1//===- DwarfEHPrepare - Prepare exception handling for code generation ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass mulches exception handling code into a form adapted to code
10// generation. Required if using dwarf exception handling.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/DwarfEHPrepare.h"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/ADT/SmallVector.h"
17#include "llvm/ADT/Statistic.h"
18#include "llvm/Analysis/CFG.h"
19#include "llvm/Analysis/DomTreeUpdater.h"
20#include "llvm/Analysis/TargetTransformInfo.h"
21#include "llvm/CodeGen/RuntimeLibcalls.h"
22#include "llvm/CodeGen/TargetLowering.h"
23#include "llvm/CodeGen/TargetPassConfig.h"
24#include "llvm/CodeGen/TargetSubtargetInfo.h"
25#include "llvm/IR/BasicBlock.h"
26#include "llvm/IR/Constants.h"
27#include "llvm/IR/DebugInfoMetadata.h"
28#include "llvm/IR/DerivedTypes.h"
29#include "llvm/IR/Dominators.h"
30#include "llvm/IR/EHPersonalities.h"
31#include "llvm/IR/Function.h"
32#include "llvm/IR/Instructions.h"
33#include "llvm/IR/Module.h"
34#include "llvm/IR/Type.h"
35#include "llvm/InitializePasses.h"
36#include "llvm/Pass.h"
37#include "llvm/Support/Casting.h"
38#include "llvm/Target/TargetMachine.h"
39#include "llvm/TargetParser/Triple.h"
40#include "llvm/Transforms/Utils/Local.h"
41#include <cstddef>
42
43using namespace llvm;
44
45#define DEBUG_TYPE "dwarf-eh-prepare"
46
47STATISTIC(NumResumesLowered, "Number of resume calls lowered");
48STATISTIC(NumCleanupLandingPadsUnreachable,
49 "Number of cleanup landing pads found unreachable");
50STATISTIC(NumCleanupLandingPadsRemaining,
51 "Number of cleanup landing pads remaining");
52STATISTIC(NumNoUnwind, "Number of functions with nounwind");
53STATISTIC(NumUnwind, "Number of functions with unwind");
54
55namespace {
56
57class DwarfEHPrepare {
58 CodeGenOptLevel OptLevel;
59
60 Function &F;
61 const TargetLowering &TLI;
62 DomTreeUpdater *DTU;
63 const TargetTransformInfo *TTI;
64 const Triple &TargetTriple;
65
66 /// Return the exception object from the value passed into
67 /// the 'resume' instruction (typically an aggregate). Clean up any dead
68 /// instructions, including the 'resume' instruction.
69 Value *GetExceptionObject(ResumeInst *RI);
70
71 /// Replace resumes that are not reachable from a cleanup landing pad with
72 /// unreachable and then simplify those blocks.
73 size_t
74 pruneUnreachableResumes(SmallVectorImpl<ResumeInst *> &Resumes,
75 SmallVectorImpl<LandingPadInst *> &CleanupLPads);
76
77 /// Convert the ResumeInsts that are still present
78 /// into calls to the appropriate _Unwind_Resume function.
79 bool InsertUnwindResumeCalls();
80
81public:
82 DwarfEHPrepare(CodeGenOptLevel OptLevel_, Function &F_,
83 const TargetLowering &TLI_, DomTreeUpdater *DTU_,
84 const TargetTransformInfo *TTI_, const Triple &TargetTriple_)
85 : OptLevel(OptLevel_), F(F_), TLI(TLI_), DTU(DTU_), TTI(TTI_),
86 TargetTriple(TargetTriple_) {}
87
88 bool run();
89};
90
91} // namespace
92
93Value *DwarfEHPrepare::GetExceptionObject(ResumeInst *RI) {
94 Value *V = RI->getOperand(i_nocapture: 0);
95 Value *ExnObj = nullptr;
96 InsertValueInst *SelIVI = dyn_cast<InsertValueInst>(Val: V);
97 LoadInst *SelLoad = nullptr;
98 InsertValueInst *ExcIVI = nullptr;
99 bool EraseIVIs = false;
100
101 if (SelIVI) {
102 if (SelIVI->getNumIndices() == 1 && *SelIVI->idx_begin() == 1) {
103 ExcIVI = dyn_cast<InsertValueInst>(Val: SelIVI->getOperand(i_nocapture: 0));
104 if (ExcIVI && isa<UndefValue>(Val: ExcIVI->getOperand(i_nocapture: 0)) &&
105 ExcIVI->getNumIndices() == 1 && *ExcIVI->idx_begin() == 0) {
106 ExnObj = ExcIVI->getOperand(i_nocapture: 1);
107 SelLoad = dyn_cast<LoadInst>(Val: SelIVI->getOperand(i_nocapture: 1));
108 EraseIVIs = true;
109 }
110 }
111 }
112
113 if (!ExnObj)
114 ExnObj = ExtractValueInst::Create(Agg: RI->getOperand(i_nocapture: 0), Idxs: 0, NameStr: "exn.obj", InsertBefore: RI);
115
116 RI->eraseFromParent();
117
118 if (EraseIVIs) {
119 if (SelIVI->use_empty())
120 SelIVI->eraseFromParent();
121 if (ExcIVI->use_empty())
122 ExcIVI->eraseFromParent();
123 if (SelLoad && SelLoad->use_empty())
124 SelLoad->eraseFromParent();
125 }
126
127 return ExnObj;
128}
129
130size_t DwarfEHPrepare::pruneUnreachableResumes(
131 SmallVectorImpl<ResumeInst *> &Resumes,
132 SmallVectorImpl<LandingPadInst *> &CleanupLPads) {
133 assert(DTU && "Should have DomTreeUpdater here.");
134
135 BitVector ResumeReachable(Resumes.size());
136 size_t ResumeIndex = 0;
137 for (auto *RI : Resumes) {
138 for (auto *LP : CleanupLPads) {
139 if (isPotentiallyReachable(From: LP, To: RI, ExclusionSet: nullptr, DT: &DTU->getDomTree())) {
140 ResumeReachable.set(ResumeIndex);
141 break;
142 }
143 }
144 ++ResumeIndex;
145 }
146
147 // If everything is reachable, there is no change.
148 if (ResumeReachable.all())
149 return Resumes.size();
150
151 LLVMContext &Ctx = F.getContext();
152
153 // Otherwise, insert unreachable instructions and call simplifycfg.
154 size_t ResumesLeft = 0;
155 for (size_t I = 0, E = Resumes.size(); I < E; ++I) {
156 ResumeInst *RI = Resumes[I];
157 if (ResumeReachable[I]) {
158 Resumes[ResumesLeft++] = RI;
159 } else {
160 BasicBlock *BB = RI->getParent();
161 new UnreachableInst(Ctx, RI);
162 RI->eraseFromParent();
163 simplifyCFG(BB, TTI: *TTI, DTU);
164 }
165 }
166 Resumes.resize(N: ResumesLeft);
167 return ResumesLeft;
168}
169
170bool DwarfEHPrepare::InsertUnwindResumeCalls() {
171 SmallVector<ResumeInst *, 16> Resumes;
172 SmallVector<LandingPadInst *, 16> CleanupLPads;
173 if (F.doesNotThrow())
174 NumNoUnwind++;
175 else
176 NumUnwind++;
177 for (BasicBlock &BB : F) {
178 if (auto *RI = dyn_cast<ResumeInst>(Val: BB.getTerminator()))
179 Resumes.push_back(Elt: RI);
180 if (auto *LP = BB.getLandingPadInst())
181 if (LP->isCleanup())
182 CleanupLPads.push_back(Elt: LP);
183 }
184
185 NumCleanupLandingPadsRemaining += CleanupLPads.size();
186
187 if (Resumes.empty())
188 return false;
189
190 // Check the personality, don't do anything if it's scope-based.
191 EHPersonality Pers = classifyEHPersonality(Pers: F.getPersonalityFn());
192 if (isScopedEHPersonality(Pers))
193 return false;
194
195 LLVMContext &Ctx = F.getContext();
196
197 size_t ResumesLeft = Resumes.size();
198 if (OptLevel != CodeGenOptLevel::None) {
199 ResumesLeft = pruneUnreachableResumes(Resumes, CleanupLPads);
200#if LLVM_ENABLE_STATS
201 unsigned NumRemainingLPs = 0;
202 for (BasicBlock &BB : F) {
203 if (auto *LP = BB.getLandingPadInst())
204 if (LP->isCleanup())
205 NumRemainingLPs++;
206 }
207 NumCleanupLandingPadsUnreachable += CleanupLPads.size() - NumRemainingLPs;
208 NumCleanupLandingPadsRemaining -= CleanupLPads.size() - NumRemainingLPs;
209#endif
210 }
211
212 if (ResumesLeft == 0)
213 return true; // We pruned them all.
214
215 // RewindFunction - _Unwind_Resume or the target equivalent.
216 FunctionCallee RewindFunction;
217 CallingConv::ID RewindFunctionCallingConv;
218 FunctionType *FTy;
219 const char *RewindName;
220 bool DoesRewindFunctionNeedExceptionObject;
221
222 if ((Pers == EHPersonality::GNU_CXX || Pers == EHPersonality::GNU_CXX_SjLj) &&
223 TargetTriple.isTargetEHABICompatible()) {
224 RewindName = TLI.getLibcallName(Call: RTLIB::CXA_END_CLEANUP);
225 FTy = FunctionType::get(Result: Type::getVoidTy(C&: Ctx), isVarArg: false);
226 RewindFunctionCallingConv =
227 TLI.getLibcallCallingConv(Call: RTLIB::CXA_END_CLEANUP);
228 DoesRewindFunctionNeedExceptionObject = false;
229 } else {
230 RewindName = TLI.getLibcallName(Call: RTLIB::UNWIND_RESUME);
231 FTy = FunctionType::get(Result: Type::getVoidTy(C&: Ctx), Params: PointerType::getUnqual(C&: Ctx),
232 isVarArg: false);
233 RewindFunctionCallingConv = TLI.getLibcallCallingConv(Call: RTLIB::UNWIND_RESUME);
234 DoesRewindFunctionNeedExceptionObject = true;
235 }
236 RewindFunction = F.getParent()->getOrInsertFunction(Name: RewindName, T: FTy);
237
238 // Create the basic block where the _Unwind_Resume call will live.
239 if (ResumesLeft == 1) {
240 // Instead of creating a new BB and PHI node, just append the call to
241 // _Unwind_Resume to the end of the single resume block.
242 ResumeInst *RI = Resumes.front();
243 BasicBlock *UnwindBB = RI->getParent();
244 Value *ExnObj = GetExceptionObject(RI);
245 llvm::SmallVector<Value *, 1> RewindFunctionArgs;
246 if (DoesRewindFunctionNeedExceptionObject)
247 RewindFunctionArgs.push_back(Elt: ExnObj);
248
249 // Call the rewind function.
250 CallInst *CI =
251 CallInst::Create(Func: RewindFunction, Args: RewindFunctionArgs, NameStr: "", InsertAtEnd: UnwindBB);
252 // The verifier requires that all calls of debug-info-bearing functions
253 // from debug-info-bearing functions have a debug location (for inlining
254 // purposes). Assign a dummy location to satisfy the constraint.
255 Function *RewindFn = dyn_cast<Function>(Val: RewindFunction.getCallee());
256 if (RewindFn && RewindFn->getSubprogram())
257 if (DISubprogram *SP = F.getSubprogram())
258 CI->setDebugLoc(DILocation::get(Context&: SP->getContext(), Line: 0, Column: 0, Scope: SP));
259 CI->setCallingConv(RewindFunctionCallingConv);
260
261 // We never expect _Unwind_Resume to return.
262 CI->setDoesNotReturn();
263 new UnreachableInst(Ctx, UnwindBB);
264 return true;
265 }
266
267 std::vector<DominatorTree::UpdateType> Updates;
268 Updates.reserve(n: Resumes.size());
269
270 llvm::SmallVector<Value *, 1> RewindFunctionArgs;
271
272 BasicBlock *UnwindBB = BasicBlock::Create(Context&: Ctx, Name: "unwind_resume", Parent: &F);
273 PHINode *PN = PHINode::Create(Ty: PointerType::getUnqual(C&: Ctx), NumReservedValues: ResumesLeft,
274 NameStr: "exn.obj", InsertAtEnd: UnwindBB);
275
276 // Extract the exception object from the ResumeInst and add it to the PHI node
277 // that feeds the _Unwind_Resume call.
278 for (ResumeInst *RI : Resumes) {
279 BasicBlock *Parent = RI->getParent();
280 BranchInst::Create(IfTrue: UnwindBB, InsertAtEnd: Parent);
281 Updates.push_back(x: {DominatorTree::Insert, Parent, UnwindBB});
282
283 Value *ExnObj = GetExceptionObject(RI);
284 PN->addIncoming(V: ExnObj, BB: Parent);
285
286 ++NumResumesLowered;
287 }
288
289 if (DoesRewindFunctionNeedExceptionObject)
290 RewindFunctionArgs.push_back(Elt: PN);
291
292 // Call the function.
293 CallInst *CI =
294 CallInst::Create(Func: RewindFunction, Args: RewindFunctionArgs, NameStr: "", InsertAtEnd: UnwindBB);
295 CI->setCallingConv(RewindFunctionCallingConv);
296
297 // We never expect _Unwind_Resume to return.
298 CI->setDoesNotReturn();
299 new UnreachableInst(Ctx, UnwindBB);
300
301 if (DTU)
302 DTU->applyUpdates(Updates);
303
304 return true;
305}
306
307bool DwarfEHPrepare::run() {
308 bool Changed = InsertUnwindResumeCalls();
309
310 return Changed;
311}
312
313static bool prepareDwarfEH(CodeGenOptLevel OptLevel, Function &F,
314 const TargetLowering &TLI, DominatorTree *DT,
315 const TargetTransformInfo *TTI,
316 const Triple &TargetTriple) {
317 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
318
319 return DwarfEHPrepare(OptLevel, F, TLI, DT ? &DTU : nullptr, TTI,
320 TargetTriple)
321 .run();
322}
323
324namespace {
325
326class DwarfEHPrepareLegacyPass : public FunctionPass {
327
328 CodeGenOptLevel OptLevel;
329
330public:
331 static char ID; // Pass identification, replacement for typeid.
332
333 DwarfEHPrepareLegacyPass(CodeGenOptLevel OptLevel = CodeGenOptLevel::Default)
334 : FunctionPass(ID), OptLevel(OptLevel) {}
335
336 bool runOnFunction(Function &F) override {
337 const TargetMachine &TM =
338 getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
339 const TargetLowering &TLI = *TM.getSubtargetImpl(F)->getTargetLowering();
340 DominatorTree *DT = nullptr;
341 const TargetTransformInfo *TTI = nullptr;
342 if (auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>())
343 DT = &DTWP->getDomTree();
344 if (OptLevel != CodeGenOptLevel::None) {
345 if (!DT)
346 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
347 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
348 }
349 return prepareDwarfEH(OptLevel, F, TLI, DT, TTI, TargetTriple: TM.getTargetTriple());
350 }
351
352 void getAnalysisUsage(AnalysisUsage &AU) const override {
353 AU.addRequired<TargetPassConfig>();
354 AU.addRequired<TargetTransformInfoWrapperPass>();
355 if (OptLevel != CodeGenOptLevel::None) {
356 AU.addRequired<DominatorTreeWrapperPass>();
357 AU.addRequired<TargetTransformInfoWrapperPass>();
358 }
359 AU.addPreserved<DominatorTreeWrapperPass>();
360 }
361
362 StringRef getPassName() const override {
363 return "Exception handling preparation";
364 }
365};
366
367} // end anonymous namespace
368
369PreservedAnalyses DwarfEHPreparePass::run(Function &F,
370 FunctionAnalysisManager &FAM) {
371 const auto &TLI = *TM->getSubtargetImpl(F)->getTargetLowering();
372 auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(IR&: F);
373 const TargetTransformInfo *TTI = nullptr;
374 auto OptLevel = TM->getOptLevel();
375 if (OptLevel != CodeGenOptLevel::None) {
376 if (!DT)
377 DT = &FAM.getResult<DominatorTreeAnalysis>(IR&: F);
378 TTI = &FAM.getResult<TargetIRAnalysis>(IR&: F);
379 }
380 bool Changed =
381 prepareDwarfEH(OptLevel, F, TLI, DT, TTI, TargetTriple: TM->getTargetTriple());
382
383 if (!Changed)
384 return PreservedAnalyses::all();
385 PreservedAnalyses PA;
386 PA.preserve<DominatorTreeAnalysis>();
387 return PA;
388}
389
390char DwarfEHPrepareLegacyPass::ID = 0;
391
392INITIALIZE_PASS_BEGIN(DwarfEHPrepareLegacyPass, DEBUG_TYPE,
393 "Prepare DWARF exceptions", false, false)
394INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
395INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
396INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
397INITIALIZE_PASS_END(DwarfEHPrepareLegacyPass, DEBUG_TYPE,
398 "Prepare DWARF exceptions", false, false)
399
400FunctionPass *llvm::createDwarfEHPass(CodeGenOptLevel OptLevel) {
401 return new DwarfEHPrepareLegacyPass(OptLevel);
402}
403

source code of llvm/lib/CodeGen/DwarfEHPrepare.cpp