1//===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
10//
11// This SMS implementation is a target-independent back-end pass. When enabled,
12// the pass runs just prior to the register allocation pass, while the machine
13// IR is in SSA form. If software pipelining is successful, then the original
14// loop is replaced by the optimized loop. The optimized loop contains one or
15// more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
16// the instructions cannot be scheduled in a given MII, we increase the MII by
17// one and try again.
18//
19// The SMS implementation is an extension of the ScheduleDAGInstrs class. We
20// represent loop carried dependences in the DAG as order edges to the Phi
21// nodes. We also perform several passes over the DAG to eliminate unnecessary
22// edges that inhibit the ability to pipeline. The implementation uses the
23// DFAPacketizer class to compute the minimum initiation interval and the check
24// where an instruction may be inserted in the pipelined schedule.
25//
26// In order for the SMS pass to work, several target specific hooks need to be
27// implemented to get information about the loop structure and to rewrite
28// instructions.
29//
30//===----------------------------------------------------------------------===//
31
32#include "llvm/CodeGen/MachinePipeliner.h"
33#include "llvm/ADT/ArrayRef.h"
34#include "llvm/ADT/BitVector.h"
35#include "llvm/ADT/DenseMap.h"
36#include "llvm/ADT/MapVector.h"
37#include "llvm/ADT/PriorityQueue.h"
38#include "llvm/ADT/STLExtras.h"
39#include "llvm/ADT/SetOperations.h"
40#include "llvm/ADT/SetVector.h"
41#include "llvm/ADT/SmallPtrSet.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/SmallVector.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/ADT/iterator_range.h"
46#include "llvm/Analysis/AliasAnalysis.h"
47#include "llvm/Analysis/CycleAnalysis.h"
48#include "llvm/Analysis/MemoryLocation.h"
49#include "llvm/Analysis/OptimizationRemarkEmitter.h"
50#include "llvm/Analysis/ValueTracking.h"
51#include "llvm/CodeGen/DFAPacketizer.h"
52#include "llvm/CodeGen/LiveIntervals.h"
53#include "llvm/CodeGen/MachineBasicBlock.h"
54#include "llvm/CodeGen/MachineDominators.h"
55#include "llvm/CodeGen/MachineFunction.h"
56#include "llvm/CodeGen/MachineFunctionPass.h"
57#include "llvm/CodeGen/MachineInstr.h"
58#include "llvm/CodeGen/MachineInstrBuilder.h"
59#include "llvm/CodeGen/MachineLoopInfo.h"
60#include "llvm/CodeGen/MachineMemOperand.h"
61#include "llvm/CodeGen/MachineOperand.h"
62#include "llvm/CodeGen/MachineRegisterInfo.h"
63#include "llvm/CodeGen/ModuloSchedule.h"
64#include "llvm/CodeGen/Register.h"
65#include "llvm/CodeGen/RegisterClassInfo.h"
66#include "llvm/CodeGen/RegisterPressure.h"
67#include "llvm/CodeGen/ScheduleDAG.h"
68#include "llvm/CodeGen/ScheduleDAGMutation.h"
69#include "llvm/CodeGen/TargetInstrInfo.h"
70#include "llvm/CodeGen/TargetOpcodes.h"
71#include "llvm/CodeGen/TargetRegisterInfo.h"
72#include "llvm/CodeGen/TargetSubtargetInfo.h"
73#include "llvm/Config/llvm-config.h"
74#include "llvm/IR/Attributes.h"
75#include "llvm/IR/Function.h"
76#include "llvm/MC/LaneBitmask.h"
77#include "llvm/MC/MCInstrDesc.h"
78#include "llvm/MC/MCInstrItineraries.h"
79#include "llvm/MC/MCRegisterInfo.h"
80#include "llvm/Pass.h"
81#include "llvm/Support/CommandLine.h"
82#include "llvm/Support/Compiler.h"
83#include "llvm/Support/Debug.h"
84#include "llvm/Support/MathExtras.h"
85#include "llvm/Support/raw_ostream.h"
86#include <algorithm>
87#include <cassert>
88#include <climits>
89#include <cstdint>
90#include <deque>
91#include <functional>
92#include <iomanip>
93#include <iterator>
94#include <map>
95#include <memory>
96#include <sstream>
97#include <tuple>
98#include <utility>
99#include <vector>
100
101using namespace llvm;
102
103#define DEBUG_TYPE "pipeliner"
104
105STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
106STATISTIC(NumPipelined, "Number of loops software pipelined");
107STATISTIC(NumNodeOrderIssues, "Number of node order issues found");
108STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch");
109STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop");
110STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader");
111STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large");
112STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII");
113STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found");
114STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage");
115STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages");
116
117/// A command line option to turn software pipelining on or off.
118static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(Val: true),
119 cl::desc("Enable Software Pipelining"));
120
121/// A command line option to enable SWP at -Os.
122static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
123 cl::desc("Enable SWP at Os."), cl::Hidden,
124 cl::init(Val: false));
125
126/// A command line argument to limit minimum initial interval for pipelining.
127static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
128 cl::desc("Size limit for the MII."),
129 cl::Hidden, cl::init(Val: 27));
130
131/// A command line argument to force pipeliner to use specified initial
132/// interval.
133static cl::opt<int> SwpForceII("pipeliner-force-ii",
134 cl::desc("Force pipeliner to use specified II."),
135 cl::Hidden, cl::init(Val: -1));
136
137/// A command line argument to limit the number of stages in the pipeline.
138static cl::opt<int>
139 SwpMaxStages("pipeliner-max-stages",
140 cl::desc("Maximum stages allowed in the generated scheduled."),
141 cl::Hidden, cl::init(Val: 3));
142
143/// A command line option to disable the pruning of chain dependences due to
144/// an unrelated Phi.
145static cl::opt<bool>
146 SwpPruneDeps("pipeliner-prune-deps",
147 cl::desc("Prune dependences between unrelated Phi nodes."),
148 cl::Hidden, cl::init(Val: true));
149
150/// A command line option to disable the pruning of loop carried order
151/// dependences.
152static cl::opt<bool>
153 SwpPruneLoopCarried("pipeliner-prune-loop-carried",
154 cl::desc("Prune loop carried order dependences."),
155 cl::Hidden, cl::init(Val: true));
156
157#ifndef NDEBUG
158static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(Val: -1));
159#endif
160
161static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
162 cl::ReallyHidden,
163 cl::desc("Ignore RecMII"));
164
165static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden,
166 cl::init(Val: false));
167static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden,
168 cl::init(Val: false));
169
170static cl::opt<bool> EmitTestAnnotations(
171 "pipeliner-annotate-for-testing", cl::Hidden, cl::init(Val: false),
172 cl::desc("Instead of emitting the pipelined code, annotate instructions "
173 "with the generated schedule for feeding into the "
174 "-modulo-schedule-test pass"));
175
176static cl::opt<bool> ExperimentalCodeGen(
177 "pipeliner-experimental-cg", cl::Hidden, cl::init(Val: false),
178 cl::desc(
179 "Use the experimental peeling code generator for software pipelining"));
180
181static cl::opt<int> SwpIISearchRange("pipeliner-ii-search-range",
182 cl::desc("Range to search for II"),
183 cl::Hidden, cl::init(Val: 10));
184
185static cl::opt<bool>
186 LimitRegPressure("pipeliner-register-pressure", cl::Hidden, cl::init(Val: false),
187 cl::desc("Limit register pressure of scheduled loop"));
188
189static cl::opt<int>
190 RegPressureMargin("pipeliner-register-pressure-margin", cl::Hidden,
191 cl::init(Val: 5),
192 cl::desc("Margin representing the unused percentage of "
193 "the register pressure limit"));
194
195namespace llvm {
196
197// A command line option to enable the CopyToPhi DAG mutation.
198cl::opt<bool> SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden,
199 cl::init(Val: true),
200 cl::desc("Enable CopyToPhi DAG Mutation"));
201
202/// A command line argument to force pipeliner to use specified issue
203/// width.
204cl::opt<int> SwpForceIssueWidth(
205 "pipeliner-force-issue-width",
206 cl::desc("Force pipeliner to use specified issue width."), cl::Hidden,
207 cl::init(Val: -1));
208
209} // end namespace llvm
210
211unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
212char MachinePipeliner::ID = 0;
213#ifndef NDEBUG
214int MachinePipeliner::NumTries = 0;
215#endif
216char &llvm::MachinePipelinerID = MachinePipeliner::ID;
217
218INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE,
219 "Modulo Software Pipelining", false, false)
220INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
221INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
222INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
223INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
224INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE,
225 "Modulo Software Pipelining", false, false)
226
227/// The "main" function for implementing Swing Modulo Scheduling.
228bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
229 if (skipFunction(F: mf.getFunction()))
230 return false;
231
232 if (!EnableSWP)
233 return false;
234
235 if (mf.getFunction().getAttributes().hasFnAttr(Attribute::OptimizeForSize) &&
236 !EnableSWPOptSize.getPosition())
237 return false;
238
239 if (!mf.getSubtarget().enableMachinePipeliner())
240 return false;
241
242 // Cannot pipeline loops without instruction itineraries if we are using
243 // DFA for the pipeliner.
244 if (mf.getSubtarget().useDFAforSMS() &&
245 (!mf.getSubtarget().getInstrItineraryData() ||
246 mf.getSubtarget().getInstrItineraryData()->isEmpty()))
247 return false;
248
249 MF = &mf;
250 MLI = &getAnalysis<MachineLoopInfo>();
251 MDT = &getAnalysis<MachineDominatorTree>();
252 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
253 TII = MF->getSubtarget().getInstrInfo();
254 RegClassInfo.runOnMachineFunction(MF: *MF);
255
256 for (const auto &L : *MLI)
257 scheduleLoop(L&: *L);
258
259 return false;
260}
261
262/// Attempt to perform the SMS algorithm on the specified loop. This function is
263/// the main entry point for the algorithm. The function identifies candidate
264/// loops, calculates the minimum initiation interval, and attempts to schedule
265/// the loop.
266bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
267 bool Changed = false;
268 for (const auto &InnerLoop : L)
269 Changed |= scheduleLoop(L&: *InnerLoop);
270
271#ifndef NDEBUG
272 // Stop trying after reaching the limit (if any).
273 int Limit = SwpLoopLimit;
274 if (Limit >= 0) {
275 if (NumTries >= SwpLoopLimit)
276 return Changed;
277 NumTries++;
278 }
279#endif
280
281 setPragmaPipelineOptions(L);
282 if (!canPipelineLoop(L)) {
283 LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n");
284 ORE->emit(RemarkBuilder: [&]() {
285 return MachineOptimizationRemarkMissed(DEBUG_TYPE, "canPipelineLoop",
286 L.getStartLoc(), L.getHeader())
287 << "Failed to pipeline loop";
288 });
289
290 LI.LoopPipelinerInfo.reset();
291 return Changed;
292 }
293
294 ++NumTrytoPipeline;
295
296 Changed = swingModuloScheduler(L);
297
298 LI.LoopPipelinerInfo.reset();
299 return Changed;
300}
301
302void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) {
303 // Reset the pragma for the next loop in iteration.
304 disabledByPragma = false;
305 II_setByPragma = 0;
306
307 MachineBasicBlock *LBLK = L.getTopBlock();
308
309 if (LBLK == nullptr)
310 return;
311
312 const BasicBlock *BBLK = LBLK->getBasicBlock();
313 if (BBLK == nullptr)
314 return;
315
316 const Instruction *TI = BBLK->getTerminator();
317 if (TI == nullptr)
318 return;
319
320 MDNode *LoopID = TI->getMetadata(KindID: LLVMContext::MD_loop);
321 if (LoopID == nullptr)
322 return;
323
324 assert(LoopID->getNumOperands() > 0 && "requires atleast one operand");
325 assert(LoopID->getOperand(0) == LoopID && "invalid loop");
326
327 for (const MDOperand &MDO : llvm::drop_begin(RangeOrContainer: LoopID->operands())) {
328 MDNode *MD = dyn_cast<MDNode>(Val: MDO);
329
330 if (MD == nullptr)
331 continue;
332
333 MDString *S = dyn_cast<MDString>(Val: MD->getOperand(I: 0));
334
335 if (S == nullptr)
336 continue;
337
338 if (S->getString() == "llvm.loop.pipeline.initiationinterval") {
339 assert(MD->getNumOperands() == 2 &&
340 "Pipeline initiation interval hint metadata should have two operands.");
341 II_setByPragma =
342 mdconst::extract<ConstantInt>(MD: MD->getOperand(I: 1))->getZExtValue();
343 assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive.");
344 } else if (S->getString() == "llvm.loop.pipeline.disable") {
345 disabledByPragma = true;
346 }
347 }
348}
349
350/// Return true if the loop can be software pipelined. The algorithm is
351/// restricted to loops with a single basic block. Make sure that the
352/// branch in the loop can be analyzed.
353bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
354 if (L.getNumBlocks() != 1) {
355 ORE->emit(RemarkBuilder: [&]() {
356 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
357 L.getStartLoc(), L.getHeader())
358 << "Not a single basic block: "
359 << ore::NV("NumBlocks", L.getNumBlocks());
360 });
361 return false;
362 }
363
364 if (disabledByPragma) {
365 ORE->emit(RemarkBuilder: [&]() {
366 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
367 L.getStartLoc(), L.getHeader())
368 << "Disabled by Pragma.";
369 });
370 return false;
371 }
372
373 // Check if the branch can't be understood because we can't do pipelining
374 // if that's the case.
375 LI.TBB = nullptr;
376 LI.FBB = nullptr;
377 LI.BrCond.clear();
378 if (TII->analyzeBranch(MBB&: *L.getHeader(), TBB&: LI.TBB, FBB&: LI.FBB, Cond&: LI.BrCond)) {
379 LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n");
380 NumFailBranch++;
381 ORE->emit(RemarkBuilder: [&]() {
382 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
383 L.getStartLoc(), L.getHeader())
384 << "The branch can't be understood";
385 });
386 return false;
387 }
388
389 LI.LoopInductionVar = nullptr;
390 LI.LoopCompare = nullptr;
391 LI.LoopPipelinerInfo = TII->analyzeLoopForPipelining(LoopBB: L.getTopBlock());
392 if (!LI.LoopPipelinerInfo) {
393 LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n");
394 NumFailLoop++;
395 ORE->emit(RemarkBuilder: [&]() {
396 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
397 L.getStartLoc(), L.getHeader())
398 << "The loop structure is not supported";
399 });
400 return false;
401 }
402
403 if (!L.getLoopPreheader()) {
404 LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n");
405 NumFailPreheader++;
406 ORE->emit(RemarkBuilder: [&]() {
407 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
408 L.getStartLoc(), L.getHeader())
409 << "No loop preheader found";
410 });
411 return false;
412 }
413
414 // Remove any subregisters from inputs to phi nodes.
415 preprocessPhiNodes(B&: *L.getHeader());
416 return true;
417}
418
419void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) {
420 MachineRegisterInfo &MRI = MF->getRegInfo();
421 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes();
422
423 for (MachineInstr &PI : B.phis()) {
424 MachineOperand &DefOp = PI.getOperand(i: 0);
425 assert(DefOp.getSubReg() == 0);
426 auto *RC = MRI.getRegClass(Reg: DefOp.getReg());
427
428 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) {
429 MachineOperand &RegOp = PI.getOperand(i);
430 if (RegOp.getSubReg() == 0)
431 continue;
432
433 // If the operand uses a subregister, replace it with a new register
434 // without subregisters, and generate a copy to the new register.
435 Register NewReg = MRI.createVirtualRegister(RegClass: RC);
436 MachineBasicBlock &PredB = *PI.getOperand(i: i+1).getMBB();
437 MachineBasicBlock::iterator At = PredB.getFirstTerminator();
438 const DebugLoc &DL = PredB.findDebugLoc(MBBI: At);
439 auto Copy = BuildMI(BB&: PredB, I: At, MIMD: DL, MCID: TII->get(Opcode: TargetOpcode::COPY), DestReg: NewReg)
440 .addReg(RegNo: RegOp.getReg(), flags: getRegState(RegOp),
441 SubReg: RegOp.getSubReg());
442 Slots.insertMachineInstrInMaps(MI&: *Copy);
443 RegOp.setReg(NewReg);
444 RegOp.setSubReg(0);
445 }
446 }
447}
448
449/// The SMS algorithm consists of the following main steps:
450/// 1. Computation and analysis of the dependence graph.
451/// 2. Ordering of the nodes (instructions).
452/// 3. Attempt to Schedule the loop.
453bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
454 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
455
456 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo,
457 II_setByPragma, LI.LoopPipelinerInfo.get());
458
459 MachineBasicBlock *MBB = L.getHeader();
460 // The kernel should not include any terminator instructions. These
461 // will be added back later.
462 SMS.startBlock(BB: MBB);
463
464 // Compute the number of 'real' instructions in the basic block by
465 // ignoring terminators.
466 unsigned size = MBB->size();
467 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
468 E = MBB->instr_end();
469 I != E; ++I, --size)
470 ;
471
472 SMS.enterRegion(bb: MBB, begin: MBB->begin(), end: MBB->getFirstTerminator(), regioninstrs: size);
473 SMS.schedule();
474 SMS.exitRegion();
475
476 SMS.finishBlock();
477 return SMS.hasNewSchedule();
478}
479
480void MachinePipeliner::getAnalysisUsage(AnalysisUsage &AU) const {
481 AU.addRequired<AAResultsWrapperPass>();
482 AU.addPreserved<AAResultsWrapperPass>();
483 AU.addRequired<MachineLoopInfo>();
484 AU.addRequired<MachineDominatorTree>();
485 AU.addRequired<LiveIntervals>();
486 AU.addRequired<MachineOptimizationRemarkEmitterPass>();
487 MachineFunctionPass::getAnalysisUsage(AU);
488}
489
490void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) {
491 if (SwpForceII > 0)
492 MII = SwpForceII;
493 else if (II_setByPragma > 0)
494 MII = II_setByPragma;
495 else
496 MII = std::max(a: ResMII, b: RecMII);
497}
498
499void SwingSchedulerDAG::setMAX_II() {
500 if (SwpForceII > 0)
501 MAX_II = SwpForceII;
502 else if (II_setByPragma > 0)
503 MAX_II = II_setByPragma;
504 else
505 MAX_II = MII + SwpIISearchRange;
506}
507
508/// We override the schedule function in ScheduleDAGInstrs to implement the
509/// scheduling part of the Swing Modulo Scheduling algorithm.
510void SwingSchedulerDAG::schedule() {
511 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
512 buildSchedGraph(AA);
513 addLoopCarriedDependences(AA);
514 updatePhiDependences();
515 Topo.InitDAGTopologicalSorting();
516 changeDependences();
517 postProcessDAG();
518 LLVM_DEBUG(dump());
519
520 NodeSetType NodeSets;
521 findCircuits(NodeSets);
522 NodeSetType Circuits = NodeSets;
523
524 // Calculate the MII.
525 unsigned ResMII = calculateResMII();
526 unsigned RecMII = calculateRecMII(RecNodeSets&: NodeSets);
527
528 fuseRecs(NodeSets);
529
530 // This flag is used for testing and can cause correctness problems.
531 if (SwpIgnoreRecMII)
532 RecMII = 0;
533
534 setMII(ResMII, RecMII);
535 setMAX_II();
536
537 LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II
538 << " (rec=" << RecMII << ", res=" << ResMII << ")\n");
539
540 // Can't schedule a loop without a valid MII.
541 if (MII == 0) {
542 LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n");
543 NumFailZeroMII++;
544 Pass.ORE->emit(RemarkBuilder: [&]() {
545 return MachineOptimizationRemarkAnalysis(
546 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
547 << "Invalid Minimal Initiation Interval: 0";
548 });
549 return;
550 }
551
552 // Don't pipeline large loops.
553 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) {
554 LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii
555 << ", we don't pipeline large loops\n");
556 NumFailLargeMaxMII++;
557 Pass.ORE->emit(RemarkBuilder: [&]() {
558 return MachineOptimizationRemarkAnalysis(
559 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
560 << "Minimal Initiation Interval too large: "
561 << ore::NV("MII", (int)MII) << " > "
562 << ore::NV("SwpMaxMii", SwpMaxMii) << "."
563 << "Refer to -pipeliner-max-mii.";
564 });
565 return;
566 }
567
568 computeNodeFunctions(NodeSets);
569
570 registerPressureFilter(NodeSets);
571
572 colocateNodeSets(NodeSets);
573
574 checkNodeSets(NodeSets);
575
576 LLVM_DEBUG({
577 for (auto &I : NodeSets) {
578 dbgs() << " Rec NodeSet ";
579 I.dump();
580 }
581 });
582
583 llvm::stable_sort(Range&: NodeSets, C: std::greater<NodeSet>());
584
585 groupRemainingNodes(NodeSets);
586
587 removeDuplicateNodes(NodeSets);
588
589 LLVM_DEBUG({
590 for (auto &I : NodeSets) {
591 dbgs() << " NodeSet ";
592 I.dump();
593 }
594 });
595
596 computeNodeOrder(NodeSets);
597
598 // check for node order issues
599 checkValidNodeOrder(Circuits);
600
601 SMSchedule Schedule(Pass.MF, this);
602 Scheduled = schedulePipeline(Schedule);
603
604 if (!Scheduled){
605 LLVM_DEBUG(dbgs() << "No schedule found, return\n");
606 NumFailNoSchedule++;
607 Pass.ORE->emit(RemarkBuilder: [&]() {
608 return MachineOptimizationRemarkAnalysis(
609 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
610 << "Unable to find schedule";
611 });
612 return;
613 }
614
615 unsigned numStages = Schedule.getMaxStageCount();
616 // No need to generate pipeline if there are no overlapped iterations.
617 if (numStages == 0) {
618 LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n");
619 NumFailZeroStage++;
620 Pass.ORE->emit(RemarkBuilder: [&]() {
621 return MachineOptimizationRemarkAnalysis(
622 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
623 << "No need to pipeline - no overlapped iterations in schedule.";
624 });
625 return;
626 }
627 // Check that the maximum stage count is less than user-defined limit.
628 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) {
629 LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages
630 << " : too many stages, abort\n");
631 NumFailLargeMaxStage++;
632 Pass.ORE->emit(RemarkBuilder: [&]() {
633 return MachineOptimizationRemarkAnalysis(
634 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
635 << "Too many stages in schedule: "
636 << ore::NV("numStages", (int)numStages) << " > "
637 << ore::NV("SwpMaxStages", SwpMaxStages)
638 << ". Refer to -pipeliner-max-stages.";
639 });
640 return;
641 }
642
643 Pass.ORE->emit(RemarkBuilder: [&]() {
644 return MachineOptimizationRemark(DEBUG_TYPE, "schedule", Loop.getStartLoc(),
645 Loop.getHeader())
646 << "Pipelined succesfully!";
647 });
648
649 // Generate the schedule as a ModuloSchedule.
650 DenseMap<MachineInstr *, int> Cycles, Stages;
651 std::vector<MachineInstr *> OrderedInsts;
652 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle();
653 ++Cycle) {
654 for (SUnit *SU : Schedule.getInstructions(cycle: Cycle)) {
655 OrderedInsts.push_back(x: SU->getInstr());
656 Cycles[SU->getInstr()] = Cycle;
657 Stages[SU->getInstr()] = Schedule.stageScheduled(SU);
658 }
659 }
660 DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges;
661 for (auto &KV : NewMIs) {
662 Cycles[KV.first] = Cycles[KV.second];
663 Stages[KV.first] = Stages[KV.second];
664 NewInstrChanges[KV.first] = InstrChanges[getSUnit(MI: KV.first)];
665 }
666
667 ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles),
668 std::move(Stages));
669 if (EmitTestAnnotations) {
670 assert(NewInstrChanges.empty() &&
671 "Cannot serialize a schedule with InstrChanges!");
672 ModuloScheduleTestAnnotater MSTI(MF, MS);
673 MSTI.annotate();
674 return;
675 }
676 // The experimental code generator can't work if there are InstChanges.
677 if (ExperimentalCodeGen && NewInstrChanges.empty()) {
678 PeelingModuloScheduleExpander MSE(MF, MS, &LIS);
679 MSE.expand();
680 } else {
681 ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges));
682 MSE.expand();
683 MSE.cleanup();
684 }
685 ++NumPipelined;
686}
687
688/// Clean up after the software pipeliner runs.
689void SwingSchedulerDAG::finishBlock() {
690 for (auto &KV : NewMIs)
691 MF.deleteMachineInstr(MI: KV.second);
692 NewMIs.clear();
693
694 // Call the superclass.
695 ScheduleDAGInstrs::finishBlock();
696}
697
698/// Return the register values for the operands of a Phi instruction.
699/// This function assume the instruction is a Phi.
700static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
701 unsigned &InitVal, unsigned &LoopVal) {
702 assert(Phi.isPHI() && "Expecting a Phi.");
703
704 InitVal = 0;
705 LoopVal = 0;
706 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
707 if (Phi.getOperand(i: i + 1).getMBB() != Loop)
708 InitVal = Phi.getOperand(i).getReg();
709 else
710 LoopVal = Phi.getOperand(i).getReg();
711
712 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
713}
714
715/// Return the Phi register value that comes the loop block.
716static unsigned getLoopPhiReg(const MachineInstr &Phi,
717 const MachineBasicBlock *LoopBB) {
718 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
719 if (Phi.getOperand(i: i + 1).getMBB() == LoopBB)
720 return Phi.getOperand(i).getReg();
721 return 0;
722}
723
724/// Return true if SUb can be reached from SUa following the chain edges.
725static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
726 SmallPtrSet<SUnit *, 8> Visited;
727 SmallVector<SUnit *, 8> Worklist;
728 Worklist.push_back(Elt: SUa);
729 while (!Worklist.empty()) {
730 const SUnit *SU = Worklist.pop_back_val();
731 for (const auto &SI : SU->Succs) {
732 SUnit *SuccSU = SI.getSUnit();
733 if (SI.getKind() == SDep::Order) {
734 if (Visited.count(Ptr: SuccSU))
735 continue;
736 if (SuccSU == SUb)
737 return true;
738 Worklist.push_back(Elt: SuccSU);
739 Visited.insert(Ptr: SuccSU);
740 }
741 }
742 }
743 return false;
744}
745
746/// Return true if the instruction causes a chain between memory
747/// references before and after it.
748static bool isDependenceBarrier(MachineInstr &MI) {
749 return MI.isCall() || MI.mayRaiseFPException() ||
750 MI.hasUnmodeledSideEffects() ||
751 (MI.hasOrderedMemoryRef() &&
752 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad()));
753}
754
755/// Return the underlying objects for the memory references of an instruction.
756/// This function calls the code in ValueTracking, but first checks that the
757/// instruction has a memory operand.
758static void getUnderlyingObjects(const MachineInstr *MI,
759 SmallVectorImpl<const Value *> &Objs) {
760 if (!MI->hasOneMemOperand())
761 return;
762 MachineMemOperand *MM = *MI->memoperands_begin();
763 if (!MM->getValue())
764 return;
765 getUnderlyingObjects(V: MM->getValue(), Objects&: Objs);
766 for (const Value *V : Objs) {
767 if (!isIdentifiedObject(V)) {
768 Objs.clear();
769 return;
770 }
771 Objs.push_back(Elt: V);
772 }
773}
774
775/// Add a chain edge between a load and store if the store can be an
776/// alias of the load on a subsequent iteration, i.e., a loop carried
777/// dependence. This code is very similar to the code in ScheduleDAGInstrs
778/// but that code doesn't create loop carried dependences.
779void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
780 MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads;
781 Value *UnknownValue =
782 UndefValue::get(T: Type::getVoidTy(C&: MF.getFunction().getContext()));
783 for (auto &SU : SUnits) {
784 MachineInstr &MI = *SU.getInstr();
785 if (isDependenceBarrier(MI))
786 PendingLoads.clear();
787 else if (MI.mayLoad()) {
788 SmallVector<const Value *, 4> Objs;
789 ::getUnderlyingObjects(MI: &MI, Objs);
790 if (Objs.empty())
791 Objs.push_back(Elt: UnknownValue);
792 for (const auto *V : Objs) {
793 SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
794 SUs.push_back(Elt: &SU);
795 }
796 } else if (MI.mayStore()) {
797 SmallVector<const Value *, 4> Objs;
798 ::getUnderlyingObjects(MI: &MI, Objs);
799 if (Objs.empty())
800 Objs.push_back(Elt: UnknownValue);
801 for (const auto *V : Objs) {
802 MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I =
803 PendingLoads.find(Key: V);
804 if (I == PendingLoads.end())
805 continue;
806 for (auto *Load : I->second) {
807 if (isSuccOrder(SUa: Load, SUb: &SU))
808 continue;
809 MachineInstr &LdMI = *Load->getInstr();
810 // First, perform the cheaper check that compares the base register.
811 // If they are the same and the load offset is less than the store
812 // offset, then mark the dependence as loop carried potentially.
813 const MachineOperand *BaseOp1, *BaseOp2;
814 int64_t Offset1, Offset2;
815 bool Offset1IsScalable, Offset2IsScalable;
816 if (TII->getMemOperandWithOffset(MI: LdMI, BaseOp&: BaseOp1, Offset&: Offset1,
817 OffsetIsScalable&: Offset1IsScalable, TRI) &&
818 TII->getMemOperandWithOffset(MI, BaseOp&: BaseOp2, Offset&: Offset2,
819 OffsetIsScalable&: Offset2IsScalable, TRI)) {
820 if (BaseOp1->isIdenticalTo(Other: *BaseOp2) &&
821 Offset1IsScalable == Offset2IsScalable &&
822 (int)Offset1 < (int)Offset2) {
823 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) &&
824 "What happened to the chain edge?");
825 SDep Dep(Load, SDep::Barrier);
826 Dep.setLatency(1);
827 SU.addPred(D: Dep);
828 continue;
829 }
830 }
831 // Second, the more expensive check that uses alias analysis on the
832 // base registers. If they alias, and the load offset is less than
833 // the store offset, the mark the dependence as loop carried.
834 if (!AA) {
835 SDep Dep(Load, SDep::Barrier);
836 Dep.setLatency(1);
837 SU.addPred(D: Dep);
838 continue;
839 }
840 MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
841 MachineMemOperand *MMO2 = *MI.memoperands_begin();
842 if (!MMO1->getValue() || !MMO2->getValue()) {
843 SDep Dep(Load, SDep::Barrier);
844 Dep.setLatency(1);
845 SU.addPred(D: Dep);
846 continue;
847 }
848 if (MMO1->getValue() == MMO2->getValue() &&
849 MMO1->getOffset() <= MMO2->getOffset()) {
850 SDep Dep(Load, SDep::Barrier);
851 Dep.setLatency(1);
852 SU.addPred(D: Dep);
853 continue;
854 }
855 if (!AA->isNoAlias(
856 LocA: MemoryLocation::getAfter(Ptr: MMO1->getValue(), AATags: MMO1->getAAInfo()),
857 LocB: MemoryLocation::getAfter(Ptr: MMO2->getValue(),
858 AATags: MMO2->getAAInfo()))) {
859 SDep Dep(Load, SDep::Barrier);
860 Dep.setLatency(1);
861 SU.addPred(D: Dep);
862 }
863 }
864 }
865 }
866 }
867}
868
869/// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
870/// processes dependences for PHIs. This function adds true dependences
871/// from a PHI to a use, and a loop carried dependence from the use to the
872/// PHI. The loop carried dependence is represented as an anti dependence
873/// edge. This function also removes chain dependences between unrelated
874/// PHIs.
875void SwingSchedulerDAG::updatePhiDependences() {
876 SmallVector<SDep, 4> RemoveDeps;
877 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
878
879 // Iterate over each DAG node.
880 for (SUnit &I : SUnits) {
881 RemoveDeps.clear();
882 // Set to true if the instruction has an operand defined by a Phi.
883 unsigned HasPhiUse = 0;
884 unsigned HasPhiDef = 0;
885 MachineInstr *MI = I.getInstr();
886 // Iterate over each operand, and we process the definitions.
887 for (const MachineOperand &MO : MI->operands()) {
888 if (!MO.isReg())
889 continue;
890 Register Reg = MO.getReg();
891 if (MO.isDef()) {
892 // If the register is used by a Phi, then create an anti dependence.
893 for (MachineRegisterInfo::use_instr_iterator
894 UI = MRI.use_instr_begin(RegNo: Reg),
895 UE = MRI.use_instr_end();
896 UI != UE; ++UI) {
897 MachineInstr *UseMI = &*UI;
898 SUnit *SU = getSUnit(MI: UseMI);
899 if (SU != nullptr && UseMI->isPHI()) {
900 if (!MI->isPHI()) {
901 SDep Dep(SU, SDep::Anti, Reg);
902 Dep.setLatency(1);
903 I.addPred(D: Dep);
904 } else {
905 HasPhiDef = Reg;
906 // Add a chain edge to a dependent Phi that isn't an existing
907 // predecessor.
908 if (SU->NodeNum < I.NodeNum && !I.isPred(N: SU))
909 I.addPred(D: SDep(SU, SDep::Barrier));
910 }
911 }
912 }
913 } else if (MO.isUse()) {
914 // If the register is defined by a Phi, then create a true dependence.
915 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
916 if (DefMI == nullptr)
917 continue;
918 SUnit *SU = getSUnit(MI: DefMI);
919 if (SU != nullptr && DefMI->isPHI()) {
920 if (!MI->isPHI()) {
921 SDep Dep(SU, SDep::Data, Reg);
922 Dep.setLatency(0);
923 ST.adjustSchedDependency(Def: SU, DefOpIdx: 0, Use: &I, UseOpIdx: MO.getOperandNo(), Dep);
924 I.addPred(D: Dep);
925 } else {
926 HasPhiUse = Reg;
927 // Add a chain edge to a dependent Phi that isn't an existing
928 // predecessor.
929 if (SU->NodeNum < I.NodeNum && !I.isPred(N: SU))
930 I.addPred(D: SDep(SU, SDep::Barrier));
931 }
932 }
933 }
934 }
935 // Remove order dependences from an unrelated Phi.
936 if (!SwpPruneDeps)
937 continue;
938 for (auto &PI : I.Preds) {
939 MachineInstr *PMI = PI.getSUnit()->getInstr();
940 if (PMI->isPHI() && PI.getKind() == SDep::Order) {
941 if (I.getInstr()->isPHI()) {
942 if (PMI->getOperand(i: 0).getReg() == HasPhiUse)
943 continue;
944 if (getLoopPhiReg(Phi: *PMI, LoopBB: PMI->getParent()) == HasPhiDef)
945 continue;
946 }
947 RemoveDeps.push_back(Elt: PI);
948 }
949 }
950 for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
951 I.removePred(D: RemoveDeps[i]);
952 }
953}
954
955/// Iterate over each DAG node and see if we can change any dependences
956/// in order to reduce the recurrence MII.
957void SwingSchedulerDAG::changeDependences() {
958 // See if an instruction can use a value from the previous iteration.
959 // If so, we update the base and offset of the instruction and change
960 // the dependences.
961 for (SUnit &I : SUnits) {
962 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
963 int64_t NewOffset = 0;
964 if (!canUseLastOffsetValue(MI: I.getInstr(), BasePos, OffsetPos, NewBase,
965 NewOffset))
966 continue;
967
968 // Get the MI and SUnit for the instruction that defines the original base.
969 Register OrigBase = I.getInstr()->getOperand(i: BasePos).getReg();
970 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg: OrigBase);
971 if (!DefMI)
972 continue;
973 SUnit *DefSU = getSUnit(MI: DefMI);
974 if (!DefSU)
975 continue;
976 // Get the MI and SUnit for the instruction that defins the new base.
977 MachineInstr *LastMI = MRI.getUniqueVRegDef(Reg: NewBase);
978 if (!LastMI)
979 continue;
980 SUnit *LastSU = getSUnit(MI: LastMI);
981 if (!LastSU)
982 continue;
983
984 if (Topo.IsReachable(SU: &I, TargetSU: LastSU))
985 continue;
986
987 // Remove the dependence. The value now depends on a prior iteration.
988 SmallVector<SDep, 4> Deps;
989 for (const SDep &P : I.Preds)
990 if (P.getSUnit() == DefSU)
991 Deps.push_back(Elt: P);
992 for (int i = 0, e = Deps.size(); i != e; i++) {
993 Topo.RemovePred(M: &I, N: Deps[i].getSUnit());
994 I.removePred(D: Deps[i]);
995 }
996 // Remove the chain dependence between the instructions.
997 Deps.clear();
998 for (auto &P : LastSU->Preds)
999 if (P.getSUnit() == &I && P.getKind() == SDep::Order)
1000 Deps.push_back(Elt: P);
1001 for (int i = 0, e = Deps.size(); i != e; i++) {
1002 Topo.RemovePred(M: LastSU, N: Deps[i].getSUnit());
1003 LastSU->removePred(D: Deps[i]);
1004 }
1005
1006 // Add a dependence between the new instruction and the instruction
1007 // that defines the new base.
1008 SDep Dep(&I, SDep::Anti, NewBase);
1009 Topo.AddPred(Y: LastSU, X: &I);
1010 LastSU->addPred(D: Dep);
1011
1012 // Remember the base and offset information so that we can update the
1013 // instruction during code generation.
1014 InstrChanges[&I] = std::make_pair(x&: NewBase, y&: NewOffset);
1015 }
1016}
1017
1018/// Create an instruction stream that represents a single iteration and stage of
1019/// each instruction. This function differs from SMSchedule::finalizeSchedule in
1020/// that this doesn't have any side-effect to SwingSchedulerDAG. That is, this
1021/// function is an approximation of SMSchedule::finalizeSchedule with all
1022/// non-const operations removed.
1023static void computeScheduledInsts(const SwingSchedulerDAG *SSD,
1024 SMSchedule &Schedule,
1025 std::vector<MachineInstr *> &OrderedInsts,
1026 DenseMap<MachineInstr *, unsigned> &Stages) {
1027 DenseMap<int, std::deque<SUnit *>> Instrs;
1028
1029 // Move all instructions to the first stage from the later stages.
1030 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle();
1031 ++Cycle) {
1032 for (int Stage = 0, LastStage = Schedule.getMaxStageCount();
1033 Stage <= LastStage; ++Stage) {
1034 for (SUnit *SU : llvm::reverse(C&: Schedule.getInstructions(
1035 cycle: Cycle + Stage * Schedule.getInitiationInterval()))) {
1036 Instrs[Cycle].push_front(x: SU);
1037 }
1038 }
1039 }
1040
1041 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle();
1042 ++Cycle) {
1043 std::deque<SUnit *> &CycleInstrs = Instrs[Cycle];
1044 CycleInstrs = Schedule.reorderInstructions(SSD, Instrs: CycleInstrs);
1045 for (SUnit *SU : CycleInstrs) {
1046 MachineInstr *MI = SU->getInstr();
1047 OrderedInsts.push_back(x: MI);
1048 Stages[MI] = Schedule.stageScheduled(SU);
1049 }
1050 }
1051}
1052
1053namespace {
1054
1055// FuncUnitSorter - Comparison operator used to sort instructions by
1056// the number of functional unit choices.
1057struct FuncUnitSorter {
1058 const InstrItineraryData *InstrItins;
1059 const MCSubtargetInfo *STI;
1060 DenseMap<InstrStage::FuncUnits, unsigned> Resources;
1061
1062 FuncUnitSorter(const TargetSubtargetInfo &TSI)
1063 : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {}
1064
1065 // Compute the number of functional unit alternatives needed
1066 // at each stage, and take the minimum value. We prioritize the
1067 // instructions by the least number of choices first.
1068 unsigned minFuncUnits(const MachineInstr *Inst,
1069 InstrStage::FuncUnits &F) const {
1070 unsigned SchedClass = Inst->getDesc().getSchedClass();
1071 unsigned min = UINT_MAX;
1072 if (InstrItins && !InstrItins->isEmpty()) {
1073 for (const InstrStage &IS :
1074 make_range(x: InstrItins->beginStage(ItinClassIndx: SchedClass),
1075 y: InstrItins->endStage(ItinClassIndx: SchedClass))) {
1076 InstrStage::FuncUnits funcUnits = IS.getUnits();
1077 unsigned numAlternatives = llvm::popcount(Value: funcUnits);
1078 if (numAlternatives < min) {
1079 min = numAlternatives;
1080 F = funcUnits;
1081 }
1082 }
1083 return min;
1084 }
1085 if (STI && STI->getSchedModel().hasInstrSchedModel()) {
1086 const MCSchedClassDesc *SCDesc =
1087 STI->getSchedModel().getSchedClassDesc(SchedClassIdx: SchedClass);
1088 if (!SCDesc->isValid())
1089 // No valid Schedule Class Desc for schedClass, should be
1090 // Pseudo/PostRAPseudo
1091 return min;
1092
1093 for (const MCWriteProcResEntry &PRE :
1094 make_range(x: STI->getWriteProcResBegin(SC: SCDesc),
1095 y: STI->getWriteProcResEnd(SC: SCDesc))) {
1096 if (!PRE.ReleaseAtCycle)
1097 continue;
1098 const MCProcResourceDesc *ProcResource =
1099 STI->getSchedModel().getProcResource(ProcResourceIdx: PRE.ProcResourceIdx);
1100 unsigned NumUnits = ProcResource->NumUnits;
1101 if (NumUnits < min) {
1102 min = NumUnits;
1103 F = PRE.ProcResourceIdx;
1104 }
1105 }
1106 return min;
1107 }
1108 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
1109 }
1110
1111 // Compute the critical resources needed by the instruction. This
1112 // function records the functional units needed by instructions that
1113 // must use only one functional unit. We use this as a tie breaker
1114 // for computing the resource MII. The instrutions that require
1115 // the same, highly used, functional unit have high priority.
1116 void calcCriticalResources(MachineInstr &MI) {
1117 unsigned SchedClass = MI.getDesc().getSchedClass();
1118 if (InstrItins && !InstrItins->isEmpty()) {
1119 for (const InstrStage &IS :
1120 make_range(x: InstrItins->beginStage(ItinClassIndx: SchedClass),
1121 y: InstrItins->endStage(ItinClassIndx: SchedClass))) {
1122 InstrStage::FuncUnits FuncUnits = IS.getUnits();
1123 if (llvm::popcount(Value: FuncUnits) == 1)
1124 Resources[FuncUnits]++;
1125 }
1126 return;
1127 }
1128 if (STI && STI->getSchedModel().hasInstrSchedModel()) {
1129 const MCSchedClassDesc *SCDesc =
1130 STI->getSchedModel().getSchedClassDesc(SchedClassIdx: SchedClass);
1131 if (!SCDesc->isValid())
1132 // No valid Schedule Class Desc for schedClass, should be
1133 // Pseudo/PostRAPseudo
1134 return;
1135
1136 for (const MCWriteProcResEntry &PRE :
1137 make_range(x: STI->getWriteProcResBegin(SC: SCDesc),
1138 y: STI->getWriteProcResEnd(SC: SCDesc))) {
1139 if (!PRE.ReleaseAtCycle)
1140 continue;
1141 Resources[PRE.ProcResourceIdx]++;
1142 }
1143 return;
1144 }
1145 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
1146 }
1147
1148 /// Return true if IS1 has less priority than IS2.
1149 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
1150 InstrStage::FuncUnits F1 = 0, F2 = 0;
1151 unsigned MFUs1 = minFuncUnits(Inst: IS1, F&: F1);
1152 unsigned MFUs2 = minFuncUnits(Inst: IS2, F&: F2);
1153 if (MFUs1 == MFUs2)
1154 return Resources.lookup(Val: F1) < Resources.lookup(Val: F2);
1155 return MFUs1 > MFUs2;
1156 }
1157};
1158
1159/// Calculate the maximum register pressure of the scheduled instructions stream
1160class HighRegisterPressureDetector {
1161 MachineBasicBlock *OrigMBB;
1162 const MachineFunction &MF;
1163 const MachineRegisterInfo &MRI;
1164 const TargetRegisterInfo *TRI;
1165
1166 const unsigned PSetNum;
1167
1168 // Indexed by PSet ID
1169 // InitSetPressure takes into account the register pressure of live-in
1170 // registers. It's not depend on how the loop is scheduled, so it's enough to
1171 // calculate them once at the beginning.
1172 std::vector<unsigned> InitSetPressure;
1173
1174 // Indexed by PSet ID
1175 // Upper limit for each register pressure set
1176 std::vector<unsigned> PressureSetLimit;
1177
1178 DenseMap<MachineInstr *, RegisterOperands> ROMap;
1179
1180 using Instr2LastUsesTy = DenseMap<MachineInstr *, SmallDenseSet<Register, 4>>;
1181
1182public:
1183 using OrderedInstsTy = std::vector<MachineInstr *>;
1184 using Instr2StageTy = DenseMap<MachineInstr *, unsigned>;
1185
1186private:
1187 static void dumpRegisterPressures(const std::vector<unsigned> &Pressures) {
1188 if (Pressures.size() == 0) {
1189 dbgs() << "[]";
1190 } else {
1191 char Prefix = '[';
1192 for (unsigned P : Pressures) {
1193 dbgs() << Prefix << P;
1194 Prefix = ' ';
1195 }
1196 dbgs() << ']';
1197 }
1198 }
1199
1200 void dumpPSet(Register Reg) const {
1201 dbgs() << "Reg=" << printReg(Reg, TRI, SubIdx: 0, MRI: &MRI) << " PSet=";
1202 for (auto PSetIter = MRI.getPressureSets(RegUnit: Reg); PSetIter.isValid();
1203 ++PSetIter) {
1204 dbgs() << *PSetIter << ' ';
1205 }
1206 dbgs() << '\n';
1207 }
1208
1209 void increaseRegisterPressure(std::vector<unsigned> &Pressure,
1210 Register Reg) const {
1211 auto PSetIter = MRI.getPressureSets(RegUnit: Reg);
1212 unsigned Weight = PSetIter.getWeight();
1213 for (; PSetIter.isValid(); ++PSetIter)
1214 Pressure[*PSetIter] += Weight;
1215 }
1216
1217 void decreaseRegisterPressure(std::vector<unsigned> &Pressure,
1218 Register Reg) const {
1219 auto PSetIter = MRI.getPressureSets(RegUnit: Reg);
1220 unsigned Weight = PSetIter.getWeight();
1221 for (; PSetIter.isValid(); ++PSetIter) {
1222 auto &P = Pressure[*PSetIter];
1223 assert(P >= Weight &&
1224 "register pressure must be greater than or equal weight");
1225 P -= Weight;
1226 }
1227 }
1228
1229 // Return true if Reg is fixed one, for example, stack pointer
1230 bool isFixedRegister(Register Reg) const {
1231 return Reg.isPhysical() && TRI->isFixedRegister(MF, PhysReg: Reg.asMCReg());
1232 }
1233
1234 bool isDefinedInThisLoop(Register Reg) const {
1235 return Reg.isVirtual() && MRI.getVRegDef(Reg)->getParent() == OrigMBB;
1236 }
1237
1238 // Search for live-in variables. They are factored into the register pressure
1239 // from the begining. Live-in variables used by every iteration should be
1240 // considered as alive throughout the loop. For example, the variable `c` in
1241 // following code. \code
1242 // int c = ...;
1243 // for (int i = 0; i < n; i++)
1244 // a[i] += b[i] + c;
1245 // \endcode
1246 void computeLiveIn() {
1247 DenseSet<Register> Used;
1248 for (auto &MI : *OrigMBB) {
1249 if (MI.isDebugInstr())
1250 continue;
1251 for (auto Use : ROMap[&MI].Uses) {
1252 auto Reg = Use.RegUnit;
1253 // Ignore the variable that appears only on one side of phi instruction
1254 // because it's used only at the first iteration.
1255 if (MI.isPHI() && Reg != getLoopPhiReg(Phi: MI, LoopBB: OrigMBB))
1256 continue;
1257 if (isFixedRegister(Reg))
1258 continue;
1259 if (isDefinedInThisLoop(Reg))
1260 continue;
1261 Used.insert(V: Reg);
1262 }
1263 }
1264
1265 for (auto LiveIn : Used)
1266 increaseRegisterPressure(Pressure&: InitSetPressure, Reg: LiveIn);
1267 }
1268
1269 // Calculate the upper limit of each pressure set
1270 void computePressureSetLimit(const RegisterClassInfo &RCI) {
1271 for (unsigned PSet = 0; PSet < PSetNum; PSet++)
1272 PressureSetLimit[PSet] = RCI.getRegPressureSetLimit(Idx: PSet);
1273
1274 // We assume fixed registers, such as stack pointer, are already in use.
1275 // Therefore subtracting the weight of the fixed registers from the limit of
1276 // each pressure set in advance.
1277 SmallDenseSet<Register, 8> FixedRegs;
1278 for (const TargetRegisterClass *TRC : TRI->regclasses()) {
1279 for (const MCPhysReg Reg : *TRC)
1280 if (isFixedRegister(Reg))
1281 FixedRegs.insert(V: Reg);
1282 }
1283
1284 LLVM_DEBUG({
1285 for (auto Reg : FixedRegs) {
1286 dbgs() << printReg(Reg, TRI, 0, &MRI) << ": [";
1287 const int *Sets = TRI->getRegUnitPressureSets(Reg);
1288 for (; *Sets != -1; Sets++) {
1289 dbgs() << TRI->getRegPressureSetName(*Sets) << ", ";
1290 }
1291 dbgs() << "]\n";
1292 }
1293 });
1294
1295 for (auto Reg : FixedRegs) {
1296 LLVM_DEBUG(dbgs() << "fixed register: " << printReg(Reg, TRI, 0, &MRI)
1297 << "\n");
1298 auto PSetIter = MRI.getPressureSets(RegUnit: Reg);
1299 unsigned Weight = PSetIter.getWeight();
1300 for (; PSetIter.isValid(); ++PSetIter) {
1301 unsigned &Limit = PressureSetLimit[*PSetIter];
1302 assert(Limit >= Weight &&
1303 "register pressure limit must be greater than or equal weight");
1304 Limit -= Weight;
1305 LLVM_DEBUG(dbgs() << "PSet=" << *PSetIter << " Limit=" << Limit
1306 << " (decreased by " << Weight << ")\n");
1307 }
1308 }
1309 }
1310
1311 // There are two patterns of last-use.
1312 // - by an instruction of the current iteration
1313 // - by a phi instruction of the next iteration (loop carried value)
1314 //
1315 // Furthermore, following two groups of instructions are executed
1316 // simultaneously
1317 // - next iteration's phi instructions in i-th stage
1318 // - current iteration's instructions in i+1-th stage
1319 //
1320 // This function calculates the last-use of each register while taking into
1321 // account the above two patterns.
1322 Instr2LastUsesTy computeLastUses(const OrderedInstsTy &OrderedInsts,
1323 Instr2StageTy &Stages) const {
1324 // We treat virtual registers that are defined and used in this loop.
1325 // Following virtual register will be ignored
1326 // - live-in one
1327 // - defined but not used in the loop (potentially live-out)
1328 DenseSet<Register> TargetRegs;
1329 const auto UpdateTargetRegs = [this, &TargetRegs](Register Reg) {
1330 if (isDefinedInThisLoop(Reg))
1331 TargetRegs.insert(V: Reg);
1332 };
1333 for (MachineInstr *MI : OrderedInsts) {
1334 if (MI->isPHI()) {
1335 Register Reg = getLoopPhiReg(Phi: *MI, LoopBB: OrigMBB);
1336 UpdateTargetRegs(Reg);
1337 } else {
1338 for (auto Use : ROMap.find(Val: MI)->getSecond().Uses)
1339 UpdateTargetRegs(Use.RegUnit);
1340 }
1341 }
1342
1343 const auto InstrScore = [&Stages](MachineInstr *MI) {
1344 return Stages[MI] + MI->isPHI();
1345 };
1346
1347 DenseMap<Register, MachineInstr *> LastUseMI;
1348 for (MachineInstr *MI : llvm::reverse(C: OrderedInsts)) {
1349 for (auto Use : ROMap.find(Val: MI)->getSecond().Uses) {
1350 auto Reg = Use.RegUnit;
1351 if (!TargetRegs.contains(V: Reg))
1352 continue;
1353 auto Ite = LastUseMI.find(Val: Reg);
1354 if (Ite == LastUseMI.end()) {
1355 LastUseMI[Reg] = MI;
1356 } else {
1357 MachineInstr *Orig = Ite->second;
1358 MachineInstr *New = MI;
1359 if (InstrScore(Orig) < InstrScore(New))
1360 LastUseMI[Reg] = New;
1361 }
1362 }
1363 }
1364
1365 Instr2LastUsesTy LastUses;
1366 for (auto &Entry : LastUseMI)
1367 LastUses[Entry.second].insert(V: Entry.first);
1368 return LastUses;
1369 }
1370
1371 // Compute the maximum register pressure of the kernel. We'll simulate #Stage
1372 // iterations and check the register pressure at the point where all stages
1373 // overlapping.
1374 //
1375 // An example of unrolled loop where #Stage is 4..
1376 // Iter i+0 i+1 i+2 i+3
1377 // ------------------------
1378 // Stage 0
1379 // Stage 1 0
1380 // Stage 2 1 0
1381 // Stage 3 2 1 0 <- All stages overlap
1382 //
1383 std::vector<unsigned>
1384 computeMaxSetPressure(const OrderedInstsTy &OrderedInsts,
1385 Instr2StageTy &Stages,
1386 const unsigned StageCount) const {
1387 using RegSetTy = SmallDenseSet<Register, 16>;
1388
1389 // Indexed by #Iter. To treat "local" variables of each stage separately, we
1390 // manage the liveness of the registers independently by iterations.
1391 SmallVector<RegSetTy> LiveRegSets(StageCount);
1392
1393 auto CurSetPressure = InitSetPressure;
1394 auto MaxSetPressure = InitSetPressure;
1395 auto LastUses = computeLastUses(OrderedInsts, Stages);
1396
1397 LLVM_DEBUG({
1398 dbgs() << "Ordered instructions:\n";
1399 for (MachineInstr *MI : OrderedInsts) {
1400 dbgs() << "Stage " << Stages[MI] << ": ";
1401 MI->dump();
1402 }
1403 });
1404
1405 const auto InsertReg = [this, &CurSetPressure](RegSetTy &RegSet,
1406 Register Reg) {
1407 if (!Reg.isValid() || isFixedRegister(Reg))
1408 return;
1409
1410 bool Inserted = RegSet.insert(V: Reg).second;
1411 if (!Inserted)
1412 return;
1413
1414 LLVM_DEBUG(dbgs() << "insert " << printReg(Reg, TRI, 0, &MRI) << "\n");
1415 increaseRegisterPressure(Pressure&: CurSetPressure, Reg);
1416 LLVM_DEBUG(dumpPSet(Reg));
1417 };
1418
1419 const auto EraseReg = [this, &CurSetPressure](RegSetTy &RegSet,
1420 Register Reg) {
1421 if (!Reg.isValid() || isFixedRegister(Reg))
1422 return;
1423
1424 // live-in register
1425 if (!RegSet.contains(V: Reg))
1426 return;
1427
1428 LLVM_DEBUG(dbgs() << "erase " << printReg(Reg, TRI, 0, &MRI) << "\n");
1429 RegSet.erase(V: Reg);
1430 decreaseRegisterPressure(Pressure&: CurSetPressure, Reg);
1431 LLVM_DEBUG(dumpPSet(Reg));
1432 };
1433
1434 for (unsigned I = 0; I < StageCount; I++) {
1435 for (MachineInstr *MI : OrderedInsts) {
1436 const auto Stage = Stages[MI];
1437 if (I < Stage)
1438 continue;
1439
1440 const unsigned Iter = I - Stage;
1441
1442 for (auto Def : ROMap.find(Val: MI)->getSecond().Defs)
1443 InsertReg(LiveRegSets[Iter], Def.RegUnit);
1444
1445 for (auto LastUse : LastUses[MI]) {
1446 if (MI->isPHI()) {
1447 if (Iter != 0)
1448 EraseReg(LiveRegSets[Iter - 1], LastUse);
1449 } else {
1450 EraseReg(LiveRegSets[Iter], LastUse);
1451 }
1452 }
1453
1454 for (unsigned PSet = 0; PSet < PSetNum; PSet++)
1455 MaxSetPressure[PSet] =
1456 std::max(a: MaxSetPressure[PSet], b: CurSetPressure[PSet]);
1457
1458 LLVM_DEBUG({
1459 dbgs() << "CurSetPressure=";
1460 dumpRegisterPressures(CurSetPressure);
1461 dbgs() << " iter=" << Iter << " stage=" << Stage << ":";
1462 MI->dump();
1463 });
1464 }
1465 }
1466
1467 return MaxSetPressure;
1468 }
1469
1470public:
1471 HighRegisterPressureDetector(MachineBasicBlock *OrigMBB,
1472 const MachineFunction &MF)
1473 : OrigMBB(OrigMBB), MF(MF), MRI(MF.getRegInfo()),
1474 TRI(MF.getSubtarget().getRegisterInfo()),
1475 PSetNum(TRI->getNumRegPressureSets()), InitSetPressure(PSetNum, 0),
1476 PressureSetLimit(PSetNum, 0) {}
1477
1478 // Used to calculate register pressure, which is independent of loop
1479 // scheduling.
1480 void init(const RegisterClassInfo &RCI) {
1481 for (MachineInstr &MI : *OrigMBB) {
1482 if (MI.isDebugInstr())
1483 continue;
1484 ROMap[&MI].collect(MI, TRI: *TRI, MRI, TrackLaneMasks: false, IgnoreDead: true);
1485 }
1486
1487 computeLiveIn();
1488 computePressureSetLimit(RCI);
1489 }
1490
1491 // Calculate the maximum register pressures of the loop and check if they
1492 // exceed the limit
1493 bool detect(const SwingSchedulerDAG *SSD, SMSchedule &Schedule,
1494 const unsigned MaxStage) const {
1495 assert(0 <= RegPressureMargin && RegPressureMargin <= 100 &&
1496 "the percentage of the margin must be between 0 to 100");
1497
1498 OrderedInstsTy OrderedInsts;
1499 Instr2StageTy Stages;
1500 computeScheduledInsts(SSD, Schedule, OrderedInsts, Stages);
1501 const auto MaxSetPressure =
1502 computeMaxSetPressure(OrderedInsts, Stages, StageCount: MaxStage + 1);
1503
1504 LLVM_DEBUG({
1505 dbgs() << "Dump MaxSetPressure:\n";
1506 for (unsigned I = 0; I < MaxSetPressure.size(); I++) {
1507 dbgs() << format("MaxSetPressure[%d]=%d\n", I, MaxSetPressure[I]);
1508 }
1509 dbgs() << '\n';
1510 });
1511
1512 for (unsigned PSet = 0; PSet < PSetNum; PSet++) {
1513 unsigned Limit = PressureSetLimit[PSet];
1514 unsigned Margin = Limit * RegPressureMargin / 100;
1515 LLVM_DEBUG(dbgs() << "PSet=" << PSet << " Limit=" << Limit
1516 << " Margin=" << Margin << "\n");
1517 if (Limit < MaxSetPressure[PSet] + Margin) {
1518 LLVM_DEBUG(
1519 dbgs()
1520 << "Rejected the schedule because of too high register pressure\n");
1521 return true;
1522 }
1523 }
1524 return false;
1525 }
1526};
1527
1528} // end anonymous namespace
1529
1530/// Calculate the resource constrained minimum initiation interval for the
1531/// specified loop. We use the DFA to model the resources needed for
1532/// each instruction, and we ignore dependences. A different DFA is created
1533/// for each cycle that is required. When adding a new instruction, we attempt
1534/// to add it to each existing DFA, until a legal space is found. If the
1535/// instruction cannot be reserved in an existing DFA, we create a new one.
1536unsigned SwingSchedulerDAG::calculateResMII() {
1537 LLVM_DEBUG(dbgs() << "calculateResMII:\n");
1538 ResourceManager RM(&MF.getSubtarget(), this);
1539 return RM.calculateResMII();
1540}
1541
1542/// Calculate the recurrence-constrainted minimum initiation interval.
1543/// Iterate over each circuit. Compute the delay(c) and distance(c)
1544/// for each circuit. The II needs to satisfy the inequality
1545/// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
1546/// II that satisfies the inequality, and the RecMII is the maximum
1547/// of those values.
1548unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
1549 unsigned RecMII = 0;
1550
1551 for (NodeSet &Nodes : NodeSets) {
1552 if (Nodes.empty())
1553 continue;
1554
1555 unsigned Delay = Nodes.getLatency();
1556 unsigned Distance = 1;
1557
1558 // ii = ceil(delay / distance)
1559 unsigned CurMII = (Delay + Distance - 1) / Distance;
1560 Nodes.setRecMII(CurMII);
1561 if (CurMII > RecMII)
1562 RecMII = CurMII;
1563 }
1564
1565 return RecMII;
1566}
1567
1568/// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1569/// but we do this to find the circuits, and then change them back.
1570static void swapAntiDependences(std::vector<SUnit> &SUnits) {
1571 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
1572 for (SUnit &SU : SUnits) {
1573 for (SDep &Pred : SU.Preds)
1574 if (Pred.getKind() == SDep::Anti)
1575 DepsAdded.push_back(Elt: std::make_pair(x: &SU, y&: Pred));
1576 }
1577 for (std::pair<SUnit *, SDep> &P : DepsAdded) {
1578 // Remove this anti dependency and add one in the reverse direction.
1579 SUnit *SU = P.first;
1580 SDep &D = P.second;
1581 SUnit *TargetSU = D.getSUnit();
1582 unsigned Reg = D.getReg();
1583 unsigned Lat = D.getLatency();
1584 SU->removePred(D);
1585 SDep Dep(SU, SDep::Anti, Reg);
1586 Dep.setLatency(Lat);
1587 TargetSU->addPred(D: Dep);
1588 }
1589}
1590
1591/// Create the adjacency structure of the nodes in the graph.
1592void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
1593 SwingSchedulerDAG *DAG) {
1594 BitVector Added(SUnits.size());
1595 DenseMap<int, int> OutputDeps;
1596 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1597 Added.reset();
1598 // Add any successor to the adjacency matrix and exclude duplicates.
1599 for (auto &SI : SUnits[i].Succs) {
1600 // Only create a back-edge on the first and last nodes of a dependence
1601 // chain. This records any chains and adds them later.
1602 if (SI.getKind() == SDep::Output) {
1603 int N = SI.getSUnit()->NodeNum;
1604 int BackEdge = i;
1605 auto Dep = OutputDeps.find(Val: BackEdge);
1606 if (Dep != OutputDeps.end()) {
1607 BackEdge = Dep->second;
1608 OutputDeps.erase(I: Dep);
1609 }
1610 OutputDeps[N] = BackEdge;
1611 }
1612 // Do not process a boundary node, an artificial node.
1613 // A back-edge is processed only if it goes to a Phi.
1614 if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() ||
1615 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
1616 continue;
1617 int N = SI.getSUnit()->NodeNum;
1618 if (!Added.test(Idx: N)) {
1619 AdjK[i].push_back(Elt: N);
1620 Added.set(N);
1621 }
1622 }
1623 // A chain edge between a store and a load is treated as a back-edge in the
1624 // adjacency matrix.
1625 for (auto &PI : SUnits[i].Preds) {
1626 if (!SUnits[i].getInstr()->mayStore() ||
1627 !DAG->isLoopCarriedDep(Source: &SUnits[i], Dep: PI, isSucc: false))
1628 continue;
1629 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
1630 int N = PI.getSUnit()->NodeNum;
1631 if (!Added.test(Idx: N)) {
1632 AdjK[i].push_back(Elt: N);
1633 Added.set(N);
1634 }
1635 }
1636 }
1637 }
1638 // Add back-edges in the adjacency matrix for the output dependences.
1639 for (auto &OD : OutputDeps)
1640 if (!Added.test(Idx: OD.second)) {
1641 AdjK[OD.first].push_back(Elt: OD.second);
1642 Added.set(OD.second);
1643 }
1644}
1645
1646/// Identify an elementary circuit in the dependence graph starting at the
1647/// specified node.
1648bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
1649 bool HasBackedge) {
1650 SUnit *SV = &SUnits[V];
1651 bool F = false;
1652 Stack.insert(X: SV);
1653 Blocked.set(V);
1654
1655 for (auto W : AdjK[V]) {
1656 if (NumPaths > MaxPaths)
1657 break;
1658 if (W < S)
1659 continue;
1660 if (W == S) {
1661 if (!HasBackedge)
1662 NodeSets.push_back(Elt: NodeSet(Stack.begin(), Stack.end()));
1663 F = true;
1664 ++NumPaths;
1665 break;
1666 } else if (!Blocked.test(Idx: W)) {
1667 if (circuit(V: W, S, NodeSets,
1668 HasBackedge: Node2Idx->at(n: W) < Node2Idx->at(n: V) ? true : HasBackedge))
1669 F = true;
1670 }
1671 }
1672
1673 if (F)
1674 unblock(U: V);
1675 else {
1676 for (auto W : AdjK[V]) {
1677 if (W < S)
1678 continue;
1679 B[W].insert(Ptr: SV);
1680 }
1681 }
1682 Stack.pop_back();
1683 return F;
1684}
1685
1686/// Unblock a node in the circuit finding algorithm.
1687void SwingSchedulerDAG::Circuits::unblock(int U) {
1688 Blocked.reset(Idx: U);
1689 SmallPtrSet<SUnit *, 4> &BU = B[U];
1690 while (!BU.empty()) {
1691 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
1692 assert(SI != BU.end() && "Invalid B set.");
1693 SUnit *W = *SI;
1694 BU.erase(Ptr: W);
1695 if (Blocked.test(Idx: W->NodeNum))
1696 unblock(U: W->NodeNum);
1697 }
1698}
1699
1700/// Identify all the elementary circuits in the dependence graph using
1701/// Johnson's circuit algorithm.
1702void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
1703 // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1704 // but we do this to find the circuits, and then change them back.
1705 swapAntiDependences(SUnits);
1706
1707 Circuits Cir(SUnits, Topo);
1708 // Create the adjacency structure.
1709 Cir.createAdjacencyStructure(DAG: this);
1710 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1711 Cir.reset();
1712 Cir.circuit(V: i, S: i, NodeSets);
1713 }
1714
1715 // Change the dependences back so that we've created a DAG again.
1716 swapAntiDependences(SUnits);
1717}
1718
1719// Create artificial dependencies between the source of COPY/REG_SEQUENCE that
1720// is loop-carried to the USE in next iteration. This will help pipeliner avoid
1721// additional copies that are needed across iterations. An artificial dependence
1722// edge is added from USE to SOURCE of COPY/REG_SEQUENCE.
1723
1724// PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried)
1725// SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE
1726// PHI-------True-Dep------> USEOfPhi
1727
1728// The mutation creates
1729// USEOfPHI -------Artificial-Dep---> SRCOfCopy
1730
1731// This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy
1732// (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled
1733// late to avoid additional copies across iterations. The possible scheduling
1734// order would be
1735// USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE.
1736
1737void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) {
1738 for (SUnit &SU : DAG->SUnits) {
1739 // Find the COPY/REG_SEQUENCE instruction.
1740 if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence())
1741 continue;
1742
1743 // Record the loop carried PHIs.
1744 SmallVector<SUnit *, 4> PHISUs;
1745 // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions.
1746 SmallVector<SUnit *, 4> SrcSUs;
1747
1748 for (auto &Dep : SU.Preds) {
1749 SUnit *TmpSU = Dep.getSUnit();
1750 MachineInstr *TmpMI = TmpSU->getInstr();
1751 SDep::Kind DepKind = Dep.getKind();
1752 // Save the loop carried PHI.
1753 if (DepKind == SDep::Anti && TmpMI->isPHI())
1754 PHISUs.push_back(Elt: TmpSU);
1755 // Save the source of COPY/REG_SEQUENCE.
1756 // If the source has no pre-decessors, we will end up creating cycles.
1757 else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0)
1758 SrcSUs.push_back(Elt: TmpSU);
1759 }
1760
1761 if (PHISUs.size() == 0 || SrcSUs.size() == 0)
1762 continue;
1763
1764 // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this
1765 // SUnit to the container.
1766 SmallVector<SUnit *, 8> UseSUs;
1767 // Do not use iterator based loop here as we are updating the container.
1768 for (size_t Index = 0; Index < PHISUs.size(); ++Index) {
1769 for (auto &Dep : PHISUs[Index]->Succs) {
1770 if (Dep.getKind() != SDep::Data)
1771 continue;
1772
1773 SUnit *TmpSU = Dep.getSUnit();
1774 MachineInstr *TmpMI = TmpSU->getInstr();
1775 if (TmpMI->isPHI() || TmpMI->isRegSequence()) {
1776 PHISUs.push_back(Elt: TmpSU);
1777 continue;
1778 }
1779 UseSUs.push_back(Elt: TmpSU);
1780 }
1781 }
1782
1783 if (UseSUs.size() == 0)
1784 continue;
1785
1786 SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(Val: DAG);
1787 // Add the artificial dependencies if it does not form a cycle.
1788 for (auto *I : UseSUs) {
1789 for (auto *Src : SrcSUs) {
1790 if (!SDAG->Topo.IsReachable(SU: I, TargetSU: Src) && Src != I) {
1791 Src->addPred(D: SDep(I, SDep::Artificial));
1792 SDAG->Topo.AddPred(Y: Src, X: I);
1793 }
1794 }
1795 }
1796 }
1797}
1798
1799/// Return true for DAG nodes that we ignore when computing the cost functions.
1800/// We ignore the back-edge recurrence in order to avoid unbounded recursion
1801/// in the calculation of the ASAP, ALAP, etc functions.
1802static bool ignoreDependence(const SDep &D, bool isPred) {
1803 if (D.isArtificial() || D.getSUnit()->isBoundaryNode())
1804 return true;
1805 return D.getKind() == SDep::Anti && isPred;
1806}
1807
1808/// Compute several functions need to order the nodes for scheduling.
1809/// ASAP - Earliest time to schedule a node.
1810/// ALAP - Latest time to schedule a node.
1811/// MOV - Mobility function, difference between ALAP and ASAP.
1812/// D - Depth of each node.
1813/// H - Height of each node.
1814void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
1815 ScheduleInfo.resize(new_size: SUnits.size());
1816
1817 LLVM_DEBUG({
1818 for (int I : Topo) {
1819 const SUnit &SU = SUnits[I];
1820 dumpNode(SU);
1821 }
1822 });
1823
1824 int maxASAP = 0;
1825 // Compute ASAP and ZeroLatencyDepth.
1826 for (int I : Topo) {
1827 int asap = 0;
1828 int zeroLatencyDepth = 0;
1829 SUnit *SU = &SUnits[I];
1830 for (const SDep &P : SU->Preds) {
1831 SUnit *pred = P.getSUnit();
1832 if (P.getLatency() == 0)
1833 zeroLatencyDepth =
1834 std::max(a: zeroLatencyDepth, b: getZeroLatencyDepth(Node: pred) + 1);
1835 if (ignoreDependence(D: P, isPred: true))
1836 continue;
1837 asap = std::max(a: asap, b: (int)(getASAP(Node: pred) + P.getLatency() -
1838 getDistance(U: pred, V: SU, Dep: P) * MII));
1839 }
1840 maxASAP = std::max(a: maxASAP, b: asap);
1841 ScheduleInfo[I].ASAP = asap;
1842 ScheduleInfo[I].ZeroLatencyDepth = zeroLatencyDepth;
1843 }
1844
1845 // Compute ALAP, ZeroLatencyHeight, and MOV.
1846 for (int I : llvm::reverse(C&: Topo)) {
1847 int alap = maxASAP;
1848 int zeroLatencyHeight = 0;
1849 SUnit *SU = &SUnits[I];
1850 for (const SDep &S : SU->Succs) {
1851 SUnit *succ = S.getSUnit();
1852 if (succ->isBoundaryNode())
1853 continue;
1854 if (S.getLatency() == 0)
1855 zeroLatencyHeight =
1856 std::max(a: zeroLatencyHeight, b: getZeroLatencyHeight(Node: succ) + 1);
1857 if (ignoreDependence(D: S, isPred: true))
1858 continue;
1859 alap = std::min(a: alap, b: (int)(getALAP(Node: succ) - S.getLatency() +
1860 getDistance(U: SU, V: succ, Dep: S) * MII));
1861 }
1862
1863 ScheduleInfo[I].ALAP = alap;
1864 ScheduleInfo[I].ZeroLatencyHeight = zeroLatencyHeight;
1865 }
1866
1867 // After computing the node functions, compute the summary for each node set.
1868 for (NodeSet &I : NodeSets)
1869 I.computeNodeSetInfo(SSD: this);
1870
1871 LLVM_DEBUG({
1872 for (unsigned i = 0; i < SUnits.size(); i++) {
1873 dbgs() << "\tNode " << i << ":\n";
1874 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n";
1875 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n";
1876 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n";
1877 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n";
1878 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n";
1879 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n";
1880 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n";
1881 }
1882 });
1883}
1884
1885/// Compute the Pred_L(O) set, as defined in the paper. The set is defined
1886/// as the predecessors of the elements of NodeOrder that are not also in
1887/// NodeOrder.
1888static bool pred_L(SetVector<SUnit *> &NodeOrder,
1889 SmallSetVector<SUnit *, 8> &Preds,
1890 const NodeSet *S = nullptr) {
1891 Preds.clear();
1892 for (const SUnit *SU : NodeOrder) {
1893 for (const SDep &Pred : SU->Preds) {
1894 if (S && S->count(SU: Pred.getSUnit()) == 0)
1895 continue;
1896 if (ignoreDependence(D: Pred, isPred: true))
1897 continue;
1898 if (NodeOrder.count(key: Pred.getSUnit()) == 0)
1899 Preds.insert(X: Pred.getSUnit());
1900 }
1901 // Back-edges are predecessors with an anti-dependence.
1902 for (const SDep &Succ : SU->Succs) {
1903 if (Succ.getKind() != SDep::Anti)
1904 continue;
1905 if (S && S->count(SU: Succ.getSUnit()) == 0)
1906 continue;
1907 if (NodeOrder.count(key: Succ.getSUnit()) == 0)
1908 Preds.insert(X: Succ.getSUnit());
1909 }
1910 }
1911 return !Preds.empty();
1912}
1913
1914/// Compute the Succ_L(O) set, as defined in the paper. The set is defined
1915/// as the successors of the elements of NodeOrder that are not also in
1916/// NodeOrder.
1917static bool succ_L(SetVector<SUnit *> &NodeOrder,
1918 SmallSetVector<SUnit *, 8> &Succs,
1919 const NodeSet *S = nullptr) {
1920 Succs.clear();
1921 for (const SUnit *SU : NodeOrder) {
1922 for (const SDep &Succ : SU->Succs) {
1923 if (S && S->count(SU: Succ.getSUnit()) == 0)
1924 continue;
1925 if (ignoreDependence(D: Succ, isPred: false))
1926 continue;
1927 if (NodeOrder.count(key: Succ.getSUnit()) == 0)
1928 Succs.insert(X: Succ.getSUnit());
1929 }
1930 for (const SDep &Pred : SU->Preds) {
1931 if (Pred.getKind() != SDep::Anti)
1932 continue;
1933 if (S && S->count(SU: Pred.getSUnit()) == 0)
1934 continue;
1935 if (NodeOrder.count(key: Pred.getSUnit()) == 0)
1936 Succs.insert(X: Pred.getSUnit());
1937 }
1938 }
1939 return !Succs.empty();
1940}
1941
1942/// Return true if there is a path from the specified node to any of the nodes
1943/// in DestNodes. Keep track and return the nodes in any path.
1944static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
1945 SetVector<SUnit *> &DestNodes,
1946 SetVector<SUnit *> &Exclude,
1947 SmallPtrSet<SUnit *, 8> &Visited) {
1948 if (Cur->isBoundaryNode())
1949 return false;
1950 if (Exclude.contains(key: Cur))
1951 return false;
1952 if (DestNodes.contains(key: Cur))
1953 return true;
1954 if (!Visited.insert(Ptr: Cur).second)
1955 return Path.contains(key: Cur);
1956 bool FoundPath = false;
1957 for (auto &SI : Cur->Succs)
1958 if (!ignoreDependence(D: SI, isPred: false))
1959 FoundPath |=
1960 computePath(Cur: SI.getSUnit(), Path, DestNodes, Exclude, Visited);
1961 for (auto &PI : Cur->Preds)
1962 if (PI.getKind() == SDep::Anti)
1963 FoundPath |=
1964 computePath(Cur: PI.getSUnit(), Path, DestNodes, Exclude, Visited);
1965 if (FoundPath)
1966 Path.insert(X: Cur);
1967 return FoundPath;
1968}
1969
1970/// Compute the live-out registers for the instructions in a node-set.
1971/// The live-out registers are those that are defined in the node-set,
1972/// but not used. Except for use operands of Phis.
1973static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
1974 NodeSet &NS) {
1975 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1976 MachineRegisterInfo &MRI = MF.getRegInfo();
1977 SmallVector<RegisterMaskPair, 8> LiveOutRegs;
1978 SmallSet<unsigned, 4> Uses;
1979 for (SUnit *SU : NS) {
1980 const MachineInstr *MI = SU->getInstr();
1981 if (MI->isPHI())
1982 continue;
1983 for (const MachineOperand &MO : MI->all_uses()) {
1984 Register Reg = MO.getReg();
1985 if (Reg.isVirtual())
1986 Uses.insert(V: Reg);
1987 else if (MRI.isAllocatable(PhysReg: Reg))
1988 for (MCRegUnit Unit : TRI->regunits(Reg: Reg.asMCReg()))
1989 Uses.insert(V: Unit);
1990 }
1991 }
1992 for (SUnit *SU : NS)
1993 for (const MachineOperand &MO : SU->getInstr()->all_defs())
1994 if (!MO.isDead()) {
1995 Register Reg = MO.getReg();
1996 if (Reg.isVirtual()) {
1997 if (!Uses.count(V: Reg))
1998 LiveOutRegs.push_back(Elt: RegisterMaskPair(Reg,
1999 LaneBitmask::getNone()));
2000 } else if (MRI.isAllocatable(PhysReg: Reg)) {
2001 for (MCRegUnit Unit : TRI->regunits(Reg: Reg.asMCReg()))
2002 if (!Uses.count(V: Unit))
2003 LiveOutRegs.push_back(
2004 Elt: RegisterMaskPair(Unit, LaneBitmask::getNone()));
2005 }
2006 }
2007 RPTracker.addLiveRegs(Regs: LiveOutRegs);
2008}
2009
2010/// A heuristic to filter nodes in recurrent node-sets if the register
2011/// pressure of a set is too high.
2012void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
2013 for (auto &NS : NodeSets) {
2014 // Skip small node-sets since they won't cause register pressure problems.
2015 if (NS.size() <= 2)
2016 continue;
2017 IntervalPressure RecRegPressure;
2018 RegPressureTracker RecRPTracker(RecRegPressure);
2019 RecRPTracker.init(mf: &MF, rci: &RegClassInfo, lis: &LIS, mbb: BB, pos: BB->end(), TrackLaneMasks: false, TrackUntiedDefs: true);
2020 computeLiveOuts(MF, RPTracker&: RecRPTracker, NS);
2021 RecRPTracker.closeBottom();
2022
2023 std::vector<SUnit *> SUnits(NS.begin(), NS.end());
2024 llvm::sort(C&: SUnits, Comp: [](const SUnit *A, const SUnit *B) {
2025 return A->NodeNum > B->NodeNum;
2026 });
2027
2028 for (auto &SU : SUnits) {
2029 // Since we're computing the register pressure for a subset of the
2030 // instructions in a block, we need to set the tracker for each
2031 // instruction in the node-set. The tracker is set to the instruction
2032 // just after the one we're interested in.
2033 MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
2034 RecRPTracker.setPos(std::next(x: CurInstI));
2035
2036 RegPressureDelta RPDelta;
2037 ArrayRef<PressureChange> CriticalPSets;
2038 RecRPTracker.getMaxUpwardPressureDelta(MI: SU->getInstr(), PDiff: nullptr, Delta&: RPDelta,
2039 CriticalPSets,
2040 MaxPressureLimit: RecRegPressure.MaxSetPressure);
2041 if (RPDelta.Excess.isValid()) {
2042 LLVM_DEBUG(
2043 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
2044 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
2045 << ":" << RPDelta.Excess.getUnitInc() << "\n");
2046 NS.setExceedPressure(SU);
2047 break;
2048 }
2049 RecRPTracker.recede();
2050 }
2051 }
2052}
2053
2054/// A heuristic to colocate node sets that have the same set of
2055/// successors.
2056void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
2057 unsigned Colocate = 0;
2058 for (int i = 0, e = NodeSets.size(); i < e; ++i) {
2059 NodeSet &N1 = NodeSets[i];
2060 SmallSetVector<SUnit *, 8> S1;
2061 if (N1.empty() || !succ_L(NodeOrder&: N1, Succs&: S1))
2062 continue;
2063 for (int j = i + 1; j < e; ++j) {
2064 NodeSet &N2 = NodeSets[j];
2065 if (N1.compareRecMII(RHS&: N2) != 0)
2066 continue;
2067 SmallSetVector<SUnit *, 8> S2;
2068 if (N2.empty() || !succ_L(NodeOrder&: N2, Succs&: S2))
2069 continue;
2070 if (llvm::set_is_subset(S1, S2) && S1.size() == S2.size()) {
2071 N1.setColocate(++Colocate);
2072 N2.setColocate(Colocate);
2073 break;
2074 }
2075 }
2076 }
2077}
2078
2079/// Check if the existing node-sets are profitable. If not, then ignore the
2080/// recurrent node-sets, and attempt to schedule all nodes together. This is
2081/// a heuristic. If the MII is large and all the recurrent node-sets are small,
2082/// then it's best to try to schedule all instructions together instead of
2083/// starting with the recurrent node-sets.
2084void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
2085 // Look for loops with a large MII.
2086 if (MII < 17)
2087 return;
2088 // Check if the node-set contains only a simple add recurrence.
2089 for (auto &NS : NodeSets) {
2090 if (NS.getRecMII() > 2)
2091 return;
2092 if (NS.getMaxDepth() > MII)
2093 return;
2094 }
2095 NodeSets.clear();
2096 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n");
2097}
2098
2099/// Add the nodes that do not belong to a recurrence set into groups
2100/// based upon connected components.
2101void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
2102 SetVector<SUnit *> NodesAdded;
2103 SmallPtrSet<SUnit *, 8> Visited;
2104 // Add the nodes that are on a path between the previous node sets and
2105 // the current node set.
2106 for (NodeSet &I : NodeSets) {
2107 SmallSetVector<SUnit *, 8> N;
2108 // Add the nodes from the current node set to the previous node set.
2109 if (succ_L(NodeOrder&: I, Succs&: N)) {
2110 SetVector<SUnit *> Path;
2111 for (SUnit *NI : N) {
2112 Visited.clear();
2113 computePath(Cur: NI, Path, DestNodes&: NodesAdded, Exclude&: I, Visited);
2114 }
2115 if (!Path.empty())
2116 I.insert(S: Path.begin(), E: Path.end());
2117 }
2118 // Add the nodes from the previous node set to the current node set.
2119 N.clear();
2120 if (succ_L(NodeOrder&: NodesAdded, Succs&: N)) {
2121 SetVector<SUnit *> Path;
2122 for (SUnit *NI : N) {
2123 Visited.clear();
2124 computePath(Cur: NI, Path, DestNodes&: I, Exclude&: NodesAdded, Visited);
2125 }
2126 if (!Path.empty())
2127 I.insert(S: Path.begin(), E: Path.end());
2128 }
2129 NodesAdded.insert(Start: I.begin(), End: I.end());
2130 }
2131
2132 // Create a new node set with the connected nodes of any successor of a node
2133 // in a recurrent set.
2134 NodeSet NewSet;
2135 SmallSetVector<SUnit *, 8> N;
2136 if (succ_L(NodeOrder&: NodesAdded, Succs&: N))
2137 for (SUnit *I : N)
2138 addConnectedNodes(SU: I, NewSet, NodesAdded);
2139 if (!NewSet.empty())
2140 NodeSets.push_back(Elt: NewSet);
2141
2142 // Create a new node set with the connected nodes of any predecessor of a node
2143 // in a recurrent set.
2144 NewSet.clear();
2145 if (pred_L(NodeOrder&: NodesAdded, Preds&: N))
2146 for (SUnit *I : N)
2147 addConnectedNodes(SU: I, NewSet, NodesAdded);
2148 if (!NewSet.empty())
2149 NodeSets.push_back(Elt: NewSet);
2150
2151 // Create new nodes sets with the connected nodes any remaining node that
2152 // has no predecessor.
2153 for (SUnit &SU : SUnits) {
2154 if (NodesAdded.count(key: &SU) == 0) {
2155 NewSet.clear();
2156 addConnectedNodes(SU: &SU, NewSet, NodesAdded);
2157 if (!NewSet.empty())
2158 NodeSets.push_back(Elt: NewSet);
2159 }
2160 }
2161}
2162
2163/// Add the node to the set, and add all of its connected nodes to the set.
2164void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
2165 SetVector<SUnit *> &NodesAdded) {
2166 NewSet.insert(SU);
2167 NodesAdded.insert(X: SU);
2168 for (auto &SI : SU->Succs) {
2169 SUnit *Successor = SI.getSUnit();
2170 if (!SI.isArtificial() && !Successor->isBoundaryNode() &&
2171 NodesAdded.count(key: Successor) == 0)
2172 addConnectedNodes(SU: Successor, NewSet, NodesAdded);
2173 }
2174 for (auto &PI : SU->Preds) {
2175 SUnit *Predecessor = PI.getSUnit();
2176 if (!PI.isArtificial() && NodesAdded.count(key: Predecessor) == 0)
2177 addConnectedNodes(SU: Predecessor, NewSet, NodesAdded);
2178 }
2179}
2180
2181/// Return true if Set1 contains elements in Set2. The elements in common
2182/// are returned in a different container.
2183static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
2184 SmallSetVector<SUnit *, 8> &Result) {
2185 Result.clear();
2186 for (SUnit *SU : Set1) {
2187 if (Set2.count(SU) != 0)
2188 Result.insert(X: SU);
2189 }
2190 return !Result.empty();
2191}
2192
2193/// Merge the recurrence node sets that have the same initial node.
2194void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
2195 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
2196 ++I) {
2197 NodeSet &NI = *I;
2198 for (NodeSetType::iterator J = I + 1; J != E;) {
2199 NodeSet &NJ = *J;
2200 if (NI.getNode(i: 0)->NodeNum == NJ.getNode(i: 0)->NodeNum) {
2201 if (NJ.compareRecMII(RHS&: NI) > 0)
2202 NI.setRecMII(NJ.getRecMII());
2203 for (SUnit *SU : *J)
2204 I->insert(SU);
2205 NodeSets.erase(CI: J);
2206 E = NodeSets.end();
2207 } else {
2208 ++J;
2209 }
2210 }
2211 }
2212}
2213
2214/// Remove nodes that have been scheduled in previous NodeSets.
2215void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
2216 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
2217 ++I)
2218 for (NodeSetType::iterator J = I + 1; J != E;) {
2219 J->remove_if(P: [&](SUnit *SUJ) { return I->count(SU: SUJ); });
2220
2221 if (J->empty()) {
2222 NodeSets.erase(CI: J);
2223 E = NodeSets.end();
2224 } else {
2225 ++J;
2226 }
2227 }
2228}
2229
2230/// Compute an ordered list of the dependence graph nodes, which
2231/// indicates the order that the nodes will be scheduled. This is a
2232/// two-level algorithm. First, a partial order is created, which
2233/// consists of a list of sets ordered from highest to lowest priority.
2234void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
2235 SmallSetVector<SUnit *, 8> R;
2236 NodeOrder.clear();
2237
2238 for (auto &Nodes : NodeSets) {
2239 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
2240 OrderKind Order;
2241 SmallSetVector<SUnit *, 8> N;
2242 if (pred_L(NodeOrder, Preds&: N) && llvm::set_is_subset(S1: N, S2: Nodes)) {
2243 R.insert(Start: N.begin(), End: N.end());
2244 Order = BottomUp;
2245 LLVM_DEBUG(dbgs() << " Bottom up (preds) ");
2246 } else if (succ_L(NodeOrder, Succs&: N) && llvm::set_is_subset(S1: N, S2: Nodes)) {
2247 R.insert(Start: N.begin(), End: N.end());
2248 Order = TopDown;
2249 LLVM_DEBUG(dbgs() << " Top down (succs) ");
2250 } else if (isIntersect(Set1&: N, Set2: Nodes, Result&: R)) {
2251 // If some of the successors are in the existing node-set, then use the
2252 // top-down ordering.
2253 Order = TopDown;
2254 LLVM_DEBUG(dbgs() << " Top down (intersect) ");
2255 } else if (NodeSets.size() == 1) {
2256 for (const auto &N : Nodes)
2257 if (N->Succs.size() == 0)
2258 R.insert(X: N);
2259 Order = BottomUp;
2260 LLVM_DEBUG(dbgs() << " Bottom up (all) ");
2261 } else {
2262 // Find the node with the highest ASAP.
2263 SUnit *maxASAP = nullptr;
2264 for (SUnit *SU : Nodes) {
2265 if (maxASAP == nullptr || getASAP(Node: SU) > getASAP(Node: maxASAP) ||
2266 (getASAP(Node: SU) == getASAP(Node: maxASAP) && SU->NodeNum > maxASAP->NodeNum))
2267 maxASAP = SU;
2268 }
2269 R.insert(X: maxASAP);
2270 Order = BottomUp;
2271 LLVM_DEBUG(dbgs() << " Bottom up (default) ");
2272 }
2273
2274 while (!R.empty()) {
2275 if (Order == TopDown) {
2276 // Choose the node with the maximum height. If more than one, choose
2277 // the node wiTH the maximum ZeroLatencyHeight. If still more than one,
2278 // choose the node with the lowest MOV.
2279 while (!R.empty()) {
2280 SUnit *maxHeight = nullptr;
2281 for (SUnit *I : R) {
2282 if (maxHeight == nullptr || getHeight(Node: I) > getHeight(Node: maxHeight))
2283 maxHeight = I;
2284 else if (getHeight(Node: I) == getHeight(Node: maxHeight) &&
2285 getZeroLatencyHeight(Node: I) > getZeroLatencyHeight(Node: maxHeight))
2286 maxHeight = I;
2287 else if (getHeight(Node: I) == getHeight(Node: maxHeight) &&
2288 getZeroLatencyHeight(Node: I) ==
2289 getZeroLatencyHeight(Node: maxHeight) &&
2290 getMOV(Node: I) < getMOV(Node: maxHeight))
2291 maxHeight = I;
2292 }
2293 NodeOrder.insert(X: maxHeight);
2294 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " ");
2295 R.remove(X: maxHeight);
2296 for (const auto &I : maxHeight->Succs) {
2297 if (Nodes.count(SU: I.getSUnit()) == 0)
2298 continue;
2299 if (NodeOrder.contains(key: I.getSUnit()))
2300 continue;
2301 if (ignoreDependence(D: I, isPred: false))
2302 continue;
2303 R.insert(X: I.getSUnit());
2304 }
2305 // Back-edges are predecessors with an anti-dependence.
2306 for (const auto &I : maxHeight->Preds) {
2307 if (I.getKind() != SDep::Anti)
2308 continue;
2309 if (Nodes.count(SU: I.getSUnit()) == 0)
2310 continue;
2311 if (NodeOrder.contains(key: I.getSUnit()))
2312 continue;
2313 R.insert(X: I.getSUnit());
2314 }
2315 }
2316 Order = BottomUp;
2317 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up ");
2318 SmallSetVector<SUnit *, 8> N;
2319 if (pred_L(NodeOrder, Preds&: N, S: &Nodes))
2320 R.insert(Start: N.begin(), End: N.end());
2321 } else {
2322 // Choose the node with the maximum depth. If more than one, choose
2323 // the node with the maximum ZeroLatencyDepth. If still more than one,
2324 // choose the node with the lowest MOV.
2325 while (!R.empty()) {
2326 SUnit *maxDepth = nullptr;
2327 for (SUnit *I : R) {
2328 if (maxDepth == nullptr || getDepth(Node: I) > getDepth(Node: maxDepth))
2329 maxDepth = I;
2330 else if (getDepth(Node: I) == getDepth(Node: maxDepth) &&
2331 getZeroLatencyDepth(Node: I) > getZeroLatencyDepth(Node: maxDepth))
2332 maxDepth = I;
2333 else if (getDepth(Node: I) == getDepth(Node: maxDepth) &&
2334 getZeroLatencyDepth(Node: I) == getZeroLatencyDepth(Node: maxDepth) &&
2335 getMOV(Node: I) < getMOV(Node: maxDepth))
2336 maxDepth = I;
2337 }
2338 NodeOrder.insert(X: maxDepth);
2339 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " ");
2340 R.remove(X: maxDepth);
2341 if (Nodes.isExceedSU(SU: maxDepth)) {
2342 Order = TopDown;
2343 R.clear();
2344 R.insert(X: Nodes.getNode(i: 0));
2345 break;
2346 }
2347 for (const auto &I : maxDepth->Preds) {
2348 if (Nodes.count(SU: I.getSUnit()) == 0)
2349 continue;
2350 if (NodeOrder.contains(key: I.getSUnit()))
2351 continue;
2352 R.insert(X: I.getSUnit());
2353 }
2354 // Back-edges are predecessors with an anti-dependence.
2355 for (const auto &I : maxDepth->Succs) {
2356 if (I.getKind() != SDep::Anti)
2357 continue;
2358 if (Nodes.count(SU: I.getSUnit()) == 0)
2359 continue;
2360 if (NodeOrder.contains(key: I.getSUnit()))
2361 continue;
2362 R.insert(X: I.getSUnit());
2363 }
2364 }
2365 Order = TopDown;
2366 LLVM_DEBUG(dbgs() << "\n Switching order to top down ");
2367 SmallSetVector<SUnit *, 8> N;
2368 if (succ_L(NodeOrder, Succs&: N, S: &Nodes))
2369 R.insert(Start: N.begin(), End: N.end());
2370 }
2371 }
2372 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n");
2373 }
2374
2375 LLVM_DEBUG({
2376 dbgs() << "Node order: ";
2377 for (SUnit *I : NodeOrder)
2378 dbgs() << " " << I->NodeNum << " ";
2379 dbgs() << "\n";
2380 });
2381}
2382
2383/// Process the nodes in the computed order and create the pipelined schedule
2384/// of the instructions, if possible. Return true if a schedule is found.
2385bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
2386
2387 if (NodeOrder.empty()){
2388 LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" );
2389 return false;
2390 }
2391
2392 bool scheduleFound = false;
2393 std::unique_ptr<HighRegisterPressureDetector> HRPDetector;
2394 if (LimitRegPressure) {
2395 HRPDetector =
2396 std::make_unique<HighRegisterPressureDetector>(args: Loop.getHeader(), args&: MF);
2397 HRPDetector->init(RCI: RegClassInfo);
2398 }
2399 // Keep increasing II until a valid schedule is found.
2400 for (unsigned II = MII; II <= MAX_II && !scheduleFound; ++II) {
2401 Schedule.reset();
2402 Schedule.setInitiationInterval(II);
2403 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n");
2404
2405 SetVector<SUnit *>::iterator NI = NodeOrder.begin();
2406 SetVector<SUnit *>::iterator NE = NodeOrder.end();
2407 do {
2408 SUnit *SU = *NI;
2409
2410 // Compute the schedule time for the instruction, which is based
2411 // upon the scheduled time for any predecessors/successors.
2412 int EarlyStart = INT_MIN;
2413 int LateStart = INT_MAX;
2414 // These values are set when the size of the schedule window is limited
2415 // due to chain dependences.
2416 int SchedEnd = INT_MAX;
2417 int SchedStart = INT_MIN;
2418 Schedule.computeStart(SU, MaxEarlyStart: &EarlyStart, MinLateStart: &LateStart, MinEnd: &SchedEnd, MaxStart: &SchedStart,
2419 II, DAG: this);
2420 LLVM_DEBUG({
2421 dbgs() << "\n";
2422 dbgs() << "Inst (" << SU->NodeNum << ") ";
2423 SU->getInstr()->dump();
2424 dbgs() << "\n";
2425 });
2426 LLVM_DEBUG({
2427 dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart,
2428 LateStart, SchedEnd, SchedStart);
2429 });
2430
2431 if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
2432 SchedStart > LateStart)
2433 scheduleFound = false;
2434 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
2435 SchedEnd = std::min(a: SchedEnd, b: EarlyStart + (int)II - 1);
2436 scheduleFound = Schedule.insert(SU, StartCycle: EarlyStart, EndCycle: SchedEnd, II);
2437 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
2438 SchedStart = std::max(a: SchedStart, b: LateStart - (int)II + 1);
2439 scheduleFound = Schedule.insert(SU, StartCycle: LateStart, EndCycle: SchedStart, II);
2440 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
2441 SchedEnd =
2442 std::min(a: SchedEnd, b: std::min(a: LateStart, b: EarlyStart + (int)II - 1));
2443 // When scheduling a Phi it is better to start at the late cycle and go
2444 // backwards. The default order may insert the Phi too far away from
2445 // its first dependence.
2446 if (SU->getInstr()->isPHI())
2447 scheduleFound = Schedule.insert(SU, StartCycle: SchedEnd, EndCycle: EarlyStart, II);
2448 else
2449 scheduleFound = Schedule.insert(SU, StartCycle: EarlyStart, EndCycle: SchedEnd, II);
2450 } else {
2451 int FirstCycle = Schedule.getFirstCycle();
2452 scheduleFound = Schedule.insert(SU, StartCycle: FirstCycle + getASAP(Node: SU),
2453 EndCycle: FirstCycle + getASAP(Node: SU) + II - 1, II);
2454 }
2455 // Even if we find a schedule, make sure the schedule doesn't exceed the
2456 // allowable number of stages. We keep trying if this happens.
2457 if (scheduleFound)
2458 if (SwpMaxStages > -1 &&
2459 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
2460 scheduleFound = false;
2461
2462 LLVM_DEBUG({
2463 if (!scheduleFound)
2464 dbgs() << "\tCan't schedule\n";
2465 });
2466 } while (++NI != NE && scheduleFound);
2467
2468 // If a schedule is found, ensure non-pipelined instructions are in stage 0
2469 if (scheduleFound)
2470 scheduleFound =
2471 Schedule.normalizeNonPipelinedInstructions(SSD: this, PLI: LoopPipelinerInfo);
2472
2473 // If a schedule is found, check if it is a valid schedule too.
2474 if (scheduleFound)
2475 scheduleFound = Schedule.isValidSchedule(SSD: this);
2476
2477 // If a schedule was found and the option is enabled, check if the schedule
2478 // might generate additional register spills/fills.
2479 if (scheduleFound && LimitRegPressure)
2480 scheduleFound =
2481 !HRPDetector->detect(SSD: this, Schedule, MaxStage: Schedule.getMaxStageCount());
2482 }
2483
2484 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound
2485 << " (II=" << Schedule.getInitiationInterval()
2486 << ")\n");
2487
2488 if (scheduleFound) {
2489 scheduleFound = LoopPipelinerInfo->shouldUseSchedule(SSD&: *this, SMS&: Schedule);
2490 if (!scheduleFound)
2491 LLVM_DEBUG(dbgs() << "Target rejected schedule\n");
2492 }
2493
2494 if (scheduleFound) {
2495 Schedule.finalizeSchedule(SSD: this);
2496 Pass.ORE->emit(RemarkBuilder: [&]() {
2497 return MachineOptimizationRemarkAnalysis(
2498 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
2499 << "Schedule found with Initiation Interval: "
2500 << ore::NV("II", Schedule.getInitiationInterval())
2501 << ", MaxStageCount: "
2502 << ore::NV("MaxStageCount", Schedule.getMaxStageCount());
2503 });
2504 } else
2505 Schedule.reset();
2506
2507 return scheduleFound && Schedule.getMaxStageCount() > 0;
2508}
2509
2510/// Return true if we can compute the amount the instruction changes
2511/// during each iteration. Set Delta to the amount of the change.
2512bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
2513 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2514 const MachineOperand *BaseOp;
2515 int64_t Offset;
2516 bool OffsetIsScalable;
2517 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
2518 return false;
2519
2520 // FIXME: This algorithm assumes instructions have fixed-size offsets.
2521 if (OffsetIsScalable)
2522 return false;
2523
2524 if (!BaseOp->isReg())
2525 return false;
2526
2527 Register BaseReg = BaseOp->getReg();
2528
2529 MachineRegisterInfo &MRI = MF.getRegInfo();
2530 // Check if there is a Phi. If so, get the definition in the loop.
2531 MachineInstr *BaseDef = MRI.getVRegDef(Reg: BaseReg);
2532 if (BaseDef && BaseDef->isPHI()) {
2533 BaseReg = getLoopPhiReg(Phi: *BaseDef, LoopBB: MI.getParent());
2534 BaseDef = MRI.getVRegDef(Reg: BaseReg);
2535 }
2536 if (!BaseDef)
2537 return false;
2538
2539 int D = 0;
2540 if (!TII->getIncrementValue(MI: *BaseDef, Value&: D) && D >= 0)
2541 return false;
2542
2543 Delta = D;
2544 return true;
2545}
2546
2547/// Check if we can change the instruction to use an offset value from the
2548/// previous iteration. If so, return true and set the base and offset values
2549/// so that we can rewrite the load, if necessary.
2550/// v1 = Phi(v0, v3)
2551/// v2 = load v1, 0
2552/// v3 = post_store v1, 4, x
2553/// This function enables the load to be rewritten as v2 = load v3, 4.
2554bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
2555 unsigned &BasePos,
2556 unsigned &OffsetPos,
2557 unsigned &NewBase,
2558 int64_t &Offset) {
2559 // Get the load instruction.
2560 if (TII->isPostIncrement(MI: *MI))
2561 return false;
2562 unsigned BasePosLd, OffsetPosLd;
2563 if (!TII->getBaseAndOffsetPosition(MI: *MI, BasePos&: BasePosLd, OffsetPos&: OffsetPosLd))
2564 return false;
2565 Register BaseReg = MI->getOperand(i: BasePosLd).getReg();
2566
2567 // Look for the Phi instruction.
2568 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
2569 MachineInstr *Phi = MRI.getVRegDef(Reg: BaseReg);
2570 if (!Phi || !Phi->isPHI())
2571 return false;
2572 // Get the register defined in the loop block.
2573 unsigned PrevReg = getLoopPhiReg(Phi: *Phi, LoopBB: MI->getParent());
2574 if (!PrevReg)
2575 return false;
2576
2577 // Check for the post-increment load/store instruction.
2578 MachineInstr *PrevDef = MRI.getVRegDef(Reg: PrevReg);
2579 if (!PrevDef || PrevDef == MI)
2580 return false;
2581
2582 if (!TII->isPostIncrement(MI: *PrevDef))
2583 return false;
2584
2585 unsigned BasePos1 = 0, OffsetPos1 = 0;
2586 if (!TII->getBaseAndOffsetPosition(MI: *PrevDef, BasePos&: BasePos1, OffsetPos&: OffsetPos1))
2587 return false;
2588
2589 // Make sure that the instructions do not access the same memory location in
2590 // the next iteration.
2591 int64_t LoadOffset = MI->getOperand(i: OffsetPosLd).getImm();
2592 int64_t StoreOffset = PrevDef->getOperand(i: OffsetPos1).getImm();
2593 MachineInstr *NewMI = MF.CloneMachineInstr(Orig: MI);
2594 NewMI->getOperand(i: OffsetPosLd).setImm(LoadOffset + StoreOffset);
2595 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(MIa: *NewMI, MIb: *PrevDef);
2596 MF.deleteMachineInstr(MI: NewMI);
2597 if (!Disjoint)
2598 return false;
2599
2600 // Set the return value once we determine that we return true.
2601 BasePos = BasePosLd;
2602 OffsetPos = OffsetPosLd;
2603 NewBase = PrevReg;
2604 Offset = StoreOffset;
2605 return true;
2606}
2607
2608/// Apply changes to the instruction if needed. The changes are need
2609/// to improve the scheduling and depend up on the final schedule.
2610void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
2611 SMSchedule &Schedule) {
2612 SUnit *SU = getSUnit(MI);
2613 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
2614 InstrChanges.find(Val: SU);
2615 if (It != InstrChanges.end()) {
2616 std::pair<unsigned, int64_t> RegAndOffset = It->second;
2617 unsigned BasePos, OffsetPos;
2618 if (!TII->getBaseAndOffsetPosition(MI: *MI, BasePos, OffsetPos))
2619 return;
2620 Register BaseReg = MI->getOperand(i: BasePos).getReg();
2621 MachineInstr *LoopDef = findDefInLoop(Reg: BaseReg);
2622 int DefStageNum = Schedule.stageScheduled(SU: getSUnit(MI: LoopDef));
2623 int DefCycleNum = Schedule.cycleScheduled(SU: getSUnit(MI: LoopDef));
2624 int BaseStageNum = Schedule.stageScheduled(SU);
2625 int BaseCycleNum = Schedule.cycleScheduled(SU);
2626 if (BaseStageNum < DefStageNum) {
2627 MachineInstr *NewMI = MF.CloneMachineInstr(Orig: MI);
2628 int OffsetDiff = DefStageNum - BaseStageNum;
2629 if (DefCycleNum < BaseCycleNum) {
2630 NewMI->getOperand(i: BasePos).setReg(RegAndOffset.first);
2631 if (OffsetDiff > 0)
2632 --OffsetDiff;
2633 }
2634 int64_t NewOffset =
2635 MI->getOperand(i: OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
2636 NewMI->getOperand(i: OffsetPos).setImm(NewOffset);
2637 SU->setInstr(NewMI);
2638 MISUnitMap[NewMI] = SU;
2639 NewMIs[MI] = NewMI;
2640 }
2641 }
2642}
2643
2644/// Return the instruction in the loop that defines the register.
2645/// If the definition is a Phi, then follow the Phi operand to
2646/// the instruction in the loop.
2647MachineInstr *SwingSchedulerDAG::findDefInLoop(Register Reg) {
2648 SmallPtrSet<MachineInstr *, 8> Visited;
2649 MachineInstr *Def = MRI.getVRegDef(Reg);
2650 while (Def->isPHI()) {
2651 if (!Visited.insert(Ptr: Def).second)
2652 break;
2653 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
2654 if (Def->getOperand(i: i + 1).getMBB() == BB) {
2655 Def = MRI.getVRegDef(Reg: Def->getOperand(i).getReg());
2656 break;
2657 }
2658 }
2659 return Def;
2660}
2661
2662/// Return true for an order or output dependence that is loop carried
2663/// potentially. A dependence is loop carried if the destination defines a value
2664/// that may be used or defined by the source in a subsequent iteration.
2665bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep,
2666 bool isSucc) {
2667 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) ||
2668 Dep.isArtificial() || Dep.getSUnit()->isBoundaryNode())
2669 return false;
2670
2671 if (!SwpPruneLoopCarried)
2672 return true;
2673
2674 if (Dep.getKind() == SDep::Output)
2675 return true;
2676
2677 MachineInstr *SI = Source->getInstr();
2678 MachineInstr *DI = Dep.getSUnit()->getInstr();
2679 if (!isSucc)
2680 std::swap(a&: SI, b&: DI);
2681 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
2682
2683 // Assume ordered loads and stores may have a loop carried dependence.
2684 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
2685 SI->mayRaiseFPException() || DI->mayRaiseFPException() ||
2686 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
2687 return true;
2688
2689 if (!DI->mayLoadOrStore() || !SI->mayLoadOrStore())
2690 return false;
2691
2692 // The conservative assumption is that a dependence between memory operations
2693 // may be loop carried. The following code checks when it can be proved that
2694 // there is no loop carried dependence.
2695 unsigned DeltaS, DeltaD;
2696 if (!computeDelta(MI&: *SI, Delta&: DeltaS) || !computeDelta(MI&: *DI, Delta&: DeltaD))
2697 return true;
2698
2699 const MachineOperand *BaseOpS, *BaseOpD;
2700 int64_t OffsetS, OffsetD;
2701 bool OffsetSIsScalable, OffsetDIsScalable;
2702 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2703 if (!TII->getMemOperandWithOffset(MI: *SI, BaseOp&: BaseOpS, Offset&: OffsetS, OffsetIsScalable&: OffsetSIsScalable,
2704 TRI) ||
2705 !TII->getMemOperandWithOffset(MI: *DI, BaseOp&: BaseOpD, Offset&: OffsetD, OffsetIsScalable&: OffsetDIsScalable,
2706 TRI))
2707 return true;
2708
2709 assert(!OffsetSIsScalable && !OffsetDIsScalable &&
2710 "Expected offsets to be byte offsets");
2711
2712 MachineInstr *DefS = MRI.getVRegDef(Reg: BaseOpS->getReg());
2713 MachineInstr *DefD = MRI.getVRegDef(Reg: BaseOpD->getReg());
2714 if (!DefS || !DefD || !DefS->isPHI() || !DefD->isPHI())
2715 return true;
2716
2717 unsigned InitValS = 0;
2718 unsigned LoopValS = 0;
2719 unsigned InitValD = 0;
2720 unsigned LoopValD = 0;
2721 getPhiRegs(Phi&: *DefS, Loop: BB, InitVal&: InitValS, LoopVal&: LoopValS);
2722 getPhiRegs(Phi&: *DefD, Loop: BB, InitVal&: InitValD, LoopVal&: LoopValD);
2723 MachineInstr *InitDefS = MRI.getVRegDef(Reg: InitValS);
2724 MachineInstr *InitDefD = MRI.getVRegDef(Reg: InitValD);
2725
2726 if (!InitDefS->isIdenticalTo(Other: *InitDefD))
2727 return true;
2728
2729 // Check that the base register is incremented by a constant value for each
2730 // iteration.
2731 MachineInstr *LoopDefS = MRI.getVRegDef(Reg: LoopValS);
2732 int D = 0;
2733 if (!LoopDefS || !TII->getIncrementValue(MI: *LoopDefS, Value&: D))
2734 return true;
2735
2736 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
2737 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
2738
2739 // This is the main test, which checks the offset values and the loop
2740 // increment value to determine if the accesses may be loop carried.
2741 if (AccessSizeS == MemoryLocation::UnknownSize ||
2742 AccessSizeD == MemoryLocation::UnknownSize)
2743 return true;
2744
2745 if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD)
2746 return true;
2747
2748 return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD);
2749}
2750
2751void SwingSchedulerDAG::postProcessDAG() {
2752 for (auto &M : Mutations)
2753 M->apply(DAG: this);
2754}
2755
2756/// Try to schedule the node at the specified StartCycle and continue
2757/// until the node is schedule or the EndCycle is reached. This function
2758/// returns true if the node is scheduled. This routine may search either
2759/// forward or backward for a place to insert the instruction based upon
2760/// the relative values of StartCycle and EndCycle.
2761bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
2762 bool forward = true;
2763 LLVM_DEBUG({
2764 dbgs() << "Trying to insert node between " << StartCycle << " and "
2765 << EndCycle << " II: " << II << "\n";
2766 });
2767 if (StartCycle > EndCycle)
2768 forward = false;
2769
2770 // The terminating condition depends on the direction.
2771 int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
2772 for (int curCycle = StartCycle; curCycle != termCycle;
2773 forward ? ++curCycle : --curCycle) {
2774
2775 if (ST.getInstrInfo()->isZeroCost(Opcode: SU->getInstr()->getOpcode()) ||
2776 ProcItinResources.canReserveResources(SU&: *SU, Cycle: curCycle)) {
2777 LLVM_DEBUG({
2778 dbgs() << "\tinsert at cycle " << curCycle << " ";
2779 SU->getInstr()->dump();
2780 });
2781
2782 if (!ST.getInstrInfo()->isZeroCost(Opcode: SU->getInstr()->getOpcode()))
2783 ProcItinResources.reserveResources(SU&: *SU, Cycle: curCycle);
2784 ScheduledInstrs[curCycle].push_back(x: SU);
2785 InstrToCycle.insert(x: std::make_pair(x&: SU, y&: curCycle));
2786 if (curCycle > LastCycle)
2787 LastCycle = curCycle;
2788 if (curCycle < FirstCycle)
2789 FirstCycle = curCycle;
2790 return true;
2791 }
2792 LLVM_DEBUG({
2793 dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
2794 SU->getInstr()->dump();
2795 });
2796 }
2797 return false;
2798}
2799
2800// Return the cycle of the earliest scheduled instruction in the chain.
2801int SMSchedule::earliestCycleInChain(const SDep &Dep) {
2802 SmallPtrSet<SUnit *, 8> Visited;
2803 SmallVector<SDep, 8> Worklist;
2804 Worklist.push_back(Elt: Dep);
2805 int EarlyCycle = INT_MAX;
2806 while (!Worklist.empty()) {
2807 const SDep &Cur = Worklist.pop_back_val();
2808 SUnit *PrevSU = Cur.getSUnit();
2809 if (Visited.count(Ptr: PrevSU))
2810 continue;
2811 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(x: PrevSU);
2812 if (it == InstrToCycle.end())
2813 continue;
2814 EarlyCycle = std::min(a: EarlyCycle, b: it->second);
2815 for (const auto &PI : PrevSU->Preds)
2816 if (PI.getKind() == SDep::Order || PI.getKind() == SDep::Output)
2817 Worklist.push_back(Elt: PI);
2818 Visited.insert(Ptr: PrevSU);
2819 }
2820 return EarlyCycle;
2821}
2822
2823// Return the cycle of the latest scheduled instruction in the chain.
2824int SMSchedule::latestCycleInChain(const SDep &Dep) {
2825 SmallPtrSet<SUnit *, 8> Visited;
2826 SmallVector<SDep, 8> Worklist;
2827 Worklist.push_back(Elt: Dep);
2828 int LateCycle = INT_MIN;
2829 while (!Worklist.empty()) {
2830 const SDep &Cur = Worklist.pop_back_val();
2831 SUnit *SuccSU = Cur.getSUnit();
2832 if (Visited.count(Ptr: SuccSU) || SuccSU->isBoundaryNode())
2833 continue;
2834 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(x: SuccSU);
2835 if (it == InstrToCycle.end())
2836 continue;
2837 LateCycle = std::max(a: LateCycle, b: it->second);
2838 for (const auto &SI : SuccSU->Succs)
2839 if (SI.getKind() == SDep::Order || SI.getKind() == SDep::Output)
2840 Worklist.push_back(Elt: SI);
2841 Visited.insert(Ptr: SuccSU);
2842 }
2843 return LateCycle;
2844}
2845
2846/// If an instruction has a use that spans multiple iterations, then
2847/// return true. These instructions are characterized by having a back-ege
2848/// to a Phi, which contains a reference to another Phi.
2849static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
2850 for (auto &P : SU->Preds)
2851 if (DAG->isBackedge(Source: SU, Dep: P) && P.getSUnit()->getInstr()->isPHI())
2852 for (auto &S : P.getSUnit()->Succs)
2853 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI())
2854 return P.getSUnit();
2855 return nullptr;
2856}
2857
2858/// Compute the scheduling start slot for the instruction. The start slot
2859/// depends on any predecessor or successor nodes scheduled already.
2860void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
2861 int *MinEnd, int *MaxStart, int II,
2862 SwingSchedulerDAG *DAG) {
2863 // Iterate over each instruction that has been scheduled already. The start
2864 // slot computation depends on whether the previously scheduled instruction
2865 // is a predecessor or successor of the specified instruction.
2866 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
2867
2868 // Iterate over each instruction in the current cycle.
2869 for (SUnit *I : getInstructions(cycle)) {
2870 // Because we're processing a DAG for the dependences, we recognize
2871 // the back-edge in recurrences by anti dependences.
2872 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
2873 const SDep &Dep = SU->Preds[i];
2874 if (Dep.getSUnit() == I) {
2875 if (!DAG->isBackedge(Source: SU, Dep)) {
2876 int EarlyStart = cycle + Dep.getLatency() -
2877 DAG->getDistance(U: Dep.getSUnit(), V: SU, Dep) * II;
2878 *MaxEarlyStart = std::max(a: *MaxEarlyStart, b: EarlyStart);
2879 if (DAG->isLoopCarriedDep(Source: SU, Dep, isSucc: false)) {
2880 int End = earliestCycleInChain(Dep) + (II - 1);
2881 *MinEnd = std::min(a: *MinEnd, b: End);
2882 }
2883 } else {
2884 int LateStart = cycle - Dep.getLatency() +
2885 DAG->getDistance(U: SU, V: Dep.getSUnit(), Dep) * II;
2886 *MinLateStart = std::min(a: *MinLateStart, b: LateStart);
2887 }
2888 }
2889 // For instruction that requires multiple iterations, make sure that
2890 // the dependent instruction is not scheduled past the definition.
2891 SUnit *BE = multipleIterations(SU: I, DAG);
2892 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
2893 !SU->isPred(N: I))
2894 *MinLateStart = std::min(a: *MinLateStart, b: cycle);
2895 }
2896 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) {
2897 if (SU->Succs[i].getSUnit() == I) {
2898 const SDep &Dep = SU->Succs[i];
2899 if (!DAG->isBackedge(Source: SU, Dep)) {
2900 int LateStart = cycle - Dep.getLatency() +
2901 DAG->getDistance(U: SU, V: Dep.getSUnit(), Dep) * II;
2902 *MinLateStart = std::min(a: *MinLateStart, b: LateStart);
2903 if (DAG->isLoopCarriedDep(Source: SU, Dep)) {
2904 int Start = latestCycleInChain(Dep) + 1 - II;
2905 *MaxStart = std::max(a: *MaxStart, b: Start);
2906 }
2907 } else {
2908 int EarlyStart = cycle + Dep.getLatency() -
2909 DAG->getDistance(U: Dep.getSUnit(), V: SU, Dep) * II;
2910 *MaxEarlyStart = std::max(a: *MaxEarlyStart, b: EarlyStart);
2911 }
2912 }
2913 }
2914 }
2915 }
2916}
2917
2918/// Order the instructions within a cycle so that the definitions occur
2919/// before the uses. Returns true if the instruction is added to the start
2920/// of the list, or false if added to the end.
2921void SMSchedule::orderDependence(const SwingSchedulerDAG *SSD, SUnit *SU,
2922 std::deque<SUnit *> &Insts) const {
2923 MachineInstr *MI = SU->getInstr();
2924 bool OrderBeforeUse = false;
2925 bool OrderAfterDef = false;
2926 bool OrderBeforeDef = false;
2927 unsigned MoveDef = 0;
2928 unsigned MoveUse = 0;
2929 int StageInst1 = stageScheduled(SU);
2930
2931 unsigned Pos = 0;
2932 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
2933 ++I, ++Pos) {
2934 for (MachineOperand &MO : MI->operands()) {
2935 if (!MO.isReg() || !MO.getReg().isVirtual())
2936 continue;
2937
2938 Register Reg = MO.getReg();
2939 unsigned BasePos, OffsetPos;
2940 if (ST.getInstrInfo()->getBaseAndOffsetPosition(MI: *MI, BasePos, OffsetPos))
2941 if (MI->getOperand(i: BasePos).getReg() == Reg)
2942 if (unsigned NewReg = SSD->getInstrBaseReg(SU))
2943 Reg = NewReg;
2944 bool Reads, Writes;
2945 std::tie(args&: Reads, args&: Writes) =
2946 (*I)->getInstr()->readsWritesVirtualRegister(Reg);
2947 if (MO.isDef() && Reads && stageScheduled(SU: *I) <= StageInst1) {
2948 OrderBeforeUse = true;
2949 if (MoveUse == 0)
2950 MoveUse = Pos;
2951 } else if (MO.isDef() && Reads && stageScheduled(SU: *I) > StageInst1) {
2952 // Add the instruction after the scheduled instruction.
2953 OrderAfterDef = true;
2954 MoveDef = Pos;
2955 } else if (MO.isUse() && Writes && stageScheduled(SU: *I) == StageInst1) {
2956 if (cycleScheduled(SU: *I) == cycleScheduled(SU) && !(*I)->isSucc(N: SU)) {
2957 OrderBeforeUse = true;
2958 if (MoveUse == 0)
2959 MoveUse = Pos;
2960 } else {
2961 OrderAfterDef = true;
2962 MoveDef = Pos;
2963 }
2964 } else if (MO.isUse() && Writes && stageScheduled(SU: *I) > StageInst1) {
2965 OrderBeforeUse = true;
2966 if (MoveUse == 0)
2967 MoveUse = Pos;
2968 if (MoveUse != 0) {
2969 OrderAfterDef = true;
2970 MoveDef = Pos - 1;
2971 }
2972 } else if (MO.isUse() && Writes && stageScheduled(SU: *I) < StageInst1) {
2973 // Add the instruction before the scheduled instruction.
2974 OrderBeforeUse = true;
2975 if (MoveUse == 0)
2976 MoveUse = Pos;
2977 } else if (MO.isUse() && stageScheduled(SU: *I) == StageInst1 &&
2978 isLoopCarriedDefOfUse(SSD, Def: (*I)->getInstr(), MO)) {
2979 if (MoveUse == 0) {
2980 OrderBeforeDef = true;
2981 MoveUse = Pos;
2982 }
2983 }
2984 }
2985 // Check for order dependences between instructions. Make sure the source
2986 // is ordered before the destination.
2987 for (auto &S : SU->Succs) {
2988 if (S.getSUnit() != *I)
2989 continue;
2990 if (S.getKind() == SDep::Order && stageScheduled(SU: *I) == StageInst1) {
2991 OrderBeforeUse = true;
2992 if (Pos < MoveUse)
2993 MoveUse = Pos;
2994 }
2995 // We did not handle HW dependences in previous for loop,
2996 // and we normally set Latency = 0 for Anti deps,
2997 // so may have nodes in same cycle with Anti denpendent on HW regs.
2998 else if (S.getKind() == SDep::Anti && stageScheduled(SU: *I) == StageInst1) {
2999 OrderBeforeUse = true;
3000 if ((MoveUse == 0) || (Pos < MoveUse))
3001 MoveUse = Pos;
3002 }
3003 }
3004 for (auto &P : SU->Preds) {
3005 if (P.getSUnit() != *I)
3006 continue;
3007 if (P.getKind() == SDep::Order && stageScheduled(SU: *I) == StageInst1) {
3008 OrderAfterDef = true;
3009 MoveDef = Pos;
3010 }
3011 }
3012 }
3013
3014 // A circular dependence.
3015 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
3016 OrderBeforeUse = false;
3017
3018 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
3019 // to a loop-carried dependence.
3020 if (OrderBeforeDef)
3021 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
3022
3023 // The uncommon case when the instruction order needs to be updated because
3024 // there is both a use and def.
3025 if (OrderBeforeUse && OrderAfterDef) {
3026 SUnit *UseSU = Insts.at(n: MoveUse);
3027 SUnit *DefSU = Insts.at(n: MoveDef);
3028 if (MoveUse > MoveDef) {
3029 Insts.erase(position: Insts.begin() + MoveUse);
3030 Insts.erase(position: Insts.begin() + MoveDef);
3031 } else {
3032 Insts.erase(position: Insts.begin() + MoveDef);
3033 Insts.erase(position: Insts.begin() + MoveUse);
3034 }
3035 orderDependence(SSD, SU: UseSU, Insts);
3036 orderDependence(SSD, SU, Insts);
3037 orderDependence(SSD, SU: DefSU, Insts);
3038 return;
3039 }
3040 // Put the new instruction first if there is a use in the list. Otherwise,
3041 // put it at the end of the list.
3042 if (OrderBeforeUse)
3043 Insts.push_front(x: SU);
3044 else
3045 Insts.push_back(x: SU);
3046}
3047
3048/// Return true if the scheduled Phi has a loop carried operand.
3049bool SMSchedule::isLoopCarried(const SwingSchedulerDAG *SSD,
3050 MachineInstr &Phi) const {
3051 if (!Phi.isPHI())
3052 return false;
3053 assert(Phi.isPHI() && "Expecting a Phi.");
3054 SUnit *DefSU = SSD->getSUnit(MI: &Phi);
3055 unsigned DefCycle = cycleScheduled(SU: DefSU);
3056 int DefStage = stageScheduled(SU: DefSU);
3057
3058 unsigned InitVal = 0;
3059 unsigned LoopVal = 0;
3060 getPhiRegs(Phi, Loop: Phi.getParent(), InitVal, LoopVal);
3061 SUnit *UseSU = SSD->getSUnit(MI: MRI.getVRegDef(Reg: LoopVal));
3062 if (!UseSU)
3063 return true;
3064 if (UseSU->getInstr()->isPHI())
3065 return true;
3066 unsigned LoopCycle = cycleScheduled(SU: UseSU);
3067 int LoopStage = stageScheduled(SU: UseSU);
3068 return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
3069}
3070
3071/// Return true if the instruction is a definition that is loop carried
3072/// and defines the use on the next iteration.
3073/// v1 = phi(v2, v3)
3074/// (Def) v3 = op v1
3075/// (MO) = v1
3076/// If MO appears before Def, then v1 and v3 may get assigned to the same
3077/// register.
3078bool SMSchedule::isLoopCarriedDefOfUse(const SwingSchedulerDAG *SSD,
3079 MachineInstr *Def,
3080 MachineOperand &MO) const {
3081 if (!MO.isReg())
3082 return false;
3083 if (Def->isPHI())
3084 return false;
3085 MachineInstr *Phi = MRI.getVRegDef(Reg: MO.getReg());
3086 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
3087 return false;
3088 if (!isLoopCarried(SSD, Phi&: *Phi))
3089 return false;
3090 unsigned LoopReg = getLoopPhiReg(Phi: *Phi, LoopBB: Phi->getParent());
3091 for (MachineOperand &DMO : Def->all_defs()) {
3092 if (DMO.getReg() == LoopReg)
3093 return true;
3094 }
3095 return false;
3096}
3097
3098/// Determine transitive dependences of unpipelineable instructions
3099SmallSet<SUnit *, 8> SMSchedule::computeUnpipelineableNodes(
3100 SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) {
3101 SmallSet<SUnit *, 8> DoNotPipeline;
3102 SmallVector<SUnit *, 8> Worklist;
3103
3104 for (auto &SU : SSD->SUnits)
3105 if (SU.isInstr() && PLI->shouldIgnoreForPipelining(MI: SU.getInstr()))
3106 Worklist.push_back(Elt: &SU);
3107
3108 while (!Worklist.empty()) {
3109 auto SU = Worklist.pop_back_val();
3110 if (DoNotPipeline.count(Ptr: SU))
3111 continue;
3112 LLVM_DEBUG(dbgs() << "Do not pipeline SU(" << SU->NodeNum << ")\n");
3113 DoNotPipeline.insert(Ptr: SU);
3114 for (auto &Dep : SU->Preds)
3115 Worklist.push_back(Elt: Dep.getSUnit());
3116 if (SU->getInstr()->isPHI())
3117 for (auto &Dep : SU->Succs)
3118 if (Dep.getKind() == SDep::Anti)
3119 Worklist.push_back(Elt: Dep.getSUnit());
3120 }
3121 return DoNotPipeline;
3122}
3123
3124// Determine all instructions upon which any unpipelineable instruction depends
3125// and ensure that they are in stage 0. If unable to do so, return false.
3126bool SMSchedule::normalizeNonPipelinedInstructions(
3127 SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) {
3128 SmallSet<SUnit *, 8> DNP = computeUnpipelineableNodes(SSD, PLI);
3129
3130 int NewLastCycle = INT_MIN;
3131 for (SUnit &SU : SSD->SUnits) {
3132 if (!SU.isInstr())
3133 continue;
3134 if (!DNP.contains(Ptr: &SU) || stageScheduled(SU: &SU) == 0) {
3135 NewLastCycle = std::max(a: NewLastCycle, b: InstrToCycle[&SU]);
3136 continue;
3137 }
3138
3139 // Put the non-pipelined instruction as early as possible in the schedule
3140 int NewCycle = getFirstCycle();
3141 for (auto &Dep : SU.Preds)
3142 NewCycle = std::max(a: InstrToCycle[Dep.getSUnit()], b: NewCycle);
3143
3144 int OldCycle = InstrToCycle[&SU];
3145 if (OldCycle != NewCycle) {
3146 InstrToCycle[&SU] = NewCycle;
3147 auto &OldS = getInstructions(cycle: OldCycle);
3148 llvm::erase(C&: OldS, V: &SU);
3149 getInstructions(cycle: NewCycle).emplace_back(args: &SU);
3150 LLVM_DEBUG(dbgs() << "SU(" << SU.NodeNum
3151 << ") is not pipelined; moving from cycle " << OldCycle
3152 << " to " << NewCycle << " Instr:" << *SU.getInstr());
3153 }
3154 NewLastCycle = std::max(a: NewLastCycle, b: NewCycle);
3155 }
3156 LastCycle = NewLastCycle;
3157 return true;
3158}
3159
3160// Check if the generated schedule is valid. This function checks if
3161// an instruction that uses a physical register is scheduled in a
3162// different stage than the definition. The pipeliner does not handle
3163// physical register values that may cross a basic block boundary.
3164// Furthermore, if a physical def/use pair is assigned to the same
3165// cycle, orderDependence does not guarantee def/use ordering, so that
3166// case should be considered invalid. (The test checks for both
3167// earlier and same-cycle use to be more robust.)
3168bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
3169 for (SUnit &SU : SSD->SUnits) {
3170 if (!SU.hasPhysRegDefs)
3171 continue;
3172 int StageDef = stageScheduled(SU: &SU);
3173 int CycleDef = InstrToCycle[&SU];
3174 assert(StageDef != -1 && "Instruction should have been scheduled.");
3175 for (auto &SI : SU.Succs)
3176 if (SI.isAssignedRegDep() && !SI.getSUnit()->isBoundaryNode())
3177 if (Register::isPhysicalRegister(Reg: SI.getReg())) {
3178 if (stageScheduled(SU: SI.getSUnit()) != StageDef)
3179 return false;
3180 if (InstrToCycle[SI.getSUnit()] <= CycleDef)
3181 return false;
3182 }
3183 }
3184 return true;
3185}
3186
3187/// A property of the node order in swing-modulo-scheduling is
3188/// that for nodes outside circuits the following holds:
3189/// none of them is scheduled after both a successor and a
3190/// predecessor.
3191/// The method below checks whether the property is met.
3192/// If not, debug information is printed and statistics information updated.
3193/// Note that we do not use an assert statement.
3194/// The reason is that although an invalid node oder may prevent
3195/// the pipeliner from finding a pipelined schedule for arbitrary II,
3196/// it does not lead to the generation of incorrect code.
3197void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const {
3198
3199 // a sorted vector that maps each SUnit to its index in the NodeOrder
3200 typedef std::pair<SUnit *, unsigned> UnitIndex;
3201 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(x: nullptr, y: 0));
3202
3203 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i)
3204 Indices.push_back(x: std::make_pair(x: NodeOrder[i], y&: i));
3205
3206 auto CompareKey = [](UnitIndex i1, UnitIndex i2) {
3207 return std::get<0>(in&: i1) < std::get<0>(in&: i2);
3208 };
3209
3210 // sort, so that we can perform a binary search
3211 llvm::sort(C&: Indices, Comp: CompareKey);
3212
3213 bool Valid = true;
3214 (void)Valid;
3215 // for each SUnit in the NodeOrder, check whether
3216 // it appears after both a successor and a predecessor
3217 // of the SUnit. If this is the case, and the SUnit
3218 // is not part of circuit, then the NodeOrder is not
3219 // valid.
3220 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) {
3221 SUnit *SU = NodeOrder[i];
3222 unsigned Index = i;
3223
3224 bool PredBefore = false;
3225 bool SuccBefore = false;
3226
3227 SUnit *Succ;
3228 SUnit *Pred;
3229 (void)Succ;
3230 (void)Pred;
3231
3232 for (SDep &PredEdge : SU->Preds) {
3233 SUnit *PredSU = PredEdge.getSUnit();
3234 unsigned PredIndex = std::get<1>(
3235 in&: *llvm::lower_bound(Range&: Indices, Value: std::make_pair(x&: PredSU, y: 0), C: CompareKey));
3236 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) {
3237 PredBefore = true;
3238 Pred = PredSU;
3239 break;
3240 }
3241 }
3242
3243 for (SDep &SuccEdge : SU->Succs) {
3244 SUnit *SuccSU = SuccEdge.getSUnit();
3245 // Do not process a boundary node, it was not included in NodeOrder,
3246 // hence not in Indices either, call to std::lower_bound() below will
3247 // return Indices.end().
3248 if (SuccSU->isBoundaryNode())
3249 continue;
3250 unsigned SuccIndex = std::get<1>(
3251 in&: *llvm::lower_bound(Range&: Indices, Value: std::make_pair(x&: SuccSU, y: 0), C: CompareKey));
3252 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) {
3253 SuccBefore = true;
3254 Succ = SuccSU;
3255 break;
3256 }
3257 }
3258
3259 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) {
3260 // instructions in circuits are allowed to be scheduled
3261 // after both a successor and predecessor.
3262 bool InCircuit = llvm::any_of(
3263 Range: Circuits, P: [SU](const NodeSet &Circuit) { return Circuit.count(SU); });
3264 if (InCircuit)
3265 LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";);
3266 else {
3267 Valid = false;
3268 NumNodeOrderIssues++;
3269 LLVM_DEBUG(dbgs() << "Predecessor ";);
3270 }
3271 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum
3272 << " are scheduled before node " << SU->NodeNum
3273 << "\n";);
3274 }
3275 }
3276
3277 LLVM_DEBUG({
3278 if (!Valid)
3279 dbgs() << "Invalid node order found!\n";
3280 });
3281}
3282
3283/// Attempt to fix the degenerate cases when the instruction serialization
3284/// causes the register lifetimes to overlap. For example,
3285/// p' = store_pi(p, b)
3286/// = load p, offset
3287/// In this case p and p' overlap, which means that two registers are needed.
3288/// Instead, this function changes the load to use p' and updates the offset.
3289void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) {
3290 unsigned OverlapReg = 0;
3291 unsigned NewBaseReg = 0;
3292 for (SUnit *SU : Instrs) {
3293 MachineInstr *MI = SU->getInstr();
3294 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
3295 const MachineOperand &MO = MI->getOperand(i);
3296 // Look for an instruction that uses p. The instruction occurs in the
3297 // same cycle but occurs later in the serialized order.
3298 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) {
3299 // Check that the instruction appears in the InstrChanges structure,
3300 // which contains instructions that can have the offset updated.
3301 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
3302 InstrChanges.find(Val: SU);
3303 if (It != InstrChanges.end()) {
3304 unsigned BasePos, OffsetPos;
3305 // Update the base register and adjust the offset.
3306 if (TII->getBaseAndOffsetPosition(MI: *MI, BasePos, OffsetPos)) {
3307 MachineInstr *NewMI = MF.CloneMachineInstr(Orig: MI);
3308 NewMI->getOperand(i: BasePos).setReg(NewBaseReg);
3309 int64_t NewOffset =
3310 MI->getOperand(i: OffsetPos).getImm() - It->second.second;
3311 NewMI->getOperand(i: OffsetPos).setImm(NewOffset);
3312 SU->setInstr(NewMI);
3313 MISUnitMap[NewMI] = SU;
3314 NewMIs[MI] = NewMI;
3315 }
3316 }
3317 OverlapReg = 0;
3318 NewBaseReg = 0;
3319 break;
3320 }
3321 // Look for an instruction of the form p' = op(p), which uses and defines
3322 // two virtual registers that get allocated to the same physical register.
3323 unsigned TiedUseIdx = 0;
3324 if (MI->isRegTiedToUseOperand(DefOpIdx: i, UseOpIdx: &TiedUseIdx)) {
3325 // OverlapReg is p in the example above.
3326 OverlapReg = MI->getOperand(i: TiedUseIdx).getReg();
3327 // NewBaseReg is p' in the example above.
3328 NewBaseReg = MI->getOperand(i).getReg();
3329 break;
3330 }
3331 }
3332 }
3333}
3334
3335std::deque<SUnit *>
3336SMSchedule::reorderInstructions(const SwingSchedulerDAG *SSD,
3337 const std::deque<SUnit *> &Instrs) const {
3338 std::deque<SUnit *> NewOrderPhi;
3339 for (SUnit *SU : Instrs) {
3340 if (SU->getInstr()->isPHI())
3341 NewOrderPhi.push_back(x: SU);
3342 }
3343 std::deque<SUnit *> NewOrderI;
3344 for (SUnit *SU : Instrs) {
3345 if (!SU->getInstr()->isPHI())
3346 orderDependence(SSD, SU, Insts&: NewOrderI);
3347 }
3348 llvm::append_range(C&: NewOrderPhi, R&: NewOrderI);
3349 return NewOrderPhi;
3350}
3351
3352/// After the schedule has been formed, call this function to combine
3353/// the instructions from the different stages/cycles. That is, this
3354/// function creates a schedule that represents a single iteration.
3355void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
3356 // Move all instructions to the first stage from later stages.
3357 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
3358 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
3359 ++stage) {
3360 std::deque<SUnit *> &cycleInstrs =
3361 ScheduledInstrs[cycle + (stage * InitiationInterval)];
3362 for (SUnit *SU : llvm::reverse(C&: cycleInstrs))
3363 ScheduledInstrs[cycle].push_front(x: SU);
3364 }
3365 }
3366
3367 // Erase all the elements in the later stages. Only one iteration should
3368 // remain in the scheduled list, and it contains all the instructions.
3369 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
3370 ScheduledInstrs.erase(Val: cycle);
3371
3372 // Change the registers in instruction as specified in the InstrChanges
3373 // map. We need to use the new registers to create the correct order.
3374 for (const SUnit &SU : SSD->SUnits)
3375 SSD->applyInstrChange(MI: SU.getInstr(), Schedule&: *this);
3376
3377 // Reorder the instructions in each cycle to fix and improve the
3378 // generated code.
3379 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
3380 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
3381 cycleInstrs = reorderInstructions(SSD, Instrs: cycleInstrs);
3382 SSD->fixupRegisterOverlaps(Instrs&: cycleInstrs);
3383 }
3384
3385 LLVM_DEBUG(dump(););
3386}
3387
3388void NodeSet::print(raw_ostream &os) const {
3389 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
3390 << " depth " << MaxDepth << " col " << Colocate << "\n";
3391 for (const auto &I : Nodes)
3392 os << " SU(" << I->NodeNum << ") " << *(I->getInstr());
3393 os << "\n";
3394}
3395
3396#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3397/// Print the schedule information to the given output.
3398void SMSchedule::print(raw_ostream &os) const {
3399 // Iterate over each cycle.
3400 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
3401 // Iterate over each instruction in the cycle.
3402 const_sched_iterator cycleInstrs = ScheduledInstrs.find(Val: cycle);
3403 for (SUnit *CI : cycleInstrs->second) {
3404 os << "cycle " << cycle << " (" << stageScheduled(SU: CI) << ") ";
3405 os << "(" << CI->NodeNum << ") ";
3406 CI->getInstr()->print(OS&: os);
3407 os << "\n";
3408 }
3409 }
3410}
3411
3412/// Utility function used for debugging to print the schedule.
3413LLVM_DUMP_METHOD void SMSchedule::dump() const { print(os&: dbgs()); }
3414LLVM_DUMP_METHOD void NodeSet::dump() const { print(os&: dbgs()); }
3415
3416void ResourceManager::dumpMRT() const {
3417 LLVM_DEBUG({
3418 if (UseDFA)
3419 return;
3420 std::stringstream SS;
3421 SS << "MRT:\n";
3422 SS << std::setw(4) << "Slot";
3423 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I)
3424 SS << std::setw(3) << I;
3425 SS << std::setw(7) << "#Mops"
3426 << "\n";
3427 for (int Slot = 0; Slot < InitiationInterval; ++Slot) {
3428 SS << std::setw(4) << Slot;
3429 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I)
3430 SS << std::setw(3) << MRT[Slot][I];
3431 SS << std::setw(7) << NumScheduledMops[Slot] << "\n";
3432 }
3433 dbgs() << SS.str();
3434 });
3435}
3436#endif
3437
3438void ResourceManager::initProcResourceVectors(
3439 const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) {
3440 unsigned ProcResourceID = 0;
3441
3442 // We currently limit the resource kinds to 64 and below so that we can use
3443 // uint64_t for Masks
3444 assert(SM.getNumProcResourceKinds() < 64 &&
3445 "Too many kinds of resources, unsupported");
3446 // Create a unique bitmask for every processor resource unit.
3447 // Skip resource at index 0, since it always references 'InvalidUnit'.
3448 Masks.resize(N: SM.getNumProcResourceKinds());
3449 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3450 const MCProcResourceDesc &Desc = *SM.getProcResource(ProcResourceIdx: I);
3451 if (Desc.SubUnitsIdxBegin)
3452 continue;
3453 Masks[I] = 1ULL << ProcResourceID;
3454 ProcResourceID++;
3455 }
3456 // Create a unique bitmask for every processor resource group.
3457 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3458 const MCProcResourceDesc &Desc = *SM.getProcResource(ProcResourceIdx: I);
3459 if (!Desc.SubUnitsIdxBegin)
3460 continue;
3461 Masks[I] = 1ULL << ProcResourceID;
3462 for (unsigned U = 0; U < Desc.NumUnits; ++U)
3463 Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]];
3464 ProcResourceID++;
3465 }
3466 LLVM_DEBUG({
3467 if (SwpShowResMask) {
3468 dbgs() << "ProcResourceDesc:\n";
3469 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3470 const MCProcResourceDesc *ProcResource = SM.getProcResource(I);
3471 dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n",
3472 ProcResource->Name, I, Masks[I],
3473 ProcResource->NumUnits);
3474 }
3475 dbgs() << " -----------------\n";
3476 }
3477 });
3478}
3479
3480bool ResourceManager::canReserveResources(SUnit &SU, int Cycle) {
3481 LLVM_DEBUG({
3482 if (SwpDebugResource)
3483 dbgs() << "canReserveResources:\n";
3484 });
3485 if (UseDFA)
3486 return DFAResources[positiveModulo(Dividend: Cycle, Divisor: InitiationInterval)]
3487 ->canReserveResources(MID: &SU.getInstr()->getDesc());
3488
3489 const MCSchedClassDesc *SCDesc = DAG->getSchedClass(SU: &SU);
3490 if (!SCDesc->isValid()) {
3491 LLVM_DEBUG({
3492 dbgs() << "No valid Schedule Class Desc for schedClass!\n";
3493 dbgs() << "isPseudo:" << SU.getInstr()->isPseudo() << "\n";
3494 });
3495 return true;
3496 }
3497
3498 reserveResources(SCDesc, Cycle);
3499 bool Result = !isOverbooked();
3500 unreserveResources(SCDesc, Cycle);
3501
3502 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return " << Result << "\n\n";);
3503 return Result;
3504}
3505
3506void ResourceManager::reserveResources(SUnit &SU, int Cycle) {
3507 LLVM_DEBUG({
3508 if (SwpDebugResource)
3509 dbgs() << "reserveResources:\n";
3510 });
3511 if (UseDFA)
3512 return DFAResources[positiveModulo(Dividend: Cycle, Divisor: InitiationInterval)]
3513 ->reserveResources(MID: &SU.getInstr()->getDesc());
3514
3515 const MCSchedClassDesc *SCDesc = DAG->getSchedClass(SU: &SU);
3516 if (!SCDesc->isValid()) {
3517 LLVM_DEBUG({
3518 dbgs() << "No valid Schedule Class Desc for schedClass!\n";
3519 dbgs() << "isPseudo:" << SU.getInstr()->isPseudo() << "\n";
3520 });
3521 return;
3522 }
3523
3524 reserveResources(SCDesc, Cycle);
3525
3526 LLVM_DEBUG({
3527 if (SwpDebugResource) {
3528 dumpMRT();
3529 dbgs() << "reserveResources: done!\n\n";
3530 }
3531 });
3532}
3533
3534void ResourceManager::reserveResources(const MCSchedClassDesc *SCDesc,
3535 int Cycle) {
3536 assert(!UseDFA);
3537 for (const MCWriteProcResEntry &PRE : make_range(
3538 x: STI->getWriteProcResBegin(SC: SCDesc), y: STI->getWriteProcResEnd(SC: SCDesc)))
3539 for (int C = Cycle; C < Cycle + PRE.ReleaseAtCycle; ++C)
3540 ++MRT[positiveModulo(Dividend: C, Divisor: InitiationInterval)][PRE.ProcResourceIdx];
3541
3542 for (int C = Cycle; C < Cycle + SCDesc->NumMicroOps; ++C)
3543 ++NumScheduledMops[positiveModulo(Dividend: C, Divisor: InitiationInterval)];
3544}
3545
3546void ResourceManager::unreserveResources(const MCSchedClassDesc *SCDesc,
3547 int Cycle) {
3548 assert(!UseDFA);
3549 for (const MCWriteProcResEntry &PRE : make_range(
3550 x: STI->getWriteProcResBegin(SC: SCDesc), y: STI->getWriteProcResEnd(SC: SCDesc)))
3551 for (int C = Cycle; C < Cycle + PRE.ReleaseAtCycle; ++C)
3552 --MRT[positiveModulo(Dividend: C, Divisor: InitiationInterval)][PRE.ProcResourceIdx];
3553
3554 for (int C = Cycle; C < Cycle + SCDesc->NumMicroOps; ++C)
3555 --NumScheduledMops[positiveModulo(Dividend: C, Divisor: InitiationInterval)];
3556}
3557
3558bool ResourceManager::isOverbooked() const {
3559 assert(!UseDFA);
3560 for (int Slot = 0; Slot < InitiationInterval; ++Slot) {
3561 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3562 const MCProcResourceDesc *Desc = SM.getProcResource(ProcResourceIdx: I);
3563 if (MRT[Slot][I] > Desc->NumUnits)
3564 return true;
3565 }
3566 if (NumScheduledMops[Slot] > IssueWidth)
3567 return true;
3568 }
3569 return false;
3570}
3571
3572int ResourceManager::calculateResMIIDFA() const {
3573 assert(UseDFA);
3574
3575 // Sort the instructions by the number of available choices for scheduling,
3576 // least to most. Use the number of critical resources as the tie breaker.
3577 FuncUnitSorter FUS = FuncUnitSorter(*ST);
3578 for (SUnit &SU : DAG->SUnits)
3579 FUS.calcCriticalResources(MI&: *SU.getInstr());
3580 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
3581 FuncUnitOrder(FUS);
3582
3583 for (SUnit &SU : DAG->SUnits)
3584 FuncUnitOrder.push(x: SU.getInstr());
3585
3586 SmallVector<std::unique_ptr<DFAPacketizer>, 8> Resources;
3587 Resources.push_back(
3588 Elt: std::unique_ptr<DFAPacketizer>(TII->CreateTargetScheduleState(*ST)));
3589
3590 while (!FuncUnitOrder.empty()) {
3591 MachineInstr *MI = FuncUnitOrder.top();
3592 FuncUnitOrder.pop();
3593 if (TII->isZeroCost(Opcode: MI->getOpcode()))
3594 continue;
3595
3596 // Attempt to reserve the instruction in an existing DFA. At least one
3597 // DFA is needed for each cycle.
3598 unsigned NumCycles = DAG->getSUnit(MI)->Latency;
3599 unsigned ReservedCycles = 0;
3600 auto *RI = Resources.begin();
3601 auto *RE = Resources.end();
3602 LLVM_DEBUG({
3603 dbgs() << "Trying to reserve resource for " << NumCycles
3604 << " cycles for \n";
3605 MI->dump();
3606 });
3607 for (unsigned C = 0; C < NumCycles; ++C)
3608 while (RI != RE) {
3609 if ((*RI)->canReserveResources(MI&: *MI)) {
3610 (*RI)->reserveResources(MI&: *MI);
3611 ++ReservedCycles;
3612 break;
3613 }
3614 RI++;
3615 }
3616 LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles
3617 << ", NumCycles:" << NumCycles << "\n");
3618 // Add new DFAs, if needed, to reserve resources.
3619 for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
3620 LLVM_DEBUG(if (SwpDebugResource) dbgs()
3621 << "NewResource created to reserve resources"
3622 << "\n");
3623 auto *NewResource = TII->CreateTargetScheduleState(*ST);
3624 assert(NewResource->canReserveResources(*MI) && "Reserve error.");
3625 NewResource->reserveResources(MI&: *MI);
3626 Resources.push_back(Elt: std::unique_ptr<DFAPacketizer>(NewResource));
3627 }
3628 }
3629
3630 int Resmii = Resources.size();
3631 LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n");
3632 return Resmii;
3633}
3634
3635int ResourceManager::calculateResMII() const {
3636 if (UseDFA)
3637 return calculateResMIIDFA();
3638
3639 // Count each resource consumption and divide it by the number of units.
3640 // ResMII is the max value among them.
3641
3642 int NumMops = 0;
3643 SmallVector<uint64_t> ResourceCount(SM.getNumProcResourceKinds());
3644 for (SUnit &SU : DAG->SUnits) {
3645 if (TII->isZeroCost(Opcode: SU.getInstr()->getOpcode()))
3646 continue;
3647
3648 const MCSchedClassDesc *SCDesc = DAG->getSchedClass(SU: &SU);
3649 if (!SCDesc->isValid())
3650 continue;
3651
3652 LLVM_DEBUG({
3653 if (SwpDebugResource) {
3654 DAG->dumpNode(SU);
3655 dbgs() << " #Mops: " << SCDesc->NumMicroOps << "\n"
3656 << " WriteProcRes: ";
3657 }
3658 });
3659 NumMops += SCDesc->NumMicroOps;
3660 for (const MCWriteProcResEntry &PRE :
3661 make_range(x: STI->getWriteProcResBegin(SC: SCDesc),
3662 y: STI->getWriteProcResEnd(SC: SCDesc))) {
3663 LLVM_DEBUG({
3664 if (SwpDebugResource) {
3665 const MCProcResourceDesc *Desc =
3666 SM.getProcResource(PRE.ProcResourceIdx);
3667 dbgs() << Desc->Name << ": " << PRE.ReleaseAtCycle << ", ";
3668 }
3669 });
3670 ResourceCount[PRE.ProcResourceIdx] += PRE.ReleaseAtCycle;
3671 }
3672 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "\n");
3673 }
3674
3675 int Result = (NumMops + IssueWidth - 1) / IssueWidth;
3676 LLVM_DEBUG({
3677 if (SwpDebugResource)
3678 dbgs() << "#Mops: " << NumMops << ", "
3679 << "IssueWidth: " << IssueWidth << ", "
3680 << "Cycles: " << Result << "\n";
3681 });
3682
3683 LLVM_DEBUG({
3684 if (SwpDebugResource) {
3685 std::stringstream SS;
3686 SS << std::setw(2) << "ID" << std::setw(16) << "Name" << std::setw(10)
3687 << "Units" << std::setw(10) << "Consumed" << std::setw(10) << "Cycles"
3688 << "\n";
3689 dbgs() << SS.str();
3690 }
3691 });
3692 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3693 const MCProcResourceDesc *Desc = SM.getProcResource(ProcResourceIdx: I);
3694 int Cycles = (ResourceCount[I] + Desc->NumUnits - 1) / Desc->NumUnits;
3695 LLVM_DEBUG({
3696 if (SwpDebugResource) {
3697 std::stringstream SS;
3698 SS << std::setw(2) << I << std::setw(16) << Desc->Name << std::setw(10)
3699 << Desc->NumUnits << std::setw(10) << ResourceCount[I]
3700 << std::setw(10) << Cycles << "\n";
3701 dbgs() << SS.str();
3702 }
3703 });
3704 if (Cycles > Result)
3705 Result = Cycles;
3706 }
3707 return Result;
3708}
3709
3710void ResourceManager::init(int II) {
3711 InitiationInterval = II;
3712 DFAResources.clear();
3713 DFAResources.resize(N: II);
3714 for (auto &I : DFAResources)
3715 I.reset(p: ST->getInstrInfo()->CreateTargetScheduleState(*ST));
3716 MRT.clear();
3717 MRT.resize(N: II, NV: SmallVector<uint64_t>(SM.getNumProcResourceKinds()));
3718 NumScheduledMops.clear();
3719 NumScheduledMops.resize(N: II);
3720}
3721

source code of llvm/lib/CodeGen/MachinePipeliner.cpp