1//===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements basic block placement transformations using the CFG
10// structure and branch probability estimates.
11//
12// The pass strives to preserve the structure of the CFG (that is, retain
13// a topological ordering of basic blocks) in the absence of a *strong* signal
14// to the contrary from probabilities. However, within the CFG structure, it
15// attempts to choose an ordering which favors placing more likely sequences of
16// blocks adjacent to each other.
17//
18// The algorithm works from the inner-most loop within a function outward, and
19// at each stage walks through the basic blocks, trying to coalesce them into
20// sequential chains where allowed by the CFG (or demanded by heavy
21// probabilities). Finally, it walks the blocks in topological order, and the
22// first time it reaches a chain of basic blocks, it schedules them in the
23// function in-order.
24//
25//===----------------------------------------------------------------------===//
26
27#include "BranchFolding.h"
28#include "llvm/ADT/ArrayRef.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/SetVector.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
36#include "llvm/Analysis/ProfileSummaryInfo.h"
37#include "llvm/CodeGen/MBFIWrapper.h"
38#include "llvm/CodeGen/MachineBasicBlock.h"
39#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
40#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
41#include "llvm/CodeGen/MachineFunction.h"
42#include "llvm/CodeGen/MachineFunctionPass.h"
43#include "llvm/CodeGen/MachineLoopInfo.h"
44#include "llvm/CodeGen/MachinePostDominators.h"
45#include "llvm/CodeGen/MachineSizeOpts.h"
46#include "llvm/CodeGen/TailDuplicator.h"
47#include "llvm/CodeGen/TargetInstrInfo.h"
48#include "llvm/CodeGen/TargetLowering.h"
49#include "llvm/CodeGen/TargetPassConfig.h"
50#include "llvm/CodeGen/TargetSubtargetInfo.h"
51#include "llvm/IR/DebugLoc.h"
52#include "llvm/IR/Function.h"
53#include "llvm/IR/PrintPasses.h"
54#include "llvm/InitializePasses.h"
55#include "llvm/Pass.h"
56#include "llvm/Support/Allocator.h"
57#include "llvm/Support/BlockFrequency.h"
58#include "llvm/Support/BranchProbability.h"
59#include "llvm/Support/CodeGen.h"
60#include "llvm/Support/CommandLine.h"
61#include "llvm/Support/Compiler.h"
62#include "llvm/Support/Debug.h"
63#include "llvm/Support/raw_ostream.h"
64#include "llvm/Target/TargetMachine.h"
65#include "llvm/Transforms/Utils/CodeLayout.h"
66#include <algorithm>
67#include <cassert>
68#include <cstdint>
69#include <iterator>
70#include <memory>
71#include <string>
72#include <tuple>
73#include <utility>
74#include <vector>
75
76using namespace llvm;
77
78#define DEBUG_TYPE "block-placement"
79
80STATISTIC(NumCondBranches, "Number of conditional branches");
81STATISTIC(NumUncondBranches, "Number of unconditional branches");
82STATISTIC(CondBranchTakenFreq,
83 "Potential frequency of taking conditional branches");
84STATISTIC(UncondBranchTakenFreq,
85 "Potential frequency of taking unconditional branches");
86
87static cl::opt<unsigned> AlignAllBlock(
88 "align-all-blocks",
89 cl::desc("Force the alignment of all blocks in the function in log2 format "
90 "(e.g 4 means align on 16B boundaries)."),
91 cl::init(Val: 0), cl::Hidden);
92
93static cl::opt<unsigned> AlignAllNonFallThruBlocks(
94 "align-all-nofallthru-blocks",
95 cl::desc("Force the alignment of all blocks that have no fall-through "
96 "predecessors (i.e. don't add nops that are executed). In log2 "
97 "format (e.g 4 means align on 16B boundaries)."),
98 cl::init(Val: 0), cl::Hidden);
99
100static cl::opt<unsigned> MaxBytesForAlignmentOverride(
101 "max-bytes-for-alignment",
102 cl::desc("Forces the maximum bytes allowed to be emitted when padding for "
103 "alignment"),
104 cl::init(Val: 0), cl::Hidden);
105
106// FIXME: Find a good default for this flag and remove the flag.
107static cl::opt<unsigned> ExitBlockBias(
108 "block-placement-exit-block-bias",
109 cl::desc("Block frequency percentage a loop exit block needs "
110 "over the original exit to be considered the new exit."),
111 cl::init(Val: 0), cl::Hidden);
112
113// Definition:
114// - Outlining: placement of a basic block outside the chain or hot path.
115
116static cl::opt<unsigned> LoopToColdBlockRatio(
117 "loop-to-cold-block-ratio",
118 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
119 "(frequency of block) is greater than this ratio"),
120 cl::init(Val: 5), cl::Hidden);
121
122static cl::opt<bool> ForceLoopColdBlock(
123 "force-loop-cold-block",
124 cl::desc("Force outlining cold blocks from loops."),
125 cl::init(Val: false), cl::Hidden);
126
127static cl::opt<bool>
128 PreciseRotationCost("precise-rotation-cost",
129 cl::desc("Model the cost of loop rotation more "
130 "precisely by using profile data."),
131 cl::init(Val: false), cl::Hidden);
132
133static cl::opt<bool>
134 ForcePreciseRotationCost("force-precise-rotation-cost",
135 cl::desc("Force the use of precise cost "
136 "loop rotation strategy."),
137 cl::init(Val: false), cl::Hidden);
138
139static cl::opt<unsigned> MisfetchCost(
140 "misfetch-cost",
141 cl::desc("Cost that models the probabilistic risk of an instruction "
142 "misfetch due to a jump comparing to falling through, whose cost "
143 "is zero."),
144 cl::init(Val: 1), cl::Hidden);
145
146static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
147 cl::desc("Cost of jump instructions."),
148 cl::init(Val: 1), cl::Hidden);
149static cl::opt<bool>
150TailDupPlacement("tail-dup-placement",
151 cl::desc("Perform tail duplication during placement. "
152 "Creates more fallthrough opportunites in "
153 "outline branches."),
154 cl::init(Val: true), cl::Hidden);
155
156static cl::opt<bool>
157BranchFoldPlacement("branch-fold-placement",
158 cl::desc("Perform branch folding during placement. "
159 "Reduces code size."),
160 cl::init(Val: true), cl::Hidden);
161
162// Heuristic for tail duplication.
163static cl::opt<unsigned> TailDupPlacementThreshold(
164 "tail-dup-placement-threshold",
165 cl::desc("Instruction cutoff for tail duplication during layout. "
166 "Tail merging during layout is forced to have a threshold "
167 "that won't conflict."), cl::init(Val: 2),
168 cl::Hidden);
169
170// Heuristic for aggressive tail duplication.
171static cl::opt<unsigned> TailDupPlacementAggressiveThreshold(
172 "tail-dup-placement-aggressive-threshold",
173 cl::desc("Instruction cutoff for aggressive tail duplication during "
174 "layout. Used at -O3. Tail merging during layout is forced to "
175 "have a threshold that won't conflict."), cl::init(Val: 4),
176 cl::Hidden);
177
178// Heuristic for tail duplication.
179static cl::opt<unsigned> TailDupPlacementPenalty(
180 "tail-dup-placement-penalty",
181 cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. "
182 "Copying can increase fallthrough, but it also increases icache "
183 "pressure. This parameter controls the penalty to account for that. "
184 "Percent as integer."),
185 cl::init(Val: 2),
186 cl::Hidden);
187
188// Heuristic for tail duplication if profile count is used in cost model.
189static cl::opt<unsigned> TailDupProfilePercentThreshold(
190 "tail-dup-profile-percent-threshold",
191 cl::desc("If profile count information is used in tail duplication cost "
192 "model, the gained fall through number from tail duplication "
193 "should be at least this percent of hot count."),
194 cl::init(Val: 50), cl::Hidden);
195
196// Heuristic for triangle chains.
197static cl::opt<unsigned> TriangleChainCount(
198 "triangle-chain-count",
199 cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the "
200 "triangle tail duplication heuristic to kick in. 0 to disable."),
201 cl::init(Val: 2),
202 cl::Hidden);
203
204// Use case: When block layout is visualized after MBP pass, the basic blocks
205// are labeled in layout order; meanwhile blocks could be numbered in a
206// different order. It's hard to map between the graph and pass output.
207// With this option on, the basic blocks are renumbered in function layout
208// order. For debugging only.
209static cl::opt<bool> RenumberBlocksBeforeView(
210 "renumber-blocks-before-view",
211 cl::desc(
212 "If true, basic blocks are re-numbered before MBP layout is printed "
213 "into a dot graph. Only used when a function is being printed."),
214 cl::init(Val: false), cl::Hidden);
215
216namespace llvm {
217extern cl::opt<bool> EnableExtTspBlockPlacement;
218extern cl::opt<bool> ApplyExtTspWithoutProfile;
219extern cl::opt<unsigned> StaticLikelyProb;
220extern cl::opt<unsigned> ProfileLikelyProb;
221
222// Internal option used to control BFI display only after MBP pass.
223// Defined in CodeGen/MachineBlockFrequencyInfo.cpp:
224// -view-block-layout-with-bfi=
225extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI;
226
227// Command line option to specify the name of the function for CFG dump
228// Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name=
229extern cl::opt<std::string> ViewBlockFreqFuncName;
230} // namespace llvm
231
232namespace {
233
234class BlockChain;
235
236/// Type for our function-wide basic block -> block chain mapping.
237using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>;
238
239/// A chain of blocks which will be laid out contiguously.
240///
241/// This is the datastructure representing a chain of consecutive blocks that
242/// are profitable to layout together in order to maximize fallthrough
243/// probabilities and code locality. We also can use a block chain to represent
244/// a sequence of basic blocks which have some external (correctness)
245/// requirement for sequential layout.
246///
247/// Chains can be built around a single basic block and can be merged to grow
248/// them. They participate in a block-to-chain mapping, which is updated
249/// automatically as chains are merged together.
250class BlockChain {
251 /// The sequence of blocks belonging to this chain.
252 ///
253 /// This is the sequence of blocks for a particular chain. These will be laid
254 /// out in-order within the function.
255 SmallVector<MachineBasicBlock *, 4> Blocks;
256
257 /// A handle to the function-wide basic block to block chain mapping.
258 ///
259 /// This is retained in each block chain to simplify the computation of child
260 /// block chains for SCC-formation and iteration. We store the edges to child
261 /// basic blocks, and map them back to their associated chains using this
262 /// structure.
263 BlockToChainMapType &BlockToChain;
264
265public:
266 /// Construct a new BlockChain.
267 ///
268 /// This builds a new block chain representing a single basic block in the
269 /// function. It also registers itself as the chain that block participates
270 /// in with the BlockToChain mapping.
271 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
272 : Blocks(1, BB), BlockToChain(BlockToChain) {
273 assert(BB && "Cannot create a chain with a null basic block");
274 BlockToChain[BB] = this;
275 }
276
277 /// Iterator over blocks within the chain.
278 using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator;
279 using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator;
280
281 /// Beginning of blocks within the chain.
282 iterator begin() { return Blocks.begin(); }
283 const_iterator begin() const { return Blocks.begin(); }
284
285 /// End of blocks within the chain.
286 iterator end() { return Blocks.end(); }
287 const_iterator end() const { return Blocks.end(); }
288
289 bool remove(MachineBasicBlock* BB) {
290 for(iterator i = begin(); i != end(); ++i) {
291 if (*i == BB) {
292 Blocks.erase(CI: i);
293 return true;
294 }
295 }
296 return false;
297 }
298
299 /// Merge a block chain into this one.
300 ///
301 /// This routine merges a block chain into this one. It takes care of forming
302 /// a contiguous sequence of basic blocks, updating the edge list, and
303 /// updating the block -> chain mapping. It does not free or tear down the
304 /// old chain, but the old chain's block list is no longer valid.
305 void merge(MachineBasicBlock *BB, BlockChain *Chain) {
306 assert(BB && "Can't merge a null block.");
307 assert(!Blocks.empty() && "Can't merge into an empty chain.");
308
309 // Fast path in case we don't have a chain already.
310 if (!Chain) {
311 assert(!BlockToChain[BB] &&
312 "Passed chain is null, but BB has entry in BlockToChain.");
313 Blocks.push_back(Elt: BB);
314 BlockToChain[BB] = this;
315 return;
316 }
317
318 assert(BB == *Chain->begin() && "Passed BB is not head of Chain.");
319 assert(Chain->begin() != Chain->end());
320
321 // Update the incoming blocks to point to this chain, and add them to the
322 // chain structure.
323 for (MachineBasicBlock *ChainBB : *Chain) {
324 Blocks.push_back(Elt: ChainBB);
325 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain.");
326 BlockToChain[ChainBB] = this;
327 }
328 }
329
330#ifndef NDEBUG
331 /// Dump the blocks in this chain.
332 LLVM_DUMP_METHOD void dump() {
333 for (MachineBasicBlock *MBB : *this)
334 MBB->dump();
335 }
336#endif // NDEBUG
337
338 /// Count of predecessors of any block within the chain which have not
339 /// yet been scheduled. In general, we will delay scheduling this chain
340 /// until those predecessors are scheduled (or we find a sufficiently good
341 /// reason to override this heuristic.) Note that when forming loop chains,
342 /// blocks outside the loop are ignored and treated as if they were already
343 /// scheduled.
344 ///
345 /// Note: This field is reinitialized multiple times - once for each loop,
346 /// and then once for the function as a whole.
347 unsigned UnscheduledPredecessors = 0;
348};
349
350class MachineBlockPlacement : public MachineFunctionPass {
351 /// A type for a block filter set.
352 using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>;
353
354 /// Pair struct containing basic block and taildup profitability
355 struct BlockAndTailDupResult {
356 MachineBasicBlock *BB = nullptr;
357 bool ShouldTailDup;
358 };
359
360 /// Triple struct containing edge weight and the edge.
361 struct WeightedEdge {
362 BlockFrequency Weight;
363 MachineBasicBlock *Src = nullptr;
364 MachineBasicBlock *Dest = nullptr;
365 };
366
367 /// work lists of blocks that are ready to be laid out
368 SmallVector<MachineBasicBlock *, 16> BlockWorkList;
369 SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
370
371 /// Edges that have already been computed as optimal.
372 DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges;
373
374 /// Machine Function
375 MachineFunction *F = nullptr;
376
377 /// A handle to the branch probability pass.
378 const MachineBranchProbabilityInfo *MBPI = nullptr;
379
380 /// A handle to the function-wide block frequency pass.
381 std::unique_ptr<MBFIWrapper> MBFI;
382
383 /// A handle to the loop info.
384 MachineLoopInfo *MLI = nullptr;
385
386 /// Preferred loop exit.
387 /// Member variable for convenience. It may be removed by duplication deep
388 /// in the call stack.
389 MachineBasicBlock *PreferredLoopExit = nullptr;
390
391 /// A handle to the target's instruction info.
392 const TargetInstrInfo *TII = nullptr;
393
394 /// A handle to the target's lowering info.
395 const TargetLoweringBase *TLI = nullptr;
396
397 /// A handle to the post dominator tree.
398 MachinePostDominatorTree *MPDT = nullptr;
399
400 ProfileSummaryInfo *PSI = nullptr;
401
402 /// Duplicator used to duplicate tails during placement.
403 ///
404 /// Placement decisions can open up new tail duplication opportunities, but
405 /// since tail duplication affects placement decisions of later blocks, it
406 /// must be done inline.
407 TailDuplicator TailDup;
408
409 /// Partial tail duplication threshold.
410 BlockFrequency DupThreshold;
411
412 /// True: use block profile count to compute tail duplication cost.
413 /// False: use block frequency to compute tail duplication cost.
414 bool UseProfileCount = false;
415
416 /// Allocator and owner of BlockChain structures.
417 ///
418 /// We build BlockChains lazily while processing the loop structure of
419 /// a function. To reduce malloc traffic, we allocate them using this
420 /// slab-like allocator, and destroy them after the pass completes. An
421 /// important guarantee is that this allocator produces stable pointers to
422 /// the chains.
423 SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
424
425 /// Function wide BasicBlock to BlockChain mapping.
426 ///
427 /// This mapping allows efficiently moving from any given basic block to the
428 /// BlockChain it participates in, if any. We use it to, among other things,
429 /// allow implicitly defining edges between chains as the existing edges
430 /// between basic blocks.
431 DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain;
432
433#ifndef NDEBUG
434 /// The set of basic blocks that have terminators that cannot be fully
435 /// analyzed. These basic blocks cannot be re-ordered safely by
436 /// MachineBlockPlacement, and we must preserve physical layout of these
437 /// blocks and their successors through the pass.
438 SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits;
439#endif
440
441 /// Get block profile count or frequency according to UseProfileCount.
442 /// The return value is used to model tail duplication cost.
443 BlockFrequency getBlockCountOrFrequency(const MachineBasicBlock *BB) {
444 if (UseProfileCount) {
445 auto Count = MBFI->getBlockProfileCount(MBB: BB);
446 if (Count)
447 return BlockFrequency(*Count);
448 else
449 return BlockFrequency(0);
450 } else
451 return MBFI->getBlockFreq(MBB: BB);
452 }
453
454 /// Scale the DupThreshold according to basic block size.
455 BlockFrequency scaleThreshold(MachineBasicBlock *BB);
456 void initDupThreshold();
457
458 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
459 /// if the count goes to 0, add them to the appropriate work list.
460 void markChainSuccessors(
461 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
462 const BlockFilterSet *BlockFilter = nullptr);
463
464 /// Decrease the UnscheduledPredecessors count for a single block, and
465 /// if the count goes to 0, add them to the appropriate work list.
466 void markBlockSuccessors(
467 const BlockChain &Chain, const MachineBasicBlock *BB,
468 const MachineBasicBlock *LoopHeaderBB,
469 const BlockFilterSet *BlockFilter = nullptr);
470
471 BranchProbability
472 collectViableSuccessors(
473 const MachineBasicBlock *BB, const BlockChain &Chain,
474 const BlockFilterSet *BlockFilter,
475 SmallVector<MachineBasicBlock *, 4> &Successors);
476 bool isBestSuccessor(MachineBasicBlock *BB, MachineBasicBlock *Pred,
477 BlockFilterSet *BlockFilter);
478 void findDuplicateCandidates(SmallVectorImpl<MachineBasicBlock *> &Candidates,
479 MachineBasicBlock *BB,
480 BlockFilterSet *BlockFilter);
481 bool repeatedlyTailDuplicateBlock(
482 MachineBasicBlock *BB, MachineBasicBlock *&LPred,
483 const MachineBasicBlock *LoopHeaderBB,
484 BlockChain &Chain, BlockFilterSet *BlockFilter,
485 MachineFunction::iterator &PrevUnplacedBlockIt);
486 bool maybeTailDuplicateBlock(
487 MachineBasicBlock *BB, MachineBasicBlock *LPred,
488 BlockChain &Chain, BlockFilterSet *BlockFilter,
489 MachineFunction::iterator &PrevUnplacedBlockIt,
490 bool &DuplicatedToLPred);
491 bool hasBetterLayoutPredecessor(
492 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
493 const BlockChain &SuccChain, BranchProbability SuccProb,
494 BranchProbability RealSuccProb, const BlockChain &Chain,
495 const BlockFilterSet *BlockFilter);
496 BlockAndTailDupResult selectBestSuccessor(
497 const MachineBasicBlock *BB, const BlockChain &Chain,
498 const BlockFilterSet *BlockFilter);
499 MachineBasicBlock *selectBestCandidateBlock(
500 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList);
501 MachineBasicBlock *getFirstUnplacedBlock(
502 const BlockChain &PlacedChain,
503 MachineFunction::iterator &PrevUnplacedBlockIt,
504 const BlockFilterSet *BlockFilter);
505
506 /// Add a basic block to the work list if it is appropriate.
507 ///
508 /// If the optional parameter BlockFilter is provided, only MBB
509 /// present in the set will be added to the worklist. If nullptr
510 /// is provided, no filtering occurs.
511 void fillWorkLists(const MachineBasicBlock *MBB,
512 SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
513 const BlockFilterSet *BlockFilter);
514
515 void buildChain(const MachineBasicBlock *BB, BlockChain &Chain,
516 BlockFilterSet *BlockFilter = nullptr);
517 bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock,
518 const MachineBasicBlock *OldTop);
519 bool hasViableTopFallthrough(const MachineBasicBlock *Top,
520 const BlockFilterSet &LoopBlockSet);
521 BlockFrequency TopFallThroughFreq(const MachineBasicBlock *Top,
522 const BlockFilterSet &LoopBlockSet);
523 BlockFrequency FallThroughGains(const MachineBasicBlock *NewTop,
524 const MachineBasicBlock *OldTop,
525 const MachineBasicBlock *ExitBB,
526 const BlockFilterSet &LoopBlockSet);
527 MachineBasicBlock *findBestLoopTopHelper(MachineBasicBlock *OldTop,
528 const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
529 MachineBasicBlock *findBestLoopTop(
530 const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
531 MachineBasicBlock *findBestLoopExit(
532 const MachineLoop &L, const BlockFilterSet &LoopBlockSet,
533 BlockFrequency &ExitFreq);
534 BlockFilterSet collectLoopBlockSet(const MachineLoop &L);
535 void buildLoopChains(const MachineLoop &L);
536 void rotateLoop(
537 BlockChain &LoopChain, const MachineBasicBlock *ExitingBB,
538 BlockFrequency ExitFreq, const BlockFilterSet &LoopBlockSet);
539 void rotateLoopWithProfile(
540 BlockChain &LoopChain, const MachineLoop &L,
541 const BlockFilterSet &LoopBlockSet);
542 void buildCFGChains();
543 void optimizeBranches();
544 void alignBlocks();
545 /// Returns true if a block should be tail-duplicated to increase fallthrough
546 /// opportunities.
547 bool shouldTailDuplicate(MachineBasicBlock *BB);
548 /// Check the edge frequencies to see if tail duplication will increase
549 /// fallthroughs.
550 bool isProfitableToTailDup(
551 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
552 BranchProbability QProb,
553 const BlockChain &Chain, const BlockFilterSet *BlockFilter);
554
555 /// Check for a trellis layout.
556 bool isTrellis(const MachineBasicBlock *BB,
557 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
558 const BlockChain &Chain, const BlockFilterSet *BlockFilter);
559
560 /// Get the best successor given a trellis layout.
561 BlockAndTailDupResult getBestTrellisSuccessor(
562 const MachineBasicBlock *BB,
563 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
564 BranchProbability AdjustedSumProb, const BlockChain &Chain,
565 const BlockFilterSet *BlockFilter);
566
567 /// Get the best pair of non-conflicting edges.
568 static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges(
569 const MachineBasicBlock *BB,
570 MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges);
571
572 /// Returns true if a block can tail duplicate into all unplaced
573 /// predecessors. Filters based on loop.
574 bool canTailDuplicateUnplacedPreds(
575 const MachineBasicBlock *BB, MachineBasicBlock *Succ,
576 const BlockChain &Chain, const BlockFilterSet *BlockFilter);
577
578 /// Find chains of triangles to tail-duplicate where a global analysis works,
579 /// but a local analysis would not find them.
580 void precomputeTriangleChains();
581
582 /// Apply a post-processing step optimizing block placement.
583 void applyExtTsp();
584
585 /// Modify the existing block placement in the function and adjust all jumps.
586 void assignBlockOrder(const std::vector<const MachineBasicBlock *> &NewOrder);
587
588 /// Create a single CFG chain from the current block order.
589 void createCFGChainExtTsp();
590
591public:
592 static char ID; // Pass identification, replacement for typeid
593
594 MachineBlockPlacement() : MachineFunctionPass(ID) {
595 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
596 }
597
598 bool runOnMachineFunction(MachineFunction &F) override;
599
600 bool allowTailDupPlacement() const {
601 assert(F);
602 return TailDupPlacement && !F->getTarget().requiresStructuredCFG();
603 }
604
605 void getAnalysisUsage(AnalysisUsage &AU) const override {
606 AU.addRequired<MachineBranchProbabilityInfo>();
607 AU.addRequired<MachineBlockFrequencyInfo>();
608 if (TailDupPlacement)
609 AU.addRequired<MachinePostDominatorTree>();
610 AU.addRequired<MachineLoopInfo>();
611 AU.addRequired<ProfileSummaryInfoWrapperPass>();
612 AU.addRequired<TargetPassConfig>();
613 MachineFunctionPass::getAnalysisUsage(AU);
614 }
615};
616
617} // end anonymous namespace
618
619char MachineBlockPlacement::ID = 0;
620
621char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
622
623INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE,
624 "Branch Probability Basic Block Placement", false, false)
625INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
626INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
627INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
628INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
629INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
630INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE,
631 "Branch Probability Basic Block Placement", false, false)
632
633#ifndef NDEBUG
634/// Helper to print the name of a MBB.
635///
636/// Only used by debug logging.
637static std::string getBlockName(const MachineBasicBlock *BB) {
638 std::string Result;
639 raw_string_ostream OS(Result);
640 OS << printMBBReference(MBB: *BB);
641 OS << " ('" << BB->getName() << "')";
642 OS.flush();
643 return Result;
644}
645#endif
646
647/// Mark a chain's successors as having one fewer preds.
648///
649/// When a chain is being merged into the "placed" chain, this routine will
650/// quickly walk the successors of each block in the chain and mark them as
651/// having one fewer active predecessor. It also adds any successors of this
652/// chain which reach the zero-predecessor state to the appropriate worklist.
653void MachineBlockPlacement::markChainSuccessors(
654 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
655 const BlockFilterSet *BlockFilter) {
656 // Walk all the blocks in this chain, marking their successors as having
657 // a predecessor placed.
658 for (MachineBasicBlock *MBB : Chain) {
659 markBlockSuccessors(Chain, BB: MBB, LoopHeaderBB, BlockFilter);
660 }
661}
662
663/// Mark a single block's successors as having one fewer preds.
664///
665/// Under normal circumstances, this is only called by markChainSuccessors,
666/// but if a block that was to be placed is completely tail-duplicated away,
667/// and was duplicated into the chain end, we need to redo markBlockSuccessors
668/// for just that block.
669void MachineBlockPlacement::markBlockSuccessors(
670 const BlockChain &Chain, const MachineBasicBlock *MBB,
671 const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) {
672 // Add any successors for which this is the only un-placed in-loop
673 // predecessor to the worklist as a viable candidate for CFG-neutral
674 // placement. No subsequent placement of this block will violate the CFG
675 // shape, so we get to use heuristics to choose a favorable placement.
676 for (MachineBasicBlock *Succ : MBB->successors()) {
677 if (BlockFilter && !BlockFilter->count(key: Succ))
678 continue;
679 BlockChain &SuccChain = *BlockToChain[Succ];
680 // Disregard edges within a fixed chain, or edges to the loop header.
681 if (&Chain == &SuccChain || Succ == LoopHeaderBB)
682 continue;
683
684 // This is a cross-chain edge that is within the loop, so decrement the
685 // loop predecessor count of the destination chain.
686 if (SuccChain.UnscheduledPredecessors == 0 ||
687 --SuccChain.UnscheduledPredecessors > 0)
688 continue;
689
690 auto *NewBB = *SuccChain.begin();
691 if (NewBB->isEHPad())
692 EHPadWorkList.push_back(Elt: NewBB);
693 else
694 BlockWorkList.push_back(Elt: NewBB);
695 }
696}
697
698/// This helper function collects the set of successors of block
699/// \p BB that are allowed to be its layout successors, and return
700/// the total branch probability of edges from \p BB to those
701/// blocks.
702BranchProbability MachineBlockPlacement::collectViableSuccessors(
703 const MachineBasicBlock *BB, const BlockChain &Chain,
704 const BlockFilterSet *BlockFilter,
705 SmallVector<MachineBasicBlock *, 4> &Successors) {
706 // Adjust edge probabilities by excluding edges pointing to blocks that is
707 // either not in BlockFilter or is already in the current chain. Consider the
708 // following CFG:
709 //
710 // --->A
711 // | / \
712 // | B C
713 // | \ / \
714 // ----D E
715 //
716 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
717 // A->C is chosen as a fall-through, D won't be selected as a successor of C
718 // due to CFG constraint (the probability of C->D is not greater than
719 // HotProb to break topo-order). If we exclude E that is not in BlockFilter
720 // when calculating the probability of C->D, D will be selected and we
721 // will get A C D B as the layout of this loop.
722 auto AdjustedSumProb = BranchProbability::getOne();
723 for (MachineBasicBlock *Succ : BB->successors()) {
724 bool SkipSucc = false;
725 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(key: Succ))) {
726 SkipSucc = true;
727 } else {
728 BlockChain *SuccChain = BlockToChain[Succ];
729 if (SuccChain == &Chain) {
730 SkipSucc = true;
731 } else if (Succ != *SuccChain->begin()) {
732 LLVM_DEBUG(dbgs() << " " << getBlockName(Succ)
733 << " -> Mid chain!\n");
734 continue;
735 }
736 }
737 if (SkipSucc)
738 AdjustedSumProb -= MBPI->getEdgeProbability(Src: BB, Dst: Succ);
739 else
740 Successors.push_back(Elt: Succ);
741 }
742
743 return AdjustedSumProb;
744}
745
746/// The helper function returns the branch probability that is adjusted
747/// or normalized over the new total \p AdjustedSumProb.
748static BranchProbability
749getAdjustedProbability(BranchProbability OrigProb,
750 BranchProbability AdjustedSumProb) {
751 BranchProbability SuccProb;
752 uint32_t SuccProbN = OrigProb.getNumerator();
753 uint32_t SuccProbD = AdjustedSumProb.getNumerator();
754 if (SuccProbN >= SuccProbD)
755 SuccProb = BranchProbability::getOne();
756 else
757 SuccProb = BranchProbability(SuccProbN, SuccProbD);
758
759 return SuccProb;
760}
761
762/// Check if \p BB has exactly the successors in \p Successors.
763static bool
764hasSameSuccessors(MachineBasicBlock &BB,
765 SmallPtrSetImpl<const MachineBasicBlock *> &Successors) {
766 if (BB.succ_size() != Successors.size())
767 return false;
768 // We don't want to count self-loops
769 if (Successors.count(Ptr: &BB))
770 return false;
771 for (MachineBasicBlock *Succ : BB.successors())
772 if (!Successors.count(Ptr: Succ))
773 return false;
774 return true;
775}
776
777/// Check if a block should be tail duplicated to increase fallthrough
778/// opportunities.
779/// \p BB Block to check.
780bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) {
781 // Blocks with single successors don't create additional fallthrough
782 // opportunities. Don't duplicate them. TODO: When conditional exits are
783 // analyzable, allow them to be duplicated.
784 bool IsSimple = TailDup.isSimpleBB(TailBB: BB);
785
786 if (BB->succ_size() == 1)
787 return false;
788 return TailDup.shouldTailDuplicate(IsSimple, TailBB&: *BB);
789}
790
791/// Compare 2 BlockFrequency's with a small penalty for \p A.
792/// In order to be conservative, we apply a X% penalty to account for
793/// increased icache pressure and static heuristics. For small frequencies
794/// we use only the numerators to improve accuracy. For simplicity, we assume the
795/// penalty is less than 100%
796/// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere.
797static bool greaterWithBias(BlockFrequency A, BlockFrequency B,
798 BlockFrequency EntryFreq) {
799 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
800 BlockFrequency Gain = A - B;
801 return (Gain / ThresholdProb) >= EntryFreq;
802}
803
804/// Check the edge frequencies to see if tail duplication will increase
805/// fallthroughs. It only makes sense to call this function when
806/// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is
807/// always locally profitable if we would have picked \p Succ without
808/// considering duplication.
809bool MachineBlockPlacement::isProfitableToTailDup(
810 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
811 BranchProbability QProb,
812 const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
813 // We need to do a probability calculation to make sure this is profitable.
814 // First: does succ have a successor that post-dominates? This affects the
815 // calculation. The 2 relevant cases are:
816 // BB BB
817 // | \Qout | \Qout
818 // P| C |P C
819 // = C' = C'
820 // | /Qin | /Qin
821 // | / | /
822 // Succ Succ
823 // / \ | \ V
824 // U/ =V |U \
825 // / \ = D
826 // D E | /
827 // | /
828 // |/
829 // PDom
830 // '=' : Branch taken for that CFG edge
831 // In the second case, Placing Succ while duplicating it into C prevents the
832 // fallthrough of Succ into either D or PDom, because they now have C as an
833 // unplaced predecessor
834
835 // Start by figuring out which case we fall into
836 MachineBasicBlock *PDom = nullptr;
837 SmallVector<MachineBasicBlock *, 4> SuccSuccs;
838 // Only scan the relevant successors
839 auto AdjustedSuccSumProb =
840 collectViableSuccessors(BB: Succ, Chain, BlockFilter, Successors&: SuccSuccs);
841 BranchProbability PProb = MBPI->getEdgeProbability(Src: BB, Dst: Succ);
842 auto BBFreq = MBFI->getBlockFreq(MBB: BB);
843 auto SuccFreq = MBFI->getBlockFreq(MBB: Succ);
844 BlockFrequency P = BBFreq * PProb;
845 BlockFrequency Qout = BBFreq * QProb;
846 BlockFrequency EntryFreq = MBFI->getEntryFreq();
847 // If there are no more successors, it is profitable to copy, as it strictly
848 // increases fallthrough.
849 if (SuccSuccs.size() == 0)
850 return greaterWithBias(A: P, B: Qout, EntryFreq);
851
852 auto BestSuccSucc = BranchProbability::getZero();
853 // Find the PDom or the best Succ if no PDom exists.
854 for (MachineBasicBlock *SuccSucc : SuccSuccs) {
855 auto Prob = MBPI->getEdgeProbability(Src: Succ, Dst: SuccSucc);
856 if (Prob > BestSuccSucc)
857 BestSuccSucc = Prob;
858 if (PDom == nullptr)
859 if (MPDT->dominates(A: SuccSucc, B: Succ)) {
860 PDom = SuccSucc;
861 break;
862 }
863 }
864 // For the comparisons, we need to know Succ's best incoming edge that isn't
865 // from BB.
866 auto SuccBestPred = BlockFrequency(0);
867 for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
868 if (SuccPred == Succ || SuccPred == BB
869 || BlockToChain[SuccPred] == &Chain
870 || (BlockFilter && !BlockFilter->count(key: SuccPred)))
871 continue;
872 auto Freq = MBFI->getBlockFreq(MBB: SuccPred)
873 * MBPI->getEdgeProbability(Src: SuccPred, Dst: Succ);
874 if (Freq > SuccBestPred)
875 SuccBestPred = Freq;
876 }
877 // Qin is Succ's best unplaced incoming edge that isn't BB
878 BlockFrequency Qin = SuccBestPred;
879 // If it doesn't have a post-dominating successor, here is the calculation:
880 // BB BB
881 // | \Qout | \
882 // P| C | =
883 // = C' | C
884 // | /Qin | |
885 // | / | C' (+Succ)
886 // Succ Succ /|
887 // / \ | \/ |
888 // U/ =V | == |
889 // / \ | / \|
890 // D E D E
891 // '=' : Branch taken for that CFG edge
892 // Cost in the first case is: P + V
893 // For this calculation, we always assume P > Qout. If Qout > P
894 // The result of this function will be ignored at the caller.
895 // Let F = SuccFreq - Qin
896 // Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V
897
898 if (PDom == nullptr || !Succ->isSuccessor(MBB: PDom)) {
899 BranchProbability UProb = BestSuccSucc;
900 BranchProbability VProb = AdjustedSuccSumProb - UProb;
901 BlockFrequency F = SuccFreq - Qin;
902 BlockFrequency V = SuccFreq * VProb;
903 BlockFrequency QinU = std::min(a: Qin, b: F) * UProb;
904 BlockFrequency BaseCost = P + V;
905 BlockFrequency DupCost = Qout + QinU + std::max(a: Qin, b: F) * VProb;
906 return greaterWithBias(A: BaseCost, B: DupCost, EntryFreq);
907 }
908 BranchProbability UProb = MBPI->getEdgeProbability(Src: Succ, Dst: PDom);
909 BranchProbability VProb = AdjustedSuccSumProb - UProb;
910 BlockFrequency U = SuccFreq * UProb;
911 BlockFrequency V = SuccFreq * VProb;
912 BlockFrequency F = SuccFreq - Qin;
913 // If there is a post-dominating successor, here is the calculation:
914 // BB BB BB BB
915 // | \Qout | \ | \Qout | \
916 // |P C | = |P C | =
917 // = C' |P C = C' |P C
918 // | /Qin | | | /Qin | |
919 // | / | C' (+Succ) | / | C' (+Succ)
920 // Succ Succ /| Succ Succ /|
921 // | \ V | \/ | | \ V | \/ |
922 // |U \ |U /\ =? |U = |U /\ |
923 // = D = = =?| | D | = =|
924 // | / |/ D | / |/ D
925 // | / | / | = | /
926 // |/ | / |/ | =
927 // Dom Dom Dom Dom
928 // '=' : Branch taken for that CFG edge
929 // The cost for taken branches in the first case is P + U
930 // Let F = SuccFreq - Qin
931 // The cost in the second case (assuming independence), given the layout:
932 // BB, Succ, (C+Succ), D, Dom or the layout:
933 // BB, Succ, D, Dom, (C+Succ)
934 // is Qout + max(F, Qin) * U + min(F, Qin)
935 // compare P + U vs Qout + P * U + Qin.
936 //
937 // The 3rd and 4th cases cover when Dom would be chosen to follow Succ.
938 //
939 // For the 3rd case, the cost is P + 2 * V
940 // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V
941 // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V
942 if (UProb > AdjustedSuccSumProb / 2 &&
943 !hasBetterLayoutPredecessor(BB: Succ, Succ: PDom, SuccChain: *BlockToChain[PDom], SuccProb: UProb, RealSuccProb: UProb,
944 Chain, BlockFilter))
945 // Cases 3 & 4
946 return greaterWithBias(
947 A: (P + V), B: (Qout + std::max(a: Qin, b: F) * VProb + std::min(a: Qin, b: F) * UProb),
948 EntryFreq);
949 // Cases 1 & 2
950 return greaterWithBias(A: (P + U),
951 B: (Qout + std::min(a: Qin, b: F) * AdjustedSuccSumProb +
952 std::max(a: Qin, b: F) * UProb),
953 EntryFreq);
954}
955
956/// Check for a trellis layout. \p BB is the upper part of a trellis if its
957/// successors form the lower part of a trellis. A successor set S forms the
958/// lower part of a trellis if all of the predecessors of S are either in S or
959/// have all of S as successors. We ignore trellises where BB doesn't have 2
960/// successors because for fewer than 2, it's trivial, and for 3 or greater they
961/// are very uncommon and complex to compute optimally. Allowing edges within S
962/// is not strictly a trellis, but the same algorithm works, so we allow it.
963bool MachineBlockPlacement::isTrellis(
964 const MachineBasicBlock *BB,
965 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
966 const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
967 // Technically BB could form a trellis with branching factor higher than 2.
968 // But that's extremely uncommon.
969 if (BB->succ_size() != 2 || ViableSuccs.size() != 2)
970 return false;
971
972 SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(),
973 BB->succ_end());
974 // To avoid reviewing the same predecessors twice.
975 SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds;
976
977 for (MachineBasicBlock *Succ : ViableSuccs) {
978 int PredCount = 0;
979 for (auto *SuccPred : Succ->predecessors()) {
980 // Allow triangle successors, but don't count them.
981 if (Successors.count(Ptr: SuccPred)) {
982 // Make sure that it is actually a triangle.
983 for (MachineBasicBlock *CheckSucc : SuccPred->successors())
984 if (!Successors.count(Ptr: CheckSucc))
985 return false;
986 continue;
987 }
988 const BlockChain *PredChain = BlockToChain[SuccPred];
989 if (SuccPred == BB || (BlockFilter && !BlockFilter->count(key: SuccPred)) ||
990 PredChain == &Chain || PredChain == BlockToChain[Succ])
991 continue;
992 ++PredCount;
993 // Perform the successor check only once.
994 if (!SeenPreds.insert(Ptr: SuccPred).second)
995 continue;
996 if (!hasSameSuccessors(BB&: *SuccPred, Successors))
997 return false;
998 }
999 // If one of the successors has only BB as a predecessor, it is not a
1000 // trellis.
1001 if (PredCount < 1)
1002 return false;
1003 }
1004 return true;
1005}
1006
1007/// Pick the highest total weight pair of edges that can both be laid out.
1008/// The edges in \p Edges[0] are assumed to have a different destination than
1009/// the edges in \p Edges[1]. Simple counting shows that the best pair is either
1010/// the individual highest weight edges to the 2 different destinations, or in
1011/// case of a conflict, one of them should be replaced with a 2nd best edge.
1012std::pair<MachineBlockPlacement::WeightedEdge,
1013 MachineBlockPlacement::WeightedEdge>
1014MachineBlockPlacement::getBestNonConflictingEdges(
1015 const MachineBasicBlock *BB,
1016 MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>>
1017 Edges) {
1018 // Sort the edges, and then for each successor, find the best incoming
1019 // predecessor. If the best incoming predecessors aren't the same,
1020 // then that is clearly the best layout. If there is a conflict, one of the
1021 // successors will have to fallthrough from the second best predecessor. We
1022 // compare which combination is better overall.
1023
1024 // Sort for highest frequency.
1025 auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; };
1026
1027 llvm::stable_sort(Range&: Edges[0], C: Cmp);
1028 llvm::stable_sort(Range&: Edges[1], C: Cmp);
1029 auto BestA = Edges[0].begin();
1030 auto BestB = Edges[1].begin();
1031 // Arrange for the correct answer to be in BestA and BestB
1032 // If the 2 best edges don't conflict, the answer is already there.
1033 if (BestA->Src == BestB->Src) {
1034 // Compare the total fallthrough of (Best + Second Best) for both pairs
1035 auto SecondBestA = std::next(x: BestA);
1036 auto SecondBestB = std::next(x: BestB);
1037 BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight;
1038 BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight;
1039 if (BestAScore < BestBScore)
1040 BestA = SecondBestA;
1041 else
1042 BestB = SecondBestB;
1043 }
1044 // Arrange for the BB edge to be in BestA if it exists.
1045 if (BestB->Src == BB)
1046 std::swap(a&: BestA, b&: BestB);
1047 return std::make_pair(x&: *BestA, y&: *BestB);
1048}
1049
1050/// Get the best successor from \p BB based on \p BB being part of a trellis.
1051/// We only handle trellises with 2 successors, so the algorithm is
1052/// straightforward: Find the best pair of edges that don't conflict. We find
1053/// the best incoming edge for each successor in the trellis. If those conflict,
1054/// we consider which of them should be replaced with the second best.
1055/// Upon return the two best edges will be in \p BestEdges. If one of the edges
1056/// comes from \p BB, it will be in \p BestEdges[0]
1057MachineBlockPlacement::BlockAndTailDupResult
1058MachineBlockPlacement::getBestTrellisSuccessor(
1059 const MachineBasicBlock *BB,
1060 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
1061 BranchProbability AdjustedSumProb, const BlockChain &Chain,
1062 const BlockFilterSet *BlockFilter) {
1063
1064 BlockAndTailDupResult Result = {.BB: nullptr, .ShouldTailDup: false};
1065 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
1066 BB->succ_end());
1067
1068 // We assume size 2 because it's common. For general n, we would have to do
1069 // the Hungarian algorithm, but it's not worth the complexity because more
1070 // than 2 successors is fairly uncommon, and a trellis even more so.
1071 if (Successors.size() != 2 || ViableSuccs.size() != 2)
1072 return Result;
1073
1074 // Collect the edge frequencies of all edges that form the trellis.
1075 SmallVector<WeightedEdge, 8> Edges[2];
1076 int SuccIndex = 0;
1077 for (auto *Succ : ViableSuccs) {
1078 for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
1079 // Skip any placed predecessors that are not BB
1080 if (SuccPred != BB)
1081 if ((BlockFilter && !BlockFilter->count(key: SuccPred)) ||
1082 BlockToChain[SuccPred] == &Chain ||
1083 BlockToChain[SuccPred] == BlockToChain[Succ])
1084 continue;
1085 BlockFrequency EdgeFreq = MBFI->getBlockFreq(MBB: SuccPred) *
1086 MBPI->getEdgeProbability(Src: SuccPred, Dst: Succ);
1087 Edges[SuccIndex].push_back(Elt: {.Weight: EdgeFreq, .Src: SuccPred, .Dest: Succ});
1088 }
1089 ++SuccIndex;
1090 }
1091
1092 // Pick the best combination of 2 edges from all the edges in the trellis.
1093 WeightedEdge BestA, BestB;
1094 std::tie(args&: BestA, args&: BestB) = getBestNonConflictingEdges(BB, Edges);
1095
1096 if (BestA.Src != BB) {
1097 // If we have a trellis, and BB doesn't have the best fallthrough edges,
1098 // we shouldn't choose any successor. We've already looked and there's a
1099 // better fallthrough edge for all the successors.
1100 LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n");
1101 return Result;
1102 }
1103
1104 // Did we pick the triangle edge? If tail-duplication is profitable, do
1105 // that instead. Otherwise merge the triangle edge now while we know it is
1106 // optimal.
1107 if (BestA.Dest == BestB.Src) {
1108 // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2
1109 // would be better.
1110 MachineBasicBlock *Succ1 = BestA.Dest;
1111 MachineBasicBlock *Succ2 = BestB.Dest;
1112 // Check to see if tail-duplication would be profitable.
1113 if (allowTailDupPlacement() && shouldTailDuplicate(BB: Succ2) &&
1114 canTailDuplicateUnplacedPreds(BB, Succ: Succ2, Chain, BlockFilter) &&
1115 isProfitableToTailDup(BB, Succ: Succ2, QProb: MBPI->getEdgeProbability(Src: BB, Dst: Succ1),
1116 Chain, BlockFilter)) {
1117 LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability(
1118 MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb);
1119 dbgs() << " Selected: " << getBlockName(Succ2)
1120 << ", probability: " << Succ2Prob
1121 << " (Tail Duplicate)\n");
1122 Result.BB = Succ2;
1123 Result.ShouldTailDup = true;
1124 return Result;
1125 }
1126 }
1127 // We have already computed the optimal edge for the other side of the
1128 // trellis.
1129 ComputedEdges[BestB.Src] = { .BB: BestB.Dest, .ShouldTailDup: false };
1130
1131 auto TrellisSucc = BestA.Dest;
1132 LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability(
1133 MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb);
1134 dbgs() << " Selected: " << getBlockName(TrellisSucc)
1135 << ", probability: " << SuccProb << " (Trellis)\n");
1136 Result.BB = TrellisSucc;
1137 return Result;
1138}
1139
1140/// When the option allowTailDupPlacement() is on, this method checks if the
1141/// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated
1142/// into all of its unplaced, unfiltered predecessors, that are not BB.
1143bool MachineBlockPlacement::canTailDuplicateUnplacedPreds(
1144 const MachineBasicBlock *BB, MachineBasicBlock *Succ,
1145 const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
1146 if (!shouldTailDuplicate(BB: Succ))
1147 return false;
1148
1149 // The result of canTailDuplicate.
1150 bool Duplicate = true;
1151 // Number of possible duplication.
1152 unsigned int NumDup = 0;
1153
1154 // For CFG checking.
1155 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
1156 BB->succ_end());
1157 for (MachineBasicBlock *Pred : Succ->predecessors()) {
1158 // Make sure all unplaced and unfiltered predecessors can be
1159 // tail-duplicated into.
1160 // Skip any blocks that are already placed or not in this loop.
1161 if (Pred == BB || (BlockFilter && !BlockFilter->count(key: Pred))
1162 || (BlockToChain[Pred] == &Chain && !Succ->succ_empty()))
1163 continue;
1164 if (!TailDup.canTailDuplicate(TailBB: Succ, PredBB: Pred)) {
1165 if (Successors.size() > 1 && hasSameSuccessors(BB&: *Pred, Successors))
1166 // This will result in a trellis after tail duplication, so we don't
1167 // need to copy Succ into this predecessor. In the presence
1168 // of a trellis tail duplication can continue to be profitable.
1169 // For example:
1170 // A A
1171 // |\ |\
1172 // | \ | \
1173 // | C | C+BB
1174 // | / | |
1175 // |/ | |
1176 // BB => BB |
1177 // |\ |\/|
1178 // | \ |/\|
1179 // | D | D
1180 // | / | /
1181 // |/ |/
1182 // Succ Succ
1183 //
1184 // After BB was duplicated into C, the layout looks like the one on the
1185 // right. BB and C now have the same successors. When considering
1186 // whether Succ can be duplicated into all its unplaced predecessors, we
1187 // ignore C.
1188 // We can do this because C already has a profitable fallthrough, namely
1189 // D. TODO(iteratee): ignore sufficiently cold predecessors for
1190 // duplication and for this test.
1191 //
1192 // This allows trellises to be laid out in 2 separate chains
1193 // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic
1194 // because it allows the creation of 2 fallthrough paths with links
1195 // between them, and we correctly identify the best layout for these
1196 // CFGs. We want to extend trellises that the user created in addition
1197 // to trellises created by tail-duplication, so we just look for the
1198 // CFG.
1199 continue;
1200 Duplicate = false;
1201 continue;
1202 }
1203 NumDup++;
1204 }
1205
1206 // No possible duplication in current filter set.
1207 if (NumDup == 0)
1208 return false;
1209
1210 // If profile information is available, findDuplicateCandidates can do more
1211 // precise benefit analysis.
1212 if (F->getFunction().hasProfileData())
1213 return true;
1214
1215 // This is mainly for function exit BB.
1216 // The integrated tail duplication is really designed for increasing
1217 // fallthrough from predecessors from Succ to its successors. We may need
1218 // other machanism to handle different cases.
1219 if (Succ->succ_empty())
1220 return true;
1221
1222 // Plus the already placed predecessor.
1223 NumDup++;
1224
1225 // If the duplication candidate has more unplaced predecessors than
1226 // successors, the extra duplication can't bring more fallthrough.
1227 //
1228 // Pred1 Pred2 Pred3
1229 // \ | /
1230 // \ | /
1231 // \ | /
1232 // Dup
1233 // / \
1234 // / \
1235 // Succ1 Succ2
1236 //
1237 // In this example Dup has 2 successors and 3 predecessors, duplication of Dup
1238 // can increase the fallthrough from Pred1 to Succ1 and from Pred2 to Succ2,
1239 // but the duplication into Pred3 can't increase fallthrough.
1240 //
1241 // A small number of extra duplication may not hurt too much. We need a better
1242 // heuristic to handle it.
1243 if ((NumDup > Succ->succ_size()) || !Duplicate)
1244 return false;
1245
1246 return true;
1247}
1248
1249/// Find chains of triangles where we believe it would be profitable to
1250/// tail-duplicate them all, but a local analysis would not find them.
1251/// There are 3 ways this can be profitable:
1252/// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with
1253/// longer chains)
1254/// 2) The chains are statically correlated. Branch probabilities have a very
1255/// U-shaped distribution.
1256/// [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805]
1257/// If the branches in a chain are likely to be from the same side of the
1258/// distribution as their predecessor, but are independent at runtime, this
1259/// transformation is profitable. (Because the cost of being wrong is a small
1260/// fixed cost, unlike the standard triangle layout where the cost of being
1261/// wrong scales with the # of triangles.)
1262/// 3) The chains are dynamically correlated. If the probability that a previous
1263/// branch was taken positively influences whether the next branch will be
1264/// taken
1265/// We believe that 2 and 3 are common enough to justify the small margin in 1.
1266void MachineBlockPlacement::precomputeTriangleChains() {
1267 struct TriangleChain {
1268 std::vector<MachineBasicBlock *> Edges;
1269
1270 TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst)
1271 : Edges({src, dst}) {}
1272
1273 void append(MachineBasicBlock *dst) {
1274 assert(getKey()->isSuccessor(dst) &&
1275 "Attempting to append a block that is not a successor.");
1276 Edges.push_back(x: dst);
1277 }
1278
1279 unsigned count() const { return Edges.size() - 1; }
1280
1281 MachineBasicBlock *getKey() const {
1282 return Edges.back();
1283 }
1284 };
1285
1286 if (TriangleChainCount == 0)
1287 return;
1288
1289 LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n");
1290 // Map from last block to the chain that contains it. This allows us to extend
1291 // chains as we find new triangles.
1292 DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap;
1293 for (MachineBasicBlock &BB : *F) {
1294 // If BB doesn't have 2 successors, it doesn't start a triangle.
1295 if (BB.succ_size() != 2)
1296 continue;
1297 MachineBasicBlock *PDom = nullptr;
1298 for (MachineBasicBlock *Succ : BB.successors()) {
1299 if (!MPDT->dominates(A: Succ, B: &BB))
1300 continue;
1301 PDom = Succ;
1302 break;
1303 }
1304 // If BB doesn't have a post-dominating successor, it doesn't form a
1305 // triangle.
1306 if (PDom == nullptr)
1307 continue;
1308 // If PDom has a hint that it is low probability, skip this triangle.
1309 if (MBPI->getEdgeProbability(Src: &BB, Dst: PDom) < BranchProbability(50, 100))
1310 continue;
1311 // If PDom isn't eligible for duplication, this isn't the kind of triangle
1312 // we're looking for.
1313 if (!shouldTailDuplicate(BB: PDom))
1314 continue;
1315 bool CanTailDuplicate = true;
1316 // If PDom can't tail-duplicate into it's non-BB predecessors, then this
1317 // isn't the kind of triangle we're looking for.
1318 for (MachineBasicBlock* Pred : PDom->predecessors()) {
1319 if (Pred == &BB)
1320 continue;
1321 if (!TailDup.canTailDuplicate(TailBB: PDom, PredBB: Pred)) {
1322 CanTailDuplicate = false;
1323 break;
1324 }
1325 }
1326 // If we can't tail-duplicate PDom to its predecessors, then skip this
1327 // triangle.
1328 if (!CanTailDuplicate)
1329 continue;
1330
1331 // Now we have an interesting triangle. Insert it if it's not part of an
1332 // existing chain.
1333 // Note: This cannot be replaced with a call insert() or emplace() because
1334 // the find key is BB, but the insert/emplace key is PDom.
1335 auto Found = TriangleChainMap.find(Val: &BB);
1336 // If it is, remove the chain from the map, grow it, and put it back in the
1337 // map with the end as the new key.
1338 if (Found != TriangleChainMap.end()) {
1339 TriangleChain Chain = std::move(Found->second);
1340 TriangleChainMap.erase(I: Found);
1341 Chain.append(dst: PDom);
1342 TriangleChainMap.insert(KV: std::make_pair(x: Chain.getKey(), y: std::move(Chain)));
1343 } else {
1344 auto InsertResult = TriangleChainMap.try_emplace(Key: PDom, Args: &BB, Args&: PDom);
1345 assert(InsertResult.second && "Block seen twice.");
1346 (void)InsertResult;
1347 }
1348 }
1349
1350 // Iterating over a DenseMap is safe here, because the only thing in the body
1351 // of the loop is inserting into another DenseMap (ComputedEdges).
1352 // ComputedEdges is never iterated, so this doesn't lead to non-determinism.
1353 for (auto &ChainPair : TriangleChainMap) {
1354 TriangleChain &Chain = ChainPair.second;
1355 // Benchmarking has shown that due to branch correlation duplicating 2 or
1356 // more triangles is profitable, despite the calculations assuming
1357 // independence.
1358 if (Chain.count() < TriangleChainCount)
1359 continue;
1360 MachineBasicBlock *dst = Chain.Edges.back();
1361 Chain.Edges.pop_back();
1362 for (MachineBasicBlock *src : reverse(C&: Chain.Edges)) {
1363 LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->"
1364 << getBlockName(dst)
1365 << " as pre-computed based on triangles.\n");
1366
1367 auto InsertResult = ComputedEdges.insert(KV: {src, {.BB: dst, .ShouldTailDup: true}});
1368 assert(InsertResult.second && "Block seen twice.");
1369 (void)InsertResult;
1370
1371 dst = src;
1372 }
1373 }
1374}
1375
1376// When profile is not present, return the StaticLikelyProb.
1377// When profile is available, we need to handle the triangle-shape CFG.
1378static BranchProbability getLayoutSuccessorProbThreshold(
1379 const MachineBasicBlock *BB) {
1380 if (!BB->getParent()->getFunction().hasProfileData())
1381 return BranchProbability(StaticLikelyProb, 100);
1382 if (BB->succ_size() == 2) {
1383 const MachineBasicBlock *Succ1 = *BB->succ_begin();
1384 const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1);
1385 if (Succ1->isSuccessor(MBB: Succ2) || Succ2->isSuccessor(MBB: Succ1)) {
1386 /* See case 1 below for the cost analysis. For BB->Succ to
1387 * be taken with smaller cost, the following needs to hold:
1388 * Prob(BB->Succ) > 2 * Prob(BB->Pred)
1389 * So the threshold T in the calculation below
1390 * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred)
1391 * So T / (1 - T) = 2, Yielding T = 2/3
1392 * Also adding user specified branch bias, we have
1393 * T = (2/3)*(ProfileLikelyProb/50)
1394 * = (2*ProfileLikelyProb)/150)
1395 */
1396 return BranchProbability(2 * ProfileLikelyProb, 150);
1397 }
1398 }
1399 return BranchProbability(ProfileLikelyProb, 100);
1400}
1401
1402/// Checks to see if the layout candidate block \p Succ has a better layout
1403/// predecessor than \c BB. If yes, returns true.
1404/// \p SuccProb: The probability adjusted for only remaining blocks.
1405/// Only used for logging
1406/// \p RealSuccProb: The un-adjusted probability.
1407/// \p Chain: The chain that BB belongs to and Succ is being considered for.
1408/// \p BlockFilter: if non-null, the set of blocks that make up the loop being
1409/// considered
1410bool MachineBlockPlacement::hasBetterLayoutPredecessor(
1411 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
1412 const BlockChain &SuccChain, BranchProbability SuccProb,
1413 BranchProbability RealSuccProb, const BlockChain &Chain,
1414 const BlockFilterSet *BlockFilter) {
1415
1416 // There isn't a better layout when there are no unscheduled predecessors.
1417 if (SuccChain.UnscheduledPredecessors == 0)
1418 return false;
1419
1420 // There are two basic scenarios here:
1421 // -------------------------------------
1422 // Case 1: triangular shape CFG (if-then):
1423 // BB
1424 // | \
1425 // | \
1426 // | Pred
1427 // | /
1428 // Succ
1429 // In this case, we are evaluating whether to select edge -> Succ, e.g.
1430 // set Succ as the layout successor of BB. Picking Succ as BB's
1431 // successor breaks the CFG constraints (FIXME: define these constraints).
1432 // With this layout, Pred BB
1433 // is forced to be outlined, so the overall cost will be cost of the
1434 // branch taken from BB to Pred, plus the cost of back taken branch
1435 // from Pred to Succ, as well as the additional cost associated
1436 // with the needed unconditional jump instruction from Pred To Succ.
1437
1438 // The cost of the topological order layout is the taken branch cost
1439 // from BB to Succ, so to make BB->Succ a viable candidate, the following
1440 // must hold:
1441 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
1442 // < freq(BB->Succ) * taken_branch_cost.
1443 // Ignoring unconditional jump cost, we get
1444 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
1445 // prob(BB->Succ) > 2 * prob(BB->Pred)
1446 //
1447 // When real profile data is available, we can precisely compute the
1448 // probability threshold that is needed for edge BB->Succ to be considered.
1449 // Without profile data, the heuristic requires the branch bias to be
1450 // a lot larger to make sure the signal is very strong (e.g. 80% default).
1451 // -----------------------------------------------------------------
1452 // Case 2: diamond like CFG (if-then-else):
1453 // S
1454 // / \
1455 // | \
1456 // BB Pred
1457 // \ /
1458 // Succ
1459 // ..
1460 //
1461 // The current block is BB and edge BB->Succ is now being evaluated.
1462 // Note that edge S->BB was previously already selected because
1463 // prob(S->BB) > prob(S->Pred).
1464 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
1465 // choose Pred, we will have a topological ordering as shown on the left
1466 // in the picture below. If we choose Succ, we have the solution as shown
1467 // on the right:
1468 //
1469 // topo-order:
1470 //
1471 // S----- ---S
1472 // | | | |
1473 // ---BB | | BB
1474 // | | | |
1475 // | Pred-- | Succ--
1476 // | | | |
1477 // ---Succ ---Pred--
1478 //
1479 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred)
1480 // = freq(S->Pred) + freq(S->BB)
1481 //
1482 // If we have profile data (i.e, branch probabilities can be trusted), the
1483 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
1484 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
1485 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
1486 // means the cost of topological order is greater.
1487 // When profile data is not available, however, we need to be more
1488 // conservative. If the branch prediction is wrong, breaking the topo-order
1489 // will actually yield a layout with large cost. For this reason, we need
1490 // strong biased branch at block S with Prob(S->BB) in order to select
1491 // BB->Succ. This is equivalent to looking the CFG backward with backward
1492 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
1493 // profile data).
1494 // --------------------------------------------------------------------------
1495 // Case 3: forked diamond
1496 // S
1497 // / \
1498 // / \
1499 // BB Pred
1500 // | \ / |
1501 // | \ / |
1502 // | X |
1503 // | / \ |
1504 // | / \ |
1505 // S1 S2
1506 //
1507 // The current block is BB and edge BB->S1 is now being evaluated.
1508 // As above S->BB was already selected because
1509 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
1510 //
1511 // topo-order:
1512 //
1513 // S-------| ---S
1514 // | | | |
1515 // ---BB | | BB
1516 // | | | |
1517 // | Pred----| | S1----
1518 // | | | |
1519 // --(S1 or S2) ---Pred--
1520 // |
1521 // S2
1522 //
1523 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
1524 // + min(freq(Pred->S1), freq(Pred->S2))
1525 // Non-topo-order cost:
1526 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
1527 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
1528 // is 0. Then the non topo layout is better when
1529 // freq(S->Pred) < freq(BB->S1).
1530 // This is exactly what is checked below.
1531 // Note there are other shapes that apply (Pred may not be a single block,
1532 // but they all fit this general pattern.)
1533 BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB);
1534
1535 // Make sure that a hot successor doesn't have a globally more
1536 // important predecessor.
1537 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(MBB: BB) * RealSuccProb;
1538 bool BadCFGConflict = false;
1539
1540 for (MachineBasicBlock *Pred : Succ->predecessors()) {
1541 BlockChain *PredChain = BlockToChain[Pred];
1542 if (Pred == Succ || PredChain == &SuccChain ||
1543 (BlockFilter && !BlockFilter->count(key: Pred)) ||
1544 PredChain == &Chain || Pred != *std::prev(x: PredChain->end()) ||
1545 // This check is redundant except for look ahead. This function is
1546 // called for lookahead by isProfitableToTailDup when BB hasn't been
1547 // placed yet.
1548 (Pred == BB))
1549 continue;
1550 // Do backward checking.
1551 // For all cases above, we need a backward checking to filter out edges that
1552 // are not 'strongly' biased.
1553 // BB Pred
1554 // \ /
1555 // Succ
1556 // We select edge BB->Succ if
1557 // freq(BB->Succ) > freq(Succ) * HotProb
1558 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
1559 // HotProb
1560 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
1561 // Case 1 is covered too, because the first equation reduces to:
1562 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
1563 BlockFrequency PredEdgeFreq =
1564 MBFI->getBlockFreq(MBB: Pred) * MBPI->getEdgeProbability(Src: Pred, Dst: Succ);
1565 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) {
1566 BadCFGConflict = true;
1567 break;
1568 }
1569 }
1570
1571 if (BadCFGConflict) {
1572 LLVM_DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> "
1573 << SuccProb << " (prob) (non-cold CFG conflict)\n");
1574 return true;
1575 }
1576
1577 return false;
1578}
1579
1580/// Select the best successor for a block.
1581///
1582/// This looks across all successors of a particular block and attempts to
1583/// select the "best" one to be the layout successor. It only considers direct
1584/// successors which also pass the block filter. It will attempt to avoid
1585/// breaking CFG structure, but cave and break such structures in the case of
1586/// very hot successor edges.
1587///
1588/// \returns The best successor block found, or null if none are viable, along
1589/// with a boolean indicating if tail duplication is necessary.
1590MachineBlockPlacement::BlockAndTailDupResult
1591MachineBlockPlacement::selectBestSuccessor(
1592 const MachineBasicBlock *BB, const BlockChain &Chain,
1593 const BlockFilterSet *BlockFilter) {
1594 const BranchProbability HotProb(StaticLikelyProb, 100);
1595
1596 BlockAndTailDupResult BestSucc = { .BB: nullptr, .ShouldTailDup: false };
1597 auto BestProb = BranchProbability::getZero();
1598
1599 SmallVector<MachineBasicBlock *, 4> Successors;
1600 auto AdjustedSumProb =
1601 collectViableSuccessors(BB, Chain, BlockFilter, Successors);
1602
1603 LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB)
1604 << "\n");
1605
1606 // if we already precomputed the best successor for BB, return that if still
1607 // applicable.
1608 auto FoundEdge = ComputedEdges.find(Val: BB);
1609 if (FoundEdge != ComputedEdges.end()) {
1610 MachineBasicBlock *Succ = FoundEdge->second.BB;
1611 ComputedEdges.erase(I: FoundEdge);
1612 BlockChain *SuccChain = BlockToChain[Succ];
1613 if (BB->isSuccessor(MBB: Succ) && (!BlockFilter || BlockFilter->count(key: Succ)) &&
1614 SuccChain != &Chain && Succ == *SuccChain->begin())
1615 return FoundEdge->second;
1616 }
1617
1618 // if BB is part of a trellis, Use the trellis to determine the optimal
1619 // fallthrough edges
1620 if (isTrellis(BB, ViableSuccs: Successors, Chain, BlockFilter))
1621 return getBestTrellisSuccessor(BB, ViableSuccs: Successors, AdjustedSumProb, Chain,
1622 BlockFilter);
1623
1624 // For blocks with CFG violations, we may be able to lay them out anyway with
1625 // tail-duplication. We keep this vector so we can perform the probability
1626 // calculations the minimum number of times.
1627 SmallVector<std::pair<BranchProbability, MachineBasicBlock *>, 4>
1628 DupCandidates;
1629 for (MachineBasicBlock *Succ : Successors) {
1630 auto RealSuccProb = MBPI->getEdgeProbability(Src: BB, Dst: Succ);
1631 BranchProbability SuccProb =
1632 getAdjustedProbability(OrigProb: RealSuccProb, AdjustedSumProb);
1633
1634 BlockChain &SuccChain = *BlockToChain[Succ];
1635 // Skip the edge \c BB->Succ if block \c Succ has a better layout
1636 // predecessor that yields lower global cost.
1637 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb,
1638 Chain, BlockFilter)) {
1639 // If tail duplication would make Succ profitable, place it.
1640 if (allowTailDupPlacement() && shouldTailDuplicate(BB: Succ))
1641 DupCandidates.emplace_back(Args&: SuccProb, Args&: Succ);
1642 continue;
1643 }
1644
1645 LLVM_DEBUG(
1646 dbgs() << " Candidate: " << getBlockName(Succ)
1647 << ", probability: " << SuccProb
1648 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
1649 << "\n");
1650
1651 if (BestSucc.BB && BestProb >= SuccProb) {
1652 LLVM_DEBUG(dbgs() << " Not the best candidate, continuing\n");
1653 continue;
1654 }
1655
1656 LLVM_DEBUG(dbgs() << " Setting it as best candidate\n");
1657 BestSucc.BB = Succ;
1658 BestProb = SuccProb;
1659 }
1660 // Handle the tail duplication candidates in order of decreasing probability.
1661 // Stop at the first one that is profitable. Also stop if they are less
1662 // profitable than BestSucc. Position is important because we preserve it and
1663 // prefer first best match. Here we aren't comparing in order, so we capture
1664 // the position instead.
1665 llvm::stable_sort(Range&: DupCandidates,
1666 C: [](std::tuple<BranchProbability, MachineBasicBlock *> L,
1667 std::tuple<BranchProbability, MachineBasicBlock *> R) {
1668 return std::get<0>(t&: L) > std::get<0>(t&: R);
1669 });
1670 for (auto &Tup : DupCandidates) {
1671 BranchProbability DupProb;
1672 MachineBasicBlock *Succ;
1673 std::tie(args&: DupProb, args&: Succ) = Tup;
1674 if (DupProb < BestProb)
1675 break;
1676 if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter)
1677 && (isProfitableToTailDup(BB, Succ, QProb: BestProb, Chain, BlockFilter))) {
1678 LLVM_DEBUG(dbgs() << " Candidate: " << getBlockName(Succ)
1679 << ", probability: " << DupProb
1680 << " (Tail Duplicate)\n");
1681 BestSucc.BB = Succ;
1682 BestSucc.ShouldTailDup = true;
1683 break;
1684 }
1685 }
1686
1687 if (BestSucc.BB)
1688 LLVM_DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc.BB) << "\n");
1689
1690 return BestSucc;
1691}
1692
1693/// Select the best block from a worklist.
1694///
1695/// This looks through the provided worklist as a list of candidate basic
1696/// blocks and select the most profitable one to place. The definition of
1697/// profitable only really makes sense in the context of a loop. This returns
1698/// the most frequently visited block in the worklist, which in the case of
1699/// a loop, is the one most desirable to be physically close to the rest of the
1700/// loop body in order to improve i-cache behavior.
1701///
1702/// \returns The best block found, or null if none are viable.
1703MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
1704 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
1705 // Once we need to walk the worklist looking for a candidate, cleanup the
1706 // worklist of already placed entries.
1707 // FIXME: If this shows up on profiles, it could be folded (at the cost of
1708 // some code complexity) into the loop below.
1709 llvm::erase_if(C&: WorkList, P: [&](MachineBasicBlock *BB) {
1710 return BlockToChain.lookup(Val: BB) == &Chain;
1711 });
1712
1713 if (WorkList.empty())
1714 return nullptr;
1715
1716 bool IsEHPad = WorkList[0]->isEHPad();
1717
1718 MachineBasicBlock *BestBlock = nullptr;
1719 BlockFrequency BestFreq;
1720 for (MachineBasicBlock *MBB : WorkList) {
1721 assert(MBB->isEHPad() == IsEHPad &&
1722 "EHPad mismatch between block and work list.");
1723
1724 BlockChain &SuccChain = *BlockToChain[MBB];
1725 if (&SuccChain == &Chain)
1726 continue;
1727
1728 assert(SuccChain.UnscheduledPredecessors == 0 &&
1729 "Found CFG-violating block");
1730
1731 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
1732 LLVM_DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "
1733 << printBlockFreq(MBFI->getMBFI(), CandidateFreq)
1734 << " (freq)\n");
1735
1736 // For ehpad, we layout the least probable first as to avoid jumping back
1737 // from least probable landingpads to more probable ones.
1738 //
1739 // FIXME: Using probability is probably (!) not the best way to achieve
1740 // this. We should probably have a more principled approach to layout
1741 // cleanup code.
1742 //
1743 // The goal is to get:
1744 //
1745 // +--------------------------+
1746 // | V
1747 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume
1748 //
1749 // Rather than:
1750 //
1751 // +-------------------------------------+
1752 // V |
1753 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup
1754 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
1755 continue;
1756
1757 BestBlock = MBB;
1758 BestFreq = CandidateFreq;
1759 }
1760
1761 return BestBlock;
1762}
1763
1764/// Retrieve the first unplaced basic block.
1765///
1766/// This routine is called when we are unable to use the CFG to walk through
1767/// all of the basic blocks and form a chain due to unnatural loops in the CFG.
1768/// We walk through the function's blocks in order, starting from the
1769/// LastUnplacedBlockIt. We update this iterator on each call to avoid
1770/// re-scanning the entire sequence on repeated calls to this routine.
1771MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
1772 const BlockChain &PlacedChain,
1773 MachineFunction::iterator &PrevUnplacedBlockIt,
1774 const BlockFilterSet *BlockFilter) {
1775 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E;
1776 ++I) {
1777 if (BlockFilter && !BlockFilter->count(key: &*I))
1778 continue;
1779 if (BlockToChain[&*I] != &PlacedChain) {
1780 PrevUnplacedBlockIt = I;
1781 // Now select the head of the chain to which the unplaced block belongs
1782 // as the block to place. This will force the entire chain to be placed,
1783 // and satisfies the requirements of merging chains.
1784 return *BlockToChain[&*I]->begin();
1785 }
1786 }
1787 return nullptr;
1788}
1789
1790void MachineBlockPlacement::fillWorkLists(
1791 const MachineBasicBlock *MBB,
1792 SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
1793 const BlockFilterSet *BlockFilter = nullptr) {
1794 BlockChain &Chain = *BlockToChain[MBB];
1795 if (!UpdatedPreds.insert(Ptr: &Chain).second)
1796 return;
1797
1798 assert(
1799 Chain.UnscheduledPredecessors == 0 &&
1800 "Attempting to place block with unscheduled predecessors in worklist.");
1801 for (MachineBasicBlock *ChainBB : Chain) {
1802 assert(BlockToChain[ChainBB] == &Chain &&
1803 "Block in chain doesn't match BlockToChain map.");
1804 for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
1805 if (BlockFilter && !BlockFilter->count(key: Pred))
1806 continue;
1807 if (BlockToChain[Pred] == &Chain)
1808 continue;
1809 ++Chain.UnscheduledPredecessors;
1810 }
1811 }
1812
1813 if (Chain.UnscheduledPredecessors != 0)
1814 return;
1815
1816 MachineBasicBlock *BB = *Chain.begin();
1817 if (BB->isEHPad())
1818 EHPadWorkList.push_back(Elt: BB);
1819 else
1820 BlockWorkList.push_back(Elt: BB);
1821}
1822
1823void MachineBlockPlacement::buildChain(
1824 const MachineBasicBlock *HeadBB, BlockChain &Chain,
1825 BlockFilterSet *BlockFilter) {
1826 assert(HeadBB && "BB must not be null.\n");
1827 assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n");
1828 MachineFunction::iterator PrevUnplacedBlockIt = F->begin();
1829
1830 const MachineBasicBlock *LoopHeaderBB = HeadBB;
1831 markChainSuccessors(Chain, LoopHeaderBB, BlockFilter);
1832 MachineBasicBlock *BB = *std::prev(x: Chain.end());
1833 while (true) {
1834 assert(BB && "null block found at end of chain in loop.");
1835 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop.");
1836 assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain.");
1837
1838
1839 // Look for the best viable successor if there is one to place immediately
1840 // after this block.
1841 auto Result = selectBestSuccessor(BB, Chain, BlockFilter);
1842 MachineBasicBlock* BestSucc = Result.BB;
1843 bool ShouldTailDup = Result.ShouldTailDup;
1844 if (allowTailDupPlacement())
1845 ShouldTailDup |= (BestSucc && canTailDuplicateUnplacedPreds(BB, Succ: BestSucc,
1846 Chain,
1847 BlockFilter));
1848
1849 // If an immediate successor isn't available, look for the best viable
1850 // block among those we've identified as not violating the loop's CFG at
1851 // this point. This won't be a fallthrough, but it will increase locality.
1852 if (!BestSucc)
1853 BestSucc = selectBestCandidateBlock(Chain, WorkList&: BlockWorkList);
1854 if (!BestSucc)
1855 BestSucc = selectBestCandidateBlock(Chain, WorkList&: EHPadWorkList);
1856
1857 if (!BestSucc) {
1858 BestSucc = getFirstUnplacedBlock(PlacedChain: Chain, PrevUnplacedBlockIt, BlockFilter);
1859 if (!BestSucc)
1860 break;
1861
1862 LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
1863 "layout successor until the CFG reduces\n");
1864 }
1865
1866 // Placement may have changed tail duplication opportunities.
1867 // Check for that now.
1868 if (allowTailDupPlacement() && BestSucc && ShouldTailDup) {
1869 repeatedlyTailDuplicateBlock(BB: BestSucc, LPred&: BB, LoopHeaderBB, Chain,
1870 BlockFilter, PrevUnplacedBlockIt);
1871 // If the chosen successor was duplicated into BB, don't bother laying
1872 // it out, just go round the loop again with BB as the chain end.
1873 if (!BB->isSuccessor(MBB: BestSucc))
1874 continue;
1875 }
1876
1877 // Place this block, updating the datastructures to reflect its placement.
1878 BlockChain &SuccChain = *BlockToChain[BestSucc];
1879 // Zero out UnscheduledPredecessors for the successor we're about to merge in case
1880 // we selected a successor that didn't fit naturally into the CFG.
1881 SuccChain.UnscheduledPredecessors = 0;
1882 LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
1883 << getBlockName(BestSucc) << "\n");
1884 markChainSuccessors(Chain: SuccChain, LoopHeaderBB, BlockFilter);
1885 Chain.merge(BB: BestSucc, Chain: &SuccChain);
1886 BB = *std::prev(x: Chain.end());
1887 }
1888
1889 LLVM_DEBUG(dbgs() << "Finished forming chain for header block "
1890 << getBlockName(*Chain.begin()) << "\n");
1891}
1892
1893// If bottom of block BB has only one successor OldTop, in most cases it is
1894// profitable to move it before OldTop, except the following case:
1895//
1896// -->OldTop<-
1897// | . |
1898// | . |
1899// | . |
1900// ---Pred |
1901// | |
1902// BB-----
1903//
1904// If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't
1905// layout the other successor below it, so it can't reduce taken branch.
1906// In this case we keep its original layout.
1907bool
1908MachineBlockPlacement::canMoveBottomBlockToTop(
1909 const MachineBasicBlock *BottomBlock,
1910 const MachineBasicBlock *OldTop) {
1911 if (BottomBlock->pred_size() != 1)
1912 return true;
1913 MachineBasicBlock *Pred = *BottomBlock->pred_begin();
1914 if (Pred->succ_size() != 2)
1915 return true;
1916
1917 MachineBasicBlock *OtherBB = *Pred->succ_begin();
1918 if (OtherBB == BottomBlock)
1919 OtherBB = *Pred->succ_rbegin();
1920 if (OtherBB == OldTop)
1921 return false;
1922
1923 return true;
1924}
1925
1926// Find out the possible fall through frequence to the top of a loop.
1927BlockFrequency
1928MachineBlockPlacement::TopFallThroughFreq(
1929 const MachineBasicBlock *Top,
1930 const BlockFilterSet &LoopBlockSet) {
1931 BlockFrequency MaxFreq = BlockFrequency(0);
1932 for (MachineBasicBlock *Pred : Top->predecessors()) {
1933 BlockChain *PredChain = BlockToChain[Pred];
1934 if (!LoopBlockSet.count(key: Pred) &&
1935 (!PredChain || Pred == *std::prev(x: PredChain->end()))) {
1936 // Found a Pred block can be placed before Top.
1937 // Check if Top is the best successor of Pred.
1938 auto TopProb = MBPI->getEdgeProbability(Src: Pred, Dst: Top);
1939 bool TopOK = true;
1940 for (MachineBasicBlock *Succ : Pred->successors()) {
1941 auto SuccProb = MBPI->getEdgeProbability(Src: Pred, Dst: Succ);
1942 BlockChain *SuccChain = BlockToChain[Succ];
1943 // Check if Succ can be placed after Pred.
1944 // Succ should not be in any chain, or it is the head of some chain.
1945 if (!LoopBlockSet.count(key: Succ) && (SuccProb > TopProb) &&
1946 (!SuccChain || Succ == *SuccChain->begin())) {
1947 TopOK = false;
1948 break;
1949 }
1950 }
1951 if (TopOK) {
1952 BlockFrequency EdgeFreq = MBFI->getBlockFreq(MBB: Pred) *
1953 MBPI->getEdgeProbability(Src: Pred, Dst: Top);
1954 if (EdgeFreq > MaxFreq)
1955 MaxFreq = EdgeFreq;
1956 }
1957 }
1958 }
1959 return MaxFreq;
1960}
1961
1962// Compute the fall through gains when move NewTop before OldTop.
1963//
1964// In following diagram, edges marked as "-" are reduced fallthrough, edges
1965// marked as "+" are increased fallthrough, this function computes
1966//
1967// SUM(increased fallthrough) - SUM(decreased fallthrough)
1968//
1969// |
1970// | -
1971// V
1972// --->OldTop
1973// | .
1974// | .
1975// +| . +
1976// | Pred --->
1977// | |-
1978// | V
1979// --- NewTop <---
1980// |-
1981// V
1982//
1983BlockFrequency
1984MachineBlockPlacement::FallThroughGains(
1985 const MachineBasicBlock *NewTop,
1986 const MachineBasicBlock *OldTop,
1987 const MachineBasicBlock *ExitBB,
1988 const BlockFilterSet &LoopBlockSet) {
1989 BlockFrequency FallThrough2Top = TopFallThroughFreq(Top: OldTop, LoopBlockSet);
1990 BlockFrequency FallThrough2Exit = BlockFrequency(0);
1991 if (ExitBB)
1992 FallThrough2Exit = MBFI->getBlockFreq(MBB: NewTop) *
1993 MBPI->getEdgeProbability(Src: NewTop, Dst: ExitBB);
1994 BlockFrequency BackEdgeFreq = MBFI->getBlockFreq(MBB: NewTop) *
1995 MBPI->getEdgeProbability(Src: NewTop, Dst: OldTop);
1996
1997 // Find the best Pred of NewTop.
1998 MachineBasicBlock *BestPred = nullptr;
1999 BlockFrequency FallThroughFromPred = BlockFrequency(0);
2000 for (MachineBasicBlock *Pred : NewTop->predecessors()) {
2001 if (!LoopBlockSet.count(key: Pred))
2002 continue;
2003 BlockChain *PredChain = BlockToChain[Pred];
2004 if (!PredChain || Pred == *std::prev(x: PredChain->end())) {
2005 BlockFrequency EdgeFreq =
2006 MBFI->getBlockFreq(MBB: Pred) * MBPI->getEdgeProbability(Src: Pred, Dst: NewTop);
2007 if (EdgeFreq > FallThroughFromPred) {
2008 FallThroughFromPred = EdgeFreq;
2009 BestPred = Pred;
2010 }
2011 }
2012 }
2013
2014 // If NewTop is not placed after Pred, another successor can be placed
2015 // after Pred.
2016 BlockFrequency NewFreq = BlockFrequency(0);
2017 if (BestPred) {
2018 for (MachineBasicBlock *Succ : BestPred->successors()) {
2019 if ((Succ == NewTop) || (Succ == BestPred) || !LoopBlockSet.count(key: Succ))
2020 continue;
2021 if (ComputedEdges.contains(Val: Succ))
2022 continue;
2023 BlockChain *SuccChain = BlockToChain[Succ];
2024 if ((SuccChain && (Succ != *SuccChain->begin())) ||
2025 (SuccChain == BlockToChain[BestPred]))
2026 continue;
2027 BlockFrequency EdgeFreq = MBFI->getBlockFreq(MBB: BestPred) *
2028 MBPI->getEdgeProbability(Src: BestPred, Dst: Succ);
2029 if (EdgeFreq > NewFreq)
2030 NewFreq = EdgeFreq;
2031 }
2032 BlockFrequency OrigEdgeFreq = MBFI->getBlockFreq(MBB: BestPred) *
2033 MBPI->getEdgeProbability(Src: BestPred, Dst: NewTop);
2034 if (NewFreq > OrigEdgeFreq) {
2035 // If NewTop is not the best successor of Pred, then Pred doesn't
2036 // fallthrough to NewTop. So there is no FallThroughFromPred and
2037 // NewFreq.
2038 NewFreq = BlockFrequency(0);
2039 FallThroughFromPred = BlockFrequency(0);
2040 }
2041 }
2042
2043 BlockFrequency Result = BlockFrequency(0);
2044 BlockFrequency Gains = BackEdgeFreq + NewFreq;
2045 BlockFrequency Lost =
2046 FallThrough2Top + FallThrough2Exit + FallThroughFromPred;
2047 if (Gains > Lost)
2048 Result = Gains - Lost;
2049 return Result;
2050}
2051
2052/// Helper function of findBestLoopTop. Find the best loop top block
2053/// from predecessors of old top.
2054///
2055/// Look for a block which is strictly better than the old top for laying
2056/// out before the old top of the loop. This looks for only two patterns:
2057///
2058/// 1. a block has only one successor, the old loop top
2059///
2060/// Because such a block will always result in an unconditional jump,
2061/// rotating it in front of the old top is always profitable.
2062///
2063/// 2. a block has two successors, one is old top, another is exit
2064/// and it has more than one predecessors
2065///
2066/// If it is below one of its predecessors P, only P can fall through to
2067/// it, all other predecessors need a jump to it, and another conditional
2068/// jump to loop header. If it is moved before loop header, all its
2069/// predecessors jump to it, then fall through to loop header. So all its
2070/// predecessors except P can reduce one taken branch.
2071/// At the same time, move it before old top increases the taken branch
2072/// to loop exit block, so the reduced taken branch will be compared with
2073/// the increased taken branch to the loop exit block.
2074MachineBasicBlock *
2075MachineBlockPlacement::findBestLoopTopHelper(
2076 MachineBasicBlock *OldTop,
2077 const MachineLoop &L,
2078 const BlockFilterSet &LoopBlockSet) {
2079 // Check that the header hasn't been fused with a preheader block due to
2080 // crazy branches. If it has, we need to start with the header at the top to
2081 // prevent pulling the preheader into the loop body.
2082 BlockChain &HeaderChain = *BlockToChain[OldTop];
2083 if (!LoopBlockSet.count(key: *HeaderChain.begin()))
2084 return OldTop;
2085 if (OldTop != *HeaderChain.begin())
2086 return OldTop;
2087
2088 LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop)
2089 << "\n");
2090
2091 BlockFrequency BestGains = BlockFrequency(0);
2092 MachineBasicBlock *BestPred = nullptr;
2093 for (MachineBasicBlock *Pred : OldTop->predecessors()) {
2094 if (!LoopBlockSet.count(key: Pred))
2095 continue;
2096 if (Pred == L.getHeader())
2097 continue;
2098 LLVM_DEBUG(dbgs() << " old top pred: " << getBlockName(Pred) << ", has "
2099 << Pred->succ_size() << " successors, "
2100 << printBlockFreq(MBFI->getMBFI(), *Pred) << " freq\n");
2101 if (Pred->succ_size() > 2)
2102 continue;
2103
2104 MachineBasicBlock *OtherBB = nullptr;
2105 if (Pred->succ_size() == 2) {
2106 OtherBB = *Pred->succ_begin();
2107 if (OtherBB == OldTop)
2108 OtherBB = *Pred->succ_rbegin();
2109 }
2110
2111 if (!canMoveBottomBlockToTop(BottomBlock: Pred, OldTop))
2112 continue;
2113
2114 BlockFrequency Gains = FallThroughGains(NewTop: Pred, OldTop, ExitBB: OtherBB,
2115 LoopBlockSet);
2116 if ((Gains > BlockFrequency(0)) &&
2117 (Gains > BestGains ||
2118 ((Gains == BestGains) && Pred->isLayoutSuccessor(MBB: OldTop)))) {
2119 BestPred = Pred;
2120 BestGains = Gains;
2121 }
2122 }
2123
2124 // If no direct predecessor is fine, just use the loop header.
2125 if (!BestPred) {
2126 LLVM_DEBUG(dbgs() << " final top unchanged\n");
2127 return OldTop;
2128 }
2129
2130 // Walk backwards through any straight line of predecessors.
2131 while (BestPred->pred_size() == 1 &&
2132 (*BestPred->pred_begin())->succ_size() == 1 &&
2133 *BestPred->pred_begin() != L.getHeader())
2134 BestPred = *BestPred->pred_begin();
2135
2136 LLVM_DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n");
2137 return BestPred;
2138}
2139
2140/// Find the best loop top block for layout.
2141///
2142/// This function iteratively calls findBestLoopTopHelper, until no new better
2143/// BB can be found.
2144MachineBasicBlock *
2145MachineBlockPlacement::findBestLoopTop(const MachineLoop &L,
2146 const BlockFilterSet &LoopBlockSet) {
2147 // Placing the latch block before the header may introduce an extra branch
2148 // that skips this block the first time the loop is executed, which we want
2149 // to avoid when optimising for size.
2150 // FIXME: in theory there is a case that does not introduce a new branch,
2151 // i.e. when the layout predecessor does not fallthrough to the loop header.
2152 // In practice this never happens though: there always seems to be a preheader
2153 // that can fallthrough and that is also placed before the header.
2154 bool OptForSize = F->getFunction().hasOptSize() ||
2155 llvm::shouldOptimizeForSize(MBB: L.getHeader(), PSI, MBFIWrapper: MBFI.get());
2156 if (OptForSize)
2157 return L.getHeader();
2158
2159 MachineBasicBlock *OldTop = nullptr;
2160 MachineBasicBlock *NewTop = L.getHeader();
2161 while (NewTop != OldTop) {
2162 OldTop = NewTop;
2163 NewTop = findBestLoopTopHelper(OldTop, L, LoopBlockSet);
2164 if (NewTop != OldTop)
2165 ComputedEdges[NewTop] = { .BB: OldTop, .ShouldTailDup: false };
2166 }
2167 return NewTop;
2168}
2169
2170/// Find the best loop exiting block for layout.
2171///
2172/// This routine implements the logic to analyze the loop looking for the best
2173/// block to layout at the top of the loop. Typically this is done to maximize
2174/// fallthrough opportunities.
2175MachineBasicBlock *
2176MachineBlockPlacement::findBestLoopExit(const MachineLoop &L,
2177 const BlockFilterSet &LoopBlockSet,
2178 BlockFrequency &ExitFreq) {
2179 // We don't want to layout the loop linearly in all cases. If the loop header
2180 // is just a normal basic block in the loop, we want to look for what block
2181 // within the loop is the best one to layout at the top. However, if the loop
2182 // header has be pre-merged into a chain due to predecessors not having
2183 // analyzable branches, *and* the predecessor it is merged with is *not* part
2184 // of the loop, rotating the header into the middle of the loop will create
2185 // a non-contiguous range of blocks which is Very Bad. So start with the
2186 // header and only rotate if safe.
2187 BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
2188 if (!LoopBlockSet.count(key: *HeaderChain.begin()))
2189 return nullptr;
2190
2191 BlockFrequency BestExitEdgeFreq;
2192 unsigned BestExitLoopDepth = 0;
2193 MachineBasicBlock *ExitingBB = nullptr;
2194 // If there are exits to outer loops, loop rotation can severely limit
2195 // fallthrough opportunities unless it selects such an exit. Keep a set of
2196 // blocks where rotating to exit with that block will reach an outer loop.
2197 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
2198
2199 LLVM_DEBUG(dbgs() << "Finding best loop exit for: "
2200 << getBlockName(L.getHeader()) << "\n");
2201 for (MachineBasicBlock *MBB : L.getBlocks()) {
2202 BlockChain &Chain = *BlockToChain[MBB];
2203 // Ensure that this block is at the end of a chain; otherwise it could be
2204 // mid-way through an inner loop or a successor of an unanalyzable branch.
2205 if (MBB != *std::prev(x: Chain.end()))
2206 continue;
2207
2208 // Now walk the successors. We need to establish whether this has a viable
2209 // exiting successor and whether it has a viable non-exiting successor.
2210 // We store the old exiting state and restore it if a viable looping
2211 // successor isn't found.
2212 MachineBasicBlock *OldExitingBB = ExitingBB;
2213 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
2214 bool HasLoopingSucc = false;
2215 for (MachineBasicBlock *Succ : MBB->successors()) {
2216 if (Succ->isEHPad())
2217 continue;
2218 if (Succ == MBB)
2219 continue;
2220 BlockChain &SuccChain = *BlockToChain[Succ];
2221 // Don't split chains, either this chain or the successor's chain.
2222 if (&Chain == &SuccChain) {
2223 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> "
2224 << getBlockName(Succ) << " (chain conflict)\n");
2225 continue;
2226 }
2227
2228 auto SuccProb = MBPI->getEdgeProbability(Src: MBB, Dst: Succ);
2229 if (LoopBlockSet.count(key: Succ)) {
2230 LLVM_DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> "
2231 << getBlockName(Succ) << " (" << SuccProb << ")\n");
2232 HasLoopingSucc = true;
2233 continue;
2234 }
2235
2236 unsigned SuccLoopDepth = 0;
2237 if (MachineLoop *ExitLoop = MLI->getLoopFor(BB: Succ)) {
2238 SuccLoopDepth = ExitLoop->getLoopDepth();
2239 if (ExitLoop->contains(L: &L))
2240 BlocksExitingToOuterLoop.insert(Ptr: MBB);
2241 }
2242
2243 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
2244 LLVM_DEBUG(
2245 dbgs() << " exiting: " << getBlockName(MBB) << " -> "
2246 << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] ("
2247 << printBlockFreq(MBFI->getMBFI(), ExitEdgeFreq) << ")\n");
2248 // Note that we bias this toward an existing layout successor to retain
2249 // incoming order in the absence of better information. The exit must have
2250 // a frequency higher than the current exit before we consider breaking
2251 // the layout.
2252 BranchProbability Bias(100 - ExitBlockBias, 100);
2253 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
2254 ExitEdgeFreq > BestExitEdgeFreq ||
2255 (MBB->isLayoutSuccessor(MBB: Succ) &&
2256 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
2257 BestExitEdgeFreq = ExitEdgeFreq;
2258 ExitingBB = MBB;
2259 }
2260 }
2261
2262 if (!HasLoopingSucc) {
2263 // Restore the old exiting state, no viable looping successor was found.
2264 ExitingBB = OldExitingBB;
2265 BestExitEdgeFreq = OldBestExitEdgeFreq;
2266 }
2267 }
2268 // Without a candidate exiting block or with only a single block in the
2269 // loop, just use the loop header to layout the loop.
2270 if (!ExitingBB) {
2271 LLVM_DEBUG(
2272 dbgs() << " No other candidate exit blocks, using loop header\n");
2273 return nullptr;
2274 }
2275 if (L.getNumBlocks() == 1) {
2276 LLVM_DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n");
2277 return nullptr;
2278 }
2279
2280 // Also, if we have exit blocks which lead to outer loops but didn't select
2281 // one of them as the exiting block we are rotating toward, disable loop
2282 // rotation altogether.
2283 if (!BlocksExitingToOuterLoop.empty() &&
2284 !BlocksExitingToOuterLoop.count(Ptr: ExitingBB))
2285 return nullptr;
2286
2287 LLVM_DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB)
2288 << "\n");
2289 ExitFreq = BestExitEdgeFreq;
2290 return ExitingBB;
2291}
2292
2293/// Check if there is a fallthrough to loop header Top.
2294///
2295/// 1. Look for a Pred that can be layout before Top.
2296/// 2. Check if Top is the most possible successor of Pred.
2297bool
2298MachineBlockPlacement::hasViableTopFallthrough(
2299 const MachineBasicBlock *Top,
2300 const BlockFilterSet &LoopBlockSet) {
2301 for (MachineBasicBlock *Pred : Top->predecessors()) {
2302 BlockChain *PredChain = BlockToChain[Pred];
2303 if (!LoopBlockSet.count(key: Pred) &&
2304 (!PredChain || Pred == *std::prev(x: PredChain->end()))) {
2305 // Found a Pred block can be placed before Top.
2306 // Check if Top is the best successor of Pred.
2307 auto TopProb = MBPI->getEdgeProbability(Src: Pred, Dst: Top);
2308 bool TopOK = true;
2309 for (MachineBasicBlock *Succ : Pred->successors()) {
2310 auto SuccProb = MBPI->getEdgeProbability(Src: Pred, Dst: Succ);
2311 BlockChain *SuccChain = BlockToChain[Succ];
2312 // Check if Succ can be placed after Pred.
2313 // Succ should not be in any chain, or it is the head of some chain.
2314 if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) {
2315 TopOK = false;
2316 break;
2317 }
2318 }
2319 if (TopOK)
2320 return true;
2321 }
2322 }
2323 return false;
2324}
2325
2326/// Attempt to rotate an exiting block to the bottom of the loop.
2327///
2328/// Once we have built a chain, try to rotate it to line up the hot exit block
2329/// with fallthrough out of the loop if doing so doesn't introduce unnecessary
2330/// branches. For example, if the loop has fallthrough into its header and out
2331/// of its bottom already, don't rotate it.
2332void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
2333 const MachineBasicBlock *ExitingBB,
2334 BlockFrequency ExitFreq,
2335 const BlockFilterSet &LoopBlockSet) {
2336 if (!ExitingBB)
2337 return;
2338
2339 MachineBasicBlock *Top = *LoopChain.begin();
2340 MachineBasicBlock *Bottom = *std::prev(x: LoopChain.end());
2341
2342 // If ExitingBB is already the last one in a chain then nothing to do.
2343 if (Bottom == ExitingBB)
2344 return;
2345
2346 // The entry block should always be the first BB in a function.
2347 if (Top->isEntryBlock())
2348 return;
2349
2350 bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet);
2351
2352 // If the header has viable fallthrough, check whether the current loop
2353 // bottom is a viable exiting block. If so, bail out as rotating will
2354 // introduce an unnecessary branch.
2355 if (ViableTopFallthrough) {
2356 for (MachineBasicBlock *Succ : Bottom->successors()) {
2357 BlockChain *SuccChain = BlockToChain[Succ];
2358 if (!LoopBlockSet.count(key: Succ) &&
2359 (!SuccChain || Succ == *SuccChain->begin()))
2360 return;
2361 }
2362
2363 // Rotate will destroy the top fallthrough, we need to ensure the new exit
2364 // frequency is larger than top fallthrough.
2365 BlockFrequency FallThrough2Top = TopFallThroughFreq(Top, LoopBlockSet);
2366 if (FallThrough2Top >= ExitFreq)
2367 return;
2368 }
2369
2370 BlockChain::iterator ExitIt = llvm::find(Range&: LoopChain, Val: ExitingBB);
2371 if (ExitIt == LoopChain.end())
2372 return;
2373
2374 // Rotating a loop exit to the bottom when there is a fallthrough to top
2375 // trades the entry fallthrough for an exit fallthrough.
2376 // If there is no bottom->top edge, but the chosen exit block does have
2377 // a fallthrough, we break that fallthrough for nothing in return.
2378
2379 // Let's consider an example. We have a built chain of basic blocks
2380 // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block.
2381 // By doing a rotation we get
2382 // Bk+1, ..., Bn, B1, ..., Bk
2383 // Break of fallthrough to B1 is compensated by a fallthrough from Bk.
2384 // If we had a fallthrough Bk -> Bk+1 it is broken now.
2385 // It might be compensated by fallthrough Bn -> B1.
2386 // So we have a condition to avoid creation of extra branch by loop rotation.
2387 // All below must be true to avoid loop rotation:
2388 // If there is a fallthrough to top (B1)
2389 // There was fallthrough from chosen exit block (Bk) to next one (Bk+1)
2390 // There is no fallthrough from bottom (Bn) to top (B1).
2391 // Please note that there is no exit fallthrough from Bn because we checked it
2392 // above.
2393 if (ViableTopFallthrough) {
2394 assert(std::next(ExitIt) != LoopChain.end() &&
2395 "Exit should not be last BB");
2396 MachineBasicBlock *NextBlockInChain = *std::next(x: ExitIt);
2397 if (ExitingBB->isSuccessor(MBB: NextBlockInChain))
2398 if (!Bottom->isSuccessor(MBB: Top))
2399 return;
2400 }
2401
2402 LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB)
2403 << " at bottom\n");
2404 std::rotate(first: LoopChain.begin(), middle: std::next(x: ExitIt), last: LoopChain.end());
2405}
2406
2407/// Attempt to rotate a loop based on profile data to reduce branch cost.
2408///
2409/// With profile data, we can determine the cost in terms of missed fall through
2410/// opportunities when rotating a loop chain and select the best rotation.
2411/// Basically, there are three kinds of cost to consider for each rotation:
2412/// 1. The possibly missed fall through edge (if it exists) from BB out of
2413/// the loop to the loop header.
2414/// 2. The possibly missed fall through edges (if they exist) from the loop
2415/// exits to BB out of the loop.
2416/// 3. The missed fall through edge (if it exists) from the last BB to the
2417/// first BB in the loop chain.
2418/// Therefore, the cost for a given rotation is the sum of costs listed above.
2419/// We select the best rotation with the smallest cost.
2420void MachineBlockPlacement::rotateLoopWithProfile(
2421 BlockChain &LoopChain, const MachineLoop &L,
2422 const BlockFilterSet &LoopBlockSet) {
2423 auto RotationPos = LoopChain.end();
2424 MachineBasicBlock *ChainHeaderBB = *LoopChain.begin();
2425
2426 // The entry block should always be the first BB in a function.
2427 if (ChainHeaderBB->isEntryBlock())
2428 return;
2429
2430 BlockFrequency SmallestRotationCost = BlockFrequency::max();
2431
2432 // A utility lambda that scales up a block frequency by dividing it by a
2433 // branch probability which is the reciprocal of the scale.
2434 auto ScaleBlockFrequency = [](BlockFrequency Freq,
2435 unsigned Scale) -> BlockFrequency {
2436 if (Scale == 0)
2437 return BlockFrequency(0);
2438 // Use operator / between BlockFrequency and BranchProbability to implement
2439 // saturating multiplication.
2440 return Freq / BranchProbability(1, Scale);
2441 };
2442
2443 // Compute the cost of the missed fall-through edge to the loop header if the
2444 // chain head is not the loop header. As we only consider natural loops with
2445 // single header, this computation can be done only once.
2446 BlockFrequency HeaderFallThroughCost(0);
2447 for (auto *Pred : ChainHeaderBB->predecessors()) {
2448 BlockChain *PredChain = BlockToChain[Pred];
2449 if (!LoopBlockSet.count(key: Pred) &&
2450 (!PredChain || Pred == *std::prev(x: PredChain->end()))) {
2451 auto EdgeFreq = MBFI->getBlockFreq(MBB: Pred) *
2452 MBPI->getEdgeProbability(Src: Pred, Dst: ChainHeaderBB);
2453 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
2454 // If the predecessor has only an unconditional jump to the header, we
2455 // need to consider the cost of this jump.
2456 if (Pred->succ_size() == 1)
2457 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
2458 HeaderFallThroughCost = std::max(a: HeaderFallThroughCost, b: FallThruCost);
2459 }
2460 }
2461
2462 // Here we collect all exit blocks in the loop, and for each exit we find out
2463 // its hottest exit edge. For each loop rotation, we define the loop exit cost
2464 // as the sum of frequencies of exit edges we collect here, excluding the exit
2465 // edge from the tail of the loop chain.
2466 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
2467 for (auto *BB : LoopChain) {
2468 auto LargestExitEdgeProb = BranchProbability::getZero();
2469 for (auto *Succ : BB->successors()) {
2470 BlockChain *SuccChain = BlockToChain[Succ];
2471 if (!LoopBlockSet.count(key: Succ) &&
2472 (!SuccChain || Succ == *SuccChain->begin())) {
2473 auto SuccProb = MBPI->getEdgeProbability(Src: BB, Dst: Succ);
2474 LargestExitEdgeProb = std::max(a: LargestExitEdgeProb, b: SuccProb);
2475 }
2476 }
2477 if (LargestExitEdgeProb > BranchProbability::getZero()) {
2478 auto ExitFreq = MBFI->getBlockFreq(MBB: BB) * LargestExitEdgeProb;
2479 ExitsWithFreq.emplace_back(Args&: BB, Args&: ExitFreq);
2480 }
2481 }
2482
2483 // In this loop we iterate every block in the loop chain and calculate the
2484 // cost assuming the block is the head of the loop chain. When the loop ends,
2485 // we should have found the best candidate as the loop chain's head.
2486 for (auto Iter = LoopChain.begin(), TailIter = std::prev(x: LoopChain.end()),
2487 EndIter = LoopChain.end();
2488 Iter != EndIter; Iter++, TailIter++) {
2489 // TailIter is used to track the tail of the loop chain if the block we are
2490 // checking (pointed by Iter) is the head of the chain.
2491 if (TailIter == LoopChain.end())
2492 TailIter = LoopChain.begin();
2493
2494 auto TailBB = *TailIter;
2495
2496 // Calculate the cost by putting this BB to the top.
2497 BlockFrequency Cost = BlockFrequency(0);
2498
2499 // If the current BB is the loop header, we need to take into account the
2500 // cost of the missed fall through edge from outside of the loop to the
2501 // header.
2502 if (Iter != LoopChain.begin())
2503 Cost += HeaderFallThroughCost;
2504
2505 // Collect the loop exit cost by summing up frequencies of all exit edges
2506 // except the one from the chain tail.
2507 for (auto &ExitWithFreq : ExitsWithFreq)
2508 if (TailBB != ExitWithFreq.first)
2509 Cost += ExitWithFreq.second;
2510
2511 // The cost of breaking the once fall-through edge from the tail to the top
2512 // of the loop chain. Here we need to consider three cases:
2513 // 1. If the tail node has only one successor, then we will get an
2514 // additional jmp instruction. So the cost here is (MisfetchCost +
2515 // JumpInstCost) * tail node frequency.
2516 // 2. If the tail node has two successors, then we may still get an
2517 // additional jmp instruction if the layout successor after the loop
2518 // chain is not its CFG successor. Note that the more frequently executed
2519 // jmp instruction will be put ahead of the other one. Assume the
2520 // frequency of those two branches are x and y, where x is the frequency
2521 // of the edge to the chain head, then the cost will be
2522 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
2523 // 3. If the tail node has more than two successors (this rarely happens),
2524 // we won't consider any additional cost.
2525 if (TailBB->isSuccessor(MBB: *Iter)) {
2526 auto TailBBFreq = MBFI->getBlockFreq(MBB: TailBB);
2527 if (TailBB->succ_size() == 1)
2528 Cost += ScaleBlockFrequency(TailBBFreq, MisfetchCost + JumpInstCost);
2529 else if (TailBB->succ_size() == 2) {
2530 auto TailToHeadProb = MBPI->getEdgeProbability(Src: TailBB, Dst: *Iter);
2531 auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
2532 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
2533 ? TailBBFreq * TailToHeadProb.getCompl()
2534 : TailToHeadFreq;
2535 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
2536 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
2537 }
2538 }
2539
2540 LLVM_DEBUG(dbgs() << "The cost of loop rotation by making "
2541 << getBlockName(*Iter) << " to the top: "
2542 << printBlockFreq(MBFI->getMBFI(), Cost) << "\n");
2543
2544 if (Cost < SmallestRotationCost) {
2545 SmallestRotationCost = Cost;
2546 RotationPos = Iter;
2547 }
2548 }
2549
2550 if (RotationPos != LoopChain.end()) {
2551 LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
2552 << " to the top\n");
2553 std::rotate(first: LoopChain.begin(), middle: RotationPos, last: LoopChain.end());
2554 }
2555}
2556
2557/// Collect blocks in the given loop that are to be placed.
2558///
2559/// When profile data is available, exclude cold blocks from the returned set;
2560/// otherwise, collect all blocks in the loop.
2561MachineBlockPlacement::BlockFilterSet
2562MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) {
2563 BlockFilterSet LoopBlockSet;
2564
2565 // Filter cold blocks off from LoopBlockSet when profile data is available.
2566 // Collect the sum of frequencies of incoming edges to the loop header from
2567 // outside. If we treat the loop as a super block, this is the frequency of
2568 // the loop. Then for each block in the loop, we calculate the ratio between
2569 // its frequency and the frequency of the loop block. When it is too small,
2570 // don't add it to the loop chain. If there are outer loops, then this block
2571 // will be merged into the first outer loop chain for which this block is not
2572 // cold anymore. This needs precise profile data and we only do this when
2573 // profile data is available.
2574 if (F->getFunction().hasProfileData() || ForceLoopColdBlock) {
2575 BlockFrequency LoopFreq(0);
2576 for (auto *LoopPred : L.getHeader()->predecessors())
2577 if (!L.contains(BB: LoopPred))
2578 LoopFreq += MBFI->getBlockFreq(MBB: LoopPred) *
2579 MBPI->getEdgeProbability(Src: LoopPred, Dst: L.getHeader());
2580
2581 for (MachineBasicBlock *LoopBB : L.getBlocks()) {
2582 if (LoopBlockSet.count(key: LoopBB))
2583 continue;
2584 auto Freq = MBFI->getBlockFreq(MBB: LoopBB).getFrequency();
2585 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
2586 continue;
2587 BlockChain *Chain = BlockToChain[LoopBB];
2588 for (MachineBasicBlock *ChainBB : *Chain)
2589 LoopBlockSet.insert(X: ChainBB);
2590 }
2591 } else
2592 LoopBlockSet.insert(Start: L.block_begin(), End: L.block_end());
2593
2594 return LoopBlockSet;
2595}
2596
2597/// Forms basic block chains from the natural loop structures.
2598///
2599/// These chains are designed to preserve the existing *structure* of the code
2600/// as much as possible. We can then stitch the chains together in a way which
2601/// both preserves the topological structure and minimizes taken conditional
2602/// branches.
2603void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) {
2604 // First recurse through any nested loops, building chains for those inner
2605 // loops.
2606 for (const MachineLoop *InnerLoop : L)
2607 buildLoopChains(L: *InnerLoop);
2608
2609 assert(BlockWorkList.empty() &&
2610 "BlockWorkList not empty when starting to build loop chains.");
2611 assert(EHPadWorkList.empty() &&
2612 "EHPadWorkList not empty when starting to build loop chains.");
2613 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L);
2614
2615 // Check if we have profile data for this function. If yes, we will rotate
2616 // this loop by modeling costs more precisely which requires the profile data
2617 // for better layout.
2618 bool RotateLoopWithProfile =
2619 ForcePreciseRotationCost ||
2620 (PreciseRotationCost && F->getFunction().hasProfileData());
2621
2622 // First check to see if there is an obviously preferable top block for the
2623 // loop. This will default to the header, but may end up as one of the
2624 // predecessors to the header if there is one which will result in strictly
2625 // fewer branches in the loop body.
2626 MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet);
2627
2628 // If we selected just the header for the loop top, look for a potentially
2629 // profitable exit block in the event that rotating the loop can eliminate
2630 // branches by placing an exit edge at the bottom.
2631 //
2632 // Loops are processed innermost to uttermost, make sure we clear
2633 // PreferredLoopExit before processing a new loop.
2634 PreferredLoopExit = nullptr;
2635 BlockFrequency ExitFreq;
2636 if (!RotateLoopWithProfile && LoopTop == L.getHeader())
2637 PreferredLoopExit = findBestLoopExit(L, LoopBlockSet, ExitFreq);
2638
2639 BlockChain &LoopChain = *BlockToChain[LoopTop];
2640
2641 // FIXME: This is a really lame way of walking the chains in the loop: we
2642 // walk the blocks, and use a set to prevent visiting a particular chain
2643 // twice.
2644 SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2645 assert(LoopChain.UnscheduledPredecessors == 0 &&
2646 "LoopChain should not have unscheduled predecessors.");
2647 UpdatedPreds.insert(Ptr: &LoopChain);
2648
2649 for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2650 fillWorkLists(MBB: LoopBB, UpdatedPreds, BlockFilter: &LoopBlockSet);
2651
2652 buildChain(HeadBB: LoopTop, Chain&: LoopChain, BlockFilter: &LoopBlockSet);
2653
2654 if (RotateLoopWithProfile)
2655 rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
2656 else
2657 rotateLoop(LoopChain, ExitingBB: PreferredLoopExit, ExitFreq, LoopBlockSet);
2658
2659 LLVM_DEBUG({
2660 // Crash at the end so we get all of the debugging output first.
2661 bool BadLoop = false;
2662 if (LoopChain.UnscheduledPredecessors) {
2663 BadLoop = true;
2664 dbgs() << "Loop chain contains a block without its preds placed!\n"
2665 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
2666 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
2667 }
2668 for (MachineBasicBlock *ChainBB : LoopChain) {
2669 dbgs() << " ... " << getBlockName(ChainBB) << "\n";
2670 if (!LoopBlockSet.remove(ChainBB)) {
2671 // We don't mark the loop as bad here because there are real situations
2672 // where this can occur. For example, with an unanalyzable fallthrough
2673 // from a loop block to a non-loop block or vice versa.
2674 dbgs() << "Loop chain contains a block not contained by the loop!\n"
2675 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
2676 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2677 << " Bad block: " << getBlockName(ChainBB) << "\n";
2678 }
2679 }
2680
2681 if (!LoopBlockSet.empty()) {
2682 BadLoop = true;
2683 for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2684 dbgs() << "Loop contains blocks never placed into a chain!\n"
2685 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
2686 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2687 << " Bad block: " << getBlockName(LoopBB) << "\n";
2688 }
2689 assert(!BadLoop && "Detected problems with the placement of this loop.");
2690 });
2691
2692 BlockWorkList.clear();
2693 EHPadWorkList.clear();
2694}
2695
2696void MachineBlockPlacement::buildCFGChains() {
2697 // Ensure that every BB in the function has an associated chain to simplify
2698 // the assumptions of the remaining algorithm.
2699 SmallVector<MachineOperand, 4> Cond; // For analyzeBranch.
2700 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE;
2701 ++FI) {
2702 MachineBasicBlock *BB = &*FI;
2703 BlockChain *Chain =
2704 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
2705 // Also, merge any blocks which we cannot reason about and must preserve
2706 // the exact fallthrough behavior for.
2707 while (true) {
2708 Cond.clear();
2709 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2710 if (!TII->analyzeBranch(MBB&: *BB, TBB, FBB, Cond) || !FI->canFallThrough())
2711 break;
2712
2713 MachineFunction::iterator NextFI = std::next(x: FI);
2714 MachineBasicBlock *NextBB = &*NextFI;
2715 // Ensure that the layout successor is a viable block, as we know that
2716 // fallthrough is a possibility.
2717 assert(NextFI != FE && "Can't fallthrough past the last block.");
2718 LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
2719 << getBlockName(BB) << " -> " << getBlockName(NextBB)
2720 << "\n");
2721 Chain->merge(BB: NextBB, Chain: nullptr);
2722#ifndef NDEBUG
2723 BlocksWithUnanalyzableExits.insert(Ptr: &*BB);
2724#endif
2725 FI = NextFI;
2726 BB = NextBB;
2727 }
2728 }
2729
2730 // Build any loop-based chains.
2731 PreferredLoopExit = nullptr;
2732 for (MachineLoop *L : *MLI)
2733 buildLoopChains(L: *L);
2734
2735 assert(BlockWorkList.empty() &&
2736 "BlockWorkList should be empty before building final chain.");
2737 assert(EHPadWorkList.empty() &&
2738 "EHPadWorkList should be empty before building final chain.");
2739
2740 SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2741 for (MachineBasicBlock &MBB : *F)
2742 fillWorkLists(MBB: &MBB, UpdatedPreds);
2743
2744 BlockChain &FunctionChain = *BlockToChain[&F->front()];
2745 buildChain(HeadBB: &F->front(), Chain&: FunctionChain);
2746
2747#ifndef NDEBUG
2748 using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>;
2749#endif
2750 LLVM_DEBUG({
2751 // Crash at the end so we get all of the debugging output first.
2752 bool BadFunc = false;
2753 FunctionBlockSetType FunctionBlockSet;
2754 for (MachineBasicBlock &MBB : *F)
2755 FunctionBlockSet.insert(&MBB);
2756
2757 for (MachineBasicBlock *ChainBB : FunctionChain)
2758 if (!FunctionBlockSet.erase(ChainBB)) {
2759 BadFunc = true;
2760 dbgs() << "Function chain contains a block not in the function!\n"
2761 << " Bad block: " << getBlockName(ChainBB) << "\n";
2762 }
2763
2764 if (!FunctionBlockSet.empty()) {
2765 BadFunc = true;
2766 for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
2767 dbgs() << "Function contains blocks never placed into a chain!\n"
2768 << " Bad block: " << getBlockName(RemainingBB) << "\n";
2769 }
2770 assert(!BadFunc && "Detected problems with the block placement.");
2771 });
2772
2773 // Remember original layout ordering, so we can update terminators after
2774 // reordering to point to the original layout successor.
2775 SmallVector<MachineBasicBlock *, 4> OriginalLayoutSuccessors(
2776 F->getNumBlockIDs());
2777 {
2778 MachineBasicBlock *LastMBB = nullptr;
2779 for (auto &MBB : *F) {
2780 if (LastMBB != nullptr)
2781 OriginalLayoutSuccessors[LastMBB->getNumber()] = &MBB;
2782 LastMBB = &MBB;
2783 }
2784 OriginalLayoutSuccessors[F->back().getNumber()] = nullptr;
2785 }
2786
2787 // Splice the blocks into place.
2788 MachineFunction::iterator InsertPos = F->begin();
2789 LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n");
2790 for (MachineBasicBlock *ChainBB : FunctionChain) {
2791 LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
2792 : " ... ")
2793 << getBlockName(ChainBB) << "\n");
2794 if (InsertPos != MachineFunction::iterator(ChainBB))
2795 F->splice(InsertPt: InsertPos, MBB: ChainBB);
2796 else
2797 ++InsertPos;
2798
2799 // Update the terminator of the previous block.
2800 if (ChainBB == *FunctionChain.begin())
2801 continue;
2802 MachineBasicBlock *PrevBB = &*std::prev(x: MachineFunction::iterator(ChainBB));
2803
2804 // FIXME: It would be awesome of updateTerminator would just return rather
2805 // than assert when the branch cannot be analyzed in order to remove this
2806 // boiler plate.
2807 Cond.clear();
2808 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2809
2810#ifndef NDEBUG
2811 if (!BlocksWithUnanalyzableExits.count(Ptr: PrevBB)) {
2812 // Given the exact block placement we chose, we may actually not _need_ to
2813 // be able to edit PrevBB's terminator sequence, but not being _able_ to
2814 // do that at this point is a bug.
2815 assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) ||
2816 !PrevBB->canFallThrough()) &&
2817 "Unexpected block with un-analyzable fallthrough!");
2818 Cond.clear();
2819 TBB = FBB = nullptr;
2820 }
2821#endif
2822
2823 // The "PrevBB" is not yet updated to reflect current code layout, so,
2824 // o. it may fall-through to a block without explicit "goto" instruction
2825 // before layout, and no longer fall-through it after layout; or
2826 // o. just opposite.
2827 //
2828 // analyzeBranch() may return erroneous value for FBB when these two
2829 // situations take place. For the first scenario FBB is mistakenly set NULL;
2830 // for the 2nd scenario, the FBB, which is expected to be NULL, is
2831 // mistakenly pointing to "*BI".
2832 // Thus, if the future change needs to use FBB before the layout is set, it
2833 // has to correct FBB first by using the code similar to the following:
2834 //
2835 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
2836 // PrevBB->updateTerminator();
2837 // Cond.clear();
2838 // TBB = FBB = nullptr;
2839 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2840 // // FIXME: This should never take place.
2841 // TBB = FBB = nullptr;
2842 // }
2843 // }
2844 if (!TII->analyzeBranch(MBB&: *PrevBB, TBB, FBB, Cond)) {
2845 PrevBB->updateTerminator(PreviousLayoutSuccessor: OriginalLayoutSuccessors[PrevBB->getNumber()]);
2846 }
2847 }
2848
2849 // Fixup the last block.
2850 Cond.clear();
2851 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2852 if (!TII->analyzeBranch(MBB&: F->back(), TBB, FBB, Cond)) {
2853 MachineBasicBlock *PrevBB = &F->back();
2854 PrevBB->updateTerminator(PreviousLayoutSuccessor: OriginalLayoutSuccessors[PrevBB->getNumber()]);
2855 }
2856
2857 BlockWorkList.clear();
2858 EHPadWorkList.clear();
2859}
2860
2861void MachineBlockPlacement::optimizeBranches() {
2862 BlockChain &FunctionChain = *BlockToChain[&F->front()];
2863 SmallVector<MachineOperand, 4> Cond; // For analyzeBranch.
2864
2865 // Now that all the basic blocks in the chain have the proper layout,
2866 // make a final call to analyzeBranch with AllowModify set.
2867 // Indeed, the target may be able to optimize the branches in a way we
2868 // cannot because all branches may not be analyzable.
2869 // E.g., the target may be able to remove an unconditional branch to
2870 // a fallthrough when it occurs after predicated terminators.
2871 for (MachineBasicBlock *ChainBB : FunctionChain) {
2872 Cond.clear();
2873 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2874 if (!TII->analyzeBranch(MBB&: *ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
2875 // If PrevBB has a two-way branch, try to re-order the branches
2876 // such that we branch to the successor with higher probability first.
2877 if (TBB && !Cond.empty() && FBB &&
2878 MBPI->getEdgeProbability(Src: ChainBB, Dst: FBB) >
2879 MBPI->getEdgeProbability(Src: ChainBB, Dst: TBB) &&
2880 !TII->reverseBranchCondition(Cond)) {
2881 LLVM_DEBUG(dbgs() << "Reverse order of the two branches: "
2882 << getBlockName(ChainBB) << "\n");
2883 LLVM_DEBUG(dbgs() << " Edge probability: "
2884 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
2885 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
2886 DebugLoc dl; // FIXME: this is nowhere
2887 TII->removeBranch(MBB&: *ChainBB);
2888 TII->insertBranch(MBB&: *ChainBB, TBB: FBB, FBB: TBB, Cond, DL: dl);
2889 }
2890 }
2891 }
2892}
2893
2894void MachineBlockPlacement::alignBlocks() {
2895 // Walk through the backedges of the function now that we have fully laid out
2896 // the basic blocks and align the destination of each backedge. We don't rely
2897 // exclusively on the loop info here so that we can align backedges in
2898 // unnatural CFGs and backedges that were introduced purely because of the
2899 // loop rotations done during this layout pass.
2900 if (F->getFunction().hasMinSize() ||
2901 (F->getFunction().hasOptSize() && !TLI->alignLoopsWithOptSize()))
2902 return;
2903 BlockChain &FunctionChain = *BlockToChain[&F->front()];
2904 if (FunctionChain.begin() == FunctionChain.end())
2905 return; // Empty chain.
2906
2907 const BranchProbability ColdProb(1, 5); // 20%
2908 BlockFrequency EntryFreq = MBFI->getBlockFreq(MBB: &F->front());
2909 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
2910 for (MachineBasicBlock *ChainBB : FunctionChain) {
2911 if (ChainBB == *FunctionChain.begin())
2912 continue;
2913
2914 // Don't align non-looping basic blocks. These are unlikely to execute
2915 // enough times to matter in practice. Note that we'll still handle
2916 // unnatural CFGs inside of a natural outer loop (the common case) and
2917 // rotated loops.
2918 MachineLoop *L = MLI->getLoopFor(BB: ChainBB);
2919 if (!L)
2920 continue;
2921
2922 const Align TLIAlign = TLI->getPrefLoopAlignment(ML: L);
2923 unsigned MDAlign = 1;
2924 MDNode *LoopID = L->getLoopID();
2925 if (LoopID) {
2926 for (const MDOperand &MDO : llvm::drop_begin(RangeOrContainer: LoopID->operands())) {
2927 MDNode *MD = dyn_cast<MDNode>(Val: MDO);
2928 if (MD == nullptr)
2929 continue;
2930 MDString *S = dyn_cast<MDString>(Val: MD->getOperand(I: 0));
2931 if (S == nullptr)
2932 continue;
2933 if (S->getString() == "llvm.loop.align") {
2934 assert(MD->getNumOperands() == 2 &&
2935 "per-loop align metadata should have two operands.");
2936 MDAlign =
2937 mdconst::extract<ConstantInt>(MD: MD->getOperand(I: 1))->getZExtValue();
2938 assert(MDAlign >= 1 && "per-loop align value must be positive.");
2939 }
2940 }
2941 }
2942
2943 // Use max of the TLIAlign and MDAlign
2944 const Align LoopAlign = std::max(a: TLIAlign, b: Align(MDAlign));
2945 if (LoopAlign == 1)
2946 continue; // Don't care about loop alignment.
2947
2948 // If the block is cold relative to the function entry don't waste space
2949 // aligning it.
2950 BlockFrequency Freq = MBFI->getBlockFreq(MBB: ChainBB);
2951 if (Freq < WeightedEntryFreq)
2952 continue;
2953
2954 // If the block is cold relative to its loop header, don't align it
2955 // regardless of what edges into the block exist.
2956 MachineBasicBlock *LoopHeader = L->getHeader();
2957 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(MBB: LoopHeader);
2958 if (Freq < (LoopHeaderFreq * ColdProb))
2959 continue;
2960
2961 // If the global profiles indicates so, don't align it.
2962 if (llvm::shouldOptimizeForSize(MBB: ChainBB, PSI, MBFIWrapper: MBFI.get()) &&
2963 !TLI->alignLoopsWithOptSize())
2964 continue;
2965
2966 // Check for the existence of a non-layout predecessor which would benefit
2967 // from aligning this block.
2968 MachineBasicBlock *LayoutPred =
2969 &*std::prev(x: MachineFunction::iterator(ChainBB));
2970
2971 auto DetermineMaxAlignmentPadding = [&]() {
2972 // Set the maximum bytes allowed to be emitted for alignment.
2973 unsigned MaxBytes;
2974 if (MaxBytesForAlignmentOverride.getNumOccurrences() > 0)
2975 MaxBytes = MaxBytesForAlignmentOverride;
2976 else
2977 MaxBytes = TLI->getMaxPermittedBytesForAlignment(MBB: ChainBB);
2978 ChainBB->setMaxBytesForAlignment(MaxBytes);
2979 };
2980
2981 // Force alignment if all the predecessors are jumps. We already checked
2982 // that the block isn't cold above.
2983 if (!LayoutPred->isSuccessor(MBB: ChainBB)) {
2984 ChainBB->setAlignment(LoopAlign);
2985 DetermineMaxAlignmentPadding();
2986 continue;
2987 }
2988
2989 // Align this block if the layout predecessor's edge into this block is
2990 // cold relative to the block. When this is true, other predecessors make up
2991 // all of the hot entries into the block and thus alignment is likely to be
2992 // important.
2993 BranchProbability LayoutProb =
2994 MBPI->getEdgeProbability(Src: LayoutPred, Dst: ChainBB);
2995 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(MBB: LayoutPred) * LayoutProb;
2996 if (LayoutEdgeFreq <= (Freq * ColdProb)) {
2997 ChainBB->setAlignment(LoopAlign);
2998 DetermineMaxAlignmentPadding();
2999 }
3000 }
3001}
3002
3003/// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
3004/// it was duplicated into its chain predecessor and removed.
3005/// \p BB - Basic block that may be duplicated.
3006///
3007/// \p LPred - Chosen layout predecessor of \p BB.
3008/// Updated to be the chain end if LPred is removed.
3009/// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
3010/// \p BlockFilter - Set of blocks that belong to the loop being laid out.
3011/// Used to identify which blocks to update predecessor
3012/// counts.
3013/// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
3014/// chosen in the given order due to unnatural CFG
3015/// only needed if \p BB is removed and
3016/// \p PrevUnplacedBlockIt pointed to \p BB.
3017/// @return true if \p BB was removed.
3018bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
3019 MachineBasicBlock *BB, MachineBasicBlock *&LPred,
3020 const MachineBasicBlock *LoopHeaderBB,
3021 BlockChain &Chain, BlockFilterSet *BlockFilter,
3022 MachineFunction::iterator &PrevUnplacedBlockIt) {
3023 bool Removed, DuplicatedToLPred;
3024 bool DuplicatedToOriginalLPred;
3025 Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter,
3026 PrevUnplacedBlockIt,
3027 DuplicatedToLPred);
3028 if (!Removed)
3029 return false;
3030 DuplicatedToOriginalLPred = DuplicatedToLPred;
3031 // Iteratively try to duplicate again. It can happen that a block that is
3032 // duplicated into is still small enough to be duplicated again.
3033 // No need to call markBlockSuccessors in this case, as the blocks being
3034 // duplicated from here on are already scheduled.
3035 while (DuplicatedToLPred && Removed) {
3036 MachineBasicBlock *DupBB, *DupPred;
3037 // The removal callback causes Chain.end() to be updated when a block is
3038 // removed. On the first pass through the loop, the chain end should be the
3039 // same as it was on function entry. On subsequent passes, because we are
3040 // duplicating the block at the end of the chain, if it is removed the
3041 // chain will have shrunk by one block.
3042 BlockChain::iterator ChainEnd = Chain.end();
3043 DupBB = *(--ChainEnd);
3044 // Now try to duplicate again.
3045 if (ChainEnd == Chain.begin())
3046 break;
3047 DupPred = *std::prev(x: ChainEnd);
3048 Removed = maybeTailDuplicateBlock(BB: DupBB, LPred: DupPred, Chain, BlockFilter,
3049 PrevUnplacedBlockIt,
3050 DuplicatedToLPred);
3051 }
3052 // If BB was duplicated into LPred, it is now scheduled. But because it was
3053 // removed, markChainSuccessors won't be called for its chain. Instead we
3054 // call markBlockSuccessors for LPred to achieve the same effect. This must go
3055 // at the end because repeating the tail duplication can increase the number
3056 // of unscheduled predecessors.
3057 LPred = *std::prev(x: Chain.end());
3058 if (DuplicatedToOriginalLPred)
3059 markBlockSuccessors(Chain, MBB: LPred, LoopHeaderBB, BlockFilter);
3060 return true;
3061}
3062
3063/// Tail duplicate \p BB into (some) predecessors if profitable.
3064/// \p BB - Basic block that may be duplicated
3065/// \p LPred - Chosen layout predecessor of \p BB
3066/// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
3067/// \p BlockFilter - Set of blocks that belong to the loop being laid out.
3068/// Used to identify which blocks to update predecessor
3069/// counts.
3070/// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
3071/// chosen in the given order due to unnatural CFG
3072/// only needed if \p BB is removed and
3073/// \p PrevUnplacedBlockIt pointed to \p BB.
3074/// \p DuplicatedToLPred - True if the block was duplicated into LPred.
3075/// \return - True if the block was duplicated into all preds and removed.
3076bool MachineBlockPlacement::maybeTailDuplicateBlock(
3077 MachineBasicBlock *BB, MachineBasicBlock *LPred,
3078 BlockChain &Chain, BlockFilterSet *BlockFilter,
3079 MachineFunction::iterator &PrevUnplacedBlockIt,
3080 bool &DuplicatedToLPred) {
3081 DuplicatedToLPred = false;
3082 if (!shouldTailDuplicate(BB))
3083 return false;
3084
3085 LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber()
3086 << "\n");
3087
3088 // This has to be a callback because none of it can be done after
3089 // BB is deleted.
3090 bool Removed = false;
3091 auto RemovalCallback =
3092 [&](MachineBasicBlock *RemBB) {
3093 // Signal to outer function
3094 Removed = true;
3095
3096 // Conservative default.
3097 bool InWorkList = true;
3098 // Remove from the Chain and Chain Map
3099 if (BlockToChain.count(Val: RemBB)) {
3100 BlockChain *Chain = BlockToChain[RemBB];
3101 InWorkList = Chain->UnscheduledPredecessors == 0;
3102 Chain->remove(BB: RemBB);
3103 BlockToChain.erase(Val: RemBB);
3104 }
3105
3106 // Handle the unplaced block iterator
3107 if (&(*PrevUnplacedBlockIt) == RemBB) {
3108 PrevUnplacedBlockIt++;
3109 }
3110
3111 // Handle the Work Lists
3112 if (InWorkList) {
3113 SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList;
3114 if (RemBB->isEHPad())
3115 RemoveList = EHPadWorkList;
3116 llvm::erase(C&: RemoveList, V: RemBB);
3117 }
3118
3119 // Handle the filter set
3120 if (BlockFilter) {
3121 BlockFilter->remove(X: RemBB);
3122 }
3123
3124 // Remove the block from loop info.
3125 MLI->removeBlock(BB: RemBB);
3126 if (RemBB == PreferredLoopExit)
3127 PreferredLoopExit = nullptr;
3128
3129 LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: "
3130 << getBlockName(RemBB) << "\n");
3131 };
3132 auto RemovalCallbackRef =
3133 function_ref<void(MachineBasicBlock*)>(RemovalCallback);
3134
3135 SmallVector<MachineBasicBlock *, 8> DuplicatedPreds;
3136 bool IsSimple = TailDup.isSimpleBB(TailBB: BB);
3137 SmallVector<MachineBasicBlock *, 8> CandidatePreds;
3138 SmallVectorImpl<MachineBasicBlock *> *CandidatePtr = nullptr;
3139 if (F->getFunction().hasProfileData()) {
3140 // We can do partial duplication with precise profile information.
3141 findDuplicateCandidates(Candidates&: CandidatePreds, BB, BlockFilter);
3142 if (CandidatePreds.size() == 0)
3143 return false;
3144 if (CandidatePreds.size() < BB->pred_size())
3145 CandidatePtr = &CandidatePreds;
3146 }
3147 TailDup.tailDuplicateAndUpdate(IsSimple, MBB: BB, ForcedLayoutPred: LPred, DuplicatedPreds: &DuplicatedPreds,
3148 RemovalCallback: &RemovalCallbackRef, CandidatePtr);
3149
3150 // Update UnscheduledPredecessors to reflect tail-duplication.
3151 DuplicatedToLPred = false;
3152 for (MachineBasicBlock *Pred : DuplicatedPreds) {
3153 // We're only looking for unscheduled predecessors that match the filter.
3154 BlockChain* PredChain = BlockToChain[Pred];
3155 if (Pred == LPred)
3156 DuplicatedToLPred = true;
3157 if (Pred == LPred || (BlockFilter && !BlockFilter->count(key: Pred))
3158 || PredChain == &Chain)
3159 continue;
3160 for (MachineBasicBlock *NewSucc : Pred->successors()) {
3161 if (BlockFilter && !BlockFilter->count(key: NewSucc))
3162 continue;
3163 BlockChain *NewChain = BlockToChain[NewSucc];
3164 if (NewChain != &Chain && NewChain != PredChain)
3165 NewChain->UnscheduledPredecessors++;
3166 }
3167 }
3168 return Removed;
3169}
3170
3171// Count the number of actual machine instructions.
3172static uint64_t countMBBInstruction(MachineBasicBlock *MBB) {
3173 uint64_t InstrCount = 0;
3174 for (MachineInstr &MI : *MBB) {
3175 if (!MI.isPHI() && !MI.isMetaInstruction())
3176 InstrCount += 1;
3177 }
3178 return InstrCount;
3179}
3180
3181// The size cost of duplication is the instruction size of the duplicated block.
3182// So we should scale the threshold accordingly. But the instruction size is not
3183// available on all targets, so we use the number of instructions instead.
3184BlockFrequency MachineBlockPlacement::scaleThreshold(MachineBasicBlock *BB) {
3185 return BlockFrequency(DupThreshold.getFrequency() * countMBBInstruction(MBB: BB));
3186}
3187
3188// Returns true if BB is Pred's best successor.
3189bool MachineBlockPlacement::isBestSuccessor(MachineBasicBlock *BB,
3190 MachineBasicBlock *Pred,
3191 BlockFilterSet *BlockFilter) {
3192 if (BB == Pred)
3193 return false;
3194 if (BlockFilter && !BlockFilter->count(key: Pred))
3195 return false;
3196 BlockChain *PredChain = BlockToChain[Pred];
3197 if (PredChain && (Pred != *std::prev(x: PredChain->end())))
3198 return false;
3199
3200 // Find the successor with largest probability excluding BB.
3201 BranchProbability BestProb = BranchProbability::getZero();
3202 for (MachineBasicBlock *Succ : Pred->successors())
3203 if (Succ != BB) {
3204 if (BlockFilter && !BlockFilter->count(key: Succ))
3205 continue;
3206 BlockChain *SuccChain = BlockToChain[Succ];
3207 if (SuccChain && (Succ != *SuccChain->begin()))
3208 continue;
3209 BranchProbability SuccProb = MBPI->getEdgeProbability(Src: Pred, Dst: Succ);
3210 if (SuccProb > BestProb)
3211 BestProb = SuccProb;
3212 }
3213
3214 BranchProbability BBProb = MBPI->getEdgeProbability(Src: Pred, Dst: BB);
3215 if (BBProb <= BestProb)
3216 return false;
3217
3218 // Compute the number of reduced taken branches if Pred falls through to BB
3219 // instead of another successor. Then compare it with threshold.
3220 BlockFrequency PredFreq = getBlockCountOrFrequency(BB: Pred);
3221 BlockFrequency Gain = PredFreq * (BBProb - BestProb);
3222 return Gain > scaleThreshold(BB);
3223}
3224
3225// Find out the predecessors of BB and BB can be beneficially duplicated into
3226// them.
3227void MachineBlockPlacement::findDuplicateCandidates(
3228 SmallVectorImpl<MachineBasicBlock *> &Candidates,
3229 MachineBasicBlock *BB,
3230 BlockFilterSet *BlockFilter) {
3231 MachineBasicBlock *Fallthrough = nullptr;
3232 BranchProbability DefaultBranchProb = BranchProbability::getZero();
3233 BlockFrequency BBDupThreshold(scaleThreshold(BB));
3234 SmallVector<MachineBasicBlock *, 8> Preds(BB->predecessors());
3235 SmallVector<MachineBasicBlock *, 8> Succs(BB->successors());
3236
3237 // Sort for highest frequency.
3238 auto CmpSucc = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
3239 return MBPI->getEdgeProbability(Src: BB, Dst: A) > MBPI->getEdgeProbability(Src: BB, Dst: B);
3240 };
3241 auto CmpPred = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
3242 return MBFI->getBlockFreq(MBB: A) > MBFI->getBlockFreq(MBB: B);
3243 };
3244 llvm::stable_sort(Range&: Succs, C: CmpSucc);
3245 llvm::stable_sort(Range&: Preds, C: CmpPred);
3246
3247 auto SuccIt = Succs.begin();
3248 if (SuccIt != Succs.end()) {
3249 DefaultBranchProb = MBPI->getEdgeProbability(Src: BB, Dst: *SuccIt).getCompl();
3250 }
3251
3252 // For each predecessors of BB, compute the benefit of duplicating BB,
3253 // if it is larger than the threshold, add it into Candidates.
3254 //
3255 // If we have following control flow.
3256 //
3257 // PB1 PB2 PB3 PB4
3258 // \ | / /\
3259 // \ | / / \
3260 // \ |/ / \
3261 // BB----/ OB
3262 // /\
3263 // / \
3264 // SB1 SB2
3265 //
3266 // And it can be partially duplicated as
3267 //
3268 // PB2+BB
3269 // | PB1 PB3 PB4
3270 // | | / /\
3271 // | | / / \
3272 // | |/ / \
3273 // | BB----/ OB
3274 // |\ /|
3275 // | X |
3276 // |/ \|
3277 // SB2 SB1
3278 //
3279 // The benefit of duplicating into a predecessor is defined as
3280 // Orig_taken_branch - Duplicated_taken_branch
3281 //
3282 // The Orig_taken_branch is computed with the assumption that predecessor
3283 // jumps to BB and the most possible successor is laid out after BB.
3284 //
3285 // The Duplicated_taken_branch is computed with the assumption that BB is
3286 // duplicated into PB, and one successor is layout after it (SB1 for PB1 and
3287 // SB2 for PB2 in our case). If there is no available successor, the combined
3288 // block jumps to all BB's successor, like PB3 in this example.
3289 //
3290 // If a predecessor has multiple successors, so BB can't be duplicated into
3291 // it. But it can beneficially fall through to BB, and duplicate BB into other
3292 // predecessors.
3293 for (MachineBasicBlock *Pred : Preds) {
3294 BlockFrequency PredFreq = getBlockCountOrFrequency(BB: Pred);
3295
3296 if (!TailDup.canTailDuplicate(TailBB: BB, PredBB: Pred)) {
3297 // BB can't be duplicated into Pred, but it is possible to be layout
3298 // below Pred.
3299 if (!Fallthrough && isBestSuccessor(BB, Pred, BlockFilter)) {
3300 Fallthrough = Pred;
3301 if (SuccIt != Succs.end())
3302 SuccIt++;
3303 }
3304 continue;
3305 }
3306
3307 BlockFrequency OrigCost = PredFreq + PredFreq * DefaultBranchProb;
3308 BlockFrequency DupCost;
3309 if (SuccIt == Succs.end()) {
3310 // Jump to all successors;
3311 if (Succs.size() > 0)
3312 DupCost += PredFreq;
3313 } else {
3314 // Fallthrough to *SuccIt, jump to all other successors;
3315 DupCost += PredFreq;
3316 DupCost -= PredFreq * MBPI->getEdgeProbability(Src: BB, Dst: *SuccIt);
3317 }
3318
3319 assert(OrigCost >= DupCost);
3320 OrigCost -= DupCost;
3321 if (OrigCost > BBDupThreshold) {
3322 Candidates.push_back(Elt: Pred);
3323 if (SuccIt != Succs.end())
3324 SuccIt++;
3325 }
3326 }
3327
3328 // No predecessors can optimally fallthrough to BB.
3329 // So we can change one duplication into fallthrough.
3330 if (!Fallthrough) {
3331 if ((Candidates.size() < Preds.size()) && (Candidates.size() > 0)) {
3332 Candidates[0] = Candidates.back();
3333 Candidates.pop_back();
3334 }
3335 }
3336}
3337
3338void MachineBlockPlacement::initDupThreshold() {
3339 DupThreshold = BlockFrequency(0);
3340 if (!F->getFunction().hasProfileData())
3341 return;
3342
3343 // We prefer to use prifile count.
3344 uint64_t HotThreshold = PSI->getOrCompHotCountThreshold();
3345 if (HotThreshold != UINT64_MAX) {
3346 UseProfileCount = true;
3347 DupThreshold =
3348 BlockFrequency(HotThreshold * TailDupProfilePercentThreshold / 100);
3349 return;
3350 }
3351
3352 // Profile count is not available, we can use block frequency instead.
3353 BlockFrequency MaxFreq = BlockFrequency(0);
3354 for (MachineBasicBlock &MBB : *F) {
3355 BlockFrequency Freq = MBFI->getBlockFreq(MBB: &MBB);
3356 if (Freq > MaxFreq)
3357 MaxFreq = Freq;
3358 }
3359
3360 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
3361 DupThreshold = BlockFrequency(MaxFreq * ThresholdProb);
3362 UseProfileCount = false;
3363}
3364
3365bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
3366 if (skipFunction(F: MF.getFunction()))
3367 return false;
3368
3369 // Check for single-block functions and skip them.
3370 if (std::next(x: MF.begin()) == MF.end())
3371 return false;
3372
3373 F = &MF;
3374 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
3375 MBFI = std::make_unique<MBFIWrapper>(
3376 args&: getAnalysis<MachineBlockFrequencyInfo>());
3377 MLI = &getAnalysis<MachineLoopInfo>();
3378 TII = MF.getSubtarget().getInstrInfo();
3379 TLI = MF.getSubtarget().getTargetLowering();
3380 MPDT = nullptr;
3381 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
3382
3383 initDupThreshold();
3384
3385 // Initialize PreferredLoopExit to nullptr here since it may never be set if
3386 // there are no MachineLoops.
3387 PreferredLoopExit = nullptr;
3388
3389 assert(BlockToChain.empty() &&
3390 "BlockToChain map should be empty before starting placement.");
3391 assert(ComputedEdges.empty() &&
3392 "Computed Edge map should be empty before starting placement.");
3393
3394 unsigned TailDupSize = TailDupPlacementThreshold;
3395 // If only the aggressive threshold is explicitly set, use it.
3396 if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 &&
3397 TailDupPlacementThreshold.getNumOccurrences() == 0)
3398 TailDupSize = TailDupPlacementAggressiveThreshold;
3399
3400 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
3401 // For aggressive optimization, we can adjust some thresholds to be less
3402 // conservative.
3403 if (PassConfig->getOptLevel() >= CodeGenOptLevel::Aggressive) {
3404 // At O3 we should be more willing to copy blocks for tail duplication. This
3405 // increases size pressure, so we only do it at O3
3406 // Do this unless only the regular threshold is explicitly set.
3407 if (TailDupPlacementThreshold.getNumOccurrences() == 0 ||
3408 TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0)
3409 TailDupSize = TailDupPlacementAggressiveThreshold;
3410 }
3411
3412 // If there's no threshold provided through options, query the target
3413 // information for a threshold instead.
3414 if (TailDupPlacementThreshold.getNumOccurrences() == 0 &&
3415 (PassConfig->getOptLevel() < CodeGenOptLevel::Aggressive ||
3416 TailDupPlacementAggressiveThreshold.getNumOccurrences() == 0))
3417 TailDupSize = TII->getTailDuplicateSize(OptLevel: PassConfig->getOptLevel());
3418
3419 if (allowTailDupPlacement()) {
3420 MPDT = &getAnalysis<MachinePostDominatorTree>();
3421 bool OptForSize = MF.getFunction().hasOptSize() ||
3422 llvm::shouldOptimizeForSize(MF: &MF, PSI, BFI: &MBFI->getMBFI());
3423 if (OptForSize)
3424 TailDupSize = 1;
3425 bool PreRegAlloc = false;
3426 TailDup.initMF(MF, PreRegAlloc, MBPI, MBFI: MBFI.get(), PSI,
3427 /* LayoutMode */ true, TailDupSize);
3428 precomputeTriangleChains();
3429 }
3430
3431 buildCFGChains();
3432
3433 // Changing the layout can create new tail merging opportunities.
3434 // TailMerge can create jump into if branches that make CFG irreducible for
3435 // HW that requires structured CFG.
3436 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
3437 PassConfig->getEnableTailMerge() &&
3438 BranchFoldPlacement;
3439 // No tail merging opportunities if the block number is less than four.
3440 if (MF.size() > 3 && EnableTailMerge) {
3441 unsigned TailMergeSize = TailDupSize + 1;
3442 BranchFolder BF(/*DefaultEnableTailMerge=*/true, /*CommonHoist=*/false,
3443 *MBFI, *MBPI, PSI, TailMergeSize);
3444
3445 if (BF.OptimizeFunction(MF, tii: TII, tri: MF.getSubtarget().getRegisterInfo(), mli: MLI,
3446 /*AfterPlacement=*/true)) {
3447 // Redo the layout if tail merging creates/removes/moves blocks.
3448 BlockToChain.clear();
3449 ComputedEdges.clear();
3450 // Must redo the post-dominator tree if blocks were changed.
3451 if (MPDT)
3452 MPDT->runOnMachineFunction(MF);
3453 ChainAllocator.DestroyAll();
3454 buildCFGChains();
3455 }
3456 }
3457
3458 // Apply a post-processing optimizing block placement.
3459 if (MF.size() >= 3 && EnableExtTspBlockPlacement &&
3460 (ApplyExtTspWithoutProfile || MF.getFunction().hasProfileData())) {
3461 // Find a new placement and modify the layout of the blocks in the function.
3462 applyExtTsp();
3463
3464 // Re-create CFG chain so that we can optimizeBranches and alignBlocks.
3465 createCFGChainExtTsp();
3466 }
3467
3468 optimizeBranches();
3469 alignBlocks();
3470
3471 BlockToChain.clear();
3472 ComputedEdges.clear();
3473 ChainAllocator.DestroyAll();
3474
3475 bool HasMaxBytesOverride =
3476 MaxBytesForAlignmentOverride.getNumOccurrences() > 0;
3477
3478 if (AlignAllBlock)
3479 // Align all of the blocks in the function to a specific alignment.
3480 for (MachineBasicBlock &MBB : MF) {
3481 if (HasMaxBytesOverride)
3482 MBB.setAlignment(A: Align(1ULL << AlignAllBlock),
3483 MaxBytes: MaxBytesForAlignmentOverride);
3484 else
3485 MBB.setAlignment(Align(1ULL << AlignAllBlock));
3486 }
3487 else if (AlignAllNonFallThruBlocks) {
3488 // Align all of the blocks that have no fall-through predecessors to a
3489 // specific alignment.
3490 for (auto MBI = std::next(x: MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) {
3491 auto LayoutPred = std::prev(x: MBI);
3492 if (!LayoutPred->isSuccessor(MBB: &*MBI)) {
3493 if (HasMaxBytesOverride)
3494 MBI->setAlignment(A: Align(1ULL << AlignAllNonFallThruBlocks),
3495 MaxBytes: MaxBytesForAlignmentOverride);
3496 else
3497 MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks));
3498 }
3499 }
3500 }
3501 if (ViewBlockLayoutWithBFI != GVDT_None &&
3502 (ViewBlockFreqFuncName.empty() ||
3503 F->getFunction().getName().equals(RHS: ViewBlockFreqFuncName))) {
3504 if (RenumberBlocksBeforeView)
3505 MF.RenumberBlocks();
3506 MBFI->view(Name: "MBP." + MF.getName(), isSimple: false);
3507 }
3508
3509 // We always return true as we have no way to track whether the final order
3510 // differs from the original order.
3511 return true;
3512}
3513
3514void MachineBlockPlacement::applyExtTsp() {
3515 // Prepare data; blocks are indexed by their index in the current ordering.
3516 DenseMap<const MachineBasicBlock *, uint64_t> BlockIndex;
3517 BlockIndex.reserve(NumEntries: F->size());
3518 std::vector<const MachineBasicBlock *> CurrentBlockOrder;
3519 CurrentBlockOrder.reserve(n: F->size());
3520 size_t NumBlocks = 0;
3521 for (const MachineBasicBlock &MBB : *F) {
3522 BlockIndex[&MBB] = NumBlocks++;
3523 CurrentBlockOrder.push_back(x: &MBB);
3524 }
3525
3526 auto BlockSizes = std::vector<uint64_t>(F->size());
3527 auto BlockCounts = std::vector<uint64_t>(F->size());
3528 std::vector<codelayout::EdgeCount> JumpCounts;
3529 for (MachineBasicBlock &MBB : *F) {
3530 // Getting the block frequency.
3531 BlockFrequency BlockFreq = MBFI->getBlockFreq(MBB: &MBB);
3532 BlockCounts[BlockIndex[&MBB]] = BlockFreq.getFrequency();
3533 // Getting the block size:
3534 // - approximate the size of an instruction by 4 bytes, and
3535 // - ignore debug instructions.
3536 // Note: getting the exact size of each block is target-dependent and can be
3537 // done by extending the interface of MCCodeEmitter. Experimentally we do
3538 // not see a perf improvement with the exact block sizes.
3539 auto NonDbgInsts =
3540 instructionsWithoutDebug(It: MBB.instr_begin(), End: MBB.instr_end());
3541 int NumInsts = std::distance(first: NonDbgInsts.begin(), last: NonDbgInsts.end());
3542 BlockSizes[BlockIndex[&MBB]] = 4 * NumInsts;
3543 // Getting jump frequencies.
3544 for (MachineBasicBlock *Succ : MBB.successors()) {
3545 auto EP = MBPI->getEdgeProbability(Src: &MBB, Dst: Succ);
3546 BlockFrequency JumpFreq = BlockFreq * EP;
3547 JumpCounts.push_back(
3548 x: {.src: BlockIndex[&MBB], .dst: BlockIndex[Succ], .count: JumpFreq.getFrequency()});
3549 }
3550 }
3551
3552 LLVM_DEBUG(dbgs() << "Applying ext-tsp layout for |V| = " << F->size()
3553 << " with profile = " << F->getFunction().hasProfileData()
3554 << " (" << F->getName().str() << ")"
3555 << "\n");
3556 LLVM_DEBUG(
3557 dbgs() << format(" original layout score: %0.2f\n",
3558 calcExtTspScore(BlockSizes, BlockCounts, JumpCounts)));
3559
3560 // Run the layout algorithm.
3561 auto NewOrder = computeExtTspLayout(NodeSizes: BlockSizes, NodeCounts: BlockCounts, EdgeCounts: JumpCounts);
3562 std::vector<const MachineBasicBlock *> NewBlockOrder;
3563 NewBlockOrder.reserve(n: F->size());
3564 for (uint64_t Node : NewOrder) {
3565 NewBlockOrder.push_back(x: CurrentBlockOrder[Node]);
3566 }
3567 LLVM_DEBUG(dbgs() << format(" optimized layout score: %0.2f\n",
3568 calcExtTspScore(NewOrder, BlockSizes, BlockCounts,
3569 JumpCounts)));
3570
3571 // Assign new block order.
3572 assignBlockOrder(NewOrder: NewBlockOrder);
3573}
3574
3575void MachineBlockPlacement::assignBlockOrder(
3576 const std::vector<const MachineBasicBlock *> &NewBlockOrder) {
3577 assert(F->size() == NewBlockOrder.size() && "Incorrect size of block order");
3578 F->RenumberBlocks();
3579
3580 bool HasChanges = false;
3581 for (size_t I = 0; I < NewBlockOrder.size(); I++) {
3582 if (NewBlockOrder[I] != F->getBlockNumbered(N: I)) {
3583 HasChanges = true;
3584 break;
3585 }
3586 }
3587 // Stop early if the new block order is identical to the existing one.
3588 if (!HasChanges)
3589 return;
3590
3591 SmallVector<MachineBasicBlock *, 4> PrevFallThroughs(F->getNumBlockIDs());
3592 for (auto &MBB : *F) {
3593 PrevFallThroughs[MBB.getNumber()] = MBB.getFallThrough();
3594 }
3595
3596 // Sort basic blocks in the function according to the computed order.
3597 DenseMap<const MachineBasicBlock *, size_t> NewIndex;
3598 for (const MachineBasicBlock *MBB : NewBlockOrder) {
3599 NewIndex[MBB] = NewIndex.size();
3600 }
3601 F->sort(comp: [&](MachineBasicBlock &L, MachineBasicBlock &R) {
3602 return NewIndex[&L] < NewIndex[&R];
3603 });
3604
3605 // Update basic block branches by inserting explicit fallthrough branches
3606 // when required and re-optimize branches when possible.
3607 const TargetInstrInfo *TII = F->getSubtarget().getInstrInfo();
3608 SmallVector<MachineOperand, 4> Cond;
3609 for (auto &MBB : *F) {
3610 MachineFunction::iterator NextMBB = std::next(x: MBB.getIterator());
3611 MachineFunction::iterator EndIt = MBB.getParent()->end();
3612 auto *FTMBB = PrevFallThroughs[MBB.getNumber()];
3613 // If this block had a fallthrough before we need an explicit unconditional
3614 // branch to that block if the fallthrough block is not adjacent to the
3615 // block in the new order.
3616 if (FTMBB && (NextMBB == EndIt || &*NextMBB != FTMBB)) {
3617 TII->insertUnconditionalBranch(MBB, DestBB: FTMBB, DL: MBB.findBranchDebugLoc());
3618 }
3619
3620 // It might be possible to optimize branches by flipping the condition.
3621 Cond.clear();
3622 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
3623 if (TII->analyzeBranch(MBB, TBB, FBB, Cond))
3624 continue;
3625 MBB.updateTerminator(PreviousLayoutSuccessor: FTMBB);
3626 }
3627
3628#ifndef NDEBUG
3629 // Make sure we correctly constructed all branches.
3630 F->verify(p: this, Banner: "After optimized block reordering");
3631#endif
3632}
3633
3634void MachineBlockPlacement::createCFGChainExtTsp() {
3635 BlockToChain.clear();
3636 ComputedEdges.clear();
3637 ChainAllocator.DestroyAll();
3638
3639 MachineBasicBlock *HeadBB = &F->front();
3640 BlockChain *FunctionChain =
3641 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, HeadBB);
3642
3643 for (MachineBasicBlock &MBB : *F) {
3644 if (HeadBB == &MBB)
3645 continue; // Ignore head of the chain
3646 FunctionChain->merge(BB: &MBB, Chain: nullptr);
3647 }
3648}
3649
3650namespace {
3651
3652/// A pass to compute block placement statistics.
3653///
3654/// A separate pass to compute interesting statistics for evaluating block
3655/// placement. This is separate from the actual placement pass so that they can
3656/// be computed in the absence of any placement transformations or when using
3657/// alternative placement strategies.
3658class MachineBlockPlacementStats : public MachineFunctionPass {
3659 /// A handle to the branch probability pass.
3660 const MachineBranchProbabilityInfo *MBPI;
3661
3662 /// A handle to the function-wide block frequency pass.
3663 const MachineBlockFrequencyInfo *MBFI;
3664
3665public:
3666 static char ID; // Pass identification, replacement for typeid
3667
3668 MachineBlockPlacementStats() : MachineFunctionPass(ID) {
3669 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
3670 }
3671
3672 bool runOnMachineFunction(MachineFunction &F) override;
3673
3674 void getAnalysisUsage(AnalysisUsage &AU) const override {
3675 AU.addRequired<MachineBranchProbabilityInfo>();
3676 AU.addRequired<MachineBlockFrequencyInfo>();
3677 AU.setPreservesAll();
3678 MachineFunctionPass::getAnalysisUsage(AU);
3679 }
3680};
3681
3682} // end anonymous namespace
3683
3684char MachineBlockPlacementStats::ID = 0;
3685
3686char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
3687
3688INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
3689 "Basic Block Placement Stats", false, false)
3690INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
3691INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
3692INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
3693 "Basic Block Placement Stats", false, false)
3694
3695bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
3696 // Check for single-block functions and skip them.
3697 if (std::next(x: F.begin()) == F.end())
3698 return false;
3699
3700 if (!isFunctionInPrintList(FunctionName: F.getName()))
3701 return false;
3702
3703 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
3704 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
3705
3706 for (MachineBasicBlock &MBB : F) {
3707 BlockFrequency BlockFreq = MBFI->getBlockFreq(MBB: &MBB);
3708 Statistic &NumBranches =
3709 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
3710 Statistic &BranchTakenFreq =
3711 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
3712 for (MachineBasicBlock *Succ : MBB.successors()) {
3713 // Skip if this successor is a fallthrough.
3714 if (MBB.isLayoutSuccessor(MBB: Succ))
3715 continue;
3716
3717 BlockFrequency EdgeFreq =
3718 BlockFreq * MBPI->getEdgeProbability(Src: &MBB, Dst: Succ);
3719 ++NumBranches;
3720 BranchTakenFreq += EdgeFreq.getFrequency();
3721 }
3722 }
3723
3724 return false;
3725}
3726

source code of llvm/lib/CodeGen/MachineBlockPlacement.cpp