1//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the common interface used by the various execution engine
10// subclasses.
11//
12// FIXME: This file needs to be updated to support scalable vectors
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/ExecutionEngine/ExecutionEngine.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SmallString.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/ExecutionEngine/GenericValue.h"
21#include "llvm/ExecutionEngine/JITEventListener.h"
22#include "llvm/ExecutionEngine/ObjectCache.h"
23#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
24#include "llvm/IR/Constants.h"
25#include "llvm/IR/DataLayout.h"
26#include "llvm/IR/DerivedTypes.h"
27#include "llvm/IR/Mangler.h"
28#include "llvm/IR/Module.h"
29#include "llvm/IR/Operator.h"
30#include "llvm/IR/ValueHandle.h"
31#include "llvm/MC/TargetRegistry.h"
32#include "llvm/Object/Archive.h"
33#include "llvm/Object/ObjectFile.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/DynamicLibrary.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/Target/TargetMachine.h"
39#include "llvm/TargetParser/Host.h"
40#include <cmath>
41#include <cstring>
42#include <mutex>
43using namespace llvm;
44
45#define DEBUG_TYPE "jit"
46
47STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
48STATISTIC(NumGlobals , "Number of global vars initialized");
49
50ExecutionEngine *(*ExecutionEngine::MCJITCtor)(
51 std::unique_ptr<Module> M, std::string *ErrorStr,
52 std::shared_ptr<MCJITMemoryManager> MemMgr,
53 std::shared_ptr<LegacyJITSymbolResolver> Resolver,
54 std::unique_ptr<TargetMachine> TM) = nullptr;
55
56ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M,
57 std::string *ErrorStr) =nullptr;
58
59void JITEventListener::anchor() {}
60
61void ObjectCache::anchor() {}
62
63void ExecutionEngine::Init(std::unique_ptr<Module> M) {
64 CompilingLazily = false;
65 GVCompilationDisabled = false;
66 SymbolSearchingDisabled = false;
67
68 // IR module verification is enabled by default in debug builds, and disabled
69 // by default in release builds.
70#ifndef NDEBUG
71 VerifyModules = true;
72#else
73 VerifyModules = false;
74#endif
75
76 assert(M && "Module is null?");
77 Modules.push_back(Elt: std::move(M));
78}
79
80ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M)
81 : DL(M->getDataLayout()), LazyFunctionCreator(nullptr) {
82 Init(M: std::move(M));
83}
84
85ExecutionEngine::ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M)
86 : DL(std::move(DL)), LazyFunctionCreator(nullptr) {
87 Init(M: std::move(M));
88}
89
90ExecutionEngine::~ExecutionEngine() {
91 clearAllGlobalMappings();
92}
93
94namespace {
95/// Helper class which uses a value handler to automatically deletes the
96/// memory block when the GlobalVariable is destroyed.
97class GVMemoryBlock final : public CallbackVH {
98 GVMemoryBlock(const GlobalVariable *GV)
99 : CallbackVH(const_cast<GlobalVariable*>(GV)) {}
100
101public:
102 /// Returns the address the GlobalVariable should be written into. The
103 /// GVMemoryBlock object prefixes that.
104 static char *Create(const GlobalVariable *GV, const DataLayout& TD) {
105 Type *ElTy = GV->getValueType();
106 size_t GVSize = (size_t)TD.getTypeAllocSize(Ty: ElTy);
107 void *RawMemory = ::operator new(
108 alignTo(Size: sizeof(GVMemoryBlock), A: TD.getPreferredAlign(GV)) + GVSize);
109 new(RawMemory) GVMemoryBlock(GV);
110 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock);
111 }
112
113 void deleted() override {
114 // We allocated with operator new and with some extra memory hanging off the
115 // end, so don't just delete this. I'm not sure if this is actually
116 // required.
117 this->~GVMemoryBlock();
118 ::operator delete(this);
119 }
120};
121} // anonymous namespace
122
123char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) {
124 return GVMemoryBlock::Create(GV, TD: getDataLayout());
125}
126
127void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) {
128 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile.");
129}
130
131void
132ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) {
133 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile.");
134}
135
136void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) {
137 llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive.");
138}
139
140bool ExecutionEngine::removeModule(Module *M) {
141 for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) {
142 Module *Found = I->get();
143 if (Found == M) {
144 I->release();
145 Modules.erase(CI: I);
146 clearGlobalMappingsFromModule(M);
147 return true;
148 }
149 }
150 return false;
151}
152
153Function *ExecutionEngine::FindFunctionNamed(StringRef FnName) {
154 for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
155 Function *F = Modules[i]->getFunction(Name: FnName);
156 if (F && !F->isDeclaration())
157 return F;
158 }
159 return nullptr;
160}
161
162GlobalVariable *ExecutionEngine::FindGlobalVariableNamed(StringRef Name, bool AllowInternal) {
163 for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
164 GlobalVariable *GV = Modules[i]->getGlobalVariable(Name,AllowInternal);
165 if (GV && !GV->isDeclaration())
166 return GV;
167 }
168 return nullptr;
169}
170
171uint64_t ExecutionEngineState::RemoveMapping(StringRef Name) {
172 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(Key: Name);
173 uint64_t OldVal;
174
175 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the
176 // GlobalAddressMap.
177 if (I == GlobalAddressMap.end())
178 OldVal = 0;
179 else {
180 GlobalAddressReverseMap.erase(x: I->second);
181 OldVal = I->second;
182 GlobalAddressMap.erase(I);
183 }
184
185 return OldVal;
186}
187
188std::string ExecutionEngine::getMangledName(const GlobalValue *GV) {
189 assert(GV->hasName() && "Global must have name.");
190
191 std::lock_guard<sys::Mutex> locked(lock);
192 SmallString<128> FullName;
193
194 const DataLayout &DL =
195 GV->getParent()->getDataLayout().isDefault()
196 ? getDataLayout()
197 : GV->getParent()->getDataLayout();
198
199 Mangler::getNameWithPrefix(OutName&: FullName, GVName: GV->getName(), DL);
200 return std::string(FullName);
201}
202
203void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
204 std::lock_guard<sys::Mutex> locked(lock);
205 addGlobalMapping(Name: getMangledName(GV), Addr: (uint64_t) Addr);
206}
207
208void ExecutionEngine::addGlobalMapping(StringRef Name, uint64_t Addr) {
209 std::lock_guard<sys::Mutex> locked(lock);
210
211 assert(!Name.empty() && "Empty GlobalMapping symbol name!");
212
213 LLVM_DEBUG(dbgs() << "JIT: Map \'" << Name << "\' to [" << Addr << "]\n";);
214 uint64_t &CurVal = EEState.getGlobalAddressMap()[Name];
215 assert((!CurVal || !Addr) && "GlobalMapping already established!");
216 CurVal = Addr;
217
218 // If we are using the reverse mapping, add it too.
219 if (!EEState.getGlobalAddressReverseMap().empty()) {
220 std::string &V = EEState.getGlobalAddressReverseMap()[CurVal];
221 assert((!V.empty() || !Name.empty()) &&
222 "GlobalMapping already established!");
223 V = std::string(Name);
224 }
225}
226
227void ExecutionEngine::clearAllGlobalMappings() {
228 std::lock_guard<sys::Mutex> locked(lock);
229
230 EEState.getGlobalAddressMap().clear();
231 EEState.getGlobalAddressReverseMap().clear();
232}
233
234void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
235 std::lock_guard<sys::Mutex> locked(lock);
236
237 for (GlobalObject &GO : M->global_objects())
238 EEState.RemoveMapping(Name: getMangledName(GV: &GO));
239}
240
241uint64_t ExecutionEngine::updateGlobalMapping(const GlobalValue *GV,
242 void *Addr) {
243 std::lock_guard<sys::Mutex> locked(lock);
244 return updateGlobalMapping(Name: getMangledName(GV), Addr: (uint64_t) Addr);
245}
246
247uint64_t ExecutionEngine::updateGlobalMapping(StringRef Name, uint64_t Addr) {
248 std::lock_guard<sys::Mutex> locked(lock);
249
250 ExecutionEngineState::GlobalAddressMapTy &Map =
251 EEState.getGlobalAddressMap();
252
253 // Deleting from the mapping?
254 if (!Addr)
255 return EEState.RemoveMapping(Name);
256
257 uint64_t &CurVal = Map[Name];
258 uint64_t OldVal = CurVal;
259
260 if (CurVal && !EEState.getGlobalAddressReverseMap().empty())
261 EEState.getGlobalAddressReverseMap().erase(x: CurVal);
262 CurVal = Addr;
263
264 // If we are using the reverse mapping, add it too.
265 if (!EEState.getGlobalAddressReverseMap().empty()) {
266 std::string &V = EEState.getGlobalAddressReverseMap()[CurVal];
267 assert((!V.empty() || !Name.empty()) &&
268 "GlobalMapping already established!");
269 V = std::string(Name);
270 }
271 return OldVal;
272}
273
274uint64_t ExecutionEngine::getAddressToGlobalIfAvailable(StringRef S) {
275 std::lock_guard<sys::Mutex> locked(lock);
276 uint64_t Address = 0;
277 ExecutionEngineState::GlobalAddressMapTy::iterator I =
278 EEState.getGlobalAddressMap().find(Key: S);
279 if (I != EEState.getGlobalAddressMap().end())
280 Address = I->second;
281 return Address;
282}
283
284
285void *ExecutionEngine::getPointerToGlobalIfAvailable(StringRef S) {
286 std::lock_guard<sys::Mutex> locked(lock);
287 if (void* Address = (void *) getAddressToGlobalIfAvailable(S))
288 return Address;
289 return nullptr;
290}
291
292void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
293 std::lock_guard<sys::Mutex> locked(lock);
294 return getPointerToGlobalIfAvailable(S: getMangledName(GV));
295}
296
297const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
298 std::lock_guard<sys::Mutex> locked(lock);
299
300 // If we haven't computed the reverse mapping yet, do so first.
301 if (EEState.getGlobalAddressReverseMap().empty()) {
302 for (ExecutionEngineState::GlobalAddressMapTy::iterator
303 I = EEState.getGlobalAddressMap().begin(),
304 E = EEState.getGlobalAddressMap().end(); I != E; ++I) {
305 StringRef Name = I->first();
306 uint64_t Addr = I->second;
307 EEState.getGlobalAddressReverseMap().insert(
308 x: std::make_pair(x&: Addr, y: std::string(Name)));
309 }
310 }
311
312 std::map<uint64_t, std::string>::iterator I =
313 EEState.getGlobalAddressReverseMap().find(x: (uint64_t) Addr);
314
315 if (I != EEState.getGlobalAddressReverseMap().end()) {
316 StringRef Name = I->second;
317 for (unsigned i = 0, e = Modules.size(); i != e; ++i)
318 if (GlobalValue *GV = Modules[i]->getNamedValue(Name))
319 return GV;
320 }
321 return nullptr;
322}
323
324namespace {
325class ArgvArray {
326 std::unique_ptr<char[]> Array;
327 std::vector<std::unique_ptr<char[]>> Values;
328public:
329 /// Turn a vector of strings into a nice argv style array of pointers to null
330 /// terminated strings.
331 void *reset(LLVMContext &C, ExecutionEngine *EE,
332 const std::vector<std::string> &InputArgv);
333};
334} // anonymous namespace
335void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE,
336 const std::vector<std::string> &InputArgv) {
337 Values.clear(); // Free the old contents.
338 Values.reserve(n: InputArgv.size());
339 unsigned PtrSize = EE->getDataLayout().getPointerSize();
340 Array = std::make_unique<char[]>(num: (InputArgv.size()+1)*PtrSize);
341
342 LLVM_DEBUG(dbgs() << "JIT: ARGV = " << (void *)Array.get() << "\n");
343 Type *SBytePtr = PointerType::getUnqual(C);
344
345 for (unsigned i = 0; i != InputArgv.size(); ++i) {
346 unsigned Size = InputArgv[i].size()+1;
347 auto Dest = std::make_unique<char[]>(num: Size);
348 LLVM_DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void *)Dest.get()
349 << "\n");
350
351 std::copy(first: InputArgv[i].begin(), last: InputArgv[i].end(), result: Dest.get());
352 Dest[Size-1] = 0;
353
354 // Endian safe: Array[i] = (PointerTy)Dest;
355 EE->StoreValueToMemory(Val: PTOGV(P: Dest.get()),
356 Ptr: (GenericValue*)(&Array[i*PtrSize]), Ty: SBytePtr);
357 Values.push_back(x: std::move(Dest));
358 }
359
360 // Null terminate it
361 EE->StoreValueToMemory(Val: PTOGV(P: nullptr),
362 Ptr: (GenericValue*)(&Array[InputArgv.size()*PtrSize]),
363 Ty: SBytePtr);
364 return Array.get();
365}
366
367void ExecutionEngine::runStaticConstructorsDestructors(Module &module,
368 bool isDtors) {
369 StringRef Name(isDtors ? "llvm.global_dtors" : "llvm.global_ctors");
370 GlobalVariable *GV = module.getNamedGlobal(Name);
371
372 // If this global has internal linkage, or if it has a use, then it must be
373 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If
374 // this is the case, don't execute any of the global ctors, __main will do
375 // it.
376 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
377
378 // Should be an array of '{ i32, void ()* }' structs. The first value is
379 // the init priority, which we ignore.
380 ConstantArray *InitList = dyn_cast<ConstantArray>(Val: GV->getInitializer());
381 if (!InitList)
382 return;
383 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
384 ConstantStruct *CS = dyn_cast<ConstantStruct>(Val: InitList->getOperand(i_nocapture: i));
385 if (!CS) continue;
386
387 Constant *FP = CS->getOperand(i_nocapture: 1);
388 if (FP->isNullValue())
389 continue; // Found a sentinel value, ignore.
390
391 // Strip off constant expression casts.
392 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Val: FP))
393 if (CE->isCast())
394 FP = CE->getOperand(i_nocapture: 0);
395
396 // Execute the ctor/dtor function!
397 if (Function *F = dyn_cast<Function>(Val: FP))
398 runFunction(F, ArgValues: std::nullopt);
399
400 // FIXME: It is marginally lame that we just do nothing here if we see an
401 // entry we don't recognize. It might not be unreasonable for the verifier
402 // to not even allow this and just assert here.
403 }
404}
405
406void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
407 // Execute global ctors/dtors for each module in the program.
408 for (std::unique_ptr<Module> &M : Modules)
409 runStaticConstructorsDestructors(module&: *M, isDtors);
410}
411
412#ifndef NDEBUG
413/// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
414static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
415 unsigned PtrSize = EE->getDataLayout().getPointerSize();
416 for (unsigned i = 0; i < PtrSize; ++i)
417 if (*(i + (uint8_t*)Loc))
418 return false;
419 return true;
420}
421#endif
422
423int ExecutionEngine::runFunctionAsMain(Function *Fn,
424 const std::vector<std::string> &argv,
425 const char * const * envp) {
426 std::vector<GenericValue> GVArgs;
427 GenericValue GVArgc;
428 GVArgc.IntVal = APInt(32, argv.size());
429
430 // Check main() type
431 unsigned NumArgs = Fn->getFunctionType()->getNumParams();
432 FunctionType *FTy = Fn->getFunctionType();
433 Type *PPInt8Ty = PointerType::get(C&: Fn->getContext(), AddressSpace: 0);
434
435 // Check the argument types.
436 if (NumArgs > 3)
437 report_fatal_error(reason: "Invalid number of arguments of main() supplied");
438 if (NumArgs >= 3 && FTy->getParamType(i: 2) != PPInt8Ty)
439 report_fatal_error(reason: "Invalid type for third argument of main() supplied");
440 if (NumArgs >= 2 && FTy->getParamType(i: 1) != PPInt8Ty)
441 report_fatal_error(reason: "Invalid type for second argument of main() supplied");
442 if (NumArgs >= 1 && !FTy->getParamType(i: 0)->isIntegerTy(Bitwidth: 32))
443 report_fatal_error(reason: "Invalid type for first argument of main() supplied");
444 if (!FTy->getReturnType()->isIntegerTy() &&
445 !FTy->getReturnType()->isVoidTy())
446 report_fatal_error(reason: "Invalid return type of main() supplied");
447
448 ArgvArray CArgv;
449 ArgvArray CEnv;
450 if (NumArgs) {
451 GVArgs.push_back(x: GVArgc); // Arg #0 = argc.
452 if (NumArgs > 1) {
453 // Arg #1 = argv.
454 GVArgs.push_back(x: PTOGV(P: CArgv.reset(C&: Fn->getContext(), EE: this, InputArgv: argv)));
455 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
456 "argv[0] was null after CreateArgv");
457 if (NumArgs > 2) {
458 std::vector<std::string> EnvVars;
459 for (unsigned i = 0; envp[i]; ++i)
460 EnvVars.emplace_back(args: envp[i]);
461 // Arg #2 = envp.
462 GVArgs.push_back(x: PTOGV(P: CEnv.reset(C&: Fn->getContext(), EE: this, InputArgv: EnvVars)));
463 }
464 }
465 }
466
467 return runFunction(F: Fn, ArgValues: GVArgs).IntVal.getZExtValue();
468}
469
470EngineBuilder::EngineBuilder() : EngineBuilder(nullptr) {}
471
472EngineBuilder::EngineBuilder(std::unique_ptr<Module> M)
473 : M(std::move(M)), WhichEngine(EngineKind::Either), ErrorStr(nullptr),
474 OptLevel(CodeGenOptLevel::Default), MemMgr(nullptr), Resolver(nullptr) {
475// IR module verification is enabled by default in debug builds, and disabled
476// by default in release builds.
477#ifndef NDEBUG
478 VerifyModules = true;
479#else
480 VerifyModules = false;
481#endif
482}
483
484EngineBuilder::~EngineBuilder() = default;
485
486EngineBuilder &EngineBuilder::setMCJITMemoryManager(
487 std::unique_ptr<RTDyldMemoryManager> mcjmm) {
488 auto SharedMM = std::shared_ptr<RTDyldMemoryManager>(std::move(mcjmm));
489 MemMgr = SharedMM;
490 Resolver = SharedMM;
491 return *this;
492}
493
494EngineBuilder&
495EngineBuilder::setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM) {
496 MemMgr = std::shared_ptr<MCJITMemoryManager>(std::move(MM));
497 return *this;
498}
499
500EngineBuilder &
501EngineBuilder::setSymbolResolver(std::unique_ptr<LegacyJITSymbolResolver> SR) {
502 Resolver = std::shared_ptr<LegacyJITSymbolResolver>(std::move(SR));
503 return *this;
504}
505
506ExecutionEngine *EngineBuilder::create(TargetMachine *TM) {
507 std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership.
508
509 // Make sure we can resolve symbols in the program as well. The zero arg
510 // to the function tells DynamicLibrary to load the program, not a library.
511 if (sys::DynamicLibrary::LoadLibraryPermanently(Filename: nullptr, ErrMsg: ErrorStr))
512 return nullptr;
513
514 // If the user specified a memory manager but didn't specify which engine to
515 // create, we assume they only want the JIT, and we fail if they only want
516 // the interpreter.
517 if (MemMgr) {
518 if (WhichEngine & EngineKind::JIT)
519 WhichEngine = EngineKind::JIT;
520 else {
521 if (ErrorStr)
522 *ErrorStr = "Cannot create an interpreter with a memory manager.";
523 return nullptr;
524 }
525 }
526
527 // Unless the interpreter was explicitly selected or the JIT is not linked,
528 // try making a JIT.
529 if ((WhichEngine & EngineKind::JIT) && TheTM) {
530 if (!TM->getTarget().hasJIT()) {
531 errs() << "WARNING: This target JIT is not designed for the host"
532 << " you are running. If bad things happen, please choose"
533 << " a different -march switch.\n";
534 }
535
536 ExecutionEngine *EE = nullptr;
537 if (ExecutionEngine::MCJITCtor)
538 EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MemMgr),
539 std::move(Resolver), std::move(TheTM));
540
541 if (EE) {
542 EE->setVerifyModules(VerifyModules);
543 return EE;
544 }
545 }
546
547 // If we can't make a JIT and we didn't request one specifically, try making
548 // an interpreter instead.
549 if (WhichEngine & EngineKind::Interpreter) {
550 if (ExecutionEngine::InterpCtor)
551 return ExecutionEngine::InterpCtor(std::move(M), ErrorStr);
552 if (ErrorStr)
553 *ErrorStr = "Interpreter has not been linked in.";
554 return nullptr;
555 }
556
557 if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) {
558 if (ErrorStr)
559 *ErrorStr = "JIT has not been linked in.";
560 }
561
562 return nullptr;
563}
564
565void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
566 if (Function *F = const_cast<Function*>(dyn_cast<Function>(Val: GV)))
567 return getPointerToFunction(F);
568
569 std::lock_guard<sys::Mutex> locked(lock);
570 if (void* P = getPointerToGlobalIfAvailable(GV))
571 return P;
572
573 // Global variable might have been added since interpreter started.
574 if (GlobalVariable *GVar =
575 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(Val: GV)))
576 emitGlobalVariable(GV: GVar);
577 else
578 llvm_unreachable("Global hasn't had an address allocated yet!");
579
580 return getPointerToGlobalIfAvailable(GV);
581}
582
583/// Converts a Constant* into a GenericValue, including handling of
584/// ConstantExpr values.
585GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
586 // If its undefined, return the garbage.
587 if (isa<UndefValue>(Val: C)) {
588 GenericValue Result;
589 switch (C->getType()->getTypeID()) {
590 default:
591 break;
592 case Type::IntegerTyID:
593 case Type::X86_FP80TyID:
594 case Type::FP128TyID:
595 case Type::PPC_FP128TyID:
596 // Although the value is undefined, we still have to construct an APInt
597 // with the correct bit width.
598 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0);
599 break;
600 case Type::StructTyID: {
601 // if the whole struct is 'undef' just reserve memory for the value.
602 if(StructType *STy = dyn_cast<StructType>(Val: C->getType())) {
603 unsigned int elemNum = STy->getNumElements();
604 Result.AggregateVal.resize(new_size: elemNum);
605 for (unsigned int i = 0; i < elemNum; ++i) {
606 Type *ElemTy = STy->getElementType(N: i);
607 if (ElemTy->isIntegerTy())
608 Result.AggregateVal[i].IntVal =
609 APInt(ElemTy->getPrimitiveSizeInBits(), 0);
610 else if (ElemTy->isAggregateType()) {
611 const Constant *ElemUndef = UndefValue::get(T: ElemTy);
612 Result.AggregateVal[i] = getConstantValue(C: ElemUndef);
613 }
614 }
615 }
616 }
617 break;
618 case Type::ScalableVectorTyID:
619 report_fatal_error(
620 reason: "Scalable vector support not yet implemented in ExecutionEngine");
621 case Type::ArrayTyID: {
622 auto *ArrTy = cast<ArrayType>(Val: C->getType());
623 Type *ElemTy = ArrTy->getElementType();
624 unsigned int elemNum = ArrTy->getNumElements();
625 Result.AggregateVal.resize(new_size: elemNum);
626 if (ElemTy->isIntegerTy())
627 for (unsigned int i = 0; i < elemNum; ++i)
628 Result.AggregateVal[i].IntVal =
629 APInt(ElemTy->getPrimitiveSizeInBits(), 0);
630 break;
631 }
632 case Type::FixedVectorTyID: {
633 // if the whole vector is 'undef' just reserve memory for the value.
634 auto *VTy = cast<FixedVectorType>(Val: C->getType());
635 Type *ElemTy = VTy->getElementType();
636 unsigned int elemNum = VTy->getNumElements();
637 Result.AggregateVal.resize(new_size: elemNum);
638 if (ElemTy->isIntegerTy())
639 for (unsigned int i = 0; i < elemNum; ++i)
640 Result.AggregateVal[i].IntVal =
641 APInt(ElemTy->getPrimitiveSizeInBits(), 0);
642 break;
643 }
644 }
645 return Result;
646 }
647
648 // Otherwise, if the value is a ConstantExpr...
649 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Val: C)) {
650 Constant *Op0 = CE->getOperand(i_nocapture: 0);
651 switch (CE->getOpcode()) {
652 case Instruction::GetElementPtr: {
653 // Compute the index
654 GenericValue Result = getConstantValue(C: Op0);
655 APInt Offset(DL.getPointerSizeInBits(), 0);
656 cast<GEPOperator>(Val: CE)->accumulateConstantOffset(DL, Offset);
657
658 char* tmp = (char*) Result.PointerVal;
659 Result = PTOGV(P: tmp + Offset.getSExtValue());
660 return Result;
661 }
662 case Instruction::Trunc: {
663 GenericValue GV = getConstantValue(C: Op0);
664 uint32_t BitWidth = cast<IntegerType>(Val: CE->getType())->getBitWidth();
665 GV.IntVal = GV.IntVal.trunc(width: BitWidth);
666 return GV;
667 }
668 case Instruction::ZExt: {
669 GenericValue GV = getConstantValue(C: Op0);
670 uint32_t BitWidth = cast<IntegerType>(Val: CE->getType())->getBitWidth();
671 GV.IntVal = GV.IntVal.zext(width: BitWidth);
672 return GV;
673 }
674 case Instruction::SExt: {
675 GenericValue GV = getConstantValue(C: Op0);
676 uint32_t BitWidth = cast<IntegerType>(Val: CE->getType())->getBitWidth();
677 GV.IntVal = GV.IntVal.sext(width: BitWidth);
678 return GV;
679 }
680 case Instruction::FPTrunc: {
681 // FIXME long double
682 GenericValue GV = getConstantValue(C: Op0);
683 GV.FloatVal = float(GV.DoubleVal);
684 return GV;
685 }
686 case Instruction::FPExt:{
687 // FIXME long double
688 GenericValue GV = getConstantValue(C: Op0);
689 GV.DoubleVal = double(GV.FloatVal);
690 return GV;
691 }
692 case Instruction::UIToFP: {
693 GenericValue GV = getConstantValue(C: Op0);
694 if (CE->getType()->isFloatTy())
695 GV.FloatVal = float(GV.IntVal.roundToDouble());
696 else if (CE->getType()->isDoubleTy())
697 GV.DoubleVal = GV.IntVal.roundToDouble();
698 else if (CE->getType()->isX86_FP80Ty()) {
699 APFloat apf = APFloat::getZero(Sem: APFloat::x87DoubleExtended());
700 (void)apf.convertFromAPInt(Input: GV.IntVal,
701 IsSigned: false,
702 RM: APFloat::rmNearestTiesToEven);
703 GV.IntVal = apf.bitcastToAPInt();
704 }
705 return GV;
706 }
707 case Instruction::SIToFP: {
708 GenericValue GV = getConstantValue(C: Op0);
709 if (CE->getType()->isFloatTy())
710 GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
711 else if (CE->getType()->isDoubleTy())
712 GV.DoubleVal = GV.IntVal.signedRoundToDouble();
713 else if (CE->getType()->isX86_FP80Ty()) {
714 APFloat apf = APFloat::getZero(Sem: APFloat::x87DoubleExtended());
715 (void)apf.convertFromAPInt(Input: GV.IntVal,
716 IsSigned: true,
717 RM: APFloat::rmNearestTiesToEven);
718 GV.IntVal = apf.bitcastToAPInt();
719 }
720 return GV;
721 }
722 case Instruction::FPToUI: // double->APInt conversion handles sign
723 case Instruction::FPToSI: {
724 GenericValue GV = getConstantValue(C: Op0);
725 uint32_t BitWidth = cast<IntegerType>(Val: CE->getType())->getBitWidth();
726 if (Op0->getType()->isFloatTy())
727 GV.IntVal = APIntOps::RoundFloatToAPInt(Float: GV.FloatVal, width: BitWidth);
728 else if (Op0->getType()->isDoubleTy())
729 GV.IntVal = APIntOps::RoundDoubleToAPInt(Double: GV.DoubleVal, width: BitWidth);
730 else if (Op0->getType()->isX86_FP80Ty()) {
731 APFloat apf = APFloat(APFloat::x87DoubleExtended(), GV.IntVal);
732 uint64_t v;
733 bool ignored;
734 (void)apf.convertToInteger(Input: MutableArrayRef(v), Width: BitWidth,
735 IsSigned: CE->getOpcode()==Instruction::FPToSI,
736 RM: APFloat::rmTowardZero, IsExact: &ignored);
737 GV.IntVal = v; // endian?
738 }
739 return GV;
740 }
741 case Instruction::PtrToInt: {
742 GenericValue GV = getConstantValue(C: Op0);
743 uint32_t PtrWidth = DL.getTypeSizeInBits(Ty: Op0->getType());
744 assert(PtrWidth <= 64 && "Bad pointer width");
745 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
746 uint32_t IntWidth = DL.getTypeSizeInBits(Ty: CE->getType());
747 GV.IntVal = GV.IntVal.zextOrTrunc(width: IntWidth);
748 return GV;
749 }
750 case Instruction::IntToPtr: {
751 GenericValue GV = getConstantValue(C: Op0);
752 uint32_t PtrWidth = DL.getTypeSizeInBits(Ty: CE->getType());
753 GV.IntVal = GV.IntVal.zextOrTrunc(width: PtrWidth);
754 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
755 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
756 return GV;
757 }
758 case Instruction::BitCast: {
759 GenericValue GV = getConstantValue(C: Op0);
760 Type* DestTy = CE->getType();
761 switch (Op0->getType()->getTypeID()) {
762 default: llvm_unreachable("Invalid bitcast operand");
763 case Type::IntegerTyID:
764 assert(DestTy->isFloatingPointTy() && "invalid bitcast");
765 if (DestTy->isFloatTy())
766 GV.FloatVal = GV.IntVal.bitsToFloat();
767 else if (DestTy->isDoubleTy())
768 GV.DoubleVal = GV.IntVal.bitsToDouble();
769 break;
770 case Type::FloatTyID:
771 assert(DestTy->isIntegerTy(32) && "Invalid bitcast");
772 GV.IntVal = APInt::floatToBits(V: GV.FloatVal);
773 break;
774 case Type::DoubleTyID:
775 assert(DestTy->isIntegerTy(64) && "Invalid bitcast");
776 GV.IntVal = APInt::doubleToBits(V: GV.DoubleVal);
777 break;
778 case Type::PointerTyID:
779 assert(DestTy->isPointerTy() && "Invalid bitcast");
780 break; // getConstantValue(Op0) above already converted it
781 }
782 return GV;
783 }
784 case Instruction::Add:
785 case Instruction::FAdd:
786 case Instruction::Sub:
787 case Instruction::FSub:
788 case Instruction::Mul:
789 case Instruction::FMul:
790 case Instruction::UDiv:
791 case Instruction::SDiv:
792 case Instruction::URem:
793 case Instruction::SRem:
794 case Instruction::And:
795 case Instruction::Or:
796 case Instruction::Xor: {
797 GenericValue LHS = getConstantValue(C: Op0);
798 GenericValue RHS = getConstantValue(C: CE->getOperand(i_nocapture: 1));
799 GenericValue GV;
800 switch (CE->getOperand(i_nocapture: 0)->getType()->getTypeID()) {
801 default: llvm_unreachable("Bad add type!");
802 case Type::IntegerTyID:
803 switch (CE->getOpcode()) {
804 default: llvm_unreachable("Invalid integer opcode");
805 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
806 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
807 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
808 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS: RHS.IntVal); break;
809 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS: RHS.IntVal); break;
810 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS: RHS.IntVal); break;
811 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS: RHS.IntVal); break;
812 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
813 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break;
814 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
815 }
816 break;
817 case Type::FloatTyID:
818 switch (CE->getOpcode()) {
819 default: llvm_unreachable("Invalid float opcode");
820 case Instruction::FAdd:
821 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
822 case Instruction::FSub:
823 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
824 case Instruction::FMul:
825 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
826 case Instruction::FDiv:
827 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
828 case Instruction::FRem:
829 GV.FloatVal = std::fmod(x: LHS.FloatVal,y: RHS.FloatVal); break;
830 }
831 break;
832 case Type::DoubleTyID:
833 switch (CE->getOpcode()) {
834 default: llvm_unreachable("Invalid double opcode");
835 case Instruction::FAdd:
836 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
837 case Instruction::FSub:
838 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
839 case Instruction::FMul:
840 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
841 case Instruction::FDiv:
842 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
843 case Instruction::FRem:
844 GV.DoubleVal = std::fmod(x: LHS.DoubleVal,y: RHS.DoubleVal); break;
845 }
846 break;
847 case Type::X86_FP80TyID:
848 case Type::PPC_FP128TyID:
849 case Type::FP128TyID: {
850 const fltSemantics &Sem = CE->getOperand(i_nocapture: 0)->getType()->getFltSemantics();
851 APFloat apfLHS = APFloat(Sem, LHS.IntVal);
852 switch (CE->getOpcode()) {
853 default: llvm_unreachable("Invalid long double opcode");
854 case Instruction::FAdd:
855 apfLHS.add(RHS: APFloat(Sem, RHS.IntVal), RM: APFloat::rmNearestTiesToEven);
856 GV.IntVal = apfLHS.bitcastToAPInt();
857 break;
858 case Instruction::FSub:
859 apfLHS.subtract(RHS: APFloat(Sem, RHS.IntVal),
860 RM: APFloat::rmNearestTiesToEven);
861 GV.IntVal = apfLHS.bitcastToAPInt();
862 break;
863 case Instruction::FMul:
864 apfLHS.multiply(RHS: APFloat(Sem, RHS.IntVal),
865 RM: APFloat::rmNearestTiesToEven);
866 GV.IntVal = apfLHS.bitcastToAPInt();
867 break;
868 case Instruction::FDiv:
869 apfLHS.divide(RHS: APFloat(Sem, RHS.IntVal),
870 RM: APFloat::rmNearestTiesToEven);
871 GV.IntVal = apfLHS.bitcastToAPInt();
872 break;
873 case Instruction::FRem:
874 apfLHS.mod(RHS: APFloat(Sem, RHS.IntVal));
875 GV.IntVal = apfLHS.bitcastToAPInt();
876 break;
877 }
878 }
879 break;
880 }
881 return GV;
882 }
883 default:
884 break;
885 }
886
887 SmallString<256> Msg;
888 raw_svector_ostream OS(Msg);
889 OS << "ConstantExpr not handled: " << *CE;
890 report_fatal_error(reason: OS.str());
891 }
892
893 if (auto *TETy = dyn_cast<TargetExtType>(Val: C->getType())) {
894 assert(TETy->hasProperty(TargetExtType::HasZeroInit) && C->isNullValue() &&
895 "TargetExtType only supports null constant value");
896 C = Constant::getNullValue(Ty: TETy->getLayoutType());
897 }
898
899 // Otherwise, we have a simple constant.
900 GenericValue Result;
901 switch (C->getType()->getTypeID()) {
902 case Type::FloatTyID:
903 Result.FloatVal = cast<ConstantFP>(Val: C)->getValueAPF().convertToFloat();
904 break;
905 case Type::DoubleTyID:
906 Result.DoubleVal = cast<ConstantFP>(Val: C)->getValueAPF().convertToDouble();
907 break;
908 case Type::X86_FP80TyID:
909 case Type::FP128TyID:
910 case Type::PPC_FP128TyID:
911 Result.IntVal = cast <ConstantFP>(Val: C)->getValueAPF().bitcastToAPInt();
912 break;
913 case Type::IntegerTyID:
914 Result.IntVal = cast<ConstantInt>(Val: C)->getValue();
915 break;
916 case Type::PointerTyID:
917 while (auto *A = dyn_cast<GlobalAlias>(Val: C)) {
918 C = A->getAliasee();
919 }
920 if (isa<ConstantPointerNull>(Val: C))
921 Result.PointerVal = nullptr;
922 else if (const Function *F = dyn_cast<Function>(Val: C))
923 Result = PTOGV(P: getPointerToFunctionOrStub(F: const_cast<Function*>(F)));
924 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Val: C))
925 Result = PTOGV(P: getOrEmitGlobalVariable(GV: const_cast<GlobalVariable*>(GV)));
926 else
927 llvm_unreachable("Unknown constant pointer type!");
928 break;
929 case Type::ScalableVectorTyID:
930 report_fatal_error(
931 reason: "Scalable vector support not yet implemented in ExecutionEngine");
932 case Type::FixedVectorTyID: {
933 unsigned elemNum;
934 Type* ElemTy;
935 const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(Val: C);
936 const ConstantVector *CV = dyn_cast<ConstantVector>(Val: C);
937 const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(Val: C);
938
939 if (CDV) {
940 elemNum = CDV->getNumElements();
941 ElemTy = CDV->getElementType();
942 } else if (CV || CAZ) {
943 auto *VTy = cast<FixedVectorType>(Val: C->getType());
944 elemNum = VTy->getNumElements();
945 ElemTy = VTy->getElementType();
946 } else {
947 llvm_unreachable("Unknown constant vector type!");
948 }
949
950 Result.AggregateVal.resize(new_size: elemNum);
951 // Check if vector holds floats.
952 if(ElemTy->isFloatTy()) {
953 if (CAZ) {
954 GenericValue floatZero;
955 floatZero.FloatVal = 0.f;
956 std::fill(first: Result.AggregateVal.begin(), last: Result.AggregateVal.end(),
957 value: floatZero);
958 break;
959 }
960 if(CV) {
961 for (unsigned i = 0; i < elemNum; ++i)
962 if (!isa<UndefValue>(Val: CV->getOperand(i_nocapture: i)))
963 Result.AggregateVal[i].FloatVal = cast<ConstantFP>(
964 Val: CV->getOperand(i_nocapture: i))->getValueAPF().convertToFloat();
965 break;
966 }
967 if(CDV)
968 for (unsigned i = 0; i < elemNum; ++i)
969 Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i);
970
971 break;
972 }
973 // Check if vector holds doubles.
974 if (ElemTy->isDoubleTy()) {
975 if (CAZ) {
976 GenericValue doubleZero;
977 doubleZero.DoubleVal = 0.0;
978 std::fill(first: Result.AggregateVal.begin(), last: Result.AggregateVal.end(),
979 value: doubleZero);
980 break;
981 }
982 if(CV) {
983 for (unsigned i = 0; i < elemNum; ++i)
984 if (!isa<UndefValue>(Val: CV->getOperand(i_nocapture: i)))
985 Result.AggregateVal[i].DoubleVal = cast<ConstantFP>(
986 Val: CV->getOperand(i_nocapture: i))->getValueAPF().convertToDouble();
987 break;
988 }
989 if(CDV)
990 for (unsigned i = 0; i < elemNum; ++i)
991 Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i);
992
993 break;
994 }
995 // Check if vector holds integers.
996 if (ElemTy->isIntegerTy()) {
997 if (CAZ) {
998 GenericValue intZero;
999 intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull);
1000 std::fill(first: Result.AggregateVal.begin(), last: Result.AggregateVal.end(),
1001 value: intZero);
1002 break;
1003 }
1004 if(CV) {
1005 for (unsigned i = 0; i < elemNum; ++i)
1006 if (!isa<UndefValue>(Val: CV->getOperand(i_nocapture: i)))
1007 Result.AggregateVal[i].IntVal = cast<ConstantInt>(
1008 Val: CV->getOperand(i_nocapture: i))->getValue();
1009 else {
1010 Result.AggregateVal[i].IntVal =
1011 APInt(CV->getOperand(i_nocapture: i)->getType()->getPrimitiveSizeInBits(), 0);
1012 }
1013 break;
1014 }
1015 if(CDV)
1016 for (unsigned i = 0; i < elemNum; ++i)
1017 Result.AggregateVal[i].IntVal = APInt(
1018 CDV->getElementType()->getPrimitiveSizeInBits(),
1019 CDV->getElementAsInteger(i));
1020
1021 break;
1022 }
1023 llvm_unreachable("Unknown constant pointer type!");
1024 } break;
1025
1026 default:
1027 SmallString<256> Msg;
1028 raw_svector_ostream OS(Msg);
1029 OS << "ERROR: Constant unimplemented for type: " << *C->getType();
1030 report_fatal_error(reason: OS.str());
1031 }
1032
1033 return Result;
1034}
1035
1036void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
1037 GenericValue *Ptr, Type *Ty) {
1038 // It is safe to treat TargetExtType as its layout type since the underlying
1039 // bits are only copied and are not inspected.
1040 if (auto *TETy = dyn_cast<TargetExtType>(Val: Ty))
1041 Ty = TETy->getLayoutType();
1042
1043 const unsigned StoreBytes = getDataLayout().getTypeStoreSize(Ty);
1044
1045 switch (Ty->getTypeID()) {
1046 default:
1047 dbgs() << "Cannot store value of type " << *Ty << "!\n";
1048 break;
1049 case Type::IntegerTyID:
1050 StoreIntToMemory(IntVal: Val.IntVal, Dst: (uint8_t*)Ptr, StoreBytes);
1051 break;
1052 case Type::FloatTyID:
1053 *((float*)Ptr) = Val.FloatVal;
1054 break;
1055 case Type::DoubleTyID:
1056 *((double*)Ptr) = Val.DoubleVal;
1057 break;
1058 case Type::X86_FP80TyID:
1059 memcpy(dest: Ptr, src: Val.IntVal.getRawData(), n: 10);
1060 break;
1061 case Type::PointerTyID:
1062 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
1063 if (StoreBytes != sizeof(PointerTy))
1064 memset(s: &(Ptr->PointerVal), c: 0, n: StoreBytes);
1065
1066 *((PointerTy*)Ptr) = Val.PointerVal;
1067 break;
1068 case Type::FixedVectorTyID:
1069 case Type::ScalableVectorTyID:
1070 for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) {
1071 if (cast<VectorType>(Val: Ty)->getElementType()->isDoubleTy())
1072 *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal;
1073 if (cast<VectorType>(Val: Ty)->getElementType()->isFloatTy())
1074 *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal;
1075 if (cast<VectorType>(Val: Ty)->getElementType()->isIntegerTy()) {
1076 unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8;
1077 StoreIntToMemory(IntVal: Val.AggregateVal[i].IntVal,
1078 Dst: (uint8_t*)Ptr + numOfBytes*i, StoreBytes: numOfBytes);
1079 }
1080 }
1081 break;
1082 }
1083
1084 if (sys::IsLittleEndianHost != getDataLayout().isLittleEndian())
1085 // Host and target are different endian - reverse the stored bytes.
1086 std::reverse(first: (uint8_t*)Ptr, last: StoreBytes + (uint8_t*)Ptr);
1087}
1088
1089/// FIXME: document
1090///
1091void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
1092 GenericValue *Ptr,
1093 Type *Ty) {
1094 if (auto *TETy = dyn_cast<TargetExtType>(Val: Ty))
1095 Ty = TETy->getLayoutType();
1096
1097 const unsigned LoadBytes = getDataLayout().getTypeStoreSize(Ty);
1098
1099 switch (Ty->getTypeID()) {
1100 case Type::IntegerTyID:
1101 // An APInt with all words initially zero.
1102 Result.IntVal = APInt(cast<IntegerType>(Val: Ty)->getBitWidth(), 0);
1103 LoadIntFromMemory(IntVal&: Result.IntVal, Src: (uint8_t*)Ptr, LoadBytes);
1104 break;
1105 case Type::FloatTyID:
1106 Result.FloatVal = *((float*)Ptr);
1107 break;
1108 case Type::DoubleTyID:
1109 Result.DoubleVal = *((double*)Ptr);
1110 break;
1111 case Type::PointerTyID:
1112 Result.PointerVal = *((PointerTy*)Ptr);
1113 break;
1114 case Type::X86_FP80TyID: {
1115 // This is endian dependent, but it will only work on x86 anyway.
1116 // FIXME: Will not trap if loading a signaling NaN.
1117 uint64_t y[2];
1118 memcpy(dest: y, src: Ptr, n: 10);
1119 Result.IntVal = APInt(80, y);
1120 break;
1121 }
1122 case Type::ScalableVectorTyID:
1123 report_fatal_error(
1124 reason: "Scalable vector support not yet implemented in ExecutionEngine");
1125 case Type::FixedVectorTyID: {
1126 auto *VT = cast<FixedVectorType>(Val: Ty);
1127 Type *ElemT = VT->getElementType();
1128 const unsigned numElems = VT->getNumElements();
1129 if (ElemT->isFloatTy()) {
1130 Result.AggregateVal.resize(new_size: numElems);
1131 for (unsigned i = 0; i < numElems; ++i)
1132 Result.AggregateVal[i].FloatVal = *((float*)Ptr+i);
1133 }
1134 if (ElemT->isDoubleTy()) {
1135 Result.AggregateVal.resize(new_size: numElems);
1136 for (unsigned i = 0; i < numElems; ++i)
1137 Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i);
1138 }
1139 if (ElemT->isIntegerTy()) {
1140 GenericValue intZero;
1141 const unsigned elemBitWidth = cast<IntegerType>(Val: ElemT)->getBitWidth();
1142 intZero.IntVal = APInt(elemBitWidth, 0);
1143 Result.AggregateVal.resize(new_size: numElems, x: intZero);
1144 for (unsigned i = 0; i < numElems; ++i)
1145 LoadIntFromMemory(IntVal&: Result.AggregateVal[i].IntVal,
1146 Src: (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, LoadBytes: (elemBitWidth+7)/8);
1147 }
1148 break;
1149 }
1150 default:
1151 SmallString<256> Msg;
1152 raw_svector_ostream OS(Msg);
1153 OS << "Cannot load value of type " << *Ty << "!";
1154 report_fatal_error(reason: OS.str());
1155 }
1156}
1157
1158void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
1159 LLVM_DEBUG(dbgs() << "JIT: Initializing " << Addr << " ");
1160 LLVM_DEBUG(Init->dump());
1161 if (isa<UndefValue>(Val: Init))
1162 return;
1163
1164 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Val: Init)) {
1165 unsigned ElementSize =
1166 getDataLayout().getTypeAllocSize(Ty: CP->getType()->getElementType());
1167 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
1168 InitializeMemory(Init: CP->getOperand(i_nocapture: i), Addr: (char*)Addr+i*ElementSize);
1169 return;
1170 }
1171
1172 if (isa<ConstantAggregateZero>(Val: Init)) {
1173 memset(s: Addr, c: 0, n: (size_t)getDataLayout().getTypeAllocSize(Ty: Init->getType()));
1174 return;
1175 }
1176
1177 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Val: Init)) {
1178 unsigned ElementSize =
1179 getDataLayout().getTypeAllocSize(Ty: CPA->getType()->getElementType());
1180 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
1181 InitializeMemory(Init: CPA->getOperand(i_nocapture: i), Addr: (char*)Addr+i*ElementSize);
1182 return;
1183 }
1184
1185 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Val: Init)) {
1186 const StructLayout *SL =
1187 getDataLayout().getStructLayout(Ty: cast<StructType>(Val: CPS->getType()));
1188 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
1189 InitializeMemory(Init: CPS->getOperand(i_nocapture: i), Addr: (char*)Addr+SL->getElementOffset(Idx: i));
1190 return;
1191 }
1192
1193 if (const ConstantDataSequential *CDS =
1194 dyn_cast<ConstantDataSequential>(Val: Init)) {
1195 // CDS is already laid out in host memory order.
1196 StringRef Data = CDS->getRawDataValues();
1197 memcpy(dest: Addr, src: Data.data(), n: Data.size());
1198 return;
1199 }
1200
1201 if (Init->getType()->isFirstClassType()) {
1202 GenericValue Val = getConstantValue(C: Init);
1203 StoreValueToMemory(Val, Ptr: (GenericValue*)Addr, Ty: Init->getType());
1204 return;
1205 }
1206
1207 LLVM_DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n");
1208 llvm_unreachable("Unknown constant type to initialize memory with!");
1209}
1210
1211/// EmitGlobals - Emit all of the global variables to memory, storing their
1212/// addresses into GlobalAddress. This must make sure to copy the contents of
1213/// their initializers into the memory.
1214void ExecutionEngine::emitGlobals() {
1215 // Loop over all of the global variables in the program, allocating the memory
1216 // to hold them. If there is more than one module, do a prepass over globals
1217 // to figure out how the different modules should link together.
1218 std::map<std::pair<std::string, Type*>,
1219 const GlobalValue*> LinkedGlobalsMap;
1220
1221 if (Modules.size() != 1) {
1222 for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
1223 Module &M = *Modules[m];
1224 for (const auto &GV : M.globals()) {
1225 if (GV.hasLocalLinkage() || GV.isDeclaration() ||
1226 GV.hasAppendingLinkage() || !GV.hasName())
1227 continue;// Ignore external globals and globals with internal linkage.
1228
1229 const GlobalValue *&GVEntry = LinkedGlobalsMap[std::make_pair(
1230 x: std::string(GV.getName()), y: GV.getType())];
1231
1232 // If this is the first time we've seen this global, it is the canonical
1233 // version.
1234 if (!GVEntry) {
1235 GVEntry = &GV;
1236 continue;
1237 }
1238
1239 // If the existing global is strong, never replace it.
1240 if (GVEntry->hasExternalLinkage())
1241 continue;
1242
1243 // Otherwise, we know it's linkonce/weak, replace it if this is a strong
1244 // symbol. FIXME is this right for common?
1245 if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
1246 GVEntry = &GV;
1247 }
1248 }
1249 }
1250
1251 std::vector<const GlobalValue*> NonCanonicalGlobals;
1252 for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
1253 Module &M = *Modules[m];
1254 for (const auto &GV : M.globals()) {
1255 // In the multi-module case, see what this global maps to.
1256 if (!LinkedGlobalsMap.empty()) {
1257 if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair(
1258 x: std::string(GV.getName()), y: GV.getType())]) {
1259 // If something else is the canonical global, ignore this one.
1260 if (GVEntry != &GV) {
1261 NonCanonicalGlobals.push_back(x: &GV);
1262 continue;
1263 }
1264 }
1265 }
1266
1267 if (!GV.isDeclaration()) {
1268 addGlobalMapping(GV: &GV, Addr: getMemoryForGV(GV: &GV));
1269 } else {
1270 // External variable reference. Try to use the dynamic loader to
1271 // get a pointer to it.
1272 if (void *SymAddr = sys::DynamicLibrary::SearchForAddressOfSymbol(
1273 symbolName: std::string(GV.getName())))
1274 addGlobalMapping(GV: &GV, Addr: SymAddr);
1275 else {
1276 report_fatal_error(reason: "Could not resolve external global address: "
1277 +GV.getName());
1278 }
1279 }
1280 }
1281
1282 // If there are multiple modules, map the non-canonical globals to their
1283 // canonical location.
1284 if (!NonCanonicalGlobals.empty()) {
1285 for (const GlobalValue *GV : NonCanonicalGlobals) {
1286 const GlobalValue *CGV = LinkedGlobalsMap[std::make_pair(
1287 x: std::string(GV->getName()), y: GV->getType())];
1288 void *Ptr = getPointerToGlobalIfAvailable(GV: CGV);
1289 assert(Ptr && "Canonical global wasn't codegen'd!");
1290 addGlobalMapping(GV, Addr: Ptr);
1291 }
1292 }
1293
1294 // Now that all of the globals are set up in memory, loop through them all
1295 // and initialize their contents.
1296 for (const auto &GV : M.globals()) {
1297 if (!GV.isDeclaration()) {
1298 if (!LinkedGlobalsMap.empty()) {
1299 if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair(
1300 x: std::string(GV.getName()), y: GV.getType())])
1301 if (GVEntry != &GV) // Not the canonical variable.
1302 continue;
1303 }
1304 emitGlobalVariable(GV: &GV);
1305 }
1306 }
1307 }
1308}
1309
1310// EmitGlobalVariable - This method emits the specified global variable to the
1311// address specified in GlobalAddresses, or allocates new memory if it's not
1312// already in the map.
1313void ExecutionEngine::emitGlobalVariable(const GlobalVariable *GV) {
1314 void *GA = getPointerToGlobalIfAvailable(GV);
1315
1316 if (!GA) {
1317 // If it's not already specified, allocate memory for the global.
1318 GA = getMemoryForGV(GV);
1319
1320 // If we failed to allocate memory for this global, return.
1321 if (!GA) return;
1322
1323 addGlobalMapping(GV, Addr: GA);
1324 }
1325
1326 // Don't initialize if it's thread local, let the client do it.
1327 if (!GV->isThreadLocal())
1328 InitializeMemory(Init: GV->getInitializer(), Addr: GA);
1329
1330 Type *ElTy = GV->getValueType();
1331 size_t GVSize = (size_t)getDataLayout().getTypeAllocSize(Ty: ElTy);
1332 NumInitBytes += (unsigned)GVSize;
1333 ++NumGlobals;
1334}
1335

source code of llvm/lib/ExecutionEngine/ExecutionEngine.cpp