1//===- OpenMPIRBuilder.cpp - Builder for LLVM-IR for OpenMP directives ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9///
10/// This file implements the OpenMPIRBuilder class, which is used as a
11/// convenient way to create LLVM instructions for OpenMP directives.
12///
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
16#include "llvm/ADT/SmallSet.h"
17#include "llvm/ADT/StringExtras.h"
18#include "llvm/ADT/StringRef.h"
19#include "llvm/Analysis/AssumptionCache.h"
20#include "llvm/Analysis/CodeMetrics.h"
21#include "llvm/Analysis/LoopInfo.h"
22#include "llvm/Analysis/OptimizationRemarkEmitter.h"
23#include "llvm/Analysis/ScalarEvolution.h"
24#include "llvm/Analysis/TargetLibraryInfo.h"
25#include "llvm/Bitcode/BitcodeReader.h"
26#include "llvm/Frontend/Offloading/Utility.h"
27#include "llvm/Frontend/OpenMP/OMPGridValues.h"
28#include "llvm/IR/Attributes.h"
29#include "llvm/IR/BasicBlock.h"
30#include "llvm/IR/CFG.h"
31#include "llvm/IR/CallingConv.h"
32#include "llvm/IR/Constant.h"
33#include "llvm/IR/Constants.h"
34#include "llvm/IR/DebugInfoMetadata.h"
35#include "llvm/IR/DerivedTypes.h"
36#include "llvm/IR/Function.h"
37#include "llvm/IR/GlobalVariable.h"
38#include "llvm/IR/IRBuilder.h"
39#include "llvm/IR/LLVMContext.h"
40#include "llvm/IR/MDBuilder.h"
41#include "llvm/IR/Metadata.h"
42#include "llvm/IR/PassManager.h"
43#include "llvm/IR/Value.h"
44#include "llvm/MC/TargetRegistry.h"
45#include "llvm/Support/CommandLine.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/FileSystem.h"
48#include "llvm/Target/TargetMachine.h"
49#include "llvm/Target/TargetOptions.h"
50#include "llvm/Transforms/Utils/BasicBlockUtils.h"
51#include "llvm/Transforms/Utils/Cloning.h"
52#include "llvm/Transforms/Utils/CodeExtractor.h"
53#include "llvm/Transforms/Utils/LoopPeel.h"
54#include "llvm/Transforms/Utils/UnrollLoop.h"
55
56#include <cstdint>
57#include <optional>
58
59#define DEBUG_TYPE "openmp-ir-builder"
60
61using namespace llvm;
62using namespace omp;
63
64static cl::opt<bool>
65 OptimisticAttributes("openmp-ir-builder-optimistic-attributes", cl::Hidden,
66 cl::desc("Use optimistic attributes describing "
67 "'as-if' properties of runtime calls."),
68 cl::init(Val: false));
69
70static cl::opt<double> UnrollThresholdFactor(
71 "openmp-ir-builder-unroll-threshold-factor", cl::Hidden,
72 cl::desc("Factor for the unroll threshold to account for code "
73 "simplifications still taking place"),
74 cl::init(Val: 1.5));
75
76#ifndef NDEBUG
77/// Return whether IP1 and IP2 are ambiguous, i.e. that inserting instructions
78/// at position IP1 may change the meaning of IP2 or vice-versa. This is because
79/// an InsertPoint stores the instruction before something is inserted. For
80/// instance, if both point to the same instruction, two IRBuilders alternating
81/// creating instruction will cause the instructions to be interleaved.
82static bool isConflictIP(IRBuilder<>::InsertPoint IP1,
83 IRBuilder<>::InsertPoint IP2) {
84 if (!IP1.isSet() || !IP2.isSet())
85 return false;
86 return IP1.getBlock() == IP2.getBlock() && IP1.getPoint() == IP2.getPoint();
87}
88
89static bool isValidWorkshareLoopScheduleType(OMPScheduleType SchedType) {
90 // Valid ordered/unordered and base algorithm combinations.
91 switch (SchedType & ~OMPScheduleType::MonotonicityMask) {
92 case OMPScheduleType::UnorderedStaticChunked:
93 case OMPScheduleType::UnorderedStatic:
94 case OMPScheduleType::UnorderedDynamicChunked:
95 case OMPScheduleType::UnorderedGuidedChunked:
96 case OMPScheduleType::UnorderedRuntime:
97 case OMPScheduleType::UnorderedAuto:
98 case OMPScheduleType::UnorderedTrapezoidal:
99 case OMPScheduleType::UnorderedGreedy:
100 case OMPScheduleType::UnorderedBalanced:
101 case OMPScheduleType::UnorderedGuidedIterativeChunked:
102 case OMPScheduleType::UnorderedGuidedAnalyticalChunked:
103 case OMPScheduleType::UnorderedSteal:
104 case OMPScheduleType::UnorderedStaticBalancedChunked:
105 case OMPScheduleType::UnorderedGuidedSimd:
106 case OMPScheduleType::UnorderedRuntimeSimd:
107 case OMPScheduleType::OrderedStaticChunked:
108 case OMPScheduleType::OrderedStatic:
109 case OMPScheduleType::OrderedDynamicChunked:
110 case OMPScheduleType::OrderedGuidedChunked:
111 case OMPScheduleType::OrderedRuntime:
112 case OMPScheduleType::OrderedAuto:
113 case OMPScheduleType::OrderdTrapezoidal:
114 case OMPScheduleType::NomergeUnorderedStaticChunked:
115 case OMPScheduleType::NomergeUnorderedStatic:
116 case OMPScheduleType::NomergeUnorderedDynamicChunked:
117 case OMPScheduleType::NomergeUnorderedGuidedChunked:
118 case OMPScheduleType::NomergeUnorderedRuntime:
119 case OMPScheduleType::NomergeUnorderedAuto:
120 case OMPScheduleType::NomergeUnorderedTrapezoidal:
121 case OMPScheduleType::NomergeUnorderedGreedy:
122 case OMPScheduleType::NomergeUnorderedBalanced:
123 case OMPScheduleType::NomergeUnorderedGuidedIterativeChunked:
124 case OMPScheduleType::NomergeUnorderedGuidedAnalyticalChunked:
125 case OMPScheduleType::NomergeUnorderedSteal:
126 case OMPScheduleType::NomergeOrderedStaticChunked:
127 case OMPScheduleType::NomergeOrderedStatic:
128 case OMPScheduleType::NomergeOrderedDynamicChunked:
129 case OMPScheduleType::NomergeOrderedGuidedChunked:
130 case OMPScheduleType::NomergeOrderedRuntime:
131 case OMPScheduleType::NomergeOrderedAuto:
132 case OMPScheduleType::NomergeOrderedTrapezoidal:
133 break;
134 default:
135 return false;
136 }
137
138 // Must not set both monotonicity modifiers at the same time.
139 OMPScheduleType MonotonicityFlags =
140 SchedType & OMPScheduleType::MonotonicityMask;
141 if (MonotonicityFlags == OMPScheduleType::MonotonicityMask)
142 return false;
143
144 return true;
145}
146#endif
147
148static const omp::GV &getGridValue(const Triple &T, Function *Kernel) {
149 if (T.isAMDGPU()) {
150 StringRef Features =
151 Kernel->getFnAttribute(Kind: "target-features").getValueAsString();
152 if (Features.count(Str: "+wavefrontsize64"))
153 return omp::getAMDGPUGridValues<64>();
154 return omp::getAMDGPUGridValues<32>();
155 }
156 if (T.isNVPTX())
157 return omp::NVPTXGridValues;
158 llvm_unreachable("No grid value available for this architecture!");
159}
160
161/// Determine which scheduling algorithm to use, determined from schedule clause
162/// arguments.
163static OMPScheduleType
164getOpenMPBaseScheduleType(llvm::omp::ScheduleKind ClauseKind, bool HasChunks,
165 bool HasSimdModifier) {
166 // Currently, the default schedule it static.
167 switch (ClauseKind) {
168 case OMP_SCHEDULE_Default:
169 case OMP_SCHEDULE_Static:
170 return HasChunks ? OMPScheduleType::BaseStaticChunked
171 : OMPScheduleType::BaseStatic;
172 case OMP_SCHEDULE_Dynamic:
173 return OMPScheduleType::BaseDynamicChunked;
174 case OMP_SCHEDULE_Guided:
175 return HasSimdModifier ? OMPScheduleType::BaseGuidedSimd
176 : OMPScheduleType::BaseGuidedChunked;
177 case OMP_SCHEDULE_Auto:
178 return llvm::omp::OMPScheduleType::BaseAuto;
179 case OMP_SCHEDULE_Runtime:
180 return HasSimdModifier ? OMPScheduleType::BaseRuntimeSimd
181 : OMPScheduleType::BaseRuntime;
182 }
183 llvm_unreachable("unhandled schedule clause argument");
184}
185
186/// Adds ordering modifier flags to schedule type.
187static OMPScheduleType
188getOpenMPOrderingScheduleType(OMPScheduleType BaseScheduleType,
189 bool HasOrderedClause) {
190 assert((BaseScheduleType & OMPScheduleType::ModifierMask) ==
191 OMPScheduleType::None &&
192 "Must not have ordering nor monotonicity flags already set");
193
194 OMPScheduleType OrderingModifier = HasOrderedClause
195 ? OMPScheduleType::ModifierOrdered
196 : OMPScheduleType::ModifierUnordered;
197 OMPScheduleType OrderingScheduleType = BaseScheduleType | OrderingModifier;
198
199 // Unsupported combinations
200 if (OrderingScheduleType ==
201 (OMPScheduleType::BaseGuidedSimd | OMPScheduleType::ModifierOrdered))
202 return OMPScheduleType::OrderedGuidedChunked;
203 else if (OrderingScheduleType == (OMPScheduleType::BaseRuntimeSimd |
204 OMPScheduleType::ModifierOrdered))
205 return OMPScheduleType::OrderedRuntime;
206
207 return OrderingScheduleType;
208}
209
210/// Adds monotonicity modifier flags to schedule type.
211static OMPScheduleType
212getOpenMPMonotonicityScheduleType(OMPScheduleType ScheduleType,
213 bool HasSimdModifier, bool HasMonotonic,
214 bool HasNonmonotonic, bool HasOrderedClause) {
215 assert((ScheduleType & OMPScheduleType::MonotonicityMask) ==
216 OMPScheduleType::None &&
217 "Must not have monotonicity flags already set");
218 assert((!HasMonotonic || !HasNonmonotonic) &&
219 "Monotonic and Nonmonotonic are contradicting each other");
220
221 if (HasMonotonic) {
222 return ScheduleType | OMPScheduleType::ModifierMonotonic;
223 } else if (HasNonmonotonic) {
224 return ScheduleType | OMPScheduleType::ModifierNonmonotonic;
225 } else {
226 // OpenMP 5.1, 2.11.4 Worksharing-Loop Construct, Description.
227 // If the static schedule kind is specified or if the ordered clause is
228 // specified, and if the nonmonotonic modifier is not specified, the
229 // effect is as if the monotonic modifier is specified. Otherwise, unless
230 // the monotonic modifier is specified, the effect is as if the
231 // nonmonotonic modifier is specified.
232 OMPScheduleType BaseScheduleType =
233 ScheduleType & ~OMPScheduleType::ModifierMask;
234 if ((BaseScheduleType == OMPScheduleType::BaseStatic) ||
235 (BaseScheduleType == OMPScheduleType::BaseStaticChunked) ||
236 HasOrderedClause) {
237 // The monotonic is used by default in openmp runtime library, so no need
238 // to set it.
239 return ScheduleType;
240 } else {
241 return ScheduleType | OMPScheduleType::ModifierNonmonotonic;
242 }
243 }
244}
245
246/// Determine the schedule type using schedule and ordering clause arguments.
247static OMPScheduleType
248computeOpenMPScheduleType(ScheduleKind ClauseKind, bool HasChunks,
249 bool HasSimdModifier, bool HasMonotonicModifier,
250 bool HasNonmonotonicModifier, bool HasOrderedClause) {
251 OMPScheduleType BaseSchedule =
252 getOpenMPBaseScheduleType(ClauseKind, HasChunks, HasSimdModifier);
253 OMPScheduleType OrderedSchedule =
254 getOpenMPOrderingScheduleType(BaseScheduleType: BaseSchedule, HasOrderedClause);
255 OMPScheduleType Result = getOpenMPMonotonicityScheduleType(
256 ScheduleType: OrderedSchedule, HasSimdModifier, HasMonotonic: HasMonotonicModifier,
257 HasNonmonotonic: HasNonmonotonicModifier, HasOrderedClause);
258
259 assert(isValidWorkshareLoopScheduleType(Result));
260 return Result;
261}
262
263/// Make \p Source branch to \p Target.
264///
265/// Handles two situations:
266/// * \p Source already has an unconditional branch.
267/// * \p Source is a degenerate block (no terminator because the BB is
268/// the current head of the IR construction).
269static void redirectTo(BasicBlock *Source, BasicBlock *Target, DebugLoc DL) {
270 if (Instruction *Term = Source->getTerminator()) {
271 auto *Br = cast<BranchInst>(Val: Term);
272 assert(!Br->isConditional() &&
273 "BB's terminator must be an unconditional branch (or degenerate)");
274 BasicBlock *Succ = Br->getSuccessor(i: 0);
275 Succ->removePredecessor(Pred: Source, /*KeepOneInputPHIs=*/true);
276 Br->setSuccessor(idx: 0, NewSucc: Target);
277 return;
278 }
279
280 auto *NewBr = BranchInst::Create(IfTrue: Target, InsertAtEnd: Source);
281 NewBr->setDebugLoc(DL);
282}
283
284void llvm::spliceBB(IRBuilderBase::InsertPoint IP, BasicBlock *New,
285 bool CreateBranch) {
286 assert(New->getFirstInsertionPt() == New->begin() &&
287 "Target BB must not have PHI nodes");
288
289 // Move instructions to new block.
290 BasicBlock *Old = IP.getBlock();
291 New->splice(ToIt: New->begin(), FromBB: Old, FromBeginIt: IP.getPoint(), FromEndIt: Old->end());
292
293 if (CreateBranch)
294 BranchInst::Create(IfTrue: New, InsertAtEnd: Old);
295}
296
297void llvm::spliceBB(IRBuilder<> &Builder, BasicBlock *New, bool CreateBranch) {
298 DebugLoc DebugLoc = Builder.getCurrentDebugLocation();
299 BasicBlock *Old = Builder.GetInsertBlock();
300
301 spliceBB(IP: Builder.saveIP(), New, CreateBranch);
302 if (CreateBranch)
303 Builder.SetInsertPoint(Old->getTerminator());
304 else
305 Builder.SetInsertPoint(Old);
306
307 // SetInsertPoint also updates the Builder's debug location, but we want to
308 // keep the one the Builder was configured to use.
309 Builder.SetCurrentDebugLocation(DebugLoc);
310}
311
312BasicBlock *llvm::splitBB(IRBuilderBase::InsertPoint IP, bool CreateBranch,
313 llvm::Twine Name) {
314 BasicBlock *Old = IP.getBlock();
315 BasicBlock *New = BasicBlock::Create(
316 Context&: Old->getContext(), Name: Name.isTriviallyEmpty() ? Old->getName() : Name,
317 Parent: Old->getParent(), InsertBefore: Old->getNextNode());
318 spliceBB(IP, New, CreateBranch);
319 New->replaceSuccessorsPhiUsesWith(Old, New);
320 return New;
321}
322
323BasicBlock *llvm::splitBB(IRBuilderBase &Builder, bool CreateBranch,
324 llvm::Twine Name) {
325 DebugLoc DebugLoc = Builder.getCurrentDebugLocation();
326 BasicBlock *New = splitBB(IP: Builder.saveIP(), CreateBranch, Name);
327 if (CreateBranch)
328 Builder.SetInsertPoint(Builder.GetInsertBlock()->getTerminator());
329 else
330 Builder.SetInsertPoint(Builder.GetInsertBlock());
331 // SetInsertPoint also updates the Builder's debug location, but we want to
332 // keep the one the Builder was configured to use.
333 Builder.SetCurrentDebugLocation(DebugLoc);
334 return New;
335}
336
337BasicBlock *llvm::splitBB(IRBuilder<> &Builder, bool CreateBranch,
338 llvm::Twine Name) {
339 DebugLoc DebugLoc = Builder.getCurrentDebugLocation();
340 BasicBlock *New = splitBB(IP: Builder.saveIP(), CreateBranch, Name);
341 if (CreateBranch)
342 Builder.SetInsertPoint(Builder.GetInsertBlock()->getTerminator());
343 else
344 Builder.SetInsertPoint(Builder.GetInsertBlock());
345 // SetInsertPoint also updates the Builder's debug location, but we want to
346 // keep the one the Builder was configured to use.
347 Builder.SetCurrentDebugLocation(DebugLoc);
348 return New;
349}
350
351BasicBlock *llvm::splitBBWithSuffix(IRBuilderBase &Builder, bool CreateBranch,
352 llvm::Twine Suffix) {
353 BasicBlock *Old = Builder.GetInsertBlock();
354 return splitBB(Builder, CreateBranch, Name: Old->getName() + Suffix);
355}
356
357// This function creates a fake integer value and a fake use for the integer
358// value. It returns the fake value created. This is useful in modeling the
359// extra arguments to the outlined functions.
360Value *createFakeIntVal(IRBuilder<> &Builder,
361 OpenMPIRBuilder::InsertPointTy OuterAllocaIP,
362 std::stack<Instruction *> &ToBeDeleted,
363 OpenMPIRBuilder::InsertPointTy InnerAllocaIP,
364 const Twine &Name = "", bool AsPtr = true) {
365 Builder.restoreIP(IP: OuterAllocaIP);
366 Instruction *FakeVal;
367 AllocaInst *FakeValAddr =
368 Builder.CreateAlloca(Ty: Builder.getInt32Ty(), ArraySize: nullptr, Name: Name + ".addr");
369 ToBeDeleted.push(x: FakeValAddr);
370
371 if (AsPtr) {
372 FakeVal = FakeValAddr;
373 } else {
374 FakeVal =
375 Builder.CreateLoad(Ty: Builder.getInt32Ty(), Ptr: FakeValAddr, Name: Name + ".val");
376 ToBeDeleted.push(x: FakeVal);
377 }
378
379 // Generate a fake use of this value
380 Builder.restoreIP(IP: InnerAllocaIP);
381 Instruction *UseFakeVal;
382 if (AsPtr) {
383 UseFakeVal =
384 Builder.CreateLoad(Ty: Builder.getInt32Ty(), Ptr: FakeVal, Name: Name + ".use");
385 } else {
386 UseFakeVal =
387 cast<BinaryOperator>(Val: Builder.CreateAdd(LHS: FakeVal, RHS: Builder.getInt32(C: 10)));
388 }
389 ToBeDeleted.push(x: UseFakeVal);
390 return FakeVal;
391}
392
393//===----------------------------------------------------------------------===//
394// OpenMPIRBuilderConfig
395//===----------------------------------------------------------------------===//
396
397namespace {
398LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
399/// Values for bit flags for marking which requires clauses have been used.
400enum OpenMPOffloadingRequiresDirFlags {
401 /// flag undefined.
402 OMP_REQ_UNDEFINED = 0x000,
403 /// no requires directive present.
404 OMP_REQ_NONE = 0x001,
405 /// reverse_offload clause.
406 OMP_REQ_REVERSE_OFFLOAD = 0x002,
407 /// unified_address clause.
408 OMP_REQ_UNIFIED_ADDRESS = 0x004,
409 /// unified_shared_memory clause.
410 OMP_REQ_UNIFIED_SHARED_MEMORY = 0x008,
411 /// dynamic_allocators clause.
412 OMP_REQ_DYNAMIC_ALLOCATORS = 0x010,
413 LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/OMP_REQ_DYNAMIC_ALLOCATORS)
414};
415
416} // anonymous namespace
417
418OpenMPIRBuilderConfig::OpenMPIRBuilderConfig()
419 : RequiresFlags(OMP_REQ_UNDEFINED) {}
420
421OpenMPIRBuilderConfig::OpenMPIRBuilderConfig(
422 bool IsTargetDevice, bool IsGPU, bool OpenMPOffloadMandatory,
423 bool HasRequiresReverseOffload, bool HasRequiresUnifiedAddress,
424 bool HasRequiresUnifiedSharedMemory, bool HasRequiresDynamicAllocators)
425 : IsTargetDevice(IsTargetDevice), IsGPU(IsGPU),
426 OpenMPOffloadMandatory(OpenMPOffloadMandatory),
427 RequiresFlags(OMP_REQ_UNDEFINED) {
428 if (HasRequiresReverseOffload)
429 RequiresFlags |= OMP_REQ_REVERSE_OFFLOAD;
430 if (HasRequiresUnifiedAddress)
431 RequiresFlags |= OMP_REQ_UNIFIED_ADDRESS;
432 if (HasRequiresUnifiedSharedMemory)
433 RequiresFlags |= OMP_REQ_UNIFIED_SHARED_MEMORY;
434 if (HasRequiresDynamicAllocators)
435 RequiresFlags |= OMP_REQ_DYNAMIC_ALLOCATORS;
436}
437
438bool OpenMPIRBuilderConfig::hasRequiresReverseOffload() const {
439 return RequiresFlags & OMP_REQ_REVERSE_OFFLOAD;
440}
441
442bool OpenMPIRBuilderConfig::hasRequiresUnifiedAddress() const {
443 return RequiresFlags & OMP_REQ_UNIFIED_ADDRESS;
444}
445
446bool OpenMPIRBuilderConfig::hasRequiresUnifiedSharedMemory() const {
447 return RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY;
448}
449
450bool OpenMPIRBuilderConfig::hasRequiresDynamicAllocators() const {
451 return RequiresFlags & OMP_REQ_DYNAMIC_ALLOCATORS;
452}
453
454int64_t OpenMPIRBuilderConfig::getRequiresFlags() const {
455 return hasRequiresFlags() ? RequiresFlags
456 : static_cast<int64_t>(OMP_REQ_NONE);
457}
458
459void OpenMPIRBuilderConfig::setHasRequiresReverseOffload(bool Value) {
460 if (Value)
461 RequiresFlags |= OMP_REQ_REVERSE_OFFLOAD;
462 else
463 RequiresFlags &= ~OMP_REQ_REVERSE_OFFLOAD;
464}
465
466void OpenMPIRBuilderConfig::setHasRequiresUnifiedAddress(bool Value) {
467 if (Value)
468 RequiresFlags |= OMP_REQ_UNIFIED_ADDRESS;
469 else
470 RequiresFlags &= ~OMP_REQ_UNIFIED_ADDRESS;
471}
472
473void OpenMPIRBuilderConfig::setHasRequiresUnifiedSharedMemory(bool Value) {
474 if (Value)
475 RequiresFlags |= OMP_REQ_UNIFIED_SHARED_MEMORY;
476 else
477 RequiresFlags &= ~OMP_REQ_UNIFIED_SHARED_MEMORY;
478}
479
480void OpenMPIRBuilderConfig::setHasRequiresDynamicAllocators(bool Value) {
481 if (Value)
482 RequiresFlags |= OMP_REQ_DYNAMIC_ALLOCATORS;
483 else
484 RequiresFlags &= ~OMP_REQ_DYNAMIC_ALLOCATORS;
485}
486
487//===----------------------------------------------------------------------===//
488// OpenMPIRBuilder
489//===----------------------------------------------------------------------===//
490
491void OpenMPIRBuilder::getKernelArgsVector(TargetKernelArgs &KernelArgs,
492 IRBuilderBase &Builder,
493 SmallVector<Value *> &ArgsVector) {
494 Value *Version = Builder.getInt32(OMP_KERNEL_ARG_VERSION);
495 Value *PointerNum = Builder.getInt32(C: KernelArgs.NumTargetItems);
496 auto Int32Ty = Type::getInt32Ty(C&: Builder.getContext());
497 Value *ZeroArray = Constant::getNullValue(Ty: ArrayType::get(ElementType: Int32Ty, NumElements: 3));
498 Value *Flags = Builder.getInt64(C: KernelArgs.HasNoWait);
499
500 Value *NumTeams3D =
501 Builder.CreateInsertValue(Agg: ZeroArray, Val: KernelArgs.NumTeams, Idxs: {0});
502 Value *NumThreads3D =
503 Builder.CreateInsertValue(Agg: ZeroArray, Val: KernelArgs.NumThreads, Idxs: {0});
504
505 ArgsVector = {Version,
506 PointerNum,
507 KernelArgs.RTArgs.BasePointersArray,
508 KernelArgs.RTArgs.PointersArray,
509 KernelArgs.RTArgs.SizesArray,
510 KernelArgs.RTArgs.MapTypesArray,
511 KernelArgs.RTArgs.MapNamesArray,
512 KernelArgs.RTArgs.MappersArray,
513 KernelArgs.NumIterations,
514 Flags,
515 NumTeams3D,
516 NumThreads3D,
517 KernelArgs.DynCGGroupMem};
518}
519
520void OpenMPIRBuilder::addAttributes(omp::RuntimeFunction FnID, Function &Fn) {
521 LLVMContext &Ctx = Fn.getContext();
522
523 // Get the function's current attributes.
524 auto Attrs = Fn.getAttributes();
525 auto FnAttrs = Attrs.getFnAttrs();
526 auto RetAttrs = Attrs.getRetAttrs();
527 SmallVector<AttributeSet, 4> ArgAttrs;
528 for (size_t ArgNo = 0; ArgNo < Fn.arg_size(); ++ArgNo)
529 ArgAttrs.emplace_back(Args: Attrs.getParamAttrs(ArgNo));
530
531 // Add AS to FnAS while taking special care with integer extensions.
532 auto addAttrSet = [&](AttributeSet &FnAS, const AttributeSet &AS,
533 bool Param = true) -> void {
534 bool HasSignExt = AS.hasAttribute(Attribute::SExt);
535 bool HasZeroExt = AS.hasAttribute(Attribute::ZExt);
536 if (HasSignExt || HasZeroExt) {
537 assert(AS.getNumAttributes() == 1 &&
538 "Currently not handling extension attr combined with others.");
539 if (Param) {
540 if (auto AK = TargetLibraryInfo::getExtAttrForI32Param(T, HasSignExt))
541 FnAS = FnAS.addAttribute(Ctx, AK);
542 } else if (auto AK =
543 TargetLibraryInfo::getExtAttrForI32Return(T, HasSignExt))
544 FnAS = FnAS.addAttribute(Ctx, AK);
545 } else {
546 FnAS = FnAS.addAttributes(C&: Ctx, AS);
547 }
548 };
549
550#define OMP_ATTRS_SET(VarName, AttrSet) AttributeSet VarName = AttrSet;
551#include "llvm/Frontend/OpenMP/OMPKinds.def"
552
553 // Add attributes to the function declaration.
554 switch (FnID) {
555#define OMP_RTL_ATTRS(Enum, FnAttrSet, RetAttrSet, ArgAttrSets) \
556 case Enum: \
557 FnAttrs = FnAttrs.addAttributes(Ctx, FnAttrSet); \
558 addAttrSet(RetAttrs, RetAttrSet, /*Param*/ false); \
559 for (size_t ArgNo = 0; ArgNo < ArgAttrSets.size(); ++ArgNo) \
560 addAttrSet(ArgAttrs[ArgNo], ArgAttrSets[ArgNo]); \
561 Fn.setAttributes(AttributeList::get(Ctx, FnAttrs, RetAttrs, ArgAttrs)); \
562 break;
563#include "llvm/Frontend/OpenMP/OMPKinds.def"
564 default:
565 // Attributes are optional.
566 break;
567 }
568}
569
570FunctionCallee
571OpenMPIRBuilder::getOrCreateRuntimeFunction(Module &M, RuntimeFunction FnID) {
572 FunctionType *FnTy = nullptr;
573 Function *Fn = nullptr;
574
575 // Try to find the declation in the module first.
576 switch (FnID) {
577#define OMP_RTL(Enum, Str, IsVarArg, ReturnType, ...) \
578 case Enum: \
579 FnTy = FunctionType::get(ReturnType, ArrayRef<Type *>{__VA_ARGS__}, \
580 IsVarArg); \
581 Fn = M.getFunction(Str); \
582 break;
583#include "llvm/Frontend/OpenMP/OMPKinds.def"
584 }
585
586 if (!Fn) {
587 // Create a new declaration if we need one.
588 switch (FnID) {
589#define OMP_RTL(Enum, Str, ...) \
590 case Enum: \
591 Fn = Function::Create(FnTy, GlobalValue::ExternalLinkage, Str, M); \
592 break;
593#include "llvm/Frontend/OpenMP/OMPKinds.def"
594 }
595
596 // Add information if the runtime function takes a callback function
597 if (FnID == OMPRTL___kmpc_fork_call || FnID == OMPRTL___kmpc_fork_teams) {
598 if (!Fn->hasMetadata(KindID: LLVMContext::MD_callback)) {
599 LLVMContext &Ctx = Fn->getContext();
600 MDBuilder MDB(Ctx);
601 // Annotate the callback behavior of the runtime function:
602 // - The callback callee is argument number 2 (microtask).
603 // - The first two arguments of the callback callee are unknown (-1).
604 // - All variadic arguments to the runtime function are passed to the
605 // callback callee.
606 Fn->addMetadata(
607 KindID: LLVMContext::MD_callback,
608 MD&: *MDNode::get(Context&: Ctx, MDs: {MDB.createCallbackEncoding(
609 CalleeArgNo: 2, Arguments: {-1, -1}, /* VarArgsArePassed */ true)}));
610 }
611 }
612
613 LLVM_DEBUG(dbgs() << "Created OpenMP runtime function " << Fn->getName()
614 << " with type " << *Fn->getFunctionType() << "\n");
615 addAttributes(FnID, Fn&: *Fn);
616
617 } else {
618 LLVM_DEBUG(dbgs() << "Found OpenMP runtime function " << Fn->getName()
619 << " with type " << *Fn->getFunctionType() << "\n");
620 }
621
622 assert(Fn && "Failed to create OpenMP runtime function");
623
624 return {FnTy, Fn};
625}
626
627Function *OpenMPIRBuilder::getOrCreateRuntimeFunctionPtr(RuntimeFunction FnID) {
628 FunctionCallee RTLFn = getOrCreateRuntimeFunction(M, FnID);
629 auto *Fn = dyn_cast<llvm::Function>(Val: RTLFn.getCallee());
630 assert(Fn && "Failed to create OpenMP runtime function pointer");
631 return Fn;
632}
633
634void OpenMPIRBuilder::initialize() { initializeTypes(M); }
635
636void OpenMPIRBuilder::finalize(Function *Fn) {
637 SmallPtrSet<BasicBlock *, 32> ParallelRegionBlockSet;
638 SmallVector<BasicBlock *, 32> Blocks;
639 SmallVector<OutlineInfo, 16> DeferredOutlines;
640 for (OutlineInfo &OI : OutlineInfos) {
641 // Skip functions that have not finalized yet; may happen with nested
642 // function generation.
643 if (Fn && OI.getFunction() != Fn) {
644 DeferredOutlines.push_back(Elt: OI);
645 continue;
646 }
647
648 ParallelRegionBlockSet.clear();
649 Blocks.clear();
650 OI.collectBlocks(BlockSet&: ParallelRegionBlockSet, BlockVector&: Blocks);
651
652 Function *OuterFn = OI.getFunction();
653 CodeExtractorAnalysisCache CEAC(*OuterFn);
654 // If we generate code for the target device, we need to allocate
655 // struct for aggregate params in the device default alloca address space.
656 // OpenMP runtime requires that the params of the extracted functions are
657 // passed as zero address space pointers. This flag ensures that
658 // CodeExtractor generates correct code for extracted functions
659 // which are used by OpenMP runtime.
660 bool ArgsInZeroAddressSpace = Config.isTargetDevice();
661 CodeExtractor Extractor(Blocks, /* DominatorTree */ nullptr,
662 /* AggregateArgs */ true,
663 /* BlockFrequencyInfo */ nullptr,
664 /* BranchProbabilityInfo */ nullptr,
665 /* AssumptionCache */ nullptr,
666 /* AllowVarArgs */ true,
667 /* AllowAlloca */ true,
668 /* AllocaBlock*/ OI.OuterAllocaBB,
669 /* Suffix */ ".omp_par", ArgsInZeroAddressSpace);
670
671 LLVM_DEBUG(dbgs() << "Before outlining: " << *OuterFn << "\n");
672 LLVM_DEBUG(dbgs() << "Entry " << OI.EntryBB->getName()
673 << " Exit: " << OI.ExitBB->getName() << "\n");
674 assert(Extractor.isEligible() &&
675 "Expected OpenMP outlining to be possible!");
676
677 for (auto *V : OI.ExcludeArgsFromAggregate)
678 Extractor.excludeArgFromAggregate(Arg: V);
679
680 Function *OutlinedFn = Extractor.extractCodeRegion(CEAC);
681
682 // Forward target-cpu, target-features attributes to the outlined function.
683 auto TargetCpuAttr = OuterFn->getFnAttribute(Kind: "target-cpu");
684 if (TargetCpuAttr.isStringAttribute())
685 OutlinedFn->addFnAttr(Attr: TargetCpuAttr);
686
687 auto TargetFeaturesAttr = OuterFn->getFnAttribute(Kind: "target-features");
688 if (TargetFeaturesAttr.isStringAttribute())
689 OutlinedFn->addFnAttr(Attr: TargetFeaturesAttr);
690
691 LLVM_DEBUG(dbgs() << "After outlining: " << *OuterFn << "\n");
692 LLVM_DEBUG(dbgs() << " Outlined function: " << *OutlinedFn << "\n");
693 assert(OutlinedFn->getReturnType()->isVoidTy() &&
694 "OpenMP outlined functions should not return a value!");
695
696 // For compability with the clang CG we move the outlined function after the
697 // one with the parallel region.
698 OutlinedFn->removeFromParent();
699 M.getFunctionList().insertAfter(where: OuterFn->getIterator(), New: OutlinedFn);
700
701 // Remove the artificial entry introduced by the extractor right away, we
702 // made our own entry block after all.
703 {
704 BasicBlock &ArtificialEntry = OutlinedFn->getEntryBlock();
705 assert(ArtificialEntry.getUniqueSuccessor() == OI.EntryBB);
706 assert(OI.EntryBB->getUniquePredecessor() == &ArtificialEntry);
707 // Move instructions from the to-be-deleted ArtificialEntry to the entry
708 // basic block of the parallel region. CodeExtractor generates
709 // instructions to unwrap the aggregate argument and may sink
710 // allocas/bitcasts for values that are solely used in the outlined region
711 // and do not escape.
712 assert(!ArtificialEntry.empty() &&
713 "Expected instructions to add in the outlined region entry");
714 for (BasicBlock::reverse_iterator It = ArtificialEntry.rbegin(),
715 End = ArtificialEntry.rend();
716 It != End;) {
717 Instruction &I = *It;
718 It++;
719
720 if (I.isTerminator())
721 continue;
722
723 I.moveBeforePreserving(BB&: *OI.EntryBB, I: OI.EntryBB->getFirstInsertionPt());
724 }
725
726 OI.EntryBB->moveBefore(MovePos: &ArtificialEntry);
727 ArtificialEntry.eraseFromParent();
728 }
729 assert(&OutlinedFn->getEntryBlock() == OI.EntryBB);
730 assert(OutlinedFn && OutlinedFn->getNumUses() == 1);
731
732 // Run a user callback, e.g. to add attributes.
733 if (OI.PostOutlineCB)
734 OI.PostOutlineCB(*OutlinedFn);
735 }
736
737 // Remove work items that have been completed.
738 OutlineInfos = std::move(DeferredOutlines);
739
740 EmitMetadataErrorReportFunctionTy &&ErrorReportFn =
741 [](EmitMetadataErrorKind Kind,
742 const TargetRegionEntryInfo &EntryInfo) -> void {
743 errs() << "Error of kind: " << Kind
744 << " when emitting offload entries and metadata during "
745 "OMPIRBuilder finalization \n";
746 };
747
748 if (!OffloadInfoManager.empty())
749 createOffloadEntriesAndInfoMetadata(ErrorReportFunction&: ErrorReportFn);
750}
751
752OpenMPIRBuilder::~OpenMPIRBuilder() {
753 assert(OutlineInfos.empty() && "There must be no outstanding outlinings");
754}
755
756GlobalValue *OpenMPIRBuilder::createGlobalFlag(unsigned Value, StringRef Name) {
757 IntegerType *I32Ty = Type::getInt32Ty(C&: M.getContext());
758 auto *GV =
759 new GlobalVariable(M, I32Ty,
760 /* isConstant = */ true, GlobalValue::WeakODRLinkage,
761 ConstantInt::get(Ty: I32Ty, V: Value), Name);
762 GV->setVisibility(GlobalValue::HiddenVisibility);
763
764 return GV;
765}
766
767Constant *OpenMPIRBuilder::getOrCreateIdent(Constant *SrcLocStr,
768 uint32_t SrcLocStrSize,
769 IdentFlag LocFlags,
770 unsigned Reserve2Flags) {
771 // Enable "C-mode".
772 LocFlags |= OMP_IDENT_FLAG_KMPC;
773
774 Constant *&Ident =
775 IdentMap[{SrcLocStr, uint64_t(LocFlags) << 31 | Reserve2Flags}];
776 if (!Ident) {
777 Constant *I32Null = ConstantInt::getNullValue(Ty: Int32);
778 Constant *IdentData[] = {I32Null,
779 ConstantInt::get(Ty: Int32, V: uint32_t(LocFlags)),
780 ConstantInt::get(Ty: Int32, V: Reserve2Flags),
781 ConstantInt::get(Ty: Int32, V: SrcLocStrSize), SrcLocStr};
782 Constant *Initializer =
783 ConstantStruct::get(T: OpenMPIRBuilder::Ident, V: IdentData);
784
785 // Look for existing encoding of the location + flags, not needed but
786 // minimizes the difference to the existing solution while we transition.
787 for (GlobalVariable &GV : M.globals())
788 if (GV.getValueType() == OpenMPIRBuilder::Ident && GV.hasInitializer())
789 if (GV.getInitializer() == Initializer)
790 Ident = &GV;
791
792 if (!Ident) {
793 auto *GV = new GlobalVariable(
794 M, OpenMPIRBuilder::Ident,
795 /* isConstant = */ true, GlobalValue::PrivateLinkage, Initializer, "",
796 nullptr, GlobalValue::NotThreadLocal,
797 M.getDataLayout().getDefaultGlobalsAddressSpace());
798 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
799 GV->setAlignment(Align(8));
800 Ident = GV;
801 }
802 }
803
804 return ConstantExpr::getPointerBitCastOrAddrSpaceCast(C: Ident, Ty: IdentPtr);
805}
806
807Constant *OpenMPIRBuilder::getOrCreateSrcLocStr(StringRef LocStr,
808 uint32_t &SrcLocStrSize) {
809 SrcLocStrSize = LocStr.size();
810 Constant *&SrcLocStr = SrcLocStrMap[LocStr];
811 if (!SrcLocStr) {
812 Constant *Initializer =
813 ConstantDataArray::getString(Context&: M.getContext(), Initializer: LocStr);
814
815 // Look for existing encoding of the location, not needed but minimizes the
816 // difference to the existing solution while we transition.
817 for (GlobalVariable &GV : M.globals())
818 if (GV.isConstant() && GV.hasInitializer() &&
819 GV.getInitializer() == Initializer)
820 return SrcLocStr = ConstantExpr::getPointerCast(C: &GV, Ty: Int8Ptr);
821
822 SrcLocStr = Builder.CreateGlobalStringPtr(Str: LocStr, /* Name */ "",
823 /* AddressSpace */ 0, M: &M);
824 }
825 return SrcLocStr;
826}
827
828Constant *OpenMPIRBuilder::getOrCreateSrcLocStr(StringRef FunctionName,
829 StringRef FileName,
830 unsigned Line, unsigned Column,
831 uint32_t &SrcLocStrSize) {
832 SmallString<128> Buffer;
833 Buffer.push_back(Elt: ';');
834 Buffer.append(RHS: FileName);
835 Buffer.push_back(Elt: ';');
836 Buffer.append(RHS: FunctionName);
837 Buffer.push_back(Elt: ';');
838 Buffer.append(RHS: std::to_string(val: Line));
839 Buffer.push_back(Elt: ';');
840 Buffer.append(RHS: std::to_string(val: Column));
841 Buffer.push_back(Elt: ';');
842 Buffer.push_back(Elt: ';');
843 return getOrCreateSrcLocStr(LocStr: Buffer.str(), SrcLocStrSize);
844}
845
846Constant *
847OpenMPIRBuilder::getOrCreateDefaultSrcLocStr(uint32_t &SrcLocStrSize) {
848 StringRef UnknownLoc = ";unknown;unknown;0;0;;";
849 return getOrCreateSrcLocStr(LocStr: UnknownLoc, SrcLocStrSize);
850}
851
852Constant *OpenMPIRBuilder::getOrCreateSrcLocStr(DebugLoc DL,
853 uint32_t &SrcLocStrSize,
854 Function *F) {
855 DILocation *DIL = DL.get();
856 if (!DIL)
857 return getOrCreateDefaultSrcLocStr(SrcLocStrSize);
858 StringRef FileName = M.getName();
859 if (DIFile *DIF = DIL->getFile())
860 if (std::optional<StringRef> Source = DIF->getSource())
861 FileName = *Source;
862 StringRef Function = DIL->getScope()->getSubprogram()->getName();
863 if (Function.empty() && F)
864 Function = F->getName();
865 return getOrCreateSrcLocStr(FunctionName: Function, FileName, Line: DIL->getLine(),
866 Column: DIL->getColumn(), SrcLocStrSize);
867}
868
869Constant *OpenMPIRBuilder::getOrCreateSrcLocStr(const LocationDescription &Loc,
870 uint32_t &SrcLocStrSize) {
871 return getOrCreateSrcLocStr(DL: Loc.DL, SrcLocStrSize,
872 F: Loc.IP.getBlock()->getParent());
873}
874
875Value *OpenMPIRBuilder::getOrCreateThreadID(Value *Ident) {
876 return Builder.CreateCall(
877 Callee: getOrCreateRuntimeFunctionPtr(FnID: OMPRTL___kmpc_global_thread_num), Args: Ident,
878 Name: "omp_global_thread_num");
879}
880
881OpenMPIRBuilder::InsertPointTy
882OpenMPIRBuilder::createBarrier(const LocationDescription &Loc, Directive DK,
883 bool ForceSimpleCall, bool CheckCancelFlag) {
884 if (!updateToLocation(Loc))
885 return Loc.IP;
886 return emitBarrierImpl(Loc, DK, ForceSimpleCall, CheckCancelFlag);
887}
888
889OpenMPIRBuilder::InsertPointTy
890OpenMPIRBuilder::emitBarrierImpl(const LocationDescription &Loc, Directive Kind,
891 bool ForceSimpleCall, bool CheckCancelFlag) {
892 // Build call __kmpc_cancel_barrier(loc, thread_id) or
893 // __kmpc_barrier(loc, thread_id);
894
895 IdentFlag BarrierLocFlags;
896 switch (Kind) {
897 case OMPD_for:
898 BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL_FOR;
899 break;
900 case OMPD_sections:
901 BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL_SECTIONS;
902 break;
903 case OMPD_single:
904 BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL_SINGLE;
905 break;
906 case OMPD_barrier:
907 BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_EXPL;
908 break;
909 default:
910 BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL;
911 break;
912 }
913
914 uint32_t SrcLocStrSize;
915 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
916 Value *Args[] = {
917 getOrCreateIdent(SrcLocStr, SrcLocStrSize, LocFlags: BarrierLocFlags),
918 getOrCreateThreadID(Ident: getOrCreateIdent(SrcLocStr, SrcLocStrSize))};
919
920 // If we are in a cancellable parallel region, barriers are cancellation
921 // points.
922 // TODO: Check why we would force simple calls or to ignore the cancel flag.
923 bool UseCancelBarrier =
924 !ForceSimpleCall && isLastFinalizationInfoCancellable(OMPD_parallel);
925
926 Value *Result =
927 Builder.CreateCall(Callee: getOrCreateRuntimeFunctionPtr(
928 FnID: UseCancelBarrier ? OMPRTL___kmpc_cancel_barrier
929 : OMPRTL___kmpc_barrier),
930 Args);
931
932 if (UseCancelBarrier && CheckCancelFlag)
933 emitCancelationCheckImpl(Result, OMPD_parallel);
934
935 return Builder.saveIP();
936}
937
938OpenMPIRBuilder::InsertPointTy
939OpenMPIRBuilder::createCancel(const LocationDescription &Loc,
940 Value *IfCondition,
941 omp::Directive CanceledDirective) {
942 if (!updateToLocation(Loc))
943 return Loc.IP;
944
945 // LLVM utilities like blocks with terminators.
946 auto *UI = Builder.CreateUnreachable();
947
948 Instruction *ThenTI = UI, *ElseTI = nullptr;
949 if (IfCondition)
950 SplitBlockAndInsertIfThenElse(Cond: IfCondition, SplitBefore: UI, ThenTerm: &ThenTI, ElseTerm: &ElseTI);
951 Builder.SetInsertPoint(ThenTI);
952
953 Value *CancelKind = nullptr;
954 switch (CanceledDirective) {
955#define OMP_CANCEL_KIND(Enum, Str, DirectiveEnum, Value) \
956 case DirectiveEnum: \
957 CancelKind = Builder.getInt32(Value); \
958 break;
959#include "llvm/Frontend/OpenMP/OMPKinds.def"
960 default:
961 llvm_unreachable("Unknown cancel kind!");
962 }
963
964 uint32_t SrcLocStrSize;
965 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
966 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
967 Value *Args[] = {Ident, getOrCreateThreadID(Ident), CancelKind};
968 Value *Result = Builder.CreateCall(
969 Callee: getOrCreateRuntimeFunctionPtr(FnID: OMPRTL___kmpc_cancel), Args);
970 auto ExitCB = [this, CanceledDirective, Loc](InsertPointTy IP) {
971 if (CanceledDirective == OMPD_parallel) {
972 IRBuilder<>::InsertPointGuard IPG(Builder);
973 Builder.restoreIP(IP);
974 createBarrier(LocationDescription(Builder.saveIP(), Loc.DL),
975 omp::Directive::OMPD_unknown, /* ForceSimpleCall */ false,
976 /* CheckCancelFlag */ false);
977 }
978 };
979
980 // The actual cancel logic is shared with others, e.g., cancel_barriers.
981 emitCancelationCheckImpl(Result, CanceledDirective, ExitCB);
982
983 // Update the insertion point and remove the terminator we introduced.
984 Builder.SetInsertPoint(UI->getParent());
985 UI->eraseFromParent();
986
987 return Builder.saveIP();
988}
989
990OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::emitTargetKernel(
991 const LocationDescription &Loc, InsertPointTy AllocaIP, Value *&Return,
992 Value *Ident, Value *DeviceID, Value *NumTeams, Value *NumThreads,
993 Value *HostPtr, ArrayRef<Value *> KernelArgs) {
994 if (!updateToLocation(Loc))
995 return Loc.IP;
996
997 Builder.restoreIP(IP: AllocaIP);
998 auto *KernelArgsPtr =
999 Builder.CreateAlloca(Ty: OpenMPIRBuilder::KernelArgs, ArraySize: nullptr, Name: "kernel_args");
1000 Builder.restoreIP(IP: Loc.IP);
1001
1002 for (unsigned I = 0, Size = KernelArgs.size(); I != Size; ++I) {
1003 llvm::Value *Arg =
1004 Builder.CreateStructGEP(Ty: OpenMPIRBuilder::KernelArgs, Ptr: KernelArgsPtr, Idx: I);
1005 Builder.CreateAlignedStore(
1006 Val: KernelArgs[I], Ptr: Arg,
1007 Align: M.getDataLayout().getPrefTypeAlign(Ty: KernelArgs[I]->getType()));
1008 }
1009
1010 SmallVector<Value *> OffloadingArgs{Ident, DeviceID, NumTeams,
1011 NumThreads, HostPtr, KernelArgsPtr};
1012
1013 Return = Builder.CreateCall(
1014 Callee: getOrCreateRuntimeFunction(M, FnID: OMPRTL___tgt_target_kernel),
1015 Args: OffloadingArgs);
1016
1017 return Builder.saveIP();
1018}
1019
1020OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::emitKernelLaunch(
1021 const LocationDescription &Loc, Function *OutlinedFn, Value *OutlinedFnID,
1022 EmitFallbackCallbackTy emitTargetCallFallbackCB, TargetKernelArgs &Args,
1023 Value *DeviceID, Value *RTLoc, InsertPointTy AllocaIP) {
1024
1025 if (!updateToLocation(Loc))
1026 return Loc.IP;
1027
1028 Builder.restoreIP(IP: Loc.IP);
1029 // On top of the arrays that were filled up, the target offloading call
1030 // takes as arguments the device id as well as the host pointer. The host
1031 // pointer is used by the runtime library to identify the current target
1032 // region, so it only has to be unique and not necessarily point to
1033 // anything. It could be the pointer to the outlined function that
1034 // implements the target region, but we aren't using that so that the
1035 // compiler doesn't need to keep that, and could therefore inline the host
1036 // function if proven worthwhile during optimization.
1037
1038 // From this point on, we need to have an ID of the target region defined.
1039 assert(OutlinedFnID && "Invalid outlined function ID!");
1040 (void)OutlinedFnID;
1041
1042 // Return value of the runtime offloading call.
1043 Value *Return = nullptr;
1044
1045 // Arguments for the target kernel.
1046 SmallVector<Value *> ArgsVector;
1047 getKernelArgsVector(KernelArgs&: Args, Builder, ArgsVector);
1048
1049 // The target region is an outlined function launched by the runtime
1050 // via calls to __tgt_target_kernel().
1051 //
1052 // Note that on the host and CPU targets, the runtime implementation of
1053 // these calls simply call the outlined function without forking threads.
1054 // The outlined functions themselves have runtime calls to
1055 // __kmpc_fork_teams() and __kmpc_fork() for this purpose, codegen'd by
1056 // the compiler in emitTeamsCall() and emitParallelCall().
1057 //
1058 // In contrast, on the NVPTX target, the implementation of
1059 // __tgt_target_teams() launches a GPU kernel with the requested number
1060 // of teams and threads so no additional calls to the runtime are required.
1061 // Check the error code and execute the host version if required.
1062 Builder.restoreIP(IP: emitTargetKernel(Loc: Builder, AllocaIP, Return, Ident: RTLoc, DeviceID,
1063 NumTeams: Args.NumTeams, NumThreads: Args.NumThreads,
1064 HostPtr: OutlinedFnID, KernelArgs: ArgsVector));
1065
1066 BasicBlock *OffloadFailedBlock =
1067 BasicBlock::Create(Context&: Builder.getContext(), Name: "omp_offload.failed");
1068 BasicBlock *OffloadContBlock =
1069 BasicBlock::Create(Context&: Builder.getContext(), Name: "omp_offload.cont");
1070 Value *Failed = Builder.CreateIsNotNull(Arg: Return);
1071 Builder.CreateCondBr(Cond: Failed, True: OffloadFailedBlock, False: OffloadContBlock);
1072
1073 auto CurFn = Builder.GetInsertBlock()->getParent();
1074 emitBlock(BB: OffloadFailedBlock, CurFn);
1075 Builder.restoreIP(IP: emitTargetCallFallbackCB(Builder.saveIP()));
1076 emitBranch(Target: OffloadContBlock);
1077 emitBlock(BB: OffloadContBlock, CurFn, /*IsFinished=*/true);
1078 return Builder.saveIP();
1079}
1080
1081void OpenMPIRBuilder::emitCancelationCheckImpl(Value *CancelFlag,
1082 omp::Directive CanceledDirective,
1083 FinalizeCallbackTy ExitCB) {
1084 assert(isLastFinalizationInfoCancellable(CanceledDirective) &&
1085 "Unexpected cancellation!");
1086
1087 // For a cancel barrier we create two new blocks.
1088 BasicBlock *BB = Builder.GetInsertBlock();
1089 BasicBlock *NonCancellationBlock;
1090 if (Builder.GetInsertPoint() == BB->end()) {
1091 // TODO: This branch will not be needed once we moved to the
1092 // OpenMPIRBuilder codegen completely.
1093 NonCancellationBlock = BasicBlock::Create(
1094 Context&: BB->getContext(), Name: BB->getName() + ".cont", Parent: BB->getParent());
1095 } else {
1096 NonCancellationBlock = SplitBlock(Old: BB, SplitPt: &*Builder.GetInsertPoint());
1097 BB->getTerminator()->eraseFromParent();
1098 Builder.SetInsertPoint(BB);
1099 }
1100 BasicBlock *CancellationBlock = BasicBlock::Create(
1101 Context&: BB->getContext(), Name: BB->getName() + ".cncl", Parent: BB->getParent());
1102
1103 // Jump to them based on the return value.
1104 Value *Cmp = Builder.CreateIsNull(Arg: CancelFlag);
1105 Builder.CreateCondBr(Cond: Cmp, True: NonCancellationBlock, False: CancellationBlock,
1106 /* TODO weight */ BranchWeights: nullptr, Unpredictable: nullptr);
1107
1108 // From the cancellation block we finalize all variables and go to the
1109 // post finalization block that is known to the FiniCB callback.
1110 Builder.SetInsertPoint(CancellationBlock);
1111 if (ExitCB)
1112 ExitCB(Builder.saveIP());
1113 auto &FI = FinalizationStack.back();
1114 FI.FiniCB(Builder.saveIP());
1115
1116 // The continuation block is where code generation continues.
1117 Builder.SetInsertPoint(TheBB: NonCancellationBlock, IP: NonCancellationBlock->begin());
1118}
1119
1120// Callback used to create OpenMP runtime calls to support
1121// omp parallel clause for the device.
1122// We need to use this callback to replace call to the OutlinedFn in OuterFn
1123// by the call to the OpenMP DeviceRTL runtime function (kmpc_parallel_51)
1124static void targetParallelCallback(
1125 OpenMPIRBuilder *OMPIRBuilder, Function &OutlinedFn, Function *OuterFn,
1126 BasicBlock *OuterAllocaBB, Value *Ident, Value *IfCondition,
1127 Value *NumThreads, Instruction *PrivTID, AllocaInst *PrivTIDAddr,
1128 Value *ThreadID, const SmallVector<Instruction *, 4> &ToBeDeleted) {
1129 // Add some known attributes.
1130 IRBuilder<> &Builder = OMPIRBuilder->Builder;
1131 OutlinedFn.addParamAttr(0, Attribute::NoAlias);
1132 OutlinedFn.addParamAttr(1, Attribute::NoAlias);
1133 OutlinedFn.addParamAttr(0, Attribute::NoUndef);
1134 OutlinedFn.addParamAttr(1, Attribute::NoUndef);
1135 OutlinedFn.addFnAttr(Attribute::NoUnwind);
1136
1137 assert(OutlinedFn.arg_size() >= 2 &&
1138 "Expected at least tid and bounded tid as arguments");
1139 unsigned NumCapturedVars = OutlinedFn.arg_size() - /* tid & bounded tid */ 2;
1140
1141 CallInst *CI = cast<CallInst>(Val: OutlinedFn.user_back());
1142 assert(CI && "Expected call instruction to outlined function");
1143 CI->getParent()->setName("omp_parallel");
1144
1145 Builder.SetInsertPoint(CI);
1146 Type *PtrTy = OMPIRBuilder->VoidPtr;
1147 Value *NullPtrValue = Constant::getNullValue(Ty: PtrTy);
1148
1149 // Add alloca for kernel args
1150 OpenMPIRBuilder ::InsertPointTy CurrentIP = Builder.saveIP();
1151 Builder.SetInsertPoint(TheBB: OuterAllocaBB, IP: OuterAllocaBB->getFirstInsertionPt());
1152 AllocaInst *ArgsAlloca =
1153 Builder.CreateAlloca(Ty: ArrayType::get(ElementType: PtrTy, NumElements: NumCapturedVars));
1154 Value *Args = ArgsAlloca;
1155 // Add address space cast if array for storing arguments is not allocated
1156 // in address space 0
1157 if (ArgsAlloca->getAddressSpace())
1158 Args = Builder.CreatePointerCast(V: ArgsAlloca, DestTy: PtrTy);
1159 Builder.restoreIP(IP: CurrentIP);
1160
1161 // Store captured vars which are used by kmpc_parallel_51
1162 for (unsigned Idx = 0; Idx < NumCapturedVars; Idx++) {
1163 Value *V = *(CI->arg_begin() + 2 + Idx);
1164 Value *StoreAddress = Builder.CreateConstInBoundsGEP2_64(
1165 Ty: ArrayType::get(ElementType: PtrTy, NumElements: NumCapturedVars), Ptr: Args, Idx0: 0, Idx1: Idx);
1166 Builder.CreateStore(Val: V, Ptr: StoreAddress);
1167 }
1168
1169 Value *Cond =
1170 IfCondition ? Builder.CreateSExtOrTrunc(V: IfCondition, DestTy: OMPIRBuilder->Int32)
1171 : Builder.getInt32(C: 1);
1172
1173 // Build kmpc_parallel_51 call
1174 Value *Parallel51CallArgs[] = {
1175 /* identifier*/ Ident,
1176 /* global thread num*/ ThreadID,
1177 /* if expression */ Cond,
1178 /* number of threads */ NumThreads ? NumThreads : Builder.getInt32(C: -1),
1179 /* Proc bind */ Builder.getInt32(C: -1),
1180 /* outlined function */
1181 Builder.CreateBitCast(V: &OutlinedFn, DestTy: OMPIRBuilder->ParallelTaskPtr),
1182 /* wrapper function */ NullPtrValue,
1183 /* arguments of the outlined funciton*/ Args,
1184 /* number of arguments */ Builder.getInt64(C: NumCapturedVars)};
1185
1186 FunctionCallee RTLFn =
1187 OMPIRBuilder->getOrCreateRuntimeFunctionPtr(FnID: OMPRTL___kmpc_parallel_51);
1188
1189 Builder.CreateCall(Callee: RTLFn, Args: Parallel51CallArgs);
1190
1191 LLVM_DEBUG(dbgs() << "With kmpc_parallel_51 placed: "
1192 << *Builder.GetInsertBlock()->getParent() << "\n");
1193
1194 // Initialize the local TID stack location with the argument value.
1195 Builder.SetInsertPoint(PrivTID);
1196 Function::arg_iterator OutlinedAI = OutlinedFn.arg_begin();
1197 Builder.CreateStore(Val: Builder.CreateLoad(Ty: OMPIRBuilder->Int32, Ptr: OutlinedAI),
1198 Ptr: PrivTIDAddr);
1199
1200 // Remove redundant call to the outlined function.
1201 CI->eraseFromParent();
1202
1203 for (Instruction *I : ToBeDeleted) {
1204 I->eraseFromParent();
1205 }
1206}
1207
1208// Callback used to create OpenMP runtime calls to support
1209// omp parallel clause for the host.
1210// We need to use this callback to replace call to the OutlinedFn in OuterFn
1211// by the call to the OpenMP host runtime function ( __kmpc_fork_call[_if])
1212static void
1213hostParallelCallback(OpenMPIRBuilder *OMPIRBuilder, Function &OutlinedFn,
1214 Function *OuterFn, Value *Ident, Value *IfCondition,
1215 Instruction *PrivTID, AllocaInst *PrivTIDAddr,
1216 const SmallVector<Instruction *, 4> &ToBeDeleted) {
1217 IRBuilder<> &Builder = OMPIRBuilder->Builder;
1218 FunctionCallee RTLFn;
1219 if (IfCondition) {
1220 RTLFn =
1221 OMPIRBuilder->getOrCreateRuntimeFunctionPtr(FnID: OMPRTL___kmpc_fork_call_if);
1222 } else {
1223 RTLFn =
1224 OMPIRBuilder->getOrCreateRuntimeFunctionPtr(FnID: OMPRTL___kmpc_fork_call);
1225 }
1226 if (auto *F = dyn_cast<Function>(Val: RTLFn.getCallee())) {
1227 if (!F->hasMetadata(KindID: LLVMContext::MD_callback)) {
1228 LLVMContext &Ctx = F->getContext();
1229 MDBuilder MDB(Ctx);
1230 // Annotate the callback behavior of the __kmpc_fork_call:
1231 // - The callback callee is argument number 2 (microtask).
1232 // - The first two arguments of the callback callee are unknown (-1).
1233 // - All variadic arguments to the __kmpc_fork_call are passed to the
1234 // callback callee.
1235 F->addMetadata(KindID: LLVMContext::MD_callback,
1236 MD&: *MDNode::get(Context&: Ctx, MDs: {MDB.createCallbackEncoding(
1237 CalleeArgNo: 2, Arguments: {-1, -1},
1238 /* VarArgsArePassed */ true)}));
1239 }
1240 }
1241 // Add some known attributes.
1242 OutlinedFn.addParamAttr(0, Attribute::NoAlias);
1243 OutlinedFn.addParamAttr(1, Attribute::NoAlias);
1244 OutlinedFn.addFnAttr(Attribute::NoUnwind);
1245
1246 assert(OutlinedFn.arg_size() >= 2 &&
1247 "Expected at least tid and bounded tid as arguments");
1248 unsigned NumCapturedVars = OutlinedFn.arg_size() - /* tid & bounded tid */ 2;
1249
1250 CallInst *CI = cast<CallInst>(Val: OutlinedFn.user_back());
1251 CI->getParent()->setName("omp_parallel");
1252 Builder.SetInsertPoint(CI);
1253
1254 // Build call __kmpc_fork_call[_if](Ident, n, microtask, var1, .., varn);
1255 Value *ForkCallArgs[] = {
1256 Ident, Builder.getInt32(C: NumCapturedVars),
1257 Builder.CreateBitCast(V: &OutlinedFn, DestTy: OMPIRBuilder->ParallelTaskPtr)};
1258
1259 SmallVector<Value *, 16> RealArgs;
1260 RealArgs.append(in_start: std::begin(arr&: ForkCallArgs), in_end: std::end(arr&: ForkCallArgs));
1261 if (IfCondition) {
1262 Value *Cond = Builder.CreateSExtOrTrunc(V: IfCondition, DestTy: OMPIRBuilder->Int32);
1263 RealArgs.push_back(Elt: Cond);
1264 }
1265 RealArgs.append(in_start: CI->arg_begin() + /* tid & bound tid */ 2, in_end: CI->arg_end());
1266
1267 // __kmpc_fork_call_if always expects a void ptr as the last argument
1268 // If there are no arguments, pass a null pointer.
1269 auto PtrTy = OMPIRBuilder->VoidPtr;
1270 if (IfCondition && NumCapturedVars == 0) {
1271 Value *NullPtrValue = Constant::getNullValue(Ty: PtrTy);
1272 RealArgs.push_back(Elt: NullPtrValue);
1273 }
1274 if (IfCondition && RealArgs.back()->getType() != PtrTy)
1275 RealArgs.back() = Builder.CreateBitCast(V: RealArgs.back(), DestTy: PtrTy);
1276
1277 Builder.CreateCall(Callee: RTLFn, Args: RealArgs);
1278
1279 LLVM_DEBUG(dbgs() << "With fork_call placed: "
1280 << *Builder.GetInsertBlock()->getParent() << "\n");
1281
1282 // Initialize the local TID stack location with the argument value.
1283 Builder.SetInsertPoint(PrivTID);
1284 Function::arg_iterator OutlinedAI = OutlinedFn.arg_begin();
1285 Builder.CreateStore(Val: Builder.CreateLoad(Ty: OMPIRBuilder->Int32, Ptr: OutlinedAI),
1286 Ptr: PrivTIDAddr);
1287
1288 // Remove redundant call to the outlined function.
1289 CI->eraseFromParent();
1290
1291 for (Instruction *I : ToBeDeleted) {
1292 I->eraseFromParent();
1293 }
1294}
1295
1296IRBuilder<>::InsertPoint OpenMPIRBuilder::createParallel(
1297 const LocationDescription &Loc, InsertPointTy OuterAllocaIP,
1298 BodyGenCallbackTy BodyGenCB, PrivatizeCallbackTy PrivCB,
1299 FinalizeCallbackTy FiniCB, Value *IfCondition, Value *NumThreads,
1300 omp::ProcBindKind ProcBind, bool IsCancellable) {
1301 assert(!isConflictIP(Loc.IP, OuterAllocaIP) && "IPs must not be ambiguous");
1302
1303 if (!updateToLocation(Loc))
1304 return Loc.IP;
1305
1306 uint32_t SrcLocStrSize;
1307 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
1308 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
1309 Value *ThreadID = getOrCreateThreadID(Ident);
1310 // If we generate code for the target device, we need to allocate
1311 // struct for aggregate params in the device default alloca address space.
1312 // OpenMP runtime requires that the params of the extracted functions are
1313 // passed as zero address space pointers. This flag ensures that extracted
1314 // function arguments are declared in zero address space
1315 bool ArgsInZeroAddressSpace = Config.isTargetDevice();
1316
1317 // Build call __kmpc_push_num_threads(&Ident, global_tid, num_threads)
1318 // only if we compile for host side.
1319 if (NumThreads && !Config.isTargetDevice()) {
1320 Value *Args[] = {
1321 Ident, ThreadID,
1322 Builder.CreateIntCast(V: NumThreads, DestTy: Int32, /*isSigned*/ false)};
1323 Builder.CreateCall(
1324 Callee: getOrCreateRuntimeFunctionPtr(FnID: OMPRTL___kmpc_push_num_threads), Args);
1325 }
1326
1327 if (ProcBind != OMP_PROC_BIND_default) {
1328 // Build call __kmpc_push_proc_bind(&Ident, global_tid, proc_bind)
1329 Value *Args[] = {
1330 Ident, ThreadID,
1331 ConstantInt::get(Ty: Int32, V: unsigned(ProcBind), /*isSigned=*/IsSigned: true)};
1332 Builder.CreateCall(
1333 Callee: getOrCreateRuntimeFunctionPtr(FnID: OMPRTL___kmpc_push_proc_bind), Args);
1334 }
1335
1336 BasicBlock *InsertBB = Builder.GetInsertBlock();
1337 Function *OuterFn = InsertBB->getParent();
1338
1339 // Save the outer alloca block because the insertion iterator may get
1340 // invalidated and we still need this later.
1341 BasicBlock *OuterAllocaBlock = OuterAllocaIP.getBlock();
1342
1343 // Vector to remember instructions we used only during the modeling but which
1344 // we want to delete at the end.
1345 SmallVector<Instruction *, 4> ToBeDeleted;
1346
1347 // Change the location to the outer alloca insertion point to create and
1348 // initialize the allocas we pass into the parallel region.
1349 Builder.restoreIP(IP: OuterAllocaIP);
1350 AllocaInst *TIDAddrAlloca = Builder.CreateAlloca(Ty: Int32, ArraySize: nullptr, Name: "tid.addr");
1351 AllocaInst *ZeroAddrAlloca =
1352 Builder.CreateAlloca(Ty: Int32, ArraySize: nullptr, Name: "zero.addr");
1353 Instruction *TIDAddr = TIDAddrAlloca;
1354 Instruction *ZeroAddr = ZeroAddrAlloca;
1355 if (ArgsInZeroAddressSpace && M.getDataLayout().getAllocaAddrSpace() != 0) {
1356 // Add additional casts to enforce pointers in zero address space
1357 TIDAddr = new AddrSpaceCastInst(
1358 TIDAddrAlloca, PointerType ::get(C&: M.getContext(), AddressSpace: 0), "tid.addr.ascast");
1359 TIDAddr->insertAfter(InsertPos: TIDAddrAlloca);
1360 ToBeDeleted.push_back(Elt: TIDAddr);
1361 ZeroAddr = new AddrSpaceCastInst(ZeroAddrAlloca,
1362 PointerType ::get(C&: M.getContext(), AddressSpace: 0),
1363 "zero.addr.ascast");
1364 ZeroAddr->insertAfter(InsertPos: ZeroAddrAlloca);
1365 ToBeDeleted.push_back(Elt: ZeroAddr);
1366 }
1367
1368 // We only need TIDAddr and ZeroAddr for modeling purposes to get the
1369 // associated arguments in the outlined function, so we delete them later.
1370 ToBeDeleted.push_back(Elt: TIDAddrAlloca);
1371 ToBeDeleted.push_back(Elt: ZeroAddrAlloca);
1372
1373 // Create an artificial insertion point that will also ensure the blocks we
1374 // are about to split are not degenerated.
1375 auto *UI = new UnreachableInst(Builder.getContext(), InsertBB);
1376
1377 BasicBlock *EntryBB = UI->getParent();
1378 BasicBlock *PRegEntryBB = EntryBB->splitBasicBlock(I: UI, BBName: "omp.par.entry");
1379 BasicBlock *PRegBodyBB = PRegEntryBB->splitBasicBlock(I: UI, BBName: "omp.par.region");
1380 BasicBlock *PRegPreFiniBB =
1381 PRegBodyBB->splitBasicBlock(I: UI, BBName: "omp.par.pre_finalize");
1382 BasicBlock *PRegExitBB = PRegPreFiniBB->splitBasicBlock(I: UI, BBName: "omp.par.exit");
1383
1384 auto FiniCBWrapper = [&](InsertPointTy IP) {
1385 // Hide "open-ended" blocks from the given FiniCB by setting the right jump
1386 // target to the region exit block.
1387 if (IP.getBlock()->end() == IP.getPoint()) {
1388 IRBuilder<>::InsertPointGuard IPG(Builder);
1389 Builder.restoreIP(IP);
1390 Instruction *I = Builder.CreateBr(Dest: PRegExitBB);
1391 IP = InsertPointTy(I->getParent(), I->getIterator());
1392 }
1393 assert(IP.getBlock()->getTerminator()->getNumSuccessors() == 1 &&
1394 IP.getBlock()->getTerminator()->getSuccessor(0) == PRegExitBB &&
1395 "Unexpected insertion point for finalization call!");
1396 return FiniCB(IP);
1397 };
1398
1399 FinalizationStack.push_back({FiniCBWrapper, OMPD_parallel, IsCancellable});
1400
1401 // Generate the privatization allocas in the block that will become the entry
1402 // of the outlined function.
1403 Builder.SetInsertPoint(PRegEntryBB->getTerminator());
1404 InsertPointTy InnerAllocaIP = Builder.saveIP();
1405
1406 AllocaInst *PrivTIDAddr =
1407 Builder.CreateAlloca(Ty: Int32, ArraySize: nullptr, Name: "tid.addr.local");
1408 Instruction *PrivTID = Builder.CreateLoad(Ty: Int32, Ptr: PrivTIDAddr, Name: "tid");
1409
1410 // Add some fake uses for OpenMP provided arguments.
1411 ToBeDeleted.push_back(Elt: Builder.CreateLoad(Ty: Int32, Ptr: TIDAddr, Name: "tid.addr.use"));
1412 Instruction *ZeroAddrUse =
1413 Builder.CreateLoad(Ty: Int32, Ptr: ZeroAddr, Name: "zero.addr.use");
1414 ToBeDeleted.push_back(Elt: ZeroAddrUse);
1415
1416 // EntryBB
1417 // |
1418 // V
1419 // PRegionEntryBB <- Privatization allocas are placed here.
1420 // |
1421 // V
1422 // PRegionBodyBB <- BodeGen is invoked here.
1423 // |
1424 // V
1425 // PRegPreFiniBB <- The block we will start finalization from.
1426 // |
1427 // V
1428 // PRegionExitBB <- A common exit to simplify block collection.
1429 //
1430
1431 LLVM_DEBUG(dbgs() << "Before body codegen: " << *OuterFn << "\n");
1432
1433 // Let the caller create the body.
1434 assert(BodyGenCB && "Expected body generation callback!");
1435 InsertPointTy CodeGenIP(PRegBodyBB, PRegBodyBB->begin());
1436 BodyGenCB(InnerAllocaIP, CodeGenIP);
1437
1438 LLVM_DEBUG(dbgs() << "After body codegen: " << *OuterFn << "\n");
1439
1440 OutlineInfo OI;
1441 if (Config.isTargetDevice()) {
1442 // Generate OpenMP target specific runtime call
1443 OI.PostOutlineCB = [=, ToBeDeletedVec =
1444 std::move(ToBeDeleted)](Function &OutlinedFn) {
1445 targetParallelCallback(OMPIRBuilder: this, OutlinedFn, OuterFn, OuterAllocaBB: OuterAllocaBlock, Ident,
1446 IfCondition, NumThreads, PrivTID, PrivTIDAddr,
1447 ThreadID, ToBeDeleted: ToBeDeletedVec);
1448 };
1449 } else {
1450 // Generate OpenMP host runtime call
1451 OI.PostOutlineCB = [=, ToBeDeletedVec =
1452 std::move(ToBeDeleted)](Function &OutlinedFn) {
1453 hostParallelCallback(OMPIRBuilder: this, OutlinedFn, OuterFn, Ident, IfCondition,
1454 PrivTID, PrivTIDAddr, ToBeDeleted: ToBeDeletedVec);
1455 };
1456 }
1457
1458 // Adjust the finalization stack, verify the adjustment, and call the
1459 // finalize function a last time to finalize values between the pre-fini
1460 // block and the exit block if we left the parallel "the normal way".
1461 auto FiniInfo = FinalizationStack.pop_back_val();
1462 (void)FiniInfo;
1463 assert(FiniInfo.DK == OMPD_parallel &&
1464 "Unexpected finalization stack state!");
1465
1466 Instruction *PRegPreFiniTI = PRegPreFiniBB->getTerminator();
1467
1468 InsertPointTy PreFiniIP(PRegPreFiniBB, PRegPreFiniTI->getIterator());
1469 FiniCB(PreFiniIP);
1470
1471 OI.OuterAllocaBB = OuterAllocaBlock;
1472 OI.EntryBB = PRegEntryBB;
1473 OI.ExitBB = PRegExitBB;
1474
1475 SmallPtrSet<BasicBlock *, 32> ParallelRegionBlockSet;
1476 SmallVector<BasicBlock *, 32> Blocks;
1477 OI.collectBlocks(BlockSet&: ParallelRegionBlockSet, BlockVector&: Blocks);
1478
1479 // Ensure a single exit node for the outlined region by creating one.
1480 // We might have multiple incoming edges to the exit now due to finalizations,
1481 // e.g., cancel calls that cause the control flow to leave the region.
1482 BasicBlock *PRegOutlinedExitBB = PRegExitBB;
1483 PRegExitBB = SplitBlock(Old: PRegExitBB, SplitPt: &*PRegExitBB->getFirstInsertionPt());
1484 PRegOutlinedExitBB->setName("omp.par.outlined.exit");
1485 Blocks.push_back(Elt: PRegOutlinedExitBB);
1486
1487 CodeExtractorAnalysisCache CEAC(*OuterFn);
1488 CodeExtractor Extractor(Blocks, /* DominatorTree */ nullptr,
1489 /* AggregateArgs */ false,
1490 /* BlockFrequencyInfo */ nullptr,
1491 /* BranchProbabilityInfo */ nullptr,
1492 /* AssumptionCache */ nullptr,
1493 /* AllowVarArgs */ true,
1494 /* AllowAlloca */ true,
1495 /* AllocationBlock */ OuterAllocaBlock,
1496 /* Suffix */ ".omp_par", ArgsInZeroAddressSpace);
1497
1498 // Find inputs to, outputs from the code region.
1499 BasicBlock *CommonExit = nullptr;
1500 SetVector<Value *> Inputs, Outputs, SinkingCands, HoistingCands;
1501 Extractor.findAllocas(CEAC, SinkCands&: SinkingCands, HoistCands&: HoistingCands, ExitBlock&: CommonExit);
1502 Extractor.findInputsOutputs(Inputs, Outputs, Allocas: SinkingCands);
1503
1504 LLVM_DEBUG(dbgs() << "Before privatization: " << *OuterFn << "\n");
1505
1506 FunctionCallee TIDRTLFn =
1507 getOrCreateRuntimeFunctionPtr(FnID: OMPRTL___kmpc_global_thread_num);
1508
1509 auto PrivHelper = [&](Value &V) {
1510 if (&V == TIDAddr || &V == ZeroAddr) {
1511 OI.ExcludeArgsFromAggregate.push_back(Elt: &V);
1512 return;
1513 }
1514
1515 SetVector<Use *> Uses;
1516 for (Use &U : V.uses())
1517 if (auto *UserI = dyn_cast<Instruction>(Val: U.getUser()))
1518 if (ParallelRegionBlockSet.count(Ptr: UserI->getParent()))
1519 Uses.insert(X: &U);
1520
1521 // __kmpc_fork_call expects extra arguments as pointers. If the input
1522 // already has a pointer type, everything is fine. Otherwise, store the
1523 // value onto stack and load it back inside the to-be-outlined region. This
1524 // will ensure only the pointer will be passed to the function.
1525 // FIXME: if there are more than 15 trailing arguments, they must be
1526 // additionally packed in a struct.
1527 Value *Inner = &V;
1528 if (!V.getType()->isPointerTy()) {
1529 IRBuilder<>::InsertPointGuard Guard(Builder);
1530 LLVM_DEBUG(llvm::dbgs() << "Forwarding input as pointer: " << V << "\n");
1531
1532 Builder.restoreIP(IP: OuterAllocaIP);
1533 Value *Ptr =
1534 Builder.CreateAlloca(Ty: V.getType(), ArraySize: nullptr, Name: V.getName() + ".reloaded");
1535
1536 // Store to stack at end of the block that currently branches to the entry
1537 // block of the to-be-outlined region.
1538 Builder.SetInsertPoint(TheBB: InsertBB,
1539 IP: InsertBB->getTerminator()->getIterator());
1540 Builder.CreateStore(Val: &V, Ptr);
1541
1542 // Load back next to allocations in the to-be-outlined region.
1543 Builder.restoreIP(IP: InnerAllocaIP);
1544 Inner = Builder.CreateLoad(Ty: V.getType(), Ptr);
1545 }
1546
1547 Value *ReplacementValue = nullptr;
1548 CallInst *CI = dyn_cast<CallInst>(Val: &V);
1549 if (CI && CI->getCalledFunction() == TIDRTLFn.getCallee()) {
1550 ReplacementValue = PrivTID;
1551 } else {
1552 Builder.restoreIP(
1553 IP: PrivCB(InnerAllocaIP, Builder.saveIP(), V, *Inner, ReplacementValue));
1554 assert(ReplacementValue &&
1555 "Expected copy/create callback to set replacement value!");
1556 if (ReplacementValue == &V)
1557 return;
1558 }
1559
1560 for (Use *UPtr : Uses)
1561 UPtr->set(ReplacementValue);
1562 };
1563
1564 // Reset the inner alloca insertion as it will be used for loading the values
1565 // wrapped into pointers before passing them into the to-be-outlined region.
1566 // Configure it to insert immediately after the fake use of zero address so
1567 // that they are available in the generated body and so that the
1568 // OpenMP-related values (thread ID and zero address pointers) remain leading
1569 // in the argument list.
1570 InnerAllocaIP = IRBuilder<>::InsertPoint(
1571 ZeroAddrUse->getParent(), ZeroAddrUse->getNextNode()->getIterator());
1572
1573 // Reset the outer alloca insertion point to the entry of the relevant block
1574 // in case it was invalidated.
1575 OuterAllocaIP = IRBuilder<>::InsertPoint(
1576 OuterAllocaBlock, OuterAllocaBlock->getFirstInsertionPt());
1577
1578 for (Value *Input : Inputs) {
1579 LLVM_DEBUG(dbgs() << "Captured input: " << *Input << "\n");
1580 PrivHelper(*Input);
1581 }
1582 LLVM_DEBUG({
1583 for (Value *Output : Outputs)
1584 LLVM_DEBUG(dbgs() << "Captured output: " << *Output << "\n");
1585 });
1586 assert(Outputs.empty() &&
1587 "OpenMP outlining should not produce live-out values!");
1588
1589 LLVM_DEBUG(dbgs() << "After privatization: " << *OuterFn << "\n");
1590 LLVM_DEBUG({
1591 for (auto *BB : Blocks)
1592 dbgs() << " PBR: " << BB->getName() << "\n";
1593 });
1594
1595 // Register the outlined info.
1596 addOutlineInfo(OI: std::move(OI));
1597
1598 InsertPointTy AfterIP(UI->getParent(), UI->getParent()->end());
1599 UI->eraseFromParent();
1600
1601 return AfterIP;
1602}
1603
1604void OpenMPIRBuilder::emitFlush(const LocationDescription &Loc) {
1605 // Build call void __kmpc_flush(ident_t *loc)
1606 uint32_t SrcLocStrSize;
1607 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
1608 Value *Args[] = {getOrCreateIdent(SrcLocStr, SrcLocStrSize)};
1609
1610 Builder.CreateCall(Callee: getOrCreateRuntimeFunctionPtr(FnID: OMPRTL___kmpc_flush), Args);
1611}
1612
1613void OpenMPIRBuilder::createFlush(const LocationDescription &Loc) {
1614 if (!updateToLocation(Loc))
1615 return;
1616 emitFlush(Loc);
1617}
1618
1619void OpenMPIRBuilder::emitTaskwaitImpl(const LocationDescription &Loc) {
1620 // Build call kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32
1621 // global_tid);
1622 uint32_t SrcLocStrSize;
1623 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
1624 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
1625 Value *Args[] = {Ident, getOrCreateThreadID(Ident)};
1626
1627 // Ignore return result until untied tasks are supported.
1628 Builder.CreateCall(Callee: getOrCreateRuntimeFunctionPtr(FnID: OMPRTL___kmpc_omp_taskwait),
1629 Args);
1630}
1631
1632void OpenMPIRBuilder::createTaskwait(const LocationDescription &Loc) {
1633 if (!updateToLocation(Loc))
1634 return;
1635 emitTaskwaitImpl(Loc);
1636}
1637
1638void OpenMPIRBuilder::emitTaskyieldImpl(const LocationDescription &Loc) {
1639 // Build call __kmpc_omp_taskyield(loc, thread_id, 0);
1640 uint32_t SrcLocStrSize;
1641 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
1642 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
1643 Constant *I32Null = ConstantInt::getNullValue(Ty: Int32);
1644 Value *Args[] = {Ident, getOrCreateThreadID(Ident), I32Null};
1645
1646 Builder.CreateCall(Callee: getOrCreateRuntimeFunctionPtr(FnID: OMPRTL___kmpc_omp_taskyield),
1647 Args);
1648}
1649
1650void OpenMPIRBuilder::createTaskyield(const LocationDescription &Loc) {
1651 if (!updateToLocation(Loc))
1652 return;
1653 emitTaskyieldImpl(Loc);
1654}
1655
1656OpenMPIRBuilder::InsertPointTy
1657OpenMPIRBuilder::createTask(const LocationDescription &Loc,
1658 InsertPointTy AllocaIP, BodyGenCallbackTy BodyGenCB,
1659 bool Tied, Value *Final, Value *IfCondition,
1660 SmallVector<DependData> Dependencies) {
1661
1662 if (!updateToLocation(Loc))
1663 return InsertPointTy();
1664
1665 uint32_t SrcLocStrSize;
1666 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
1667 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
1668 // The current basic block is split into four basic blocks. After outlining,
1669 // they will be mapped as follows:
1670 // ```
1671 // def current_fn() {
1672 // current_basic_block:
1673 // br label %task.exit
1674 // task.exit:
1675 // ; instructions after task
1676 // }
1677 // def outlined_fn() {
1678 // task.alloca:
1679 // br label %task.body
1680 // task.body:
1681 // ret void
1682 // }
1683 // ```
1684 BasicBlock *TaskExitBB = splitBB(Builder, /*CreateBranch=*/true, Name: "task.exit");
1685 BasicBlock *TaskBodyBB = splitBB(Builder, /*CreateBranch=*/true, Name: "task.body");
1686 BasicBlock *TaskAllocaBB =
1687 splitBB(Builder, /*CreateBranch=*/true, Name: "task.alloca");
1688
1689 InsertPointTy TaskAllocaIP =
1690 InsertPointTy(TaskAllocaBB, TaskAllocaBB->begin());
1691 InsertPointTy TaskBodyIP = InsertPointTy(TaskBodyBB, TaskBodyBB->begin());
1692 BodyGenCB(TaskAllocaIP, TaskBodyIP);
1693
1694 OutlineInfo OI;
1695 OI.EntryBB = TaskAllocaBB;
1696 OI.OuterAllocaBB = AllocaIP.getBlock();
1697 OI.ExitBB = TaskExitBB;
1698
1699 // Add the thread ID argument.
1700 std::stack<Instruction *> ToBeDeleted;
1701 OI.ExcludeArgsFromAggregate.push_back(Elt: createFakeIntVal(
1702 Builder, OuterAllocaIP: AllocaIP, ToBeDeleted, InnerAllocaIP: TaskAllocaIP, Name: "global.tid", AsPtr: false));
1703
1704 OI.PostOutlineCB = [this, Ident, Tied, Final, IfCondition, Dependencies,
1705 TaskAllocaBB, ToBeDeleted](Function &OutlinedFn) mutable {
1706 // Replace the Stale CI by appropriate RTL function call.
1707 assert(OutlinedFn.getNumUses() == 1 &&
1708 "there must be a single user for the outlined function");
1709 CallInst *StaleCI = cast<CallInst>(Val: OutlinedFn.user_back());
1710
1711 // HasShareds is true if any variables are captured in the outlined region,
1712 // false otherwise.
1713 bool HasShareds = StaleCI->arg_size() > 1;
1714 Builder.SetInsertPoint(StaleCI);
1715
1716 // Gather the arguments for emitting the runtime call for
1717 // @__kmpc_omp_task_alloc
1718 Function *TaskAllocFn =
1719 getOrCreateRuntimeFunctionPtr(FnID: OMPRTL___kmpc_omp_task_alloc);
1720
1721 // Arguments - `loc_ref` (Ident) and `gtid` (ThreadID)
1722 // call.
1723 Value *ThreadID = getOrCreateThreadID(Ident);
1724
1725 // Argument - `flags`
1726 // Task is tied iff (Flags & 1) == 1.
1727 // Task is untied iff (Flags & 1) == 0.
1728 // Task is final iff (Flags & 2) == 2.
1729 // Task is not final iff (Flags & 2) == 0.
1730 // TODO: Handle the other flags.
1731 Value *Flags = Builder.getInt32(C: Tied);
1732 if (Final) {
1733 Value *FinalFlag =
1734 Builder.CreateSelect(C: Final, True: Builder.getInt32(C: 2), False: Builder.getInt32(C: 0));
1735 Flags = Builder.CreateOr(LHS: FinalFlag, RHS: Flags);
1736 }
1737
1738 // Argument - `sizeof_kmp_task_t` (TaskSize)
1739 // Tasksize refers to the size in bytes of kmp_task_t data structure
1740 // including private vars accessed in task.
1741 // TODO: add kmp_task_t_with_privates (privates)
1742 Value *TaskSize = Builder.getInt64(
1743 C: divideCeil(Numerator: M.getDataLayout().getTypeSizeInBits(Ty: Task), Denominator: 8));
1744
1745 // Argument - `sizeof_shareds` (SharedsSize)
1746 // SharedsSize refers to the shareds array size in the kmp_task_t data
1747 // structure.
1748 Value *SharedsSize = Builder.getInt64(C: 0);
1749 if (HasShareds) {
1750 AllocaInst *ArgStructAlloca =
1751 dyn_cast<AllocaInst>(Val: StaleCI->getArgOperand(i: 1));
1752 assert(ArgStructAlloca &&
1753 "Unable to find the alloca instruction corresponding to arguments "
1754 "for extracted function");
1755 StructType *ArgStructType =
1756 dyn_cast<StructType>(Val: ArgStructAlloca->getAllocatedType());
1757 assert(ArgStructType && "Unable to find struct type corresponding to "
1758 "arguments for extracted function");
1759 SharedsSize =
1760 Builder.getInt64(C: M.getDataLayout().getTypeStoreSize(Ty: ArgStructType));
1761 }
1762 // Emit the @__kmpc_omp_task_alloc runtime call
1763 // The runtime call returns a pointer to an area where the task captured
1764 // variables must be copied before the task is run (TaskData)
1765 CallInst *TaskData = Builder.CreateCall(
1766 Callee: TaskAllocFn, Args: {/*loc_ref=*/Ident, /*gtid=*/ThreadID, /*flags=*/Flags,
1767 /*sizeof_task=*/TaskSize, /*sizeof_shared=*/SharedsSize,
1768 /*task_func=*/&OutlinedFn});
1769
1770 // Copy the arguments for outlined function
1771 if (HasShareds) {
1772 Value *Shareds = StaleCI->getArgOperand(i: 1);
1773 Align Alignment = TaskData->getPointerAlignment(DL: M.getDataLayout());
1774 Value *TaskShareds = Builder.CreateLoad(Ty: VoidPtr, Ptr: TaskData);
1775 Builder.CreateMemCpy(Dst: TaskShareds, DstAlign: Alignment, Src: Shareds, SrcAlign: Alignment,
1776 Size: SharedsSize);
1777 }
1778
1779 Value *DepArray = nullptr;
1780 if (Dependencies.size()) {
1781 InsertPointTy OldIP = Builder.saveIP();
1782 Builder.SetInsertPoint(
1783 &OldIP.getBlock()->getParent()->getEntryBlock().back());
1784
1785 Type *DepArrayTy = ArrayType::get(ElementType: DependInfo, NumElements: Dependencies.size());
1786 DepArray = Builder.CreateAlloca(Ty: DepArrayTy, ArraySize: nullptr, Name: ".dep.arr.addr");
1787
1788 unsigned P = 0;
1789 for (const DependData &Dep : Dependencies) {
1790 Value *Base =
1791 Builder.CreateConstInBoundsGEP2_64(Ty: DepArrayTy, Ptr: DepArray, Idx0: 0, Idx1: P);
1792 // Store the pointer to the variable
1793 Value *Addr = Builder.CreateStructGEP(
1794 Ty: DependInfo, Ptr: Base,
1795 Idx: static_cast<unsigned int>(RTLDependInfoFields::BaseAddr));
1796 Value *DepValPtr =
1797 Builder.CreatePtrToInt(V: Dep.DepVal, DestTy: Builder.getInt64Ty());
1798 Builder.CreateStore(Val: DepValPtr, Ptr: Addr);
1799 // Store the size of the variable
1800 Value *Size = Builder.CreateStructGEP(
1801 Ty: DependInfo, Ptr: Base,
1802 Idx: static_cast<unsigned int>(RTLDependInfoFields::Len));
1803 Builder.CreateStore(Val: Builder.getInt64(C: M.getDataLayout().getTypeStoreSize(
1804 Ty: Dep.DepValueType)),
1805 Ptr: Size);
1806 // Store the dependency kind
1807 Value *Flags = Builder.CreateStructGEP(
1808 Ty: DependInfo, Ptr: Base,
1809 Idx: static_cast<unsigned int>(RTLDependInfoFields::Flags));
1810 Builder.CreateStore(
1811 Val: ConstantInt::get(Ty: Builder.getInt8Ty(),
1812 V: static_cast<unsigned int>(Dep.DepKind)),
1813 Ptr: Flags);
1814 ++P;
1815 }
1816
1817 Builder.restoreIP(IP: OldIP);
1818 }
1819
1820 // In the presence of the `if` clause, the following IR is generated:
1821 // ...
1822 // %data = call @__kmpc_omp_task_alloc(...)
1823 // br i1 %if_condition, label %then, label %else
1824 // then:
1825 // call @__kmpc_omp_task(...)
1826 // br label %exit
1827 // else:
1828 // call @__kmpc_omp_task_begin_if0(...)
1829 // call @outlined_fn(...)
1830 // call @__kmpc_omp_task_complete_if0(...)
1831 // br label %exit
1832 // exit:
1833 // ...
1834 if (IfCondition) {
1835 // `SplitBlockAndInsertIfThenElse` requires the block to have a
1836 // terminator.
1837 splitBB(Builder, /*CreateBranch=*/true, Name: "if.end");
1838 Instruction *IfTerminator =
1839 Builder.GetInsertPoint()->getParent()->getTerminator();
1840 Instruction *ThenTI = IfTerminator, *ElseTI = nullptr;
1841 Builder.SetInsertPoint(IfTerminator);
1842 SplitBlockAndInsertIfThenElse(Cond: IfCondition, SplitBefore: IfTerminator, ThenTerm: &ThenTI,
1843 ElseTerm: &ElseTI);
1844 Builder.SetInsertPoint(ElseTI);
1845 Function *TaskBeginFn =
1846 getOrCreateRuntimeFunctionPtr(FnID: OMPRTL___kmpc_omp_task_begin_if0);
1847 Function *TaskCompleteFn =
1848 getOrCreateRuntimeFunctionPtr(FnID: OMPRTL___kmpc_omp_task_complete_if0);
1849 Builder.CreateCall(Callee: TaskBeginFn, Args: {Ident, ThreadID, TaskData});
1850 CallInst *CI = nullptr;
1851 if (HasShareds)
1852 CI = Builder.CreateCall(Callee: &OutlinedFn, Args: {ThreadID, TaskData});
1853 else
1854 CI = Builder.CreateCall(Callee: &OutlinedFn, Args: {ThreadID});
1855 CI->setDebugLoc(StaleCI->getDebugLoc());
1856 Builder.CreateCall(Callee: TaskCompleteFn, Args: {Ident, ThreadID, TaskData});
1857 Builder.SetInsertPoint(ThenTI);
1858 }
1859
1860 if (Dependencies.size()) {
1861 Function *TaskFn =
1862 getOrCreateRuntimeFunctionPtr(FnID: OMPRTL___kmpc_omp_task_with_deps);
1863 Builder.CreateCall(
1864 Callee: TaskFn,
1865 Args: {Ident, ThreadID, TaskData, Builder.getInt32(C: Dependencies.size()),
1866 DepArray, ConstantInt::get(Ty: Builder.getInt32Ty(), V: 0),
1867 ConstantPointerNull::get(T: PointerType::getUnqual(C&: M.getContext()))});
1868
1869 } else {
1870 // Emit the @__kmpc_omp_task runtime call to spawn the task
1871 Function *TaskFn = getOrCreateRuntimeFunctionPtr(FnID: OMPRTL___kmpc_omp_task);
1872 Builder.CreateCall(Callee: TaskFn, Args: {Ident, ThreadID, TaskData});
1873 }
1874
1875 StaleCI->eraseFromParent();
1876
1877 Builder.SetInsertPoint(TheBB: TaskAllocaBB, IP: TaskAllocaBB->begin());
1878 if (HasShareds) {
1879 LoadInst *Shareds = Builder.CreateLoad(Ty: VoidPtr, Ptr: OutlinedFn.getArg(i: 1));
1880 OutlinedFn.getArg(i: 1)->replaceUsesWithIf(
1881 New: Shareds, ShouldReplace: [Shareds](Use &U) { return U.getUser() != Shareds; });
1882 }
1883
1884 while (!ToBeDeleted.empty()) {
1885 ToBeDeleted.top()->eraseFromParent();
1886 ToBeDeleted.pop();
1887 }
1888 };
1889
1890 addOutlineInfo(OI: std::move(OI));
1891 Builder.SetInsertPoint(TheBB: TaskExitBB, IP: TaskExitBB->begin());
1892
1893 return Builder.saveIP();
1894}
1895
1896OpenMPIRBuilder::InsertPointTy
1897OpenMPIRBuilder::createTaskgroup(const LocationDescription &Loc,
1898 InsertPointTy AllocaIP,
1899 BodyGenCallbackTy BodyGenCB) {
1900 if (!updateToLocation(Loc))
1901 return InsertPointTy();
1902
1903 uint32_t SrcLocStrSize;
1904 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
1905 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
1906 Value *ThreadID = getOrCreateThreadID(Ident);
1907
1908 // Emit the @__kmpc_taskgroup runtime call to start the taskgroup
1909 Function *TaskgroupFn =
1910 getOrCreateRuntimeFunctionPtr(FnID: OMPRTL___kmpc_taskgroup);
1911 Builder.CreateCall(Callee: TaskgroupFn, Args: {Ident, ThreadID});
1912
1913 BasicBlock *TaskgroupExitBB = splitBB(Builder, CreateBranch: true, Name: "taskgroup.exit");
1914 BodyGenCB(AllocaIP, Builder.saveIP());
1915
1916 Builder.SetInsertPoint(TaskgroupExitBB);
1917 // Emit the @__kmpc_end_taskgroup runtime call to end the taskgroup
1918 Function *EndTaskgroupFn =
1919 getOrCreateRuntimeFunctionPtr(FnID: OMPRTL___kmpc_end_taskgroup);
1920 Builder.CreateCall(Callee: EndTaskgroupFn, Args: {Ident, ThreadID});
1921
1922 return Builder.saveIP();
1923}
1924
1925OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createSections(
1926 const LocationDescription &Loc, InsertPointTy AllocaIP,
1927 ArrayRef<StorableBodyGenCallbackTy> SectionCBs, PrivatizeCallbackTy PrivCB,
1928 FinalizeCallbackTy FiniCB, bool IsCancellable, bool IsNowait) {
1929 assert(!isConflictIP(AllocaIP, Loc.IP) && "Dedicated IP allocas required");
1930
1931 if (!updateToLocation(Loc))
1932 return Loc.IP;
1933
1934 auto FiniCBWrapper = [&](InsertPointTy IP) {
1935 if (IP.getBlock()->end() != IP.getPoint())
1936 return FiniCB(IP);
1937 // This must be done otherwise any nested constructs using FinalizeOMPRegion
1938 // will fail because that function requires the Finalization Basic Block to
1939 // have a terminator, which is already removed by EmitOMPRegionBody.
1940 // IP is currently at cancelation block.
1941 // We need to backtrack to the condition block to fetch
1942 // the exit block and create a branch from cancelation
1943 // to exit block.
1944 IRBuilder<>::InsertPointGuard IPG(Builder);
1945 Builder.restoreIP(IP);
1946 auto *CaseBB = IP.getBlock()->getSinglePredecessor();
1947 auto *CondBB = CaseBB->getSinglePredecessor()->getSinglePredecessor();
1948 auto *ExitBB = CondBB->getTerminator()->getSuccessor(Idx: 1);
1949 Instruction *I = Builder.CreateBr(Dest: ExitBB);
1950 IP = InsertPointTy(I->getParent(), I->getIterator());
1951 return FiniCB(IP);
1952 };
1953
1954 FinalizationStack.push_back({FiniCBWrapper, OMPD_sections, IsCancellable});
1955
1956 // Each section is emitted as a switch case
1957 // Each finalization callback is handled from clang.EmitOMPSectionDirective()
1958 // -> OMP.createSection() which generates the IR for each section
1959 // Iterate through all sections and emit a switch construct:
1960 // switch (IV) {
1961 // case 0:
1962 // <SectionStmt[0]>;
1963 // break;
1964 // ...
1965 // case <NumSection> - 1:
1966 // <SectionStmt[<NumSection> - 1]>;
1967 // break;
1968 // }
1969 // ...
1970 // section_loop.after:
1971 // <FiniCB>;
1972 auto LoopBodyGenCB = [&](InsertPointTy CodeGenIP, Value *IndVar) {
1973 Builder.restoreIP(IP: CodeGenIP);
1974 BasicBlock *Continue =
1975 splitBBWithSuffix(Builder, /*CreateBranch=*/false, Suffix: ".sections.after");
1976 Function *CurFn = Continue->getParent();
1977 SwitchInst *SwitchStmt = Builder.CreateSwitch(V: IndVar, Dest: Continue);
1978
1979 unsigned CaseNumber = 0;
1980 for (auto SectionCB : SectionCBs) {
1981 BasicBlock *CaseBB = BasicBlock::Create(
1982 Context&: M.getContext(), Name: "omp_section_loop.body.case", Parent: CurFn, InsertBefore: Continue);
1983 SwitchStmt->addCase(OnVal: Builder.getInt32(C: CaseNumber), Dest: CaseBB);
1984 Builder.SetInsertPoint(CaseBB);
1985 BranchInst *CaseEndBr = Builder.CreateBr(Dest: Continue);
1986 SectionCB(InsertPointTy(),
1987 {CaseEndBr->getParent(), CaseEndBr->getIterator()});
1988 CaseNumber++;
1989 }
1990 // remove the existing terminator from body BB since there can be no
1991 // terminators after switch/case
1992 };
1993 // Loop body ends here
1994 // LowerBound, UpperBound, and STride for createCanonicalLoop
1995 Type *I32Ty = Type::getInt32Ty(C&: M.getContext());
1996 Value *LB = ConstantInt::get(Ty: I32Ty, V: 0);
1997 Value *UB = ConstantInt::get(Ty: I32Ty, V: SectionCBs.size());
1998 Value *ST = ConstantInt::get(Ty: I32Ty, V: 1);
1999 llvm::CanonicalLoopInfo *LoopInfo = createCanonicalLoop(
2000 Loc, BodyGenCB: LoopBodyGenCB, Start: LB, Stop: UB, Step: ST, IsSigned: true, InclusiveStop: false, ComputeIP: AllocaIP, Name: "section_loop");
2001 InsertPointTy AfterIP =
2002 applyStaticWorkshareLoop(DL: Loc.DL, CLI: LoopInfo, AllocaIP, NeedsBarrier: !IsNowait);
2003
2004 // Apply the finalization callback in LoopAfterBB
2005 auto FiniInfo = FinalizationStack.pop_back_val();
2006 assert(FiniInfo.DK == OMPD_sections &&
2007 "Unexpected finalization stack state!");
2008 if (FinalizeCallbackTy &CB = FiniInfo.FiniCB) {
2009 Builder.restoreIP(IP: AfterIP);
2010 BasicBlock *FiniBB =
2011 splitBBWithSuffix(Builder, /*CreateBranch=*/true, Suffix: "sections.fini");
2012 CB(Builder.saveIP());
2013 AfterIP = {FiniBB, FiniBB->begin()};
2014 }
2015
2016 return AfterIP;
2017}
2018
2019OpenMPIRBuilder::InsertPointTy
2020OpenMPIRBuilder::createSection(const LocationDescription &Loc,
2021 BodyGenCallbackTy BodyGenCB,
2022 FinalizeCallbackTy FiniCB) {
2023 if (!updateToLocation(Loc))
2024 return Loc.IP;
2025
2026 auto FiniCBWrapper = [&](InsertPointTy IP) {
2027 if (IP.getBlock()->end() != IP.getPoint())
2028 return FiniCB(IP);
2029 // This must be done otherwise any nested constructs using FinalizeOMPRegion
2030 // will fail because that function requires the Finalization Basic Block to
2031 // have a terminator, which is already removed by EmitOMPRegionBody.
2032 // IP is currently at cancelation block.
2033 // We need to backtrack to the condition block to fetch
2034 // the exit block and create a branch from cancelation
2035 // to exit block.
2036 IRBuilder<>::InsertPointGuard IPG(Builder);
2037 Builder.restoreIP(IP);
2038 auto *CaseBB = Loc.IP.getBlock();
2039 auto *CondBB = CaseBB->getSinglePredecessor()->getSinglePredecessor();
2040 auto *ExitBB = CondBB->getTerminator()->getSuccessor(Idx: 1);
2041 Instruction *I = Builder.CreateBr(Dest: ExitBB);
2042 IP = InsertPointTy(I->getParent(), I->getIterator());
2043 return FiniCB(IP);
2044 };
2045
2046 Directive OMPD = Directive::OMPD_sections;
2047 // Since we are using Finalization Callback here, HasFinalize
2048 // and IsCancellable have to be true
2049 return EmitOMPInlinedRegion(OMPD, nullptr, nullptr, BodyGenCB, FiniCBWrapper,
2050 /*Conditional*/ false, /*hasFinalize*/ true,
2051 /*IsCancellable*/ true);
2052}
2053
2054/// Create a function with a unique name and a "void (i8*, i8*)" signature in
2055/// the given module and return it.
2056Function *getFreshReductionFunc(Module &M) {
2057 Type *VoidTy = Type::getVoidTy(C&: M.getContext());
2058 Type *Int8PtrTy = PointerType::getUnqual(C&: M.getContext());
2059 auto *FuncTy =
2060 FunctionType::get(Result: VoidTy, Params: {Int8PtrTy, Int8PtrTy}, /* IsVarArg */ isVarArg: false);
2061 return Function::Create(Ty: FuncTy, Linkage: GlobalVariable::InternalLinkage,
2062 AddrSpace: M.getDataLayout().getDefaultGlobalsAddressSpace(),
2063 N: ".omp.reduction.func", M: &M);
2064}
2065
2066OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createReductions(
2067 const LocationDescription &Loc, InsertPointTy AllocaIP,
2068 ArrayRef<ReductionInfo> ReductionInfos, bool IsNoWait) {
2069 for (const ReductionInfo &RI : ReductionInfos) {
2070 (void)RI;
2071 assert(RI.Variable && "expected non-null variable");
2072 assert(RI.PrivateVariable && "expected non-null private variable");
2073 assert(RI.ReductionGen && "expected non-null reduction generator callback");
2074 assert(RI.Variable->getType() == RI.PrivateVariable->getType() &&
2075 "expected variables and their private equivalents to have the same "
2076 "type");
2077 assert(RI.Variable->getType()->isPointerTy() &&
2078 "expected variables to be pointers");
2079 }
2080
2081 if (!updateToLocation(Loc))
2082 return InsertPointTy();
2083
2084 BasicBlock *InsertBlock = Loc.IP.getBlock();
2085 BasicBlock *ContinuationBlock =
2086 InsertBlock->splitBasicBlock(I: Loc.IP.getPoint(), BBName: "reduce.finalize");
2087 InsertBlock->getTerminator()->eraseFromParent();
2088
2089 // Create and populate array of type-erased pointers to private reduction
2090 // values.
2091 unsigned NumReductions = ReductionInfos.size();
2092 Type *RedArrayTy = ArrayType::get(ElementType: Builder.getPtrTy(), NumElements: NumReductions);
2093 Builder.restoreIP(IP: AllocaIP);
2094 Value *RedArray = Builder.CreateAlloca(Ty: RedArrayTy, ArraySize: nullptr, Name: "red.array");
2095
2096 Builder.SetInsertPoint(TheBB: InsertBlock, IP: InsertBlock->end());
2097
2098 for (auto En : enumerate(First&: ReductionInfos)) {
2099 unsigned Index = En.index();
2100 const ReductionInfo &RI = En.value();
2101 Value *RedArrayElemPtr = Builder.CreateConstInBoundsGEP2_64(
2102 Ty: RedArrayTy, Ptr: RedArray, Idx0: 0, Idx1: Index, Name: "red.array.elem." + Twine(Index));
2103 Builder.CreateStore(Val: RI.PrivateVariable, Ptr: RedArrayElemPtr);
2104 }
2105
2106 // Emit a call to the runtime function that orchestrates the reduction.
2107 // Declare the reduction function in the process.
2108 Function *Func = Builder.GetInsertBlock()->getParent();
2109 Module *Module = Func->getParent();
2110 uint32_t SrcLocStrSize;
2111 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
2112 bool CanGenerateAtomic =
2113 llvm::all_of(Range&: ReductionInfos, P: [](const ReductionInfo &RI) {
2114 return RI.AtomicReductionGen;
2115 });
2116 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize,
2117 LocFlags: CanGenerateAtomic
2118 ? IdentFlag::OMP_IDENT_FLAG_ATOMIC_REDUCE
2119 : IdentFlag(0));
2120 Value *ThreadId = getOrCreateThreadID(Ident);
2121 Constant *NumVariables = Builder.getInt32(C: NumReductions);
2122 const DataLayout &DL = Module->getDataLayout();
2123 unsigned RedArrayByteSize = DL.getTypeStoreSize(Ty: RedArrayTy);
2124 Constant *RedArraySize = Builder.getInt64(C: RedArrayByteSize);
2125 Function *ReductionFunc = getFreshReductionFunc(M&: *Module);
2126 Value *Lock = getOMPCriticalRegionLock(CriticalName: ".reduction");
2127 Function *ReduceFunc = getOrCreateRuntimeFunctionPtr(
2128 FnID: IsNoWait ? RuntimeFunction::OMPRTL___kmpc_reduce_nowait
2129 : RuntimeFunction::OMPRTL___kmpc_reduce);
2130 CallInst *ReduceCall =
2131 Builder.CreateCall(Callee: ReduceFunc,
2132 Args: {Ident, ThreadId, NumVariables, RedArraySize, RedArray,
2133 ReductionFunc, Lock},
2134 Name: "reduce");
2135
2136 // Create final reduction entry blocks for the atomic and non-atomic case.
2137 // Emit IR that dispatches control flow to one of the blocks based on the
2138 // reduction supporting the atomic mode.
2139 BasicBlock *NonAtomicRedBlock =
2140 BasicBlock::Create(Context&: Module->getContext(), Name: "reduce.switch.nonatomic", Parent: Func);
2141 BasicBlock *AtomicRedBlock =
2142 BasicBlock::Create(Context&: Module->getContext(), Name: "reduce.switch.atomic", Parent: Func);
2143 SwitchInst *Switch =
2144 Builder.CreateSwitch(V: ReduceCall, Dest: ContinuationBlock, /* NumCases */ 2);
2145 Switch->addCase(OnVal: Builder.getInt32(C: 1), Dest: NonAtomicRedBlock);
2146 Switch->addCase(OnVal: Builder.getInt32(C: 2), Dest: AtomicRedBlock);
2147
2148 // Populate the non-atomic reduction using the elementwise reduction function.
2149 // This loads the elements from the global and private variables and reduces
2150 // them before storing back the result to the global variable.
2151 Builder.SetInsertPoint(NonAtomicRedBlock);
2152 for (auto En : enumerate(First&: ReductionInfos)) {
2153 const ReductionInfo &RI = En.value();
2154 Type *ValueType = RI.ElementType;
2155 Value *RedValue = Builder.CreateLoad(Ty: ValueType, Ptr: RI.Variable,
2156 Name: "red.value." + Twine(En.index()));
2157 Value *PrivateRedValue =
2158 Builder.CreateLoad(Ty: ValueType, Ptr: RI.PrivateVariable,
2159 Name: "red.private.value." + Twine(En.index()));
2160 Value *Reduced;
2161 Builder.restoreIP(
2162 IP: RI.ReductionGen(Builder.saveIP(), RedValue, PrivateRedValue, Reduced));
2163 if (!Builder.GetInsertBlock())
2164 return InsertPointTy();
2165 Builder.CreateStore(Val: Reduced, Ptr: RI.Variable);
2166 }
2167 Function *EndReduceFunc = getOrCreateRuntimeFunctionPtr(
2168 FnID: IsNoWait ? RuntimeFunction::OMPRTL___kmpc_end_reduce_nowait
2169 : RuntimeFunction::OMPRTL___kmpc_end_reduce);
2170 Builder.CreateCall(Callee: EndReduceFunc, Args: {Ident, ThreadId, Lock});
2171 Builder.CreateBr(Dest: ContinuationBlock);
2172
2173 // Populate the atomic reduction using the atomic elementwise reduction
2174 // function. There are no loads/stores here because they will be happening
2175 // inside the atomic elementwise reduction.
2176 Builder.SetInsertPoint(AtomicRedBlock);
2177 if (CanGenerateAtomic) {
2178 for (const ReductionInfo &RI : ReductionInfos) {
2179 Builder.restoreIP(IP: RI.AtomicReductionGen(Builder.saveIP(), RI.ElementType,
2180 RI.Variable, RI.PrivateVariable));
2181 if (!Builder.GetInsertBlock())
2182 return InsertPointTy();
2183 }
2184 Builder.CreateBr(Dest: ContinuationBlock);
2185 } else {
2186 Builder.CreateUnreachable();
2187 }
2188
2189 // Populate the outlined reduction function using the elementwise reduction
2190 // function. Partial values are extracted from the type-erased array of
2191 // pointers to private variables.
2192 BasicBlock *ReductionFuncBlock =
2193 BasicBlock::Create(Context&: Module->getContext(), Name: "", Parent: ReductionFunc);
2194 Builder.SetInsertPoint(ReductionFuncBlock);
2195 Value *LHSArrayPtr = ReductionFunc->getArg(i: 0);
2196 Value *RHSArrayPtr = ReductionFunc->getArg(i: 1);
2197
2198 for (auto En : enumerate(First&: ReductionInfos)) {
2199 const ReductionInfo &RI = En.value();
2200 Value *LHSI8PtrPtr = Builder.CreateConstInBoundsGEP2_64(
2201 Ty: RedArrayTy, Ptr: LHSArrayPtr, Idx0: 0, Idx1: En.index());
2202 Value *LHSI8Ptr = Builder.CreateLoad(Ty: Builder.getPtrTy(), Ptr: LHSI8PtrPtr);
2203 Value *LHSPtr = Builder.CreateBitCast(V: LHSI8Ptr, DestTy: RI.Variable->getType());
2204 Value *LHS = Builder.CreateLoad(Ty: RI.ElementType, Ptr: LHSPtr);
2205 Value *RHSI8PtrPtr = Builder.CreateConstInBoundsGEP2_64(
2206 Ty: RedArrayTy, Ptr: RHSArrayPtr, Idx0: 0, Idx1: En.index());
2207 Value *RHSI8Ptr = Builder.CreateLoad(Ty: Builder.getPtrTy(), Ptr: RHSI8PtrPtr);
2208 Value *RHSPtr =
2209 Builder.CreateBitCast(V: RHSI8Ptr, DestTy: RI.PrivateVariable->getType());
2210 Value *RHS = Builder.CreateLoad(Ty: RI.ElementType, Ptr: RHSPtr);
2211 Value *Reduced;
2212 Builder.restoreIP(IP: RI.ReductionGen(Builder.saveIP(), LHS, RHS, Reduced));
2213 if (!Builder.GetInsertBlock())
2214 return InsertPointTy();
2215 Builder.CreateStore(Val: Reduced, Ptr: LHSPtr);
2216 }
2217 Builder.CreateRetVoid();
2218
2219 Builder.SetInsertPoint(ContinuationBlock);
2220 return Builder.saveIP();
2221}
2222
2223OpenMPIRBuilder::InsertPointTy
2224OpenMPIRBuilder::createMaster(const LocationDescription &Loc,
2225 BodyGenCallbackTy BodyGenCB,
2226 FinalizeCallbackTy FiniCB) {
2227
2228 if (!updateToLocation(Loc))
2229 return Loc.IP;
2230
2231 Directive OMPD = Directive::OMPD_master;
2232 uint32_t SrcLocStrSize;
2233 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
2234 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
2235 Value *ThreadId = getOrCreateThreadID(Ident);
2236 Value *Args[] = {Ident, ThreadId};
2237
2238 Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(FnID: OMPRTL___kmpc_master);
2239 Instruction *EntryCall = Builder.CreateCall(Callee: EntryRTLFn, Args);
2240
2241 Function *ExitRTLFn = getOrCreateRuntimeFunctionPtr(FnID: OMPRTL___kmpc_end_master);
2242 Instruction *ExitCall = Builder.CreateCall(Callee: ExitRTLFn, Args);
2243
2244 return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB,
2245 /*Conditional*/ true, /*hasFinalize*/ true);
2246}
2247
2248OpenMPIRBuilder::InsertPointTy
2249OpenMPIRBuilder::createMasked(const LocationDescription &Loc,
2250 BodyGenCallbackTy BodyGenCB,
2251 FinalizeCallbackTy FiniCB, Value *Filter) {
2252 if (!updateToLocation(Loc))
2253 return Loc.IP;
2254
2255 Directive OMPD = Directive::OMPD_masked;
2256 uint32_t SrcLocStrSize;
2257 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
2258 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
2259 Value *ThreadId = getOrCreateThreadID(Ident);
2260 Value *Args[] = {Ident, ThreadId, Filter};
2261 Value *ArgsEnd[] = {Ident, ThreadId};
2262
2263 Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(FnID: OMPRTL___kmpc_masked);
2264 Instruction *EntryCall = Builder.CreateCall(Callee: EntryRTLFn, Args);
2265
2266 Function *ExitRTLFn = getOrCreateRuntimeFunctionPtr(FnID: OMPRTL___kmpc_end_masked);
2267 Instruction *ExitCall = Builder.CreateCall(Callee: ExitRTLFn, Args: ArgsEnd);
2268
2269 return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB,
2270 /*Conditional*/ true, /*hasFinalize*/ true);
2271}
2272
2273CanonicalLoopInfo *OpenMPIRBuilder::createLoopSkeleton(
2274 DebugLoc DL, Value *TripCount, Function *F, BasicBlock *PreInsertBefore,
2275 BasicBlock *PostInsertBefore, const Twine &Name) {
2276 Module *M = F->getParent();
2277 LLVMContext &Ctx = M->getContext();
2278 Type *IndVarTy = TripCount->getType();
2279
2280 // Create the basic block structure.
2281 BasicBlock *Preheader =
2282 BasicBlock::Create(Context&: Ctx, Name: "omp_" + Name + ".preheader", Parent: F, InsertBefore: PreInsertBefore);
2283 BasicBlock *Header =
2284 BasicBlock::Create(Context&: Ctx, Name: "omp_" + Name + ".header", Parent: F, InsertBefore: PreInsertBefore);
2285 BasicBlock *Cond =
2286 BasicBlock::Create(Context&: Ctx, Name: "omp_" + Name + ".cond", Parent: F, InsertBefore: PreInsertBefore);
2287 BasicBlock *Body =
2288 BasicBlock::Create(Context&: Ctx, Name: "omp_" + Name + ".body", Parent: F, InsertBefore: PreInsertBefore);
2289 BasicBlock *Latch =
2290 BasicBlock::Create(Context&: Ctx, Name: "omp_" + Name + ".inc", Parent: F, InsertBefore: PostInsertBefore);
2291 BasicBlock *Exit =
2292 BasicBlock::Create(Context&: Ctx, Name: "omp_" + Name + ".exit", Parent: F, InsertBefore: PostInsertBefore);
2293 BasicBlock *After =
2294 BasicBlock::Create(Context&: Ctx, Name: "omp_" + Name + ".after", Parent: F, InsertBefore: PostInsertBefore);
2295
2296 // Use specified DebugLoc for new instructions.
2297 Builder.SetCurrentDebugLocation(DL);
2298
2299 Builder.SetInsertPoint(Preheader);
2300 Builder.CreateBr(Dest: Header);
2301
2302 Builder.SetInsertPoint(Header);
2303 PHINode *IndVarPHI = Builder.CreatePHI(Ty: IndVarTy, NumReservedValues: 2, Name: "omp_" + Name + ".iv");
2304 IndVarPHI->addIncoming(V: ConstantInt::get(Ty: IndVarTy, V: 0), BB: Preheader);
2305 Builder.CreateBr(Dest: Cond);
2306
2307 Builder.SetInsertPoint(Cond);
2308 Value *Cmp =
2309 Builder.CreateICmpULT(LHS: IndVarPHI, RHS: TripCount, Name: "omp_" + Name + ".cmp");
2310 Builder.CreateCondBr(Cond: Cmp, True: Body, False: Exit);
2311
2312 Builder.SetInsertPoint(Body);
2313 Builder.CreateBr(Dest: Latch);
2314
2315 Builder.SetInsertPoint(Latch);
2316 Value *Next = Builder.CreateAdd(LHS: IndVarPHI, RHS: ConstantInt::get(Ty: IndVarTy, V: 1),
2317 Name: "omp_" + Name + ".next", /*HasNUW=*/true);
2318 Builder.CreateBr(Dest: Header);
2319 IndVarPHI->addIncoming(V: Next, BB: Latch);
2320
2321 Builder.SetInsertPoint(Exit);
2322 Builder.CreateBr(Dest: After);
2323
2324 // Remember and return the canonical control flow.
2325 LoopInfos.emplace_front();
2326 CanonicalLoopInfo *CL = &LoopInfos.front();
2327
2328 CL->Header = Header;
2329 CL->Cond = Cond;
2330 CL->Latch = Latch;
2331 CL->Exit = Exit;
2332
2333#ifndef NDEBUG
2334 CL->assertOK();
2335#endif
2336 return CL;
2337}
2338
2339CanonicalLoopInfo *
2340OpenMPIRBuilder::createCanonicalLoop(const LocationDescription &Loc,
2341 LoopBodyGenCallbackTy BodyGenCB,
2342 Value *TripCount, const Twine &Name) {
2343 BasicBlock *BB = Loc.IP.getBlock();
2344 BasicBlock *NextBB = BB->getNextNode();
2345
2346 CanonicalLoopInfo *CL = createLoopSkeleton(DL: Loc.DL, TripCount, F: BB->getParent(),
2347 PreInsertBefore: NextBB, PostInsertBefore: NextBB, Name);
2348 BasicBlock *After = CL->getAfter();
2349
2350 // If location is not set, don't connect the loop.
2351 if (updateToLocation(Loc)) {
2352 // Split the loop at the insertion point: Branch to the preheader and move
2353 // every following instruction to after the loop (the After BB). Also, the
2354 // new successor is the loop's after block.
2355 spliceBB(Builder, New: After, /*CreateBranch=*/false);
2356 Builder.CreateBr(Dest: CL->getPreheader());
2357 }
2358
2359 // Emit the body content. We do it after connecting the loop to the CFG to
2360 // avoid that the callback encounters degenerate BBs.
2361 BodyGenCB(CL->getBodyIP(), CL->getIndVar());
2362
2363#ifndef NDEBUG
2364 CL->assertOK();
2365#endif
2366 return CL;
2367}
2368
2369CanonicalLoopInfo *OpenMPIRBuilder::createCanonicalLoop(
2370 const LocationDescription &Loc, LoopBodyGenCallbackTy BodyGenCB,
2371 Value *Start, Value *Stop, Value *Step, bool IsSigned, bool InclusiveStop,
2372 InsertPointTy ComputeIP, const Twine &Name) {
2373
2374 // Consider the following difficulties (assuming 8-bit signed integers):
2375 // * Adding \p Step to the loop counter which passes \p Stop may overflow:
2376 // DO I = 1, 100, 50
2377 /// * A \p Step of INT_MIN cannot not be normalized to a positive direction:
2378 // DO I = 100, 0, -128
2379
2380 // Start, Stop and Step must be of the same integer type.
2381 auto *IndVarTy = cast<IntegerType>(Val: Start->getType());
2382 assert(IndVarTy == Stop->getType() && "Stop type mismatch");
2383 assert(IndVarTy == Step->getType() && "Step type mismatch");
2384
2385 LocationDescription ComputeLoc =
2386 ComputeIP.isSet() ? LocationDescription(ComputeIP, Loc.DL) : Loc;
2387 updateToLocation(Loc: ComputeLoc);
2388
2389 ConstantInt *Zero = ConstantInt::get(Ty: IndVarTy, V: 0);
2390 ConstantInt *One = ConstantInt::get(Ty: IndVarTy, V: 1);
2391
2392 // Like Step, but always positive.
2393 Value *Incr = Step;
2394
2395 // Distance between Start and Stop; always positive.
2396 Value *Span;
2397
2398 // Condition whether there are no iterations are executed at all, e.g. because
2399 // UB < LB.
2400 Value *ZeroCmp;
2401
2402 if (IsSigned) {
2403 // Ensure that increment is positive. If not, negate and invert LB and UB.
2404 Value *IsNeg = Builder.CreateICmpSLT(LHS: Step, RHS: Zero);
2405 Incr = Builder.CreateSelect(C: IsNeg, True: Builder.CreateNeg(V: Step), False: Step);
2406 Value *LB = Builder.CreateSelect(C: IsNeg, True: Stop, False: Start);
2407 Value *UB = Builder.CreateSelect(C: IsNeg, True: Start, False: Stop);
2408 Span = Builder.CreateSub(LHS: UB, RHS: LB, Name: "", HasNUW: false, HasNSW: true);
2409 ZeroCmp = Builder.CreateICmp(
2410 P: InclusiveStop ? CmpInst::ICMP_SLT : CmpInst::ICMP_SLE, LHS: UB, RHS: LB);
2411 } else {
2412 Span = Builder.CreateSub(LHS: Stop, RHS: Start, Name: "", HasNUW: true);
2413 ZeroCmp = Builder.CreateICmp(
2414 P: InclusiveStop ? CmpInst::ICMP_ULT : CmpInst::ICMP_ULE, LHS: Stop, RHS: Start);
2415 }
2416
2417 Value *CountIfLooping;
2418 if (InclusiveStop) {
2419 CountIfLooping = Builder.CreateAdd(LHS: Builder.CreateUDiv(LHS: Span, RHS: Incr), RHS: One);
2420 } else {
2421 // Avoid incrementing past stop since it could overflow.
2422 Value *CountIfTwo = Builder.CreateAdd(
2423 LHS: Builder.CreateUDiv(LHS: Builder.CreateSub(LHS: Span, RHS: One), RHS: Incr), RHS: One);
2424 Value *OneCmp = Builder.CreateICmp(P: CmpInst::ICMP_ULE, LHS: Span, RHS: Incr);
2425 CountIfLooping = Builder.CreateSelect(C: OneCmp, True: One, False: CountIfTwo);
2426 }
2427 Value *TripCount = Builder.CreateSelect(C: ZeroCmp, True: Zero, False: CountIfLooping,
2428 Name: "omp_" + Name + ".tripcount");
2429
2430 auto BodyGen = [=](InsertPointTy CodeGenIP, Value *IV) {
2431 Builder.restoreIP(IP: CodeGenIP);
2432 Value *Span = Builder.CreateMul(LHS: IV, RHS: Step);
2433 Value *IndVar = Builder.CreateAdd(LHS: Span, RHS: Start);
2434 BodyGenCB(Builder.saveIP(), IndVar);
2435 };
2436 LocationDescription LoopLoc = ComputeIP.isSet() ? Loc.IP : Builder.saveIP();
2437 return createCanonicalLoop(Loc: LoopLoc, BodyGenCB: BodyGen, TripCount, Name);
2438}
2439
2440// Returns an LLVM function to call for initializing loop bounds using OpenMP
2441// static scheduling depending on `type`. Only i32 and i64 are supported by the
2442// runtime. Always interpret integers as unsigned similarly to
2443// CanonicalLoopInfo.
2444static FunctionCallee getKmpcForStaticInitForType(Type *Ty, Module &M,
2445 OpenMPIRBuilder &OMPBuilder) {
2446 unsigned Bitwidth = Ty->getIntegerBitWidth();
2447 if (Bitwidth == 32)
2448 return OMPBuilder.getOrCreateRuntimeFunction(
2449 M, FnID: omp::RuntimeFunction::OMPRTL___kmpc_for_static_init_4u);
2450 if (Bitwidth == 64)
2451 return OMPBuilder.getOrCreateRuntimeFunction(
2452 M, FnID: omp::RuntimeFunction::OMPRTL___kmpc_for_static_init_8u);
2453 llvm_unreachable("unknown OpenMP loop iterator bitwidth");
2454}
2455
2456OpenMPIRBuilder::InsertPointTy
2457OpenMPIRBuilder::applyStaticWorkshareLoop(DebugLoc DL, CanonicalLoopInfo *CLI,
2458 InsertPointTy AllocaIP,
2459 bool NeedsBarrier) {
2460 assert(CLI->isValid() && "Requires a valid canonical loop");
2461 assert(!isConflictIP(AllocaIP, CLI->getPreheaderIP()) &&
2462 "Require dedicated allocate IP");
2463
2464 // Set up the source location value for OpenMP runtime.
2465 Builder.restoreIP(IP: CLI->getPreheaderIP());
2466 Builder.SetCurrentDebugLocation(DL);
2467
2468 uint32_t SrcLocStrSize;
2469 Constant *SrcLocStr = getOrCreateSrcLocStr(DL, SrcLocStrSize);
2470 Value *SrcLoc = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
2471
2472 // Declare useful OpenMP runtime functions.
2473 Value *IV = CLI->getIndVar();
2474 Type *IVTy = IV->getType();
2475 FunctionCallee StaticInit = getKmpcForStaticInitForType(Ty: IVTy, M, OMPBuilder&: *this);
2476 FunctionCallee StaticFini =
2477 getOrCreateRuntimeFunction(M, FnID: omp::OMPRTL___kmpc_for_static_fini);
2478
2479 // Allocate space for computed loop bounds as expected by the "init" function.
2480 Builder.restoreIP(IP: AllocaIP);
2481 Type *I32Type = Type::getInt32Ty(C&: M.getContext());
2482 Value *PLastIter = Builder.CreateAlloca(Ty: I32Type, ArraySize: nullptr, Name: "p.lastiter");
2483 Value *PLowerBound = Builder.CreateAlloca(Ty: IVTy, ArraySize: nullptr, Name: "p.lowerbound");
2484 Value *PUpperBound = Builder.CreateAlloca(Ty: IVTy, ArraySize: nullptr, Name: "p.upperbound");
2485 Value *PStride = Builder.CreateAlloca(Ty: IVTy, ArraySize: nullptr, Name: "p.stride");
2486
2487 // At the end of the preheader, prepare for calling the "init" function by
2488 // storing the current loop bounds into the allocated space. A canonical loop
2489 // always iterates from 0 to trip-count with step 1. Note that "init" expects
2490 // and produces an inclusive upper bound.
2491 Builder.SetInsertPoint(CLI->getPreheader()->getTerminator());
2492 Constant *Zero = ConstantInt::get(Ty: IVTy, V: 0);
2493 Constant *One = ConstantInt::get(Ty: IVTy, V: 1);
2494 Builder.CreateStore(Val: Zero, Ptr: PLowerBound);
2495 Value *UpperBound = Builder.CreateSub(LHS: CLI->getTripCount(), RHS: One);
2496 Builder.CreateStore(Val: UpperBound, Ptr: PUpperBound);
2497 Builder.CreateStore(Val: One, Ptr: PStride);
2498
2499 Value *ThreadNum = getOrCreateThreadID(Ident: SrcLoc);
2500
2501 Constant *SchedulingType = ConstantInt::get(
2502 Ty: I32Type, V: static_cast<int>(OMPScheduleType::UnorderedStatic));
2503
2504 // Call the "init" function and update the trip count of the loop with the
2505 // value it produced.
2506 Builder.CreateCall(Callee: StaticInit,
2507 Args: {SrcLoc, ThreadNum, SchedulingType, PLastIter, PLowerBound,
2508 PUpperBound, PStride, One, Zero});
2509 Value *LowerBound = Builder.CreateLoad(Ty: IVTy, Ptr: PLowerBound);
2510 Value *InclusiveUpperBound = Builder.CreateLoad(Ty: IVTy, Ptr: PUpperBound);
2511 Value *TripCountMinusOne = Builder.CreateSub(LHS: InclusiveUpperBound, RHS: LowerBound);
2512 Value *TripCount = Builder.CreateAdd(LHS: TripCountMinusOne, RHS: One);
2513 CLI->setTripCount(TripCount);
2514
2515 // Update all uses of the induction variable except the one in the condition
2516 // block that compares it with the actual upper bound, and the increment in
2517 // the latch block.
2518
2519 CLI->mapIndVar(Updater: [&](Instruction *OldIV) -> Value * {
2520 Builder.SetInsertPoint(TheBB: CLI->getBody(),
2521 IP: CLI->getBody()->getFirstInsertionPt());
2522 Builder.SetCurrentDebugLocation(DL);
2523 return Builder.CreateAdd(LHS: OldIV, RHS: LowerBound);
2524 });
2525
2526 // In the "exit" block, call the "fini" function.
2527 Builder.SetInsertPoint(TheBB: CLI->getExit(),
2528 IP: CLI->getExit()->getTerminator()->getIterator());
2529 Builder.CreateCall(Callee: StaticFini, Args: {SrcLoc, ThreadNum});
2530
2531 // Add the barrier if requested.
2532 if (NeedsBarrier)
2533 createBarrier(LocationDescription(Builder.saveIP(), DL),
2534 omp::Directive::OMPD_for, /* ForceSimpleCall */ false,
2535 /* CheckCancelFlag */ false);
2536
2537 InsertPointTy AfterIP = CLI->getAfterIP();
2538 CLI->invalidate();
2539
2540 return AfterIP;
2541}
2542
2543OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::applyStaticChunkedWorkshareLoop(
2544 DebugLoc DL, CanonicalLoopInfo *CLI, InsertPointTy AllocaIP,
2545 bool NeedsBarrier, Value *ChunkSize) {
2546 assert(CLI->isValid() && "Requires a valid canonical loop");
2547 assert(ChunkSize && "Chunk size is required");
2548
2549 LLVMContext &Ctx = CLI->getFunction()->getContext();
2550 Value *IV = CLI->getIndVar();
2551 Value *OrigTripCount = CLI->getTripCount();
2552 Type *IVTy = IV->getType();
2553 assert(IVTy->getIntegerBitWidth() <= 64 &&
2554 "Max supported tripcount bitwidth is 64 bits");
2555 Type *InternalIVTy = IVTy->getIntegerBitWidth() <= 32 ? Type::getInt32Ty(C&: Ctx)
2556 : Type::getInt64Ty(C&: Ctx);
2557 Type *I32Type = Type::getInt32Ty(C&: M.getContext());
2558 Constant *Zero = ConstantInt::get(Ty: InternalIVTy, V: 0);
2559 Constant *One = ConstantInt::get(Ty: InternalIVTy, V: 1);
2560
2561 // Declare useful OpenMP runtime functions.
2562 FunctionCallee StaticInit =
2563 getKmpcForStaticInitForType(Ty: InternalIVTy, M, OMPBuilder&: *this);
2564 FunctionCallee StaticFini =
2565 getOrCreateRuntimeFunction(M, FnID: omp::OMPRTL___kmpc_for_static_fini);
2566
2567 // Allocate space for computed loop bounds as expected by the "init" function.
2568 Builder.restoreIP(IP: AllocaIP);
2569 Builder.SetCurrentDebugLocation(DL);
2570 Value *PLastIter = Builder.CreateAlloca(Ty: I32Type, ArraySize: nullptr, Name: "p.lastiter");
2571 Value *PLowerBound =
2572 Builder.CreateAlloca(Ty: InternalIVTy, ArraySize: nullptr, Name: "p.lowerbound");
2573 Value *PUpperBound =
2574 Builder.CreateAlloca(Ty: InternalIVTy, ArraySize: nullptr, Name: "p.upperbound");
2575 Value *PStride = Builder.CreateAlloca(Ty: InternalIVTy, ArraySize: nullptr, Name: "p.stride");
2576
2577 // Set up the source location value for the OpenMP runtime.
2578 Builder.restoreIP(IP: CLI->getPreheaderIP());
2579 Builder.SetCurrentDebugLocation(DL);
2580
2581 // TODO: Detect overflow in ubsan or max-out with current tripcount.
2582 Value *CastedChunkSize =
2583 Builder.CreateZExtOrTrunc(V: ChunkSize, DestTy: InternalIVTy, Name: "chunksize");
2584 Value *CastedTripCount =
2585 Builder.CreateZExt(V: OrigTripCount, DestTy: InternalIVTy, Name: "tripcount");
2586
2587 Constant *SchedulingType = ConstantInt::get(
2588 Ty: I32Type, V: static_cast<int>(OMPScheduleType::UnorderedStaticChunked));
2589 Builder.CreateStore(Val: Zero, Ptr: PLowerBound);
2590 Value *OrigUpperBound = Builder.CreateSub(LHS: CastedTripCount, RHS: One);
2591 Builder.CreateStore(Val: OrigUpperBound, Ptr: PUpperBound);
2592 Builder.CreateStore(Val: One, Ptr: PStride);
2593
2594 // Call the "init" function and update the trip count of the loop with the
2595 // value it produced.
2596 uint32_t SrcLocStrSize;
2597 Constant *SrcLocStr = getOrCreateSrcLocStr(DL, SrcLocStrSize);
2598 Value *SrcLoc = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
2599 Value *ThreadNum = getOrCreateThreadID(Ident: SrcLoc);
2600 Builder.CreateCall(Callee: StaticInit,
2601 Args: {/*loc=*/SrcLoc, /*global_tid=*/ThreadNum,
2602 /*schedtype=*/SchedulingType, /*plastiter=*/PLastIter,
2603 /*plower=*/PLowerBound, /*pupper=*/PUpperBound,
2604 /*pstride=*/PStride, /*incr=*/One,
2605 /*chunk=*/CastedChunkSize});
2606
2607 // Load values written by the "init" function.
2608 Value *FirstChunkStart =
2609 Builder.CreateLoad(Ty: InternalIVTy, Ptr: PLowerBound, Name: "omp_firstchunk.lb");
2610 Value *FirstChunkStop =
2611 Builder.CreateLoad(Ty: InternalIVTy, Ptr: PUpperBound, Name: "omp_firstchunk.ub");
2612 Value *FirstChunkEnd = Builder.CreateAdd(LHS: FirstChunkStop, RHS: One);
2613 Value *ChunkRange =
2614 Builder.CreateSub(LHS: FirstChunkEnd, RHS: FirstChunkStart, Name: "omp_chunk.range");
2615 Value *NextChunkStride =
2616 Builder.CreateLoad(Ty: InternalIVTy, Ptr: PStride, Name: "omp_dispatch.stride");
2617
2618 // Create outer "dispatch" loop for enumerating the chunks.
2619 BasicBlock *DispatchEnter = splitBB(Builder, CreateBranch: true);
2620 Value *DispatchCounter;
2621 CanonicalLoopInfo *DispatchCLI = createCanonicalLoop(
2622 Loc: {Builder.saveIP(), DL},
2623 BodyGenCB: [&](InsertPointTy BodyIP, Value *Counter) { DispatchCounter = Counter; },
2624 Start: FirstChunkStart, Stop: CastedTripCount, Step: NextChunkStride,
2625 /*IsSigned=*/false, /*InclusiveStop=*/false, /*ComputeIP=*/{},
2626 Name: "dispatch");
2627
2628 // Remember the BasicBlocks of the dispatch loop we need, then invalidate to
2629 // not have to preserve the canonical invariant.
2630 BasicBlock *DispatchBody = DispatchCLI->getBody();
2631 BasicBlock *DispatchLatch = DispatchCLI->getLatch();
2632 BasicBlock *DispatchExit = DispatchCLI->getExit();
2633 BasicBlock *DispatchAfter = DispatchCLI->getAfter();
2634 DispatchCLI->invalidate();
2635
2636 // Rewire the original loop to become the chunk loop inside the dispatch loop.
2637 redirectTo(Source: DispatchAfter, Target: CLI->getAfter(), DL);
2638 redirectTo(Source: CLI->getExit(), Target: DispatchLatch, DL);
2639 redirectTo(Source: DispatchBody, Target: DispatchEnter, DL);
2640
2641 // Prepare the prolog of the chunk loop.
2642 Builder.restoreIP(IP: CLI->getPreheaderIP());
2643 Builder.SetCurrentDebugLocation(DL);
2644
2645 // Compute the number of iterations of the chunk loop.
2646 Builder.SetInsertPoint(CLI->getPreheader()->getTerminator());
2647 Value *ChunkEnd = Builder.CreateAdd(LHS: DispatchCounter, RHS: ChunkRange);
2648 Value *IsLastChunk =
2649 Builder.CreateICmpUGE(LHS: ChunkEnd, RHS: CastedTripCount, Name: "omp_chunk.is_last");
2650 Value *CountUntilOrigTripCount =
2651 Builder.CreateSub(LHS: CastedTripCount, RHS: DispatchCounter);
2652 Value *ChunkTripCount = Builder.CreateSelect(
2653 C: IsLastChunk, True: CountUntilOrigTripCount, False: ChunkRange, Name: "omp_chunk.tripcount");
2654 Value *BackcastedChunkTC =
2655 Builder.CreateTrunc(V: ChunkTripCount, DestTy: IVTy, Name: "omp_chunk.tripcount.trunc");
2656 CLI->setTripCount(BackcastedChunkTC);
2657
2658 // Update all uses of the induction variable except the one in the condition
2659 // block that compares it with the actual upper bound, and the increment in
2660 // the latch block.
2661 Value *BackcastedDispatchCounter =
2662 Builder.CreateTrunc(V: DispatchCounter, DestTy: IVTy, Name: "omp_dispatch.iv.trunc");
2663 CLI->mapIndVar(Updater: [&](Instruction *) -> Value * {
2664 Builder.restoreIP(IP: CLI->getBodyIP());
2665 return Builder.CreateAdd(LHS: IV, RHS: BackcastedDispatchCounter);
2666 });
2667
2668 // In the "exit" block, call the "fini" function.
2669 Builder.SetInsertPoint(TheBB: DispatchExit, IP: DispatchExit->getFirstInsertionPt());
2670 Builder.CreateCall(Callee: StaticFini, Args: {SrcLoc, ThreadNum});
2671
2672 // Add the barrier if requested.
2673 if (NeedsBarrier)
2674 createBarrier(LocationDescription(Builder.saveIP(), DL), OMPD_for,
2675 /*ForceSimpleCall=*/false, /*CheckCancelFlag=*/false);
2676
2677#ifndef NDEBUG
2678 // Even though we currently do not support applying additional methods to it,
2679 // the chunk loop should remain a canonical loop.
2680 CLI->assertOK();
2681#endif
2682
2683 return {DispatchAfter, DispatchAfter->getFirstInsertionPt()};
2684}
2685
2686// Returns an LLVM function to call for executing an OpenMP static worksharing
2687// for loop depending on `type`. Only i32 and i64 are supported by the runtime.
2688// Always interpret integers as unsigned similarly to CanonicalLoopInfo.
2689static FunctionCallee
2690getKmpcForStaticLoopForType(Type *Ty, OpenMPIRBuilder *OMPBuilder,
2691 WorksharingLoopType LoopType) {
2692 unsigned Bitwidth = Ty->getIntegerBitWidth();
2693 Module &M = OMPBuilder->M;
2694 switch (LoopType) {
2695 case WorksharingLoopType::ForStaticLoop:
2696 if (Bitwidth == 32)
2697 return OMPBuilder->getOrCreateRuntimeFunction(
2698 M, FnID: omp::RuntimeFunction::OMPRTL___kmpc_for_static_loop_4u);
2699 if (Bitwidth == 64)
2700 return OMPBuilder->getOrCreateRuntimeFunction(
2701 M, FnID: omp::RuntimeFunction::OMPRTL___kmpc_for_static_loop_8u);
2702 break;
2703 case WorksharingLoopType::DistributeStaticLoop:
2704 if (Bitwidth == 32)
2705 return OMPBuilder->getOrCreateRuntimeFunction(
2706 M, FnID: omp::RuntimeFunction::OMPRTL___kmpc_distribute_static_loop_4u);
2707 if (Bitwidth == 64)
2708 return OMPBuilder->getOrCreateRuntimeFunction(
2709 M, FnID: omp::RuntimeFunction::OMPRTL___kmpc_distribute_static_loop_8u);
2710 break;
2711 case WorksharingLoopType::DistributeForStaticLoop:
2712 if (Bitwidth == 32)
2713 return OMPBuilder->getOrCreateRuntimeFunction(
2714 M, FnID: omp::RuntimeFunction::OMPRTL___kmpc_distribute_for_static_loop_4u);
2715 if (Bitwidth == 64)
2716 return OMPBuilder->getOrCreateRuntimeFunction(
2717 M, FnID: omp::RuntimeFunction::OMPRTL___kmpc_distribute_for_static_loop_8u);
2718 break;
2719 }
2720 if (Bitwidth != 32 && Bitwidth != 64) {
2721 llvm_unreachable("Unknown OpenMP loop iterator bitwidth");
2722 }
2723 llvm_unreachable("Unknown type of OpenMP worksharing loop");
2724}
2725
2726// Inserts a call to proper OpenMP Device RTL function which handles
2727// loop worksharing.
2728static void createTargetLoopWorkshareCall(
2729 OpenMPIRBuilder *OMPBuilder, WorksharingLoopType LoopType,
2730 BasicBlock *InsertBlock, Value *Ident, Value *LoopBodyArg,
2731 Type *ParallelTaskPtr, Value *TripCount, Function &LoopBodyFn) {
2732 Type *TripCountTy = TripCount->getType();
2733 Module &M = OMPBuilder->M;
2734 IRBuilder<> &Builder = OMPBuilder->Builder;
2735 FunctionCallee RTLFn =
2736 getKmpcForStaticLoopForType(Ty: TripCountTy, OMPBuilder, LoopType);
2737 SmallVector<Value *, 8> RealArgs;
2738 RealArgs.push_back(Elt: Ident);
2739 RealArgs.push_back(Elt: Builder.CreateBitCast(V: &LoopBodyFn, DestTy: ParallelTaskPtr));
2740 RealArgs.push_back(Elt: LoopBodyArg);
2741 RealArgs.push_back(Elt: TripCount);
2742 if (LoopType == WorksharingLoopType::DistributeStaticLoop) {
2743 RealArgs.push_back(Elt: ConstantInt::get(Ty: TripCountTy, V: 0));
2744 Builder.CreateCall(Callee: RTLFn, Args: RealArgs);
2745 return;
2746 }
2747 FunctionCallee RTLNumThreads = OMPBuilder->getOrCreateRuntimeFunction(
2748 M, FnID: omp::RuntimeFunction::OMPRTL_omp_get_num_threads);
2749 Builder.restoreIP(IP: {InsertBlock, std::prev(x: InsertBlock->end())});
2750 Value *NumThreads = Builder.CreateCall(Callee: RTLNumThreads, Args: {});
2751
2752 RealArgs.push_back(
2753 Elt: Builder.CreateZExtOrTrunc(V: NumThreads, DestTy: TripCountTy, Name: "num.threads.cast"));
2754 RealArgs.push_back(Elt: ConstantInt::get(Ty: TripCountTy, V: 0));
2755 if (LoopType == WorksharingLoopType::DistributeForStaticLoop) {
2756 RealArgs.push_back(Elt: ConstantInt::get(Ty: TripCountTy, V: 0));
2757 }
2758
2759 Builder.CreateCall(Callee: RTLFn, Args: RealArgs);
2760}
2761
2762static void
2763workshareLoopTargetCallback(OpenMPIRBuilder *OMPIRBuilder,
2764 CanonicalLoopInfo *CLI, Value *Ident,
2765 Function &OutlinedFn, Type *ParallelTaskPtr,
2766 const SmallVector<Instruction *, 4> &ToBeDeleted,
2767 WorksharingLoopType LoopType) {
2768 IRBuilder<> &Builder = OMPIRBuilder->Builder;
2769 BasicBlock *Preheader = CLI->getPreheader();
2770 Value *TripCount = CLI->getTripCount();
2771
2772 // After loop body outling, the loop body contains only set up
2773 // of loop body argument structure and the call to the outlined
2774 // loop body function. Firstly, we need to move setup of loop body args
2775 // into loop preheader.
2776 Preheader->splice(ToIt: std::prev(x: Preheader->end()), FromBB: CLI->getBody(),
2777 FromBeginIt: CLI->getBody()->begin(), FromEndIt: std::prev(x: CLI->getBody()->end()));
2778
2779 // The next step is to remove the whole loop. We do not it need anymore.
2780 // That's why make an unconditional branch from loop preheader to loop
2781 // exit block
2782 Builder.restoreIP(IP: {Preheader, Preheader->end()});
2783 Preheader->getTerminator()->eraseFromParent();
2784 Builder.CreateBr(Dest: CLI->getExit());
2785
2786 // Delete dead loop blocks
2787 OpenMPIRBuilder::OutlineInfo CleanUpInfo;
2788 SmallPtrSet<BasicBlock *, 32> RegionBlockSet;
2789 SmallVector<BasicBlock *, 32> BlocksToBeRemoved;
2790 CleanUpInfo.EntryBB = CLI->getHeader();
2791 CleanUpInfo.ExitBB = CLI->getExit();
2792 CleanUpInfo.collectBlocks(BlockSet&: RegionBlockSet, BlockVector&: BlocksToBeRemoved);
2793 DeleteDeadBlocks(BBs: BlocksToBeRemoved);
2794
2795 // Find the instruction which corresponds to loop body argument structure
2796 // and remove the call to loop body function instruction.
2797 Value *LoopBodyArg;
2798 User *OutlinedFnUser = OutlinedFn.getUniqueUndroppableUser();
2799 assert(OutlinedFnUser &&
2800 "Expected unique undroppable user of outlined function");
2801 CallInst *OutlinedFnCallInstruction = dyn_cast<CallInst>(Val: OutlinedFnUser);
2802 assert(OutlinedFnCallInstruction && "Expected outlined function call");
2803 assert((OutlinedFnCallInstruction->getParent() == Preheader) &&
2804 "Expected outlined function call to be located in loop preheader");
2805 // Check in case no argument structure has been passed.
2806 if (OutlinedFnCallInstruction->arg_size() > 1)
2807 LoopBodyArg = OutlinedFnCallInstruction->getArgOperand(i: 1);
2808 else
2809 LoopBodyArg = Constant::getNullValue(Ty: Builder.getPtrTy());
2810 OutlinedFnCallInstruction->eraseFromParent();
2811
2812 createTargetLoopWorkshareCall(OMPBuilder: OMPIRBuilder, LoopType, InsertBlock: Preheader, Ident,
2813 LoopBodyArg, ParallelTaskPtr, TripCount,
2814 LoopBodyFn&: OutlinedFn);
2815
2816 for (auto &ToBeDeletedItem : ToBeDeleted)
2817 ToBeDeletedItem->eraseFromParent();
2818 CLI->invalidate();
2819}
2820
2821OpenMPIRBuilder::InsertPointTy
2822OpenMPIRBuilder::applyWorkshareLoopTarget(DebugLoc DL, CanonicalLoopInfo *CLI,
2823 InsertPointTy AllocaIP,
2824 WorksharingLoopType LoopType) {
2825 uint32_t SrcLocStrSize;
2826 Constant *SrcLocStr = getOrCreateSrcLocStr(DL, SrcLocStrSize);
2827 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
2828
2829 OutlineInfo OI;
2830 OI.OuterAllocaBB = CLI->getPreheader();
2831 Function *OuterFn = CLI->getPreheader()->getParent();
2832
2833 // Instructions which need to be deleted at the end of code generation
2834 SmallVector<Instruction *, 4> ToBeDeleted;
2835
2836 OI.OuterAllocaBB = AllocaIP.getBlock();
2837
2838 // Mark the body loop as region which needs to be extracted
2839 OI.EntryBB = CLI->getBody();
2840 OI.ExitBB = CLI->getLatch()->splitBasicBlock(I: CLI->getLatch()->begin(),
2841 BBName: "omp.prelatch", Before: true);
2842
2843 // Prepare loop body for extraction
2844 Builder.restoreIP(IP: {CLI->getPreheader(), CLI->getPreheader()->begin()});
2845
2846 // Insert new loop counter variable which will be used only in loop
2847 // body.
2848 AllocaInst *NewLoopCnt = Builder.CreateAlloca(Ty: CLI->getIndVarType(), ArraySize: 0, Name: "");
2849 Instruction *NewLoopCntLoad =
2850 Builder.CreateLoad(Ty: CLI->getIndVarType(), Ptr: NewLoopCnt);
2851 // New loop counter instructions are redundant in the loop preheader when
2852 // code generation for workshare loop is finshed. That's why mark them as
2853 // ready for deletion.
2854 ToBeDeleted.push_back(Elt: NewLoopCntLoad);
2855 ToBeDeleted.push_back(Elt: NewLoopCnt);
2856
2857 // Analyse loop body region. Find all input variables which are used inside
2858 // loop body region.
2859 SmallPtrSet<BasicBlock *, 32> ParallelRegionBlockSet;
2860 SmallVector<BasicBlock *, 32> Blocks;
2861 OI.collectBlocks(BlockSet&: ParallelRegionBlockSet, BlockVector&: Blocks);
2862 SmallVector<BasicBlock *, 32> BlocksT(ParallelRegionBlockSet.begin(),
2863 ParallelRegionBlockSet.end());
2864
2865 CodeExtractorAnalysisCache CEAC(*OuterFn);
2866 CodeExtractor Extractor(Blocks,
2867 /* DominatorTree */ nullptr,
2868 /* AggregateArgs */ true,
2869 /* BlockFrequencyInfo */ nullptr,
2870 /* BranchProbabilityInfo */ nullptr,
2871 /* AssumptionCache */ nullptr,
2872 /* AllowVarArgs */ true,
2873 /* AllowAlloca */ true,
2874 /* AllocationBlock */ CLI->getPreheader(),
2875 /* Suffix */ ".omp_wsloop",
2876 /* AggrArgsIn0AddrSpace */ true);
2877
2878 BasicBlock *CommonExit = nullptr;
2879 SetVector<Value *> Inputs, Outputs, SinkingCands, HoistingCands;
2880
2881 // Find allocas outside the loop body region which are used inside loop
2882 // body
2883 Extractor.findAllocas(CEAC, SinkCands&: SinkingCands, HoistCands&: HoistingCands, ExitBlock&: CommonExit);
2884
2885 // We need to model loop body region as the function f(cnt, loop_arg).
2886 // That's why we replace loop induction variable by the new counter
2887 // which will be one of loop body function argument
2888 SmallVector<User *> Users(CLI->getIndVar()->user_begin(),
2889 CLI->getIndVar()->user_end());
2890 for (auto Use : Users) {
2891 if (Instruction *Inst = dyn_cast<Instruction>(Val: Use)) {
2892 if (ParallelRegionBlockSet.count(Ptr: Inst->getParent())) {
2893 Inst->replaceUsesOfWith(From: CLI->getIndVar(), To: NewLoopCntLoad);
2894 }
2895 }
2896 }
2897 // Make sure that loop counter variable is not merged into loop body
2898 // function argument structure and it is passed as separate variable
2899 OI.ExcludeArgsFromAggregate.push_back(Elt: NewLoopCntLoad);
2900
2901 // PostOutline CB is invoked when loop body function is outlined and
2902 // loop body is replaced by call to outlined function. We need to add
2903 // call to OpenMP device rtl inside loop preheader. OpenMP device rtl
2904 // function will handle loop control logic.
2905 //
2906 OI.PostOutlineCB = [=, ToBeDeletedVec =
2907 std::move(ToBeDeleted)](Function &OutlinedFn) {
2908 workshareLoopTargetCallback(OMPIRBuilder: this, CLI, Ident, OutlinedFn, ParallelTaskPtr,
2909 ToBeDeleted: ToBeDeletedVec, LoopType);
2910 };
2911 addOutlineInfo(OI: std::move(OI));
2912 return CLI->getAfterIP();
2913}
2914
2915OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::applyWorkshareLoop(
2916 DebugLoc DL, CanonicalLoopInfo *CLI, InsertPointTy AllocaIP,
2917 bool NeedsBarrier, omp::ScheduleKind SchedKind, Value *ChunkSize,
2918 bool HasSimdModifier, bool HasMonotonicModifier,
2919 bool HasNonmonotonicModifier, bool HasOrderedClause,
2920 WorksharingLoopType LoopType) {
2921 if (Config.isTargetDevice())
2922 return applyWorkshareLoopTarget(DL, CLI, AllocaIP, LoopType);
2923 OMPScheduleType EffectiveScheduleType = computeOpenMPScheduleType(
2924 SchedKind, ChunkSize, HasSimdModifier, HasMonotonicModifier,
2925 HasNonmonotonicModifier, HasOrderedClause);
2926
2927 bool IsOrdered = (EffectiveScheduleType & OMPScheduleType::ModifierOrdered) ==
2928 OMPScheduleType::ModifierOrdered;
2929 switch (EffectiveScheduleType & ~OMPScheduleType::ModifierMask) {
2930 case OMPScheduleType::BaseStatic:
2931 assert(!ChunkSize && "No chunk size with static-chunked schedule");
2932 if (IsOrdered)
2933 return applyDynamicWorkshareLoop(DL, CLI, AllocaIP, SchedType: EffectiveScheduleType,
2934 NeedsBarrier, Chunk: ChunkSize);
2935 // FIXME: Monotonicity ignored?
2936 return applyStaticWorkshareLoop(DL, CLI, AllocaIP, NeedsBarrier);
2937
2938 case OMPScheduleType::BaseStaticChunked:
2939 if (IsOrdered)
2940 return applyDynamicWorkshareLoop(DL, CLI, AllocaIP, SchedType: EffectiveScheduleType,
2941 NeedsBarrier, Chunk: ChunkSize);
2942 // FIXME: Monotonicity ignored?
2943 return applyStaticChunkedWorkshareLoop(DL, CLI, AllocaIP, NeedsBarrier,
2944 ChunkSize);
2945
2946 case OMPScheduleType::BaseRuntime:
2947 case OMPScheduleType::BaseAuto:
2948 case OMPScheduleType::BaseGreedy:
2949 case OMPScheduleType::BaseBalanced:
2950 case OMPScheduleType::BaseSteal:
2951 case OMPScheduleType::BaseGuidedSimd:
2952 case OMPScheduleType::BaseRuntimeSimd:
2953 assert(!ChunkSize &&
2954 "schedule type does not support user-defined chunk sizes");
2955 [[fallthrough]];
2956 case OMPScheduleType::BaseDynamicChunked:
2957 case OMPScheduleType::BaseGuidedChunked:
2958 case OMPScheduleType::BaseGuidedIterativeChunked:
2959 case OMPScheduleType::BaseGuidedAnalyticalChunked:
2960 case OMPScheduleType::BaseStaticBalancedChunked:
2961 return applyDynamicWorkshareLoop(DL, CLI, AllocaIP, SchedType: EffectiveScheduleType,
2962 NeedsBarrier, Chunk: ChunkSize);
2963
2964 default:
2965 llvm_unreachable("Unknown/unimplemented schedule kind");
2966 }
2967}
2968
2969/// Returns an LLVM function to call for initializing loop bounds using OpenMP
2970/// dynamic scheduling depending on `type`. Only i32 and i64 are supported by
2971/// the runtime. Always interpret integers as unsigned similarly to
2972/// CanonicalLoopInfo.
2973static FunctionCallee
2974getKmpcForDynamicInitForType(Type *Ty, Module &M, OpenMPIRBuilder &OMPBuilder) {
2975 unsigned Bitwidth = Ty->getIntegerBitWidth();
2976 if (Bitwidth == 32)
2977 return OMPBuilder.getOrCreateRuntimeFunction(
2978 M, FnID: omp::RuntimeFunction::OMPRTL___kmpc_dispatch_init_4u);
2979 if (Bitwidth == 64)
2980 return OMPBuilder.getOrCreateRuntimeFunction(
2981 M, FnID: omp::RuntimeFunction::OMPRTL___kmpc_dispatch_init_8u);
2982 llvm_unreachable("unknown OpenMP loop iterator bitwidth");
2983}
2984
2985/// Returns an LLVM function to call for updating the next loop using OpenMP
2986/// dynamic scheduling depending on `type`. Only i32 and i64 are supported by
2987/// the runtime. Always interpret integers as unsigned similarly to
2988/// CanonicalLoopInfo.
2989static FunctionCallee
2990getKmpcForDynamicNextForType(Type *Ty, Module &M, OpenMPIRBuilder &OMPBuilder) {
2991 unsigned Bitwidth = Ty->getIntegerBitWidth();
2992 if (Bitwidth == 32)
2993 return OMPBuilder.getOrCreateRuntimeFunction(
2994 M, FnID: omp::RuntimeFunction::OMPRTL___kmpc_dispatch_next_4u);
2995 if (Bitwidth == 64)
2996 return OMPBuilder.getOrCreateRuntimeFunction(
2997 M, FnID: omp::RuntimeFunction::OMPRTL___kmpc_dispatch_next_8u);
2998 llvm_unreachable("unknown OpenMP loop iterator bitwidth");
2999}
3000
3001/// Returns an LLVM function to call for finalizing the dynamic loop using
3002/// depending on `type`. Only i32 and i64 are supported by the runtime. Always
3003/// interpret integers as unsigned similarly to CanonicalLoopInfo.
3004static FunctionCallee
3005getKmpcForDynamicFiniForType(Type *Ty, Module &M, OpenMPIRBuilder &OMPBuilder) {
3006 unsigned Bitwidth = Ty->getIntegerBitWidth();
3007 if (Bitwidth == 32)
3008 return OMPBuilder.getOrCreateRuntimeFunction(
3009 M, FnID: omp::RuntimeFunction::OMPRTL___kmpc_dispatch_fini_4u);
3010 if (Bitwidth == 64)
3011 return OMPBuilder.getOrCreateRuntimeFunction(
3012 M, FnID: omp::RuntimeFunction::OMPRTL___kmpc_dispatch_fini_8u);
3013 llvm_unreachable("unknown OpenMP loop iterator bitwidth");
3014}
3015
3016OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::applyDynamicWorkshareLoop(
3017 DebugLoc DL, CanonicalLoopInfo *CLI, InsertPointTy AllocaIP,
3018 OMPScheduleType SchedType, bool NeedsBarrier, Value *Chunk) {
3019 assert(CLI->isValid() && "Requires a valid canonical loop");
3020 assert(!isConflictIP(AllocaIP, CLI->getPreheaderIP()) &&
3021 "Require dedicated allocate IP");
3022 assert(isValidWorkshareLoopScheduleType(SchedType) &&
3023 "Require valid schedule type");
3024
3025 bool Ordered = (SchedType & OMPScheduleType::ModifierOrdered) ==
3026 OMPScheduleType::ModifierOrdered;
3027
3028 // Set up the source location value for OpenMP runtime.
3029 Builder.SetCurrentDebugLocation(DL);
3030
3031 uint32_t SrcLocStrSize;
3032 Constant *SrcLocStr = getOrCreateSrcLocStr(DL, SrcLocStrSize);
3033 Value *SrcLoc = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
3034
3035 // Declare useful OpenMP runtime functions.
3036 Value *IV = CLI->getIndVar();
3037 Type *IVTy = IV->getType();
3038 FunctionCallee DynamicInit = getKmpcForDynamicInitForType(Ty: IVTy, M, OMPBuilder&: *this);
3039 FunctionCallee DynamicNext = getKmpcForDynamicNextForType(Ty: IVTy, M, OMPBuilder&: *this);
3040
3041 // Allocate space for computed loop bounds as expected by the "init" function.
3042 Builder.restoreIP(IP: AllocaIP);
3043 Type *I32Type = Type::getInt32Ty(C&: M.getContext());
3044 Value *PLastIter = Builder.CreateAlloca(Ty: I32Type, ArraySize: nullptr, Name: "p.lastiter");
3045 Value *PLowerBound = Builder.CreateAlloca(Ty: IVTy, ArraySize: nullptr, Name: "p.lowerbound");
3046 Value *PUpperBound = Builder.CreateAlloca(Ty: IVTy, ArraySize: nullptr, Name: "p.upperbound");
3047 Value *PStride = Builder.CreateAlloca(Ty: IVTy, ArraySize: nullptr, Name: "p.stride");
3048
3049 // At the end of the preheader, prepare for calling the "init" function by
3050 // storing the current loop bounds into the allocated space. A canonical loop
3051 // always iterates from 0 to trip-count with step 1. Note that "init" expects
3052 // and produces an inclusive upper bound.
3053 BasicBlock *PreHeader = CLI->getPreheader();
3054 Builder.SetInsertPoint(PreHeader->getTerminator());
3055 Constant *One = ConstantInt::get(Ty: IVTy, V: 1);
3056 Builder.CreateStore(Val: One, Ptr: PLowerBound);
3057 Value *UpperBound = CLI->getTripCount();
3058 Builder.CreateStore(Val: UpperBound, Ptr: PUpperBound);
3059 Builder.CreateStore(Val: One, Ptr: PStride);
3060
3061 BasicBlock *Header = CLI->getHeader();
3062 BasicBlock *Exit = CLI->getExit();
3063 BasicBlock *Cond = CLI->getCond();
3064 BasicBlock *Latch = CLI->getLatch();
3065 InsertPointTy AfterIP = CLI->getAfterIP();
3066
3067 // The CLI will be "broken" in the code below, as the loop is no longer
3068 // a valid canonical loop.
3069
3070 if (!Chunk)
3071 Chunk = One;
3072
3073 Value *ThreadNum = getOrCreateThreadID(Ident: SrcLoc);
3074
3075 Constant *SchedulingType =
3076 ConstantInt::get(Ty: I32Type, V: static_cast<int>(SchedType));
3077
3078 // Call the "init" function.
3079 Builder.CreateCall(Callee: DynamicInit,
3080 Args: {SrcLoc, ThreadNum, SchedulingType, /* LowerBound */ One,
3081 UpperBound, /* step */ One, Chunk});
3082
3083 // An outer loop around the existing one.
3084 BasicBlock *OuterCond = BasicBlock::Create(
3085 Context&: PreHeader->getContext(), Name: Twine(PreHeader->getName()) + ".outer.cond",
3086 Parent: PreHeader->getParent());
3087 // This needs to be 32-bit always, so can't use the IVTy Zero above.
3088 Builder.SetInsertPoint(TheBB: OuterCond, IP: OuterCond->getFirstInsertionPt());
3089 Value *Res =
3090 Builder.CreateCall(Callee: DynamicNext, Args: {SrcLoc, ThreadNum, PLastIter,
3091 PLowerBound, PUpperBound, PStride});
3092 Constant *Zero32 = ConstantInt::get(Ty: I32Type, V: 0);
3093 Value *MoreWork = Builder.CreateCmp(Pred: CmpInst::ICMP_NE, LHS: Res, RHS: Zero32);
3094 Value *LowerBound =
3095 Builder.CreateSub(LHS: Builder.CreateLoad(Ty: IVTy, Ptr: PLowerBound), RHS: One, Name: "lb");
3096 Builder.CreateCondBr(Cond: MoreWork, True: Header, False: Exit);
3097
3098 // Change PHI-node in loop header to use outer cond rather than preheader,
3099 // and set IV to the LowerBound.
3100 Instruction *Phi = &Header->front();
3101 auto *PI = cast<PHINode>(Val: Phi);
3102 PI->setIncomingBlock(i: 0, BB: OuterCond);
3103 PI->setIncomingValue(i: 0, V: LowerBound);
3104
3105 // Then set the pre-header to jump to the OuterCond
3106 Instruction *Term = PreHeader->getTerminator();
3107 auto *Br = cast<BranchInst>(Val: Term);
3108 Br->setSuccessor(idx: 0, NewSucc: OuterCond);
3109
3110 // Modify the inner condition:
3111 // * Use the UpperBound returned from the DynamicNext call.
3112 // * jump to the loop outer loop when done with one of the inner loops.
3113 Builder.SetInsertPoint(TheBB: Cond, IP: Cond->getFirstInsertionPt());
3114 UpperBound = Builder.CreateLoad(Ty: IVTy, Ptr: PUpperBound, Name: "ub");
3115 Instruction *Comp = &*Builder.GetInsertPoint();
3116 auto *CI = cast<CmpInst>(Val: Comp);
3117 CI->setOperand(i_nocapture: 1, Val_nocapture: UpperBound);
3118 // Redirect the inner exit to branch to outer condition.
3119 Instruction *Branch = &Cond->back();
3120 auto *BI = cast<BranchInst>(Val: Branch);
3121 assert(BI->getSuccessor(1) == Exit);
3122 BI->setSuccessor(idx: 1, NewSucc: OuterCond);
3123
3124 // Call the "fini" function if "ordered" is present in wsloop directive.
3125 if (Ordered) {
3126 Builder.SetInsertPoint(&Latch->back());
3127 FunctionCallee DynamicFini = getKmpcForDynamicFiniForType(Ty: IVTy, M, OMPBuilder&: *this);
3128 Builder.CreateCall(Callee: DynamicFini, Args: {SrcLoc, ThreadNum});
3129 }
3130
3131 // Add the barrier if requested.
3132 if (NeedsBarrier) {
3133 Builder.SetInsertPoint(&Exit->back());
3134 createBarrier(LocationDescription(Builder.saveIP(), DL),
3135 omp::Directive::OMPD_for, /* ForceSimpleCall */ false,
3136 /* CheckCancelFlag */ false);
3137 }
3138
3139 CLI->invalidate();
3140 return AfterIP;
3141}
3142
3143/// Redirect all edges that branch to \p OldTarget to \p NewTarget. That is,
3144/// after this \p OldTarget will be orphaned.
3145static void redirectAllPredecessorsTo(BasicBlock *OldTarget,
3146 BasicBlock *NewTarget, DebugLoc DL) {
3147 for (BasicBlock *Pred : make_early_inc_range(Range: predecessors(BB: OldTarget)))
3148 redirectTo(Source: Pred, Target: NewTarget, DL);
3149}
3150
3151/// Determine which blocks in \p BBs are reachable from outside and remove the
3152/// ones that are not reachable from the function.
3153static void removeUnusedBlocksFromParent(ArrayRef<BasicBlock *> BBs) {
3154 SmallPtrSet<BasicBlock *, 6> BBsToErase{BBs.begin(), BBs.end()};
3155 auto HasRemainingUses = [&BBsToErase](BasicBlock *BB) {
3156 for (Use &U : BB->uses()) {
3157 auto *UseInst = dyn_cast<Instruction>(Val: U.getUser());
3158 if (!UseInst)
3159 continue;
3160 if (BBsToErase.count(Ptr: UseInst->getParent()))
3161 continue;
3162 return true;
3163 }
3164 return false;
3165 };
3166
3167 while (true) {
3168 bool Changed = false;
3169 for (BasicBlock *BB : make_early_inc_range(Range&: BBsToErase)) {
3170 if (HasRemainingUses(BB)) {
3171 BBsToErase.erase(Ptr: BB);
3172 Changed = true;
3173 }
3174 }
3175 if (!Changed)
3176 break;
3177 }
3178
3179 SmallVector<BasicBlock *, 7> BBVec(BBsToErase.begin(), BBsToErase.end());
3180 DeleteDeadBlocks(BBs: BBVec);
3181}
3182
3183CanonicalLoopInfo *
3184OpenMPIRBuilder::collapseLoops(DebugLoc DL, ArrayRef<CanonicalLoopInfo *> Loops,
3185 InsertPointTy ComputeIP) {
3186 assert(Loops.size() >= 1 && "At least one loop required");
3187 size_t NumLoops = Loops.size();
3188
3189 // Nothing to do if there is already just one loop.
3190 if (NumLoops == 1)
3191 return Loops.front();
3192
3193 CanonicalLoopInfo *Outermost = Loops.front();
3194 CanonicalLoopInfo *Innermost = Loops.back();
3195 BasicBlock *OrigPreheader = Outermost->getPreheader();
3196 BasicBlock *OrigAfter = Outermost->getAfter();
3197 Function *F = OrigPreheader->getParent();
3198
3199 // Loop control blocks that may become orphaned later.
3200 SmallVector<BasicBlock *, 12> OldControlBBs;
3201 OldControlBBs.reserve(N: 6 * Loops.size());
3202 for (CanonicalLoopInfo *Loop : Loops)
3203 Loop->collectControlBlocks(BBs&: OldControlBBs);
3204
3205 // Setup the IRBuilder for inserting the trip count computation.
3206 Builder.SetCurrentDebugLocation(DL);
3207 if (ComputeIP.isSet())
3208 Builder.restoreIP(IP: ComputeIP);
3209 else
3210 Builder.restoreIP(IP: Outermost->getPreheaderIP());
3211
3212 // Derive the collapsed' loop trip count.
3213 // TODO: Find common/largest indvar type.
3214 Value *CollapsedTripCount = nullptr;
3215 for (CanonicalLoopInfo *L : Loops) {
3216 assert(L->isValid() &&
3217 "All loops to collapse must be valid canonical loops");
3218 Value *OrigTripCount = L->getTripCount();
3219 if (!CollapsedTripCount) {
3220 CollapsedTripCount = OrigTripCount;
3221 continue;
3222 }
3223
3224 // TODO: Enable UndefinedSanitizer to diagnose an overflow here.
3225 CollapsedTripCount = Builder.CreateMul(LHS: CollapsedTripCount, RHS: OrigTripCount,
3226 Name: {}, /*HasNUW=*/true);
3227 }
3228
3229 // Create the collapsed loop control flow.
3230 CanonicalLoopInfo *Result =
3231 createLoopSkeleton(DL, TripCount: CollapsedTripCount, F,
3232 PreInsertBefore: OrigPreheader->getNextNode(), PostInsertBefore: OrigAfter, Name: "collapsed");
3233
3234 // Build the collapsed loop body code.
3235 // Start with deriving the input loop induction variables from the collapsed
3236 // one, using a divmod scheme. To preserve the original loops' order, the
3237 // innermost loop use the least significant bits.
3238 Builder.restoreIP(IP: Result->getBodyIP());
3239
3240 Value *Leftover = Result->getIndVar();
3241 SmallVector<Value *> NewIndVars;
3242 NewIndVars.resize(N: NumLoops);
3243 for (int i = NumLoops - 1; i >= 1; --i) {
3244 Value *OrigTripCount = Loops[i]->getTripCount();
3245
3246 Value *NewIndVar = Builder.CreateURem(LHS: Leftover, RHS: OrigTripCount);
3247 NewIndVars[i] = NewIndVar;
3248
3249 Leftover = Builder.CreateUDiv(LHS: Leftover, RHS: OrigTripCount);
3250 }
3251 // Outermost loop gets all the remaining bits.
3252 NewIndVars[0] = Leftover;
3253
3254 // Construct the loop body control flow.
3255 // We progressively construct the branch structure following in direction of
3256 // the control flow, from the leading in-between code, the loop nest body, the
3257 // trailing in-between code, and rejoining the collapsed loop's latch.
3258 // ContinueBlock and ContinuePred keep track of the source(s) of next edge. If
3259 // the ContinueBlock is set, continue with that block. If ContinuePred, use
3260 // its predecessors as sources.
3261 BasicBlock *ContinueBlock = Result->getBody();
3262 BasicBlock *ContinuePred = nullptr;
3263 auto ContinueWith = [&ContinueBlock, &ContinuePred, DL](BasicBlock *Dest,
3264 BasicBlock *NextSrc) {
3265 if (ContinueBlock)
3266 redirectTo(Source: ContinueBlock, Target: Dest, DL);
3267 else
3268 redirectAllPredecessorsTo(OldTarget: ContinuePred, NewTarget: Dest, DL);
3269
3270 ContinueBlock = nullptr;
3271 ContinuePred = NextSrc;
3272 };
3273
3274 // The code before the nested loop of each level.
3275 // Because we are sinking it into the nest, it will be executed more often
3276 // that the original loop. More sophisticated schemes could keep track of what
3277 // the in-between code is and instantiate it only once per thread.
3278 for (size_t i = 0; i < NumLoops - 1; ++i)
3279 ContinueWith(Loops[i]->getBody(), Loops[i + 1]->getHeader());
3280
3281 // Connect the loop nest body.
3282 ContinueWith(Innermost->getBody(), Innermost->getLatch());
3283
3284 // The code after the nested loop at each level.
3285 for (size_t i = NumLoops - 1; i > 0; --i)
3286 ContinueWith(Loops[i]->getAfter(), Loops[i - 1]->getLatch());
3287
3288 // Connect the finished loop to the collapsed loop latch.
3289 ContinueWith(Result->getLatch(), nullptr);
3290
3291 // Replace the input loops with the new collapsed loop.
3292 redirectTo(Source: Outermost->getPreheader(), Target: Result->getPreheader(), DL);
3293 redirectTo(Source: Result->getAfter(), Target: Outermost->getAfter(), DL);
3294
3295 // Replace the input loop indvars with the derived ones.
3296 for (size_t i = 0; i < NumLoops; ++i)
3297 Loops[i]->getIndVar()->replaceAllUsesWith(V: NewIndVars[i]);
3298
3299 // Remove unused parts of the input loops.
3300 removeUnusedBlocksFromParent(BBs: OldControlBBs);
3301
3302 for (CanonicalLoopInfo *L : Loops)
3303 L->invalidate();
3304
3305#ifndef NDEBUG
3306 Result->assertOK();
3307#endif
3308 return Result;
3309}
3310
3311std::vector<CanonicalLoopInfo *>
3312OpenMPIRBuilder::tileLoops(DebugLoc DL, ArrayRef<CanonicalLoopInfo *> Loops,
3313 ArrayRef<Value *> TileSizes) {
3314 assert(TileSizes.size() == Loops.size() &&
3315 "Must pass as many tile sizes as there are loops");
3316 int NumLoops = Loops.size();
3317 assert(NumLoops >= 1 && "At least one loop to tile required");
3318
3319 CanonicalLoopInfo *OutermostLoop = Loops.front();
3320 CanonicalLoopInfo *InnermostLoop = Loops.back();
3321 Function *F = OutermostLoop->getBody()->getParent();
3322 BasicBlock *InnerEnter = InnermostLoop->getBody();
3323 BasicBlock *InnerLatch = InnermostLoop->getLatch();
3324
3325 // Loop control blocks that may become orphaned later.
3326 SmallVector<BasicBlock *, 12> OldControlBBs;
3327 OldControlBBs.reserve(N: 6 * Loops.size());
3328 for (CanonicalLoopInfo *Loop : Loops)
3329 Loop->collectControlBlocks(BBs&: OldControlBBs);
3330
3331 // Collect original trip counts and induction variable to be accessible by
3332 // index. Also, the structure of the original loops is not preserved during
3333 // the construction of the tiled loops, so do it before we scavenge the BBs of
3334 // any original CanonicalLoopInfo.
3335 SmallVector<Value *, 4> OrigTripCounts, OrigIndVars;
3336 for (CanonicalLoopInfo *L : Loops) {
3337 assert(L->isValid() && "All input loops must be valid canonical loops");
3338 OrigTripCounts.push_back(Elt: L->getTripCount());
3339 OrigIndVars.push_back(Elt: L->getIndVar());
3340 }
3341
3342 // Collect the code between loop headers. These may contain SSA definitions
3343 // that are used in the loop nest body. To be usable with in the innermost
3344 // body, these BasicBlocks will be sunk into the loop nest body. That is,
3345 // these instructions may be executed more often than before the tiling.
3346 // TODO: It would be sufficient to only sink them into body of the
3347 // corresponding tile loop.
3348 SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> InbetweenCode;
3349 for (int i = 0; i < NumLoops - 1; ++i) {
3350 CanonicalLoopInfo *Surrounding = Loops[i];
3351 CanonicalLoopInfo *Nested = Loops[i + 1];
3352
3353 BasicBlock *EnterBB = Surrounding->getBody();
3354 BasicBlock *ExitBB = Nested->getHeader();
3355 InbetweenCode.emplace_back(Args&: EnterBB, Args&: ExitBB);
3356 }
3357
3358 // Compute the trip counts of the floor loops.
3359 Builder.SetCurrentDebugLocation(DL);
3360 Builder.restoreIP(IP: OutermostLoop->getPreheaderIP());
3361 SmallVector<Value *, 4> FloorCount, FloorRems;
3362 for (int i = 0; i < NumLoops; ++i) {
3363 Value *TileSize = TileSizes[i];
3364 Value *OrigTripCount = OrigTripCounts[i];
3365 Type *IVType = OrigTripCount->getType();
3366
3367 Value *FloorTripCount = Builder.CreateUDiv(LHS: OrigTripCount, RHS: TileSize);
3368 Value *FloorTripRem = Builder.CreateURem(LHS: OrigTripCount, RHS: TileSize);
3369
3370 // 0 if tripcount divides the tilesize, 1 otherwise.
3371 // 1 means we need an additional iteration for a partial tile.
3372 //
3373 // Unfortunately we cannot just use the roundup-formula
3374 // (tripcount + tilesize - 1)/tilesize
3375 // because the summation might overflow. We do not want introduce undefined
3376 // behavior when the untiled loop nest did not.
3377 Value *FloorTripOverflow =
3378 Builder.CreateICmpNE(LHS: FloorTripRem, RHS: ConstantInt::get(Ty: IVType, V: 0));
3379
3380 FloorTripOverflow = Builder.CreateZExt(V: FloorTripOverflow, DestTy: IVType);
3381 FloorTripCount =
3382 Builder.CreateAdd(LHS: FloorTripCount, RHS: FloorTripOverflow,
3383 Name: "omp_floor" + Twine(i) + ".tripcount", HasNUW: true);
3384
3385 // Remember some values for later use.
3386 FloorCount.push_back(Elt: FloorTripCount);
3387 FloorRems.push_back(Elt: FloorTripRem);
3388 }
3389
3390 // Generate the new loop nest, from the outermost to the innermost.
3391 std::vector<CanonicalLoopInfo *> Result;
3392 Result.reserve(n: NumLoops * 2);
3393
3394 // The basic block of the surrounding loop that enters the nest generated
3395 // loop.
3396 BasicBlock *Enter = OutermostLoop->getPreheader();
3397
3398 // The basic block of the surrounding loop where the inner code should
3399 // continue.
3400 BasicBlock *Continue = OutermostLoop->getAfter();
3401
3402 // Where the next loop basic block should be inserted.
3403 BasicBlock *OutroInsertBefore = InnermostLoop->getExit();
3404
3405 auto EmbeddNewLoop =
3406 [this, DL, F, InnerEnter, &Enter, &Continue, &OutroInsertBefore](
3407 Value *TripCount, const Twine &Name) -> CanonicalLoopInfo * {
3408 CanonicalLoopInfo *EmbeddedLoop = createLoopSkeleton(
3409 DL, TripCount, F, PreInsertBefore: InnerEnter, PostInsertBefore: OutroInsertBefore, Name);
3410 redirectTo(Source: Enter, Target: EmbeddedLoop->getPreheader(), DL);
3411 redirectTo(Source: EmbeddedLoop->getAfter(), Target: Continue, DL);
3412
3413 // Setup the position where the next embedded loop connects to this loop.
3414 Enter = EmbeddedLoop->getBody();
3415 Continue = EmbeddedLoop->getLatch();
3416 OutroInsertBefore = EmbeddedLoop->getLatch();
3417 return EmbeddedLoop;
3418 };
3419
3420 auto EmbeddNewLoops = [&Result, &EmbeddNewLoop](ArrayRef<Value *> TripCounts,
3421 const Twine &NameBase) {
3422 for (auto P : enumerate(First&: TripCounts)) {
3423 CanonicalLoopInfo *EmbeddedLoop =
3424 EmbeddNewLoop(P.value(), NameBase + Twine(P.index()));
3425 Result.push_back(x: EmbeddedLoop);
3426 }
3427 };
3428
3429 EmbeddNewLoops(FloorCount, "floor");
3430
3431 // Within the innermost floor loop, emit the code that computes the tile
3432 // sizes.
3433 Builder.SetInsertPoint(Enter->getTerminator());
3434 SmallVector<Value *, 4> TileCounts;
3435 for (int i = 0; i < NumLoops; ++i) {
3436 CanonicalLoopInfo *FloorLoop = Result[i];
3437 Value *TileSize = TileSizes[i];
3438
3439 Value *FloorIsEpilogue =
3440 Builder.CreateICmpEQ(LHS: FloorLoop->getIndVar(), RHS: FloorCount[i]);
3441 Value *TileTripCount =
3442 Builder.CreateSelect(C: FloorIsEpilogue, True: FloorRems[i], False: TileSize);
3443
3444 TileCounts.push_back(Elt: TileTripCount);
3445 }
3446
3447 // Create the tile loops.
3448 EmbeddNewLoops(TileCounts, "tile");
3449
3450 // Insert the inbetween code into the body.
3451 BasicBlock *BodyEnter = Enter;
3452 BasicBlock *BodyEntered = nullptr;
3453 for (std::pair<BasicBlock *, BasicBlock *> P : InbetweenCode) {
3454 BasicBlock *EnterBB = P.first;
3455 BasicBlock *ExitBB = P.second;
3456
3457 if (BodyEnter)
3458 redirectTo(Source: BodyEnter, Target: EnterBB, DL);
3459 else
3460 redirectAllPredecessorsTo(OldTarget: BodyEntered, NewTarget: EnterBB, DL);
3461
3462 BodyEnter = nullptr;
3463 BodyEntered = ExitBB;
3464 }
3465
3466 // Append the original loop nest body into the generated loop nest body.
3467 if (BodyEnter)
3468 redirectTo(Source: BodyEnter, Target: InnerEnter, DL);
3469 else
3470 redirectAllPredecessorsTo(OldTarget: BodyEntered, NewTarget: InnerEnter, DL);
3471 redirectAllPredecessorsTo(OldTarget: InnerLatch, NewTarget: Continue, DL);
3472
3473 // Replace the original induction variable with an induction variable computed
3474 // from the tile and floor induction variables.
3475 Builder.restoreIP(IP: Result.back()->getBodyIP());
3476 for (int i = 0; i < NumLoops; ++i) {
3477 CanonicalLoopInfo *FloorLoop = Result[i];
3478 CanonicalLoopInfo *TileLoop = Result[NumLoops + i];
3479 Value *OrigIndVar = OrigIndVars[i];
3480 Value *Size = TileSizes[i];
3481
3482 Value *Scale =
3483 Builder.CreateMul(LHS: Size, RHS: FloorLoop->getIndVar(), Name: {}, /*HasNUW=*/true);
3484 Value *Shift =
3485 Builder.CreateAdd(LHS: Scale, RHS: TileLoop->getIndVar(), Name: {}, /*HasNUW=*/true);
3486 OrigIndVar->replaceAllUsesWith(V: Shift);
3487 }
3488
3489 // Remove unused parts of the original loops.
3490 removeUnusedBlocksFromParent(BBs: OldControlBBs);
3491
3492 for (CanonicalLoopInfo *L : Loops)
3493 L->invalidate();
3494
3495#ifndef NDEBUG
3496 for (CanonicalLoopInfo *GenL : Result)
3497 GenL->assertOK();
3498#endif
3499 return Result;
3500}
3501
3502/// Attach metadata \p Properties to the basic block described by \p BB. If the
3503/// basic block already has metadata, the basic block properties are appended.
3504static void addBasicBlockMetadata(BasicBlock *BB,
3505 ArrayRef<Metadata *> Properties) {
3506 // Nothing to do if no property to attach.
3507 if (Properties.empty())
3508 return;
3509
3510 LLVMContext &Ctx = BB->getContext();
3511 SmallVector<Metadata *> NewProperties;
3512 NewProperties.push_back(Elt: nullptr);
3513
3514 // If the basic block already has metadata, prepend it to the new metadata.
3515 MDNode *Existing = BB->getTerminator()->getMetadata(KindID: LLVMContext::MD_loop);
3516 if (Existing)
3517 append_range(C&: NewProperties, R: drop_begin(RangeOrContainer: Existing->operands(), N: 1));
3518
3519 append_range(C&: NewProperties, R&: Properties);
3520 MDNode *BasicBlockID = MDNode::getDistinct(Context&: Ctx, MDs: NewProperties);
3521 BasicBlockID->replaceOperandWith(I: 0, New: BasicBlockID);
3522
3523 BB->getTerminator()->setMetadata(KindID: LLVMContext::MD_loop, Node: BasicBlockID);
3524}
3525
3526/// Attach loop metadata \p Properties to the loop described by \p Loop. If the
3527/// loop already has metadata, the loop properties are appended.
3528static void addLoopMetadata(CanonicalLoopInfo *Loop,
3529 ArrayRef<Metadata *> Properties) {
3530 assert(Loop->isValid() && "Expecting a valid CanonicalLoopInfo");
3531
3532 // Attach metadata to the loop's latch
3533 BasicBlock *Latch = Loop->getLatch();
3534 assert(Latch && "A valid CanonicalLoopInfo must have a unique latch");
3535 addBasicBlockMetadata(BB: Latch, Properties);
3536}
3537
3538/// Attach llvm.access.group metadata to the memref instructions of \p Block
3539static void addSimdMetadata(BasicBlock *Block, MDNode *AccessGroup,
3540 LoopInfo &LI) {
3541 for (Instruction &I : *Block) {
3542 if (I.mayReadOrWriteMemory()) {
3543 // TODO: This instruction may already have access group from
3544 // other pragmas e.g. #pragma clang loop vectorize. Append
3545 // so that the existing metadata is not overwritten.
3546 I.setMetadata(KindID: LLVMContext::MD_access_group, Node: AccessGroup);
3547 }
3548 }
3549}
3550
3551void OpenMPIRBuilder::unrollLoopFull(DebugLoc, CanonicalLoopInfo *Loop) {
3552 LLVMContext &Ctx = Builder.getContext();
3553 addLoopMetadata(
3554 Loop, Properties: {MDNode::get(Context&: Ctx, MDs: MDString::get(Context&: Ctx, Str: "llvm.loop.unroll.enable")),
3555 MDNode::get(Context&: Ctx, MDs: MDString::get(Context&: Ctx, Str: "llvm.loop.unroll.full"))});
3556}
3557
3558void OpenMPIRBuilder::unrollLoopHeuristic(DebugLoc, CanonicalLoopInfo *Loop) {
3559 LLVMContext &Ctx = Builder.getContext();
3560 addLoopMetadata(
3561 Loop, Properties: {
3562 MDNode::get(Context&: Ctx, MDs: MDString::get(Context&: Ctx, Str: "llvm.loop.unroll.enable")),
3563 });
3564}
3565
3566void OpenMPIRBuilder::createIfVersion(CanonicalLoopInfo *CanonicalLoop,
3567 Value *IfCond, ValueToValueMapTy &VMap,
3568 const Twine &NamePrefix) {
3569 Function *F = CanonicalLoop->getFunction();
3570
3571 // Define where if branch should be inserted
3572 Instruction *SplitBefore;
3573 if (Instruction::classof(V: IfCond)) {
3574 SplitBefore = dyn_cast<Instruction>(Val: IfCond);
3575 } else {
3576 SplitBefore = CanonicalLoop->getPreheader()->getTerminator();
3577 }
3578
3579 // TODO: We should not rely on pass manager. Currently we use pass manager
3580 // only for getting llvm::Loop which corresponds to given CanonicalLoopInfo
3581 // object. We should have a method which returns all blocks between
3582 // CanonicalLoopInfo::getHeader() and CanonicalLoopInfo::getAfter()
3583 FunctionAnalysisManager FAM;
3584 FAM.registerPass(PassBuilder: []() { return DominatorTreeAnalysis(); });
3585 FAM.registerPass(PassBuilder: []() { return LoopAnalysis(); });
3586 FAM.registerPass(PassBuilder: []() { return PassInstrumentationAnalysis(); });
3587
3588 // Get the loop which needs to be cloned
3589 LoopAnalysis LIA;
3590 LoopInfo &&LI = LIA.run(F&: *F, AM&: FAM);
3591 Loop *L = LI.getLoopFor(BB: CanonicalLoop->getHeader());
3592
3593 // Create additional blocks for the if statement
3594 BasicBlock *Head = SplitBefore->getParent();
3595 Instruction *HeadOldTerm = Head->getTerminator();
3596 llvm::LLVMContext &C = Head->getContext();
3597 llvm::BasicBlock *ThenBlock = llvm::BasicBlock::Create(
3598 Context&: C, Name: NamePrefix + ".if.then", Parent: Head->getParent(), InsertBefore: Head->getNextNode());
3599 llvm::BasicBlock *ElseBlock = llvm::BasicBlock::Create(
3600 Context&: C, Name: NamePrefix + ".if.else", Parent: Head->getParent(), InsertBefore: CanonicalLoop->getExit());
3601
3602 // Create if condition branch.
3603 Builder.SetInsertPoint(HeadOldTerm);
3604 Instruction *BrInstr =
3605 Builder.CreateCondBr(Cond: IfCond, True: ThenBlock, /*ifFalse*/ False: ElseBlock);
3606 InsertPointTy IP{BrInstr->getParent(), ++BrInstr->getIterator()};
3607 // Then block contains branch to omp loop which needs to be vectorized
3608 spliceBB(IP, New: ThenBlock, CreateBranch: false);
3609 ThenBlock->replaceSuccessorsPhiUsesWith(Old: Head, New: ThenBlock);
3610
3611 Builder.SetInsertPoint(ElseBlock);
3612
3613 // Clone loop for the else branch
3614 SmallVector<BasicBlock *, 8> NewBlocks;
3615
3616 VMap[CanonicalLoop->getPreheader()] = ElseBlock;
3617 for (BasicBlock *Block : L->getBlocks()) {
3618 BasicBlock *NewBB = CloneBasicBlock(BB: Block, VMap, NameSuffix: "", F);
3619 NewBB->moveBefore(MovePos: CanonicalLoop->getExit());
3620 VMap[Block] = NewBB;
3621 NewBlocks.push_back(Elt: NewBB);
3622 }
3623 remapInstructionsInBlocks(Blocks: NewBlocks, VMap);
3624 Builder.CreateBr(Dest: NewBlocks.front());
3625}
3626
3627unsigned
3628OpenMPIRBuilder::getOpenMPDefaultSimdAlign(const Triple &TargetTriple,
3629 const StringMap<bool> &Features) {
3630 if (TargetTriple.isX86()) {
3631 if (Features.lookup(Key: "avx512f"))
3632 return 512;
3633 else if (Features.lookup(Key: "avx"))
3634 return 256;
3635 return 128;
3636 }
3637 if (TargetTriple.isPPC())
3638 return 128;
3639 if (TargetTriple.isWasm())
3640 return 128;
3641 return 0;
3642}
3643
3644void OpenMPIRBuilder::applySimd(CanonicalLoopInfo *CanonicalLoop,
3645 MapVector<Value *, Value *> AlignedVars,
3646 Value *IfCond, OrderKind Order,
3647 ConstantInt *Simdlen, ConstantInt *Safelen) {
3648 LLVMContext &Ctx = Builder.getContext();
3649
3650 Function *F = CanonicalLoop->getFunction();
3651
3652 // TODO: We should not rely on pass manager. Currently we use pass manager
3653 // only for getting llvm::Loop which corresponds to given CanonicalLoopInfo
3654 // object. We should have a method which returns all blocks between
3655 // CanonicalLoopInfo::getHeader() and CanonicalLoopInfo::getAfter()
3656 FunctionAnalysisManager FAM;
3657 FAM.registerPass(PassBuilder: []() { return DominatorTreeAnalysis(); });
3658 FAM.registerPass(PassBuilder: []() { return LoopAnalysis(); });
3659 FAM.registerPass(PassBuilder: []() { return PassInstrumentationAnalysis(); });
3660
3661 LoopAnalysis LIA;
3662 LoopInfo &&LI = LIA.run(F&: *F, AM&: FAM);
3663
3664 Loop *L = LI.getLoopFor(BB: CanonicalLoop->getHeader());
3665 if (AlignedVars.size()) {
3666 InsertPointTy IP = Builder.saveIP();
3667 Builder.SetInsertPoint(CanonicalLoop->getPreheader()->getTerminator());
3668 for (auto &AlignedItem : AlignedVars) {
3669 Value *AlignedPtr = AlignedItem.first;
3670 Value *Alignment = AlignedItem.second;
3671 Builder.CreateAlignmentAssumption(DL: F->getParent()->getDataLayout(),
3672 PtrValue: AlignedPtr, Alignment);
3673 }
3674 Builder.restoreIP(IP);
3675 }
3676
3677 if (IfCond) {
3678 ValueToValueMapTy VMap;
3679 createIfVersion(CanonicalLoop, IfCond, VMap, NamePrefix: "simd");
3680 // Add metadata to the cloned loop which disables vectorization
3681 Value *MappedLatch = VMap.lookup(Val: CanonicalLoop->getLatch());
3682 assert(MappedLatch &&
3683 "Cannot find value which corresponds to original loop latch");
3684 assert(isa<BasicBlock>(MappedLatch) &&
3685 "Cannot cast mapped latch block value to BasicBlock");
3686 BasicBlock *NewLatchBlock = dyn_cast<BasicBlock>(Val: MappedLatch);
3687 ConstantAsMetadata *BoolConst =
3688 ConstantAsMetadata::get(C: ConstantInt::getFalse(Ty: Type::getInt1Ty(C&: Ctx)));
3689 addBasicBlockMetadata(
3690 BB: NewLatchBlock,
3691 Properties: {MDNode::get(Context&: Ctx, MDs: {MDString::get(Context&: Ctx, Str: "llvm.loop.vectorize.enable"),
3692 BoolConst})});
3693 }
3694
3695 SmallSet<BasicBlock *, 8> Reachable;
3696
3697 // Get the basic blocks from the loop in which memref instructions
3698 // can be found.
3699 // TODO: Generalize getting all blocks inside a CanonicalizeLoopInfo,
3700 // preferably without running any passes.
3701 for (BasicBlock *Block : L->getBlocks()) {
3702 if (Block == CanonicalLoop->getCond() ||
3703 Block == CanonicalLoop->getHeader())
3704 continue;
3705 Reachable.insert(Ptr: Block);
3706 }
3707
3708 SmallVector<Metadata *> LoopMDList;
3709
3710 // In presence of finite 'safelen', it may be unsafe to mark all
3711 // the memory instructions parallel, because loop-carried
3712 // dependences of 'safelen' iterations are possible.
3713 // If clause order(concurrent) is specified then the memory instructions
3714 // are marked parallel even if 'safelen' is finite.
3715 if ((Safelen == nullptr) || (Order == OrderKind::OMP_ORDER_concurrent)) {
3716 // Add access group metadata to memory-access instructions.
3717 MDNode *AccessGroup = MDNode::getDistinct(Context&: Ctx, MDs: {});
3718 for (BasicBlock *BB : Reachable)
3719 addSimdMetadata(Block: BB, AccessGroup, LI);
3720 // TODO: If the loop has existing parallel access metadata, have
3721 // to combine two lists.
3722 LoopMDList.push_back(Elt: MDNode::get(
3723 Context&: Ctx, MDs: {MDString::get(Context&: Ctx, Str: "llvm.loop.parallel_accesses"), AccessGroup}));
3724 }
3725
3726 // Use the above access group metadata to create loop level
3727 // metadata, which should be distinct for each loop.
3728 ConstantAsMetadata *BoolConst =
3729 ConstantAsMetadata::get(C: ConstantInt::getTrue(Ty: Type::getInt1Ty(C&: Ctx)));
3730 LoopMDList.push_back(Elt: MDNode::get(
3731 Context&: Ctx, MDs: {MDString::get(Context&: Ctx, Str: "llvm.loop.vectorize.enable"), BoolConst}));
3732
3733 if (Simdlen || Safelen) {
3734 // If both simdlen and safelen clauses are specified, the value of the
3735 // simdlen parameter must be less than or equal to the value of the safelen
3736 // parameter. Therefore, use safelen only in the absence of simdlen.
3737 ConstantInt *VectorizeWidth = Simdlen == nullptr ? Safelen : Simdlen;
3738 LoopMDList.push_back(
3739 Elt: MDNode::get(Context&: Ctx, MDs: {MDString::get(Context&: Ctx, Str: "llvm.loop.vectorize.width"),
3740 ConstantAsMetadata::get(C: VectorizeWidth)}));
3741 }
3742
3743 addLoopMetadata(Loop: CanonicalLoop, Properties: LoopMDList);
3744}
3745
3746/// Create the TargetMachine object to query the backend for optimization
3747/// preferences.
3748///
3749/// Ideally, this would be passed from the front-end to the OpenMPBuilder, but
3750/// e.g. Clang does not pass it to its CodeGen layer and creates it only when
3751/// needed for the LLVM pass pipline. We use some default options to avoid
3752/// having to pass too many settings from the frontend that probably do not
3753/// matter.
3754///
3755/// Currently, TargetMachine is only used sometimes by the unrollLoopPartial
3756/// method. If we are going to use TargetMachine for more purposes, especially
3757/// those that are sensitive to TargetOptions, RelocModel and CodeModel, it
3758/// might become be worth requiring front-ends to pass on their TargetMachine,
3759/// or at least cache it between methods. Note that while fontends such as Clang
3760/// have just a single main TargetMachine per translation unit, "target-cpu" and
3761/// "target-features" that determine the TargetMachine are per-function and can
3762/// be overrided using __attribute__((target("OPTIONS"))).
3763static std::unique_ptr<TargetMachine>
3764createTargetMachine(Function *F, CodeGenOptLevel OptLevel) {
3765 Module *M = F->getParent();
3766
3767 StringRef CPU = F->getFnAttribute(Kind: "target-cpu").getValueAsString();
3768 StringRef Features = F->getFnAttribute(Kind: "target-features").getValueAsString();
3769 const std::string &Triple = M->getTargetTriple();
3770
3771 std::string Error;
3772 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error);
3773 if (!TheTarget)
3774 return {};
3775
3776 llvm::TargetOptions Options;
3777 return std::unique_ptr<TargetMachine>(TheTarget->createTargetMachine(
3778 TT: Triple, CPU, Features, Options, /*RelocModel=*/RM: std::nullopt,
3779 /*CodeModel=*/CM: std::nullopt, OL: OptLevel));
3780}
3781
3782/// Heuristically determine the best-performant unroll factor for \p CLI. This
3783/// depends on the target processor. We are re-using the same heuristics as the
3784/// LoopUnrollPass.
3785static int32_t computeHeuristicUnrollFactor(CanonicalLoopInfo *CLI) {
3786 Function *F = CLI->getFunction();
3787
3788 // Assume the user requests the most aggressive unrolling, even if the rest of
3789 // the code is optimized using a lower setting.
3790 CodeGenOptLevel OptLevel = CodeGenOptLevel::Aggressive;
3791 std::unique_ptr<TargetMachine> TM = createTargetMachine(F, OptLevel);
3792
3793 FunctionAnalysisManager FAM;
3794 FAM.registerPass(PassBuilder: []() { return TargetLibraryAnalysis(); });
3795 FAM.registerPass(PassBuilder: []() { return AssumptionAnalysis(); });
3796 FAM.registerPass(PassBuilder: []() { return DominatorTreeAnalysis(); });
3797 FAM.registerPass(PassBuilder: []() { return LoopAnalysis(); });
3798 FAM.registerPass(PassBuilder: []() { return ScalarEvolutionAnalysis(); });
3799 FAM.registerPass(PassBuilder: []() { return PassInstrumentationAnalysis(); });
3800 TargetIRAnalysis TIRA;
3801 if (TM)
3802 TIRA = TargetIRAnalysis(
3803 [&](const Function &F) { return TM->getTargetTransformInfo(F); });
3804 FAM.registerPass(PassBuilder: [&]() { return TIRA; });
3805
3806 TargetIRAnalysis::Result &&TTI = TIRA.run(F: *F, FAM);
3807 ScalarEvolutionAnalysis SEA;
3808 ScalarEvolution &&SE = SEA.run(F&: *F, AM&: FAM);
3809 DominatorTreeAnalysis DTA;
3810 DominatorTree &&DT = DTA.run(F&: *F, FAM);
3811 LoopAnalysis LIA;
3812 LoopInfo &&LI = LIA.run(F&: *F, AM&: FAM);
3813 AssumptionAnalysis ACT;
3814 AssumptionCache &&AC = ACT.run(F&: *F, FAM);
3815 OptimizationRemarkEmitter ORE{F};
3816
3817 Loop *L = LI.getLoopFor(BB: CLI->getHeader());
3818 assert(L && "Expecting CanonicalLoopInfo to be recognized as a loop");
3819
3820 TargetTransformInfo::UnrollingPreferences UP =
3821 gatherUnrollingPreferences(L, SE, TTI,
3822 /*BlockFrequencyInfo=*/BFI: nullptr,
3823 /*ProfileSummaryInfo=*/PSI: nullptr, ORE, OptLevel: static_cast<int>(OptLevel),
3824 /*UserThreshold=*/std::nullopt,
3825 /*UserCount=*/std::nullopt,
3826 /*UserAllowPartial=*/true,
3827 /*UserAllowRuntime=*/UserRuntime: true,
3828 /*UserUpperBound=*/std::nullopt,
3829 /*UserFullUnrollMaxCount=*/std::nullopt);
3830
3831 UP.Force = true;
3832
3833 // Account for additional optimizations taking place before the LoopUnrollPass
3834 // would unroll the loop.
3835 UP.Threshold *= UnrollThresholdFactor;
3836 UP.PartialThreshold *= UnrollThresholdFactor;
3837
3838 // Use normal unroll factors even if the rest of the code is optimized for
3839 // size.
3840 UP.OptSizeThreshold = UP.Threshold;
3841 UP.PartialOptSizeThreshold = UP.PartialThreshold;
3842
3843 LLVM_DEBUG(dbgs() << "Unroll heuristic thresholds:\n"
3844 << " Threshold=" << UP.Threshold << "\n"
3845 << " PartialThreshold=" << UP.PartialThreshold << "\n"
3846 << " OptSizeThreshold=" << UP.OptSizeThreshold << "\n"
3847 << " PartialOptSizeThreshold="
3848 << UP.PartialOptSizeThreshold << "\n");
3849
3850 // Disable peeling.
3851 TargetTransformInfo::PeelingPreferences PP =
3852 gatherPeelingPreferences(L, SE, TTI,
3853 /*UserAllowPeeling=*/false,
3854 /*UserAllowProfileBasedPeeling=*/false,
3855 /*UnrollingSpecficValues=*/false);
3856
3857 SmallPtrSet<const Value *, 32> EphValues;
3858 CodeMetrics::collectEphemeralValues(L, AC: &AC, EphValues);
3859
3860 // Assume that reads and writes to stack variables can be eliminated by
3861 // Mem2Reg, SROA or LICM. That is, don't count them towards the loop body's
3862 // size.
3863 for (BasicBlock *BB : L->blocks()) {
3864 for (Instruction &I : *BB) {
3865 Value *Ptr;
3866 if (auto *Load = dyn_cast<LoadInst>(Val: &I)) {
3867 Ptr = Load->getPointerOperand();
3868 } else if (auto *Store = dyn_cast<StoreInst>(Val: &I)) {
3869 Ptr = Store->getPointerOperand();
3870 } else
3871 continue;
3872
3873 Ptr = Ptr->stripPointerCasts();
3874
3875 if (auto *Alloca = dyn_cast<AllocaInst>(Val: Ptr)) {
3876 if (Alloca->getParent() == &F->getEntryBlock())
3877 EphValues.insert(Ptr: &I);
3878 }
3879 }
3880 }
3881
3882 UnrollCostEstimator UCE(L, TTI, EphValues, UP.BEInsns);
3883
3884 // Loop is not unrollable if the loop contains certain instructions.
3885 if (!UCE.canUnroll() || UCE.Convergent) {
3886 LLVM_DEBUG(dbgs() << "Loop not considered unrollable\n");
3887 return 1;
3888 }
3889
3890 LLVM_DEBUG(dbgs() << "Estimated loop size is " << UCE.getRolledLoopSize()
3891 << "\n");
3892
3893 // TODO: Determine trip count of \p CLI if constant, computeUnrollCount might
3894 // be able to use it.
3895 int TripCount = 0;
3896 int MaxTripCount = 0;
3897 bool MaxOrZero = false;
3898 unsigned TripMultiple = 0;
3899
3900 bool UseUpperBound = false;
3901 computeUnrollCount(L, TTI, DT, LI: &LI, AC: &AC, SE, EphValues, ORE: &ORE, TripCount,
3902 MaxTripCount, MaxOrZero, TripMultiple, UCE, UP, PP,
3903 UseUpperBound);
3904 unsigned Factor = UP.Count;
3905 LLVM_DEBUG(dbgs() << "Suggesting unroll factor of " << Factor << "\n");
3906
3907 // This function returns 1 to signal to not unroll a loop.
3908 if (Factor == 0)
3909 return 1;
3910 return Factor;
3911}
3912
3913void OpenMPIRBuilder::unrollLoopPartial(DebugLoc DL, CanonicalLoopInfo *Loop,
3914 int32_t Factor,
3915 CanonicalLoopInfo **UnrolledCLI) {
3916 assert(Factor >= 0 && "Unroll factor must not be negative");
3917
3918 Function *F = Loop->getFunction();
3919 LLVMContext &Ctx = F->getContext();
3920
3921 // If the unrolled loop is not used for another loop-associated directive, it
3922 // is sufficient to add metadata for the LoopUnrollPass.
3923 if (!UnrolledCLI) {
3924 SmallVector<Metadata *, 2> LoopMetadata;
3925 LoopMetadata.push_back(
3926 Elt: MDNode::get(Context&: Ctx, MDs: MDString::get(Context&: Ctx, Str: "llvm.loop.unroll.enable")));
3927
3928 if (Factor >= 1) {
3929 ConstantAsMetadata *FactorConst = ConstantAsMetadata::get(
3930 C: ConstantInt::get(Ty: Type::getInt32Ty(C&: Ctx), V: APInt(32, Factor)));
3931 LoopMetadata.push_back(Elt: MDNode::get(
3932 Context&: Ctx, MDs: {MDString::get(Context&: Ctx, Str: "llvm.loop.unroll.count"), FactorConst}));
3933 }
3934
3935 addLoopMetadata(Loop, Properties: LoopMetadata);
3936 return;
3937 }
3938
3939 // Heuristically determine the unroll factor.
3940 if (Factor == 0)
3941 Factor = computeHeuristicUnrollFactor(CLI: Loop);
3942
3943 // No change required with unroll factor 1.
3944 if (Factor == 1) {
3945 *UnrolledCLI = Loop;
3946 return;
3947 }
3948
3949 assert(Factor >= 2 &&
3950 "unrolling only makes sense with a factor of 2 or larger");
3951
3952 Type *IndVarTy = Loop->getIndVarType();
3953
3954 // Apply partial unrolling by tiling the loop by the unroll-factor, then fully
3955 // unroll the inner loop.
3956 Value *FactorVal =
3957 ConstantInt::get(Ty: IndVarTy, V: APInt(IndVarTy->getIntegerBitWidth(), Factor,
3958 /*isSigned=*/false));
3959 std::vector<CanonicalLoopInfo *> LoopNest =
3960 tileLoops(DL, Loops: {Loop}, TileSizes: {FactorVal});
3961 assert(LoopNest.size() == 2 && "Expect 2 loops after tiling");
3962 *UnrolledCLI = LoopNest[0];
3963 CanonicalLoopInfo *InnerLoop = LoopNest[1];
3964
3965 // LoopUnrollPass can only fully unroll loops with constant trip count.
3966 // Unroll by the unroll factor with a fallback epilog for the remainder
3967 // iterations if necessary.
3968 ConstantAsMetadata *FactorConst = ConstantAsMetadata::get(
3969 C: ConstantInt::get(Ty: Type::getInt32Ty(C&: Ctx), V: APInt(32, Factor)));
3970 addLoopMetadata(
3971 Loop: InnerLoop,
3972 Properties: {MDNode::get(Context&: Ctx, MDs: MDString::get(Context&: Ctx, Str: "llvm.loop.unroll.enable")),
3973 MDNode::get(
3974 Context&: Ctx, MDs: {MDString::get(Context&: Ctx, Str: "llvm.loop.unroll.count"), FactorConst})});
3975
3976#ifndef NDEBUG
3977 (*UnrolledCLI)->assertOK();
3978#endif
3979}
3980
3981OpenMPIRBuilder::InsertPointTy
3982OpenMPIRBuilder::createCopyPrivate(const LocationDescription &Loc,
3983 llvm::Value *BufSize, llvm::Value *CpyBuf,
3984 llvm::Value *CpyFn, llvm::Value *DidIt) {
3985 if (!updateToLocation(Loc))
3986 return Loc.IP;
3987
3988 uint32_t SrcLocStrSize;
3989 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
3990 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
3991 Value *ThreadId = getOrCreateThreadID(Ident);
3992
3993 llvm::Value *DidItLD = Builder.CreateLoad(Ty: Builder.getInt32Ty(), Ptr: DidIt);
3994
3995 Value *Args[] = {Ident, ThreadId, BufSize, CpyBuf, CpyFn, DidItLD};
3996
3997 Function *Fn = getOrCreateRuntimeFunctionPtr(FnID: OMPRTL___kmpc_copyprivate);
3998 Builder.CreateCall(Callee: Fn, Args);
3999
4000 return Builder.saveIP();
4001}
4002
4003OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createSingle(
4004 const LocationDescription &Loc, BodyGenCallbackTy BodyGenCB,
4005 FinalizeCallbackTy FiniCB, bool IsNowait, llvm::Value *DidIt) {
4006
4007 if (!updateToLocation(Loc))
4008 return Loc.IP;
4009
4010 // If needed (i.e. not null), initialize `DidIt` with 0
4011 if (DidIt) {
4012 Builder.CreateStore(Val: Builder.getInt32(C: 0), Ptr: DidIt);
4013 }
4014
4015 Directive OMPD = Directive::OMPD_single;
4016 uint32_t SrcLocStrSize;
4017 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
4018 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
4019 Value *ThreadId = getOrCreateThreadID(Ident);
4020 Value *Args[] = {Ident, ThreadId};
4021
4022 Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(FnID: OMPRTL___kmpc_single);
4023 Instruction *EntryCall = Builder.CreateCall(Callee: EntryRTLFn, Args);
4024
4025 Function *ExitRTLFn = getOrCreateRuntimeFunctionPtr(FnID: OMPRTL___kmpc_end_single);
4026 Instruction *ExitCall = Builder.CreateCall(Callee: ExitRTLFn, Args);
4027
4028 // generates the following:
4029 // if (__kmpc_single()) {
4030 // .... single region ...
4031 // __kmpc_end_single
4032 // }
4033 // __kmpc_barrier
4034
4035 EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB,
4036 /*Conditional*/ true,
4037 /*hasFinalize*/ true);
4038 if (!IsNowait)
4039 createBarrier(LocationDescription(Builder.saveIP(), Loc.DL),
4040 omp::Directive::OMPD_unknown, /* ForceSimpleCall */ false,
4041 /* CheckCancelFlag */ false);
4042 return Builder.saveIP();
4043}
4044
4045OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createCritical(
4046 const LocationDescription &Loc, BodyGenCallbackTy BodyGenCB,
4047 FinalizeCallbackTy FiniCB, StringRef CriticalName, Value *HintInst) {
4048
4049 if (!updateToLocation(Loc))
4050 return Loc.IP;
4051
4052 Directive OMPD = Directive::OMPD_critical;
4053 uint32_t SrcLocStrSize;
4054 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
4055 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
4056 Value *ThreadId = getOrCreateThreadID(Ident);
4057 Value *LockVar = getOMPCriticalRegionLock(CriticalName);
4058 Value *Args[] = {Ident, ThreadId, LockVar};
4059
4060 SmallVector<llvm::Value *, 4> EnterArgs(std::begin(arr&: Args), std::end(arr&: Args));
4061 Function *RTFn = nullptr;
4062 if (HintInst) {
4063 // Add Hint to entry Args and create call
4064 EnterArgs.push_back(Elt: HintInst);
4065 RTFn = getOrCreateRuntimeFunctionPtr(FnID: OMPRTL___kmpc_critical_with_hint);
4066 } else {
4067 RTFn = getOrCreateRuntimeFunctionPtr(FnID: OMPRTL___kmpc_critical);
4068 }
4069 Instruction *EntryCall = Builder.CreateCall(Callee: RTFn, Args: EnterArgs);
4070
4071 Function *ExitRTLFn =
4072 getOrCreateRuntimeFunctionPtr(FnID: OMPRTL___kmpc_end_critical);
4073 Instruction *ExitCall = Builder.CreateCall(Callee: ExitRTLFn, Args);
4074
4075 return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB,
4076 /*Conditional*/ false, /*hasFinalize*/ true);
4077}
4078
4079OpenMPIRBuilder::InsertPointTy
4080OpenMPIRBuilder::createOrderedDepend(const LocationDescription &Loc,
4081 InsertPointTy AllocaIP, unsigned NumLoops,
4082 ArrayRef<llvm::Value *> StoreValues,
4083 const Twine &Name, bool IsDependSource) {
4084 assert(
4085 llvm::all_of(StoreValues,
4086 [](Value *SV) { return SV->getType()->isIntegerTy(64); }) &&
4087 "OpenMP runtime requires depend vec with i64 type");
4088
4089 if (!updateToLocation(Loc))
4090 return Loc.IP;
4091
4092 // Allocate space for vector and generate alloc instruction.
4093 auto *ArrI64Ty = ArrayType::get(ElementType: Int64, NumElements: NumLoops);
4094 Builder.restoreIP(IP: AllocaIP);
4095 AllocaInst *ArgsBase = Builder.CreateAlloca(Ty: ArrI64Ty, ArraySize: nullptr, Name);
4096 ArgsBase->setAlignment(Align(8));
4097 Builder.restoreIP(IP: Loc.IP);
4098
4099 // Store the index value with offset in depend vector.
4100 for (unsigned I = 0; I < NumLoops; ++I) {
4101 Value *DependAddrGEPIter = Builder.CreateInBoundsGEP(
4102 Ty: ArrI64Ty, Ptr: ArgsBase, IdxList: {Builder.getInt64(C: 0), Builder.getInt64(C: I)});
4103 StoreInst *STInst = Builder.CreateStore(Val: StoreValues[I], Ptr: DependAddrGEPIter);
4104 STInst->setAlignment(Align(8));
4105 }
4106
4107 Value *DependBaseAddrGEP = Builder.CreateInBoundsGEP(
4108 Ty: ArrI64Ty, Ptr: ArgsBase, IdxList: {Builder.getInt64(C: 0), Builder.getInt64(C: 0)});
4109
4110 uint32_t SrcLocStrSize;
4111 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
4112 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
4113 Value *ThreadId = getOrCreateThreadID(Ident);
4114 Value *Args[] = {Ident, ThreadId, DependBaseAddrGEP};
4115
4116 Function *RTLFn = nullptr;
4117 if (IsDependSource)
4118 RTLFn = getOrCreateRuntimeFunctionPtr(FnID: OMPRTL___kmpc_doacross_post);
4119 else
4120 RTLFn = getOrCreateRuntimeFunctionPtr(FnID: OMPRTL___kmpc_doacross_wait);
4121 Builder.CreateCall(Callee: RTLFn, Args);
4122
4123 return Builder.saveIP();
4124}
4125
4126OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createOrderedThreadsSimd(
4127 const LocationDescription &Loc, BodyGenCallbackTy BodyGenCB,
4128 FinalizeCallbackTy FiniCB, bool IsThreads) {
4129 if (!updateToLocation(Loc))
4130 return Loc.IP;
4131
4132 Directive OMPD = Directive::OMPD_ordered;
4133 Instruction *EntryCall = nullptr;
4134 Instruction *ExitCall = nullptr;
4135
4136 if (IsThreads) {
4137 uint32_t SrcLocStrSize;
4138 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
4139 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
4140 Value *ThreadId = getOrCreateThreadID(Ident);
4141 Value *Args[] = {Ident, ThreadId};
4142
4143 Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(FnID: OMPRTL___kmpc_ordered);
4144 EntryCall = Builder.CreateCall(Callee: EntryRTLFn, Args);
4145
4146 Function *ExitRTLFn =
4147 getOrCreateRuntimeFunctionPtr(FnID: OMPRTL___kmpc_end_ordered);
4148 ExitCall = Builder.CreateCall(Callee: ExitRTLFn, Args);
4149 }
4150
4151 return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB,
4152 /*Conditional*/ false, /*hasFinalize*/ true);
4153}
4154
4155OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::EmitOMPInlinedRegion(
4156 Directive OMPD, Instruction *EntryCall, Instruction *ExitCall,
4157 BodyGenCallbackTy BodyGenCB, FinalizeCallbackTy FiniCB, bool Conditional,
4158 bool HasFinalize, bool IsCancellable) {
4159
4160 if (HasFinalize)
4161 FinalizationStack.push_back({FiniCB, OMPD, IsCancellable});
4162
4163 // Create inlined region's entry and body blocks, in preparation
4164 // for conditional creation
4165 BasicBlock *EntryBB = Builder.GetInsertBlock();
4166 Instruction *SplitPos = EntryBB->getTerminator();
4167 if (!isa_and_nonnull<BranchInst>(Val: SplitPos))
4168 SplitPos = new UnreachableInst(Builder.getContext(), EntryBB);
4169 BasicBlock *ExitBB = EntryBB->splitBasicBlock(I: SplitPos, BBName: "omp_region.end");
4170 BasicBlock *FiniBB =
4171 EntryBB->splitBasicBlock(I: EntryBB->getTerminator(), BBName: "omp_region.finalize");
4172
4173 Builder.SetInsertPoint(EntryBB->getTerminator());
4174 emitCommonDirectiveEntry(OMPD, EntryCall, ExitBB, Conditional);
4175
4176 // generate body
4177 BodyGenCB(/* AllocaIP */ InsertPointTy(),
4178 /* CodeGenIP */ Builder.saveIP());
4179
4180 // emit exit call and do any needed finalization.
4181 auto FinIP = InsertPointTy(FiniBB, FiniBB->getFirstInsertionPt());
4182 assert(FiniBB->getTerminator()->getNumSuccessors() == 1 &&
4183 FiniBB->getTerminator()->getSuccessor(0) == ExitBB &&
4184 "Unexpected control flow graph state!!");
4185 emitCommonDirectiveExit(OMPD, FinIP, ExitCall, HasFinalize);
4186 assert(FiniBB->getUniquePredecessor()->getUniqueSuccessor() == FiniBB &&
4187 "Unexpected Control Flow State!");
4188 MergeBlockIntoPredecessor(BB: FiniBB);
4189
4190 // If we are skipping the region of a non conditional, remove the exit
4191 // block, and clear the builder's insertion point.
4192 assert(SplitPos->getParent() == ExitBB &&
4193 "Unexpected Insertion point location!");
4194 auto merged = MergeBlockIntoPredecessor(BB: ExitBB);
4195 BasicBlock *ExitPredBB = SplitPos->getParent();
4196 auto InsertBB = merged ? ExitPredBB : ExitBB;
4197 if (!isa_and_nonnull<BranchInst>(Val: SplitPos))
4198 SplitPos->eraseFromParent();
4199 Builder.SetInsertPoint(InsertBB);
4200
4201 return Builder.saveIP();
4202}
4203
4204OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::emitCommonDirectiveEntry(
4205 Directive OMPD, Value *EntryCall, BasicBlock *ExitBB, bool Conditional) {
4206 // if nothing to do, Return current insertion point.
4207 if (!Conditional || !EntryCall)
4208 return Builder.saveIP();
4209
4210 BasicBlock *EntryBB = Builder.GetInsertBlock();
4211 Value *CallBool = Builder.CreateIsNotNull(Arg: EntryCall);
4212 auto *ThenBB = BasicBlock::Create(Context&: M.getContext(), Name: "omp_region.body");
4213 auto *UI = new UnreachableInst(Builder.getContext(), ThenBB);
4214
4215 // Emit thenBB and set the Builder's insertion point there for
4216 // body generation next. Place the block after the current block.
4217 Function *CurFn = EntryBB->getParent();
4218 CurFn->insert(Position: std::next(x: EntryBB->getIterator()), BB: ThenBB);
4219
4220 // Move Entry branch to end of ThenBB, and replace with conditional
4221 // branch (If-stmt)
4222 Instruction *EntryBBTI = EntryBB->getTerminator();
4223 Builder.CreateCondBr(Cond: CallBool, True: ThenBB, False: ExitBB);
4224 EntryBBTI->removeFromParent();
4225 Builder.SetInsertPoint(UI);
4226 Builder.Insert(I: EntryBBTI);
4227 UI->eraseFromParent();
4228 Builder.SetInsertPoint(ThenBB->getTerminator());
4229
4230 // return an insertion point to ExitBB.
4231 return IRBuilder<>::InsertPoint(ExitBB, ExitBB->getFirstInsertionPt());
4232}
4233
4234OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::emitCommonDirectiveExit(
4235 omp::Directive OMPD, InsertPointTy FinIP, Instruction *ExitCall,
4236 bool HasFinalize) {
4237
4238 Builder.restoreIP(IP: FinIP);
4239
4240 // If there is finalization to do, emit it before the exit call
4241 if (HasFinalize) {
4242 assert(!FinalizationStack.empty() &&
4243 "Unexpected finalization stack state!");
4244
4245 FinalizationInfo Fi = FinalizationStack.pop_back_val();
4246 assert(Fi.DK == OMPD && "Unexpected Directive for Finalization call!");
4247
4248 Fi.FiniCB(FinIP);
4249
4250 BasicBlock *FiniBB = FinIP.getBlock();
4251 Instruction *FiniBBTI = FiniBB->getTerminator();
4252
4253 // set Builder IP for call creation
4254 Builder.SetInsertPoint(FiniBBTI);
4255 }
4256
4257 if (!ExitCall)
4258 return Builder.saveIP();
4259
4260 // place the Exitcall as last instruction before Finalization block terminator
4261 ExitCall->removeFromParent();
4262 Builder.Insert(I: ExitCall);
4263
4264 return IRBuilder<>::InsertPoint(ExitCall->getParent(),
4265 ExitCall->getIterator());
4266}
4267
4268OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createCopyinClauseBlocks(
4269 InsertPointTy IP, Value *MasterAddr, Value *PrivateAddr,
4270 llvm::IntegerType *IntPtrTy, bool BranchtoEnd) {
4271 if (!IP.isSet())
4272 return IP;
4273
4274 IRBuilder<>::InsertPointGuard IPG(Builder);
4275
4276 // creates the following CFG structure
4277 // OMP_Entry : (MasterAddr != PrivateAddr)?
4278 // F T
4279 // | \
4280 // | copin.not.master
4281 // | /
4282 // v /
4283 // copyin.not.master.end
4284 // |
4285 // v
4286 // OMP.Entry.Next
4287
4288 BasicBlock *OMP_Entry = IP.getBlock();
4289 Function *CurFn = OMP_Entry->getParent();
4290 BasicBlock *CopyBegin =
4291 BasicBlock::Create(Context&: M.getContext(), Name: "copyin.not.master", Parent: CurFn);
4292 BasicBlock *CopyEnd = nullptr;
4293
4294 // If entry block is terminated, split to preserve the branch to following
4295 // basic block (i.e. OMP.Entry.Next), otherwise, leave everything as is.
4296 if (isa_and_nonnull<BranchInst>(Val: OMP_Entry->getTerminator())) {
4297 CopyEnd = OMP_Entry->splitBasicBlock(I: OMP_Entry->getTerminator(),
4298 BBName: "copyin.not.master.end");
4299 OMP_Entry->getTerminator()->eraseFromParent();
4300 } else {
4301 CopyEnd =
4302 BasicBlock::Create(Context&: M.getContext(), Name: "copyin.not.master.end", Parent: CurFn);
4303 }
4304
4305 Builder.SetInsertPoint(OMP_Entry);
4306 Value *MasterPtr = Builder.CreatePtrToInt(V: MasterAddr, DestTy: IntPtrTy);
4307 Value *PrivatePtr = Builder.CreatePtrToInt(V: PrivateAddr, DestTy: IntPtrTy);
4308 Value *cmp = Builder.CreateICmpNE(LHS: MasterPtr, RHS: PrivatePtr);
4309 Builder.CreateCondBr(Cond: cmp, True: CopyBegin, False: CopyEnd);
4310
4311 Builder.SetInsertPoint(CopyBegin);
4312 if (BranchtoEnd)
4313 Builder.SetInsertPoint(Builder.CreateBr(Dest: CopyEnd));
4314
4315 return Builder.saveIP();
4316}
4317
4318CallInst *OpenMPIRBuilder::createOMPAlloc(const LocationDescription &Loc,
4319 Value *Size, Value *Allocator,
4320 std::string Name) {
4321 IRBuilder<>::InsertPointGuard IPG(Builder);
4322 Builder.restoreIP(IP: Loc.IP);
4323
4324 uint32_t SrcLocStrSize;
4325 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
4326 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
4327 Value *ThreadId = getOrCreateThreadID(Ident);
4328 Value *Args[] = {ThreadId, Size, Allocator};
4329
4330 Function *Fn = getOrCreateRuntimeFunctionPtr(FnID: OMPRTL___kmpc_alloc);
4331
4332 return Builder.CreateCall(Callee: Fn, Args, Name);
4333}
4334
4335CallInst *OpenMPIRBuilder::createOMPFree(const LocationDescription &Loc,
4336 Value *Addr, Value *Allocator,
4337 std::string Name) {
4338 IRBuilder<>::InsertPointGuard IPG(Builder);
4339 Builder.restoreIP(IP: Loc.IP);
4340
4341 uint32_t SrcLocStrSize;
4342 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
4343 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
4344 Value *ThreadId = getOrCreateThreadID(Ident);
4345 Value *Args[] = {ThreadId, Addr, Allocator};
4346 Function *Fn = getOrCreateRuntimeFunctionPtr(FnID: OMPRTL___kmpc_free);
4347 return Builder.CreateCall(Callee: Fn, Args, Name);
4348}
4349
4350CallInst *OpenMPIRBuilder::createOMPInteropInit(
4351 const LocationDescription &Loc, Value *InteropVar,
4352 omp::OMPInteropType InteropType, Value *Device, Value *NumDependences,
4353 Value *DependenceAddress, bool HaveNowaitClause) {
4354 IRBuilder<>::InsertPointGuard IPG(Builder);
4355 Builder.restoreIP(IP: Loc.IP);
4356
4357 uint32_t SrcLocStrSize;
4358 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
4359 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
4360 Value *ThreadId = getOrCreateThreadID(Ident);
4361 if (Device == nullptr)
4362 Device = ConstantInt::get(Ty: Int32, V: -1);
4363 Constant *InteropTypeVal = ConstantInt::get(Ty: Int32, V: (int)InteropType);
4364 if (NumDependences == nullptr) {
4365 NumDependences = ConstantInt::get(Ty: Int32, V: 0);
4366 PointerType *PointerTypeVar = PointerType::getUnqual(C&: M.getContext());
4367 DependenceAddress = ConstantPointerNull::get(T: PointerTypeVar);
4368 }
4369 Value *HaveNowaitClauseVal = ConstantInt::get(Ty: Int32, V: HaveNowaitClause);
4370 Value *Args[] = {
4371 Ident, ThreadId, InteropVar, InteropTypeVal,
4372 Device, NumDependences, DependenceAddress, HaveNowaitClauseVal};
4373
4374 Function *Fn = getOrCreateRuntimeFunctionPtr(FnID: OMPRTL___tgt_interop_init);
4375
4376 return Builder.CreateCall(Callee: Fn, Args);
4377}
4378
4379CallInst *OpenMPIRBuilder::createOMPInteropDestroy(
4380 const LocationDescription &Loc, Value *InteropVar, Value *Device,
4381 Value *NumDependences, Value *DependenceAddress, bool HaveNowaitClause) {
4382 IRBuilder<>::InsertPointGuard IPG(Builder);
4383 Builder.restoreIP(IP: Loc.IP);
4384
4385 uint32_t SrcLocStrSize;
4386 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
4387 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
4388 Value *ThreadId = getOrCreateThreadID(Ident);
4389 if (Device == nullptr)
4390 Device = ConstantInt::get(Ty: Int32, V: -1);
4391 if (NumDependences == nullptr) {
4392 NumDependences = ConstantInt::get(Ty: Int32, V: 0);
4393 PointerType *PointerTypeVar = PointerType::getUnqual(C&: M.getContext());
4394 DependenceAddress = ConstantPointerNull::get(T: PointerTypeVar);
4395 }
4396 Value *HaveNowaitClauseVal = ConstantInt::get(Ty: Int32, V: HaveNowaitClause);
4397 Value *Args[] = {
4398 Ident, ThreadId, InteropVar, Device,
4399 NumDependences, DependenceAddress, HaveNowaitClauseVal};
4400
4401 Function *Fn = getOrCreateRuntimeFunctionPtr(FnID: OMPRTL___tgt_interop_destroy);
4402
4403 return Builder.CreateCall(Callee: Fn, Args);
4404}
4405
4406CallInst *OpenMPIRBuilder::createOMPInteropUse(const LocationDescription &Loc,
4407 Value *InteropVar, Value *Device,
4408 Value *NumDependences,
4409 Value *DependenceAddress,
4410 bool HaveNowaitClause) {
4411 IRBuilder<>::InsertPointGuard IPG(Builder);
4412 Builder.restoreIP(IP: Loc.IP);
4413 uint32_t SrcLocStrSize;
4414 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
4415 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
4416 Value *ThreadId = getOrCreateThreadID(Ident);
4417 if (Device == nullptr)
4418 Device = ConstantInt::get(Ty: Int32, V: -1);
4419 if (NumDependences == nullptr) {
4420 NumDependences = ConstantInt::get(Ty: Int32, V: 0);
4421 PointerType *PointerTypeVar = PointerType::getUnqual(C&: M.getContext());
4422 DependenceAddress = ConstantPointerNull::get(T: PointerTypeVar);
4423 }
4424 Value *HaveNowaitClauseVal = ConstantInt::get(Ty: Int32, V: HaveNowaitClause);
4425 Value *Args[] = {
4426 Ident, ThreadId, InteropVar, Device,
4427 NumDependences, DependenceAddress, HaveNowaitClauseVal};
4428
4429 Function *Fn = getOrCreateRuntimeFunctionPtr(FnID: OMPRTL___tgt_interop_use);
4430
4431 return Builder.CreateCall(Callee: Fn, Args);
4432}
4433
4434CallInst *OpenMPIRBuilder::createCachedThreadPrivate(
4435 const LocationDescription &Loc, llvm::Value *Pointer,
4436 llvm::ConstantInt *Size, const llvm::Twine &Name) {
4437 IRBuilder<>::InsertPointGuard IPG(Builder);
4438 Builder.restoreIP(IP: Loc.IP);
4439
4440 uint32_t SrcLocStrSize;
4441 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
4442 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
4443 Value *ThreadId = getOrCreateThreadID(Ident);
4444 Constant *ThreadPrivateCache =
4445 getOrCreateInternalVariable(Ty: Int8PtrPtr, Name: Name.str());
4446 llvm::Value *Args[] = {Ident, ThreadId, Pointer, Size, ThreadPrivateCache};
4447
4448 Function *Fn =
4449 getOrCreateRuntimeFunctionPtr(FnID: OMPRTL___kmpc_threadprivate_cached);
4450
4451 return Builder.CreateCall(Callee: Fn, Args);
4452}
4453
4454OpenMPIRBuilder::InsertPointTy
4455OpenMPIRBuilder::createTargetInit(const LocationDescription &Loc, bool IsSPMD,
4456 int32_t MinThreadsVal, int32_t MaxThreadsVal,
4457 int32_t MinTeamsVal, int32_t MaxTeamsVal) {
4458 if (!updateToLocation(Loc))
4459 return Loc.IP;
4460
4461 uint32_t SrcLocStrSize;
4462 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
4463 Constant *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
4464 Constant *IsSPMDVal = ConstantInt::getSigned(
4465 Ty: Int8, V: IsSPMD ? OMP_TGT_EXEC_MODE_SPMD : OMP_TGT_EXEC_MODE_GENERIC);
4466 Constant *UseGenericStateMachineVal = ConstantInt::getSigned(Ty: Int8, V: !IsSPMD);
4467 Constant *MayUseNestedParallelismVal = ConstantInt::getSigned(Ty: Int8, V: true);
4468 Constant *DebugIndentionLevelVal = ConstantInt::getSigned(Ty: Int16, V: 0);
4469
4470 Function *Kernel = Builder.GetInsertBlock()->getParent();
4471
4472 // Manifest the launch configuration in the metadata matching the kernel
4473 // environment.
4474 if (MinTeamsVal > 1 || MaxTeamsVal > 0)
4475 writeTeamsForKernel(T, Kernel&: *Kernel, LB: MinTeamsVal, UB: MaxTeamsVal);
4476
4477 // For max values, < 0 means unset, == 0 means set but unknown.
4478 if (MaxThreadsVal < 0)
4479 MaxThreadsVal = std::max(
4480 a: int32_t(getGridValue(T, Kernel).GV_Default_WG_Size), b: MinThreadsVal);
4481
4482 if (MaxThreadsVal > 0)
4483 writeThreadBoundsForKernel(T, Kernel&: *Kernel, LB: MinThreadsVal, UB: MaxThreadsVal);
4484
4485 Constant *MinThreads = ConstantInt::getSigned(Ty: Int32, V: MinThreadsVal);
4486 Constant *MaxThreads = ConstantInt::getSigned(Ty: Int32, V: MaxThreadsVal);
4487 Constant *MinTeams = ConstantInt::getSigned(Ty: Int32, V: MinTeamsVal);
4488 Constant *MaxTeams = ConstantInt::getSigned(Ty: Int32, V: MaxTeamsVal);
4489 Constant *ReductionDataSize = ConstantInt::getSigned(Ty: Int32, V: 0);
4490 Constant *ReductionBufferLength = ConstantInt::getSigned(Ty: Int32, V: 0);
4491
4492 // We need to strip the debug prefix to get the correct kernel name.
4493 StringRef KernelName = Kernel->getName();
4494 const std::string DebugPrefix = "_debug__";
4495 if (KernelName.ends_with(Suffix: DebugPrefix))
4496 KernelName = KernelName.drop_back(N: DebugPrefix.length());
4497
4498 Function *Fn = getOrCreateRuntimeFunctionPtr(
4499 FnID: omp::RuntimeFunction::OMPRTL___kmpc_target_init);
4500 const DataLayout &DL = Fn->getParent()->getDataLayout();
4501
4502 Twine DynamicEnvironmentName = KernelName + "_dynamic_environment";
4503 Constant *DynamicEnvironmentInitializer =
4504 ConstantStruct::get(T: DynamicEnvironment, V: {DebugIndentionLevelVal});
4505 GlobalVariable *DynamicEnvironmentGV = new GlobalVariable(
4506 M, DynamicEnvironment, /*IsConstant=*/false, GlobalValue::WeakODRLinkage,
4507 DynamicEnvironmentInitializer, DynamicEnvironmentName,
4508 /*InsertBefore=*/nullptr, GlobalValue::NotThreadLocal,
4509 DL.getDefaultGlobalsAddressSpace());
4510 DynamicEnvironmentGV->setVisibility(GlobalValue::ProtectedVisibility);
4511
4512 Constant *DynamicEnvironment =
4513 DynamicEnvironmentGV->getType() == DynamicEnvironmentPtr
4514 ? DynamicEnvironmentGV
4515 : ConstantExpr::getAddrSpaceCast(C: DynamicEnvironmentGV,
4516 Ty: DynamicEnvironmentPtr);
4517
4518 Constant *ConfigurationEnvironmentInitializer = ConstantStruct::get(
4519 T: ConfigurationEnvironment, V: {
4520 UseGenericStateMachineVal,
4521 MayUseNestedParallelismVal,
4522 IsSPMDVal,
4523 MinThreads,
4524 MaxThreads,
4525 MinTeams,
4526 MaxTeams,
4527 ReductionDataSize,
4528 ReductionBufferLength,
4529 });
4530 Constant *KernelEnvironmentInitializer = ConstantStruct::get(
4531 T: KernelEnvironment, V: {
4532 ConfigurationEnvironmentInitializer,
4533 Ident,
4534 DynamicEnvironment,
4535 });
4536 Twine KernelEnvironmentName = KernelName + "_kernel_environment";
4537 GlobalVariable *KernelEnvironmentGV = new GlobalVariable(
4538 M, KernelEnvironment, /*IsConstant=*/true, GlobalValue::WeakODRLinkage,
4539 KernelEnvironmentInitializer, KernelEnvironmentName,
4540 /*InsertBefore=*/nullptr, GlobalValue::NotThreadLocal,
4541 DL.getDefaultGlobalsAddressSpace());
4542 KernelEnvironmentGV->setVisibility(GlobalValue::ProtectedVisibility);
4543
4544 Constant *KernelEnvironment =
4545 KernelEnvironmentGV->getType() == KernelEnvironmentPtr
4546 ? KernelEnvironmentGV
4547 : ConstantExpr::getAddrSpaceCast(C: KernelEnvironmentGV,
4548 Ty: KernelEnvironmentPtr);
4549 Value *KernelLaunchEnvironment = Kernel->getArg(i: 0);
4550 CallInst *ThreadKind =
4551 Builder.CreateCall(Callee: Fn, Args: {KernelEnvironment, KernelLaunchEnvironment});
4552
4553 Value *ExecUserCode = Builder.CreateICmpEQ(
4554 LHS: ThreadKind, RHS: ConstantInt::get(Ty: ThreadKind->getType(), V: -1),
4555 Name: "exec_user_code");
4556
4557 // ThreadKind = __kmpc_target_init(...)
4558 // if (ThreadKind == -1)
4559 // user_code
4560 // else
4561 // return;
4562
4563 auto *UI = Builder.CreateUnreachable();
4564 BasicBlock *CheckBB = UI->getParent();
4565 BasicBlock *UserCodeEntryBB = CheckBB->splitBasicBlock(I: UI, BBName: "user_code.entry");
4566
4567 BasicBlock *WorkerExitBB = BasicBlock::Create(
4568 Context&: CheckBB->getContext(), Name: "worker.exit", Parent: CheckBB->getParent());
4569 Builder.SetInsertPoint(WorkerExitBB);
4570 Builder.CreateRetVoid();
4571
4572 auto *CheckBBTI = CheckBB->getTerminator();
4573 Builder.SetInsertPoint(CheckBBTI);
4574 Builder.CreateCondBr(Cond: ExecUserCode, True: UI->getParent(), False: WorkerExitBB);
4575
4576 CheckBBTI->eraseFromParent();
4577 UI->eraseFromParent();
4578
4579 // Continue in the "user_code" block, see diagram above and in
4580 // openmp/libomptarget/deviceRTLs/common/include/target.h .
4581 return InsertPointTy(UserCodeEntryBB, UserCodeEntryBB->getFirstInsertionPt());
4582}
4583
4584void OpenMPIRBuilder::createTargetDeinit(const LocationDescription &Loc,
4585 int32_t TeamsReductionDataSize,
4586 int32_t TeamsReductionBufferLength) {
4587 if (!updateToLocation(Loc))
4588 return;
4589
4590 Function *Fn = getOrCreateRuntimeFunctionPtr(
4591 FnID: omp::RuntimeFunction::OMPRTL___kmpc_target_deinit);
4592
4593 Builder.CreateCall(Callee: Fn, Args: {});
4594
4595 if (!TeamsReductionBufferLength || !TeamsReductionDataSize)
4596 return;
4597
4598 Function *Kernel = Builder.GetInsertBlock()->getParent();
4599 // We need to strip the debug prefix to get the correct kernel name.
4600 StringRef KernelName = Kernel->getName();
4601 const std::string DebugPrefix = "_debug__";
4602 if (KernelName.ends_with(Suffix: DebugPrefix))
4603 KernelName = KernelName.drop_back(N: DebugPrefix.length());
4604 auto *KernelEnvironmentGV =
4605 M.getNamedGlobal(Name: (KernelName + "_kernel_environment").str());
4606 assert(KernelEnvironmentGV && "Expected kernel environment global\n");
4607 auto *KernelEnvironmentInitializer = KernelEnvironmentGV->getInitializer();
4608 auto *NewInitializer = ConstantFoldInsertValueInstruction(
4609 Agg: KernelEnvironmentInitializer,
4610 Val: ConstantInt::get(Ty: Int32, V: TeamsReductionDataSize), Idxs: {0, 7});
4611 NewInitializer = ConstantFoldInsertValueInstruction(
4612 Agg: NewInitializer, Val: ConstantInt::get(Ty: Int32, V: TeamsReductionBufferLength),
4613 Idxs: {0, 8});
4614 KernelEnvironmentGV->setInitializer(NewInitializer);
4615}
4616
4617static MDNode *getNVPTXMDNode(Function &Kernel, StringRef Name) {
4618 Module &M = *Kernel.getParent();
4619 NamedMDNode *MD = M.getOrInsertNamedMetadata(Name: "nvvm.annotations");
4620 for (auto *Op : MD->operands()) {
4621 if (Op->getNumOperands() != 3)
4622 continue;
4623 auto *KernelOp = dyn_cast<ConstantAsMetadata>(Val: Op->getOperand(I: 0));
4624 if (!KernelOp || KernelOp->getValue() != &Kernel)
4625 continue;
4626 auto *Prop = dyn_cast<MDString>(Val: Op->getOperand(I: 1));
4627 if (!Prop || Prop->getString() != Name)
4628 continue;
4629 return Op;
4630 }
4631 return nullptr;
4632}
4633
4634static void updateNVPTXMetadata(Function &Kernel, StringRef Name, int32_t Value,
4635 bool Min) {
4636 // Update the "maxntidx" metadata for NVIDIA, or add it.
4637 MDNode *ExistingOp = getNVPTXMDNode(Kernel, Name);
4638 if (ExistingOp) {
4639 auto *OldVal = cast<ConstantAsMetadata>(Val: ExistingOp->getOperand(I: 2));
4640 int32_t OldLimit = cast<ConstantInt>(Val: OldVal->getValue())->getZExtValue();
4641 ExistingOp->replaceOperandWith(
4642 I: 2, New: ConstantAsMetadata::get(C: ConstantInt::get(
4643 Ty: OldVal->getValue()->getType(),
4644 V: Min ? std::min(a: OldLimit, b: Value) : std::max(a: OldLimit, b: Value))));
4645 } else {
4646 LLVMContext &Ctx = Kernel.getContext();
4647 Metadata *MDVals[] = {ConstantAsMetadata::get(C: &Kernel),
4648 MDString::get(Context&: Ctx, Str: Name),
4649 ConstantAsMetadata::get(
4650 C: ConstantInt::get(Ty: Type::getInt32Ty(C&: Ctx), V: Value))};
4651 // Append metadata to nvvm.annotations
4652 Module &M = *Kernel.getParent();
4653 NamedMDNode *MD = M.getOrInsertNamedMetadata(Name: "nvvm.annotations");
4654 MD->addOperand(M: MDNode::get(Context&: Ctx, MDs: MDVals));
4655 }
4656}
4657
4658std::pair<int32_t, int32_t>
4659OpenMPIRBuilder::readThreadBoundsForKernel(const Triple &T, Function &Kernel) {
4660 int32_t ThreadLimit =
4661 Kernel.getFnAttributeAsParsedInteger(Kind: "omp_target_thread_limit");
4662
4663 if (T.isAMDGPU()) {
4664 const auto &Attr = Kernel.getFnAttribute(Kind: "amdgpu-flat-work-group-size");
4665 if (!Attr.isValid() || !Attr.isStringAttribute())
4666 return {0, ThreadLimit};
4667 auto [LBStr, UBStr] = Attr.getValueAsString().split(Separator: ',');
4668 int32_t LB, UB;
4669 if (!llvm::to_integer(S: UBStr, Num&: UB, Base: 10))
4670 return {0, ThreadLimit};
4671 UB = ThreadLimit ? std::min(a: ThreadLimit, b: UB) : UB;
4672 if (!llvm::to_integer(S: LBStr, Num&: LB, Base: 10))
4673 return {0, UB};
4674 return {LB, UB};
4675 }
4676
4677 if (MDNode *ExistingOp = getNVPTXMDNode(Kernel, Name: "maxntidx")) {
4678 auto *OldVal = cast<ConstantAsMetadata>(Val: ExistingOp->getOperand(I: 2));
4679 int32_t UB = cast<ConstantInt>(Val: OldVal->getValue())->getZExtValue();
4680 return {0, ThreadLimit ? std::min(a: ThreadLimit, b: UB) : UB};
4681 }
4682 return {0, ThreadLimit};
4683}
4684
4685void OpenMPIRBuilder::writeThreadBoundsForKernel(const Triple &T,
4686 Function &Kernel, int32_t LB,
4687 int32_t UB) {
4688 Kernel.addFnAttr(Kind: "omp_target_thread_limit", Val: std::to_string(val: UB));
4689
4690 if (T.isAMDGPU()) {
4691 Kernel.addFnAttr(Kind: "amdgpu-flat-work-group-size",
4692 Val: llvm::utostr(X: LB) + "," + llvm::utostr(X: UB));
4693 return;
4694 }
4695
4696 updateNVPTXMetadata(Kernel, Name: "maxntidx", Value: UB, Min: true);
4697}
4698
4699std::pair<int32_t, int32_t>
4700OpenMPIRBuilder::readTeamBoundsForKernel(const Triple &, Function &Kernel) {
4701 // TODO: Read from backend annotations if available.
4702 return {0, Kernel.getFnAttributeAsParsedInteger(Kind: "omp_target_num_teams")};
4703}
4704
4705void OpenMPIRBuilder::writeTeamsForKernel(const Triple &T, Function &Kernel,
4706 int32_t LB, int32_t UB) {
4707 if (T.isNVPTX()) {
4708 if (UB > 0)
4709 updateNVPTXMetadata(Kernel, Name: "maxclusterrank", Value: UB, Min: true);
4710 updateNVPTXMetadata(Kernel, Name: "minctasm", Value: LB, Min: false);
4711 }
4712 Kernel.addFnAttr(Kind: "omp_target_num_teams", Val: std::to_string(val: LB));
4713}
4714
4715void OpenMPIRBuilder::setOutlinedTargetRegionFunctionAttributes(
4716 Function *OutlinedFn) {
4717 if (Config.isTargetDevice()) {
4718 OutlinedFn->setLinkage(GlobalValue::WeakODRLinkage);
4719 // TODO: Determine if DSO local can be set to true.
4720 OutlinedFn->setDSOLocal(false);
4721 OutlinedFn->setVisibility(GlobalValue::ProtectedVisibility);
4722 if (T.isAMDGCN())
4723 OutlinedFn->setCallingConv(CallingConv::AMDGPU_KERNEL);
4724 }
4725}
4726
4727Constant *OpenMPIRBuilder::createOutlinedFunctionID(Function *OutlinedFn,
4728 StringRef EntryFnIDName) {
4729 if (Config.isTargetDevice()) {
4730 assert(OutlinedFn && "The outlined function must exist if embedded");
4731 return OutlinedFn;
4732 }
4733
4734 return new GlobalVariable(
4735 M, Builder.getInt8Ty(), /*isConstant=*/true, GlobalValue::WeakAnyLinkage,
4736 Constant::getNullValue(Ty: Builder.getInt8Ty()), EntryFnIDName);
4737}
4738
4739Constant *OpenMPIRBuilder::createTargetRegionEntryAddr(Function *OutlinedFn,
4740 StringRef EntryFnName) {
4741 if (OutlinedFn)
4742 return OutlinedFn;
4743
4744 assert(!M.getGlobalVariable(EntryFnName, true) &&
4745 "Named kernel already exists?");
4746 return new GlobalVariable(
4747 M, Builder.getInt8Ty(), /*isConstant=*/true, GlobalValue::InternalLinkage,
4748 Constant::getNullValue(Ty: Builder.getInt8Ty()), EntryFnName);
4749}
4750
4751void OpenMPIRBuilder::emitTargetRegionFunction(
4752 TargetRegionEntryInfo &EntryInfo,
4753 FunctionGenCallback &GenerateFunctionCallback, bool IsOffloadEntry,
4754 Function *&OutlinedFn, Constant *&OutlinedFnID) {
4755
4756 SmallString<64> EntryFnName;
4757 OffloadInfoManager.getTargetRegionEntryFnName(Name&: EntryFnName, EntryInfo);
4758
4759 OutlinedFn = Config.isTargetDevice() || !Config.openMPOffloadMandatory()
4760 ? GenerateFunctionCallback(EntryFnName)
4761 : nullptr;
4762
4763 // If this target outline function is not an offload entry, we don't need to
4764 // register it. This may be in the case of a false if clause, or if there are
4765 // no OpenMP targets.
4766 if (!IsOffloadEntry)
4767 return;
4768
4769 std::string EntryFnIDName =
4770 Config.isTargetDevice()
4771 ? std::string(EntryFnName)
4772 : createPlatformSpecificName(Parts: {EntryFnName, "region_id"});
4773
4774 OutlinedFnID = registerTargetRegionFunction(EntryInfo, OutlinedFunction: OutlinedFn,
4775 EntryFnName, EntryFnIDName);
4776}
4777
4778Constant *OpenMPIRBuilder::registerTargetRegionFunction(
4779 TargetRegionEntryInfo &EntryInfo, Function *OutlinedFn,
4780 StringRef EntryFnName, StringRef EntryFnIDName) {
4781 if (OutlinedFn)
4782 setOutlinedTargetRegionFunctionAttributes(OutlinedFn);
4783 auto OutlinedFnID = createOutlinedFunctionID(OutlinedFn, EntryFnIDName);
4784 auto EntryAddr = createTargetRegionEntryAddr(OutlinedFn, EntryFnName);
4785 OffloadInfoManager.registerTargetRegionEntryInfo(
4786 EntryInfo, Addr: EntryAddr, ID: OutlinedFnID,
4787 Flags: OffloadEntriesInfoManager::OMPTargetRegionEntryTargetRegion);
4788 return OutlinedFnID;
4789}
4790
4791OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createTargetData(
4792 const LocationDescription &Loc, InsertPointTy AllocaIP,
4793 InsertPointTy CodeGenIP, Value *DeviceID, Value *IfCond,
4794 TargetDataInfo &Info, GenMapInfoCallbackTy GenMapInfoCB,
4795 omp::RuntimeFunction *MapperFunc,
4796 function_ref<InsertPointTy(InsertPointTy CodeGenIP, BodyGenTy BodyGenType)>
4797 BodyGenCB,
4798 function_ref<void(unsigned int, Value *)> DeviceAddrCB,
4799 function_ref<Value *(unsigned int)> CustomMapperCB, Value *SrcLocInfo) {
4800 if (!updateToLocation(Loc))
4801 return InsertPointTy();
4802
4803 // Disable TargetData CodeGen on Device pass.
4804 if (Config.IsTargetDevice.value_or(u: false))
4805 return Builder.saveIP();
4806
4807 Builder.restoreIP(IP: CodeGenIP);
4808 bool IsStandAlone = !BodyGenCB;
4809 MapInfosTy *MapInfo;
4810 // Generate the code for the opening of the data environment. Capture all the
4811 // arguments of the runtime call by reference because they are used in the
4812 // closing of the region.
4813 auto BeginThenGen = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) {
4814 MapInfo = &GenMapInfoCB(Builder.saveIP());
4815 emitOffloadingArrays(AllocaIP, CodeGenIP: Builder.saveIP(), CombinedInfo&: *MapInfo, Info,
4816 /*IsNonContiguous=*/true, DeviceAddrCB,
4817 CustomMapperCB);
4818
4819 TargetDataRTArgs RTArgs;
4820 emitOffloadingArraysArgument(Builder, RTArgs, Info,
4821 EmitDebug: !MapInfo->Names.empty());
4822
4823 // Emit the number of elements in the offloading arrays.
4824 Value *PointerNum = Builder.getInt32(C: Info.NumberOfPtrs);
4825
4826 // Source location for the ident struct
4827 if (!SrcLocInfo) {
4828 uint32_t SrcLocStrSize;
4829 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
4830 SrcLocInfo = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
4831 }
4832
4833 Value *OffloadingArgs[] = {SrcLocInfo, DeviceID,
4834 PointerNum, RTArgs.BasePointersArray,
4835 RTArgs.PointersArray, RTArgs.SizesArray,
4836 RTArgs.MapTypesArray, RTArgs.MapNamesArray,
4837 RTArgs.MappersArray};
4838
4839 if (IsStandAlone) {
4840 assert(MapperFunc && "MapperFunc missing for standalone target data");
4841 Builder.CreateCall(Callee: getOrCreateRuntimeFunctionPtr(FnID: *MapperFunc),
4842 Args: OffloadingArgs);
4843 } else {
4844 Function *BeginMapperFunc = getOrCreateRuntimeFunctionPtr(
4845 FnID: omp::OMPRTL___tgt_target_data_begin_mapper);
4846
4847 Builder.CreateCall(Callee: BeginMapperFunc, Args: OffloadingArgs);
4848
4849 for (auto DeviceMap : Info.DevicePtrInfoMap) {
4850 if (isa<AllocaInst>(Val: DeviceMap.second.second)) {
4851 auto *LI =
4852 Builder.CreateLoad(Ty: Builder.getPtrTy(), Ptr: DeviceMap.second.first);
4853 Builder.CreateStore(Val: LI, Ptr: DeviceMap.second.second);
4854 }
4855 }
4856
4857 // If device pointer privatization is required, emit the body of the
4858 // region here. It will have to be duplicated: with and without
4859 // privatization.
4860 Builder.restoreIP(IP: BodyGenCB(Builder.saveIP(), BodyGenTy::Priv));
4861 }
4862 };
4863
4864 // If we need device pointer privatization, we need to emit the body of the
4865 // region with no privatization in the 'else' branch of the conditional.
4866 // Otherwise, we don't have to do anything.
4867 auto BeginElseGen = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) {
4868 Builder.restoreIP(IP: BodyGenCB(Builder.saveIP(), BodyGenTy::DupNoPriv));
4869 };
4870
4871 // Generate code for the closing of the data region.
4872 auto EndThenGen = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) {
4873 TargetDataRTArgs RTArgs;
4874 emitOffloadingArraysArgument(Builder, RTArgs, Info, EmitDebug: !MapInfo->Names.empty(),
4875 /*ForEndCall=*/true);
4876
4877 // Emit the number of elements in the offloading arrays.
4878 Value *PointerNum = Builder.getInt32(C: Info.NumberOfPtrs);
4879
4880 // Source location for the ident struct
4881 if (!SrcLocInfo) {
4882 uint32_t SrcLocStrSize;
4883 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
4884 SrcLocInfo = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
4885 }
4886
4887 Value *OffloadingArgs[] = {SrcLocInfo, DeviceID,
4888 PointerNum, RTArgs.BasePointersArray,
4889 RTArgs.PointersArray, RTArgs.SizesArray,
4890 RTArgs.MapTypesArray, RTArgs.MapNamesArray,
4891 RTArgs.MappersArray};
4892 Function *EndMapperFunc =
4893 getOrCreateRuntimeFunctionPtr(FnID: omp::OMPRTL___tgt_target_data_end_mapper);
4894
4895 Builder.CreateCall(Callee: EndMapperFunc, Args: OffloadingArgs);
4896 };
4897
4898 // We don't have to do anything to close the region if the if clause evaluates
4899 // to false.
4900 auto EndElseGen = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) {};
4901
4902 if (BodyGenCB) {
4903 if (IfCond) {
4904 emitIfClause(Cond: IfCond, ThenGen: BeginThenGen, ElseGen: BeginElseGen, AllocaIP);
4905 } else {
4906 BeginThenGen(AllocaIP, Builder.saveIP());
4907 }
4908
4909 // If we don't require privatization of device pointers, we emit the body in
4910 // between the runtime calls. This avoids duplicating the body code.
4911 Builder.restoreIP(IP: BodyGenCB(Builder.saveIP(), BodyGenTy::NoPriv));
4912
4913 if (IfCond) {
4914 emitIfClause(Cond: IfCond, ThenGen: EndThenGen, ElseGen: EndElseGen, AllocaIP);
4915 } else {
4916 EndThenGen(AllocaIP, Builder.saveIP());
4917 }
4918 } else {
4919 if (IfCond) {
4920 emitIfClause(Cond: IfCond, ThenGen: BeginThenGen, ElseGen: EndElseGen, AllocaIP);
4921 } else {
4922 BeginThenGen(AllocaIP, Builder.saveIP());
4923 }
4924 }
4925
4926 return Builder.saveIP();
4927}
4928
4929FunctionCallee
4930OpenMPIRBuilder::createForStaticInitFunction(unsigned IVSize, bool IVSigned,
4931 bool IsGPUDistribute) {
4932 assert((IVSize == 32 || IVSize == 64) &&
4933 "IV size is not compatible with the omp runtime");
4934 RuntimeFunction Name;
4935 if (IsGPUDistribute)
4936 Name = IVSize == 32
4937 ? (IVSigned ? omp::OMPRTL___kmpc_distribute_static_init_4
4938 : omp::OMPRTL___kmpc_distribute_static_init_4u)
4939 : (IVSigned ? omp::OMPRTL___kmpc_distribute_static_init_8
4940 : omp::OMPRTL___kmpc_distribute_static_init_8u);
4941 else
4942 Name = IVSize == 32 ? (IVSigned ? omp::OMPRTL___kmpc_for_static_init_4
4943 : omp::OMPRTL___kmpc_for_static_init_4u)
4944 : (IVSigned ? omp::OMPRTL___kmpc_for_static_init_8
4945 : omp::OMPRTL___kmpc_for_static_init_8u);
4946
4947 return getOrCreateRuntimeFunction(M, FnID: Name);
4948}
4949
4950FunctionCallee OpenMPIRBuilder::createDispatchInitFunction(unsigned IVSize,
4951 bool IVSigned) {
4952 assert((IVSize == 32 || IVSize == 64) &&
4953 "IV size is not compatible with the omp runtime");
4954 RuntimeFunction Name = IVSize == 32
4955 ? (IVSigned ? omp::OMPRTL___kmpc_dispatch_init_4
4956 : omp::OMPRTL___kmpc_dispatch_init_4u)
4957 : (IVSigned ? omp::OMPRTL___kmpc_dispatch_init_8
4958 : omp::OMPRTL___kmpc_dispatch_init_8u);
4959
4960 return getOrCreateRuntimeFunction(M, FnID: Name);
4961}
4962
4963FunctionCallee OpenMPIRBuilder::createDispatchNextFunction(unsigned IVSize,
4964 bool IVSigned) {
4965 assert((IVSize == 32 || IVSize == 64) &&
4966 "IV size is not compatible with the omp runtime");
4967 RuntimeFunction Name = IVSize == 32
4968 ? (IVSigned ? omp::OMPRTL___kmpc_dispatch_next_4
4969 : omp::OMPRTL___kmpc_dispatch_next_4u)
4970 : (IVSigned ? omp::OMPRTL___kmpc_dispatch_next_8
4971 : omp::OMPRTL___kmpc_dispatch_next_8u);
4972
4973 return getOrCreateRuntimeFunction(M, FnID: Name);
4974}
4975
4976FunctionCallee OpenMPIRBuilder::createDispatchFiniFunction(unsigned IVSize,
4977 bool IVSigned) {
4978 assert((IVSize == 32 || IVSize == 64) &&
4979 "IV size is not compatible with the omp runtime");
4980 RuntimeFunction Name = IVSize == 32
4981 ? (IVSigned ? omp::OMPRTL___kmpc_dispatch_fini_4
4982 : omp::OMPRTL___kmpc_dispatch_fini_4u)
4983 : (IVSigned ? omp::OMPRTL___kmpc_dispatch_fini_8
4984 : omp::OMPRTL___kmpc_dispatch_fini_8u);
4985
4986 return getOrCreateRuntimeFunction(M, FnID: Name);
4987}
4988
4989static void replaceConstatExprUsesInFuncWithInstr(ConstantExpr *ConstExpr,
4990 Function *Func) {
4991 for (User *User : make_early_inc_range(Range: ConstExpr->users()))
4992 if (auto *Instr = dyn_cast<Instruction>(Val: User))
4993 if (Instr->getFunction() == Func)
4994 Instr->replaceUsesOfWith(From: ConstExpr, To: ConstExpr->getAsInstruction(InsertBefore: Instr));
4995}
4996
4997static void replaceConstantValueUsesInFuncWithInstr(llvm::Value *Input,
4998 Function *Func) {
4999 for (User *User : make_early_inc_range(Range: Input->users()))
5000 if (auto *Const = dyn_cast<Constant>(Val: User))
5001 if (auto *ConstExpr = dyn_cast<ConstantExpr>(Val: Const))
5002 replaceConstatExprUsesInFuncWithInstr(ConstExpr, Func);
5003}
5004
5005static Function *createOutlinedFunction(
5006 OpenMPIRBuilder &OMPBuilder, IRBuilderBase &Builder, StringRef FuncName,
5007 SmallVectorImpl<Value *> &Inputs,
5008 OpenMPIRBuilder::TargetBodyGenCallbackTy &CBFunc,
5009 OpenMPIRBuilder::TargetGenArgAccessorsCallbackTy &ArgAccessorFuncCB) {
5010 SmallVector<Type *> ParameterTypes;
5011 if (OMPBuilder.Config.isTargetDevice()) {
5012 // Add the "implicit" runtime argument we use to provide launch specific
5013 // information for target devices.
5014 auto *Int8PtrTy = PointerType::getUnqual(C&: Builder.getContext());
5015 ParameterTypes.push_back(Elt: Int8PtrTy);
5016
5017 // All parameters to target devices are passed as pointers
5018 // or i64. This assumes 64-bit address spaces/pointers.
5019 for (auto &Arg : Inputs)
5020 ParameterTypes.push_back(Elt: Arg->getType()->isPointerTy()
5021 ? Arg->getType()
5022 : Type::getInt64Ty(C&: Builder.getContext()));
5023 } else {
5024 for (auto &Arg : Inputs)
5025 ParameterTypes.push_back(Elt: Arg->getType());
5026 }
5027
5028 auto FuncType = FunctionType::get(Result: Builder.getVoidTy(), Params: ParameterTypes,
5029 /*isVarArg*/ false);
5030 auto Func = Function::Create(Ty: FuncType, Linkage: GlobalValue::InternalLinkage, N: FuncName,
5031 M: Builder.GetInsertBlock()->getModule());
5032
5033 // Save insert point.
5034 auto OldInsertPoint = Builder.saveIP();
5035
5036 // Generate the region into the function.
5037 BasicBlock *EntryBB = BasicBlock::Create(Context&: Builder.getContext(), Name: "entry", Parent: Func);
5038 Builder.SetInsertPoint(EntryBB);
5039
5040 // Insert target init call in the device compilation pass.
5041 if (OMPBuilder.Config.isTargetDevice())
5042 Builder.restoreIP(IP: OMPBuilder.createTargetInit(Loc: Builder, /*IsSPMD*/ false));
5043
5044 BasicBlock *UserCodeEntryBB = Builder.GetInsertBlock();
5045
5046 // Insert target deinit call in the device compilation pass.
5047 Builder.restoreIP(IP: CBFunc(Builder.saveIP(), Builder.saveIP()));
5048 if (OMPBuilder.Config.isTargetDevice())
5049 OMPBuilder.createTargetDeinit(Loc: Builder);
5050
5051 // Insert return instruction.
5052 Builder.CreateRetVoid();
5053
5054 // New Alloca IP at entry point of created device function.
5055 Builder.SetInsertPoint(EntryBB->getFirstNonPHI());
5056 auto AllocaIP = Builder.saveIP();
5057
5058 Builder.SetInsertPoint(UserCodeEntryBB->getFirstNonPHIOrDbg());
5059
5060 // Skip the artificial dyn_ptr on the device.
5061 const auto &ArgRange =
5062 OMPBuilder.Config.isTargetDevice()
5063 ? make_range(x: Func->arg_begin() + 1, y: Func->arg_end())
5064 : Func->args();
5065
5066 // Rewrite uses of input valus to parameters.
5067 for (auto InArg : zip(t&: Inputs, u: ArgRange)) {
5068 Value *Input = std::get<0>(t&: InArg);
5069 Argument &Arg = std::get<1>(t&: InArg);
5070 Value *InputCopy = nullptr;
5071
5072 Builder.restoreIP(
5073 IP: ArgAccessorFuncCB(Arg, Input, InputCopy, AllocaIP, Builder.saveIP()));
5074
5075 // Things like GEP's can come in the form of Constants. Constants and
5076 // ConstantExpr's do not have access to the knowledge of what they're
5077 // contained in, so we must dig a little to find an instruction so we can
5078 // tell if they're used inside of the function we're outlining. We also
5079 // replace the original constant expression with a new instruction
5080 // equivalent; an instruction as it allows easy modification in the
5081 // following loop, as we can now know the constant (instruction) is owned by
5082 // our target function and replaceUsesOfWith can now be invoked on it
5083 // (cannot do this with constants it seems). A brand new one also allows us
5084 // to be cautious as it is perhaps possible the old expression was used
5085 // inside of the function but exists and is used externally (unlikely by the
5086 // nature of a Constant, but still).
5087 replaceConstantValueUsesInFuncWithInstr(Input, Func);
5088
5089 // Collect all the instructions
5090 for (User *User : make_early_inc_range(Range: Input->users()))
5091 if (auto *Instr = dyn_cast<Instruction>(Val: User))
5092 if (Instr->getFunction() == Func)
5093 Instr->replaceUsesOfWith(From: Input, To: InputCopy);
5094 }
5095
5096 // Restore insert point.
5097 Builder.restoreIP(IP: OldInsertPoint);
5098
5099 return Func;
5100}
5101
5102static void emitTargetOutlinedFunction(
5103 OpenMPIRBuilder &OMPBuilder, IRBuilderBase &Builder,
5104 TargetRegionEntryInfo &EntryInfo, Function *&OutlinedFn,
5105 Constant *&OutlinedFnID, SmallVectorImpl<Value *> &Inputs,
5106 OpenMPIRBuilder::TargetBodyGenCallbackTy &CBFunc,
5107 OpenMPIRBuilder::TargetGenArgAccessorsCallbackTy &ArgAccessorFuncCB) {
5108
5109 OpenMPIRBuilder::FunctionGenCallback &&GenerateOutlinedFunction =
5110 [&OMPBuilder, &Builder, &Inputs, &CBFunc,
5111 &ArgAccessorFuncCB](StringRef EntryFnName) {
5112 return createOutlinedFunction(OMPBuilder, Builder, FuncName: EntryFnName, Inputs,
5113 CBFunc, ArgAccessorFuncCB);
5114 };
5115
5116 OMPBuilder.emitTargetRegionFunction(EntryInfo, GenerateFunctionCallback&: GenerateOutlinedFunction, IsOffloadEntry: true,
5117 OutlinedFn, OutlinedFnID);
5118}
5119
5120static void emitTargetCall(OpenMPIRBuilder &OMPBuilder, IRBuilderBase &Builder,
5121 OpenMPIRBuilder::InsertPointTy AllocaIP,
5122 Function *OutlinedFn, Constant *OutlinedFnID,
5123 int32_t NumTeams, int32_t NumThreads,
5124 SmallVectorImpl<Value *> &Args,
5125 OpenMPIRBuilder::GenMapInfoCallbackTy GenMapInfoCB) {
5126
5127 OpenMPIRBuilder::TargetDataInfo Info(
5128 /*RequiresDevicePointerInfo=*/false,
5129 /*SeparateBeginEndCalls=*/true);
5130
5131 OpenMPIRBuilder::MapInfosTy &MapInfo = GenMapInfoCB(Builder.saveIP());
5132 OMPBuilder.emitOffloadingArrays(AllocaIP, CodeGenIP: Builder.saveIP(), CombinedInfo&: MapInfo, Info,
5133 /*IsNonContiguous=*/true);
5134
5135 OpenMPIRBuilder::TargetDataRTArgs RTArgs;
5136 OMPBuilder.emitOffloadingArraysArgument(Builder, RTArgs, Info,
5137 EmitDebug: !MapInfo.Names.empty());
5138
5139 // emitKernelLaunch
5140 auto &&EmitTargetCallFallbackCB =
5141 [&](OpenMPIRBuilder::InsertPointTy IP) -> OpenMPIRBuilder::InsertPointTy {
5142 Builder.restoreIP(IP);
5143 Builder.CreateCall(Callee: OutlinedFn, Args);
5144 return Builder.saveIP();
5145 };
5146
5147 unsigned NumTargetItems = MapInfo.BasePointers.size();
5148 // TODO: Use correct device ID
5149 Value *DeviceID = Builder.getInt64(C: OMP_DEVICEID_UNDEF);
5150 Value *NumTeamsVal = Builder.getInt32(C: NumTeams);
5151 Value *NumThreadsVal = Builder.getInt32(C: NumThreads);
5152 uint32_t SrcLocStrSize;
5153 Constant *SrcLocStr = OMPBuilder.getOrCreateDefaultSrcLocStr(SrcLocStrSize);
5154 Value *RTLoc = OMPBuilder.getOrCreateIdent(SrcLocStr, SrcLocStrSize,
5155 LocFlags: llvm::omp::IdentFlag(0), Reserve2Flags: 0);
5156 // TODO: Use correct NumIterations
5157 Value *NumIterations = Builder.getInt64(C: 0);
5158 // TODO: Use correct DynCGGroupMem
5159 Value *DynCGGroupMem = Builder.getInt32(C: 0);
5160
5161 bool HasNoWait = false;
5162
5163 OpenMPIRBuilder::TargetKernelArgs KArgs(NumTargetItems, RTArgs, NumIterations,
5164 NumTeamsVal, NumThreadsVal,
5165 DynCGGroupMem, HasNoWait);
5166
5167 Builder.restoreIP(IP: OMPBuilder.emitKernelLaunch(
5168 Loc: Builder, OutlinedFn, OutlinedFnID, emitTargetCallFallbackCB: EmitTargetCallFallbackCB, Args&: KArgs,
5169 DeviceID, RTLoc, AllocaIP));
5170}
5171
5172OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createTarget(
5173 const LocationDescription &Loc, InsertPointTy AllocaIP,
5174 InsertPointTy CodeGenIP, TargetRegionEntryInfo &EntryInfo, int32_t NumTeams,
5175 int32_t NumThreads, SmallVectorImpl<Value *> &Args,
5176 GenMapInfoCallbackTy GenMapInfoCB,
5177 OpenMPIRBuilder::TargetBodyGenCallbackTy CBFunc,
5178 OpenMPIRBuilder::TargetGenArgAccessorsCallbackTy ArgAccessorFuncCB) {
5179 if (!updateToLocation(Loc))
5180 return InsertPointTy();
5181
5182 Builder.restoreIP(IP: CodeGenIP);
5183
5184 Function *OutlinedFn;
5185 Constant *OutlinedFnID;
5186 emitTargetOutlinedFunction(OMPBuilder&: *this, Builder, EntryInfo, OutlinedFn,
5187 OutlinedFnID, Inputs&: Args, CBFunc, ArgAccessorFuncCB);
5188 if (!Config.isTargetDevice())
5189 emitTargetCall(OMPBuilder&: *this, Builder, AllocaIP, OutlinedFn, OutlinedFnID, NumTeams,
5190 NumThreads, Args, GenMapInfoCB);
5191
5192 return Builder.saveIP();
5193}
5194
5195std::string OpenMPIRBuilder::getNameWithSeparators(ArrayRef<StringRef> Parts,
5196 StringRef FirstSeparator,
5197 StringRef Separator) {
5198 SmallString<128> Buffer;
5199 llvm::raw_svector_ostream OS(Buffer);
5200 StringRef Sep = FirstSeparator;
5201 for (StringRef Part : Parts) {
5202 OS << Sep << Part;
5203 Sep = Separator;
5204 }
5205 return OS.str().str();
5206}
5207
5208std::string
5209OpenMPIRBuilder::createPlatformSpecificName(ArrayRef<StringRef> Parts) const {
5210 return OpenMPIRBuilder::getNameWithSeparators(Parts, FirstSeparator: Config.firstSeparator(),
5211 Separator: Config.separator());
5212}
5213
5214GlobalVariable *
5215OpenMPIRBuilder::getOrCreateInternalVariable(Type *Ty, const StringRef &Name,
5216 unsigned AddressSpace) {
5217 auto &Elem = *InternalVars.try_emplace(Key: Name, Args: nullptr).first;
5218 if (Elem.second) {
5219 assert(Elem.second->getValueType() == Ty &&
5220 "OMP internal variable has different type than requested");
5221 } else {
5222 // TODO: investigate the appropriate linkage type used for the global
5223 // variable for possibly changing that to internal or private, or maybe
5224 // create different versions of the function for different OMP internal
5225 // variables.
5226 auto Linkage = this->M.getTargetTriple().rfind(s: "wasm32") == 0
5227 ? GlobalValue::ExternalLinkage
5228 : GlobalValue::CommonLinkage;
5229 auto *GV = new GlobalVariable(M, Ty, /*IsConstant=*/false, Linkage,
5230 Constant::getNullValue(Ty), Elem.first(),
5231 /*InsertBefore=*/nullptr,
5232 GlobalValue::NotThreadLocal, AddressSpace);
5233 const DataLayout &DL = M.getDataLayout();
5234 const llvm::Align TypeAlign = DL.getABITypeAlign(Ty);
5235 const llvm::Align PtrAlign = DL.getPointerABIAlignment(AS: AddressSpace);
5236 GV->setAlignment(std::max(a: TypeAlign, b: PtrAlign));
5237 Elem.second = GV;
5238 }
5239
5240 return Elem.second;
5241}
5242
5243Value *OpenMPIRBuilder::getOMPCriticalRegionLock(StringRef CriticalName) {
5244 std::string Prefix = Twine("gomp_critical_user_", CriticalName).str();
5245 std::string Name = getNameWithSeparators(Parts: {Prefix, "var"}, FirstSeparator: ".", Separator: ".");
5246 return getOrCreateInternalVariable(Ty: KmpCriticalNameTy, Name);
5247}
5248
5249Value *OpenMPIRBuilder::getSizeInBytes(Value *BasePtr) {
5250 LLVMContext &Ctx = Builder.getContext();
5251 Value *Null =
5252 Constant::getNullValue(Ty: PointerType::getUnqual(C&: BasePtr->getContext()));
5253 Value *SizeGep =
5254 Builder.CreateGEP(Ty: BasePtr->getType(), Ptr: Null, IdxList: Builder.getInt32(C: 1));
5255 Value *SizePtrToInt = Builder.CreatePtrToInt(V: SizeGep, DestTy: Type::getInt64Ty(C&: Ctx));
5256 return SizePtrToInt;
5257}
5258
5259GlobalVariable *
5260OpenMPIRBuilder::createOffloadMaptypes(SmallVectorImpl<uint64_t> &Mappings,
5261 std::string VarName) {
5262 llvm::Constant *MaptypesArrayInit =
5263 llvm::ConstantDataArray::get(Context&: M.getContext(), Elts&: Mappings);
5264 auto *MaptypesArrayGlobal = new llvm::GlobalVariable(
5265 M, MaptypesArrayInit->getType(),
5266 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, MaptypesArrayInit,
5267 VarName);
5268 MaptypesArrayGlobal->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5269 return MaptypesArrayGlobal;
5270}
5271
5272void OpenMPIRBuilder::createMapperAllocas(const LocationDescription &Loc,
5273 InsertPointTy AllocaIP,
5274 unsigned NumOperands,
5275 struct MapperAllocas &MapperAllocas) {
5276 if (!updateToLocation(Loc))
5277 return;
5278
5279 auto *ArrI8PtrTy = ArrayType::get(ElementType: Int8Ptr, NumElements: NumOperands);
5280 auto *ArrI64Ty = ArrayType::get(ElementType: Int64, NumElements: NumOperands);
5281 Builder.restoreIP(IP: AllocaIP);
5282 AllocaInst *ArgsBase = Builder.CreateAlloca(
5283 Ty: ArrI8PtrTy, /* ArraySize = */ nullptr, Name: ".offload_baseptrs");
5284 AllocaInst *Args = Builder.CreateAlloca(Ty: ArrI8PtrTy, /* ArraySize = */ nullptr,
5285 Name: ".offload_ptrs");
5286 AllocaInst *ArgSizes = Builder.CreateAlloca(
5287 Ty: ArrI64Ty, /* ArraySize = */ nullptr, Name: ".offload_sizes");
5288 Builder.restoreIP(IP: Loc.IP);
5289 MapperAllocas.ArgsBase = ArgsBase;
5290 MapperAllocas.Args = Args;
5291 MapperAllocas.ArgSizes = ArgSizes;
5292}
5293
5294void OpenMPIRBuilder::emitMapperCall(const LocationDescription &Loc,
5295 Function *MapperFunc, Value *SrcLocInfo,
5296 Value *MaptypesArg, Value *MapnamesArg,
5297 struct MapperAllocas &MapperAllocas,
5298 int64_t DeviceID, unsigned NumOperands) {
5299 if (!updateToLocation(Loc))
5300 return;
5301
5302 auto *ArrI8PtrTy = ArrayType::get(ElementType: Int8Ptr, NumElements: NumOperands);
5303 auto *ArrI64Ty = ArrayType::get(ElementType: Int64, NumElements: NumOperands);
5304 Value *ArgsBaseGEP =
5305 Builder.CreateInBoundsGEP(Ty: ArrI8PtrTy, Ptr: MapperAllocas.ArgsBase,
5306 IdxList: {Builder.getInt32(C: 0), Builder.getInt32(C: 0)});
5307 Value *ArgsGEP =
5308 Builder.CreateInBoundsGEP(Ty: ArrI8PtrTy, Ptr: MapperAllocas.Args,
5309 IdxList: {Builder.getInt32(C: 0), Builder.getInt32(C: 0)});
5310 Value *ArgSizesGEP =
5311 Builder.CreateInBoundsGEP(Ty: ArrI64Ty, Ptr: MapperAllocas.ArgSizes,
5312 IdxList: {Builder.getInt32(C: 0), Builder.getInt32(C: 0)});
5313 Value *NullPtr =
5314 Constant::getNullValue(Ty: PointerType::getUnqual(C&: Int8Ptr->getContext()));
5315 Builder.CreateCall(Callee: MapperFunc,
5316 Args: {SrcLocInfo, Builder.getInt64(C: DeviceID),
5317 Builder.getInt32(C: NumOperands), ArgsBaseGEP, ArgsGEP,
5318 ArgSizesGEP, MaptypesArg, MapnamesArg, NullPtr});
5319}
5320
5321void OpenMPIRBuilder::emitOffloadingArraysArgument(IRBuilderBase &Builder,
5322 TargetDataRTArgs &RTArgs,
5323 TargetDataInfo &Info,
5324 bool EmitDebug,
5325 bool ForEndCall) {
5326 assert((!ForEndCall || Info.separateBeginEndCalls()) &&
5327 "expected region end call to runtime only when end call is separate");
5328 auto UnqualPtrTy = PointerType::getUnqual(C&: M.getContext());
5329 auto VoidPtrTy = UnqualPtrTy;
5330 auto VoidPtrPtrTy = UnqualPtrTy;
5331 auto Int64Ty = Type::getInt64Ty(C&: M.getContext());
5332 auto Int64PtrTy = UnqualPtrTy;
5333
5334 if (!Info.NumberOfPtrs) {
5335 RTArgs.BasePointersArray = ConstantPointerNull::get(T: VoidPtrPtrTy);
5336 RTArgs.PointersArray = ConstantPointerNull::get(T: VoidPtrPtrTy);
5337 RTArgs.SizesArray = ConstantPointerNull::get(T: Int64PtrTy);
5338 RTArgs.MapTypesArray = ConstantPointerNull::get(T: Int64PtrTy);
5339 RTArgs.MapNamesArray = ConstantPointerNull::get(T: VoidPtrPtrTy);
5340 RTArgs.MappersArray = ConstantPointerNull::get(T: VoidPtrPtrTy);
5341 return;
5342 }
5343
5344 RTArgs.BasePointersArray = Builder.CreateConstInBoundsGEP2_32(
5345 Ty: ArrayType::get(ElementType: VoidPtrTy, NumElements: Info.NumberOfPtrs),
5346 Ptr: Info.RTArgs.BasePointersArray,
5347 /*Idx0=*/0, /*Idx1=*/0);
5348 RTArgs.PointersArray = Builder.CreateConstInBoundsGEP2_32(
5349 Ty: ArrayType::get(ElementType: VoidPtrTy, NumElements: Info.NumberOfPtrs), Ptr: Info.RTArgs.PointersArray,
5350 /*Idx0=*/0,
5351 /*Idx1=*/0);
5352 RTArgs.SizesArray = Builder.CreateConstInBoundsGEP2_32(
5353 Ty: ArrayType::get(ElementType: Int64Ty, NumElements: Info.NumberOfPtrs), Ptr: Info.RTArgs.SizesArray,
5354 /*Idx0=*/0, /*Idx1=*/0);
5355 RTArgs.MapTypesArray = Builder.CreateConstInBoundsGEP2_32(
5356 Ty: ArrayType::get(ElementType: Int64Ty, NumElements: Info.NumberOfPtrs),
5357 Ptr: ForEndCall && Info.RTArgs.MapTypesArrayEnd ? Info.RTArgs.MapTypesArrayEnd
5358 : Info.RTArgs.MapTypesArray,
5359 /*Idx0=*/0,
5360 /*Idx1=*/0);
5361
5362 // Only emit the mapper information arrays if debug information is
5363 // requested.
5364 if (!EmitDebug)
5365 RTArgs.MapNamesArray = ConstantPointerNull::get(T: VoidPtrPtrTy);
5366 else
5367 RTArgs.MapNamesArray = Builder.CreateConstInBoundsGEP2_32(
5368 Ty: ArrayType::get(ElementType: VoidPtrTy, NumElements: Info.NumberOfPtrs), Ptr: Info.RTArgs.MapNamesArray,
5369 /*Idx0=*/0,
5370 /*Idx1=*/0);
5371 // If there is no user-defined mapper, set the mapper array to nullptr to
5372 // avoid an unnecessary data privatization
5373 if (!Info.HasMapper)
5374 RTArgs.MappersArray = ConstantPointerNull::get(T: VoidPtrPtrTy);
5375 else
5376 RTArgs.MappersArray =
5377 Builder.CreatePointerCast(V: Info.RTArgs.MappersArray, DestTy: VoidPtrPtrTy);
5378}
5379
5380void OpenMPIRBuilder::emitNonContiguousDescriptor(InsertPointTy AllocaIP,
5381 InsertPointTy CodeGenIP,
5382 MapInfosTy &CombinedInfo,
5383 TargetDataInfo &Info) {
5384 MapInfosTy::StructNonContiguousInfo &NonContigInfo =
5385 CombinedInfo.NonContigInfo;
5386
5387 // Build an array of struct descriptor_dim and then assign it to
5388 // offload_args.
5389 //
5390 // struct descriptor_dim {
5391 // uint64_t offset;
5392 // uint64_t count;
5393 // uint64_t stride
5394 // };
5395 Type *Int64Ty = Builder.getInt64Ty();
5396 StructType *DimTy = StructType::create(
5397 Context&: M.getContext(), Elements: ArrayRef<Type *>({Int64Ty, Int64Ty, Int64Ty}),
5398 Name: "struct.descriptor_dim");
5399
5400 enum { OffsetFD = 0, CountFD, StrideFD };
5401 // We need two index variable here since the size of "Dims" is the same as
5402 // the size of Components, however, the size of offset, count, and stride is
5403 // equal to the size of base declaration that is non-contiguous.
5404 for (unsigned I = 0, L = 0, E = NonContigInfo.Dims.size(); I < E; ++I) {
5405 // Skip emitting ir if dimension size is 1 since it cannot be
5406 // non-contiguous.
5407 if (NonContigInfo.Dims[I] == 1)
5408 continue;
5409 Builder.restoreIP(IP: AllocaIP);
5410 ArrayType *ArrayTy = ArrayType::get(ElementType: DimTy, NumElements: NonContigInfo.Dims[I]);
5411 AllocaInst *DimsAddr =
5412 Builder.CreateAlloca(Ty: ArrayTy, /* ArraySize = */ nullptr, Name: "dims");
5413 Builder.restoreIP(IP: CodeGenIP);
5414 for (unsigned II = 0, EE = NonContigInfo.Dims[I]; II < EE; ++II) {
5415 unsigned RevIdx = EE - II - 1;
5416 Value *DimsLVal = Builder.CreateInBoundsGEP(
5417 Ty: DimsAddr->getAllocatedType(), Ptr: DimsAddr,
5418 IdxList: {Builder.getInt64(C: 0), Builder.getInt64(C: II)});
5419 // Offset
5420 Value *OffsetLVal = Builder.CreateStructGEP(Ty: DimTy, Ptr: DimsLVal, Idx: OffsetFD);
5421 Builder.CreateAlignedStore(
5422 Val: NonContigInfo.Offsets[L][RevIdx], Ptr: OffsetLVal,
5423 Align: M.getDataLayout().getPrefTypeAlign(Ty: OffsetLVal->getType()));
5424 // Count
5425 Value *CountLVal = Builder.CreateStructGEP(Ty: DimTy, Ptr: DimsLVal, Idx: CountFD);
5426 Builder.CreateAlignedStore(
5427 Val: NonContigInfo.Counts[L][RevIdx], Ptr: CountLVal,
5428 Align: M.getDataLayout().getPrefTypeAlign(Ty: CountLVal->getType()));
5429 // Stride
5430 Value *StrideLVal = Builder.CreateStructGEP(Ty: DimTy, Ptr: DimsLVal, Idx: StrideFD);
5431 Builder.CreateAlignedStore(
5432 Val: NonContigInfo.Strides[L][RevIdx], Ptr: StrideLVal,
5433 Align: M.getDataLayout().getPrefTypeAlign(Ty: CountLVal->getType()));
5434 }
5435 // args[I] = &dims
5436 Builder.restoreIP(IP: CodeGenIP);
5437 Value *DAddr = Builder.CreatePointerBitCastOrAddrSpaceCast(
5438 V: DimsAddr, DestTy: Builder.getPtrTy());
5439 Value *P = Builder.CreateConstInBoundsGEP2_32(
5440 Ty: ArrayType::get(ElementType: Builder.getPtrTy(), NumElements: Info.NumberOfPtrs),
5441 Ptr: Info.RTArgs.PointersArray, Idx0: 0, Idx1: I);
5442 Builder.CreateAlignedStore(
5443 Val: DAddr, Ptr: P, Align: M.getDataLayout().getPrefTypeAlign(Ty: Builder.getPtrTy()));
5444 ++L;
5445 }
5446}
5447
5448void OpenMPIRBuilder::emitOffloadingArrays(
5449 InsertPointTy AllocaIP, InsertPointTy CodeGenIP, MapInfosTy &CombinedInfo,
5450 TargetDataInfo &Info, bool IsNonContiguous,
5451 function_ref<void(unsigned int, Value *)> DeviceAddrCB,
5452 function_ref<Value *(unsigned int)> CustomMapperCB) {
5453
5454 // Reset the array information.
5455 Info.clearArrayInfo();
5456 Info.NumberOfPtrs = CombinedInfo.BasePointers.size();
5457
5458 if (Info.NumberOfPtrs == 0)
5459 return;
5460
5461 Builder.restoreIP(IP: AllocaIP);
5462 // Detect if we have any capture size requiring runtime evaluation of the
5463 // size so that a constant array could be eventually used.
5464 ArrayType *PointerArrayType =
5465 ArrayType::get(ElementType: Builder.getPtrTy(), NumElements: Info.NumberOfPtrs);
5466
5467 Info.RTArgs.BasePointersArray = Builder.CreateAlloca(
5468 Ty: PointerArrayType, /* ArraySize = */ nullptr, Name: ".offload_baseptrs");
5469
5470 Info.RTArgs.PointersArray = Builder.CreateAlloca(
5471 Ty: PointerArrayType, /* ArraySize = */ nullptr, Name: ".offload_ptrs");
5472 AllocaInst *MappersArray = Builder.CreateAlloca(
5473 Ty: PointerArrayType, /* ArraySize = */ nullptr, Name: ".offload_mappers");
5474 Info.RTArgs.MappersArray = MappersArray;
5475
5476 // If we don't have any VLA types or other types that require runtime
5477 // evaluation, we can use a constant array for the map sizes, otherwise we
5478 // need to fill up the arrays as we do for the pointers.
5479 Type *Int64Ty = Builder.getInt64Ty();
5480 SmallVector<Constant *> ConstSizes(CombinedInfo.Sizes.size(),
5481 ConstantInt::get(Ty: Int64Ty, V: 0));
5482 SmallBitVector RuntimeSizes(CombinedInfo.Sizes.size());
5483 for (unsigned I = 0, E = CombinedInfo.Sizes.size(); I < E; ++I) {
5484 if (auto *CI = dyn_cast<Constant>(Val: CombinedInfo.Sizes[I])) {
5485 if (!isa<ConstantExpr>(Val: CI) && !isa<GlobalValue>(Val: CI)) {
5486 if (IsNonContiguous &&
5487 static_cast<std::underlying_type_t<OpenMPOffloadMappingFlags>>(
5488 CombinedInfo.Types[I] &
5489 OpenMPOffloadMappingFlags::OMP_MAP_NON_CONTIG))
5490 ConstSizes[I] =
5491 ConstantInt::get(Ty: Int64Ty, V: CombinedInfo.NonContigInfo.Dims[I]);
5492 else
5493 ConstSizes[I] = CI;
5494 continue;
5495 }
5496 }
5497 RuntimeSizes.set(I);
5498 }
5499
5500 if (RuntimeSizes.all()) {
5501 ArrayType *SizeArrayType = ArrayType::get(ElementType: Int64Ty, NumElements: Info.NumberOfPtrs);
5502 Info.RTArgs.SizesArray = Builder.CreateAlloca(
5503 Ty: SizeArrayType, /* ArraySize = */ nullptr, Name: ".offload_sizes");
5504 Builder.restoreIP(IP: CodeGenIP);
5505 } else {
5506 auto *SizesArrayInit = ConstantArray::get(
5507 T: ArrayType::get(ElementType: Int64Ty, NumElements: ConstSizes.size()), V: ConstSizes);
5508 std::string Name = createPlatformSpecificName(Parts: {"offload_sizes"});
5509 auto *SizesArrayGbl =
5510 new GlobalVariable(M, SizesArrayInit->getType(), /*isConstant=*/true,
5511 GlobalValue::PrivateLinkage, SizesArrayInit, Name);
5512 SizesArrayGbl->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5513
5514 if (!RuntimeSizes.any()) {
5515 Info.RTArgs.SizesArray = SizesArrayGbl;
5516 } else {
5517 unsigned IndexSize = M.getDataLayout().getIndexSizeInBits(AS: 0);
5518 Align OffloadSizeAlign = M.getDataLayout().getABIIntegerTypeAlignment(BitWidth: 64);
5519 ArrayType *SizeArrayType = ArrayType::get(ElementType: Int64Ty, NumElements: Info.NumberOfPtrs);
5520 AllocaInst *Buffer = Builder.CreateAlloca(
5521 Ty: SizeArrayType, /* ArraySize = */ nullptr, Name: ".offload_sizes");
5522 Buffer->setAlignment(OffloadSizeAlign);
5523 Builder.restoreIP(IP: CodeGenIP);
5524 Builder.CreateMemCpy(
5525 Dst: Buffer, DstAlign: M.getDataLayout().getPrefTypeAlign(Ty: Buffer->getType()),
5526 Src: SizesArrayGbl, SrcAlign: OffloadSizeAlign,
5527 Size: Builder.getIntN(
5528 N: IndexSize,
5529 C: Buffer->getAllocationSize(DL: M.getDataLayout())->getFixedValue()));
5530
5531 Info.RTArgs.SizesArray = Buffer;
5532 }
5533 Builder.restoreIP(IP: CodeGenIP);
5534 }
5535
5536 // The map types are always constant so we don't need to generate code to
5537 // fill arrays. Instead, we create an array constant.
5538 SmallVector<uint64_t, 4> Mapping;
5539 for (auto mapFlag : CombinedInfo.Types)
5540 Mapping.push_back(
5541 Elt: static_cast<std::underlying_type_t<OpenMPOffloadMappingFlags>>(
5542 mapFlag));
5543 std::string MaptypesName = createPlatformSpecificName(Parts: {"offload_maptypes"});
5544 auto *MapTypesArrayGbl = createOffloadMaptypes(Mappings&: Mapping, VarName: MaptypesName);
5545 Info.RTArgs.MapTypesArray = MapTypesArrayGbl;
5546
5547 // The information types are only built if provided.
5548 if (!CombinedInfo.Names.empty()) {
5549 std::string MapnamesName = createPlatformSpecificName(Parts: {"offload_mapnames"});
5550 auto *MapNamesArrayGbl =
5551 createOffloadMapnames(Names&: CombinedInfo.Names, VarName: MapnamesName);
5552 Info.RTArgs.MapNamesArray = MapNamesArrayGbl;
5553 } else {
5554 Info.RTArgs.MapNamesArray =
5555 Constant::getNullValue(Ty: PointerType::getUnqual(C&: Builder.getContext()));
5556 }
5557
5558 // If there's a present map type modifier, it must not be applied to the end
5559 // of a region, so generate a separate map type array in that case.
5560 if (Info.separateBeginEndCalls()) {
5561 bool EndMapTypesDiffer = false;
5562 for (uint64_t &Type : Mapping) {
5563 if (Type & static_cast<std::underlying_type_t<OpenMPOffloadMappingFlags>>(
5564 OpenMPOffloadMappingFlags::OMP_MAP_PRESENT)) {
5565 Type &= ~static_cast<std::underlying_type_t<OpenMPOffloadMappingFlags>>(
5566 OpenMPOffloadMappingFlags::OMP_MAP_PRESENT);
5567 EndMapTypesDiffer = true;
5568 }
5569 }
5570 if (EndMapTypesDiffer) {
5571 MapTypesArrayGbl = createOffloadMaptypes(Mappings&: Mapping, VarName: MaptypesName);
5572 Info.RTArgs.MapTypesArrayEnd = MapTypesArrayGbl;
5573 }
5574 }
5575
5576 PointerType *PtrTy = Builder.getPtrTy();
5577 for (unsigned I = 0; I < Info.NumberOfPtrs; ++I) {
5578 Value *BPVal = CombinedInfo.BasePointers[I];
5579 Value *BP = Builder.CreateConstInBoundsGEP2_32(
5580 Ty: ArrayType::get(ElementType: PtrTy, NumElements: Info.NumberOfPtrs), Ptr: Info.RTArgs.BasePointersArray,
5581 Idx0: 0, Idx1: I);
5582 Builder.CreateAlignedStore(Val: BPVal, Ptr: BP,
5583 Align: M.getDataLayout().getPrefTypeAlign(Ty: PtrTy));
5584
5585 if (Info.requiresDevicePointerInfo()) {
5586 if (CombinedInfo.DevicePointers[I] == DeviceInfoTy::Pointer) {
5587 CodeGenIP = Builder.saveIP();
5588 Builder.restoreIP(IP: AllocaIP);
5589 Info.DevicePtrInfoMap[BPVal] = {BP, Builder.CreateAlloca(Ty: PtrTy)};
5590 Builder.restoreIP(IP: CodeGenIP);
5591 if (DeviceAddrCB)
5592 DeviceAddrCB(I, Info.DevicePtrInfoMap[BPVal].second);
5593 } else if (CombinedInfo.DevicePointers[I] == DeviceInfoTy::Address) {
5594 Info.DevicePtrInfoMap[BPVal] = {BP, BP};
5595 if (DeviceAddrCB)
5596 DeviceAddrCB(I, BP);
5597 }
5598 }
5599
5600 Value *PVal = CombinedInfo.Pointers[I];
5601 Value *P = Builder.CreateConstInBoundsGEP2_32(
5602 Ty: ArrayType::get(ElementType: PtrTy, NumElements: Info.NumberOfPtrs), Ptr: Info.RTArgs.PointersArray, Idx0: 0,
5603 Idx1: I);
5604 // TODO: Check alignment correct.
5605 Builder.CreateAlignedStore(Val: PVal, Ptr: P,
5606 Align: M.getDataLayout().getPrefTypeAlign(Ty: PtrTy));
5607
5608 if (RuntimeSizes.test(Idx: I)) {
5609 Value *S = Builder.CreateConstInBoundsGEP2_32(
5610 Ty: ArrayType::get(ElementType: Int64Ty, NumElements: Info.NumberOfPtrs), Ptr: Info.RTArgs.SizesArray,
5611 /*Idx0=*/0,
5612 /*Idx1=*/I);
5613 Builder.CreateAlignedStore(Val: Builder.CreateIntCast(V: CombinedInfo.Sizes[I],
5614 DestTy: Int64Ty,
5615 /*isSigned=*/true),
5616 Ptr: S, Align: M.getDataLayout().getPrefTypeAlign(Ty: PtrTy));
5617 }
5618 // Fill up the mapper array.
5619 unsigned IndexSize = M.getDataLayout().getIndexSizeInBits(AS: 0);
5620 Value *MFunc = ConstantPointerNull::get(T: PtrTy);
5621 if (CustomMapperCB)
5622 if (Value *CustomMFunc = CustomMapperCB(I))
5623 MFunc = Builder.CreatePointerCast(V: CustomMFunc, DestTy: PtrTy);
5624 Value *MAddr = Builder.CreateInBoundsGEP(
5625 Ty: MappersArray->getAllocatedType(), Ptr: MappersArray,
5626 IdxList: {Builder.getIntN(N: IndexSize, C: 0), Builder.getIntN(N: IndexSize, C: I)});
5627 Builder.CreateAlignedStore(
5628 Val: MFunc, Ptr: MAddr, Align: M.getDataLayout().getPrefTypeAlign(Ty: MAddr->getType()));
5629 }
5630
5631 if (!IsNonContiguous || CombinedInfo.NonContigInfo.Offsets.empty() ||
5632 Info.NumberOfPtrs == 0)
5633 return;
5634 emitNonContiguousDescriptor(AllocaIP, CodeGenIP, CombinedInfo, Info);
5635}
5636
5637void OpenMPIRBuilder::emitBranch(BasicBlock *Target) {
5638 BasicBlock *CurBB = Builder.GetInsertBlock();
5639
5640 if (!CurBB || CurBB->getTerminator()) {
5641 // If there is no insert point or the previous block is already
5642 // terminated, don't touch it.
5643 } else {
5644 // Otherwise, create a fall-through branch.
5645 Builder.CreateBr(Dest: Target);
5646 }
5647
5648 Builder.ClearInsertionPoint();
5649}
5650
5651void OpenMPIRBuilder::emitBlock(BasicBlock *BB, Function *CurFn,
5652 bool IsFinished) {
5653 BasicBlock *CurBB = Builder.GetInsertBlock();
5654
5655 // Fall out of the current block (if necessary).
5656 emitBranch(Target: BB);
5657
5658 if (IsFinished && BB->use_empty()) {
5659 BB->eraseFromParent();
5660 return;
5661 }
5662
5663 // Place the block after the current block, if possible, or else at
5664 // the end of the function.
5665 if (CurBB && CurBB->getParent())
5666 CurFn->insert(Position: std::next(x: CurBB->getIterator()), BB);
5667 else
5668 CurFn->insert(Position: CurFn->end(), BB);
5669 Builder.SetInsertPoint(BB);
5670}
5671
5672void OpenMPIRBuilder::emitIfClause(Value *Cond, BodyGenCallbackTy ThenGen,
5673 BodyGenCallbackTy ElseGen,
5674 InsertPointTy AllocaIP) {
5675 // If the condition constant folds and can be elided, try to avoid emitting
5676 // the condition and the dead arm of the if/else.
5677 if (auto *CI = dyn_cast<ConstantInt>(Val: Cond)) {
5678 auto CondConstant = CI->getSExtValue();
5679 if (CondConstant)
5680 ThenGen(AllocaIP, Builder.saveIP());
5681 else
5682 ElseGen(AllocaIP, Builder.saveIP());
5683 return;
5684 }
5685
5686 Function *CurFn = Builder.GetInsertBlock()->getParent();
5687
5688 // Otherwise, the condition did not fold, or we couldn't elide it. Just
5689 // emit the conditional branch.
5690 BasicBlock *ThenBlock = BasicBlock::Create(Context&: M.getContext(), Name: "omp_if.then");
5691 BasicBlock *ElseBlock = BasicBlock::Create(Context&: M.getContext(), Name: "omp_if.else");
5692 BasicBlock *ContBlock = BasicBlock::Create(Context&: M.getContext(), Name: "omp_if.end");
5693 Builder.CreateCondBr(Cond, True: ThenBlock, False: ElseBlock);
5694 // Emit the 'then' code.
5695 emitBlock(BB: ThenBlock, CurFn);
5696 ThenGen(AllocaIP, Builder.saveIP());
5697 emitBranch(Target: ContBlock);
5698 // Emit the 'else' code if present.
5699 // There is no need to emit line number for unconditional branch.
5700 emitBlock(BB: ElseBlock, CurFn);
5701 ElseGen(AllocaIP, Builder.saveIP());
5702 // There is no need to emit line number for unconditional branch.
5703 emitBranch(Target: ContBlock);
5704 // Emit the continuation block for code after the if.
5705 emitBlock(BB: ContBlock, CurFn, /*IsFinished=*/true);
5706}
5707
5708bool OpenMPIRBuilder::checkAndEmitFlushAfterAtomic(
5709 const LocationDescription &Loc, llvm::AtomicOrdering AO, AtomicKind AK) {
5710 assert(!(AO == AtomicOrdering::NotAtomic ||
5711 AO == llvm::AtomicOrdering::Unordered) &&
5712 "Unexpected Atomic Ordering.");
5713
5714 bool Flush = false;
5715 llvm::AtomicOrdering FlushAO = AtomicOrdering::Monotonic;
5716
5717 switch (AK) {
5718 case Read:
5719 if (AO == AtomicOrdering::Acquire || AO == AtomicOrdering::AcquireRelease ||
5720 AO == AtomicOrdering::SequentiallyConsistent) {
5721 FlushAO = AtomicOrdering::Acquire;
5722 Flush = true;
5723 }
5724 break;
5725 case Write:
5726 case Compare:
5727 case Update:
5728 if (AO == AtomicOrdering::Release || AO == AtomicOrdering::AcquireRelease ||
5729 AO == AtomicOrdering::SequentiallyConsistent) {
5730 FlushAO = AtomicOrdering::Release;
5731 Flush = true;
5732 }
5733 break;
5734 case Capture:
5735 switch (AO) {
5736 case AtomicOrdering::Acquire:
5737 FlushAO = AtomicOrdering::Acquire;
5738 Flush = true;
5739 break;
5740 case AtomicOrdering::Release:
5741 FlushAO = AtomicOrdering::Release;
5742 Flush = true;
5743 break;
5744 case AtomicOrdering::AcquireRelease:
5745 case AtomicOrdering::SequentiallyConsistent:
5746 FlushAO = AtomicOrdering::AcquireRelease;
5747 Flush = true;
5748 break;
5749 default:
5750 // do nothing - leave silently.
5751 break;
5752 }
5753 }
5754
5755 if (Flush) {
5756 // Currently Flush RT call still doesn't take memory_ordering, so for when
5757 // that happens, this tries to do the resolution of which atomic ordering
5758 // to use with but issue the flush call
5759 // TODO: pass `FlushAO` after memory ordering support is added
5760 (void)FlushAO;
5761 emitFlush(Loc);
5762 }
5763
5764 // for AO == AtomicOrdering::Monotonic and all other case combinations
5765 // do nothing
5766 return Flush;
5767}
5768
5769OpenMPIRBuilder::InsertPointTy
5770OpenMPIRBuilder::createAtomicRead(const LocationDescription &Loc,
5771 AtomicOpValue &X, AtomicOpValue &V,
5772 AtomicOrdering AO) {
5773 if (!updateToLocation(Loc))
5774 return Loc.IP;
5775
5776 assert(X.Var->getType()->isPointerTy() &&
5777 "OMP Atomic expects a pointer to target memory");
5778 Type *XElemTy = X.ElemTy;
5779 assert((XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() ||
5780 XElemTy->isPointerTy()) &&
5781 "OMP atomic read expected a scalar type");
5782
5783 Value *XRead = nullptr;
5784
5785 if (XElemTy->isIntegerTy()) {
5786 LoadInst *XLD =
5787 Builder.CreateLoad(Ty: XElemTy, Ptr: X.Var, isVolatile: X.IsVolatile, Name: "omp.atomic.read");
5788 XLD->setAtomic(Ordering: AO);
5789 XRead = cast<Value>(Val: XLD);
5790 } else {
5791 // We need to perform atomic op as integer
5792 IntegerType *IntCastTy =
5793 IntegerType::get(C&: M.getContext(), NumBits: XElemTy->getScalarSizeInBits());
5794 LoadInst *XLoad =
5795 Builder.CreateLoad(Ty: IntCastTy, Ptr: X.Var, isVolatile: X.IsVolatile, Name: "omp.atomic.load");
5796 XLoad->setAtomic(Ordering: AO);
5797 if (XElemTy->isFloatingPointTy()) {
5798 XRead = Builder.CreateBitCast(V: XLoad, DestTy: XElemTy, Name: "atomic.flt.cast");
5799 } else {
5800 XRead = Builder.CreateIntToPtr(V: XLoad, DestTy: XElemTy, Name: "atomic.ptr.cast");
5801 }
5802 }
5803 checkAndEmitFlushAfterAtomic(Loc, AO, AK: AtomicKind::Read);
5804 Builder.CreateStore(Val: XRead, Ptr: V.Var, isVolatile: V.IsVolatile);
5805 return Builder.saveIP();
5806}
5807
5808OpenMPIRBuilder::InsertPointTy
5809OpenMPIRBuilder::createAtomicWrite(const LocationDescription &Loc,
5810 AtomicOpValue &X, Value *Expr,
5811 AtomicOrdering AO) {
5812 if (!updateToLocation(Loc))
5813 return Loc.IP;
5814
5815 assert(X.Var->getType()->isPointerTy() &&
5816 "OMP Atomic expects a pointer to target memory");
5817 Type *XElemTy = X.ElemTy;
5818 assert((XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() ||
5819 XElemTy->isPointerTy()) &&
5820 "OMP atomic write expected a scalar type");
5821
5822 if (XElemTy->isIntegerTy()) {
5823 StoreInst *XSt = Builder.CreateStore(Val: Expr, Ptr: X.Var, isVolatile: X.IsVolatile);
5824 XSt->setAtomic(Ordering: AO);
5825 } else {
5826 // We need to bitcast and perform atomic op as integers
5827 IntegerType *IntCastTy =
5828 IntegerType::get(C&: M.getContext(), NumBits: XElemTy->getScalarSizeInBits());
5829 Value *ExprCast =
5830 Builder.CreateBitCast(V: Expr, DestTy: IntCastTy, Name: "atomic.src.int.cast");
5831 StoreInst *XSt = Builder.CreateStore(Val: ExprCast, Ptr: X.Var, isVolatile: X.IsVolatile);
5832 XSt->setAtomic(Ordering: AO);
5833 }
5834
5835 checkAndEmitFlushAfterAtomic(Loc, AO, AK: AtomicKind::Write);
5836 return Builder.saveIP();
5837}
5838
5839OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createAtomicUpdate(
5840 const LocationDescription &Loc, InsertPointTy AllocaIP, AtomicOpValue &X,
5841 Value *Expr, AtomicOrdering AO, AtomicRMWInst::BinOp RMWOp,
5842 AtomicUpdateCallbackTy &UpdateOp, bool IsXBinopExpr) {
5843 assert(!isConflictIP(Loc.IP, AllocaIP) && "IPs must not be ambiguous");
5844 if (!updateToLocation(Loc))
5845 return Loc.IP;
5846
5847 LLVM_DEBUG({
5848 Type *XTy = X.Var->getType();
5849 assert(XTy->isPointerTy() &&
5850 "OMP Atomic expects a pointer to target memory");
5851 Type *XElemTy = X.ElemTy;
5852 assert((XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() ||
5853 XElemTy->isPointerTy()) &&
5854 "OMP atomic update expected a scalar type");
5855 assert((RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) &&
5856 (RMWOp != AtomicRMWInst::UMax) && (RMWOp != AtomicRMWInst::UMin) &&
5857 "OpenMP atomic does not support LT or GT operations");
5858 });
5859
5860 emitAtomicUpdate(AllocaIP, X: X.Var, XElemTy: X.ElemTy, Expr, AO, RMWOp, UpdateOp,
5861 VolatileX: X.IsVolatile, IsXBinopExpr);
5862 checkAndEmitFlushAfterAtomic(Loc, AO, AK: AtomicKind::Update);
5863 return Builder.saveIP();
5864}
5865
5866// FIXME: Duplicating AtomicExpand
5867Value *OpenMPIRBuilder::emitRMWOpAsInstruction(Value *Src1, Value *Src2,
5868 AtomicRMWInst::BinOp RMWOp) {
5869 switch (RMWOp) {
5870 case AtomicRMWInst::Add:
5871 return Builder.CreateAdd(LHS: Src1, RHS: Src2);
5872 case AtomicRMWInst::Sub:
5873 return Builder.CreateSub(LHS: Src1, RHS: Src2);
5874 case AtomicRMWInst::And:
5875 return Builder.CreateAnd(LHS: Src1, RHS: Src2);
5876 case AtomicRMWInst::Nand:
5877 return Builder.CreateNeg(V: Builder.CreateAnd(LHS: Src1, RHS: Src2));
5878 case AtomicRMWInst::Or:
5879 return Builder.CreateOr(LHS: Src1, RHS: Src2);
5880 case AtomicRMWInst::Xor:
5881 return Builder.CreateXor(LHS: Src1, RHS: Src2);
5882 case AtomicRMWInst::Xchg:
5883 case AtomicRMWInst::FAdd:
5884 case AtomicRMWInst::FSub:
5885 case AtomicRMWInst::BAD_BINOP:
5886 case AtomicRMWInst::Max:
5887 case AtomicRMWInst::Min:
5888 case AtomicRMWInst::UMax:
5889 case AtomicRMWInst::UMin:
5890 case AtomicRMWInst::FMax:
5891 case AtomicRMWInst::FMin:
5892 case AtomicRMWInst::UIncWrap:
5893 case AtomicRMWInst::UDecWrap:
5894 llvm_unreachable("Unsupported atomic update operation");
5895 }
5896 llvm_unreachable("Unsupported atomic update operation");
5897}
5898
5899std::pair<Value *, Value *> OpenMPIRBuilder::emitAtomicUpdate(
5900 InsertPointTy AllocaIP, Value *X, Type *XElemTy, Value *Expr,
5901 AtomicOrdering AO, AtomicRMWInst::BinOp RMWOp,
5902 AtomicUpdateCallbackTy &UpdateOp, bool VolatileX, bool IsXBinopExpr) {
5903 // TODO: handle the case where XElemTy is not byte-sized or not a power of 2
5904 // or a complex datatype.
5905 bool emitRMWOp = false;
5906 switch (RMWOp) {
5907 case AtomicRMWInst::Add:
5908 case AtomicRMWInst::And:
5909 case AtomicRMWInst::Nand:
5910 case AtomicRMWInst::Or:
5911 case AtomicRMWInst::Xor:
5912 case AtomicRMWInst::Xchg:
5913 emitRMWOp = XElemTy;
5914 break;
5915 case AtomicRMWInst::Sub:
5916 emitRMWOp = (IsXBinopExpr && XElemTy);
5917 break;
5918 default:
5919 emitRMWOp = false;
5920 }
5921 emitRMWOp &= XElemTy->isIntegerTy();
5922
5923 std::pair<Value *, Value *> Res;
5924 if (emitRMWOp) {
5925 Res.first = Builder.CreateAtomicRMW(Op: RMWOp, Ptr: X, Val: Expr, Align: llvm::MaybeAlign(), Ordering: AO);
5926 // not needed except in case of postfix captures. Generate anyway for
5927 // consistency with the else part. Will be removed with any DCE pass.
5928 // AtomicRMWInst::Xchg does not have a coressponding instruction.
5929 if (RMWOp == AtomicRMWInst::Xchg)
5930 Res.second = Res.first;
5931 else
5932 Res.second = emitRMWOpAsInstruction(Src1: Res.first, Src2: Expr, RMWOp);
5933 } else {
5934 IntegerType *IntCastTy =
5935 IntegerType::get(C&: M.getContext(), NumBits: XElemTy->getScalarSizeInBits());
5936 LoadInst *OldVal =
5937 Builder.CreateLoad(Ty: IntCastTy, Ptr: X, Name: X->getName() + ".atomic.load");
5938 OldVal->setAtomic(Ordering: AO);
5939 // CurBB
5940 // | /---\
5941 // ContBB |
5942 // | \---/
5943 // ExitBB
5944 BasicBlock *CurBB = Builder.GetInsertBlock();
5945 Instruction *CurBBTI = CurBB->getTerminator();
5946 CurBBTI = CurBBTI ? CurBBTI : Builder.CreateUnreachable();
5947 BasicBlock *ExitBB =
5948 CurBB->splitBasicBlock(I: CurBBTI, BBName: X->getName() + ".atomic.exit");
5949 BasicBlock *ContBB = CurBB->splitBasicBlock(I: CurBB->getTerminator(),
5950 BBName: X->getName() + ".atomic.cont");
5951 ContBB->getTerminator()->eraseFromParent();
5952 Builder.restoreIP(IP: AllocaIP);
5953 AllocaInst *NewAtomicAddr = Builder.CreateAlloca(Ty: XElemTy);
5954 NewAtomicAddr->setName(X->getName() + "x.new.val");
5955 Builder.SetInsertPoint(ContBB);
5956 llvm::PHINode *PHI = Builder.CreatePHI(Ty: OldVal->getType(), NumReservedValues: 2);
5957 PHI->addIncoming(V: OldVal, BB: CurBB);
5958 bool IsIntTy = XElemTy->isIntegerTy();
5959 Value *OldExprVal = PHI;
5960 if (!IsIntTy) {
5961 if (XElemTy->isFloatingPointTy()) {
5962 OldExprVal = Builder.CreateBitCast(V: PHI, DestTy: XElemTy,
5963 Name: X->getName() + ".atomic.fltCast");
5964 } else {
5965 OldExprVal = Builder.CreateIntToPtr(V: PHI, DestTy: XElemTy,
5966 Name: X->getName() + ".atomic.ptrCast");
5967 }
5968 }
5969
5970 Value *Upd = UpdateOp(OldExprVal, Builder);
5971 Builder.CreateStore(Val: Upd, Ptr: NewAtomicAddr);
5972 LoadInst *DesiredVal = Builder.CreateLoad(Ty: IntCastTy, Ptr: NewAtomicAddr);
5973 AtomicOrdering Failure =
5974 llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering: AO);
5975 AtomicCmpXchgInst *Result = Builder.CreateAtomicCmpXchg(
5976 Ptr: X, Cmp: PHI, New: DesiredVal, Align: llvm::MaybeAlign(), SuccessOrdering: AO, FailureOrdering: Failure);
5977 Result->setVolatile(VolatileX);
5978 Value *PreviousVal = Builder.CreateExtractValue(Agg: Result, /*Idxs=*/0);
5979 Value *SuccessFailureVal = Builder.CreateExtractValue(Agg: Result, /*Idxs=*/1);
5980 PHI->addIncoming(V: PreviousVal, BB: Builder.GetInsertBlock());
5981 Builder.CreateCondBr(Cond: SuccessFailureVal, True: ExitBB, False: ContBB);
5982
5983 Res.first = OldExprVal;
5984 Res.second = Upd;
5985
5986 // set Insertion point in exit block
5987 if (UnreachableInst *ExitTI =
5988 dyn_cast<UnreachableInst>(Val: ExitBB->getTerminator())) {
5989 CurBBTI->eraseFromParent();
5990 Builder.SetInsertPoint(ExitBB);
5991 } else {
5992 Builder.SetInsertPoint(ExitTI);
5993 }
5994 }
5995
5996 return Res;
5997}
5998
5999OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createAtomicCapture(
6000 const LocationDescription &Loc, InsertPointTy AllocaIP, AtomicOpValue &X,
6001 AtomicOpValue &V, Value *Expr, AtomicOrdering AO,
6002 AtomicRMWInst::BinOp RMWOp, AtomicUpdateCallbackTy &UpdateOp,
6003 bool UpdateExpr, bool IsPostfixUpdate, bool IsXBinopExpr) {
6004 if (!updateToLocation(Loc))
6005 return Loc.IP;
6006
6007 LLVM_DEBUG({
6008 Type *XTy = X.Var->getType();
6009 assert(XTy->isPointerTy() &&
6010 "OMP Atomic expects a pointer to target memory");
6011 Type *XElemTy = X.ElemTy;
6012 assert((XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() ||
6013 XElemTy->isPointerTy()) &&
6014 "OMP atomic capture expected a scalar type");
6015 assert((RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) &&
6016 "OpenMP atomic does not support LT or GT operations");
6017 });
6018
6019 // If UpdateExpr is 'x' updated with some `expr` not based on 'x',
6020 // 'x' is simply atomically rewritten with 'expr'.
6021 AtomicRMWInst::BinOp AtomicOp = (UpdateExpr ? RMWOp : AtomicRMWInst::Xchg);
6022 std::pair<Value *, Value *> Result =
6023 emitAtomicUpdate(AllocaIP, X: X.Var, XElemTy: X.ElemTy, Expr, AO, RMWOp: AtomicOp, UpdateOp,
6024 VolatileX: X.IsVolatile, IsXBinopExpr);
6025
6026 Value *CapturedVal = (IsPostfixUpdate ? Result.first : Result.second);
6027 Builder.CreateStore(Val: CapturedVal, Ptr: V.Var, isVolatile: V.IsVolatile);
6028
6029 checkAndEmitFlushAfterAtomic(Loc, AO, AK: AtomicKind::Capture);
6030 return Builder.saveIP();
6031}
6032
6033OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createAtomicCompare(
6034 const LocationDescription &Loc, AtomicOpValue &X, AtomicOpValue &V,
6035 AtomicOpValue &R, Value *E, Value *D, AtomicOrdering AO,
6036 omp::OMPAtomicCompareOp Op, bool IsXBinopExpr, bool IsPostfixUpdate,
6037 bool IsFailOnly) {
6038
6039 AtomicOrdering Failure = AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering: AO);
6040 return createAtomicCompare(Loc, X, V, R, E, D, AO, Op, IsXBinopExpr,
6041 IsPostfixUpdate, IsFailOnly, Failure);
6042}
6043
6044OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createAtomicCompare(
6045 const LocationDescription &Loc, AtomicOpValue &X, AtomicOpValue &V,
6046 AtomicOpValue &R, Value *E, Value *D, AtomicOrdering AO,
6047 omp::OMPAtomicCompareOp Op, bool IsXBinopExpr, bool IsPostfixUpdate,
6048 bool IsFailOnly, AtomicOrdering Failure) {
6049
6050 if (!updateToLocation(Loc))
6051 return Loc.IP;
6052
6053 assert(X.Var->getType()->isPointerTy() &&
6054 "OMP atomic expects a pointer to target memory");
6055 // compare capture
6056 if (V.Var) {
6057 assert(V.Var->getType()->isPointerTy() && "v.var must be of pointer type");
6058 assert(V.ElemTy == X.ElemTy && "x and v must be of same type");
6059 }
6060
6061 bool IsInteger = E->getType()->isIntegerTy();
6062
6063 if (Op == OMPAtomicCompareOp::EQ) {
6064 AtomicCmpXchgInst *Result = nullptr;
6065 if (!IsInteger) {
6066 IntegerType *IntCastTy =
6067 IntegerType::get(C&: M.getContext(), NumBits: X.ElemTy->getScalarSizeInBits());
6068 Value *EBCast = Builder.CreateBitCast(V: E, DestTy: IntCastTy);
6069 Value *DBCast = Builder.CreateBitCast(V: D, DestTy: IntCastTy);
6070 Result = Builder.CreateAtomicCmpXchg(Ptr: X.Var, Cmp: EBCast, New: DBCast, Align: MaybeAlign(),
6071 SuccessOrdering: AO, FailureOrdering: Failure);
6072 } else {
6073 Result =
6074 Builder.CreateAtomicCmpXchg(Ptr: X.Var, Cmp: E, New: D, Align: MaybeAlign(), SuccessOrdering: AO, FailureOrdering: Failure);
6075 }
6076
6077 if (V.Var) {
6078 Value *OldValue = Builder.CreateExtractValue(Agg: Result, /*Idxs=*/0);
6079 if (!IsInteger)
6080 OldValue = Builder.CreateBitCast(V: OldValue, DestTy: X.ElemTy);
6081 assert(OldValue->getType() == V.ElemTy &&
6082 "OldValue and V must be of same type");
6083 if (IsPostfixUpdate) {
6084 Builder.CreateStore(Val: OldValue, Ptr: V.Var, isVolatile: V.IsVolatile);
6085 } else {
6086 Value *SuccessOrFail = Builder.CreateExtractValue(Agg: Result, /*Idxs=*/1);
6087 if (IsFailOnly) {
6088 // CurBB----
6089 // | |
6090 // v |
6091 // ContBB |
6092 // | |
6093 // v |
6094 // ExitBB <-
6095 //
6096 // where ContBB only contains the store of old value to 'v'.
6097 BasicBlock *CurBB = Builder.GetInsertBlock();
6098 Instruction *CurBBTI = CurBB->getTerminator();
6099 CurBBTI = CurBBTI ? CurBBTI : Builder.CreateUnreachable();
6100 BasicBlock *ExitBB = CurBB->splitBasicBlock(
6101 I: CurBBTI, BBName: X.Var->getName() + ".atomic.exit");
6102 BasicBlock *ContBB = CurBB->splitBasicBlock(
6103 I: CurBB->getTerminator(), BBName: X.Var->getName() + ".atomic.cont");
6104 ContBB->getTerminator()->eraseFromParent();
6105 CurBB->getTerminator()->eraseFromParent();
6106
6107 Builder.CreateCondBr(Cond: SuccessOrFail, True: ExitBB, False: ContBB);
6108
6109 Builder.SetInsertPoint(ContBB);
6110 Builder.CreateStore(Val: OldValue, Ptr: V.Var);
6111 Builder.CreateBr(Dest: ExitBB);
6112
6113 if (UnreachableInst *ExitTI =
6114 dyn_cast<UnreachableInst>(Val: ExitBB->getTerminator())) {
6115 CurBBTI->eraseFromParent();
6116 Builder.SetInsertPoint(ExitBB);
6117 } else {
6118 Builder.SetInsertPoint(ExitTI);
6119 }
6120 } else {
6121 Value *CapturedValue =
6122 Builder.CreateSelect(C: SuccessOrFail, True: E, False: OldValue);
6123 Builder.CreateStore(Val: CapturedValue, Ptr: V.Var, isVolatile: V.IsVolatile);
6124 }
6125 }
6126 }
6127 // The comparison result has to be stored.
6128 if (R.Var) {
6129 assert(R.Var->getType()->isPointerTy() &&
6130 "r.var must be of pointer type");
6131 assert(R.ElemTy->isIntegerTy() && "r must be of integral type");
6132
6133 Value *SuccessFailureVal = Builder.CreateExtractValue(Agg: Result, /*Idxs=*/1);
6134 Value *ResultCast = R.IsSigned
6135 ? Builder.CreateSExt(V: SuccessFailureVal, DestTy: R.ElemTy)
6136 : Builder.CreateZExt(V: SuccessFailureVal, DestTy: R.ElemTy);
6137 Builder.CreateStore(Val: ResultCast, Ptr: R.Var, isVolatile: R.IsVolatile);
6138 }
6139 } else {
6140 assert((Op == OMPAtomicCompareOp::MAX || Op == OMPAtomicCompareOp::MIN) &&
6141 "Op should be either max or min at this point");
6142 assert(!IsFailOnly && "IsFailOnly is only valid when the comparison is ==");
6143
6144 // Reverse the ordop as the OpenMP forms are different from LLVM forms.
6145 // Let's take max as example.
6146 // OpenMP form:
6147 // x = x > expr ? expr : x;
6148 // LLVM form:
6149 // *ptr = *ptr > val ? *ptr : val;
6150 // We need to transform to LLVM form.
6151 // x = x <= expr ? x : expr;
6152 AtomicRMWInst::BinOp NewOp;
6153 if (IsXBinopExpr) {
6154 if (IsInteger) {
6155 if (X.IsSigned)
6156 NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::Min
6157 : AtomicRMWInst::Max;
6158 else
6159 NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::UMin
6160 : AtomicRMWInst::UMax;
6161 } else {
6162 NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::FMin
6163 : AtomicRMWInst::FMax;
6164 }
6165 } else {
6166 if (IsInteger) {
6167 if (X.IsSigned)
6168 NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::Max
6169 : AtomicRMWInst::Min;
6170 else
6171 NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::UMax
6172 : AtomicRMWInst::UMin;
6173 } else {
6174 NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::FMax
6175 : AtomicRMWInst::FMin;
6176 }
6177 }
6178
6179 AtomicRMWInst *OldValue =
6180 Builder.CreateAtomicRMW(Op: NewOp, Ptr: X.Var, Val: E, Align: MaybeAlign(), Ordering: AO);
6181 if (V.Var) {
6182 Value *CapturedValue = nullptr;
6183 if (IsPostfixUpdate) {
6184 CapturedValue = OldValue;
6185 } else {
6186 CmpInst::Predicate Pred;
6187 switch (NewOp) {
6188 case AtomicRMWInst::Max:
6189 Pred = CmpInst::ICMP_SGT;
6190 break;
6191 case AtomicRMWInst::UMax:
6192 Pred = CmpInst::ICMP_UGT;
6193 break;
6194 case AtomicRMWInst::FMax:
6195 Pred = CmpInst::FCMP_OGT;
6196 break;
6197 case AtomicRMWInst::Min:
6198 Pred = CmpInst::ICMP_SLT;
6199 break;
6200 case AtomicRMWInst::UMin:
6201 Pred = CmpInst::ICMP_ULT;
6202 break;
6203 case AtomicRMWInst::FMin:
6204 Pred = CmpInst::FCMP_OLT;
6205 break;
6206 default:
6207 llvm_unreachable("unexpected comparison op");
6208 }
6209 Value *NonAtomicCmp = Builder.CreateCmp(Pred, LHS: OldValue, RHS: E);
6210 CapturedValue = Builder.CreateSelect(C: NonAtomicCmp, True: E, False: OldValue);
6211 }
6212 Builder.CreateStore(Val: CapturedValue, Ptr: V.Var, isVolatile: V.IsVolatile);
6213 }
6214 }
6215
6216 checkAndEmitFlushAfterAtomic(Loc, AO, AK: AtomicKind::Compare);
6217
6218 return Builder.saveIP();
6219}
6220
6221OpenMPIRBuilder::InsertPointTy
6222OpenMPIRBuilder::createTeams(const LocationDescription &Loc,
6223 BodyGenCallbackTy BodyGenCB, Value *NumTeamsLower,
6224 Value *NumTeamsUpper, Value *ThreadLimit,
6225 Value *IfExpr) {
6226 if (!updateToLocation(Loc))
6227 return InsertPointTy();
6228
6229 uint32_t SrcLocStrSize;
6230 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
6231 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
6232 Function *CurrentFunction = Builder.GetInsertBlock()->getParent();
6233
6234 // Outer allocation basicblock is the entry block of the current function.
6235 BasicBlock &OuterAllocaBB = CurrentFunction->getEntryBlock();
6236 if (&OuterAllocaBB == Builder.GetInsertBlock()) {
6237 BasicBlock *BodyBB = splitBB(Builder, /*CreateBranch=*/true, Name: "teams.entry");
6238 Builder.SetInsertPoint(TheBB: BodyBB, IP: BodyBB->begin());
6239 }
6240
6241 // The current basic block is split into four basic blocks. After outlining,
6242 // they will be mapped as follows:
6243 // ```
6244 // def current_fn() {
6245 // current_basic_block:
6246 // br label %teams.exit
6247 // teams.exit:
6248 // ; instructions after teams
6249 // }
6250 //
6251 // def outlined_fn() {
6252 // teams.alloca:
6253 // br label %teams.body
6254 // teams.body:
6255 // ; instructions within teams body
6256 // }
6257 // ```
6258 BasicBlock *ExitBB = splitBB(Builder, /*CreateBranch=*/true, Name: "teams.exit");
6259 BasicBlock *BodyBB = splitBB(Builder, /*CreateBranch=*/true, Name: "teams.body");
6260 BasicBlock *AllocaBB =
6261 splitBB(Builder, /*CreateBranch=*/true, Name: "teams.alloca");
6262
6263 bool SubClausesPresent =
6264 (NumTeamsLower || NumTeamsUpper || ThreadLimit || IfExpr);
6265 // Push num_teams
6266 if (!Config.isTargetDevice() && SubClausesPresent) {
6267 assert((NumTeamsLower == nullptr || NumTeamsUpper != nullptr) &&
6268 "if lowerbound is non-null, then upperbound must also be non-null "
6269 "for bounds on num_teams");
6270
6271 if (NumTeamsUpper == nullptr)
6272 NumTeamsUpper = Builder.getInt32(C: 0);
6273
6274 if (NumTeamsLower == nullptr)
6275 NumTeamsLower = NumTeamsUpper;
6276
6277 if (IfExpr) {
6278 assert(IfExpr->getType()->isIntegerTy() &&
6279 "argument to if clause must be an integer value");
6280
6281 // upper = ifexpr ? upper : 1
6282 if (IfExpr->getType() != Int1)
6283 IfExpr = Builder.CreateICmpNE(LHS: IfExpr,
6284 RHS: ConstantInt::get(Ty: IfExpr->getType(), V: 0));
6285 NumTeamsUpper = Builder.CreateSelect(
6286 C: IfExpr, True: NumTeamsUpper, False: Builder.getInt32(C: 1), Name: "numTeamsUpper");
6287
6288 // lower = ifexpr ? lower : 1
6289 NumTeamsLower = Builder.CreateSelect(
6290 C: IfExpr, True: NumTeamsLower, False: Builder.getInt32(C: 1), Name: "numTeamsLower");
6291 }
6292
6293 if (ThreadLimit == nullptr)
6294 ThreadLimit = Builder.getInt32(C: 0);
6295
6296 Value *ThreadNum = getOrCreateThreadID(Ident);
6297 Builder.CreateCall(
6298 Callee: getOrCreateRuntimeFunctionPtr(FnID: OMPRTL___kmpc_push_num_teams_51),
6299 Args: {Ident, ThreadNum, NumTeamsLower, NumTeamsUpper, ThreadLimit});
6300 }
6301 // Generate the body of teams.
6302 InsertPointTy AllocaIP(AllocaBB, AllocaBB->begin());
6303 InsertPointTy CodeGenIP(BodyBB, BodyBB->begin());
6304 BodyGenCB(AllocaIP, CodeGenIP);
6305
6306 OutlineInfo OI;
6307 OI.EntryBB = AllocaBB;
6308 OI.ExitBB = ExitBB;
6309 OI.OuterAllocaBB = &OuterAllocaBB;
6310
6311 // Insert fake values for global tid and bound tid.
6312 std::stack<Instruction *> ToBeDeleted;
6313 InsertPointTy OuterAllocaIP(&OuterAllocaBB, OuterAllocaBB.begin());
6314 OI.ExcludeArgsFromAggregate.push_back(Elt: createFakeIntVal(
6315 Builder, OuterAllocaIP, ToBeDeleted, InnerAllocaIP: AllocaIP, Name: "gid", AsPtr: true));
6316 OI.ExcludeArgsFromAggregate.push_back(Elt: createFakeIntVal(
6317 Builder, OuterAllocaIP, ToBeDeleted, InnerAllocaIP: AllocaIP, Name: "tid", AsPtr: true));
6318
6319 auto HostPostOutlineCB = [this, Ident,
6320 ToBeDeleted](Function &OutlinedFn) mutable {
6321 // The stale call instruction will be replaced with a new call instruction
6322 // for runtime call with the outlined function.
6323
6324 assert(OutlinedFn.getNumUses() == 1 &&
6325 "there must be a single user for the outlined function");
6326 CallInst *StaleCI = cast<CallInst>(Val: OutlinedFn.user_back());
6327 ToBeDeleted.push(x: StaleCI);
6328
6329 assert((OutlinedFn.arg_size() == 2 || OutlinedFn.arg_size() == 3) &&
6330 "Outlined function must have two or three arguments only");
6331
6332 bool HasShared = OutlinedFn.arg_size() == 3;
6333
6334 OutlinedFn.getArg(i: 0)->setName("global.tid.ptr");
6335 OutlinedFn.getArg(i: 1)->setName("bound.tid.ptr");
6336 if (HasShared)
6337 OutlinedFn.getArg(i: 2)->setName("data");
6338
6339 // Call to the runtime function for teams in the current function.
6340 assert(StaleCI && "Error while outlining - no CallInst user found for the "
6341 "outlined function.");
6342 Builder.SetInsertPoint(StaleCI);
6343 SmallVector<Value *> Args = {
6344 Ident, Builder.getInt32(C: StaleCI->arg_size() - 2), &OutlinedFn};
6345 if (HasShared)
6346 Args.push_back(Elt: StaleCI->getArgOperand(i: 2));
6347 Builder.CreateCall(Callee: getOrCreateRuntimeFunctionPtr(
6348 FnID: omp::RuntimeFunction::OMPRTL___kmpc_fork_teams),
6349 Args);
6350
6351 while (!ToBeDeleted.empty()) {
6352 ToBeDeleted.top()->eraseFromParent();
6353 ToBeDeleted.pop();
6354 }
6355 };
6356
6357 if (!Config.isTargetDevice())
6358 OI.PostOutlineCB = HostPostOutlineCB;
6359
6360 addOutlineInfo(OI: std::move(OI));
6361
6362 Builder.SetInsertPoint(TheBB: ExitBB, IP: ExitBB->begin());
6363
6364 return Builder.saveIP();
6365}
6366
6367GlobalVariable *
6368OpenMPIRBuilder::createOffloadMapnames(SmallVectorImpl<llvm::Constant *> &Names,
6369 std::string VarName) {
6370 llvm::Constant *MapNamesArrayInit = llvm::ConstantArray::get(
6371 T: llvm::ArrayType::get(ElementType: llvm::PointerType::getUnqual(C&: M.getContext()),
6372 NumElements: Names.size()),
6373 V: Names);
6374 auto *MapNamesArrayGlobal = new llvm::GlobalVariable(
6375 M, MapNamesArrayInit->getType(),
6376 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, MapNamesArrayInit,
6377 VarName);
6378 return MapNamesArrayGlobal;
6379}
6380
6381// Create all simple and struct types exposed by the runtime and remember
6382// the llvm::PointerTypes of them for easy access later.
6383void OpenMPIRBuilder::initializeTypes(Module &M) {
6384 LLVMContext &Ctx = M.getContext();
6385 StructType *T;
6386#define OMP_TYPE(VarName, InitValue) VarName = InitValue;
6387#define OMP_ARRAY_TYPE(VarName, ElemTy, ArraySize) \
6388 VarName##Ty = ArrayType::get(ElemTy, ArraySize); \
6389 VarName##PtrTy = PointerType::getUnqual(VarName##Ty);
6390#define OMP_FUNCTION_TYPE(VarName, IsVarArg, ReturnType, ...) \
6391 VarName = FunctionType::get(ReturnType, {__VA_ARGS__}, IsVarArg); \
6392 VarName##Ptr = PointerType::getUnqual(VarName);
6393#define OMP_STRUCT_TYPE(VarName, StructName, Packed, ...) \
6394 T = StructType::getTypeByName(Ctx, StructName); \
6395 if (!T) \
6396 T = StructType::create(Ctx, {__VA_ARGS__}, StructName, Packed); \
6397 VarName = T; \
6398 VarName##Ptr = PointerType::getUnqual(T);
6399#include "llvm/Frontend/OpenMP/OMPKinds.def"
6400}
6401
6402void OpenMPIRBuilder::OutlineInfo::collectBlocks(
6403 SmallPtrSetImpl<BasicBlock *> &BlockSet,
6404 SmallVectorImpl<BasicBlock *> &BlockVector) {
6405 SmallVector<BasicBlock *, 32> Worklist;
6406 BlockSet.insert(Ptr: EntryBB);
6407 BlockSet.insert(Ptr: ExitBB);
6408
6409 Worklist.push_back(Elt: EntryBB);
6410 while (!Worklist.empty()) {
6411 BasicBlock *BB = Worklist.pop_back_val();
6412 BlockVector.push_back(Elt: BB);
6413 for (BasicBlock *SuccBB : successors(BB))
6414 if (BlockSet.insert(Ptr: SuccBB).second)
6415 Worklist.push_back(Elt: SuccBB);
6416 }
6417}
6418
6419void OpenMPIRBuilder::createOffloadEntry(Constant *ID, Constant *Addr,
6420 uint64_t Size, int32_t Flags,
6421 GlobalValue::LinkageTypes,
6422 StringRef Name) {
6423 if (!Config.isGPU()) {
6424 llvm::offloading::emitOffloadingEntry(
6425 M, Addr: ID, Name: Name.empty() ? Addr->getName() : Name, Size, Flags, /*Data=*/0,
6426 SectionName: "omp_offloading_entries");
6427 return;
6428 }
6429 // TODO: Add support for global variables on the device after declare target
6430 // support.
6431 Function *Fn = dyn_cast<Function>(Val: Addr);
6432 if (!Fn)
6433 return;
6434
6435 Module &M = *(Fn->getParent());
6436 LLVMContext &Ctx = M.getContext();
6437
6438 // Get "nvvm.annotations" metadata node.
6439 NamedMDNode *MD = M.getOrInsertNamedMetadata(Name: "nvvm.annotations");
6440
6441 Metadata *MDVals[] = {
6442 ConstantAsMetadata::get(C: Fn), MDString::get(Context&: Ctx, Str: "kernel"),
6443 ConstantAsMetadata::get(C: ConstantInt::get(Ty: Type::getInt32Ty(C&: Ctx), V: 1))};
6444 // Append metadata to nvvm.annotations.
6445 MD->addOperand(M: MDNode::get(Context&: Ctx, MDs: MDVals));
6446
6447 // Add a function attribute for the kernel.
6448 Fn->addFnAttr(Attr: Attribute::get(Context&: Ctx, Kind: "kernel"));
6449 if (T.isAMDGCN())
6450 Fn->addFnAttr(Kind: "uniform-work-group-size", Val: "true");
6451 Fn->addFnAttr(Attribute::MustProgress);
6452}
6453
6454// We only generate metadata for function that contain target regions.
6455void OpenMPIRBuilder::createOffloadEntriesAndInfoMetadata(
6456 EmitMetadataErrorReportFunctionTy &ErrorFn) {
6457
6458 // If there are no entries, we don't need to do anything.
6459 if (OffloadInfoManager.empty())
6460 return;
6461
6462 LLVMContext &C = M.getContext();
6463 SmallVector<std::pair<const OffloadEntriesInfoManager::OffloadEntryInfo *,
6464 TargetRegionEntryInfo>,
6465 16>
6466 OrderedEntries(OffloadInfoManager.size());
6467
6468 // Auxiliary methods to create metadata values and strings.
6469 auto &&GetMDInt = [this](unsigned V) {
6470 return ConstantAsMetadata::get(C: ConstantInt::get(Ty: Builder.getInt32Ty(), V));
6471 };
6472
6473 auto &&GetMDString = [&C](StringRef V) { return MDString::get(Context&: C, Str: V); };
6474
6475 // Create the offloading info metadata node.
6476 NamedMDNode *MD = M.getOrInsertNamedMetadata(Name: "omp_offload.info");
6477 auto &&TargetRegionMetadataEmitter =
6478 [&C, MD, &OrderedEntries, &GetMDInt, &GetMDString](
6479 const TargetRegionEntryInfo &EntryInfo,
6480 const OffloadEntriesInfoManager::OffloadEntryInfoTargetRegion &E) {
6481 // Generate metadata for target regions. Each entry of this metadata
6482 // contains:
6483 // - Entry 0 -> Kind of this type of metadata (0).
6484 // - Entry 1 -> Device ID of the file where the entry was identified.
6485 // - Entry 2 -> File ID of the file where the entry was identified.
6486 // - Entry 3 -> Mangled name of the function where the entry was
6487 // identified.
6488 // - Entry 4 -> Line in the file where the entry was identified.
6489 // - Entry 5 -> Count of regions at this DeviceID/FilesID/Line.
6490 // - Entry 6 -> Order the entry was created.
6491 // The first element of the metadata node is the kind.
6492 Metadata *Ops[] = {
6493 GetMDInt(E.getKind()), GetMDInt(EntryInfo.DeviceID),
6494 GetMDInt(EntryInfo.FileID), GetMDString(EntryInfo.ParentName),
6495 GetMDInt(EntryInfo.Line), GetMDInt(EntryInfo.Count),
6496 GetMDInt(E.getOrder())};
6497
6498 // Save this entry in the right position of the ordered entries array.
6499 OrderedEntries[E.getOrder()] = std::make_pair(x: &E, y: EntryInfo);
6500
6501 // Add metadata to the named metadata node.
6502 MD->addOperand(M: MDNode::get(Context&: C, MDs: Ops));
6503 };
6504
6505 OffloadInfoManager.actOnTargetRegionEntriesInfo(Action: TargetRegionMetadataEmitter);
6506
6507 // Create function that emits metadata for each device global variable entry;
6508 auto &&DeviceGlobalVarMetadataEmitter =
6509 [&C, &OrderedEntries, &GetMDInt, &GetMDString, MD](
6510 StringRef MangledName,
6511 const OffloadEntriesInfoManager::OffloadEntryInfoDeviceGlobalVar &E) {
6512 // Generate metadata for global variables. Each entry of this metadata
6513 // contains:
6514 // - Entry 0 -> Kind of this type of metadata (1).
6515 // - Entry 1 -> Mangled name of the variable.
6516 // - Entry 2 -> Declare target kind.
6517 // - Entry 3 -> Order the entry was created.
6518 // The first element of the metadata node is the kind.
6519 Metadata *Ops[] = {GetMDInt(E.getKind()), GetMDString(MangledName),
6520 GetMDInt(E.getFlags()), GetMDInt(E.getOrder())};
6521
6522 // Save this entry in the right position of the ordered entries array.
6523 TargetRegionEntryInfo varInfo(MangledName, 0, 0, 0);
6524 OrderedEntries[E.getOrder()] = std::make_pair(x: &E, y&: varInfo);
6525
6526 // Add metadata to the named metadata node.
6527 MD->addOperand(M: MDNode::get(Context&: C, MDs: Ops));
6528 };
6529
6530 OffloadInfoManager.actOnDeviceGlobalVarEntriesInfo(
6531 Action: DeviceGlobalVarMetadataEmitter);
6532
6533 for (const auto &E : OrderedEntries) {
6534 assert(E.first && "All ordered entries must exist!");
6535 if (const auto *CE =
6536 dyn_cast<OffloadEntriesInfoManager::OffloadEntryInfoTargetRegion>(
6537 Val: E.first)) {
6538 if (!CE->getID() || !CE->getAddress()) {
6539 // Do not blame the entry if the parent funtion is not emitted.
6540 TargetRegionEntryInfo EntryInfo = E.second;
6541 StringRef FnName = EntryInfo.ParentName;
6542 if (!M.getNamedValue(Name: FnName))
6543 continue;
6544 ErrorFn(EMIT_MD_TARGET_REGION_ERROR, EntryInfo);
6545 continue;
6546 }
6547 createOffloadEntry(ID: CE->getID(), Addr: CE->getAddress(),
6548 /*Size=*/0, Flags: CE->getFlags(),
6549 GlobalValue::WeakAnyLinkage);
6550 } else if (const auto *CE = dyn_cast<
6551 OffloadEntriesInfoManager::OffloadEntryInfoDeviceGlobalVar>(
6552 Val: E.first)) {
6553 OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind Flags =
6554 static_cast<OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind>(
6555 CE->getFlags());
6556 switch (Flags) {
6557 case OffloadEntriesInfoManager::OMPTargetGlobalVarEntryEnter:
6558 case OffloadEntriesInfoManager::OMPTargetGlobalVarEntryTo:
6559 if (Config.isTargetDevice() && Config.hasRequiresUnifiedSharedMemory())
6560 continue;
6561 if (!CE->getAddress()) {
6562 ErrorFn(EMIT_MD_DECLARE_TARGET_ERROR, E.second);
6563 continue;
6564 }
6565 // The vaiable has no definition - no need to add the entry.
6566 if (CE->getVarSize() == 0)
6567 continue;
6568 break;
6569 case OffloadEntriesInfoManager::OMPTargetGlobalVarEntryLink:
6570 assert(((Config.isTargetDevice() && !CE->getAddress()) ||
6571 (!Config.isTargetDevice() && CE->getAddress())) &&
6572 "Declaret target link address is set.");
6573 if (Config.isTargetDevice())
6574 continue;
6575 if (!CE->getAddress()) {
6576 ErrorFn(EMIT_MD_GLOBAL_VAR_LINK_ERROR, TargetRegionEntryInfo());
6577 continue;
6578 }
6579 break;
6580 default:
6581 break;
6582 }
6583
6584 // Hidden or internal symbols on the device are not externally visible.
6585 // We should not attempt to register them by creating an offloading
6586 // entry. Indirect variables are handled separately on the device.
6587 if (auto *GV = dyn_cast<GlobalValue>(Val: CE->getAddress()))
6588 if ((GV->hasLocalLinkage() || GV->hasHiddenVisibility()) &&
6589 Flags != OffloadEntriesInfoManager::OMPTargetGlobalVarEntryIndirect)
6590 continue;
6591
6592 // Indirect globals need to use a special name that doesn't match the name
6593 // of the associated host global.
6594 if (Flags == OffloadEntriesInfoManager::OMPTargetGlobalVarEntryIndirect)
6595 createOffloadEntry(ID: CE->getAddress(), Addr: CE->getAddress(), Size: CE->getVarSize(),
6596 Flags, CE->getLinkage(), Name: CE->getVarName());
6597 else
6598 createOffloadEntry(ID: CE->getAddress(), Addr: CE->getAddress(), Size: CE->getVarSize(),
6599 Flags, CE->getLinkage());
6600
6601 } else {
6602 llvm_unreachable("Unsupported entry kind.");
6603 }
6604 }
6605}
6606
6607void TargetRegionEntryInfo::getTargetRegionEntryFnName(
6608 SmallVectorImpl<char> &Name, StringRef ParentName, unsigned DeviceID,
6609 unsigned FileID, unsigned Line, unsigned Count) {
6610 raw_svector_ostream OS(Name);
6611 OS << "__omp_offloading" << llvm::format(Fmt: "_%x", Vals: DeviceID)
6612 << llvm::format(Fmt: "_%x_", Vals: FileID) << ParentName << "_l" << Line;
6613 if (Count)
6614 OS << "_" << Count;
6615}
6616
6617void OffloadEntriesInfoManager::getTargetRegionEntryFnName(
6618 SmallVectorImpl<char> &Name, const TargetRegionEntryInfo &EntryInfo) {
6619 unsigned NewCount = getTargetRegionEntryInfoCount(EntryInfo);
6620 TargetRegionEntryInfo::getTargetRegionEntryFnName(
6621 Name, ParentName: EntryInfo.ParentName, DeviceID: EntryInfo.DeviceID, FileID: EntryInfo.FileID,
6622 Line: EntryInfo.Line, Count: NewCount);
6623}
6624
6625TargetRegionEntryInfo
6626OpenMPIRBuilder::getTargetEntryUniqueInfo(FileIdentifierInfoCallbackTy CallBack,
6627 StringRef ParentName) {
6628 sys::fs::UniqueID ID;
6629 auto FileIDInfo = CallBack();
6630 if (auto EC = sys::fs::getUniqueID(Path: std::get<0>(t&: FileIDInfo), Result&: ID)) {
6631 report_fatal_error(reason: ("Unable to get unique ID for file, during "
6632 "getTargetEntryUniqueInfo, error message: " +
6633 EC.message())
6634 .c_str());
6635 }
6636
6637 return TargetRegionEntryInfo(ParentName, ID.getDevice(), ID.getFile(),
6638 std::get<1>(t&: FileIDInfo));
6639}
6640
6641unsigned OpenMPIRBuilder::getFlagMemberOffset() {
6642 unsigned Offset = 0;
6643 for (uint64_t Remain =
6644 static_cast<std::underlying_type_t<omp::OpenMPOffloadMappingFlags>>(
6645 omp::OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF);
6646 !(Remain & 1); Remain = Remain >> 1)
6647 Offset++;
6648 return Offset;
6649}
6650
6651omp::OpenMPOffloadMappingFlags
6652OpenMPIRBuilder::getMemberOfFlag(unsigned Position) {
6653 // Rotate by getFlagMemberOffset() bits.
6654 return static_cast<omp::OpenMPOffloadMappingFlags>(((uint64_t)Position + 1)
6655 << getFlagMemberOffset());
6656}
6657
6658void OpenMPIRBuilder::setCorrectMemberOfFlag(
6659 omp::OpenMPOffloadMappingFlags &Flags,
6660 omp::OpenMPOffloadMappingFlags MemberOfFlag) {
6661 // If the entry is PTR_AND_OBJ but has not been marked with the special
6662 // placeholder value 0xFFFF in the MEMBER_OF field, then it should not be
6663 // marked as MEMBER_OF.
6664 if (static_cast<std::underlying_type_t<omp::OpenMPOffloadMappingFlags>>(
6665 Flags & omp::OpenMPOffloadMappingFlags::OMP_MAP_PTR_AND_OBJ) &&
6666 static_cast<std::underlying_type_t<omp::OpenMPOffloadMappingFlags>>(
6667 (Flags & omp::OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF) !=
6668 omp::OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF))
6669 return;
6670
6671 // Reset the placeholder value to prepare the flag for the assignment of the
6672 // proper MEMBER_OF value.
6673 Flags &= ~omp::OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF;
6674 Flags |= MemberOfFlag;
6675}
6676
6677Constant *OpenMPIRBuilder::getAddrOfDeclareTargetVar(
6678 OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind CaptureClause,
6679 OffloadEntriesInfoManager::OMPTargetDeviceClauseKind DeviceClause,
6680 bool IsDeclaration, bool IsExternallyVisible,
6681 TargetRegionEntryInfo EntryInfo, StringRef MangledName,
6682 std::vector<GlobalVariable *> &GeneratedRefs, bool OpenMPSIMD,
6683 std::vector<Triple> TargetTriple, Type *LlvmPtrTy,
6684 std::function<Constant *()> GlobalInitializer,
6685 std::function<GlobalValue::LinkageTypes()> VariableLinkage) {
6686 // TODO: convert this to utilise the IRBuilder Config rather than
6687 // a passed down argument.
6688 if (OpenMPSIMD)
6689 return nullptr;
6690
6691 if (CaptureClause == OffloadEntriesInfoManager::OMPTargetGlobalVarEntryLink ||
6692 ((CaptureClause == OffloadEntriesInfoManager::OMPTargetGlobalVarEntryTo ||
6693 CaptureClause ==
6694 OffloadEntriesInfoManager::OMPTargetGlobalVarEntryEnter) &&
6695 Config.hasRequiresUnifiedSharedMemory())) {
6696 SmallString<64> PtrName;
6697 {
6698 raw_svector_ostream OS(PtrName);
6699 OS << MangledName;
6700 if (!IsExternallyVisible)
6701 OS << format(Fmt: "_%x", Vals: EntryInfo.FileID);
6702 OS << "_decl_tgt_ref_ptr";
6703 }
6704
6705 Value *Ptr = M.getNamedValue(Name: PtrName);
6706
6707 if (!Ptr) {
6708 GlobalValue *GlobalValue = M.getNamedValue(Name: MangledName);
6709 Ptr = getOrCreateInternalVariable(Ty: LlvmPtrTy, Name: PtrName);
6710
6711 auto *GV = cast<GlobalVariable>(Val: Ptr);
6712 GV->setLinkage(GlobalValue::WeakAnyLinkage);
6713
6714 if (!Config.isTargetDevice()) {
6715 if (GlobalInitializer)
6716 GV->setInitializer(GlobalInitializer());
6717 else
6718 GV->setInitializer(GlobalValue);
6719 }
6720
6721 registerTargetGlobalVariable(
6722 CaptureClause, DeviceClause, IsDeclaration, IsExternallyVisible,
6723 EntryInfo, MangledName, GeneratedRefs, OpenMPSIMD, TargetTriple,
6724 GlobalInitializer, VariableLinkage, LlvmPtrTy, Addr: cast<Constant>(Val: Ptr));
6725 }
6726
6727 return cast<Constant>(Val: Ptr);
6728 }
6729
6730 return nullptr;
6731}
6732
6733void OpenMPIRBuilder::registerTargetGlobalVariable(
6734 OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind CaptureClause,
6735 OffloadEntriesInfoManager::OMPTargetDeviceClauseKind DeviceClause,
6736 bool IsDeclaration, bool IsExternallyVisible,
6737 TargetRegionEntryInfo EntryInfo, StringRef MangledName,
6738 std::vector<GlobalVariable *> &GeneratedRefs, bool OpenMPSIMD,
6739 std::vector<Triple> TargetTriple,
6740 std::function<Constant *()> GlobalInitializer,
6741 std::function<GlobalValue::LinkageTypes()> VariableLinkage, Type *LlvmPtrTy,
6742 Constant *Addr) {
6743 if (DeviceClause != OffloadEntriesInfoManager::OMPTargetDeviceClauseAny ||
6744 (TargetTriple.empty() && !Config.isTargetDevice()))
6745 return;
6746
6747 OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind Flags;
6748 StringRef VarName;
6749 int64_t VarSize;
6750 GlobalValue::LinkageTypes Linkage;
6751
6752 if ((CaptureClause == OffloadEntriesInfoManager::OMPTargetGlobalVarEntryTo ||
6753 CaptureClause ==
6754 OffloadEntriesInfoManager::OMPTargetGlobalVarEntryEnter) &&
6755 !Config.hasRequiresUnifiedSharedMemory()) {
6756 Flags = OffloadEntriesInfoManager::OMPTargetGlobalVarEntryTo;
6757 VarName = MangledName;
6758 GlobalValue *LlvmVal = M.getNamedValue(Name: VarName);
6759
6760 if (!IsDeclaration)
6761 VarSize = divideCeil(
6762 Numerator: M.getDataLayout().getTypeSizeInBits(Ty: LlvmVal->getValueType()), Denominator: 8);
6763 else
6764 VarSize = 0;
6765 Linkage = (VariableLinkage) ? VariableLinkage() : LlvmVal->getLinkage();
6766
6767 // This is a workaround carried over from Clang which prevents undesired
6768 // optimisation of internal variables.
6769 if (Config.isTargetDevice() &&
6770 (!IsExternallyVisible || Linkage == GlobalValue::LinkOnceODRLinkage)) {
6771 // Do not create a "ref-variable" if the original is not also available
6772 // on the host.
6773 if (!OffloadInfoManager.hasDeviceGlobalVarEntryInfo(VarName))
6774 return;
6775
6776 std::string RefName = createPlatformSpecificName(Parts: {VarName, "ref"});
6777
6778 if (!M.getNamedValue(Name: RefName)) {
6779 Constant *AddrRef =
6780 getOrCreateInternalVariable(Ty: Addr->getType(), Name: RefName);
6781 auto *GvAddrRef = cast<GlobalVariable>(Val: AddrRef);
6782 GvAddrRef->setConstant(true);
6783 GvAddrRef->setLinkage(GlobalValue::InternalLinkage);
6784 GvAddrRef->setInitializer(Addr);
6785 GeneratedRefs.push_back(x: GvAddrRef);
6786 }
6787 }
6788 } else {
6789 if (CaptureClause == OffloadEntriesInfoManager::OMPTargetGlobalVarEntryLink)
6790 Flags = OffloadEntriesInfoManager::OMPTargetGlobalVarEntryLink;
6791 else
6792 Flags = OffloadEntriesInfoManager::OMPTargetGlobalVarEntryTo;
6793
6794 if (Config.isTargetDevice()) {
6795 VarName = (Addr) ? Addr->getName() : "";
6796 Addr = nullptr;
6797 } else {
6798 Addr = getAddrOfDeclareTargetVar(
6799 CaptureClause, DeviceClause, IsDeclaration, IsExternallyVisible,
6800 EntryInfo, MangledName, GeneratedRefs, OpenMPSIMD, TargetTriple,
6801 LlvmPtrTy, GlobalInitializer, VariableLinkage);
6802 VarName = (Addr) ? Addr->getName() : "";
6803 }
6804 VarSize = M.getDataLayout().getPointerSize();
6805 Linkage = GlobalValue::WeakAnyLinkage;
6806 }
6807
6808 OffloadInfoManager.registerDeviceGlobalVarEntryInfo(VarName, Addr, VarSize,
6809 Flags, Linkage);
6810}
6811
6812/// Loads all the offload entries information from the host IR
6813/// metadata.
6814void OpenMPIRBuilder::loadOffloadInfoMetadata(Module &M) {
6815 // If we are in target mode, load the metadata from the host IR. This code has
6816 // to match the metadata creation in createOffloadEntriesAndInfoMetadata().
6817
6818 NamedMDNode *MD = M.getNamedMetadata(Name: ompOffloadInfoName);
6819 if (!MD)
6820 return;
6821
6822 for (MDNode *MN : MD->operands()) {
6823 auto &&GetMDInt = [MN](unsigned Idx) {
6824 auto *V = cast<ConstantAsMetadata>(Val: MN->getOperand(I: Idx));
6825 return cast<ConstantInt>(Val: V->getValue())->getZExtValue();
6826 };
6827
6828 auto &&GetMDString = [MN](unsigned Idx) {
6829 auto *V = cast<MDString>(Val: MN->getOperand(I: Idx));
6830 return V->getString();
6831 };
6832
6833 switch (GetMDInt(0)) {
6834 default:
6835 llvm_unreachable("Unexpected metadata!");
6836 break;
6837 case OffloadEntriesInfoManager::OffloadEntryInfo::
6838 OffloadingEntryInfoTargetRegion: {
6839 TargetRegionEntryInfo EntryInfo(/*ParentName=*/GetMDString(3),
6840 /*DeviceID=*/GetMDInt(1),
6841 /*FileID=*/GetMDInt(2),
6842 /*Line=*/GetMDInt(4),
6843 /*Count=*/GetMDInt(5));
6844 OffloadInfoManager.initializeTargetRegionEntryInfo(EntryInfo,
6845 /*Order=*/GetMDInt(6));
6846 break;
6847 }
6848 case OffloadEntriesInfoManager::OffloadEntryInfo::
6849 OffloadingEntryInfoDeviceGlobalVar:
6850 OffloadInfoManager.initializeDeviceGlobalVarEntryInfo(
6851 /*MangledName=*/Name: GetMDString(1),
6852 Flags: static_cast<OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind>(
6853 /*Flags=*/GetMDInt(2)),
6854 /*Order=*/GetMDInt(3));
6855 break;
6856 }
6857 }
6858}
6859
6860void OpenMPIRBuilder::loadOffloadInfoMetadata(StringRef HostFilePath) {
6861 if (HostFilePath.empty())
6862 return;
6863
6864 auto Buf = MemoryBuffer::getFile(Filename: HostFilePath);
6865 if (std::error_code Err = Buf.getError()) {
6866 report_fatal_error(reason: ("error opening host file from host file path inside of "
6867 "OpenMPIRBuilder: " +
6868 Err.message())
6869 .c_str());
6870 }
6871
6872 LLVMContext Ctx;
6873 auto M = expectedToErrorOrAndEmitErrors(
6874 Ctx, Val: parseBitcodeFile(Buffer: Buf.get()->getMemBufferRef(), Context&: Ctx));
6875 if (std::error_code Err = M.getError()) {
6876 report_fatal_error(
6877 reason: ("error parsing host file inside of OpenMPIRBuilder: " + Err.message())
6878 .c_str());
6879 }
6880
6881 loadOffloadInfoMetadata(M&: *M.get());
6882}
6883
6884Function *OpenMPIRBuilder::createRegisterRequires(StringRef Name) {
6885 // Skip the creation of the registration function if this is device codegen
6886 if (Config.isTargetDevice())
6887 return nullptr;
6888
6889 Builder.ClearInsertionPoint();
6890
6891 // Create registration function prototype
6892 auto *RegFnTy = FunctionType::get(Result: Builder.getVoidTy(), isVarArg: {});
6893 auto *RegFn = Function::Create(
6894 Ty: RegFnTy, Linkage: GlobalVariable::LinkageTypes::InternalLinkage, N: Name, M);
6895 RegFn->setSection(".text.startup");
6896 RegFn->addFnAttr(Attribute::NoInline);
6897 RegFn->addFnAttr(Attribute::NoUnwind);
6898
6899 // Create registration function body
6900 auto *BB = BasicBlock::Create(Context&: M.getContext(), Name: "entry", Parent: RegFn);
6901 ConstantInt *FlagsVal =
6902 ConstantInt::getSigned(Ty: Builder.getInt64Ty(), V: Config.getRequiresFlags());
6903 Function *RTLRegFn = getOrCreateRuntimeFunctionPtr(
6904 FnID: omp::RuntimeFunction::OMPRTL___tgt_register_requires);
6905
6906 Builder.SetInsertPoint(BB);
6907 Builder.CreateCall(Callee: RTLRegFn, Args: {FlagsVal});
6908 Builder.CreateRetVoid();
6909
6910 return RegFn;
6911}
6912
6913//===----------------------------------------------------------------------===//
6914// OffloadEntriesInfoManager
6915//===----------------------------------------------------------------------===//
6916
6917bool OffloadEntriesInfoManager::empty() const {
6918 return OffloadEntriesTargetRegion.empty() &&
6919 OffloadEntriesDeviceGlobalVar.empty();
6920}
6921
6922unsigned OffloadEntriesInfoManager::getTargetRegionEntryInfoCount(
6923 const TargetRegionEntryInfo &EntryInfo) const {
6924 auto It = OffloadEntriesTargetRegionCount.find(
6925 x: getTargetRegionEntryCountKey(EntryInfo));
6926 if (It == OffloadEntriesTargetRegionCount.end())
6927 return 0;
6928 return It->second;
6929}
6930
6931void OffloadEntriesInfoManager::incrementTargetRegionEntryInfoCount(
6932 const TargetRegionEntryInfo &EntryInfo) {
6933 OffloadEntriesTargetRegionCount[getTargetRegionEntryCountKey(EntryInfo)] =
6934 EntryInfo.Count + 1;
6935}
6936
6937/// Initialize target region entry.
6938void OffloadEntriesInfoManager::initializeTargetRegionEntryInfo(
6939 const TargetRegionEntryInfo &EntryInfo, unsigned Order) {
6940 OffloadEntriesTargetRegion[EntryInfo] =
6941 OffloadEntryInfoTargetRegion(Order, /*Addr=*/nullptr, /*ID=*/nullptr,
6942 OMPTargetRegionEntryTargetRegion);
6943 ++OffloadingEntriesNum;
6944}
6945
6946void OffloadEntriesInfoManager::registerTargetRegionEntryInfo(
6947 TargetRegionEntryInfo EntryInfo, Constant *Addr, Constant *ID,
6948 OMPTargetRegionEntryKind Flags) {
6949 assert(EntryInfo.Count == 0 && "expected default EntryInfo");
6950
6951 // Update the EntryInfo with the next available count for this location.
6952 EntryInfo.Count = getTargetRegionEntryInfoCount(EntryInfo);
6953
6954 // If we are emitting code for a target, the entry is already initialized,
6955 // only has to be registered.
6956 if (OMPBuilder->Config.isTargetDevice()) {
6957 // This could happen if the device compilation is invoked standalone.
6958 if (!hasTargetRegionEntryInfo(EntryInfo)) {
6959 return;
6960 }
6961 auto &Entry = OffloadEntriesTargetRegion[EntryInfo];
6962 Entry.setAddress(Addr);
6963 Entry.setID(ID);
6964 Entry.setFlags(Flags);
6965 } else {
6966 if (Flags == OffloadEntriesInfoManager::OMPTargetRegionEntryTargetRegion &&
6967 hasTargetRegionEntryInfo(EntryInfo, /*IgnoreAddressId*/ true))
6968 return;
6969 assert(!hasTargetRegionEntryInfo(EntryInfo) &&
6970 "Target region entry already registered!");
6971 OffloadEntryInfoTargetRegion Entry(OffloadingEntriesNum, Addr, ID, Flags);
6972 OffloadEntriesTargetRegion[EntryInfo] = Entry;
6973 ++OffloadingEntriesNum;
6974 }
6975 incrementTargetRegionEntryInfoCount(EntryInfo);
6976}
6977
6978bool OffloadEntriesInfoManager::hasTargetRegionEntryInfo(
6979 TargetRegionEntryInfo EntryInfo, bool IgnoreAddressId) const {
6980
6981 // Update the EntryInfo with the next available count for this location.
6982 EntryInfo.Count = getTargetRegionEntryInfoCount(EntryInfo);
6983
6984 auto It = OffloadEntriesTargetRegion.find(x: EntryInfo);
6985 if (It == OffloadEntriesTargetRegion.end()) {
6986 return false;
6987 }
6988 // Fail if this entry is already registered.
6989 if (!IgnoreAddressId && (It->second.getAddress() || It->second.getID()))
6990 return false;
6991 return true;
6992}
6993
6994void OffloadEntriesInfoManager::actOnTargetRegionEntriesInfo(
6995 const OffloadTargetRegionEntryInfoActTy &Action) {
6996 // Scan all target region entries and perform the provided action.
6997 for (const auto &It : OffloadEntriesTargetRegion) {
6998 Action(It.first, It.second);
6999 }
7000}
7001
7002void OffloadEntriesInfoManager::initializeDeviceGlobalVarEntryInfo(
7003 StringRef Name, OMPTargetGlobalVarEntryKind Flags, unsigned Order) {
7004 OffloadEntriesDeviceGlobalVar.try_emplace(Key: Name, Args&: Order, Args&: Flags);
7005 ++OffloadingEntriesNum;
7006}
7007
7008void OffloadEntriesInfoManager::registerDeviceGlobalVarEntryInfo(
7009 StringRef VarName, Constant *Addr, int64_t VarSize,
7010 OMPTargetGlobalVarEntryKind Flags, GlobalValue::LinkageTypes Linkage) {
7011 if (OMPBuilder->Config.isTargetDevice()) {
7012 // This could happen if the device compilation is invoked standalone.
7013 if (!hasDeviceGlobalVarEntryInfo(VarName))
7014 return;
7015 auto &Entry = OffloadEntriesDeviceGlobalVar[VarName];
7016 if (Entry.getAddress() && hasDeviceGlobalVarEntryInfo(VarName)) {
7017 if (Entry.getVarSize() == 0) {
7018 Entry.setVarSize(VarSize);
7019 Entry.setLinkage(Linkage);
7020 }
7021 return;
7022 }
7023 Entry.setVarSize(VarSize);
7024 Entry.setLinkage(Linkage);
7025 Entry.setAddress(Addr);
7026 } else {
7027 if (hasDeviceGlobalVarEntryInfo(VarName)) {
7028 auto &Entry = OffloadEntriesDeviceGlobalVar[VarName];
7029 assert(Entry.isValid() && Entry.getFlags() == Flags &&
7030 "Entry not initialized!");
7031 if (Entry.getVarSize() == 0) {
7032 Entry.setVarSize(VarSize);
7033 Entry.setLinkage(Linkage);
7034 }
7035 return;
7036 }
7037 if (Flags == OffloadEntriesInfoManager::OMPTargetGlobalVarEntryIndirect)
7038 OffloadEntriesDeviceGlobalVar.try_emplace(Key: VarName, Args&: OffloadingEntriesNum,
7039 Args&: Addr, Args&: VarSize, Args&: Flags, Args&: Linkage,
7040 Args: VarName.str());
7041 else
7042 OffloadEntriesDeviceGlobalVar.try_emplace(
7043 Key: VarName, Args&: OffloadingEntriesNum, Args&: Addr, Args&: VarSize, Args&: Flags, Args&: Linkage, Args: "");
7044 ++OffloadingEntriesNum;
7045 }
7046}
7047
7048void OffloadEntriesInfoManager::actOnDeviceGlobalVarEntriesInfo(
7049 const OffloadDeviceGlobalVarEntryInfoActTy &Action) {
7050 // Scan all target region entries and perform the provided action.
7051 for (const auto &E : OffloadEntriesDeviceGlobalVar)
7052 Action(E.getKey(), E.getValue());
7053}
7054
7055//===----------------------------------------------------------------------===//
7056// CanonicalLoopInfo
7057//===----------------------------------------------------------------------===//
7058
7059void CanonicalLoopInfo::collectControlBlocks(
7060 SmallVectorImpl<BasicBlock *> &BBs) {
7061 // We only count those BBs as control block for which we do not need to
7062 // reverse the CFG, i.e. not the loop body which can contain arbitrary control
7063 // flow. For consistency, this also means we do not add the Body block, which
7064 // is just the entry to the body code.
7065 BBs.reserve(N: BBs.size() + 6);
7066 BBs.append(IL: {getPreheader(), Header, Cond, Latch, Exit, getAfter()});
7067}
7068
7069BasicBlock *CanonicalLoopInfo::getPreheader() const {
7070 assert(isValid() && "Requires a valid canonical loop");
7071 for (BasicBlock *Pred : predecessors(BB: Header)) {
7072 if (Pred != Latch)
7073 return Pred;
7074 }
7075 llvm_unreachable("Missing preheader");
7076}
7077
7078void CanonicalLoopInfo::setTripCount(Value *TripCount) {
7079 assert(isValid() && "Requires a valid canonical loop");
7080
7081 Instruction *CmpI = &getCond()->front();
7082 assert(isa<CmpInst>(CmpI) && "First inst must compare IV with TripCount");
7083 CmpI->setOperand(i: 1, Val: TripCount);
7084
7085#ifndef NDEBUG
7086 assertOK();
7087#endif
7088}
7089
7090void CanonicalLoopInfo::mapIndVar(
7091 llvm::function_ref<Value *(Instruction *)> Updater) {
7092 assert(isValid() && "Requires a valid canonical loop");
7093
7094 Instruction *OldIV = getIndVar();
7095
7096 // Record all uses excluding those introduced by the updater. Uses by the
7097 // CanonicalLoopInfo itself to keep track of the number of iterations are
7098 // excluded.
7099 SmallVector<Use *> ReplacableUses;
7100 for (Use &U : OldIV->uses()) {
7101 auto *User = dyn_cast<Instruction>(Val: U.getUser());
7102 if (!User)
7103 continue;
7104 if (User->getParent() == getCond())
7105 continue;
7106 if (User->getParent() == getLatch())
7107 continue;
7108 ReplacableUses.push_back(Elt: &U);
7109 }
7110
7111 // Run the updater that may introduce new uses
7112 Value *NewIV = Updater(OldIV);
7113
7114 // Replace the old uses with the value returned by the updater.
7115 for (Use *U : ReplacableUses)
7116 U->set(NewIV);
7117
7118#ifndef NDEBUG
7119 assertOK();
7120#endif
7121}
7122
7123void CanonicalLoopInfo::assertOK() const {
7124#ifndef NDEBUG
7125 // No constraints if this object currently does not describe a loop.
7126 if (!isValid())
7127 return;
7128
7129 BasicBlock *Preheader = getPreheader();
7130 BasicBlock *Body = getBody();
7131 BasicBlock *After = getAfter();
7132
7133 // Verify standard control-flow we use for OpenMP loops.
7134 assert(Preheader);
7135 assert(isa<BranchInst>(Preheader->getTerminator()) &&
7136 "Preheader must terminate with unconditional branch");
7137 assert(Preheader->getSingleSuccessor() == Header &&
7138 "Preheader must jump to header");
7139
7140 assert(Header);
7141 assert(isa<BranchInst>(Header->getTerminator()) &&
7142 "Header must terminate with unconditional branch");
7143 assert(Header->getSingleSuccessor() == Cond &&
7144 "Header must jump to exiting block");
7145
7146 assert(Cond);
7147 assert(Cond->getSinglePredecessor() == Header &&
7148 "Exiting block only reachable from header");
7149
7150 assert(isa<BranchInst>(Cond->getTerminator()) &&
7151 "Exiting block must terminate with conditional branch");
7152 assert(size(successors(Cond)) == 2 &&
7153 "Exiting block must have two successors");
7154 assert(cast<BranchInst>(Cond->getTerminator())->getSuccessor(0) == Body &&
7155 "Exiting block's first successor jump to the body");
7156 assert(cast<BranchInst>(Cond->getTerminator())->getSuccessor(1) == Exit &&
7157 "Exiting block's second successor must exit the loop");
7158
7159 assert(Body);
7160 assert(Body->getSinglePredecessor() == Cond &&
7161 "Body only reachable from exiting block");
7162 assert(!isa<PHINode>(Body->front()));
7163
7164 assert(Latch);
7165 assert(isa<BranchInst>(Latch->getTerminator()) &&
7166 "Latch must terminate with unconditional branch");
7167 assert(Latch->getSingleSuccessor() == Header && "Latch must jump to header");
7168 // TODO: To support simple redirecting of the end of the body code that has
7169 // multiple; introduce another auxiliary basic block like preheader and after.
7170 assert(Latch->getSinglePredecessor() != nullptr);
7171 assert(!isa<PHINode>(Latch->front()));
7172
7173 assert(Exit);
7174 assert(isa<BranchInst>(Exit->getTerminator()) &&
7175 "Exit block must terminate with unconditional branch");
7176 assert(Exit->getSingleSuccessor() == After &&
7177 "Exit block must jump to after block");
7178
7179 assert(After);
7180 assert(After->getSinglePredecessor() == Exit &&
7181 "After block only reachable from exit block");
7182 assert(After->empty() || !isa<PHINode>(After->front()));
7183
7184 Instruction *IndVar = getIndVar();
7185 assert(IndVar && "Canonical induction variable not found?");
7186 assert(isa<IntegerType>(IndVar->getType()) &&
7187 "Induction variable must be an integer");
7188 assert(cast<PHINode>(IndVar)->getParent() == Header &&
7189 "Induction variable must be a PHI in the loop header");
7190 assert(cast<PHINode>(IndVar)->getIncomingBlock(0) == Preheader);
7191 assert(
7192 cast<ConstantInt>(cast<PHINode>(IndVar)->getIncomingValue(0))->isZero());
7193 assert(cast<PHINode>(IndVar)->getIncomingBlock(1) == Latch);
7194
7195 auto *NextIndVar = cast<PHINode>(Val: IndVar)->getIncomingValue(i: 1);
7196 assert(cast<Instruction>(NextIndVar)->getParent() == Latch);
7197 assert(cast<BinaryOperator>(NextIndVar)->getOpcode() == BinaryOperator::Add);
7198 assert(cast<BinaryOperator>(NextIndVar)->getOperand(0) == IndVar);
7199 assert(cast<ConstantInt>(cast<BinaryOperator>(NextIndVar)->getOperand(1))
7200 ->isOne());
7201
7202 Value *TripCount = getTripCount();
7203 assert(TripCount && "Loop trip count not found?");
7204 assert(IndVar->getType() == TripCount->getType() &&
7205 "Trip count and induction variable must have the same type");
7206
7207 auto *CmpI = cast<CmpInst>(Val: &Cond->front());
7208 assert(CmpI->getPredicate() == CmpInst::ICMP_ULT &&
7209 "Exit condition must be a signed less-than comparison");
7210 assert(CmpI->getOperand(0) == IndVar &&
7211 "Exit condition must compare the induction variable");
7212 assert(CmpI->getOperand(1) == TripCount &&
7213 "Exit condition must compare with the trip count");
7214#endif
7215}
7216
7217void CanonicalLoopInfo::invalidate() {
7218 Header = nullptr;
7219 Cond = nullptr;
7220 Latch = nullptr;
7221 Exit = nullptr;
7222}
7223

source code of llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp