1//===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the SplitAnalysis class as well as mutator functions for
10// live range splitting.
11//
12//===----------------------------------------------------------------------===//
13
14#include "SplitKit.h"
15#include "llvm/ADT/STLExtras.h"
16#include "llvm/ADT/Statistic.h"
17#include "llvm/Analysis/AliasAnalysis.h"
18#include "llvm/CodeGen/LiveRangeEdit.h"
19#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
20#include "llvm/CodeGen/MachineDominators.h"
21#include "llvm/CodeGen/MachineInstr.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineLoopInfo.h"
24#include "llvm/CodeGen/MachineOperand.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/TargetInstrInfo.h"
27#include "llvm/CodeGen/TargetOpcodes.h"
28#include "llvm/CodeGen/TargetRegisterInfo.h"
29#include "llvm/CodeGen/TargetSubtargetInfo.h"
30#include "llvm/CodeGen/VirtRegMap.h"
31#include "llvm/Config/llvm-config.h"
32#include "llvm/IR/DebugLoc.h"
33#include "llvm/Support/Allocator.h"
34#include "llvm/Support/BlockFrequency.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#include <algorithm>
39#include <cassert>
40#include <iterator>
41#include <limits>
42#include <tuple>
43
44using namespace llvm;
45
46#define DEBUG_TYPE "regalloc"
47
48static cl::opt<bool>
49 EnableLoopIVHeuristic("enable-split-loopiv-heuristic",
50 cl::desc("Enable loop iv regalloc heuristic"),
51 cl::init(Val: true));
52
53STATISTIC(NumFinished, "Number of splits finished");
54STATISTIC(NumSimple, "Number of splits that were simple");
55STATISTIC(NumCopies, "Number of copies inserted for splitting");
56STATISTIC(NumRemats, "Number of rematerialized defs for splitting");
57
58//===----------------------------------------------------------------------===//
59// Last Insert Point Analysis
60//===----------------------------------------------------------------------===//
61
62InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis,
63 unsigned BBNum)
64 : LIS(lis), LastInsertPoint(BBNum) {}
65
66SlotIndex
67InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI,
68 const MachineBasicBlock &MBB) {
69 unsigned Num = MBB.getNumber();
70 std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num];
71 SlotIndex MBBEnd = LIS.getMBBEndIdx(mbb: &MBB);
72
73 SmallVector<const MachineBasicBlock *, 1> ExceptionalSuccessors;
74 bool EHPadSuccessor = false;
75 for (const MachineBasicBlock *SMBB : MBB.successors()) {
76 if (SMBB->isEHPad()) {
77 ExceptionalSuccessors.push_back(Elt: SMBB);
78 EHPadSuccessor = true;
79 } else if (SMBB->isInlineAsmBrIndirectTarget())
80 ExceptionalSuccessors.push_back(Elt: SMBB);
81 }
82
83 // Compute insert points on the first call. The pair is independent of the
84 // current live interval.
85 if (!LIP.first.isValid()) {
86 MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator();
87 if (FirstTerm == MBB.end())
88 LIP.first = MBBEnd;
89 else
90 LIP.first = LIS.getInstructionIndex(Instr: *FirstTerm);
91
92 // If there is a landing pad or inlineasm_br successor, also find the
93 // instruction. If there is no such instruction, we don't need to do
94 // anything special. We assume there cannot be multiple instructions that
95 // are Calls with EHPad successors or INLINEASM_BR in a block. Further, we
96 // assume that if there are any, they will be after any other call
97 // instructions in the block.
98 if (ExceptionalSuccessors.empty())
99 return LIP.first;
100 for (const MachineInstr &MI : llvm::reverse(C: MBB)) {
101 if ((EHPadSuccessor && MI.isCall()) ||
102 MI.getOpcode() == TargetOpcode::INLINEASM_BR) {
103 LIP.second = LIS.getInstructionIndex(Instr: MI);
104 break;
105 }
106 }
107 }
108
109 // If CurLI is live into a landing pad successor, move the last insert point
110 // back to the call that may throw.
111 if (!LIP.second)
112 return LIP.first;
113
114 if (none_of(Range&: ExceptionalSuccessors, P: [&](const MachineBasicBlock *EHPad) {
115 return LIS.isLiveInToMBB(LR: CurLI, mbb: EHPad);
116 }))
117 return LIP.first;
118
119 // Find the value leaving MBB.
120 const VNInfo *VNI = CurLI.getVNInfoBefore(Idx: MBBEnd);
121 if (!VNI)
122 return LIP.first;
123
124 // The def of statepoint instruction is a gc relocation and it should be alive
125 // in landing pad. So we cannot split interval after statepoint instruction.
126 if (SlotIndex::isSameInstr(A: VNI->def, B: LIP.second))
127 if (auto *I = LIS.getInstructionFromIndex(index: LIP.second))
128 if (I->getOpcode() == TargetOpcode::STATEPOINT)
129 return LIP.second;
130
131 // If the value leaving MBB was defined after the call in MBB, it can't
132 // really be live-in to the landing pad. This can happen if the landing pad
133 // has a PHI, and this register is undef on the exceptional edge.
134 if (!SlotIndex::isEarlierInstr(A: VNI->def, B: LIP.second) && VNI->def < MBBEnd)
135 return LIP.first;
136
137 // Value is properly live-in to the landing pad.
138 // Only allow inserts before the call.
139 return LIP.second;
140}
141
142MachineBasicBlock::iterator
143InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI,
144 MachineBasicBlock &MBB) {
145 SlotIndex LIP = getLastInsertPoint(CurLI, MBB);
146 if (LIP == LIS.getMBBEndIdx(mbb: &MBB))
147 return MBB.end();
148 return LIS.getInstructionFromIndex(index: LIP);
149}
150
151//===----------------------------------------------------------------------===//
152// Split Analysis
153//===----------------------------------------------------------------------===//
154
155SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis,
156 const MachineLoopInfo &mli)
157 : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli),
158 TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {}
159
160void SplitAnalysis::clear() {
161 UseSlots.clear();
162 UseBlocks.clear();
163 ThroughBlocks.clear();
164 CurLI = nullptr;
165}
166
167/// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
168void SplitAnalysis::analyzeUses() {
169 assert(UseSlots.empty() && "Call clear first");
170
171 // First get all the defs from the interval values. This provides the correct
172 // slots for early clobbers.
173 for (const VNInfo *VNI : CurLI->valnos)
174 if (!VNI->isPHIDef() && !VNI->isUnused())
175 UseSlots.push_back(Elt: VNI->def);
176
177 // Get use slots form the use-def chain.
178 const MachineRegisterInfo &MRI = MF.getRegInfo();
179 for (MachineOperand &MO : MRI.use_nodbg_operands(Reg: CurLI->reg()))
180 if (!MO.isUndef())
181 UseSlots.push_back(Elt: LIS.getInstructionIndex(Instr: *MO.getParent()).getRegSlot());
182
183 array_pod_sort(Start: UseSlots.begin(), End: UseSlots.end());
184
185 // Remove duplicates, keeping the smaller slot for each instruction.
186 // That is what we want for early clobbers.
187 UseSlots.erase(CS: std::unique(first: UseSlots.begin(), last: UseSlots.end(),
188 binary_pred: SlotIndex::isSameInstr),
189 CE: UseSlots.end());
190
191 // Compute per-live block info.
192 calcLiveBlockInfo();
193
194 LLVM_DEBUG(dbgs() << "Analyze counted " << UseSlots.size() << " instrs in "
195 << UseBlocks.size() << " blocks, through "
196 << NumThroughBlocks << " blocks.\n");
197}
198
199/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
200/// where CurLI is live.
201void SplitAnalysis::calcLiveBlockInfo() {
202 ThroughBlocks.resize(N: MF.getNumBlockIDs());
203 NumThroughBlocks = NumGapBlocks = 0;
204 if (CurLI->empty())
205 return;
206
207 LiveInterval::const_iterator LVI = CurLI->begin();
208 LiveInterval::const_iterator LVE = CurLI->end();
209
210 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
211 UseI = UseSlots.begin();
212 UseE = UseSlots.end();
213
214 // Loop over basic blocks where CurLI is live.
215 MachineFunction::iterator MFI =
216 LIS.getMBBFromIndex(index: LVI->start)->getIterator();
217 while (true) {
218 BlockInfo BI;
219 BI.MBB = &*MFI;
220 SlotIndex Start, Stop;
221 std::tie(args&: Start, args&: Stop) = LIS.getSlotIndexes()->getMBBRange(MBB: BI.MBB);
222
223 // If the block contains no uses, the range must be live through. At one
224 // point, RegisterCoalescer could create dangling ranges that ended
225 // mid-block.
226 if (UseI == UseE || *UseI >= Stop) {
227 ++NumThroughBlocks;
228 ThroughBlocks.set(BI.MBB->getNumber());
229 // The range shouldn't end mid-block if there are no uses. This shouldn't
230 // happen.
231 assert(LVI->end >= Stop && "range ends mid block with no uses");
232 } else {
233 // This block has uses. Find the first and last uses in the block.
234 BI.FirstInstr = *UseI;
235 assert(BI.FirstInstr >= Start);
236 do ++UseI;
237 while (UseI != UseE && *UseI < Stop);
238 BI.LastInstr = UseI[-1];
239 assert(BI.LastInstr < Stop);
240
241 // LVI is the first live segment overlapping MBB.
242 BI.LiveIn = LVI->start <= Start;
243
244 // When not live in, the first use should be a def.
245 if (!BI.LiveIn) {
246 assert(LVI->start == LVI->valno->def && "Dangling Segment start");
247 assert(LVI->start == BI.FirstInstr && "First instr should be a def");
248 BI.FirstDef = BI.FirstInstr;
249 }
250
251 // Look for gaps in the live range.
252 BI.LiveOut = true;
253 while (LVI->end < Stop) {
254 SlotIndex LastStop = LVI->end;
255 if (++LVI == LVE || LVI->start >= Stop) {
256 BI.LiveOut = false;
257 BI.LastInstr = LastStop;
258 break;
259 }
260
261 if (LastStop < LVI->start) {
262 // There is a gap in the live range. Create duplicate entries for the
263 // live-in snippet and the live-out snippet.
264 ++NumGapBlocks;
265
266 // Push the Live-in part.
267 BI.LiveOut = false;
268 UseBlocks.push_back(Elt: BI);
269 UseBlocks.back().LastInstr = LastStop;
270
271 // Set up BI for the live-out part.
272 BI.LiveIn = false;
273 BI.LiveOut = true;
274 BI.FirstInstr = BI.FirstDef = LVI->start;
275 }
276
277 // A Segment that starts in the middle of the block must be a def.
278 assert(LVI->start == LVI->valno->def && "Dangling Segment start");
279 if (!BI.FirstDef)
280 BI.FirstDef = LVI->start;
281 }
282
283 UseBlocks.push_back(Elt: BI);
284
285 // LVI is now at LVE or LVI->end >= Stop.
286 if (LVI == LVE)
287 break;
288 }
289
290 // Live segment ends exactly at Stop. Move to the next segment.
291 if (LVI->end == Stop && ++LVI == LVE)
292 break;
293
294 // Pick the next basic block.
295 if (LVI->start < Stop)
296 ++MFI;
297 else
298 MFI = LIS.getMBBFromIndex(index: LVI->start)->getIterator();
299 }
300
301 LooksLikeLoopIV = EnableLoopIVHeuristic && UseBlocks.size() == 2 &&
302 any_of(Range&: UseBlocks, P: [this](BlockInfo &BI) {
303 MachineLoop *L = Loops.getLoopFor(BB: BI.MBB);
304 return BI.LiveIn && BI.LiveOut && BI.FirstDef && L &&
305 L->isLoopLatch(BB: BI.MBB);
306 });
307
308 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
309}
310
311unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
312 if (cli->empty())
313 return 0;
314 LiveInterval *li = const_cast<LiveInterval*>(cli);
315 LiveInterval::iterator LVI = li->begin();
316 LiveInterval::iterator LVE = li->end();
317 unsigned Count = 0;
318
319 // Loop over basic blocks where li is live.
320 MachineFunction::const_iterator MFI =
321 LIS.getMBBFromIndex(index: LVI->start)->getIterator();
322 SlotIndex Stop = LIS.getMBBEndIdx(mbb: &*MFI);
323 while (true) {
324 ++Count;
325 LVI = li->advanceTo(I: LVI, Pos: Stop);
326 if (LVI == LVE)
327 return Count;
328 do {
329 ++MFI;
330 Stop = LIS.getMBBEndIdx(mbb: &*MFI);
331 } while (Stop <= LVI->start);
332 }
333}
334
335bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
336 Register OrigReg = VRM.getOriginal(VirtReg: CurLI->reg());
337 const LiveInterval &Orig = LIS.getInterval(Reg: OrigReg);
338 assert(!Orig.empty() && "Splitting empty interval?");
339 LiveInterval::const_iterator I = Orig.find(Pos: Idx);
340
341 // Range containing Idx should begin at Idx.
342 if (I != Orig.end() && I->start <= Idx)
343 return I->start == Idx;
344
345 // Range does not contain Idx, previous must end at Idx.
346 return I != Orig.begin() && (--I)->end == Idx;
347}
348
349void SplitAnalysis::analyze(const LiveInterval *li) {
350 clear();
351 CurLI = li;
352 analyzeUses();
353}
354
355//===----------------------------------------------------------------------===//
356// Split Editor
357//===----------------------------------------------------------------------===//
358
359/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
360SplitEditor::SplitEditor(SplitAnalysis &SA, LiveIntervals &LIS, VirtRegMap &VRM,
361 MachineDominatorTree &MDT,
362 MachineBlockFrequencyInfo &MBFI, VirtRegAuxInfo &VRAI)
363 : SA(SA), LIS(LIS), VRM(VRM), MRI(VRM.getMachineFunction().getRegInfo()),
364 MDT(MDT), TII(*VRM.getMachineFunction().getSubtarget().getInstrInfo()),
365 TRI(*VRM.getMachineFunction().getSubtarget().getRegisterInfo()),
366 MBFI(MBFI), VRAI(VRAI), RegAssign(Allocator) {}
367
368void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
369 Edit = &LRE;
370 SpillMode = SM;
371 OpenIdx = 0;
372 RegAssign.clear();
373 Values.clear();
374
375 // Reset the LiveIntervalCalc instances needed for this spill mode.
376 LICalc[0].reset(mf: &VRM.getMachineFunction(), SI: LIS.getSlotIndexes(), MDT: &MDT,
377 VNIA: &LIS.getVNInfoAllocator());
378 if (SpillMode)
379 LICalc[1].reset(mf: &VRM.getMachineFunction(), SI: LIS.getSlotIndexes(), MDT: &MDT,
380 VNIA: &LIS.getVNInfoAllocator());
381
382 Edit->anyRematerializable();
383}
384
385#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
386LLVM_DUMP_METHOD void SplitEditor::dump() const {
387 if (RegAssign.empty()) {
388 dbgs() << " empty\n";
389 return;
390 }
391
392 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
393 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
394 dbgs() << '\n';
395}
396#endif
397
398/// Find a subrange corresponding to the exact lane mask @p LM in the live
399/// interval @p LI. The interval @p LI is assumed to contain such a subrange.
400/// This function is used to find corresponding subranges between the
401/// original interval and the new intervals.
402template <typename T> auto &getSubrangeImpl(LaneBitmask LM, T &LI) {
403 for (auto &S : LI.subranges())
404 if (S.LaneMask == LM)
405 return S;
406 llvm_unreachable("SubRange for this mask not found");
407}
408
409LiveInterval::SubRange &getSubRangeForMaskExact(LaneBitmask LM,
410 LiveInterval &LI) {
411 return getSubrangeImpl(LM, LI);
412}
413
414const LiveInterval::SubRange &getSubRangeForMaskExact(LaneBitmask LM,
415 const LiveInterval &LI) {
416 return getSubrangeImpl(LM, LI);
417}
418
419/// Find a subrange corresponding to the lane mask @p LM, or a superset of it,
420/// in the live interval @p LI. The interval @p LI is assumed to contain such
421/// a subrange. This function is used to find corresponding subranges between
422/// the original interval and the new intervals.
423const LiveInterval::SubRange &getSubRangeForMask(LaneBitmask LM,
424 const LiveInterval &LI) {
425 for (const LiveInterval::SubRange &S : LI.subranges())
426 if ((S.LaneMask & LM) == LM)
427 return S;
428 llvm_unreachable("SubRange for this mask not found");
429}
430
431void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) {
432 if (!LI.hasSubRanges()) {
433 LI.createDeadDef(VNI);
434 return;
435 }
436
437 SlotIndex Def = VNI->def;
438 if (Original) {
439 // If we are transferring a def from the original interval, make sure
440 // to only update the subranges for which the original subranges had
441 // a def at this location.
442 for (LiveInterval::SubRange &S : LI.subranges()) {
443 auto &PS = getSubRangeForMask(LM: S.LaneMask, LI: Edit->getParent());
444 VNInfo *PV = PS.getVNInfoAt(Idx: Def);
445 if (PV != nullptr && PV->def == Def)
446 S.createDeadDef(Def, VNIAlloc&: LIS.getVNInfoAllocator());
447 }
448 } else {
449 // This is a new def: either from rematerialization, or from an inserted
450 // copy. Since rematerialization can regenerate a definition of a sub-
451 // register, we need to check which subranges need to be updated.
452 const MachineInstr *DefMI = LIS.getInstructionFromIndex(index: Def);
453 assert(DefMI != nullptr);
454 LaneBitmask LM;
455 for (const MachineOperand &DefOp : DefMI->defs()) {
456 Register R = DefOp.getReg();
457 if (R != LI.reg())
458 continue;
459 if (unsigned SR = DefOp.getSubReg())
460 LM |= TRI.getSubRegIndexLaneMask(SubIdx: SR);
461 else {
462 LM = MRI.getMaxLaneMaskForVReg(Reg: R);
463 break;
464 }
465 }
466 for (LiveInterval::SubRange &S : LI.subranges())
467 if ((S.LaneMask & LM).any())
468 S.createDeadDef(Def, VNIAlloc&: LIS.getVNInfoAllocator());
469 }
470}
471
472VNInfo *SplitEditor::defValue(unsigned RegIdx,
473 const VNInfo *ParentVNI,
474 SlotIndex Idx,
475 bool Original) {
476 assert(ParentVNI && "Mapping NULL value");
477 assert(Idx.isValid() && "Invalid SlotIndex");
478 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
479 LiveInterval *LI = &LIS.getInterval(Reg: Edit->get(idx: RegIdx));
480
481 // Create a new value.
482 VNInfo *VNI = LI->getNextValue(Def: Idx, VNInfoAllocator&: LIS.getVNInfoAllocator());
483
484 bool Force = LI->hasSubRanges();
485 ValueForcePair FP(Force ? nullptr : VNI, Force);
486 // Use insert for lookup, so we can add missing values with a second lookup.
487 std::pair<ValueMap::iterator, bool> InsP =
488 Values.insert(KV: std::make_pair(x: std::make_pair(x&: RegIdx, y: ParentVNI->id), y&: FP));
489
490 // This was the first time (RegIdx, ParentVNI) was mapped, and it is not
491 // forced. Keep it as a simple def without any liveness.
492 if (!Force && InsP.second)
493 return VNI;
494
495 // If the previous value was a simple mapping, add liveness for it now.
496 if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
497 addDeadDef(LI&: *LI, VNI: OldVNI, Original);
498
499 // No longer a simple mapping. Switch to a complex mapping. If the
500 // interval has subranges, make it a forced mapping.
501 InsP.first->second = ValueForcePair(nullptr, Force);
502 }
503
504 // This is a complex mapping, add liveness for VNI
505 addDeadDef(LI&: *LI, VNI, Original);
506 return VNI;
507}
508
509void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo &ParentVNI) {
510 ValueForcePair &VFP = Values[std::make_pair(x&: RegIdx, y: ParentVNI.id)];
511 VNInfo *VNI = VFP.getPointer();
512
513 // ParentVNI was either unmapped or already complex mapped. Either way, just
514 // set the force bit.
515 if (!VNI) {
516 VFP.setInt(true);
517 return;
518 }
519
520 // This was previously a single mapping. Make sure the old def is represented
521 // by a trivial live range.
522 addDeadDef(LI&: LIS.getInterval(Reg: Edit->get(idx: RegIdx)), VNI, Original: false);
523
524 // Mark as complex mapped, forced.
525 VFP = ValueForcePair(nullptr, true);
526}
527
528SlotIndex SplitEditor::buildSingleSubRegCopy(
529 Register FromReg, Register ToReg, MachineBasicBlock &MBB,
530 MachineBasicBlock::iterator InsertBefore, unsigned SubIdx,
531 LiveInterval &DestLI, bool Late, SlotIndex Def, const MCInstrDesc &Desc) {
532 bool FirstCopy = !Def.isValid();
533 MachineInstr *CopyMI = BuildMI(BB&: MBB, I: InsertBefore, MIMD: DebugLoc(), MCID: Desc)
534 .addReg(RegNo: ToReg, flags: RegState::Define | getUndefRegState(B: FirstCopy)
535 | getInternalReadRegState(B: !FirstCopy), SubReg: SubIdx)
536 .addReg(RegNo: FromReg, flags: 0, SubReg: SubIdx);
537
538 SlotIndexes &Indexes = *LIS.getSlotIndexes();
539 if (FirstCopy) {
540 Def = Indexes.insertMachineInstrInMaps(MI&: *CopyMI, Late).getRegSlot();
541 } else {
542 CopyMI->bundleWithPred();
543 }
544 return Def;
545}
546
547SlotIndex SplitEditor::buildCopy(Register FromReg, Register ToReg,
548 LaneBitmask LaneMask, MachineBasicBlock &MBB,
549 MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) {
550 const MCInstrDesc &Desc =
551 TII.get(Opcode: TII.getLiveRangeSplitOpcode(Reg: FromReg, MF: *MBB.getParent()));
552 SlotIndexes &Indexes = *LIS.getSlotIndexes();
553 if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(Reg: FromReg)) {
554 // The full vreg is copied.
555 MachineInstr *CopyMI =
556 BuildMI(BB&: MBB, I: InsertBefore, MIMD: DebugLoc(), MCID: Desc, DestReg: ToReg).addReg(RegNo: FromReg);
557 return Indexes.insertMachineInstrInMaps(MI&: *CopyMI, Late).getRegSlot();
558 }
559
560 // Only a subset of lanes needs to be copied. The following is a simple
561 // heuristic to construct a sequence of COPYs. We could add a target
562 // specific callback if this turns out to be suboptimal.
563 LiveInterval &DestLI = LIS.getInterval(Reg: Edit->get(idx: RegIdx));
564
565 // First pass: Try to find a perfectly matching subregister index. If none
566 // exists find the one covering the most lanemask bits.
567 const TargetRegisterClass *RC = MRI.getRegClass(Reg: FromReg);
568 assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class");
569
570 SmallVector<unsigned, 8> SubIndexes;
571
572 // Abort if we cannot possibly implement the COPY with the given indexes.
573 if (!TRI.getCoveringSubRegIndexes(MRI, RC, LaneMask, Indexes&: SubIndexes))
574 report_fatal_error(reason: "Impossible to implement partial COPY");
575
576 SlotIndex Def;
577 for (unsigned BestIdx : SubIndexes) {
578 Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, SubIdx: BestIdx,
579 DestLI, Late, Def, Desc);
580 }
581
582 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
583 DestLI.refineSubRanges(
584 Allocator, LaneMask,
585 Apply: [Def, &Allocator](LiveInterval::SubRange &SR) {
586 SR.createDeadDef(Def, VNIAlloc&: Allocator);
587 },
588 Indexes, TRI);
589
590 return Def;
591}
592
593VNInfo *SplitEditor::defFromParent(unsigned RegIdx, const VNInfo *ParentVNI,
594 SlotIndex UseIdx, MachineBasicBlock &MBB,
595 MachineBasicBlock::iterator I) {
596 SlotIndex Def;
597 LiveInterval *LI = &LIS.getInterval(Reg: Edit->get(idx: RegIdx));
598
599 // We may be trying to avoid interference that ends at a deleted instruction,
600 // so always begin RegIdx 0 early and all others late.
601 bool Late = RegIdx != 0;
602
603 // Attempt cheap-as-a-copy rematerialization.
604 Register Original = VRM.getOriginal(VirtReg: Edit->get(idx: RegIdx));
605 LiveInterval &OrigLI = LIS.getInterval(Reg: Original);
606 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx: UseIdx);
607
608 Register Reg = LI->reg();
609 bool DidRemat = false;
610 if (OrigVNI) {
611 LiveRangeEdit::Remat RM(ParentVNI);
612 RM.OrigMI = LIS.getInstructionFromIndex(index: OrigVNI->def);
613 if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, cheapAsAMove: true)) {
614 Def = Edit->rematerializeAt(MBB, MI: I, DestReg: Reg, RM, TRI, Late);
615 ++NumRemats;
616 DidRemat = true;
617 }
618 }
619 if (!DidRemat) {
620 LaneBitmask LaneMask;
621 if (OrigLI.hasSubRanges()) {
622 LaneMask = LaneBitmask::getNone();
623 for (LiveInterval::SubRange &S : OrigLI.subranges()) {
624 if (S.liveAt(index: UseIdx))
625 LaneMask |= S.LaneMask;
626 }
627 } else {
628 LaneMask = LaneBitmask::getAll();
629 }
630
631 if (LaneMask.none()) {
632 const MCInstrDesc &Desc = TII.get(Opcode: TargetOpcode::IMPLICIT_DEF);
633 MachineInstr *ImplicitDef = BuildMI(BB&: MBB, I, MIMD: DebugLoc(), MCID: Desc, DestReg: Reg);
634 SlotIndexes &Indexes = *LIS.getSlotIndexes();
635 Def = Indexes.insertMachineInstrInMaps(MI&: *ImplicitDef, Late).getRegSlot();
636 } else {
637 ++NumCopies;
638 Def = buildCopy(FromReg: Edit->getReg(), ToReg: Reg, LaneMask, MBB, InsertBefore: I, Late, RegIdx);
639 }
640 }
641
642 // Define the value in Reg.
643 return defValue(RegIdx, ParentVNI, Idx: Def, Original: false);
644}
645
646/// Create a new virtual register and live interval.
647unsigned SplitEditor::openIntv() {
648 // Create the complement as index 0.
649 if (Edit->empty())
650 Edit->createEmptyInterval();
651
652 // Create the open interval.
653 OpenIdx = Edit->size();
654 Edit->createEmptyInterval();
655 return OpenIdx;
656}
657
658void SplitEditor::selectIntv(unsigned Idx) {
659 assert(Idx != 0 && "Cannot select the complement interval");
660 assert(Idx < Edit->size() && "Can only select previously opened interval");
661 LLVM_DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n');
662 OpenIdx = Idx;
663}
664
665SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
666 assert(OpenIdx && "openIntv not called before enterIntvBefore");
667 LLVM_DEBUG(dbgs() << " enterIntvBefore " << Idx);
668 Idx = Idx.getBaseIndex();
669 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
670 if (!ParentVNI) {
671 LLVM_DEBUG(dbgs() << ": not live\n");
672 return Idx;
673 }
674 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
675 MachineInstr *MI = LIS.getInstructionFromIndex(index: Idx);
676 assert(MI && "enterIntvBefore called with invalid index");
677
678 VNInfo *VNI = defFromParent(RegIdx: OpenIdx, ParentVNI, UseIdx: Idx, MBB&: *MI->getParent(), I: MI);
679 return VNI->def;
680}
681
682SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
683 assert(OpenIdx && "openIntv not called before enterIntvAfter");
684 LLVM_DEBUG(dbgs() << " enterIntvAfter " << Idx);
685 Idx = Idx.getBoundaryIndex();
686 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
687 if (!ParentVNI) {
688 LLVM_DEBUG(dbgs() << ": not live\n");
689 return Idx;
690 }
691 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
692 MachineInstr *MI = LIS.getInstructionFromIndex(index: Idx);
693 assert(MI && "enterIntvAfter called with invalid index");
694
695 VNInfo *VNI = defFromParent(RegIdx: OpenIdx, ParentVNI, UseIdx: Idx, MBB&: *MI->getParent(),
696 I: std::next(x: MachineBasicBlock::iterator(MI)));
697 return VNI->def;
698}
699
700SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
701 assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
702 SlotIndex End = LIS.getMBBEndIdx(mbb: &MBB);
703 SlotIndex Last = End.getPrevSlot();
704 LLVM_DEBUG(dbgs() << " enterIntvAtEnd " << printMBBReference(MBB) << ", "
705 << Last);
706 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx: Last);
707 if (!ParentVNI) {
708 LLVM_DEBUG(dbgs() << ": not live\n");
709 return End;
710 }
711 SlotIndex LSP = SA.getLastSplitPoint(BB: &MBB);
712 if (LSP < Last) {
713 // It could be that the use after LSP is a def, and thus the ParentVNI
714 // just selected starts at that def. For this case to exist, the def
715 // must be part of a tied def/use pair (as otherwise we'd have split
716 // distinct live ranges into individual live intervals), and thus we
717 // can insert the def into the VNI of the use and the tied def/use
718 // pair can live in the resulting interval.
719 Last = LSP;
720 ParentVNI = Edit->getParent().getVNInfoAt(Idx: Last);
721 if (!ParentVNI) {
722 // undef use --> undef tied def
723 LLVM_DEBUG(dbgs() << ": tied use not live\n");
724 return End;
725 }
726 }
727
728 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id);
729 VNInfo *VNI = defFromParent(RegIdx: OpenIdx, ParentVNI, UseIdx: Last, MBB,
730 I: SA.getLastSplitPointIter(BB: &MBB));
731 RegAssign.insert(a: VNI->def, b: End, y: OpenIdx);
732 LLVM_DEBUG(dump());
733 return VNI->def;
734}
735
736/// useIntv - indicate that all instructions in MBB should use OpenLI.
737void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
738 useIntv(Start: LIS.getMBBStartIdx(mbb: &MBB), End: LIS.getMBBEndIdx(mbb: &MBB));
739}
740
741void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
742 assert(OpenIdx && "openIntv not called before useIntv");
743 LLVM_DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):");
744 RegAssign.insert(a: Start, b: End, y: OpenIdx);
745 LLVM_DEBUG(dump());
746}
747
748SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
749 assert(OpenIdx && "openIntv not called before leaveIntvAfter");
750 LLVM_DEBUG(dbgs() << " leaveIntvAfter " << Idx);
751
752 // The interval must be live beyond the instruction at Idx.
753 SlotIndex Boundary = Idx.getBoundaryIndex();
754 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx: Boundary);
755 if (!ParentVNI) {
756 LLVM_DEBUG(dbgs() << ": not live\n");
757 return Boundary.getNextSlot();
758 }
759 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
760 MachineInstr *MI = LIS.getInstructionFromIndex(index: Boundary);
761 assert(MI && "No instruction at index");
762
763 // In spill mode, make live ranges as short as possible by inserting the copy
764 // before MI. This is only possible if that instruction doesn't redefine the
765 // value. The inserted COPY is not a kill, and we don't need to recompute
766 // the source live range. The spiller also won't try to hoist this copy.
767 if (SpillMode && !SlotIndex::isSameInstr(A: ParentVNI->def, B: Idx) &&
768 MI->readsVirtualRegister(Reg: Edit->getReg())) {
769 forceRecompute(RegIdx: 0, ParentVNI: *ParentVNI);
770 defFromParent(RegIdx: 0, ParentVNI, UseIdx: Idx, MBB&: *MI->getParent(), I: MI);
771 return Idx;
772 }
773
774 VNInfo *VNI = defFromParent(RegIdx: 0, ParentVNI, UseIdx: Boundary, MBB&: *MI->getParent(),
775 I: std::next(x: MachineBasicBlock::iterator(MI)));
776 return VNI->def;
777}
778
779SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
780 assert(OpenIdx && "openIntv not called before leaveIntvBefore");
781 LLVM_DEBUG(dbgs() << " leaveIntvBefore " << Idx);
782
783 // The interval must be live into the instruction at Idx.
784 Idx = Idx.getBaseIndex();
785 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
786 if (!ParentVNI) {
787 LLVM_DEBUG(dbgs() << ": not live\n");
788 return Idx.getNextSlot();
789 }
790 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
791
792 MachineInstr *MI = LIS.getInstructionFromIndex(index: Idx);
793 assert(MI && "No instruction at index");
794 VNInfo *VNI = defFromParent(RegIdx: 0, ParentVNI, UseIdx: Idx, MBB&: *MI->getParent(), I: MI);
795 return VNI->def;
796}
797
798SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
799 assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
800 SlotIndex Start = LIS.getMBBStartIdx(mbb: &MBB);
801 LLVM_DEBUG(dbgs() << " leaveIntvAtTop " << printMBBReference(MBB) << ", "
802 << Start);
803
804 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx: Start);
805 if (!ParentVNI) {
806 LLVM_DEBUG(dbgs() << ": not live\n");
807 return Start;
808 }
809
810 unsigned RegIdx = 0;
811 Register Reg = LIS.getInterval(Reg: Edit->get(idx: RegIdx)).reg();
812 VNInfo *VNI = defFromParent(RegIdx, ParentVNI, UseIdx: Start, MBB,
813 I: MBB.SkipPHIsLabelsAndDebug(I: MBB.begin(), Reg));
814 RegAssign.insert(a: Start, b: VNI->def, y: OpenIdx);
815 LLVM_DEBUG(dump());
816 return VNI->def;
817}
818
819static bool hasTiedUseOf(MachineInstr &MI, unsigned Reg) {
820 return any_of(Range: MI.defs(), P: [Reg](const MachineOperand &MO) {
821 return MO.isReg() && MO.isTied() && MO.getReg() == Reg;
822 });
823}
824
825void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
826 assert(OpenIdx && "openIntv not called before overlapIntv");
827 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx: Start);
828 assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
829 "Parent changes value in extended range");
830 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
831 "Range cannot span basic blocks");
832
833 // The complement interval will be extended as needed by LICalc.extend().
834 if (ParentVNI)
835 forceRecompute(RegIdx: 0, ParentVNI: *ParentVNI);
836
837 // If the last use is tied to a def, we can't mark it as live for the
838 // interval which includes only the use. That would cause the tied pair
839 // to end up in two different intervals.
840 if (auto *MI = LIS.getInstructionFromIndex(index: End))
841 if (hasTiedUseOf(MI&: *MI, Reg: Edit->getReg())) {
842 LLVM_DEBUG(dbgs() << "skip overlap due to tied def at end\n");
843 return;
844 }
845
846 LLVM_DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):");
847 RegAssign.insert(a: Start, b: End, y: OpenIdx);
848 LLVM_DEBUG(dump());
849}
850
851//===----------------------------------------------------------------------===//
852// Spill modes
853//===----------------------------------------------------------------------===//
854
855void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
856 LiveInterval *LI = &LIS.getInterval(Reg: Edit->get(idx: 0));
857 LLVM_DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
858 RegAssignMap::iterator AssignI;
859 AssignI.setMap(RegAssign);
860
861 for (const VNInfo *C : Copies) {
862 SlotIndex Def = C->def;
863 MachineInstr *MI = LIS.getInstructionFromIndex(index: Def);
864 assert(MI && "No instruction for back-copy");
865
866 MachineBasicBlock *MBB = MI->getParent();
867 MachineBasicBlock::iterator MBBI(MI);
868 bool AtBegin;
869 do AtBegin = MBBI == MBB->begin();
870 while (!AtBegin && (--MBBI)->isDebugOrPseudoInstr());
871
872 LLVM_DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
873 LIS.removeVRegDefAt(LI&: *LI, Pos: Def);
874 LIS.RemoveMachineInstrFromMaps(MI&: *MI);
875 MI->eraseFromParent();
876
877 // Adjust RegAssign if a register assignment is killed at Def. We want to
878 // avoid calculating the live range of the source register if possible.
879 AssignI.find(x: Def.getPrevSlot());
880 if (!AssignI.valid() || AssignI.start() >= Def)
881 continue;
882 // If MI doesn't kill the assigned register, just leave it.
883 if (AssignI.stop() != Def)
884 continue;
885 unsigned RegIdx = AssignI.value();
886 // We could hoist back-copy right after another back-copy. As a result
887 // MMBI points to copy instruction which is actually dead now.
888 // We cannot set its stop to MBBI which will be the same as start and
889 // interval does not support that.
890 SlotIndex Kill =
891 AtBegin ? SlotIndex() : LIS.getInstructionIndex(Instr: *MBBI).getRegSlot();
892 if (AtBegin || !MBBI->readsVirtualRegister(Reg: Edit->getReg()) ||
893 Kill <= AssignI.start()) {
894 LLVM_DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx
895 << '\n');
896 forceRecompute(RegIdx, ParentVNI: *Edit->getParent().getVNInfoAt(Idx: Def));
897 } else {
898 LLVM_DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI);
899 AssignI.setStop(Kill);
900 }
901 }
902}
903
904MachineBasicBlock*
905SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
906 MachineBasicBlock *DefMBB) {
907 if (MBB == DefMBB)
908 return MBB;
909 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
910
911 const MachineLoopInfo &Loops = SA.Loops;
912 const MachineLoop *DefLoop = Loops.getLoopFor(BB: DefMBB);
913 MachineDomTreeNode *DefDomNode = MDT[DefMBB];
914
915 // Best candidate so far.
916 MachineBasicBlock *BestMBB = MBB;
917 unsigned BestDepth = std::numeric_limits<unsigned>::max();
918
919 while (true) {
920 const MachineLoop *Loop = Loops.getLoopFor(BB: MBB);
921
922 // MBB isn't in a loop, it doesn't get any better. All dominators have a
923 // higher frequency by definition.
924 if (!Loop) {
925 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
926 << " dominates " << printMBBReference(*MBB)
927 << " at depth 0\n");
928 return MBB;
929 }
930
931 // We'll never be able to exit the DefLoop.
932 if (Loop == DefLoop) {
933 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
934 << " dominates " << printMBBReference(*MBB)
935 << " in the same loop\n");
936 return MBB;
937 }
938
939 // Least busy dominator seen so far.
940 unsigned Depth = Loop->getLoopDepth();
941 if (Depth < BestDepth) {
942 BestMBB = MBB;
943 BestDepth = Depth;
944 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
945 << " dominates " << printMBBReference(*MBB)
946 << " at depth " << Depth << '\n');
947 }
948
949 // Leave loop by going to the immediate dominator of the loop header.
950 // This is a bigger stride than simply walking up the dominator tree.
951 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
952
953 // Too far up the dominator tree?
954 if (!IDom || !MDT.dominates(A: DefDomNode, B: IDom))
955 return BestMBB;
956
957 MBB = IDom->getBlock();
958 }
959}
960
961void SplitEditor::computeRedundantBackCopies(
962 DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) {
963 LiveInterval *LI = &LIS.getInterval(Reg: Edit->get(idx: 0));
964 const LiveInterval *Parent = &Edit->getParent();
965 SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums());
966 SmallPtrSet<VNInfo *, 8> DominatedVNIs;
967
968 // Aggregate VNIs having the same value as ParentVNI.
969 for (VNInfo *VNI : LI->valnos) {
970 if (VNI->isUnused())
971 continue;
972 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx: VNI->def);
973 EqualVNs[ParentVNI->id].insert(Ptr: VNI);
974 }
975
976 // For VNI aggregation of each ParentVNI, collect dominated, i.e.,
977 // redundant VNIs to BackCopies.
978 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
979 const VNInfo *ParentVNI = Parent->getValNumInfo(ValNo: i);
980 if (!NotToHoistSet.count(V: ParentVNI->id))
981 continue;
982 SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin();
983 SmallPtrSetIterator<VNInfo *> It2 = It1;
984 for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) {
985 It2 = It1;
986 for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) {
987 if (DominatedVNIs.count(Ptr: *It1) || DominatedVNIs.count(Ptr: *It2))
988 continue;
989
990 MachineBasicBlock *MBB1 = LIS.getMBBFromIndex(index: (*It1)->def);
991 MachineBasicBlock *MBB2 = LIS.getMBBFromIndex(index: (*It2)->def);
992 if (MBB1 == MBB2) {
993 DominatedVNIs.insert(Ptr: (*It1)->def < (*It2)->def ? (*It2) : (*It1));
994 } else if (MDT.dominates(A: MBB1, B: MBB2)) {
995 DominatedVNIs.insert(Ptr: *It2);
996 } else if (MDT.dominates(A: MBB2, B: MBB1)) {
997 DominatedVNIs.insert(Ptr: *It1);
998 }
999 }
1000 }
1001 if (!DominatedVNIs.empty()) {
1002 forceRecompute(RegIdx: 0, ParentVNI: *ParentVNI);
1003 append_range(C&: BackCopies, R&: DominatedVNIs);
1004 DominatedVNIs.clear();
1005 }
1006 }
1007}
1008
1009/// For SM_Size mode, find a common dominator for all the back-copies for
1010/// the same ParentVNI and hoist the backcopies to the dominator BB.
1011/// For SM_Speed mode, if the common dominator is hot and it is not beneficial
1012/// to do the hoisting, simply remove the dominated backcopies for the same
1013/// ParentVNI.
1014void SplitEditor::hoistCopies() {
1015 // Get the complement interval, always RegIdx 0.
1016 LiveInterval *LI = &LIS.getInterval(Reg: Edit->get(idx: 0));
1017 const LiveInterval *Parent = &Edit->getParent();
1018
1019 // Track the nearest common dominator for all back-copies for each ParentVNI,
1020 // indexed by ParentVNI->id.
1021 using DomPair = std::pair<MachineBasicBlock *, SlotIndex>;
1022 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
1023 // The total cost of all the back-copies for each ParentVNI.
1024 SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums());
1025 // The ParentVNI->id set for which hoisting back-copies are not beneficial
1026 // for Speed.
1027 DenseSet<unsigned> NotToHoistSet;
1028
1029 // Find the nearest common dominator for parent values with multiple
1030 // back-copies. If a single back-copy dominates, put it in DomPair.second.
1031 for (VNInfo *VNI : LI->valnos) {
1032 if (VNI->isUnused())
1033 continue;
1034 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx: VNI->def);
1035 assert(ParentVNI && "Parent not live at complement def");
1036
1037 // Don't hoist remats. The complement is probably going to disappear
1038 // completely anyway.
1039 if (Edit->didRematerialize(ParentVNI))
1040 continue;
1041
1042 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(index: VNI->def);
1043
1044 DomPair &Dom = NearestDom[ParentVNI->id];
1045
1046 // Keep directly defined parent values. This is either a PHI or an
1047 // instruction in the complement range. All other copies of ParentVNI
1048 // should be eliminated.
1049 if (VNI->def == ParentVNI->def) {
1050 LLVM_DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
1051 Dom = DomPair(ValMBB, VNI->def);
1052 continue;
1053 }
1054 // Skip the singly mapped values. There is nothing to gain from hoisting a
1055 // single back-copy.
1056 if (Values.lookup(Val: std::make_pair(x: 0, y&: ParentVNI->id)).getPointer()) {
1057 LLVM_DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
1058 continue;
1059 }
1060
1061 if (!Dom.first) {
1062 // First time we see ParentVNI. VNI dominates itself.
1063 Dom = DomPair(ValMBB, VNI->def);
1064 } else if (Dom.first == ValMBB) {
1065 // Two defs in the same block. Pick the earlier def.
1066 if (!Dom.second.isValid() || VNI->def < Dom.second)
1067 Dom.second = VNI->def;
1068 } else {
1069 // Different basic blocks. Check if one dominates.
1070 MachineBasicBlock *Near =
1071 MDT.findNearestCommonDominator(A: Dom.first, B: ValMBB);
1072 if (Near == ValMBB)
1073 // Def ValMBB dominates.
1074 Dom = DomPair(ValMBB, VNI->def);
1075 else if (Near != Dom.first)
1076 // None dominate. Hoist to common dominator, need new def.
1077 Dom = DomPair(Near, SlotIndex());
1078 Costs[ParentVNI->id] += MBFI.getBlockFreq(MBB: ValMBB);
1079 }
1080
1081 LLVM_DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@'
1082 << VNI->def << " for parent " << ParentVNI->id << '@'
1083 << ParentVNI->def << " hoist to "
1084 << printMBBReference(*Dom.first) << ' ' << Dom.second
1085 << '\n');
1086 }
1087
1088 // Insert the hoisted copies.
1089 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
1090 DomPair &Dom = NearestDom[i];
1091 if (!Dom.first || Dom.second.isValid())
1092 continue;
1093 // This value needs a hoisted copy inserted at the end of Dom.first.
1094 const VNInfo *ParentVNI = Parent->getValNumInfo(ValNo: i);
1095 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(index: ParentVNI->def);
1096 // Get a less loopy dominator than Dom.first.
1097 Dom.first = findShallowDominator(MBB: Dom.first, DefMBB);
1098 if (SpillMode == SM_Speed &&
1099 MBFI.getBlockFreq(MBB: Dom.first) > Costs[ParentVNI->id]) {
1100 NotToHoistSet.insert(V: ParentVNI->id);
1101 continue;
1102 }
1103 SlotIndex LSP = SA.getLastSplitPoint(BB: Dom.first);
1104 if (LSP <= ParentVNI->def) {
1105 NotToHoistSet.insert(V: ParentVNI->id);
1106 continue;
1107 }
1108 Dom.second = defFromParent(RegIdx: 0, ParentVNI, UseIdx: LSP, MBB&: *Dom.first,
1109 I: SA.getLastSplitPointIter(BB: Dom.first))->def;
1110 }
1111
1112 // Remove redundant back-copies that are now known to be dominated by another
1113 // def with the same value.
1114 SmallVector<VNInfo*, 8> BackCopies;
1115 for (VNInfo *VNI : LI->valnos) {
1116 if (VNI->isUnused())
1117 continue;
1118 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx: VNI->def);
1119 const DomPair &Dom = NearestDom[ParentVNI->id];
1120 if (!Dom.first || Dom.second == VNI->def ||
1121 NotToHoistSet.count(V: ParentVNI->id))
1122 continue;
1123 BackCopies.push_back(Elt: VNI);
1124 forceRecompute(RegIdx: 0, ParentVNI: *ParentVNI);
1125 }
1126
1127 // If it is not beneficial to hoist all the BackCopies, simply remove
1128 // redundant BackCopies in speed mode.
1129 if (SpillMode == SM_Speed && !NotToHoistSet.empty())
1130 computeRedundantBackCopies(NotToHoistSet, BackCopies);
1131
1132 removeBackCopies(Copies&: BackCopies);
1133}
1134
1135/// transferValues - Transfer all possible values to the new live ranges.
1136/// Values that were rematerialized are left alone, they need LICalc.extend().
1137bool SplitEditor::transferValues() {
1138 bool Skipped = false;
1139 RegAssignMap::const_iterator AssignI = RegAssign.begin();
1140 for (const LiveRange::Segment &S : Edit->getParent()) {
1141 LLVM_DEBUG(dbgs() << " blit " << S << ':');
1142 VNInfo *ParentVNI = S.valno;
1143 // RegAssign has holes where RegIdx 0 should be used.
1144 SlotIndex Start = S.start;
1145 AssignI.advanceTo(x: Start);
1146 do {
1147 unsigned RegIdx;
1148 SlotIndex End = S.end;
1149 if (!AssignI.valid()) {
1150 RegIdx = 0;
1151 } else if (AssignI.start() <= Start) {
1152 RegIdx = AssignI.value();
1153 if (AssignI.stop() < End) {
1154 End = AssignI.stop();
1155 ++AssignI;
1156 }
1157 } else {
1158 RegIdx = 0;
1159 End = std::min(a: End, b: AssignI.start());
1160 }
1161
1162 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
1163 LLVM_DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx << '('
1164 << printReg(Edit->get(RegIdx)) << ')');
1165 LiveInterval &LI = LIS.getInterval(Reg: Edit->get(idx: RegIdx));
1166
1167 // Check for a simply defined value that can be blitted directly.
1168 ValueForcePair VFP = Values.lookup(Val: std::make_pair(x&: RegIdx, y&: ParentVNI->id));
1169 if (VNInfo *VNI = VFP.getPointer()) {
1170 LLVM_DEBUG(dbgs() << ':' << VNI->id);
1171 LI.addSegment(S: LiveInterval::Segment(Start, End, VNI));
1172 Start = End;
1173 continue;
1174 }
1175
1176 // Skip values with forced recomputation.
1177 if (VFP.getInt()) {
1178 LLVM_DEBUG(dbgs() << "(recalc)");
1179 Skipped = true;
1180 Start = End;
1181 continue;
1182 }
1183
1184 LiveIntervalCalc &LIC = getLICalc(RegIdx);
1185
1186 // This value has multiple defs in RegIdx, but it wasn't rematerialized,
1187 // so the live range is accurate. Add live-in blocks in [Start;End) to the
1188 // LiveInBlocks.
1189 MachineFunction::iterator MBB = LIS.getMBBFromIndex(index: Start)->getIterator();
1190 SlotIndex BlockStart, BlockEnd;
1191 std::tie(args&: BlockStart, args&: BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB: &*MBB);
1192
1193 // The first block may be live-in, or it may have its own def.
1194 if (Start != BlockStart) {
1195 VNInfo *VNI = LI.extendInBlock(StartIdx: BlockStart, Kill: std::min(a: BlockEnd, b: End));
1196 assert(VNI && "Missing def for complex mapped value");
1197 LLVM_DEBUG(dbgs() << ':' << VNI->id << "*" << printMBBReference(*MBB));
1198 // MBB has its own def. Is it also live-out?
1199 if (BlockEnd <= End)
1200 LIC.setLiveOutValue(MBB: &*MBB, VNI);
1201
1202 // Skip to the next block for live-in.
1203 ++MBB;
1204 BlockStart = BlockEnd;
1205 }
1206
1207 // Handle the live-in blocks covered by [Start;End).
1208 assert(Start <= BlockStart && "Expected live-in block");
1209 while (BlockStart < End) {
1210 LLVM_DEBUG(dbgs() << ">" << printMBBReference(*MBB));
1211 BlockEnd = LIS.getMBBEndIdx(mbb: &*MBB);
1212 if (BlockStart == ParentVNI->def) {
1213 // This block has the def of a parent PHI, so it isn't live-in.
1214 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
1215 VNInfo *VNI = LI.extendInBlock(StartIdx: BlockStart, Kill: std::min(a: BlockEnd, b: End));
1216 assert(VNI && "Missing def for complex mapped parent PHI");
1217 if (End >= BlockEnd)
1218 LIC.setLiveOutValue(MBB: &*MBB, VNI); // Live-out as well.
1219 } else {
1220 // This block needs a live-in value. The last block covered may not
1221 // be live-out.
1222 if (End < BlockEnd)
1223 LIC.addLiveInBlock(LR&: LI, DomNode: MDT[&*MBB], Kill: End);
1224 else {
1225 // Live-through, and we don't know the value.
1226 LIC.addLiveInBlock(LR&: LI, DomNode: MDT[&*MBB]);
1227 LIC.setLiveOutValue(MBB: &*MBB, VNI: nullptr);
1228 }
1229 }
1230 BlockStart = BlockEnd;
1231 ++MBB;
1232 }
1233 Start = End;
1234 } while (Start != S.end);
1235 LLVM_DEBUG(dbgs() << '\n');
1236 }
1237
1238 LICalc[0].calculateValues();
1239 if (SpillMode)
1240 LICalc[1].calculateValues();
1241
1242 return Skipped;
1243}
1244
1245static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) {
1246 const LiveRange::Segment *Seg = LR.getSegmentContaining(Idx: Def);
1247 if (Seg == nullptr)
1248 return true;
1249 if (Seg->end != Def.getDeadSlot())
1250 return false;
1251 // This is a dead PHI. Remove it.
1252 LR.removeSegment(S: *Seg, RemoveDeadValNo: true);
1253 return true;
1254}
1255
1256void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveIntervalCalc &LIC,
1257 LiveRange &LR, LaneBitmask LM,
1258 ArrayRef<SlotIndex> Undefs) {
1259 for (MachineBasicBlock *P : B.predecessors()) {
1260 SlotIndex End = LIS.getMBBEndIdx(mbb: P);
1261 SlotIndex LastUse = End.getPrevSlot();
1262 // The predecessor may not have a live-out value. That is OK, like an
1263 // undef PHI operand.
1264 const LiveInterval &PLI = Edit->getParent();
1265 // Need the cast because the inputs to ?: would otherwise be deemed
1266 // "incompatible": SubRange vs LiveInterval.
1267 const LiveRange &PSR = !LM.all() ? getSubRangeForMaskExact(LM, LI: PLI)
1268 : static_cast<const LiveRange &>(PLI);
1269 if (PSR.liveAt(index: LastUse))
1270 LIC.extend(LR, Use: End, /*PhysReg=*/0, Undefs);
1271 }
1272}
1273
1274void SplitEditor::extendPHIKillRanges() {
1275 // Extend live ranges to be live-out for successor PHI values.
1276
1277 // Visit each PHI def slot in the parent live interval. If the def is dead,
1278 // remove it. Otherwise, extend the live interval to reach the end indexes
1279 // of all predecessor blocks.
1280
1281 const LiveInterval &ParentLI = Edit->getParent();
1282 for (const VNInfo *V : ParentLI.valnos) {
1283 if (V->isUnused() || !V->isPHIDef())
1284 continue;
1285
1286 unsigned RegIdx = RegAssign.lookup(x: V->def);
1287 LiveInterval &LI = LIS.getInterval(Reg: Edit->get(idx: RegIdx));
1288 LiveIntervalCalc &LIC = getLICalc(RegIdx);
1289 MachineBasicBlock &B = *LIS.getMBBFromIndex(index: V->def);
1290 if (!removeDeadSegment(Def: V->def, LR&: LI))
1291 extendPHIRange(B, LIC, LR&: LI, LM: LaneBitmask::getAll(), /*Undefs=*/{});
1292 }
1293
1294 SmallVector<SlotIndex, 4> Undefs;
1295 LiveIntervalCalc SubLIC;
1296
1297 for (const LiveInterval::SubRange &PS : ParentLI.subranges()) {
1298 for (const VNInfo *V : PS.valnos) {
1299 if (V->isUnused() || !V->isPHIDef())
1300 continue;
1301 unsigned RegIdx = RegAssign.lookup(x: V->def);
1302 LiveInterval &LI = LIS.getInterval(Reg: Edit->get(idx: RegIdx));
1303 LiveInterval::SubRange &S = getSubRangeForMaskExact(LM: PS.LaneMask, LI);
1304 if (removeDeadSegment(Def: V->def, LR&: S))
1305 continue;
1306
1307 MachineBasicBlock &B = *LIS.getMBBFromIndex(index: V->def);
1308 SubLIC.reset(mf: &VRM.getMachineFunction(), SI: LIS.getSlotIndexes(), MDT: &MDT,
1309 VNIA: &LIS.getVNInfoAllocator());
1310 Undefs.clear();
1311 LI.computeSubRangeUndefs(Undefs, LaneMask: PS.LaneMask, MRI, Indexes: *LIS.getSlotIndexes());
1312 extendPHIRange(B, LIC&: SubLIC, LR&: S, LM: PS.LaneMask, Undefs);
1313 }
1314 }
1315}
1316
1317/// rewriteAssigned - Rewrite all uses of Edit->getReg().
1318void SplitEditor::rewriteAssigned(bool ExtendRanges) {
1319 struct ExtPoint {
1320 ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N)
1321 : MO(O), RegIdx(R), Next(N) {}
1322
1323 MachineOperand MO;
1324 unsigned RegIdx;
1325 SlotIndex Next;
1326 };
1327
1328 SmallVector<ExtPoint,4> ExtPoints;
1329
1330 for (MachineOperand &MO :
1331 llvm::make_early_inc_range(Range: MRI.reg_operands(Reg: Edit->getReg()))) {
1332 MachineInstr *MI = MO.getParent();
1333 // LiveDebugVariables should have handled all DBG_VALUE instructions.
1334 if (MI->isDebugValue()) {
1335 LLVM_DEBUG(dbgs() << "Zapping " << *MI);
1336 MO.setReg(0);
1337 continue;
1338 }
1339
1340 // <undef> operands don't really read the register, so it doesn't matter
1341 // which register we choose. When the use operand is tied to a def, we must
1342 // use the same register as the def, so just do that always.
1343 SlotIndex Idx = LIS.getInstructionIndex(Instr: *MI);
1344 if (MO.isDef() || MO.isUndef())
1345 Idx = Idx.getRegSlot(EC: MO.isEarlyClobber());
1346
1347 // Rewrite to the mapped register at Idx.
1348 unsigned RegIdx = RegAssign.lookup(x: Idx);
1349 LiveInterval &LI = LIS.getInterval(Reg: Edit->get(idx: RegIdx));
1350 MO.setReg(LI.reg());
1351 LLVM_DEBUG(dbgs() << " rewr " << printMBBReference(*MI->getParent())
1352 << '\t' << Idx << ':' << RegIdx << '\t' << *MI);
1353
1354 // Extend liveness to Idx if the instruction reads reg.
1355 if (!ExtendRanges || MO.isUndef())
1356 continue;
1357
1358 // Skip instructions that don't read Reg.
1359 if (MO.isDef()) {
1360 if (!MO.getSubReg() && !MO.isEarlyClobber())
1361 continue;
1362 // We may want to extend a live range for a partial redef, or for a use
1363 // tied to an early clobber.
1364 if (!Edit->getParent().liveAt(index: Idx.getPrevSlot()))
1365 continue;
1366 } else {
1367 assert(MO.isUse());
1368 bool IsEarlyClobber = false;
1369 if (MO.isTied()) {
1370 // We want to extend a live range into `e` slot rather than `r` slot if
1371 // tied-def is early clobber, because the `e` slot already contained
1372 // in the live range of early-clobber tied-def operand, give an example
1373 // here:
1374 // 0 %0 = ...
1375 // 16 early-clobber %0 = Op %0 (tied-def 0), ...
1376 // 32 ... = Op %0
1377 // Before extend:
1378 // %0 = [0r, 0d) [16e, 32d)
1379 // The point we want to extend is 0d to 16e not 16r in this case, but if
1380 // we use 16r here we will extend nothing because that already contained
1381 // in [16e, 32d).
1382 unsigned OpIdx = MO.getOperandNo();
1383 unsigned DefOpIdx = MI->findTiedOperandIdx(OpIdx);
1384 const MachineOperand &DefOp = MI->getOperand(i: DefOpIdx);
1385 IsEarlyClobber = DefOp.isEarlyClobber();
1386 }
1387
1388 Idx = Idx.getRegSlot(EC: IsEarlyClobber);
1389 }
1390
1391 SlotIndex Next = Idx;
1392 if (LI.hasSubRanges()) {
1393 // We have to delay extending subranges until we have seen all operands
1394 // defining the register. This is because a <def,read-undef> operand
1395 // will create an "undef" point, and we cannot extend any subranges
1396 // until all of them have been accounted for.
1397 if (MO.isUse())
1398 ExtPoints.push_back(Elt: ExtPoint(MO, RegIdx, Next));
1399 } else {
1400 LiveIntervalCalc &LIC = getLICalc(RegIdx);
1401 LIC.extend(LR&: LI, Use: Next, PhysReg: 0, Undefs: ArrayRef<SlotIndex>());
1402 }
1403 }
1404
1405 for (ExtPoint &EP : ExtPoints) {
1406 LiveInterval &LI = LIS.getInterval(Reg: Edit->get(idx: EP.RegIdx));
1407 assert(LI.hasSubRanges());
1408
1409 LiveIntervalCalc SubLIC;
1410 Register Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg();
1411 LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(SubIdx: Sub)
1412 : MRI.getMaxLaneMaskForVReg(Reg);
1413 for (LiveInterval::SubRange &S : LI.subranges()) {
1414 if ((S.LaneMask & LM).none())
1415 continue;
1416 // The problem here can be that the new register may have been created
1417 // for a partially defined original register. For example:
1418 // %0:subreg_hireg<def,read-undef> = ...
1419 // ...
1420 // %1 = COPY %0
1421 if (S.empty())
1422 continue;
1423 SubLIC.reset(mf: &VRM.getMachineFunction(), SI: LIS.getSlotIndexes(), MDT: &MDT,
1424 VNIA: &LIS.getVNInfoAllocator());
1425 SmallVector<SlotIndex, 4> Undefs;
1426 LI.computeSubRangeUndefs(Undefs, LaneMask: S.LaneMask, MRI, Indexes: *LIS.getSlotIndexes());
1427 SubLIC.extend(LR&: S, Use: EP.Next, PhysReg: 0, Undefs);
1428 }
1429 }
1430
1431 for (Register R : *Edit) {
1432 LiveInterval &LI = LIS.getInterval(Reg: R);
1433 if (!LI.hasSubRanges())
1434 continue;
1435 LI.clear();
1436 LI.removeEmptySubRanges();
1437 LIS.constructMainRangeFromSubranges(LI);
1438 }
1439}
1440
1441void SplitEditor::deleteRematVictims() {
1442 SmallVector<MachineInstr*, 8> Dead;
1443 for (const Register &R : *Edit) {
1444 LiveInterval *LI = &LIS.getInterval(Reg: R);
1445 for (const LiveRange::Segment &S : LI->segments) {
1446 // Dead defs end at the dead slot.
1447 if (S.end != S.valno->def.getDeadSlot())
1448 continue;
1449 if (S.valno->isPHIDef())
1450 continue;
1451 MachineInstr *MI = LIS.getInstructionFromIndex(index: S.valno->def);
1452 assert(MI && "Missing instruction for dead def");
1453 MI->addRegisterDead(Reg: LI->reg(), RegInfo: &TRI);
1454
1455 if (!MI->allDefsAreDead())
1456 continue;
1457
1458 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
1459 Dead.push_back(Elt: MI);
1460 }
1461 }
1462
1463 if (Dead.empty())
1464 return;
1465
1466 Edit->eliminateDeadDefs(Dead, RegsBeingSpilled: std::nullopt);
1467}
1468
1469void SplitEditor::forceRecomputeVNI(const VNInfo &ParentVNI) {
1470 // Fast-path for common case.
1471 if (!ParentVNI.isPHIDef()) {
1472 for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1473 forceRecompute(RegIdx: I, ParentVNI);
1474 return;
1475 }
1476
1477 // Trace value through phis.
1478 SmallPtrSet<const VNInfo *, 8> Visited; ///< whether VNI was/is in worklist.
1479 SmallVector<const VNInfo *, 4> WorkList;
1480 Visited.insert(Ptr: &ParentVNI);
1481 WorkList.push_back(Elt: &ParentVNI);
1482
1483 const LiveInterval &ParentLI = Edit->getParent();
1484 const SlotIndexes &Indexes = *LIS.getSlotIndexes();
1485 do {
1486 const VNInfo &VNI = *WorkList.back();
1487 WorkList.pop_back();
1488 for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1489 forceRecompute(RegIdx: I, ParentVNI: VNI);
1490 if (!VNI.isPHIDef())
1491 continue;
1492
1493 MachineBasicBlock &MBB = *Indexes.getMBBFromIndex(index: VNI.def);
1494 for (const MachineBasicBlock *Pred : MBB.predecessors()) {
1495 SlotIndex PredEnd = Indexes.getMBBEndIdx(mbb: Pred);
1496 VNInfo *PredVNI = ParentLI.getVNInfoBefore(Idx: PredEnd);
1497 assert(PredVNI && "Value available in PhiVNI predecessor");
1498 if (Visited.insert(Ptr: PredVNI).second)
1499 WorkList.push_back(Elt: PredVNI);
1500 }
1501 } while(!WorkList.empty());
1502}
1503
1504void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1505 ++NumFinished;
1506
1507 // At this point, the live intervals in Edit contain VNInfos corresponding to
1508 // the inserted copies.
1509
1510 // Add the original defs from the parent interval.
1511 for (const VNInfo *ParentVNI : Edit->getParent().valnos) {
1512 if (ParentVNI->isUnused())
1513 continue;
1514 unsigned RegIdx = RegAssign.lookup(x: ParentVNI->def);
1515 defValue(RegIdx, ParentVNI, Idx: ParentVNI->def, Original: true);
1516
1517 // Force rematted values to be recomputed everywhere.
1518 // The new live ranges may be truncated.
1519 if (Edit->didRematerialize(ParentVNI))
1520 forceRecomputeVNI(ParentVNI: *ParentVNI);
1521 }
1522
1523 // Hoist back-copies to the complement interval when in spill mode.
1524 switch (SpillMode) {
1525 case SM_Partition:
1526 // Leave all back-copies as is.
1527 break;
1528 case SM_Size:
1529 case SM_Speed:
1530 // hoistCopies will behave differently between size and speed.
1531 hoistCopies();
1532 }
1533
1534 // Transfer the simply mapped values, check if any are skipped.
1535 bool Skipped = transferValues();
1536
1537 // Rewrite virtual registers, possibly extending ranges.
1538 rewriteAssigned(ExtendRanges: Skipped);
1539
1540 if (Skipped)
1541 extendPHIKillRanges();
1542 else
1543 ++NumSimple;
1544
1545 // Delete defs that were rematted everywhere.
1546 if (Skipped)
1547 deleteRematVictims();
1548
1549 // Get rid of unused values and set phi-kill flags.
1550 for (Register Reg : *Edit) {
1551 LiveInterval &LI = LIS.getInterval(Reg);
1552 LI.removeEmptySubRanges();
1553 LI.RenumberValues();
1554 }
1555
1556 // Provide a reverse mapping from original indices to Edit ranges.
1557 if (LRMap) {
1558 auto Seq = llvm::seq<unsigned>(Begin: 0, End: Edit->size());
1559 LRMap->assign(in_start: Seq.begin(), in_end: Seq.end());
1560 }
1561
1562 // Now check if any registers were separated into multiple components.
1563 ConnectedVNInfoEqClasses ConEQ(LIS);
1564 for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1565 // Don't use iterators, they are invalidated by create() below.
1566 Register VReg = Edit->get(idx: i);
1567 LiveInterval &LI = LIS.getInterval(Reg: VReg);
1568 SmallVector<LiveInterval*, 8> SplitLIs;
1569 LIS.splitSeparateComponents(LI, SplitLIs);
1570 Register Original = VRM.getOriginal(VirtReg: VReg);
1571 for (LiveInterval *SplitLI : SplitLIs)
1572 VRM.setIsSplitFromReg(virtReg: SplitLI->reg(), SReg: Original);
1573
1574 // The new intervals all map back to i.
1575 if (LRMap)
1576 LRMap->resize(N: Edit->size(), NV: i);
1577 }
1578
1579 // Calculate spill weight and allocation hints for new intervals.
1580 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), VRAI);
1581
1582 assert(!LRMap || LRMap->size() == Edit->size());
1583}
1584
1585//===----------------------------------------------------------------------===//
1586// Single Block Splitting
1587//===----------------------------------------------------------------------===//
1588
1589bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1590 bool SingleInstrs) const {
1591 // Always split for multiple instructions.
1592 if (!BI.isOneInstr())
1593 return true;
1594 // Don't split for single instructions unless explicitly requested.
1595 if (!SingleInstrs)
1596 return false;
1597 // Splitting a live-through range always makes progress.
1598 if (BI.LiveIn && BI.LiveOut)
1599 return true;
1600 // No point in isolating a copy. It has no register class constraints.
1601 MachineInstr *MI = LIS.getInstructionFromIndex(index: BI.FirstInstr);
1602 bool copyLike = TII.isCopyInstr(MI: *MI) || MI->isSubregToReg();
1603 if (copyLike)
1604 return false;
1605 // Finally, don't isolate an end point that was created by earlier splits.
1606 return isOriginalEndpoint(Idx: BI.FirstInstr);
1607}
1608
1609void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1610 openIntv();
1611 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BB: BI.MBB);
1612 SlotIndex SegStart = enterIntvBefore(Idx: std::min(a: BI.FirstInstr,
1613 b: LastSplitPoint));
1614 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1615 useIntv(Start: SegStart, End: leaveIntvAfter(Idx: BI.LastInstr));
1616 } else {
1617 // The last use is after the last valid split point.
1618 SlotIndex SegStop = leaveIntvBefore(Idx: LastSplitPoint);
1619 useIntv(Start: SegStart, End: SegStop);
1620 overlapIntv(Start: SegStop, End: BI.LastInstr);
1621 }
1622}
1623
1624//===----------------------------------------------------------------------===//
1625// Global Live Range Splitting Support
1626//===----------------------------------------------------------------------===//
1627
1628// These methods support a method of global live range splitting that uses a
1629// global algorithm to decide intervals for CFG edges. They will insert split
1630// points and color intervals in basic blocks while avoiding interference.
1631//
1632// Note that splitSingleBlock is also useful for blocks where both CFG edges
1633// are on the stack.
1634
1635void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1636 unsigned IntvIn, SlotIndex LeaveBefore,
1637 unsigned IntvOut, SlotIndex EnterAfter){
1638 SlotIndex Start, Stop;
1639 std::tie(args&: Start, args&: Stop) = LIS.getSlotIndexes()->getMBBRange(Num: MBBNum);
1640
1641 LLVM_DEBUG(dbgs() << "%bb." << MBBNum << " [" << Start << ';' << Stop
1642 << ") intf " << LeaveBefore << '-' << EnterAfter
1643 << ", live-through " << IntvIn << " -> " << IntvOut);
1644
1645 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1646
1647 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1648 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1649 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1650
1651 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(N: MBBNum);
1652
1653 if (!IntvOut) {
1654 LLVM_DEBUG(dbgs() << ", spill on entry.\n");
1655 //
1656 // <<<<<<<<< Possible LeaveBefore interference.
1657 // |-----------| Live through.
1658 // -____________ Spill on entry.
1659 //
1660 selectIntv(Idx: IntvIn);
1661 SlotIndex Idx = leaveIntvAtTop(MBB&: *MBB);
1662 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1663 (void)Idx;
1664 return;
1665 }
1666
1667 if (!IntvIn) {
1668 LLVM_DEBUG(dbgs() << ", reload on exit.\n");
1669 //
1670 // >>>>>>> Possible EnterAfter interference.
1671 // |-----------| Live through.
1672 // ___________-- Reload on exit.
1673 //
1674 selectIntv(Idx: IntvOut);
1675 SlotIndex Idx = enterIntvAtEnd(MBB&: *MBB);
1676 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1677 (void)Idx;
1678 return;
1679 }
1680
1681 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1682 LLVM_DEBUG(dbgs() << ", straight through.\n");
1683 //
1684 // |-----------| Live through.
1685 // ------------- Straight through, same intv, no interference.
1686 //
1687 selectIntv(Idx: IntvOut);
1688 useIntv(Start, End: Stop);
1689 return;
1690 }
1691
1692 // We cannot legally insert splits after LSP.
1693 SlotIndex LSP = SA.getLastSplitPoint(Num: MBBNum);
1694 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1695
1696 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1697 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1698 LLVM_DEBUG(dbgs() << ", switch avoiding interference.\n");
1699 //
1700 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference.
1701 // |-----------| Live through.
1702 // ------======= Switch intervals between interference.
1703 //
1704 selectIntv(Idx: IntvOut);
1705 SlotIndex Idx;
1706 if (LeaveBefore && LeaveBefore < LSP) {
1707 Idx = enterIntvBefore(Idx: LeaveBefore);
1708 useIntv(Start: Idx, End: Stop);
1709 } else {
1710 Idx = enterIntvAtEnd(MBB&: *MBB);
1711 }
1712 selectIntv(Idx: IntvIn);
1713 useIntv(Start, End: Idx);
1714 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1715 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1716 return;
1717 }
1718
1719 LLVM_DEBUG(dbgs() << ", create local intv for interference.\n");
1720 //
1721 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference.
1722 // |-----------| Live through.
1723 // ==---------== Switch intervals before/after interference.
1724 //
1725 assert(LeaveBefore <= EnterAfter && "Missed case");
1726
1727 selectIntv(Idx: IntvOut);
1728 SlotIndex Idx = enterIntvAfter(Idx: EnterAfter);
1729 useIntv(Start: Idx, End: Stop);
1730 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1731
1732 selectIntv(Idx: IntvIn);
1733 Idx = leaveIntvBefore(Idx: LeaveBefore);
1734 useIntv(Start, End: Idx);
1735 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1736}
1737
1738void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1739 unsigned IntvIn, SlotIndex LeaveBefore) {
1740 SlotIndex Start, Stop;
1741 std::tie(args&: Start, args&: Stop) = LIS.getSlotIndexes()->getMBBRange(MBB: BI.MBB);
1742
1743 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1744 << Stop << "), uses " << BI.FirstInstr << '-'
1745 << BI.LastInstr << ", reg-in " << IntvIn
1746 << ", leave before " << LeaveBefore
1747 << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1748
1749 assert(IntvIn && "Must have register in");
1750 assert(BI.LiveIn && "Must be live-in");
1751 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1752
1753 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1754 LLVM_DEBUG(dbgs() << " before interference.\n");
1755 //
1756 // <<< Interference after kill.
1757 // |---o---x | Killed in block.
1758 // ========= Use IntvIn everywhere.
1759 //
1760 selectIntv(Idx: IntvIn);
1761 useIntv(Start, End: BI.LastInstr);
1762 return;
1763 }
1764
1765 SlotIndex LSP = SA.getLastSplitPoint(BB: BI.MBB);
1766
1767 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1768 //
1769 // <<< Possible interference after last use.
1770 // |---o---o---| Live-out on stack.
1771 // =========____ Leave IntvIn after last use.
1772 //
1773 // < Interference after last use.
1774 // |---o---o--o| Live-out on stack, late last use.
1775 // ============ Copy to stack after LSP, overlap IntvIn.
1776 // \_____ Stack interval is live-out.
1777 //
1778 if (BI.LastInstr < LSP) {
1779 LLVM_DEBUG(dbgs() << ", spill after last use before interference.\n");
1780 selectIntv(Idx: IntvIn);
1781 SlotIndex Idx = leaveIntvAfter(Idx: BI.LastInstr);
1782 useIntv(Start, End: Idx);
1783 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1784 } else {
1785 LLVM_DEBUG(dbgs() << ", spill before last split point.\n");
1786 selectIntv(Idx: IntvIn);
1787 SlotIndex Idx = leaveIntvBefore(Idx: LSP);
1788 overlapIntv(Start: Idx, End: BI.LastInstr);
1789 useIntv(Start, End: Idx);
1790 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1791 }
1792 return;
1793 }
1794
1795 // The interference is overlapping somewhere we wanted to use IntvIn. That
1796 // means we need to create a local interval that can be allocated a
1797 // different register.
1798 unsigned LocalIntv = openIntv();
1799 (void)LocalIntv;
1800 LLVM_DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1801
1802 if (!BI.LiveOut || BI.LastInstr < LSP) {
1803 //
1804 // <<<<<<< Interference overlapping uses.
1805 // |---o---o---| Live-out on stack.
1806 // =====----____ Leave IntvIn before interference, then spill.
1807 //
1808 SlotIndex To = leaveIntvAfter(Idx: BI.LastInstr);
1809 SlotIndex From = enterIntvBefore(Idx: LeaveBefore);
1810 useIntv(Start: From, End: To);
1811 selectIntv(Idx: IntvIn);
1812 useIntv(Start, End: From);
1813 assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1814 return;
1815 }
1816
1817 // <<<<<<< Interference overlapping uses.
1818 // |---o---o--o| Live-out on stack, late last use.
1819 // =====------- Copy to stack before LSP, overlap LocalIntv.
1820 // \_____ Stack interval is live-out.
1821 //
1822 SlotIndex To = leaveIntvBefore(Idx: LSP);
1823 overlapIntv(Start: To, End: BI.LastInstr);
1824 SlotIndex From = enterIntvBefore(Idx: std::min(a: To, b: LeaveBefore));
1825 useIntv(Start: From, End: To);
1826 selectIntv(Idx: IntvIn);
1827 useIntv(Start, End: From);
1828 assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1829}
1830
1831void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1832 unsigned IntvOut, SlotIndex EnterAfter) {
1833 SlotIndex Start, Stop;
1834 std::tie(args&: Start, args&: Stop) = LIS.getSlotIndexes()->getMBBRange(MBB: BI.MBB);
1835
1836 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1837 << Stop << "), uses " << BI.FirstInstr << '-'
1838 << BI.LastInstr << ", reg-out " << IntvOut
1839 << ", enter after " << EnterAfter
1840 << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1841
1842 SlotIndex LSP = SA.getLastSplitPoint(BB: BI.MBB);
1843
1844 assert(IntvOut && "Must have register out");
1845 assert(BI.LiveOut && "Must be live-out");
1846 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1847
1848 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1849 LLVM_DEBUG(dbgs() << " after interference.\n");
1850 //
1851 // >>>> Interference before def.
1852 // | o---o---| Defined in block.
1853 // ========= Use IntvOut everywhere.
1854 //
1855 selectIntv(Idx: IntvOut);
1856 useIntv(Start: BI.FirstInstr, End: Stop);
1857 return;
1858 }
1859
1860 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1861 LLVM_DEBUG(dbgs() << ", reload after interference.\n");
1862 //
1863 // >>>> Interference before def.
1864 // |---o---o---| Live-through, stack-in.
1865 // ____========= Enter IntvOut before first use.
1866 //
1867 selectIntv(Idx: IntvOut);
1868 SlotIndex Idx = enterIntvBefore(Idx: std::min(a: LSP, b: BI.FirstInstr));
1869 useIntv(Start: Idx, End: Stop);
1870 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1871 return;
1872 }
1873
1874 // The interference is overlapping somewhere we wanted to use IntvOut. That
1875 // means we need to create a local interval that can be allocated a
1876 // different register.
1877 LLVM_DEBUG(dbgs() << ", interference overlaps uses.\n");
1878 //
1879 // >>>>>>> Interference overlapping uses.
1880 // |---o---o---| Live-through, stack-in.
1881 // ____---====== Create local interval for interference range.
1882 //
1883 selectIntv(Idx: IntvOut);
1884 SlotIndex Idx = enterIntvAfter(Idx: EnterAfter);
1885 useIntv(Start: Idx, End: Stop);
1886 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1887
1888 openIntv();
1889 SlotIndex From = enterIntvBefore(Idx: std::min(a: Idx, b: BI.FirstInstr));
1890 useIntv(Start: From, End: Idx);
1891}
1892
1893void SplitAnalysis::BlockInfo::print(raw_ostream &OS) const {
1894 OS << "{" << printMBBReference(MBB: *MBB) << ", "
1895 << "uses " << FirstInstr << " to " << LastInstr << ", "
1896 << "1st def " << FirstDef << ", "
1897 << (LiveIn ? "live in" : "dead in") << ", "
1898 << (LiveOut ? "live out" : "dead out") << "}";
1899}
1900
1901void SplitAnalysis::BlockInfo::dump() const {
1902 print(OS&: dbgs());
1903 dbgs() << "\n";
1904}
1905

source code of llvm/lib/CodeGen/SplitKit.cpp