1//===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements the TargetLoweringBase class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/ADT/BitVector.h"
14#include "llvm/ADT/STLExtras.h"
15#include "llvm/ADT/SmallVector.h"
16#include "llvm/ADT/StringExtras.h"
17#include "llvm/ADT/StringRef.h"
18#include "llvm/ADT/Twine.h"
19#include "llvm/Analysis/Loads.h"
20#include "llvm/Analysis/TargetTransformInfo.h"
21#include "llvm/CodeGen/Analysis.h"
22#include "llvm/CodeGen/ISDOpcodes.h"
23#include "llvm/CodeGen/MachineBasicBlock.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineInstr.h"
27#include "llvm/CodeGen/MachineInstrBuilder.h"
28#include "llvm/CodeGen/MachineMemOperand.h"
29#include "llvm/CodeGen/MachineOperand.h"
30#include "llvm/CodeGen/MachineRegisterInfo.h"
31#include "llvm/CodeGen/RuntimeLibcalls.h"
32#include "llvm/CodeGen/StackMaps.h"
33#include "llvm/CodeGen/TargetLowering.h"
34#include "llvm/CodeGen/TargetOpcodes.h"
35#include "llvm/CodeGen/TargetRegisterInfo.h"
36#include "llvm/CodeGen/ValueTypes.h"
37#include "llvm/CodeGenTypes/MachineValueType.h"
38#include "llvm/IR/Attributes.h"
39#include "llvm/IR/CallingConv.h"
40#include "llvm/IR/DataLayout.h"
41#include "llvm/IR/DerivedTypes.h"
42#include "llvm/IR/Function.h"
43#include "llvm/IR/GlobalValue.h"
44#include "llvm/IR/GlobalVariable.h"
45#include "llvm/IR/IRBuilder.h"
46#include "llvm/IR/Module.h"
47#include "llvm/IR/Type.h"
48#include "llvm/Support/Casting.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/Compiler.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Target/TargetMachine.h"
54#include "llvm/Target/TargetOptions.h"
55#include "llvm/TargetParser/Triple.h"
56#include "llvm/Transforms/Utils/SizeOpts.h"
57#include <algorithm>
58#include <cassert>
59#include <cstdint>
60#include <cstring>
61#include <iterator>
62#include <string>
63#include <tuple>
64#include <utility>
65
66using namespace llvm;
67
68static cl::opt<bool> JumpIsExpensiveOverride(
69 "jump-is-expensive", cl::init(Val: false),
70 cl::desc("Do not create extra branches to split comparison logic."),
71 cl::Hidden);
72
73static cl::opt<unsigned> MinimumJumpTableEntries
74 ("min-jump-table-entries", cl::init(Val: 4), cl::Hidden,
75 cl::desc("Set minimum number of entries to use a jump table."));
76
77static cl::opt<unsigned> MaximumJumpTableSize
78 ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
79 cl::desc("Set maximum size of jump tables."));
80
81/// Minimum jump table density for normal functions.
82static cl::opt<unsigned>
83 JumpTableDensity("jump-table-density", cl::init(Val: 10), cl::Hidden,
84 cl::desc("Minimum density for building a jump table in "
85 "a normal function"));
86
87/// Minimum jump table density for -Os or -Oz functions.
88static cl::opt<unsigned> OptsizeJumpTableDensity(
89 "optsize-jump-table-density", cl::init(Val: 40), cl::Hidden,
90 cl::desc("Minimum density for building a jump table in "
91 "an optsize function"));
92
93// FIXME: This option is only to test if the strict fp operation processed
94// correctly by preventing mutating strict fp operation to normal fp operation
95// during development. When the backend supports strict float operation, this
96// option will be meaningless.
97static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation",
98 cl::desc("Don't mutate strict-float node to a legalize node"),
99 cl::init(Val: false), cl::Hidden);
100
101static bool darwinHasSinCos(const Triple &TT) {
102 assert(TT.isOSDarwin() && "should be called with darwin triple");
103 // Don't bother with 32 bit x86.
104 if (TT.getArch() == Triple::x86)
105 return false;
106 // Macos < 10.9 has no sincos_stret.
107 if (TT.isMacOSX())
108 return !TT.isMacOSXVersionLT(Major: 10, Minor: 9) && TT.isArch64Bit();
109 // iOS < 7.0 has no sincos_stret.
110 if (TT.isiOS())
111 return !TT.isOSVersionLT(Major: 7, Minor: 0);
112 // Any other darwin such as WatchOS/TvOS is new enough.
113 return true;
114}
115
116void TargetLoweringBase::InitLibcalls(const Triple &TT) {
117#define HANDLE_LIBCALL(code, name) \
118 setLibcallName(RTLIB::code, name);
119#include "llvm/IR/RuntimeLibcalls.def"
120#undef HANDLE_LIBCALL
121 // Initialize calling conventions to their default.
122 for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
123 setLibcallCallingConv(Call: (RTLIB::Libcall)LC, CC: CallingConv::C);
124
125 // Use the f128 variants of math functions on x86_64
126 if (TT.getArch() == Triple::ArchType::x86_64 && TT.isGNUEnvironment()) {
127 setLibcallName(Call: RTLIB::REM_F128, Name: "fmodf128");
128 setLibcallName(Call: RTLIB::FMA_F128, Name: "fmaf128");
129 setLibcallName(Call: RTLIB::SQRT_F128, Name: "sqrtf128");
130 setLibcallName(Call: RTLIB::CBRT_F128, Name: "cbrtf128");
131 setLibcallName(Call: RTLIB::LOG_F128, Name: "logf128");
132 setLibcallName(Call: RTLIB::LOG_FINITE_F128, Name: "__logf128_finite");
133 setLibcallName(Call: RTLIB::LOG2_F128, Name: "log2f128");
134 setLibcallName(Call: RTLIB::LOG2_FINITE_F128, Name: "__log2f128_finite");
135 setLibcallName(Call: RTLIB::LOG10_F128, Name: "log10f128");
136 setLibcallName(Call: RTLIB::LOG10_FINITE_F128, Name: "__log10f128_finite");
137 setLibcallName(Call: RTLIB::EXP_F128, Name: "expf128");
138 setLibcallName(Call: RTLIB::EXP_FINITE_F128, Name: "__expf128_finite");
139 setLibcallName(Call: RTLIB::EXP2_F128, Name: "exp2f128");
140 setLibcallName(Call: RTLIB::EXP2_FINITE_F128, Name: "__exp2f128_finite");
141 setLibcallName(Call: RTLIB::EXP10_F128, Name: "exp10f128");
142 setLibcallName(Call: RTLIB::SIN_F128, Name: "sinf128");
143 setLibcallName(Call: RTLIB::COS_F128, Name: "cosf128");
144 setLibcallName(Call: RTLIB::SINCOS_F128, Name: "sincosf128");
145 setLibcallName(Call: RTLIB::POW_F128, Name: "powf128");
146 setLibcallName(Call: RTLIB::POW_FINITE_F128, Name: "__powf128_finite");
147 setLibcallName(Call: RTLIB::CEIL_F128, Name: "ceilf128");
148 setLibcallName(Call: RTLIB::TRUNC_F128, Name: "truncf128");
149 setLibcallName(Call: RTLIB::RINT_F128, Name: "rintf128");
150 setLibcallName(Call: RTLIB::NEARBYINT_F128, Name: "nearbyintf128");
151 setLibcallName(Call: RTLIB::ROUND_F128, Name: "roundf128");
152 setLibcallName(Call: RTLIB::ROUNDEVEN_F128, Name: "roundevenf128");
153 setLibcallName(Call: RTLIB::FLOOR_F128, Name: "floorf128");
154 setLibcallName(Call: RTLIB::COPYSIGN_F128, Name: "copysignf128");
155 setLibcallName(Call: RTLIB::FMIN_F128, Name: "fminf128");
156 setLibcallName(Call: RTLIB::FMAX_F128, Name: "fmaxf128");
157 setLibcallName(Call: RTLIB::LROUND_F128, Name: "lroundf128");
158 setLibcallName(Call: RTLIB::LLROUND_F128, Name: "llroundf128");
159 setLibcallName(Call: RTLIB::LRINT_F128, Name: "lrintf128");
160 setLibcallName(Call: RTLIB::LLRINT_F128, Name: "llrintf128");
161 setLibcallName(Call: RTLIB::LDEXP_F128, Name: "ldexpf128");
162 setLibcallName(Call: RTLIB::FREXP_F128, Name: "frexpf128");
163 }
164
165 // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf".
166 if (TT.isPPC()) {
167 setLibcallName(Call: RTLIB::ADD_F128, Name: "__addkf3");
168 setLibcallName(Call: RTLIB::SUB_F128, Name: "__subkf3");
169 setLibcallName(Call: RTLIB::MUL_F128, Name: "__mulkf3");
170 setLibcallName(Call: RTLIB::DIV_F128, Name: "__divkf3");
171 setLibcallName(Call: RTLIB::POWI_F128, Name: "__powikf2");
172 setLibcallName(Call: RTLIB::FPEXT_F32_F128, Name: "__extendsfkf2");
173 setLibcallName(Call: RTLIB::FPEXT_F64_F128, Name: "__extenddfkf2");
174 setLibcallName(Call: RTLIB::FPROUND_F128_F32, Name: "__trunckfsf2");
175 setLibcallName(Call: RTLIB::FPROUND_F128_F64, Name: "__trunckfdf2");
176 setLibcallName(Call: RTLIB::FPTOSINT_F128_I32, Name: "__fixkfsi");
177 setLibcallName(Call: RTLIB::FPTOSINT_F128_I64, Name: "__fixkfdi");
178 setLibcallName(Call: RTLIB::FPTOSINT_F128_I128, Name: "__fixkfti");
179 setLibcallName(Call: RTLIB::FPTOUINT_F128_I32, Name: "__fixunskfsi");
180 setLibcallName(Call: RTLIB::FPTOUINT_F128_I64, Name: "__fixunskfdi");
181 setLibcallName(Call: RTLIB::FPTOUINT_F128_I128, Name: "__fixunskfti");
182 setLibcallName(Call: RTLIB::SINTTOFP_I32_F128, Name: "__floatsikf");
183 setLibcallName(Call: RTLIB::SINTTOFP_I64_F128, Name: "__floatdikf");
184 setLibcallName(Call: RTLIB::SINTTOFP_I128_F128, Name: "__floattikf");
185 setLibcallName(Call: RTLIB::UINTTOFP_I32_F128, Name: "__floatunsikf");
186 setLibcallName(Call: RTLIB::UINTTOFP_I64_F128, Name: "__floatundikf");
187 setLibcallName(Call: RTLIB::UINTTOFP_I128_F128, Name: "__floatuntikf");
188 setLibcallName(Call: RTLIB::OEQ_F128, Name: "__eqkf2");
189 setLibcallName(Call: RTLIB::UNE_F128, Name: "__nekf2");
190 setLibcallName(Call: RTLIB::OGE_F128, Name: "__gekf2");
191 setLibcallName(Call: RTLIB::OLT_F128, Name: "__ltkf2");
192 setLibcallName(Call: RTLIB::OLE_F128, Name: "__lekf2");
193 setLibcallName(Call: RTLIB::OGT_F128, Name: "__gtkf2");
194 setLibcallName(Call: RTLIB::UO_F128, Name: "__unordkf2");
195 }
196
197 // A few names are different on particular architectures or environments.
198 if (TT.isOSDarwin()) {
199 // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
200 // of the gnueabi-style __gnu_*_ieee.
201 // FIXME: What about other targets?
202 setLibcallName(Call: RTLIB::FPEXT_F16_F32, Name: "__extendhfsf2");
203 setLibcallName(Call: RTLIB::FPROUND_F32_F16, Name: "__truncsfhf2");
204
205 // Some darwins have an optimized __bzero/bzero function.
206 switch (TT.getArch()) {
207 case Triple::x86:
208 case Triple::x86_64:
209 if (TT.isMacOSX() && !TT.isMacOSXVersionLT(Major: 10, Minor: 6))
210 setLibcallName(Call: RTLIB::BZERO, Name: "__bzero");
211 break;
212 case Triple::aarch64:
213 case Triple::aarch64_32:
214 setLibcallName(Call: RTLIB::BZERO, Name: "bzero");
215 break;
216 default:
217 break;
218 }
219
220 if (darwinHasSinCos(TT)) {
221 setLibcallName(Call: RTLIB::SINCOS_STRET_F32, Name: "__sincosf_stret");
222 setLibcallName(Call: RTLIB::SINCOS_STRET_F64, Name: "__sincos_stret");
223 if (TT.isWatchABI()) {
224 setLibcallCallingConv(Call: RTLIB::SINCOS_STRET_F32,
225 CC: CallingConv::ARM_AAPCS_VFP);
226 setLibcallCallingConv(Call: RTLIB::SINCOS_STRET_F64,
227 CC: CallingConv::ARM_AAPCS_VFP);
228 }
229 }
230 } else {
231 setLibcallName(Call: RTLIB::FPEXT_F16_F32, Name: "__gnu_h2f_ieee");
232 setLibcallName(Call: RTLIB::FPROUND_F32_F16, Name: "__gnu_f2h_ieee");
233 }
234
235 if (TT.isGNUEnvironment() || TT.isOSFuchsia() ||
236 (TT.isAndroid() && !TT.isAndroidVersionLT(Major: 9))) {
237 setLibcallName(Call: RTLIB::SINCOS_F32, Name: "sincosf");
238 setLibcallName(Call: RTLIB::SINCOS_F64, Name: "sincos");
239 setLibcallName(Call: RTLIB::SINCOS_F80, Name: "sincosl");
240 setLibcallName(Call: RTLIB::SINCOS_F128, Name: "sincosl");
241 setLibcallName(Call: RTLIB::SINCOS_PPCF128, Name: "sincosl");
242 }
243
244 if (TT.isPS()) {
245 setLibcallName(Call: RTLIB::SINCOS_F32, Name: "sincosf");
246 setLibcallName(Call: RTLIB::SINCOS_F64, Name: "sincos");
247 }
248
249 if (TT.isOSOpenBSD()) {
250 setLibcallName(Call: RTLIB::STACKPROTECTOR_CHECK_FAIL, Name: nullptr);
251 }
252
253 if (TT.isOSWindows() && !TT.isOSCygMing()) {
254 setLibcallName(Call: RTLIB::LDEXP_F32, Name: nullptr);
255 setLibcallName(Call: RTLIB::LDEXP_F80, Name: nullptr);
256 setLibcallName(Call: RTLIB::LDEXP_F128, Name: nullptr);
257 setLibcallName(Call: RTLIB::LDEXP_PPCF128, Name: nullptr);
258
259 setLibcallName(Call: RTLIB::FREXP_F32, Name: nullptr);
260 setLibcallName(Call: RTLIB::FREXP_F80, Name: nullptr);
261 setLibcallName(Call: RTLIB::FREXP_F128, Name: nullptr);
262 setLibcallName(Call: RTLIB::FREXP_PPCF128, Name: nullptr);
263 }
264}
265
266/// GetFPLibCall - Helper to return the right libcall for the given floating
267/// point type, or UNKNOWN_LIBCALL if there is none.
268RTLIB::Libcall RTLIB::getFPLibCall(EVT VT,
269 RTLIB::Libcall Call_F32,
270 RTLIB::Libcall Call_F64,
271 RTLIB::Libcall Call_F80,
272 RTLIB::Libcall Call_F128,
273 RTLIB::Libcall Call_PPCF128) {
274 return
275 VT == MVT::f32 ? Call_F32 :
276 VT == MVT::f64 ? Call_F64 :
277 VT == MVT::f80 ? Call_F80 :
278 VT == MVT::f128 ? Call_F128 :
279 VT == MVT::ppcf128 ? Call_PPCF128 :
280 RTLIB::UNKNOWN_LIBCALL;
281}
282
283/// getFPEXT - Return the FPEXT_*_* value for the given types, or
284/// UNKNOWN_LIBCALL if there is none.
285RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
286 if (OpVT == MVT::f16) {
287 if (RetVT == MVT::f32)
288 return FPEXT_F16_F32;
289 if (RetVT == MVT::f64)
290 return FPEXT_F16_F64;
291 if (RetVT == MVT::f80)
292 return FPEXT_F16_F80;
293 if (RetVT == MVT::f128)
294 return FPEXT_F16_F128;
295 } else if (OpVT == MVT::f32) {
296 if (RetVT == MVT::f64)
297 return FPEXT_F32_F64;
298 if (RetVT == MVT::f128)
299 return FPEXT_F32_F128;
300 if (RetVT == MVT::ppcf128)
301 return FPEXT_F32_PPCF128;
302 } else if (OpVT == MVT::f64) {
303 if (RetVT == MVT::f128)
304 return FPEXT_F64_F128;
305 else if (RetVT == MVT::ppcf128)
306 return FPEXT_F64_PPCF128;
307 } else if (OpVT == MVT::f80) {
308 if (RetVT == MVT::f128)
309 return FPEXT_F80_F128;
310 }
311
312 return UNKNOWN_LIBCALL;
313}
314
315/// getFPROUND - Return the FPROUND_*_* value for the given types, or
316/// UNKNOWN_LIBCALL if there is none.
317RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
318 if (RetVT == MVT::f16) {
319 if (OpVT == MVT::f32)
320 return FPROUND_F32_F16;
321 if (OpVT == MVT::f64)
322 return FPROUND_F64_F16;
323 if (OpVT == MVT::f80)
324 return FPROUND_F80_F16;
325 if (OpVT == MVT::f128)
326 return FPROUND_F128_F16;
327 if (OpVT == MVT::ppcf128)
328 return FPROUND_PPCF128_F16;
329 } else if (RetVT == MVT::bf16) {
330 if (OpVT == MVT::f32)
331 return FPROUND_F32_BF16;
332 if (OpVT == MVT::f64)
333 return FPROUND_F64_BF16;
334 } else if (RetVT == MVT::f32) {
335 if (OpVT == MVT::f64)
336 return FPROUND_F64_F32;
337 if (OpVT == MVT::f80)
338 return FPROUND_F80_F32;
339 if (OpVT == MVT::f128)
340 return FPROUND_F128_F32;
341 if (OpVT == MVT::ppcf128)
342 return FPROUND_PPCF128_F32;
343 } else if (RetVT == MVT::f64) {
344 if (OpVT == MVT::f80)
345 return FPROUND_F80_F64;
346 if (OpVT == MVT::f128)
347 return FPROUND_F128_F64;
348 if (OpVT == MVT::ppcf128)
349 return FPROUND_PPCF128_F64;
350 } else if (RetVT == MVT::f80) {
351 if (OpVT == MVT::f128)
352 return FPROUND_F128_F80;
353 }
354
355 return UNKNOWN_LIBCALL;
356}
357
358/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
359/// UNKNOWN_LIBCALL if there is none.
360RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
361 if (OpVT == MVT::f16) {
362 if (RetVT == MVT::i32)
363 return FPTOSINT_F16_I32;
364 if (RetVT == MVT::i64)
365 return FPTOSINT_F16_I64;
366 if (RetVT == MVT::i128)
367 return FPTOSINT_F16_I128;
368 } else if (OpVT == MVT::f32) {
369 if (RetVT == MVT::i32)
370 return FPTOSINT_F32_I32;
371 if (RetVT == MVT::i64)
372 return FPTOSINT_F32_I64;
373 if (RetVT == MVT::i128)
374 return FPTOSINT_F32_I128;
375 } else if (OpVT == MVT::f64) {
376 if (RetVT == MVT::i32)
377 return FPTOSINT_F64_I32;
378 if (RetVT == MVT::i64)
379 return FPTOSINT_F64_I64;
380 if (RetVT == MVT::i128)
381 return FPTOSINT_F64_I128;
382 } else if (OpVT == MVT::f80) {
383 if (RetVT == MVT::i32)
384 return FPTOSINT_F80_I32;
385 if (RetVT == MVT::i64)
386 return FPTOSINT_F80_I64;
387 if (RetVT == MVT::i128)
388 return FPTOSINT_F80_I128;
389 } else if (OpVT == MVT::f128) {
390 if (RetVT == MVT::i32)
391 return FPTOSINT_F128_I32;
392 if (RetVT == MVT::i64)
393 return FPTOSINT_F128_I64;
394 if (RetVT == MVT::i128)
395 return FPTOSINT_F128_I128;
396 } else if (OpVT == MVT::ppcf128) {
397 if (RetVT == MVT::i32)
398 return FPTOSINT_PPCF128_I32;
399 if (RetVT == MVT::i64)
400 return FPTOSINT_PPCF128_I64;
401 if (RetVT == MVT::i128)
402 return FPTOSINT_PPCF128_I128;
403 }
404 return UNKNOWN_LIBCALL;
405}
406
407/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
408/// UNKNOWN_LIBCALL if there is none.
409RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
410 if (OpVT == MVT::f16) {
411 if (RetVT == MVT::i32)
412 return FPTOUINT_F16_I32;
413 if (RetVT == MVT::i64)
414 return FPTOUINT_F16_I64;
415 if (RetVT == MVT::i128)
416 return FPTOUINT_F16_I128;
417 } else if (OpVT == MVT::f32) {
418 if (RetVT == MVT::i32)
419 return FPTOUINT_F32_I32;
420 if (RetVT == MVT::i64)
421 return FPTOUINT_F32_I64;
422 if (RetVT == MVT::i128)
423 return FPTOUINT_F32_I128;
424 } else if (OpVT == MVT::f64) {
425 if (RetVT == MVT::i32)
426 return FPTOUINT_F64_I32;
427 if (RetVT == MVT::i64)
428 return FPTOUINT_F64_I64;
429 if (RetVT == MVT::i128)
430 return FPTOUINT_F64_I128;
431 } else if (OpVT == MVT::f80) {
432 if (RetVT == MVT::i32)
433 return FPTOUINT_F80_I32;
434 if (RetVT == MVT::i64)
435 return FPTOUINT_F80_I64;
436 if (RetVT == MVT::i128)
437 return FPTOUINT_F80_I128;
438 } else if (OpVT == MVT::f128) {
439 if (RetVT == MVT::i32)
440 return FPTOUINT_F128_I32;
441 if (RetVT == MVT::i64)
442 return FPTOUINT_F128_I64;
443 if (RetVT == MVT::i128)
444 return FPTOUINT_F128_I128;
445 } else if (OpVT == MVT::ppcf128) {
446 if (RetVT == MVT::i32)
447 return FPTOUINT_PPCF128_I32;
448 if (RetVT == MVT::i64)
449 return FPTOUINT_PPCF128_I64;
450 if (RetVT == MVT::i128)
451 return FPTOUINT_PPCF128_I128;
452 }
453 return UNKNOWN_LIBCALL;
454}
455
456/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
457/// UNKNOWN_LIBCALL if there is none.
458RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
459 if (OpVT == MVT::i32) {
460 if (RetVT == MVT::f16)
461 return SINTTOFP_I32_F16;
462 if (RetVT == MVT::f32)
463 return SINTTOFP_I32_F32;
464 if (RetVT == MVT::f64)
465 return SINTTOFP_I32_F64;
466 if (RetVT == MVT::f80)
467 return SINTTOFP_I32_F80;
468 if (RetVT == MVT::f128)
469 return SINTTOFP_I32_F128;
470 if (RetVT == MVT::ppcf128)
471 return SINTTOFP_I32_PPCF128;
472 } else if (OpVT == MVT::i64) {
473 if (RetVT == MVT::f16)
474 return SINTTOFP_I64_F16;
475 if (RetVT == MVT::f32)
476 return SINTTOFP_I64_F32;
477 if (RetVT == MVT::f64)
478 return SINTTOFP_I64_F64;
479 if (RetVT == MVT::f80)
480 return SINTTOFP_I64_F80;
481 if (RetVT == MVT::f128)
482 return SINTTOFP_I64_F128;
483 if (RetVT == MVT::ppcf128)
484 return SINTTOFP_I64_PPCF128;
485 } else if (OpVT == MVT::i128) {
486 if (RetVT == MVT::f16)
487 return SINTTOFP_I128_F16;
488 if (RetVT == MVT::f32)
489 return SINTTOFP_I128_F32;
490 if (RetVT == MVT::f64)
491 return SINTTOFP_I128_F64;
492 if (RetVT == MVT::f80)
493 return SINTTOFP_I128_F80;
494 if (RetVT == MVT::f128)
495 return SINTTOFP_I128_F128;
496 if (RetVT == MVT::ppcf128)
497 return SINTTOFP_I128_PPCF128;
498 }
499 return UNKNOWN_LIBCALL;
500}
501
502/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
503/// UNKNOWN_LIBCALL if there is none.
504RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
505 if (OpVT == MVT::i32) {
506 if (RetVT == MVT::f16)
507 return UINTTOFP_I32_F16;
508 if (RetVT == MVT::f32)
509 return UINTTOFP_I32_F32;
510 if (RetVT == MVT::f64)
511 return UINTTOFP_I32_F64;
512 if (RetVT == MVT::f80)
513 return UINTTOFP_I32_F80;
514 if (RetVT == MVT::f128)
515 return UINTTOFP_I32_F128;
516 if (RetVT == MVT::ppcf128)
517 return UINTTOFP_I32_PPCF128;
518 } else if (OpVT == MVT::i64) {
519 if (RetVT == MVT::f16)
520 return UINTTOFP_I64_F16;
521 if (RetVT == MVT::f32)
522 return UINTTOFP_I64_F32;
523 if (RetVT == MVT::f64)
524 return UINTTOFP_I64_F64;
525 if (RetVT == MVT::f80)
526 return UINTTOFP_I64_F80;
527 if (RetVT == MVT::f128)
528 return UINTTOFP_I64_F128;
529 if (RetVT == MVT::ppcf128)
530 return UINTTOFP_I64_PPCF128;
531 } else if (OpVT == MVT::i128) {
532 if (RetVT == MVT::f16)
533 return UINTTOFP_I128_F16;
534 if (RetVT == MVT::f32)
535 return UINTTOFP_I128_F32;
536 if (RetVT == MVT::f64)
537 return UINTTOFP_I128_F64;
538 if (RetVT == MVT::f80)
539 return UINTTOFP_I128_F80;
540 if (RetVT == MVT::f128)
541 return UINTTOFP_I128_F128;
542 if (RetVT == MVT::ppcf128)
543 return UINTTOFP_I128_PPCF128;
544 }
545 return UNKNOWN_LIBCALL;
546}
547
548RTLIB::Libcall RTLIB::getPOWI(EVT RetVT) {
549 return getFPLibCall(VT: RetVT, Call_F32: POWI_F32, Call_F64: POWI_F64, Call_F80: POWI_F80, Call_F128: POWI_F128,
550 Call_PPCF128: POWI_PPCF128);
551}
552
553RTLIB::Libcall RTLIB::getLDEXP(EVT RetVT) {
554 return getFPLibCall(VT: RetVT, Call_F32: LDEXP_F32, Call_F64: LDEXP_F64, Call_F80: LDEXP_F80, Call_F128: LDEXP_F128,
555 Call_PPCF128: LDEXP_PPCF128);
556}
557
558RTLIB::Libcall RTLIB::getFREXP(EVT RetVT) {
559 return getFPLibCall(VT: RetVT, Call_F32: FREXP_F32, Call_F64: FREXP_F64, Call_F80: FREXP_F80, Call_F128: FREXP_F128,
560 Call_PPCF128: FREXP_PPCF128);
561}
562
563RTLIB::Libcall RTLIB::getOutlineAtomicHelper(const Libcall (&LC)[5][4],
564 AtomicOrdering Order,
565 uint64_t MemSize) {
566 unsigned ModeN, ModelN;
567 switch (MemSize) {
568 case 1:
569 ModeN = 0;
570 break;
571 case 2:
572 ModeN = 1;
573 break;
574 case 4:
575 ModeN = 2;
576 break;
577 case 8:
578 ModeN = 3;
579 break;
580 case 16:
581 ModeN = 4;
582 break;
583 default:
584 return RTLIB::UNKNOWN_LIBCALL;
585 }
586
587 switch (Order) {
588 case AtomicOrdering::Monotonic:
589 ModelN = 0;
590 break;
591 case AtomicOrdering::Acquire:
592 ModelN = 1;
593 break;
594 case AtomicOrdering::Release:
595 ModelN = 2;
596 break;
597 case AtomicOrdering::AcquireRelease:
598 case AtomicOrdering::SequentiallyConsistent:
599 ModelN = 3;
600 break;
601 default:
602 return UNKNOWN_LIBCALL;
603 }
604
605 return LC[ModeN][ModelN];
606}
607
608RTLIB::Libcall RTLIB::getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order,
609 MVT VT) {
610 if (!VT.isScalarInteger())
611 return UNKNOWN_LIBCALL;
612 uint64_t MemSize = VT.getScalarSizeInBits() / 8;
613
614#define LCALLS(A, B) \
615 { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL }
616#define LCALL5(A) \
617 LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16)
618 switch (Opc) {
619 case ISD::ATOMIC_CMP_SWAP: {
620 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)};
621 return getOutlineAtomicHelper(LC, Order, MemSize);
622 }
623 case ISD::ATOMIC_SWAP: {
624 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)};
625 return getOutlineAtomicHelper(LC, Order, MemSize);
626 }
627 case ISD::ATOMIC_LOAD_ADD: {
628 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)};
629 return getOutlineAtomicHelper(LC, Order, MemSize);
630 }
631 case ISD::ATOMIC_LOAD_OR: {
632 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)};
633 return getOutlineAtomicHelper(LC, Order, MemSize);
634 }
635 case ISD::ATOMIC_LOAD_CLR: {
636 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)};
637 return getOutlineAtomicHelper(LC, Order, MemSize);
638 }
639 case ISD::ATOMIC_LOAD_XOR: {
640 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)};
641 return getOutlineAtomicHelper(LC, Order, MemSize);
642 }
643 default:
644 return UNKNOWN_LIBCALL;
645 }
646#undef LCALLS
647#undef LCALL5
648}
649
650RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
651#define OP_TO_LIBCALL(Name, Enum) \
652 case Name: \
653 switch (VT.SimpleTy) { \
654 default: \
655 return UNKNOWN_LIBCALL; \
656 case MVT::i8: \
657 return Enum##_1; \
658 case MVT::i16: \
659 return Enum##_2; \
660 case MVT::i32: \
661 return Enum##_4; \
662 case MVT::i64: \
663 return Enum##_8; \
664 case MVT::i128: \
665 return Enum##_16; \
666 }
667
668 switch (Opc) {
669 OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
670 OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
671 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
672 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
673 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
674 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
675 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
676 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
677 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
678 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
679 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
680 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
681 }
682
683#undef OP_TO_LIBCALL
684
685 return UNKNOWN_LIBCALL;
686}
687
688RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
689 switch (ElementSize) {
690 case 1:
691 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
692 case 2:
693 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
694 case 4:
695 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
696 case 8:
697 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
698 case 16:
699 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
700 default:
701 return UNKNOWN_LIBCALL;
702 }
703}
704
705RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
706 switch (ElementSize) {
707 case 1:
708 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
709 case 2:
710 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
711 case 4:
712 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
713 case 8:
714 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
715 case 16:
716 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
717 default:
718 return UNKNOWN_LIBCALL;
719 }
720}
721
722RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
723 switch (ElementSize) {
724 case 1:
725 return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
726 case 2:
727 return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
728 case 4:
729 return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
730 case 8:
731 return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
732 case 16:
733 return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
734 default:
735 return UNKNOWN_LIBCALL;
736 }
737}
738
739/// InitCmpLibcallCCs - Set default comparison libcall CC.
740static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
741 std::fill(first: CCs, last: CCs + RTLIB::UNKNOWN_LIBCALL, value: ISD::SETCC_INVALID);
742 CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
743 CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
744 CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
745 CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
746 CCs[RTLIB::UNE_F32] = ISD::SETNE;
747 CCs[RTLIB::UNE_F64] = ISD::SETNE;
748 CCs[RTLIB::UNE_F128] = ISD::SETNE;
749 CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
750 CCs[RTLIB::OGE_F32] = ISD::SETGE;
751 CCs[RTLIB::OGE_F64] = ISD::SETGE;
752 CCs[RTLIB::OGE_F128] = ISD::SETGE;
753 CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
754 CCs[RTLIB::OLT_F32] = ISD::SETLT;
755 CCs[RTLIB::OLT_F64] = ISD::SETLT;
756 CCs[RTLIB::OLT_F128] = ISD::SETLT;
757 CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
758 CCs[RTLIB::OLE_F32] = ISD::SETLE;
759 CCs[RTLIB::OLE_F64] = ISD::SETLE;
760 CCs[RTLIB::OLE_F128] = ISD::SETLE;
761 CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
762 CCs[RTLIB::OGT_F32] = ISD::SETGT;
763 CCs[RTLIB::OGT_F64] = ISD::SETGT;
764 CCs[RTLIB::OGT_F128] = ISD::SETGT;
765 CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
766 CCs[RTLIB::UO_F32] = ISD::SETNE;
767 CCs[RTLIB::UO_F64] = ISD::SETNE;
768 CCs[RTLIB::UO_F128] = ISD::SETNE;
769 CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
770}
771
772/// NOTE: The TargetMachine owns TLOF.
773TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
774 initActions();
775
776 // Perform these initializations only once.
777 MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
778 MaxLoadsPerMemcmp = 8;
779 MaxGluedStoresPerMemcpy = 0;
780 MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
781 MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
782 HasMultipleConditionRegisters = false;
783 HasExtractBitsInsn = false;
784 JumpIsExpensive = JumpIsExpensiveOverride;
785 PredictableSelectIsExpensive = false;
786 EnableExtLdPromotion = false;
787 StackPointerRegisterToSaveRestore = 0;
788 BooleanContents = UndefinedBooleanContent;
789 BooleanFloatContents = UndefinedBooleanContent;
790 BooleanVectorContents = UndefinedBooleanContent;
791 SchedPreferenceInfo = Sched::ILP;
792 GatherAllAliasesMaxDepth = 18;
793 IsStrictFPEnabled = DisableStrictNodeMutation;
794 MaxBytesForAlignment = 0;
795 MaxAtomicSizeInBitsSupported = 0;
796
797 // Assume that even with libcalls, no target supports wider than 128 bit
798 // division.
799 MaxDivRemBitWidthSupported = 128;
800
801 MaxLargeFPConvertBitWidthSupported = llvm::IntegerType::MAX_INT_BITS;
802
803 MinCmpXchgSizeInBits = 0;
804 SupportsUnalignedAtomics = false;
805
806 std::fill(first: std::begin(arr&: LibcallRoutineNames), last: std::end(arr&: LibcallRoutineNames), value: nullptr);
807
808 InitLibcalls(TT: TM.getTargetTriple());
809 InitCmpLibcallCCs(CCs: CmpLibcallCCs);
810}
811
812void TargetLoweringBase::initActions() {
813 // All operations default to being supported.
814 memset(s: OpActions, c: 0, n: sizeof(OpActions));
815 memset(s: LoadExtActions, c: 0, n: sizeof(LoadExtActions));
816 memset(s: TruncStoreActions, c: 0, n: sizeof(TruncStoreActions));
817 memset(s: IndexedModeActions, c: 0, n: sizeof(IndexedModeActions));
818 memset(s: CondCodeActions, c: 0, n: sizeof(CondCodeActions));
819 std::fill(first: std::begin(arr&: RegClassForVT), last: std::end(arr&: RegClassForVT), value: nullptr);
820 std::fill(first: std::begin(arr&: TargetDAGCombineArray),
821 last: std::end(arr&: TargetDAGCombineArray), value: 0);
822
823 // We're somewhat special casing MVT::i2 and MVT::i4. Ideally we want to
824 // remove this and targets should individually set these types if not legal.
825 for (ISD::NodeType NT : enum_seq(Begin: ISD::DELETED_NODE, End: ISD::BUILTIN_OP_END,
826 force_iteration_on_noniterable_enum)) {
827 for (MVT VT : {MVT::i2, MVT::i4})
828 OpActions[(unsigned)VT.SimpleTy][NT] = Expand;
829 }
830 for (MVT AVT : MVT::all_valuetypes()) {
831 for (MVT VT : {MVT::i2, MVT::i4, MVT::v128i2, MVT::v64i4}) {
832 setTruncStoreAction(AVT, VT, Expand);
833 setLoadExtAction(ISD::EXTLOAD, AVT, VT, Expand);
834 setLoadExtAction(ISD::ZEXTLOAD, AVT, VT, Expand);
835 }
836 }
837 for (unsigned IM = (unsigned)ISD::PRE_INC;
838 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
839 for (MVT VT : {MVT::i2, MVT::i4}) {
840 setIndexedLoadAction(IM, VT, Expand);
841 setIndexedStoreAction(IM, VT, Expand);
842 setIndexedMaskedLoadAction(IM, VT, Expand);
843 setIndexedMaskedStoreAction(IM, VT, Expand);
844 }
845 }
846
847 for (MVT VT : MVT::fp_valuetypes()) {
848 MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits());
849 if (IntVT.isValid()) {
850 setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
851 AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
852 }
853 }
854
855 // Set default actions for various operations.
856 for (MVT VT : MVT::all_valuetypes()) {
857 // Default all indexed load / store to expand.
858 for (unsigned IM = (unsigned)ISD::PRE_INC;
859 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
860 setIndexedLoadAction(IM, VT, Expand);
861 setIndexedStoreAction(IM, VT, Expand);
862 setIndexedMaskedLoadAction(IM, VT, Expand);
863 setIndexedMaskedStoreAction(IM, VT, Expand);
864 }
865
866 // Most backends expect to see the node which just returns the value loaded.
867 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
868
869 // These operations default to expand.
870 setOperationAction({ISD::FGETSIGN, ISD::CONCAT_VECTORS,
871 ISD::FMINNUM, ISD::FMAXNUM,
872 ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE,
873 ISD::FMINIMUM, ISD::FMAXIMUM,
874 ISD::FMAD, ISD::SMIN,
875 ISD::SMAX, ISD::UMIN,
876 ISD::UMAX, ISD::ABS,
877 ISD::FSHL, ISD::FSHR,
878 ISD::SADDSAT, ISD::UADDSAT,
879 ISD::SSUBSAT, ISD::USUBSAT,
880 ISD::SSHLSAT, ISD::USHLSAT,
881 ISD::SMULFIX, ISD::SMULFIXSAT,
882 ISD::UMULFIX, ISD::UMULFIXSAT,
883 ISD::SDIVFIX, ISD::SDIVFIXSAT,
884 ISD::UDIVFIX, ISD::UDIVFIXSAT,
885 ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT,
886 ISD::IS_FPCLASS},
887 VT, Expand);
888
889 // Overflow operations default to expand
890 setOperationAction({ISD::SADDO, ISD::SSUBO, ISD::UADDO, ISD::USUBO,
891 ISD::SMULO, ISD::UMULO},
892 VT, Expand);
893
894 // Carry-using overflow operations default to expand.
895 setOperationAction({ISD::UADDO_CARRY, ISD::USUBO_CARRY, ISD::SETCCCARRY,
896 ISD::SADDO_CARRY, ISD::SSUBO_CARRY},
897 VT, Expand);
898
899 // ADDC/ADDE/SUBC/SUBE default to expand.
900 setOperationAction({ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}, VT,
901 Expand);
902
903 // Halving adds
904 setOperationAction(
905 {ISD::AVGFLOORS, ISD::AVGFLOORU, ISD::AVGCEILS, ISD::AVGCEILU}, VT,
906 Expand);
907
908 // Absolute difference
909 setOperationAction({ISD::ABDS, ISD::ABDU}, VT, Expand);
910
911 // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
912 setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
913 Expand);
914
915 setOperationAction({ISD::BITREVERSE, ISD::PARITY}, VT, Expand);
916
917 // These library functions default to expand.
918 setOperationAction({ISD::FROUND, ISD::FPOWI, ISD::FLDEXP, ISD::FFREXP}, VT,
919 Expand);
920
921 // These operations default to expand for vector types.
922 if (VT.isVector())
923 setOperationAction(
924 {ISD::FCOPYSIGN, ISD::SIGN_EXTEND_INREG, ISD::ANY_EXTEND_VECTOR_INREG,
925 ISD::SIGN_EXTEND_VECTOR_INREG, ISD::ZERO_EXTEND_VECTOR_INREG,
926 ISD::SPLAT_VECTOR, ISD::LRINT, ISD::LLRINT},
927 VT, Expand);
928
929 // Constrained floating-point operations default to expand.
930#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
931 setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
932#include "llvm/IR/ConstrainedOps.def"
933
934 // For most targets @llvm.get.dynamic.area.offset just returns 0.
935 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
936
937 // Vector reduction default to expand.
938 setOperationAction(
939 {ISD::VECREDUCE_FADD, ISD::VECREDUCE_FMUL, ISD::VECREDUCE_ADD,
940 ISD::VECREDUCE_MUL, ISD::VECREDUCE_AND, ISD::VECREDUCE_OR,
941 ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
942 ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN, ISD::VECREDUCE_FMAX,
943 ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAXIMUM, ISD::VECREDUCE_FMINIMUM,
944 ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_SEQ_FMUL},
945 VT, Expand);
946
947 // Named vector shuffles default to expand.
948 setOperationAction(ISD::VECTOR_SPLICE, VT, Expand);
949
950 // VP operations default to expand.
951#define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) \
952 setOperationAction(ISD::SDOPC, VT, Expand);
953#include "llvm/IR/VPIntrinsics.def"
954
955 // FP environment operations default to expand.
956 setOperationAction(ISD::GET_FPENV, VT, Expand);
957 setOperationAction(ISD::SET_FPENV, VT, Expand);
958 setOperationAction(ISD::RESET_FPENV, VT, Expand);
959 }
960
961 // Most targets ignore the @llvm.prefetch intrinsic.
962 setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
963
964 // Most targets also ignore the @llvm.readcyclecounter intrinsic.
965 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
966
967 // Most targets also ignore the @llvm.readsteadycounter intrinsic.
968 setOperationAction(ISD::READSTEADYCOUNTER, MVT::i64, Expand);
969
970 // ConstantFP nodes default to expand. Targets can either change this to
971 // Legal, in which case all fp constants are legal, or use isFPImmLegal()
972 // to optimize expansions for certain constants.
973 setOperationAction(ISD::ConstantFP,
974 {MVT::bf16, MVT::f16, MVT::f32, MVT::f64, MVT::f80, MVT::f128},
975 Expand);
976
977 // These library functions default to expand.
978 setOperationAction({ISD::FCBRT, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, ISD::FEXP,
979 ISD::FEXP2, ISD::FEXP10, ISD::FFLOOR, ISD::FNEARBYINT,
980 ISD::FCEIL, ISD::FRINT, ISD::FTRUNC, ISD::LROUND,
981 ISD::LLROUND, ISD::LRINT, ISD::LLRINT, ISD::FROUNDEVEN},
982 {MVT::f32, MVT::f64, MVT::f128}, Expand);
983
984 // Default ISD::TRAP to expand (which turns it into abort).
985 setOperationAction(ISD::TRAP, MVT::Other, Expand);
986
987 // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
988 // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
989 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
990
991 setOperationAction(ISD::UBSANTRAP, MVT::Other, Expand);
992
993 setOperationAction(ISD::GET_FPENV_MEM, MVT::Other, Expand);
994 setOperationAction(ISD::SET_FPENV_MEM, MVT::Other, Expand);
995
996 for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64}) {
997 setOperationAction(ISD::GET_FPMODE, VT, Expand);
998 setOperationAction(ISD::SET_FPMODE, VT, Expand);
999 }
1000 setOperationAction(ISD::RESET_FPMODE, MVT::Other, Expand);
1001}
1002
1003MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
1004 EVT) const {
1005 return MVT::getIntegerVT(BitWidth: DL.getPointerSizeInBits(AS: 0));
1006}
1007
1008EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
1009 bool LegalTypes) const {
1010 assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
1011 if (LHSTy.isVector())
1012 return LHSTy;
1013 MVT ShiftVT =
1014 LegalTypes ? getScalarShiftAmountTy(DL, LHSTy) : getPointerTy(DL);
1015 // If any possible shift value won't fit in the prefered type, just use
1016 // something safe. Assume it will be legalized when the shift is expanded.
1017 if (ShiftVT.getSizeInBits() < Log2_32_Ceil(LHSTy.getSizeInBits()))
1018 ShiftVT = MVT::i32;
1019 assert(ShiftVT.getSizeInBits() >= Log2_32_Ceil(LHSTy.getSizeInBits()) &&
1020 "ShiftVT is still too small!");
1021 return ShiftVT;
1022}
1023
1024bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
1025 assert(isTypeLegal(VT));
1026 switch (Op) {
1027 default:
1028 return false;
1029 case ISD::SDIV:
1030 case ISD::UDIV:
1031 case ISD::SREM:
1032 case ISD::UREM:
1033 return true;
1034 }
1035}
1036
1037bool TargetLoweringBase::isFreeAddrSpaceCast(unsigned SrcAS,
1038 unsigned DestAS) const {
1039 return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
1040}
1041
1042void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
1043 // If the command-line option was specified, ignore this request.
1044 if (!JumpIsExpensiveOverride.getNumOccurrences())
1045 JumpIsExpensive = isExpensive;
1046}
1047
1048TargetLoweringBase::LegalizeKind
1049TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
1050 // If this is a simple type, use the ComputeRegisterProp mechanism.
1051 if (VT.isSimple()) {
1052 MVT SVT = VT.getSimpleVT();
1053 assert((unsigned)SVT.SimpleTy < std::size(TransformToType));
1054 MVT NVT = TransformToType[SVT.SimpleTy];
1055 LegalizeTypeAction LA = ValueTypeActions.getTypeAction(VT: SVT);
1056
1057 assert((LA == TypeLegal || LA == TypeSoftenFloat ||
1058 LA == TypeSoftPromoteHalf ||
1059 (NVT.isVector() ||
1060 ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) &&
1061 "Promote may not follow Expand or Promote");
1062
1063 if (LA == TypeSplitVector)
1064 return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context));
1065 if (LA == TypeScalarizeVector)
1066 return LegalizeKind(LA, SVT.getVectorElementType());
1067 return LegalizeKind(LA, NVT);
1068 }
1069
1070 // Handle Extended Scalar Types.
1071 if (!VT.isVector()) {
1072 assert(VT.isInteger() && "Float types must be simple");
1073 unsigned BitSize = VT.getSizeInBits();
1074 // First promote to a power-of-two size, then expand if necessary.
1075 if (BitSize < 8 || !isPowerOf2_32(Value: BitSize)) {
1076 EVT NVT = VT.getRoundIntegerType(Context);
1077 assert(NVT != VT && "Unable to round integer VT");
1078 LegalizeKind NextStep = getTypeConversion(Context, VT: NVT);
1079 // Avoid multi-step promotion.
1080 if (NextStep.first == TypePromoteInteger)
1081 return NextStep;
1082 // Return rounded integer type.
1083 return LegalizeKind(TypePromoteInteger, NVT);
1084 }
1085
1086 return LegalizeKind(TypeExpandInteger,
1087 EVT::getIntegerVT(Context, BitWidth: VT.getSizeInBits() / 2));
1088 }
1089
1090 // Handle vector types.
1091 ElementCount NumElts = VT.getVectorElementCount();
1092 EVT EltVT = VT.getVectorElementType();
1093
1094 // Vectors with only one element are always scalarized.
1095 if (NumElts.isScalar())
1096 return LegalizeKind(TypeScalarizeVector, EltVT);
1097
1098 // Try to widen vector elements until the element type is a power of two and
1099 // promote it to a legal type later on, for example:
1100 // <3 x i8> -> <4 x i8> -> <4 x i32>
1101 if (EltVT.isInteger()) {
1102 // Vectors with a number of elements that is not a power of two are always
1103 // widened, for example <3 x i8> -> <4 x i8>.
1104 if (!VT.isPow2VectorType()) {
1105 NumElts = NumElts.coefficientNextPowerOf2();
1106 EVT NVT = EVT::getVectorVT(Context, VT: EltVT, EC: NumElts);
1107 return LegalizeKind(TypeWidenVector, NVT);
1108 }
1109
1110 // Examine the element type.
1111 LegalizeKind LK = getTypeConversion(Context, VT: EltVT);
1112
1113 // If type is to be expanded, split the vector.
1114 // <4 x i140> -> <2 x i140>
1115 if (LK.first == TypeExpandInteger) {
1116 if (VT.getVectorElementCount().isScalable())
1117 return LegalizeKind(TypeScalarizeScalableVector, EltVT);
1118 return LegalizeKind(TypeSplitVector,
1119 VT.getHalfNumVectorElementsVT(Context));
1120 }
1121
1122 // Promote the integer element types until a legal vector type is found
1123 // or until the element integer type is too big. If a legal type was not
1124 // found, fallback to the usual mechanism of widening/splitting the
1125 // vector.
1126 EVT OldEltVT = EltVT;
1127 while (true) {
1128 // Increase the bitwidth of the element to the next pow-of-two
1129 // (which is greater than 8 bits).
1130 EltVT = EVT::getIntegerVT(Context, BitWidth: 1 + EltVT.getSizeInBits())
1131 .getRoundIntegerType(Context);
1132
1133 // Stop trying when getting a non-simple element type.
1134 // Note that vector elements may be greater than legal vector element
1135 // types. Example: X86 XMM registers hold 64bit element on 32bit
1136 // systems.
1137 if (!EltVT.isSimple())
1138 break;
1139
1140 // Build a new vector type and check if it is legal.
1141 MVT NVT = MVT::getVectorVT(VT: EltVT.getSimpleVT(), EC: NumElts);
1142 // Found a legal promoted vector type.
1143 if (NVT != MVT() && ValueTypeActions.getTypeAction(VT: NVT) == TypeLegal)
1144 return LegalizeKind(TypePromoteInteger,
1145 EVT::getVectorVT(Context, VT: EltVT, EC: NumElts));
1146 }
1147
1148 // Reset the type to the unexpanded type if we did not find a legal vector
1149 // type with a promoted vector element type.
1150 EltVT = OldEltVT;
1151 }
1152
1153 // Try to widen the vector until a legal type is found.
1154 // If there is no wider legal type, split the vector.
1155 while (true) {
1156 // Round up to the next power of 2.
1157 NumElts = NumElts.coefficientNextPowerOf2();
1158
1159 // If there is no simple vector type with this many elements then there
1160 // cannot be a larger legal vector type. Note that this assumes that
1161 // there are no skipped intermediate vector types in the simple types.
1162 if (!EltVT.isSimple())
1163 break;
1164 MVT LargerVector = MVT::getVectorVT(VT: EltVT.getSimpleVT(), EC: NumElts);
1165 if (LargerVector == MVT())
1166 break;
1167
1168 // If this type is legal then widen the vector.
1169 if (ValueTypeActions.getTypeAction(VT: LargerVector) == TypeLegal)
1170 return LegalizeKind(TypeWidenVector, LargerVector);
1171 }
1172
1173 // Widen odd vectors to next power of two.
1174 if (!VT.isPow2VectorType()) {
1175 EVT NVT = VT.getPow2VectorType(Context);
1176 return LegalizeKind(TypeWidenVector, NVT);
1177 }
1178
1179 if (VT.getVectorElementCount() == ElementCount::getScalable(MinVal: 1))
1180 return LegalizeKind(TypeScalarizeScalableVector, EltVT);
1181
1182 // Vectors with illegal element types are expanded.
1183 EVT NVT = EVT::getVectorVT(Context, VT: EltVT,
1184 EC: VT.getVectorElementCount().divideCoefficientBy(RHS: 2));
1185 return LegalizeKind(TypeSplitVector, NVT);
1186}
1187
1188static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
1189 unsigned &NumIntermediates,
1190 MVT &RegisterVT,
1191 TargetLoweringBase *TLI) {
1192 // Figure out the right, legal destination reg to copy into.
1193 ElementCount EC = VT.getVectorElementCount();
1194 MVT EltTy = VT.getVectorElementType();
1195
1196 unsigned NumVectorRegs = 1;
1197
1198 // Scalable vectors cannot be scalarized, so splitting or widening is
1199 // required.
1200 if (VT.isScalableVector() && !isPowerOf2_32(Value: EC.getKnownMinValue()))
1201 llvm_unreachable(
1202 "Splitting or widening of non-power-of-2 MVTs is not implemented.");
1203
1204 // FIXME: We don't support non-power-of-2-sized vectors for now.
1205 // Ideally we could break down into LHS/RHS like LegalizeDAG does.
1206 if (!isPowerOf2_32(Value: EC.getKnownMinValue())) {
1207 // Split EC to unit size (scalable property is preserved).
1208 NumVectorRegs = EC.getKnownMinValue();
1209 EC = ElementCount::getFixed(MinVal: 1);
1210 }
1211
1212 // Divide the input until we get to a supported size. This will
1213 // always end up with an EC that represent a scalar or a scalable
1214 // scalar.
1215 while (EC.getKnownMinValue() > 1 &&
1216 !TLI->isTypeLegal(VT: MVT::getVectorVT(VT: EltTy, EC))) {
1217 EC = EC.divideCoefficientBy(RHS: 2);
1218 NumVectorRegs <<= 1;
1219 }
1220
1221 NumIntermediates = NumVectorRegs;
1222
1223 MVT NewVT = MVT::getVectorVT(VT: EltTy, EC);
1224 if (!TLI->isTypeLegal(VT: NewVT))
1225 NewVT = EltTy;
1226 IntermediateVT = NewVT;
1227
1228 unsigned LaneSizeInBits = NewVT.getScalarSizeInBits();
1229
1230 // Convert sizes such as i33 to i64.
1231 LaneSizeInBits = llvm::bit_ceil(Value: LaneSizeInBits);
1232
1233 MVT DestVT = TLI->getRegisterType(VT: NewVT);
1234 RegisterVT = DestVT;
1235 if (EVT(DestVT).bitsLT(VT: NewVT)) // Value is expanded, e.g. i64 -> i16.
1236 return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits());
1237
1238 // Otherwise, promotion or legal types use the same number of registers as
1239 // the vector decimated to the appropriate level.
1240 return NumVectorRegs;
1241}
1242
1243/// isLegalRC - Return true if the value types that can be represented by the
1244/// specified register class are all legal.
1245bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
1246 const TargetRegisterClass &RC) const {
1247 for (const auto *I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
1248 if (isTypeLegal(*I))
1249 return true;
1250 return false;
1251}
1252
1253/// Replace/modify any TargetFrameIndex operands with a targte-dependent
1254/// sequence of memory operands that is recognized by PrologEpilogInserter.
1255MachineBasicBlock *
1256TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
1257 MachineBasicBlock *MBB) const {
1258 MachineInstr *MI = &InitialMI;
1259 MachineFunction &MF = *MI->getMF();
1260 MachineFrameInfo &MFI = MF.getFrameInfo();
1261
1262 // We're handling multiple types of operands here:
1263 // PATCHPOINT MetaArgs - live-in, read only, direct
1264 // STATEPOINT Deopt Spill - live-through, read only, indirect
1265 // STATEPOINT Deopt Alloca - live-through, read only, direct
1266 // (We're currently conservative and mark the deopt slots read/write in
1267 // practice.)
1268 // STATEPOINT GC Spill - live-through, read/write, indirect
1269 // STATEPOINT GC Alloca - live-through, read/write, direct
1270 // The live-in vs live-through is handled already (the live through ones are
1271 // all stack slots), but we need to handle the different type of stackmap
1272 // operands and memory effects here.
1273
1274 if (llvm::none_of(Range: MI->operands(),
1275 P: [](MachineOperand &Operand) { return Operand.isFI(); }))
1276 return MBB;
1277
1278 MachineInstrBuilder MIB = BuildMI(MF, MIMD: MI->getDebugLoc(), MCID: MI->getDesc());
1279
1280 // Inherit previous memory operands.
1281 MIB.cloneMemRefs(OtherMI: *MI);
1282
1283 for (unsigned i = 0; i < MI->getNumOperands(); ++i) {
1284 MachineOperand &MO = MI->getOperand(i);
1285 if (!MO.isFI()) {
1286 // Index of Def operand this Use it tied to.
1287 // Since Defs are coming before Uses, if Use is tied, then
1288 // index of Def must be smaller that index of that Use.
1289 // Also, Defs preserve their position in new MI.
1290 unsigned TiedTo = i;
1291 if (MO.isReg() && MO.isTied())
1292 TiedTo = MI->findTiedOperandIdx(OpIdx: i);
1293 MIB.add(MO);
1294 if (TiedTo < i)
1295 MIB->tieOperands(DefIdx: TiedTo, UseIdx: MIB->getNumOperands() - 1);
1296 continue;
1297 }
1298
1299 // foldMemoryOperand builds a new MI after replacing a single FI operand
1300 // with the canonical set of five x86 addressing-mode operands.
1301 int FI = MO.getIndex();
1302
1303 // Add frame index operands recognized by stackmaps.cpp
1304 if (MFI.isStatepointSpillSlotObjectIndex(ObjectIdx: FI)) {
1305 // indirect-mem-ref tag, size, #FI, offset.
1306 // Used for spills inserted by StatepointLowering. This codepath is not
1307 // used for patchpoints/stackmaps at all, for these spilling is done via
1308 // foldMemoryOperand callback only.
1309 assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1310 MIB.addImm(Val: StackMaps::IndirectMemRefOp);
1311 MIB.addImm(Val: MFI.getObjectSize(ObjectIdx: FI));
1312 MIB.add(MO);
1313 MIB.addImm(Val: 0);
1314 } else {
1315 // direct-mem-ref tag, #FI, offset.
1316 // Used by patchpoint, and direct alloca arguments to statepoints
1317 MIB.addImm(Val: StackMaps::DirectMemRefOp);
1318 MIB.add(MO);
1319 MIB.addImm(Val: 0);
1320 }
1321
1322 assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1323
1324 // Add a new memory operand for this FI.
1325 assert(MFI.getObjectOffset(FI) != -1);
1326
1327 // Note: STATEPOINT MMOs are added during SelectionDAG. STACKMAP, and
1328 // PATCHPOINT should be updated to do the same. (TODO)
1329 if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1330 auto Flags = MachineMemOperand::MOLoad;
1331 MachineMemOperand *MMO = MF.getMachineMemOperand(
1332 PtrInfo: MachinePointerInfo::getFixedStack(MF, FI), f: Flags,
1333 s: MF.getDataLayout().getPointerSize(), base_alignment: MFI.getObjectAlign(ObjectIdx: FI));
1334 MIB->addMemOperand(MF, MO: MMO);
1335 }
1336 }
1337 MBB->insert(I: MachineBasicBlock::iterator(MI), MI: MIB);
1338 MI->eraseFromParent();
1339 return MBB;
1340}
1341
1342/// findRepresentativeClass - Return the largest legal super-reg register class
1343/// of the register class for the specified type and its associated "cost".
1344// This function is in TargetLowering because it uses RegClassForVT which would
1345// need to be moved to TargetRegisterInfo and would necessitate moving
1346// isTypeLegal over as well - a massive change that would just require
1347// TargetLowering having a TargetRegisterInfo class member that it would use.
1348std::pair<const TargetRegisterClass *, uint8_t>
1349TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1350 MVT VT) const {
1351 const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1352 if (!RC)
1353 return std::make_pair(x&: RC, y: 0);
1354
1355 // Compute the set of all super-register classes.
1356 BitVector SuperRegRC(TRI->getNumRegClasses());
1357 for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1358 SuperRegRC.setBitsInMask(Mask: RCI.getMask());
1359
1360 // Find the first legal register class with the largest spill size.
1361 const TargetRegisterClass *BestRC = RC;
1362 for (unsigned i : SuperRegRC.set_bits()) {
1363 const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1364 // We want the largest possible spill size.
1365 if (TRI->getSpillSize(RC: *SuperRC) <= TRI->getSpillSize(RC: *BestRC))
1366 continue;
1367 if (!isLegalRC(TRI: *TRI, RC: *SuperRC))
1368 continue;
1369 BestRC = SuperRC;
1370 }
1371 return std::make_pair(x&: BestRC, y: 1);
1372}
1373
1374/// computeRegisterProperties - Once all of the register classes are added,
1375/// this allows us to compute derived properties we expose.
1376void TargetLoweringBase::computeRegisterProperties(
1377 const TargetRegisterInfo *TRI) {
1378 static_assert(MVT::VALUETYPE_SIZE <= MVT::MAX_ALLOWED_VALUETYPE,
1379 "Too many value types for ValueTypeActions to hold!");
1380
1381 // Everything defaults to needing one register.
1382 for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1383 NumRegistersForVT[i] = 1;
1384 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1385 }
1386 // ...except isVoid, which doesn't need any registers.
1387 NumRegistersForVT[MVT::isVoid] = 0;
1388
1389 // Find the largest integer register class.
1390 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1391 for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1392 assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1393
1394 // Every integer value type larger than this largest register takes twice as
1395 // many registers to represent as the previous ValueType.
1396 for (unsigned ExpandedReg = LargestIntReg + 1;
1397 ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1398 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1399 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1400 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1401 ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1402 TypeExpandInteger);
1403 }
1404
1405 // Inspect all of the ValueType's smaller than the largest integer
1406 // register to see which ones need promotion.
1407 unsigned LegalIntReg = LargestIntReg;
1408 for (unsigned IntReg = LargestIntReg - 1;
1409 IntReg >= (unsigned)MVT::i1; --IntReg) {
1410 MVT IVT = (MVT::SimpleValueType)IntReg;
1411 if (isTypeLegal(IVT)) {
1412 LegalIntReg = IntReg;
1413 } else {
1414 RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1415 (MVT::SimpleValueType)LegalIntReg;
1416 ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1417 }
1418 }
1419
1420 // ppcf128 type is really two f64's.
1421 if (!isTypeLegal(MVT::ppcf128)) {
1422 if (isTypeLegal(MVT::f64)) {
1423 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1424 RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1425 TransformToType[MVT::ppcf128] = MVT::f64;
1426 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1427 } else {
1428 NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1429 RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1430 TransformToType[MVT::ppcf128] = MVT::i128;
1431 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1432 }
1433 }
1434
1435 // Decide how to handle f128. If the target does not have native f128 support,
1436 // expand it to i128 and we will be generating soft float library calls.
1437 if (!isTypeLegal(MVT::f128)) {
1438 NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1439 RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1440 TransformToType[MVT::f128] = MVT::i128;
1441 ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1442 }
1443
1444 // Decide how to handle f80. If the target does not have native f80 support,
1445 // expand it to i96 and we will be generating soft float library calls.
1446 if (!isTypeLegal(MVT::f80)) {
1447 NumRegistersForVT[MVT::f80] = 3*NumRegistersForVT[MVT::i32];
1448 RegisterTypeForVT[MVT::f80] = RegisterTypeForVT[MVT::i32];
1449 TransformToType[MVT::f80] = MVT::i32;
1450 ValueTypeActions.setTypeAction(MVT::f80, TypeSoftenFloat);
1451 }
1452
1453 // Decide how to handle f64. If the target does not have native f64 support,
1454 // expand it to i64 and we will be generating soft float library calls.
1455 if (!isTypeLegal(MVT::f64)) {
1456 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1457 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1458 TransformToType[MVT::f64] = MVT::i64;
1459 ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1460 }
1461
1462 // Decide how to handle f32. If the target does not have native f32 support,
1463 // expand it to i32 and we will be generating soft float library calls.
1464 if (!isTypeLegal(MVT::f32)) {
1465 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1466 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1467 TransformToType[MVT::f32] = MVT::i32;
1468 ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1469 }
1470
1471 // Decide how to handle f16. If the target does not have native f16 support,
1472 // promote it to f32, because there are no f16 library calls (except for
1473 // conversions).
1474 if (!isTypeLegal(MVT::f16)) {
1475 // Allow targets to control how we legalize half.
1476 bool SoftPromoteHalfType = softPromoteHalfType();
1477 bool UseFPRegsForHalfType = !SoftPromoteHalfType || useFPRegsForHalfType();
1478
1479 if (!UseFPRegsForHalfType) {
1480 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
1481 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
1482 } else {
1483 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1484 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1485 }
1486 TransformToType[MVT::f16] = MVT::f32;
1487 if (SoftPromoteHalfType) {
1488 ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf);
1489 } else {
1490 ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1491 }
1492 }
1493
1494 // Decide how to handle bf16. If the target does not have native bf16 support,
1495 // promote it to f32, because there are no bf16 library calls (except for
1496 // converting from f32 to bf16).
1497 if (!isTypeLegal(MVT::bf16)) {
1498 NumRegistersForVT[MVT::bf16] = NumRegistersForVT[MVT::f32];
1499 RegisterTypeForVT[MVT::bf16] = RegisterTypeForVT[MVT::f32];
1500 TransformToType[MVT::bf16] = MVT::f32;
1501 ValueTypeActions.setTypeAction(MVT::bf16, TypeSoftPromoteHalf);
1502 }
1503
1504 // Loop over all of the vector value types to see which need transformations.
1505 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1506 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1507 MVT VT = (MVT::SimpleValueType) i;
1508 if (isTypeLegal(VT))
1509 continue;
1510
1511 MVT EltVT = VT.getVectorElementType();
1512 ElementCount EC = VT.getVectorElementCount();
1513 bool IsLegalWiderType = false;
1514 bool IsScalable = VT.isScalableVector();
1515 LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1516 switch (PreferredAction) {
1517 case TypePromoteInteger: {
1518 MVT::SimpleValueType EndVT = IsScalable ?
1519 MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1520 MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1521 // Try to promote the elements of integer vectors. If no legal
1522 // promotion was found, fall through to the widen-vector method.
1523 for (unsigned nVT = i + 1;
1524 (MVT::SimpleValueType)nVT <= EndVT; ++nVT) {
1525 MVT SVT = (MVT::SimpleValueType) nVT;
1526 // Promote vectors of integers to vectors with the same number
1527 // of elements, with a wider element type.
1528 if (SVT.getScalarSizeInBits() > EltVT.getFixedSizeInBits() &&
1529 SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) {
1530 TransformToType[i] = SVT;
1531 RegisterTypeForVT[i] = SVT;
1532 NumRegistersForVT[i] = 1;
1533 ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1534 IsLegalWiderType = true;
1535 break;
1536 }
1537 }
1538 if (IsLegalWiderType)
1539 break;
1540 [[fallthrough]];
1541 }
1542
1543 case TypeWidenVector:
1544 if (isPowerOf2_32(EC.getKnownMinValue())) {
1545 // Try to widen the vector.
1546 for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1547 MVT SVT = (MVT::SimpleValueType) nVT;
1548 if (SVT.getVectorElementType() == EltVT &&
1549 SVT.isScalableVector() == IsScalable &&
1550 SVT.getVectorElementCount().getKnownMinValue() >
1551 EC.getKnownMinValue() &&
1552 isTypeLegal(SVT)) {
1553 TransformToType[i] = SVT;
1554 RegisterTypeForVT[i] = SVT;
1555 NumRegistersForVT[i] = 1;
1556 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1557 IsLegalWiderType = true;
1558 break;
1559 }
1560 }
1561 if (IsLegalWiderType)
1562 break;
1563 } else {
1564 // Only widen to the next power of 2 to keep consistency with EVT.
1565 MVT NVT = VT.getPow2VectorType();
1566 if (isTypeLegal(NVT)) {
1567 TransformToType[i] = NVT;
1568 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1569 RegisterTypeForVT[i] = NVT;
1570 NumRegistersForVT[i] = 1;
1571 break;
1572 }
1573 }
1574 [[fallthrough]];
1575
1576 case TypeSplitVector:
1577 case TypeScalarizeVector: {
1578 MVT IntermediateVT;
1579 MVT RegisterVT;
1580 unsigned NumIntermediates;
1581 unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1582 NumIntermediates, RegisterVT, this);
1583 NumRegistersForVT[i] = NumRegisters;
1584 assert(NumRegistersForVT[i] == NumRegisters &&
1585 "NumRegistersForVT size cannot represent NumRegisters!");
1586 RegisterTypeForVT[i] = RegisterVT;
1587
1588 MVT NVT = VT.getPow2VectorType();
1589 if (NVT == VT) {
1590 // Type is already a power of 2. The default action is to split.
1591 TransformToType[i] = MVT::Other;
1592 if (PreferredAction == TypeScalarizeVector)
1593 ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1594 else if (PreferredAction == TypeSplitVector)
1595 ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1596 else if (EC.getKnownMinValue() > 1)
1597 ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1598 else
1599 ValueTypeActions.setTypeAction(VT, EC.isScalable()
1600 ? TypeScalarizeScalableVector
1601 : TypeScalarizeVector);
1602 } else {
1603 TransformToType[i] = NVT;
1604 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1605 }
1606 break;
1607 }
1608 default:
1609 llvm_unreachable("Unknown vector legalization action!");
1610 }
1611 }
1612
1613 // Determine the 'representative' register class for each value type.
1614 // An representative register class is the largest (meaning one which is
1615 // not a sub-register class / subreg register class) legal register class for
1616 // a group of value types. For example, on i386, i8, i16, and i32
1617 // representative would be GR32; while on x86_64 it's GR64.
1618 for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1619 const TargetRegisterClass* RRC;
1620 uint8_t Cost;
1621 std::tie(args&: RRC, args&: Cost) = findRepresentativeClass(TRI, VT: (MVT::SimpleValueType)i);
1622 RepRegClassForVT[i] = RRC;
1623 RepRegClassCostForVT[i] = Cost;
1624 }
1625}
1626
1627EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1628 EVT VT) const {
1629 assert(!VT.isVector() && "No default SetCC type for vectors!");
1630 return getPointerTy(DL).SimpleTy;
1631}
1632
1633MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1634 return MVT::i32; // return the default value
1635}
1636
1637/// getVectorTypeBreakdown - Vector types are broken down into some number of
1638/// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
1639/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1640/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1641///
1642/// This method returns the number of registers needed, and the VT for each
1643/// register. It also returns the VT and quantity of the intermediate values
1644/// before they are promoted/expanded.
1645unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context,
1646 EVT VT, EVT &IntermediateVT,
1647 unsigned &NumIntermediates,
1648 MVT &RegisterVT) const {
1649 ElementCount EltCnt = VT.getVectorElementCount();
1650
1651 // If there is a wider vector type with the same element type as this one,
1652 // or a promoted vector type that has the same number of elements which
1653 // are wider, then we should convert to that legal vector type.
1654 // This handles things like <2 x float> -> <4 x float> and
1655 // <4 x i1> -> <4 x i32>.
1656 LegalizeTypeAction TA = getTypeAction(Context, VT);
1657 if (!EltCnt.isScalar() &&
1658 (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1659 EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1660 if (isTypeLegal(VT: RegisterEVT)) {
1661 IntermediateVT = RegisterEVT;
1662 RegisterVT = RegisterEVT.getSimpleVT();
1663 NumIntermediates = 1;
1664 return 1;
1665 }
1666 }
1667
1668 // Figure out the right, legal destination reg to copy into.
1669 EVT EltTy = VT.getVectorElementType();
1670
1671 unsigned NumVectorRegs = 1;
1672
1673 // Scalable vectors cannot be scalarized, so handle the legalisation of the
1674 // types like done elsewhere in SelectionDAG.
1675 if (EltCnt.isScalable()) {
1676 LegalizeKind LK;
1677 EVT PartVT = VT;
1678 do {
1679 // Iterate until we've found a legal (part) type to hold VT.
1680 LK = getTypeConversion(Context, VT: PartVT);
1681 PartVT = LK.second;
1682 } while (LK.first != TypeLegal);
1683
1684 if (!PartVT.isVector()) {
1685 report_fatal_error(
1686 reason: "Don't know how to legalize this scalable vector type");
1687 }
1688
1689 NumIntermediates =
1690 divideCeil(Numerator: VT.getVectorElementCount().getKnownMinValue(),
1691 Denominator: PartVT.getVectorElementCount().getKnownMinValue());
1692 IntermediateVT = PartVT;
1693 RegisterVT = getRegisterType(Context, VT: IntermediateVT);
1694 return NumIntermediates;
1695 }
1696
1697 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally
1698 // we could break down into LHS/RHS like LegalizeDAG does.
1699 if (!isPowerOf2_32(Value: EltCnt.getKnownMinValue())) {
1700 NumVectorRegs = EltCnt.getKnownMinValue();
1701 EltCnt = ElementCount::getFixed(MinVal: 1);
1702 }
1703
1704 // Divide the input until we get to a supported size. This will always
1705 // end with a scalar if the target doesn't support vectors.
1706 while (EltCnt.getKnownMinValue() > 1 &&
1707 !isTypeLegal(VT: EVT::getVectorVT(Context, VT: EltTy, EC: EltCnt))) {
1708 EltCnt = EltCnt.divideCoefficientBy(RHS: 2);
1709 NumVectorRegs <<= 1;
1710 }
1711
1712 NumIntermediates = NumVectorRegs;
1713
1714 EVT NewVT = EVT::getVectorVT(Context, VT: EltTy, EC: EltCnt);
1715 if (!isTypeLegal(VT: NewVT))
1716 NewVT = EltTy;
1717 IntermediateVT = NewVT;
1718
1719 MVT DestVT = getRegisterType(Context, VT: NewVT);
1720 RegisterVT = DestVT;
1721
1722 if (EVT(DestVT).bitsLT(VT: NewVT)) { // Value is expanded, e.g. i64 -> i16.
1723 TypeSize NewVTSize = NewVT.getSizeInBits();
1724 // Convert sizes such as i33 to i64.
1725 if (!llvm::has_single_bit<uint32_t>(Value: NewVTSize.getKnownMinValue()))
1726 NewVTSize = NewVTSize.coefficientNextPowerOf2();
1727 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1728 }
1729
1730 // Otherwise, promotion or legal types use the same number of registers as
1731 // the vector decimated to the appropriate level.
1732 return NumVectorRegs;
1733}
1734
1735bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI,
1736 uint64_t NumCases,
1737 uint64_t Range,
1738 ProfileSummaryInfo *PSI,
1739 BlockFrequencyInfo *BFI) const {
1740 // FIXME: This function check the maximum table size and density, but the
1741 // minimum size is not checked. It would be nice if the minimum size is
1742 // also combined within this function. Currently, the minimum size check is
1743 // performed in findJumpTable() in SelectionDAGBuiler and
1744 // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
1745 const bool OptForSize =
1746 SI->getParent()->getParent()->hasOptSize() ||
1747 llvm::shouldOptimizeForSize(BB: SI->getParent(), PSI, BFI);
1748 const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
1749 const unsigned MaxJumpTableSize = getMaximumJumpTableSize();
1750
1751 // Check whether the number of cases is small enough and
1752 // the range is dense enough for a jump table.
1753 return (OptForSize || Range <= MaxJumpTableSize) &&
1754 (NumCases * 100 >= Range * MinDensity);
1755}
1756
1757MVT TargetLoweringBase::getPreferredSwitchConditionType(LLVMContext &Context,
1758 EVT ConditionVT) const {
1759 return getRegisterType(Context, VT: ConditionVT);
1760}
1761
1762/// Get the EVTs and ArgFlags collections that represent the legalized return
1763/// type of the given function. This does not require a DAG or a return value,
1764/// and is suitable for use before any DAGs for the function are constructed.
1765/// TODO: Move this out of TargetLowering.cpp.
1766void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
1767 AttributeList attr,
1768 SmallVectorImpl<ISD::OutputArg> &Outs,
1769 const TargetLowering &TLI, const DataLayout &DL) {
1770 SmallVector<EVT, 4> ValueVTs;
1771 ComputeValueVTs(TLI, DL, Ty: ReturnType, ValueVTs);
1772 unsigned NumValues = ValueVTs.size();
1773 if (NumValues == 0) return;
1774
1775 for (unsigned j = 0, f = NumValues; j != f; ++j) {
1776 EVT VT = ValueVTs[j];
1777 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1778
1779 if (attr.hasRetAttr(Attribute::SExt))
1780 ExtendKind = ISD::SIGN_EXTEND;
1781 else if (attr.hasRetAttr(Attribute::ZExt))
1782 ExtendKind = ISD::ZERO_EXTEND;
1783
1784 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1785 VT = TLI.getTypeForExtReturn(Context&: ReturnType->getContext(), VT, ExtendKind);
1786
1787 unsigned NumParts =
1788 TLI.getNumRegistersForCallingConv(Context&: ReturnType->getContext(), CC, VT);
1789 MVT PartVT =
1790 TLI.getRegisterTypeForCallingConv(Context&: ReturnType->getContext(), CC, VT);
1791
1792 // 'inreg' on function refers to return value
1793 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1794 if (attr.hasRetAttr(Attribute::InReg))
1795 Flags.setInReg();
1796
1797 // Propagate extension type if any
1798 if (attr.hasRetAttr(Attribute::SExt))
1799 Flags.setSExt();
1800 else if (attr.hasRetAttr(Attribute::ZExt))
1801 Flags.setZExt();
1802
1803 for (unsigned i = 0; i < NumParts; ++i)
1804 Outs.push_back(Elt: ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0));
1805 }
1806}
1807
1808/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1809/// function arguments in the caller parameter area. This is the actual
1810/// alignment, not its logarithm.
1811uint64_t TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1812 const DataLayout &DL) const {
1813 return DL.getABITypeAlign(Ty).value();
1814}
1815
1816bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1817 LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
1818 Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const {
1819 // Check if the specified alignment is sufficient based on the data layout.
1820 // TODO: While using the data layout works in practice, a better solution
1821 // would be to implement this check directly (make this a virtual function).
1822 // For example, the ABI alignment may change based on software platform while
1823 // this function should only be affected by hardware implementation.
1824 Type *Ty = VT.getTypeForEVT(Context);
1825 if (VT.isZeroSized() || Alignment >= DL.getABITypeAlign(Ty)) {
1826 // Assume that an access that meets the ABI-specified alignment is fast.
1827 if (Fast != nullptr)
1828 *Fast = 1;
1829 return true;
1830 }
1831
1832 // This is a misaligned access.
1833 return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast);
1834}
1835
1836bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1837 LLVMContext &Context, const DataLayout &DL, EVT VT,
1838 const MachineMemOperand &MMO, unsigned *Fast) const {
1839 return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace: MMO.getAddrSpace(),
1840 Alignment: MMO.getAlign(), Flags: MMO.getFlags(), Fast);
1841}
1842
1843bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1844 const DataLayout &DL, EVT VT,
1845 unsigned AddrSpace, Align Alignment,
1846 MachineMemOperand::Flags Flags,
1847 unsigned *Fast) const {
1848 return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment,
1849 Flags, Fast);
1850}
1851
1852bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1853 const DataLayout &DL, EVT VT,
1854 const MachineMemOperand &MMO,
1855 unsigned *Fast) const {
1856 return allowsMemoryAccess(Context, DL, VT, AddrSpace: MMO.getAddrSpace(), Alignment: MMO.getAlign(),
1857 Flags: MMO.getFlags(), Fast);
1858}
1859
1860bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1861 const DataLayout &DL, LLT Ty,
1862 const MachineMemOperand &MMO,
1863 unsigned *Fast) const {
1864 EVT VT = getApproximateEVTForLLT(Ty, DL, Ctx&: Context);
1865 return allowsMemoryAccess(Context, DL, VT, AddrSpace: MMO.getAddrSpace(), Alignment: MMO.getAlign(),
1866 Flags: MMO.getFlags(), Fast);
1867}
1868
1869//===----------------------------------------------------------------------===//
1870// TargetTransformInfo Helpers
1871//===----------------------------------------------------------------------===//
1872
1873int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1874 enum InstructionOpcodes {
1875#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1876#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1877#include "llvm/IR/Instruction.def"
1878 };
1879 switch (static_cast<InstructionOpcodes>(Opcode)) {
1880 case Ret: return 0;
1881 case Br: return 0;
1882 case Switch: return 0;
1883 case IndirectBr: return 0;
1884 case Invoke: return 0;
1885 case CallBr: return 0;
1886 case Resume: return 0;
1887 case Unreachable: return 0;
1888 case CleanupRet: return 0;
1889 case CatchRet: return 0;
1890 case CatchPad: return 0;
1891 case CatchSwitch: return 0;
1892 case CleanupPad: return 0;
1893 case FNeg: return ISD::FNEG;
1894 case Add: return ISD::ADD;
1895 case FAdd: return ISD::FADD;
1896 case Sub: return ISD::SUB;
1897 case FSub: return ISD::FSUB;
1898 case Mul: return ISD::MUL;
1899 case FMul: return ISD::FMUL;
1900 case UDiv: return ISD::UDIV;
1901 case SDiv: return ISD::SDIV;
1902 case FDiv: return ISD::FDIV;
1903 case URem: return ISD::UREM;
1904 case SRem: return ISD::SREM;
1905 case FRem: return ISD::FREM;
1906 case Shl: return ISD::SHL;
1907 case LShr: return ISD::SRL;
1908 case AShr: return ISD::SRA;
1909 case And: return ISD::AND;
1910 case Or: return ISD::OR;
1911 case Xor: return ISD::XOR;
1912 case Alloca: return 0;
1913 case Load: return ISD::LOAD;
1914 case Store: return ISD::STORE;
1915 case GetElementPtr: return 0;
1916 case Fence: return 0;
1917 case AtomicCmpXchg: return 0;
1918 case AtomicRMW: return 0;
1919 case Trunc: return ISD::TRUNCATE;
1920 case ZExt: return ISD::ZERO_EXTEND;
1921 case SExt: return ISD::SIGN_EXTEND;
1922 case FPToUI: return ISD::FP_TO_UINT;
1923 case FPToSI: return ISD::FP_TO_SINT;
1924 case UIToFP: return ISD::UINT_TO_FP;
1925 case SIToFP: return ISD::SINT_TO_FP;
1926 case FPTrunc: return ISD::FP_ROUND;
1927 case FPExt: return ISD::FP_EXTEND;
1928 case PtrToInt: return ISD::BITCAST;
1929 case IntToPtr: return ISD::BITCAST;
1930 case BitCast: return ISD::BITCAST;
1931 case AddrSpaceCast: return ISD::ADDRSPACECAST;
1932 case ICmp: return ISD::SETCC;
1933 case FCmp: return ISD::SETCC;
1934 case PHI: return 0;
1935 case Call: return 0;
1936 case Select: return ISD::SELECT;
1937 case UserOp1: return 0;
1938 case UserOp2: return 0;
1939 case VAArg: return 0;
1940 case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1941 case InsertElement: return ISD::INSERT_VECTOR_ELT;
1942 case ShuffleVector: return ISD::VECTOR_SHUFFLE;
1943 case ExtractValue: return ISD::MERGE_VALUES;
1944 case InsertValue: return ISD::MERGE_VALUES;
1945 case LandingPad: return 0;
1946 case Freeze: return ISD::FREEZE;
1947 }
1948
1949 llvm_unreachable("Unknown instruction type encountered!");
1950}
1951
1952Value *
1953TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilderBase &IRB,
1954 bool UseTLS) const {
1955 // compiler-rt provides a variable with a magic name. Targets that do not
1956 // link with compiler-rt may also provide such a variable.
1957 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1958 const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1959 auto UnsafeStackPtr =
1960 dyn_cast_or_null<GlobalVariable>(Val: M->getNamedValue(Name: UnsafeStackPtrVar));
1961
1962 Type *StackPtrTy = PointerType::getUnqual(C&: M->getContext());
1963
1964 if (!UnsafeStackPtr) {
1965 auto TLSModel = UseTLS ?
1966 GlobalValue::InitialExecTLSModel :
1967 GlobalValue::NotThreadLocal;
1968 // The global variable is not defined yet, define it ourselves.
1969 // We use the initial-exec TLS model because we do not support the
1970 // variable living anywhere other than in the main executable.
1971 UnsafeStackPtr = new GlobalVariable(
1972 *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1973 UnsafeStackPtrVar, nullptr, TLSModel);
1974 } else {
1975 // The variable exists, check its type and attributes.
1976 if (UnsafeStackPtr->getValueType() != StackPtrTy)
1977 report_fatal_error(reason: Twine(UnsafeStackPtrVar) + " must have void* type");
1978 if (UseTLS != UnsafeStackPtr->isThreadLocal())
1979 report_fatal_error(reason: Twine(UnsafeStackPtrVar) + " must " +
1980 (UseTLS ? "" : "not ") + "be thread-local");
1981 }
1982 return UnsafeStackPtr;
1983}
1984
1985Value *
1986TargetLoweringBase::getSafeStackPointerLocation(IRBuilderBase &IRB) const {
1987 if (!TM.getTargetTriple().isAndroid())
1988 return getDefaultSafeStackPointerLocation(IRB, UseTLS: true);
1989
1990 // Android provides a libc function to retrieve the address of the current
1991 // thread's unsafe stack pointer.
1992 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1993 auto *PtrTy = PointerType::getUnqual(C&: M->getContext());
1994 FunctionCallee Fn =
1995 M->getOrInsertFunction(Name: "__safestack_pointer_address", RetTy: PtrTy);
1996 return IRB.CreateCall(Callee: Fn);
1997}
1998
1999//===----------------------------------------------------------------------===//
2000// Loop Strength Reduction hooks
2001//===----------------------------------------------------------------------===//
2002
2003/// isLegalAddressingMode - Return true if the addressing mode represented
2004/// by AM is legal for this target, for a load/store of the specified type.
2005bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
2006 const AddrMode &AM, Type *Ty,
2007 unsigned AS, Instruction *I) const {
2008 // The default implementation of this implements a conservative RISCy, r+r and
2009 // r+i addr mode.
2010
2011 // Allows a sign-extended 16-bit immediate field.
2012 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2013 return false;
2014
2015 // No global is ever allowed as a base.
2016 if (AM.BaseGV)
2017 return false;
2018
2019 // Only support r+r,
2020 switch (AM.Scale) {
2021 case 0: // "r+i" or just "i", depending on HasBaseReg.
2022 break;
2023 case 1:
2024 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
2025 return false;
2026 // Otherwise we have r+r or r+i.
2027 break;
2028 case 2:
2029 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
2030 return false;
2031 // Allow 2*r as r+r.
2032 break;
2033 default: // Don't allow n * r
2034 return false;
2035 }
2036
2037 return true;
2038}
2039
2040//===----------------------------------------------------------------------===//
2041// Stack Protector
2042//===----------------------------------------------------------------------===//
2043
2044// For OpenBSD return its special guard variable. Otherwise return nullptr,
2045// so that SelectionDAG handle SSP.
2046Value *TargetLoweringBase::getIRStackGuard(IRBuilderBase &IRB) const {
2047 if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
2048 Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
2049 PointerType *PtrTy = PointerType::getUnqual(C&: M.getContext());
2050 Constant *C = M.getOrInsertGlobal(Name: "__guard_local", Ty: PtrTy);
2051 if (GlobalVariable *G = dyn_cast_or_null<GlobalVariable>(Val: C))
2052 G->setVisibility(GlobalValue::HiddenVisibility);
2053 return C;
2054 }
2055 return nullptr;
2056}
2057
2058// Currently only support "standard" __stack_chk_guard.
2059// TODO: add LOAD_STACK_GUARD support.
2060void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
2061 if (!M.getNamedValue(Name: "__stack_chk_guard")) {
2062 auto *GV = new GlobalVariable(M, PointerType::getUnqual(C&: M.getContext()),
2063 false, GlobalVariable::ExternalLinkage,
2064 nullptr, "__stack_chk_guard");
2065
2066 // FreeBSD has "__stack_chk_guard" defined externally on libc.so
2067 if (M.getDirectAccessExternalData() &&
2068 !TM.getTargetTriple().isWindowsGNUEnvironment() &&
2069 !TM.getTargetTriple().isOSFreeBSD() &&
2070 (!TM.getTargetTriple().isOSDarwin() ||
2071 TM.getRelocationModel() == Reloc::Static))
2072 GV->setDSOLocal(true);
2073 }
2074}
2075
2076// Currently only support "standard" __stack_chk_guard.
2077// TODO: add LOAD_STACK_GUARD support.
2078Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
2079 return M.getNamedValue(Name: "__stack_chk_guard");
2080}
2081
2082Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
2083 return nullptr;
2084}
2085
2086unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
2087 return MinimumJumpTableEntries;
2088}
2089
2090void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
2091 MinimumJumpTableEntries = Val;
2092}
2093
2094unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
2095 return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
2096}
2097
2098unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
2099 return MaximumJumpTableSize;
2100}
2101
2102void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
2103 MaximumJumpTableSize = Val;
2104}
2105
2106bool TargetLoweringBase::isJumpTableRelative() const {
2107 return getTargetMachine().isPositionIndependent();
2108}
2109
2110Align TargetLoweringBase::getPrefLoopAlignment(MachineLoop *ML) const {
2111 if (TM.Options.LoopAlignment)
2112 return Align(TM.Options.LoopAlignment);
2113 return PrefLoopAlignment;
2114}
2115
2116unsigned TargetLoweringBase::getMaxPermittedBytesForAlignment(
2117 MachineBasicBlock *MBB) const {
2118 return MaxBytesForAlignment;
2119}
2120
2121//===----------------------------------------------------------------------===//
2122// Reciprocal Estimates
2123//===----------------------------------------------------------------------===//
2124
2125/// Get the reciprocal estimate attribute string for a function that will
2126/// override the target defaults.
2127static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
2128 const Function &F = MF.getFunction();
2129 return F.getFnAttribute(Kind: "reciprocal-estimates").getValueAsString();
2130}
2131
2132/// Construct a string for the given reciprocal operation of the given type.
2133/// This string should match the corresponding option to the front-end's
2134/// "-mrecip" flag assuming those strings have been passed through in an
2135/// attribute string. For example, "vec-divf" for a division of a vXf32.
2136static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
2137 std::string Name = VT.isVector() ? "vec-" : "";
2138
2139 Name += IsSqrt ? "sqrt" : "div";
2140
2141 // TODO: Handle other float types?
2142 if (VT.getScalarType() == MVT::f64) {
2143 Name += "d";
2144 } else if (VT.getScalarType() == MVT::f16) {
2145 Name += "h";
2146 } else {
2147 assert(VT.getScalarType() == MVT::f32 &&
2148 "Unexpected FP type for reciprocal estimate");
2149 Name += "f";
2150 }
2151
2152 return Name;
2153}
2154
2155/// Return the character position and value (a single numeric character) of a
2156/// customized refinement operation in the input string if it exists. Return
2157/// false if there is no customized refinement step count.
2158static bool parseRefinementStep(StringRef In, size_t &Position,
2159 uint8_t &Value) {
2160 const char RefStepToken = ':';
2161 Position = In.find(C: RefStepToken);
2162 if (Position == StringRef::npos)
2163 return false;
2164
2165 StringRef RefStepString = In.substr(Start: Position + 1);
2166 // Allow exactly one numeric character for the additional refinement
2167 // step parameter.
2168 if (RefStepString.size() == 1) {
2169 char RefStepChar = RefStepString[0];
2170 if (isDigit(C: RefStepChar)) {
2171 Value = RefStepChar - '0';
2172 return true;
2173 }
2174 }
2175 report_fatal_error(reason: "Invalid refinement step for -recip.");
2176}
2177
2178/// For the input attribute string, return one of the ReciprocalEstimate enum
2179/// status values (enabled, disabled, or not specified) for this operation on
2180/// the specified data type.
2181static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
2182 if (Override.empty())
2183 return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2184
2185 SmallVector<StringRef, 4> OverrideVector;
2186 Override.split(A&: OverrideVector, Separator: ',');
2187 unsigned NumArgs = OverrideVector.size();
2188
2189 // Check if "all", "none", or "default" was specified.
2190 if (NumArgs == 1) {
2191 // Look for an optional setting of the number of refinement steps needed
2192 // for this type of reciprocal operation.
2193 size_t RefPos;
2194 uint8_t RefSteps;
2195 if (parseRefinementStep(In: Override, Position&: RefPos, Value&: RefSteps)) {
2196 // Split the string for further processing.
2197 Override = Override.substr(Start: 0, N: RefPos);
2198 }
2199
2200 // All reciprocal types are enabled.
2201 if (Override == "all")
2202 return TargetLoweringBase::ReciprocalEstimate::Enabled;
2203
2204 // All reciprocal types are disabled.
2205 if (Override == "none")
2206 return TargetLoweringBase::ReciprocalEstimate::Disabled;
2207
2208 // Target defaults for enablement are used.
2209 if (Override == "default")
2210 return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2211 }
2212
2213 // The attribute string may omit the size suffix ('f'/'d').
2214 std::string VTName = getReciprocalOpName(IsSqrt, VT);
2215 std::string VTNameNoSize = VTName;
2216 VTNameNoSize.pop_back();
2217 static const char DisabledPrefix = '!';
2218
2219 for (StringRef RecipType : OverrideVector) {
2220 size_t RefPos;
2221 uint8_t RefSteps;
2222 if (parseRefinementStep(In: RecipType, Position&: RefPos, Value&: RefSteps))
2223 RecipType = RecipType.substr(Start: 0, N: RefPos);
2224
2225 // Ignore the disablement token for string matching.
2226 bool IsDisabled = RecipType[0] == DisabledPrefix;
2227 if (IsDisabled)
2228 RecipType = RecipType.substr(Start: 1);
2229
2230 if (RecipType.equals(RHS: VTName) || RecipType.equals(RHS: VTNameNoSize))
2231 return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
2232 : TargetLoweringBase::ReciprocalEstimate::Enabled;
2233 }
2234
2235 return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2236}
2237
2238/// For the input attribute string, return the customized refinement step count
2239/// for this operation on the specified data type. If the step count does not
2240/// exist, return the ReciprocalEstimate enum value for unspecified.
2241static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
2242 if (Override.empty())
2243 return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2244
2245 SmallVector<StringRef, 4> OverrideVector;
2246 Override.split(A&: OverrideVector, Separator: ',');
2247 unsigned NumArgs = OverrideVector.size();
2248
2249 // Check if "all", "default", or "none" was specified.
2250 if (NumArgs == 1) {
2251 // Look for an optional setting of the number of refinement steps needed
2252 // for this type of reciprocal operation.
2253 size_t RefPos;
2254 uint8_t RefSteps;
2255 if (!parseRefinementStep(In: Override, Position&: RefPos, Value&: RefSteps))
2256 return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2257
2258 // Split the string for further processing.
2259 Override = Override.substr(Start: 0, N: RefPos);
2260 assert(Override != "none" &&
2261 "Disabled reciprocals, but specifed refinement steps?");
2262
2263 // If this is a general override, return the specified number of steps.
2264 if (Override == "all" || Override == "default")
2265 return RefSteps;
2266 }
2267
2268 // The attribute string may omit the size suffix ('f'/'d').
2269 std::string VTName = getReciprocalOpName(IsSqrt, VT);
2270 std::string VTNameNoSize = VTName;
2271 VTNameNoSize.pop_back();
2272
2273 for (StringRef RecipType : OverrideVector) {
2274 size_t RefPos;
2275 uint8_t RefSteps;
2276 if (!parseRefinementStep(In: RecipType, Position&: RefPos, Value&: RefSteps))
2277 continue;
2278
2279 RecipType = RecipType.substr(Start: 0, N: RefPos);
2280 if (RecipType.equals(RHS: VTName) || RecipType.equals(RHS: VTNameNoSize))
2281 return RefSteps;
2282 }
2283
2284 return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2285}
2286
2287int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
2288 MachineFunction &MF) const {
2289 return getOpEnabled(IsSqrt: true, VT, Override: getRecipEstimateForFunc(MF));
2290}
2291
2292int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
2293 MachineFunction &MF) const {
2294 return getOpEnabled(IsSqrt: false, VT, Override: getRecipEstimateForFunc(MF));
2295}
2296
2297int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
2298 MachineFunction &MF) const {
2299 return getOpRefinementSteps(IsSqrt: true, VT, Override: getRecipEstimateForFunc(MF));
2300}
2301
2302int TargetLoweringBase::getDivRefinementSteps(EVT VT,
2303 MachineFunction &MF) const {
2304 return getOpRefinementSteps(IsSqrt: false, VT, Override: getRecipEstimateForFunc(MF));
2305}
2306
2307bool TargetLoweringBase::isLoadBitCastBeneficial(
2308 EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG,
2309 const MachineMemOperand &MMO) const {
2310 // Single-element vectors are scalarized, so we should generally avoid having
2311 // any memory operations on such types, as they would get scalarized too.
2312 if (LoadVT.isFixedLengthVector() && BitcastVT.isFixedLengthVector() &&
2313 BitcastVT.getVectorNumElements() == 1)
2314 return false;
2315
2316 // Don't do if we could do an indexed load on the original type, but not on
2317 // the new one.
2318 if (!LoadVT.isSimple() || !BitcastVT.isSimple())
2319 return true;
2320
2321 MVT LoadMVT = LoadVT.getSimpleVT();
2322
2323 // Don't bother doing this if it's just going to be promoted again later, as
2324 // doing so might interfere with other combines.
2325 if (getOperationAction(Op: ISD::LOAD, VT: LoadMVT) == Promote &&
2326 getTypeToPromoteTo(Op: ISD::LOAD, VT: LoadMVT) == BitcastVT.getSimpleVT())
2327 return false;
2328
2329 unsigned Fast = 0;
2330 return allowsMemoryAccess(Context&: *DAG.getContext(), DL: DAG.getDataLayout(), VT: BitcastVT,
2331 MMO, Fast: &Fast) &&
2332 Fast;
2333}
2334
2335void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
2336 MF.getRegInfo().freezeReservedRegs(MF);
2337}
2338
2339MachineMemOperand::Flags TargetLoweringBase::getLoadMemOperandFlags(
2340 const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC,
2341 const TargetLibraryInfo *LibInfo) const {
2342 MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad;
2343 if (LI.isVolatile())
2344 Flags |= MachineMemOperand::MOVolatile;
2345
2346 if (LI.hasMetadata(KindID: LLVMContext::MD_nontemporal))
2347 Flags |= MachineMemOperand::MONonTemporal;
2348
2349 if (LI.hasMetadata(KindID: LLVMContext::MD_invariant_load))
2350 Flags |= MachineMemOperand::MOInvariant;
2351
2352 if (isDereferenceableAndAlignedPointer(V: LI.getPointerOperand(), Ty: LI.getType(),
2353 Alignment: LI.getAlign(), DL, CtxI: &LI, AC,
2354 /*DT=*/nullptr, TLI: LibInfo))
2355 Flags |= MachineMemOperand::MODereferenceable;
2356
2357 Flags |= getTargetMMOFlags(I: LI);
2358 return Flags;
2359}
2360
2361MachineMemOperand::Flags
2362TargetLoweringBase::getStoreMemOperandFlags(const StoreInst &SI,
2363 const DataLayout &DL) const {
2364 MachineMemOperand::Flags Flags = MachineMemOperand::MOStore;
2365
2366 if (SI.isVolatile())
2367 Flags |= MachineMemOperand::MOVolatile;
2368
2369 if (SI.hasMetadata(KindID: LLVMContext::MD_nontemporal))
2370 Flags |= MachineMemOperand::MONonTemporal;
2371
2372 // FIXME: Not preserving dereferenceable
2373 Flags |= getTargetMMOFlags(I: SI);
2374 return Flags;
2375}
2376
2377MachineMemOperand::Flags
2378TargetLoweringBase::getAtomicMemOperandFlags(const Instruction &AI,
2379 const DataLayout &DL) const {
2380 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
2381
2382 if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Val: &AI)) {
2383 if (RMW->isVolatile())
2384 Flags |= MachineMemOperand::MOVolatile;
2385 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Val: &AI)) {
2386 if (CmpX->isVolatile())
2387 Flags |= MachineMemOperand::MOVolatile;
2388 } else
2389 llvm_unreachable("not an atomic instruction");
2390
2391 // FIXME: Not preserving dereferenceable
2392 Flags |= getTargetMMOFlags(I: AI);
2393 return Flags;
2394}
2395
2396Instruction *TargetLoweringBase::emitLeadingFence(IRBuilderBase &Builder,
2397 Instruction *Inst,
2398 AtomicOrdering Ord) const {
2399 if (isReleaseOrStronger(AO: Ord) && Inst->hasAtomicStore())
2400 return Builder.CreateFence(Ordering: Ord);
2401 else
2402 return nullptr;
2403}
2404
2405Instruction *TargetLoweringBase::emitTrailingFence(IRBuilderBase &Builder,
2406 Instruction *Inst,
2407 AtomicOrdering Ord) const {
2408 if (isAcquireOrStronger(AO: Ord))
2409 return Builder.CreateFence(Ordering: Ord);
2410 else
2411 return nullptr;
2412}
2413
2414//===----------------------------------------------------------------------===//
2415// GlobalISel Hooks
2416//===----------------------------------------------------------------------===//
2417
2418bool TargetLoweringBase::shouldLocalize(const MachineInstr &MI,
2419 const TargetTransformInfo *TTI) const {
2420 auto &MF = *MI.getMF();
2421 auto &MRI = MF.getRegInfo();
2422 // Assuming a spill and reload of a value has a cost of 1 instruction each,
2423 // this helper function computes the maximum number of uses we should consider
2424 // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We
2425 // break even in terms of code size when the original MI has 2 users vs
2426 // choosing to potentially spill. Any more than 2 users we we have a net code
2427 // size increase. This doesn't take into account register pressure though.
2428 auto maxUses = [](unsigned RematCost) {
2429 // A cost of 1 means remats are basically free.
2430 if (RematCost == 1)
2431 return std::numeric_limits<unsigned>::max();
2432 if (RematCost == 2)
2433 return 2U;
2434
2435 // Remat is too expensive, only sink if there's one user.
2436 if (RematCost > 2)
2437 return 1U;
2438 llvm_unreachable("Unexpected remat cost");
2439 };
2440
2441 switch (MI.getOpcode()) {
2442 default:
2443 return false;
2444 // Constants-like instructions should be close to their users.
2445 // We don't want long live-ranges for them.
2446 case TargetOpcode::G_CONSTANT:
2447 case TargetOpcode::G_FCONSTANT:
2448 case TargetOpcode::G_FRAME_INDEX:
2449 case TargetOpcode::G_INTTOPTR:
2450 return true;
2451 case TargetOpcode::G_GLOBAL_VALUE: {
2452 unsigned RematCost = TTI->getGISelRematGlobalCost();
2453 Register Reg = MI.getOperand(i: 0).getReg();
2454 unsigned MaxUses = maxUses(RematCost);
2455 if (MaxUses == UINT_MAX)
2456 return true; // Remats are "free" so always localize.
2457 return MRI.hasAtMostUserInstrs(Reg, MaxUsers: MaxUses);
2458 }
2459 }
2460}
2461

source code of llvm/lib/CodeGen/TargetLoweringBase.cpp