15204 if (auto *Mul = dyn_cast<SCEVMulExpr>(Val: Expr)) {
15205 if (Mul->getNumOperands() != 2)
15206 return false;
15207 auto *MulLHS = Mul->getOperand(i: 0);
15208 auto *MulRHS = Mul->getOperand(i: 1);
15209 if (isa<SCEVConstant>(Val: MulLHS))
15210 std::swap(a&: MulLHS, b&: MulRHS);
15211 if (auto *Div = dyn_cast<SCEVUDivExpr>(Val: MulLHS))
15212 if (Div->getOperand(i: 1) == MulRHS) {
15213 DividesBy = MulRHS;
15214 return true;
15215 }
15216 }
15217 if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Val: Expr))
15218 return HasDivisibiltyInfo(MinMax->getOperand(i: 0), DividesBy) ||
15219 HasDivisibiltyInfo(MinMax->getOperand(i: 1), DividesBy);
15220 return false;
15221 };
15222
15223 // Return true if Expr known to divide by \p DividesBy.
15224 std::function<bool(const SCEV *, const SCEV *&)> IsKnownToDivideBy =
15225 [&](const SCEV *Expr, const SCEV *DividesBy) {
15226 if (getURemExpr(LHS: Expr, RHS: DividesBy)->isZero())
15227 return true;
15228 if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Val: Expr))
15229 return IsKnownToDivideBy(MinMax->getOperand(i: 0), DividesBy) &&
15230 IsKnownToDivideBy(MinMax->getOperand(i: 1), DividesBy);
15231 return false;
15232 };
15233
15234 const SCEV *RewrittenLHS = GetMaybeRewritten(LHS);
15235 const SCEV *DividesBy = nullptr;
15236 if (HasDivisibiltyInfo(RewrittenLHS, DividesBy))
15237 // Check that the whole expression is divided by DividesBy
15238 DividesBy =
15239 IsKnownToDivideBy(RewrittenLHS, DividesBy) ? DividesBy : nullptr;
15240
15241 // Collect rewrites for LHS and its transitive operands based on the
15242 // condition.
15243 // For min/max expressions, also apply the guard to its operands:
15244 // 'min(a, b) >= c' -> '(a >= c) and (b >= c)',
15245 // 'min(a, b) > c' -> '(a > c) and (b > c)',
15246 // 'max(a, b) <= c' -> '(a <= c) and (b <= c)',
15247 // 'max(a, b) < c' -> '(a < c) and (b < c)'.
15248
15249 // We cannot express strict predicates in SCEV, so instead we replace them
15250 // with non-strict ones against plus or minus one of RHS depending on the
15251 // predicate.
15252 const SCEV *One = getOne(Ty: RHS->getType());
15253 switch (Predicate) {
15254 case CmpInst::ICMP_ULT:
15255 if (RHS->getType()->isPointerTy())
15256 return;
15257 RHS = getUMaxExpr(LHS: RHS, RHS: One);
15258 [[fallthrough]];
15259 case CmpInst::ICMP_SLT: {
15260 RHS = getMinusSCEV(LHS: RHS, RHS: One);
15261 RHS = DividesBy ? GetPreviousSCEVDividesByDivisor(RHS, DividesBy) : RHS;
15262 break;
15263 }
15264 case CmpInst::ICMP_UGT:
15265 case CmpInst::ICMP_SGT:
15266 RHS = getAddExpr(LHS: RHS, RHS: One);
15267 RHS = DividesBy ? GetNextSCEVDividesByDivisor(RHS, DividesBy) : RHS;
15268 break;
15269 case CmpInst::ICMP_ULE:
15270 case CmpInst::ICMP_SLE:
15271 RHS = DividesBy ? GetPreviousSCEVDividesByDivisor(RHS, DividesBy) : RHS;
15272 break;
15273 case CmpInst::ICMP_UGE:
15274 case CmpInst::ICMP_SGE:
15275 RHS = DividesBy ? GetNextSCEVDividesByDivisor(RHS, DividesBy) : RHS;
15276 break;
15277 default:
15278 break;
15279 }
15280
15281 SmallVector<const SCEV *, 16> Worklist(1, LHS);
15282 SmallPtrSet<const SCEV *, 16> Visited;
15283
15284 auto EnqueueOperands = [&Worklist](const SCEVNAryExpr *S) {
15285 append_range(C&: Worklist, R: S->operands());
15286 };
15287
15288 while (!Worklist.empty()) {
15289 const SCEV *From = Worklist.pop_back_val();
15290 if (isa<SCEVConstant>(Val: From))
15291 continue;
15292 if (!Visited.insert(Ptr: From).second)
15293 continue;
15294 const SCEV *FromRewritten = GetMaybeRewritten(From);
15295 const SCEV *To = nullptr;
15296
15297 switch (Predicate) {
15298 case CmpInst::ICMP_ULT:
15299 case CmpInst::ICMP_ULE:
15300 To = getUMinExpr(LHS: FromRewritten, RHS);
15301 if (auto *UMax = dyn_cast<SCEVUMaxExpr>(Val: FromRewritten))
15302 EnqueueOperands(UMax);
15303 break;
15304 case CmpInst::ICMP_SLT:
15305 case CmpInst::ICMP_SLE:
15306 To = getSMinExpr(LHS: FromRewritten, RHS);
15307 if (auto *SMax = dyn_cast<SCEVSMaxExpr>(Val: FromRewritten))
15308 EnqueueOperands(SMax);
15309 break;
15310 case CmpInst::ICMP_UGT:
15311 case CmpInst::ICMP_UGE:
15312 To = getUMaxExpr(LHS: FromRewritten, RHS);
15313 if (auto *UMin = dyn_cast<SCEVUMinExpr>(Val: FromRewritten))
15314 EnqueueOperands(UMin);
15315 break;
15316 case CmpInst::ICMP_SGT:
15317 case CmpInst::ICMP_SGE:
15318 To = getSMaxExpr(LHS: FromRewritten, RHS);
15319 if (auto *SMin = dyn_cast<SCEVSMinExpr>(Val: FromRewritten))
15320 EnqueueOperands(SMin);
15321 break;
15322 case CmpInst::ICMP_EQ:
15323 if (isa<SCEVConstant>(Val: RHS))
15324 To = RHS;
15325 break;
15326 case CmpInst::ICMP_NE:
15327 if (isa<SCEVConstant>(Val: RHS) &&
15328 cast<SCEVConstant>(Val: RHS)->getValue()->isNullValue()) {
15329 const SCEV *OneAlignedUp =
15330 DividesBy ? GetNextSCEVDividesByDivisor(One, DividesBy) : One;
15331 To = getUMaxExpr(LHS: FromRewritten, RHS: OneAlignedUp);
15332 }
15333 break;
15334 default:
15335 break;
15336 }
15337
15338 if (To)
15339 AddRewrite(From, FromRewritten, To);
15340 }
15341 };
15342
15343 BasicBlock *Header = L->getHeader();
15344 SmallVector<PointerIntPair<Value *, 1, bool>> Terms;
15345 // First, collect information from assumptions dominating the loop.
15346 for (auto &AssumeVH : AC.assumptions()) {
15347 if (!AssumeVH)
15348 continue;
15349 auto *AssumeI = cast<CallInst>(Val&: AssumeVH);
15350 if (!DT.dominates(Def: AssumeI, BB: Header))
15351 continue;
15352 Terms.emplace_back(Args: AssumeI->getOperand(i_nocapture: 0), Args: true);
15353 }
15354
15355 // Second, collect information from llvm.experimental.guards dominating the loop.
15356 auto *GuardDecl = F.getParent()->getFunction(
15357 Intrinsic::getName(Intrinsic::experimental_guard));
15358 if (GuardDecl)
15359 for (const auto *GU : GuardDecl->users())
15360 if (const auto *Guard = dyn_cast<IntrinsicInst>(GU))
15361 if (Guard->getFunction() == Header->getParent() && DT.dominates(Guard, Header))
15362 Terms.emplace_back(Guard->getArgOperand(0), true);
15363
15364 // Third, collect conditions from dominating branches. Starting at the loop
15365 // predecessor, climb up the predecessor chain, as long as there are
15366 // predecessors that can be found that have unique successors leading to the
15367 // original header.
15368 // TODO: share this logic with isLoopEntryGuardedByCond.
15369 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(
15370 L->getLoopPredecessor(), Header);
15371 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(BB: Pair.first)) {
15372
15373 const BranchInst *LoopEntryPredicate =
15374 dyn_cast<BranchInst>(Val: Pair.first->getTerminator());
15375 if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional())
15376 continue;
15377
15378 Terms.emplace_back(Args: LoopEntryPredicate->getCondition(),
15379 Args: LoopEntryPredicate->getSuccessor(i: 0) == Pair.second);
15380 }
15381
15382 // Now apply the information from the collected conditions to RewriteMap.
15383 // Conditions are processed in reverse order, so the earliest conditions is
15384 // processed first. This ensures the SCEVs with the shortest dependency chains
15385 // are constructed first.
15386 DenseMap<const SCEV *, const SCEV *> RewriteMap;
15387 for (auto [Term, EnterIfTrue] : reverse(C&: Terms)) {
15388 SmallVector<Value *, 8> Worklist;
15389 SmallPtrSet<Value *, 8> Visited;
15390 Worklist.push_back(Elt: Term);
15391 while (!Worklist.empty()) {
15392 Value *Cond = Worklist.pop_back_val();
15393 if (!Visited.insert(Ptr: Cond).second)
15394 continue;
15395
15396 if (auto *Cmp = dyn_cast<ICmpInst>(Val: Cond)) {
15397 auto Predicate =
15398 EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate();
15399 const auto *LHS = getSCEV(V: Cmp->getOperand(i_nocapture: 0));
15400 const auto *RHS = getSCEV(V: Cmp->getOperand(i_nocapture: 1));
15401 CollectCondition(Predicate, LHS, RHS, RewriteMap);
15402 continue;
15403 }
15404
15405 Value *L, *R;
15406 if (EnterIfTrue ? match(V: Cond, P: m_LogicalAnd(L: m_Value(V&: L), R: m_Value(V&: R)))
15407 : match(V: Cond, P: m_LogicalOr(L: m_Value(V&: L), R: m_Value(V&: R)))) {
15408 Worklist.push_back(Elt: L);
15409 Worklist.push_back(Elt: R);
15410 }
15411 }
15412 }
15413
15414 if (RewriteMap.empty())
15415 return Expr;
15416
15417 // Now that all rewrite information is collect, rewrite the collected
15418 // expressions with the information in the map. This applies information to
15419 // sub-expressions.
15420 if (ExprsToRewrite.size() > 1) {
15421 for (const SCEV *Expr : ExprsToRewrite) {
15422 const SCEV *RewriteTo = RewriteMap[Expr];
15423 RewriteMap.erase(Val: Expr);
15424 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
15425 RewriteMap.insert(KV: {Expr, Rewriter.visit(S: RewriteTo)});
15426 }
15427 }
15428
15429 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
15430 return Rewriter.visit(S: Expr);
15431}
15432

source code of llvm/lib/Analysis/ScalarEvolution.cpp