1//===- YAMLParser.cpp - Simple YAML parser --------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements a YAML parser.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/Support/YAMLParser.h"
14#include "llvm/ADT/AllocatorList.h"
15#include "llvm/ADT/ArrayRef.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/SmallString.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/ADT/StringExtras.h"
20#include "llvm/ADT/StringRef.h"
21#include "llvm/ADT/Twine.h"
22#include "llvm/Support/Compiler.h"
23#include "llvm/Support/ErrorHandling.h"
24#include "llvm/Support/MemoryBuffer.h"
25#include "llvm/Support/SMLoc.h"
26#include "llvm/Support/SourceMgr.h"
27#include "llvm/Support/Unicode.h"
28#include "llvm/Support/raw_ostream.h"
29#include <cassert>
30#include <cstddef>
31#include <cstdint>
32#include <map>
33#include <memory>
34#include <string>
35#include <system_error>
36#include <utility>
37
38using namespace llvm;
39using namespace yaml;
40
41enum UnicodeEncodingForm {
42 UEF_UTF32_LE, ///< UTF-32 Little Endian
43 UEF_UTF32_BE, ///< UTF-32 Big Endian
44 UEF_UTF16_LE, ///< UTF-16 Little Endian
45 UEF_UTF16_BE, ///< UTF-16 Big Endian
46 UEF_UTF8, ///< UTF-8 or ascii.
47 UEF_Unknown ///< Not a valid Unicode encoding.
48};
49
50/// EncodingInfo - Holds the encoding type and length of the byte order mark if
51/// it exists. Length is in {0, 2, 3, 4}.
52using EncodingInfo = std::pair<UnicodeEncodingForm, unsigned>;
53
54/// getUnicodeEncoding - Reads up to the first 4 bytes to determine the Unicode
55/// encoding form of \a Input.
56///
57/// @param Input A string of length 0 or more.
58/// @returns An EncodingInfo indicating the Unicode encoding form of the input
59/// and how long the byte order mark is if one exists.
60static EncodingInfo getUnicodeEncoding(StringRef Input) {
61 if (Input.empty())
62 return std::make_pair(x: UEF_Unknown, y: 0);
63
64 switch (uint8_t(Input[0])) {
65 case 0x00:
66 if (Input.size() >= 4) {
67 if ( Input[1] == 0
68 && uint8_t(Input[2]) == 0xFE
69 && uint8_t(Input[3]) == 0xFF)
70 return std::make_pair(x: UEF_UTF32_BE, y: 4);
71 if (Input[1] == 0 && Input[2] == 0 && Input[3] != 0)
72 return std::make_pair(x: UEF_UTF32_BE, y: 0);
73 }
74
75 if (Input.size() >= 2 && Input[1] != 0)
76 return std::make_pair(x: UEF_UTF16_BE, y: 0);
77 return std::make_pair(x: UEF_Unknown, y: 0);
78 case 0xFF:
79 if ( Input.size() >= 4
80 && uint8_t(Input[1]) == 0xFE
81 && Input[2] == 0
82 && Input[3] == 0)
83 return std::make_pair(x: UEF_UTF32_LE, y: 4);
84
85 if (Input.size() >= 2 && uint8_t(Input[1]) == 0xFE)
86 return std::make_pair(x: UEF_UTF16_LE, y: 2);
87 return std::make_pair(x: UEF_Unknown, y: 0);
88 case 0xFE:
89 if (Input.size() >= 2 && uint8_t(Input[1]) == 0xFF)
90 return std::make_pair(x: UEF_UTF16_BE, y: 2);
91 return std::make_pair(x: UEF_Unknown, y: 0);
92 case 0xEF:
93 if ( Input.size() >= 3
94 && uint8_t(Input[1]) == 0xBB
95 && uint8_t(Input[2]) == 0xBF)
96 return std::make_pair(x: UEF_UTF8, y: 3);
97 return std::make_pair(x: UEF_Unknown, y: 0);
98 }
99
100 // It could still be utf-32 or utf-16.
101 if (Input.size() >= 4 && Input[1] == 0 && Input[2] == 0 && Input[3] == 0)
102 return std::make_pair(x: UEF_UTF32_LE, y: 0);
103
104 if (Input.size() >= 2 && Input[1] == 0)
105 return std::make_pair(x: UEF_UTF16_LE, y: 0);
106
107 return std::make_pair(x: UEF_UTF8, y: 0);
108}
109
110/// Pin the vtables to this file.
111void Node::anchor() {}
112void NullNode::anchor() {}
113void ScalarNode::anchor() {}
114void BlockScalarNode::anchor() {}
115void KeyValueNode::anchor() {}
116void MappingNode::anchor() {}
117void SequenceNode::anchor() {}
118void AliasNode::anchor() {}
119
120namespace llvm {
121namespace yaml {
122
123/// Token - A single YAML token.
124struct Token {
125 enum TokenKind {
126 TK_Error, // Uninitialized token.
127 TK_StreamStart,
128 TK_StreamEnd,
129 TK_VersionDirective,
130 TK_TagDirective,
131 TK_DocumentStart,
132 TK_DocumentEnd,
133 TK_BlockEntry,
134 TK_BlockEnd,
135 TK_BlockSequenceStart,
136 TK_BlockMappingStart,
137 TK_FlowEntry,
138 TK_FlowSequenceStart,
139 TK_FlowSequenceEnd,
140 TK_FlowMappingStart,
141 TK_FlowMappingEnd,
142 TK_Key,
143 TK_Value,
144 TK_Scalar,
145 TK_BlockScalar,
146 TK_Alias,
147 TK_Anchor,
148 TK_Tag
149 } Kind = TK_Error;
150
151 /// A string of length 0 or more whose begin() points to the logical location
152 /// of the token in the input.
153 StringRef Range;
154
155 /// The value of a block scalar node.
156 std::string Value;
157
158 Token() = default;
159};
160
161} // end namespace yaml
162} // end namespace llvm
163
164using TokenQueueT = BumpPtrList<Token>;
165
166namespace {
167
168/// This struct is used to track simple keys.
169///
170/// Simple keys are handled by creating an entry in SimpleKeys for each Token
171/// which could legally be the start of a simple key. When peekNext is called,
172/// if the Token To be returned is referenced by a SimpleKey, we continue
173/// tokenizing until that potential simple key has either been found to not be
174/// a simple key (we moved on to the next line or went further than 1024 chars).
175/// Or when we run into a Value, and then insert a Key token (and possibly
176/// others) before the SimpleKey's Tok.
177struct SimpleKey {
178 TokenQueueT::iterator Tok;
179 unsigned Column = 0;
180 unsigned Line = 0;
181 unsigned FlowLevel = 0;
182 bool IsRequired = false;
183
184 bool operator ==(const SimpleKey &Other) {
185 return Tok == Other.Tok;
186 }
187};
188
189} // end anonymous namespace
190
191/// The Unicode scalar value of a UTF-8 minimal well-formed code unit
192/// subsequence and the subsequence's length in code units (uint8_t).
193/// A length of 0 represents an error.
194using UTF8Decoded = std::pair<uint32_t, unsigned>;
195
196static UTF8Decoded decodeUTF8(StringRef Range) {
197 StringRef::iterator Position= Range.begin();
198 StringRef::iterator End = Range.end();
199 // 1 byte: [0x00, 0x7f]
200 // Bit pattern: 0xxxxxxx
201 if (Position < End && (*Position & 0x80) == 0) {
202 return std::make_pair(x: *Position, y: 1);
203 }
204 // 2 bytes: [0x80, 0x7ff]
205 // Bit pattern: 110xxxxx 10xxxxxx
206 if (Position + 1 < End && ((*Position & 0xE0) == 0xC0) &&
207 ((*(Position + 1) & 0xC0) == 0x80)) {
208 uint32_t codepoint = ((*Position & 0x1F) << 6) |
209 (*(Position + 1) & 0x3F);
210 if (codepoint >= 0x80)
211 return std::make_pair(x&: codepoint, y: 2);
212 }
213 // 3 bytes: [0x8000, 0xffff]
214 // Bit pattern: 1110xxxx 10xxxxxx 10xxxxxx
215 if (Position + 2 < End && ((*Position & 0xF0) == 0xE0) &&
216 ((*(Position + 1) & 0xC0) == 0x80) &&
217 ((*(Position + 2) & 0xC0) == 0x80)) {
218 uint32_t codepoint = ((*Position & 0x0F) << 12) |
219 ((*(Position + 1) & 0x3F) << 6) |
220 (*(Position + 2) & 0x3F);
221 // Codepoints between 0xD800 and 0xDFFF are invalid, as
222 // they are high / low surrogate halves used by UTF-16.
223 if (codepoint >= 0x800 &&
224 (codepoint < 0xD800 || codepoint > 0xDFFF))
225 return std::make_pair(x&: codepoint, y: 3);
226 }
227 // 4 bytes: [0x10000, 0x10FFFF]
228 // Bit pattern: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
229 if (Position + 3 < End && ((*Position & 0xF8) == 0xF0) &&
230 ((*(Position + 1) & 0xC0) == 0x80) &&
231 ((*(Position + 2) & 0xC0) == 0x80) &&
232 ((*(Position + 3) & 0xC0) == 0x80)) {
233 uint32_t codepoint = ((*Position & 0x07) << 18) |
234 ((*(Position + 1) & 0x3F) << 12) |
235 ((*(Position + 2) & 0x3F) << 6) |
236 (*(Position + 3) & 0x3F);
237 if (codepoint >= 0x10000 && codepoint <= 0x10FFFF)
238 return std::make_pair(x&: codepoint, y: 4);
239 }
240 return std::make_pair(x: 0, y: 0);
241}
242
243namespace llvm {
244namespace yaml {
245
246/// Scans YAML tokens from a MemoryBuffer.
247class Scanner {
248public:
249 Scanner(StringRef Input, SourceMgr &SM, bool ShowColors = true,
250 std::error_code *EC = nullptr);
251 Scanner(MemoryBufferRef Buffer, SourceMgr &SM_, bool ShowColors = true,
252 std::error_code *EC = nullptr);
253
254 /// Parse the next token and return it without popping it.
255 Token &peekNext();
256
257 /// Parse the next token and pop it from the queue.
258 Token getNext();
259
260 void printError(SMLoc Loc, SourceMgr::DiagKind Kind, const Twine &Message,
261 ArrayRef<SMRange> Ranges = std::nullopt) {
262 SM.PrintMessage(Loc, Kind, Msg: Message, Ranges, /* FixIts= */ std::nullopt,
263 ShowColors);
264 }
265
266 void setError(const Twine &Message, StringRef::iterator Position) {
267 if (Position >= End)
268 Position = End - 1;
269
270 // propagate the error if possible
271 if (EC)
272 *EC = make_error_code(e: std::errc::invalid_argument);
273
274 // Don't print out more errors after the first one we encounter. The rest
275 // are just the result of the first, and have no meaning.
276 if (!Failed)
277 printError(Loc: SMLoc::getFromPointer(Ptr: Position), Kind: SourceMgr::DK_Error, Message);
278 Failed = true;
279 }
280
281 /// Returns true if an error occurred while parsing.
282 bool failed() {
283 return Failed;
284 }
285
286private:
287 void init(MemoryBufferRef Buffer);
288
289 StringRef currentInput() {
290 return StringRef(Current, End - Current);
291 }
292
293 /// Decode a UTF-8 minimal well-formed code unit subsequence starting
294 /// at \a Position.
295 ///
296 /// If the UTF-8 code units starting at Position do not form a well-formed
297 /// code unit subsequence, then the Unicode scalar value is 0, and the length
298 /// is 0.
299 UTF8Decoded decodeUTF8(StringRef::iterator Position) {
300 return ::decodeUTF8(Range: StringRef(Position, End - Position));
301 }
302
303 // The following functions are based on the gramar rules in the YAML spec. The
304 // style of the function names it meant to closely match how they are written
305 // in the spec. The number within the [] is the number of the grammar rule in
306 // the spec.
307 //
308 // See 4.2 [Production Naming Conventions] for the meaning of the prefixes.
309 //
310 // c-
311 // A production starting and ending with a special character.
312 // b-
313 // A production matching a single line break.
314 // nb-
315 // A production starting and ending with a non-break character.
316 // s-
317 // A production starting and ending with a white space character.
318 // ns-
319 // A production starting and ending with a non-space character.
320 // l-
321 // A production matching complete line(s).
322
323 /// Skip a single nb-char[27] starting at Position.
324 ///
325 /// A nb-char is 0x9 | [0x20-0x7E] | 0x85 | [0xA0-0xD7FF] | [0xE000-0xFEFE]
326 /// | [0xFF00-0xFFFD] | [0x10000-0x10FFFF]
327 ///
328 /// @returns The code unit after the nb-char, or Position if it's not an
329 /// nb-char.
330 StringRef::iterator skip_nb_char(StringRef::iterator Position);
331
332 /// Skip a single b-break[28] starting at Position.
333 ///
334 /// A b-break is 0xD 0xA | 0xD | 0xA
335 ///
336 /// @returns The code unit after the b-break, or Position if it's not a
337 /// b-break.
338 StringRef::iterator skip_b_break(StringRef::iterator Position);
339
340 /// Skip a single s-space[31] starting at Position.
341 ///
342 /// An s-space is 0x20
343 ///
344 /// @returns The code unit after the s-space, or Position if it's not a
345 /// s-space.
346 StringRef::iterator skip_s_space(StringRef::iterator Position);
347
348 /// Skip a single s-white[33] starting at Position.
349 ///
350 /// A s-white is 0x20 | 0x9
351 ///
352 /// @returns The code unit after the s-white, or Position if it's not a
353 /// s-white.
354 StringRef::iterator skip_s_white(StringRef::iterator Position);
355
356 /// Skip a single ns-char[34] starting at Position.
357 ///
358 /// A ns-char is nb-char - s-white
359 ///
360 /// @returns The code unit after the ns-char, or Position if it's not a
361 /// ns-char.
362 StringRef::iterator skip_ns_char(StringRef::iterator Position);
363
364 using SkipWhileFunc = StringRef::iterator (Scanner::*)(StringRef::iterator);
365
366 /// Skip minimal well-formed code unit subsequences until Func
367 /// returns its input.
368 ///
369 /// @returns The code unit after the last minimal well-formed code unit
370 /// subsequence that Func accepted.
371 StringRef::iterator skip_while( SkipWhileFunc Func
372 , StringRef::iterator Position);
373
374 /// Skip minimal well-formed code unit subsequences until Func returns its
375 /// input.
376 void advanceWhile(SkipWhileFunc Func);
377
378 /// Scan ns-uri-char[39]s starting at Cur.
379 ///
380 /// This updates Cur and Column while scanning.
381 void scan_ns_uri_char();
382
383 /// Consume a minimal well-formed code unit subsequence starting at
384 /// \a Cur. Return false if it is not the same Unicode scalar value as
385 /// \a Expected. This updates \a Column.
386 bool consume(uint32_t Expected);
387
388 /// Skip \a Distance UTF-8 code units. Updates \a Cur and \a Column.
389 void skip(uint32_t Distance);
390
391 /// Return true if the minimal well-formed code unit subsequence at
392 /// Pos is whitespace or a new line
393 bool isBlankOrBreak(StringRef::iterator Position);
394
395 /// Return true if the minimal well-formed code unit subsequence at
396 /// Pos is considered a "safe" character for plain scalars.
397 bool isPlainSafeNonBlank(StringRef::iterator Position);
398
399 /// Return true if the line is a line break, false otherwise.
400 bool isLineEmpty(StringRef Line);
401
402 /// Consume a single b-break[28] if it's present at the current position.
403 ///
404 /// Return false if the code unit at the current position isn't a line break.
405 bool consumeLineBreakIfPresent();
406
407 /// If IsSimpleKeyAllowed, create and push_back a new SimpleKey.
408 void saveSimpleKeyCandidate( TokenQueueT::iterator Tok
409 , unsigned AtColumn
410 , bool IsRequired);
411
412 /// Remove simple keys that can no longer be valid simple keys.
413 ///
414 /// Invalid simple keys are not on the current line or are further than 1024
415 /// columns back.
416 void removeStaleSimpleKeyCandidates();
417
418 /// Remove all simple keys on FlowLevel \a Level.
419 void removeSimpleKeyCandidatesOnFlowLevel(unsigned Level);
420
421 /// Unroll indentation in \a Indents back to \a Col. Creates BlockEnd
422 /// tokens if needed.
423 bool unrollIndent(int ToColumn);
424
425 /// Increase indent to \a Col. Creates \a Kind token at \a InsertPoint
426 /// if needed.
427 bool rollIndent( int ToColumn
428 , Token::TokenKind Kind
429 , TokenQueueT::iterator InsertPoint);
430
431 /// Skip a single-line comment when the comment starts at the current
432 /// position of the scanner.
433 void skipComment();
434
435 /// Skip whitespace and comments until the start of the next token.
436 void scanToNextToken();
437
438 /// Must be the first token generated.
439 bool scanStreamStart();
440
441 /// Generate tokens needed to close out the stream.
442 bool scanStreamEnd();
443
444 /// Scan a %BLAH directive.
445 bool scanDirective();
446
447 /// Scan a ... or ---.
448 bool scanDocumentIndicator(bool IsStart);
449
450 /// Scan a [ or { and generate the proper flow collection start token.
451 bool scanFlowCollectionStart(bool IsSequence);
452
453 /// Scan a ] or } and generate the proper flow collection end token.
454 bool scanFlowCollectionEnd(bool IsSequence);
455
456 /// Scan the , that separates entries in a flow collection.
457 bool scanFlowEntry();
458
459 /// Scan the - that starts block sequence entries.
460 bool scanBlockEntry();
461
462 /// Scan an explicit ? indicating a key.
463 bool scanKey();
464
465 /// Scan an explicit : indicating a value.
466 bool scanValue();
467
468 /// Scan a quoted scalar.
469 bool scanFlowScalar(bool IsDoubleQuoted);
470
471 /// Scan an unquoted scalar.
472 bool scanPlainScalar();
473
474 /// Scan an Alias or Anchor starting with * or &.
475 bool scanAliasOrAnchor(bool IsAlias);
476
477 /// Scan a block scalar starting with | or >.
478 bool scanBlockScalar(bool IsLiteral);
479
480 /// Scan a block scalar style indicator and header.
481 ///
482 /// Note: This is distinct from scanBlockScalarHeader to mirror the fact that
483 /// YAML does not consider the style indicator to be a part of the header.
484 ///
485 /// Return false if an error occurred.
486 bool scanBlockScalarIndicators(char &StyleIndicator, char &ChompingIndicator,
487 unsigned &IndentIndicator, bool &IsDone);
488
489 /// Scan a style indicator in a block scalar header.
490 char scanBlockStyleIndicator();
491
492 /// Scan a chomping indicator in a block scalar header.
493 char scanBlockChompingIndicator();
494
495 /// Scan an indentation indicator in a block scalar header.
496 unsigned scanBlockIndentationIndicator();
497
498 /// Scan a block scalar header.
499 ///
500 /// Return false if an error occurred.
501 bool scanBlockScalarHeader(char &ChompingIndicator, unsigned &IndentIndicator,
502 bool &IsDone);
503
504 /// Look for the indentation level of a block scalar.
505 ///
506 /// Return false if an error occurred.
507 bool findBlockScalarIndent(unsigned &BlockIndent, unsigned BlockExitIndent,
508 unsigned &LineBreaks, bool &IsDone);
509
510 /// Scan the indentation of a text line in a block scalar.
511 ///
512 /// Return false if an error occurred.
513 bool scanBlockScalarIndent(unsigned BlockIndent, unsigned BlockExitIndent,
514 bool &IsDone);
515
516 /// Scan a tag of the form !stuff.
517 bool scanTag();
518
519 /// Dispatch to the next scanning function based on \a *Cur.
520 bool fetchMoreTokens();
521
522 /// The SourceMgr used for diagnostics and buffer management.
523 SourceMgr &SM;
524
525 /// The original input.
526 MemoryBufferRef InputBuffer;
527
528 /// The current position of the scanner.
529 StringRef::iterator Current;
530
531 /// The end of the input (one past the last character).
532 StringRef::iterator End;
533
534 /// Current YAML indentation level in spaces.
535 int Indent;
536
537 /// Current column number in Unicode code points.
538 unsigned Column;
539
540 /// Current line number.
541 unsigned Line;
542
543 /// How deep we are in flow style containers. 0 Means at block level.
544 unsigned FlowLevel;
545
546 /// Are we at the start of the stream?
547 bool IsStartOfStream;
548
549 /// Can the next token be the start of a simple key?
550 bool IsSimpleKeyAllowed;
551
552 /// Can the next token be a value indicator even if it does not have a
553 /// trailing space?
554 bool IsAdjacentValueAllowedInFlow;
555
556 /// True if an error has occurred.
557 bool Failed;
558
559 /// Should colors be used when printing out the diagnostic messages?
560 bool ShowColors;
561
562 /// Queue of tokens. This is required to queue up tokens while looking
563 /// for the end of a simple key. And for cases where a single character
564 /// can produce multiple tokens (e.g. BlockEnd).
565 TokenQueueT TokenQueue;
566
567 /// Indentation levels.
568 SmallVector<int, 4> Indents;
569
570 /// Potential simple keys.
571 SmallVector<SimpleKey, 4> SimpleKeys;
572
573 std::error_code *EC;
574};
575
576} // end namespace yaml
577} // end namespace llvm
578
579/// encodeUTF8 - Encode \a UnicodeScalarValue in UTF-8 and append it to result.
580static void encodeUTF8( uint32_t UnicodeScalarValue
581 , SmallVectorImpl<char> &Result) {
582 if (UnicodeScalarValue <= 0x7F) {
583 Result.push_back(Elt: UnicodeScalarValue & 0x7F);
584 } else if (UnicodeScalarValue <= 0x7FF) {
585 uint8_t FirstByte = 0xC0 | ((UnicodeScalarValue & 0x7C0) >> 6);
586 uint8_t SecondByte = 0x80 | (UnicodeScalarValue & 0x3F);
587 Result.push_back(Elt: FirstByte);
588 Result.push_back(Elt: SecondByte);
589 } else if (UnicodeScalarValue <= 0xFFFF) {
590 uint8_t FirstByte = 0xE0 | ((UnicodeScalarValue & 0xF000) >> 12);
591 uint8_t SecondByte = 0x80 | ((UnicodeScalarValue & 0xFC0) >> 6);
592 uint8_t ThirdByte = 0x80 | (UnicodeScalarValue & 0x3F);
593 Result.push_back(Elt: FirstByte);
594 Result.push_back(Elt: SecondByte);
595 Result.push_back(Elt: ThirdByte);
596 } else if (UnicodeScalarValue <= 0x10FFFF) {
597 uint8_t FirstByte = 0xF0 | ((UnicodeScalarValue & 0x1F0000) >> 18);
598 uint8_t SecondByte = 0x80 | ((UnicodeScalarValue & 0x3F000) >> 12);
599 uint8_t ThirdByte = 0x80 | ((UnicodeScalarValue & 0xFC0) >> 6);
600 uint8_t FourthByte = 0x80 | (UnicodeScalarValue & 0x3F);
601 Result.push_back(Elt: FirstByte);
602 Result.push_back(Elt: SecondByte);
603 Result.push_back(Elt: ThirdByte);
604 Result.push_back(Elt: FourthByte);
605 }
606}
607
608bool yaml::dumpTokens(StringRef Input, raw_ostream &OS) {
609 SourceMgr SM;
610 Scanner scanner(Input, SM);
611 while (true) {
612 Token T = scanner.getNext();
613 switch (T.Kind) {
614 case Token::TK_StreamStart:
615 OS << "Stream-Start: ";
616 break;
617 case Token::TK_StreamEnd:
618 OS << "Stream-End: ";
619 break;
620 case Token::TK_VersionDirective:
621 OS << "Version-Directive: ";
622 break;
623 case Token::TK_TagDirective:
624 OS << "Tag-Directive: ";
625 break;
626 case Token::TK_DocumentStart:
627 OS << "Document-Start: ";
628 break;
629 case Token::TK_DocumentEnd:
630 OS << "Document-End: ";
631 break;
632 case Token::TK_BlockEntry:
633 OS << "Block-Entry: ";
634 break;
635 case Token::TK_BlockEnd:
636 OS << "Block-End: ";
637 break;
638 case Token::TK_BlockSequenceStart:
639 OS << "Block-Sequence-Start: ";
640 break;
641 case Token::TK_BlockMappingStart:
642 OS << "Block-Mapping-Start: ";
643 break;
644 case Token::TK_FlowEntry:
645 OS << "Flow-Entry: ";
646 break;
647 case Token::TK_FlowSequenceStart:
648 OS << "Flow-Sequence-Start: ";
649 break;
650 case Token::TK_FlowSequenceEnd:
651 OS << "Flow-Sequence-End: ";
652 break;
653 case Token::TK_FlowMappingStart:
654 OS << "Flow-Mapping-Start: ";
655 break;
656 case Token::TK_FlowMappingEnd:
657 OS << "Flow-Mapping-End: ";
658 break;
659 case Token::TK_Key:
660 OS << "Key: ";
661 break;
662 case Token::TK_Value:
663 OS << "Value: ";
664 break;
665 case Token::TK_Scalar:
666 OS << "Scalar: ";
667 break;
668 case Token::TK_BlockScalar:
669 OS << "Block Scalar: ";
670 break;
671 case Token::TK_Alias:
672 OS << "Alias: ";
673 break;
674 case Token::TK_Anchor:
675 OS << "Anchor: ";
676 break;
677 case Token::TK_Tag:
678 OS << "Tag: ";
679 break;
680 case Token::TK_Error:
681 break;
682 }
683 OS << T.Range << "\n";
684 if (T.Kind == Token::TK_StreamEnd)
685 break;
686 else if (T.Kind == Token::TK_Error)
687 return false;
688 }
689 return true;
690}
691
692bool yaml::scanTokens(StringRef Input) {
693 SourceMgr SM;
694 Scanner scanner(Input, SM);
695 while (true) {
696 Token T = scanner.getNext();
697 if (T.Kind == Token::TK_StreamEnd)
698 break;
699 else if (T.Kind == Token::TK_Error)
700 return false;
701 }
702 return true;
703}
704
705std::string yaml::escape(StringRef Input, bool EscapePrintable) {
706 std::string EscapedInput;
707 for (StringRef::iterator i = Input.begin(), e = Input.end(); i != e; ++i) {
708 if (*i == '\\')
709 EscapedInput += "\\\\";
710 else if (*i == '"')
711 EscapedInput += "\\\"";
712 else if (*i == 0)
713 EscapedInput += "\\0";
714 else if (*i == 0x07)
715 EscapedInput += "\\a";
716 else if (*i == 0x08)
717 EscapedInput += "\\b";
718 else if (*i == 0x09)
719 EscapedInput += "\\t";
720 else if (*i == 0x0A)
721 EscapedInput += "\\n";
722 else if (*i == 0x0B)
723 EscapedInput += "\\v";
724 else if (*i == 0x0C)
725 EscapedInput += "\\f";
726 else if (*i == 0x0D)
727 EscapedInput += "\\r";
728 else if (*i == 0x1B)
729 EscapedInput += "\\e";
730 else if ((unsigned char)*i < 0x20) { // Control characters not handled above.
731 std::string HexStr = utohexstr(X: *i);
732 EscapedInput += "\\x" + std::string(2 - HexStr.size(), '0') + HexStr;
733 } else if (*i & 0x80) { // UTF-8 multiple code unit subsequence.
734 UTF8Decoded UnicodeScalarValue
735 = decodeUTF8(Range: StringRef(i, Input.end() - i));
736 if (UnicodeScalarValue.second == 0) {
737 // Found invalid char.
738 SmallString<4> Val;
739 encodeUTF8(UnicodeScalarValue: 0xFFFD, Result&: Val);
740 llvm::append_range(C&: EscapedInput, R&: Val);
741 // FIXME: Error reporting.
742 return EscapedInput;
743 }
744 if (UnicodeScalarValue.first == 0x85)
745 EscapedInput += "\\N";
746 else if (UnicodeScalarValue.first == 0xA0)
747 EscapedInput += "\\_";
748 else if (UnicodeScalarValue.first == 0x2028)
749 EscapedInput += "\\L";
750 else if (UnicodeScalarValue.first == 0x2029)
751 EscapedInput += "\\P";
752 else if (!EscapePrintable &&
753 sys::unicode::isPrintable(UCS: UnicodeScalarValue.first))
754 EscapedInput += StringRef(i, UnicodeScalarValue.second);
755 else {
756 std::string HexStr = utohexstr(X: UnicodeScalarValue.first);
757 if (HexStr.size() <= 2)
758 EscapedInput += "\\x" + std::string(2 - HexStr.size(), '0') + HexStr;
759 else if (HexStr.size() <= 4)
760 EscapedInput += "\\u" + std::string(4 - HexStr.size(), '0') + HexStr;
761 else if (HexStr.size() <= 8)
762 EscapedInput += "\\U" + std::string(8 - HexStr.size(), '0') + HexStr;
763 }
764 i += UnicodeScalarValue.second - 1;
765 } else
766 EscapedInput.push_back(c: *i);
767 }
768 return EscapedInput;
769}
770
771std::optional<bool> yaml::parseBool(StringRef S) {
772 switch (S.size()) {
773 case 1:
774 switch (S.front()) {
775 case 'y':
776 case 'Y':
777 return true;
778 case 'n':
779 case 'N':
780 return false;
781 default:
782 return std::nullopt;
783 }
784 case 2:
785 switch (S.front()) {
786 case 'O':
787 if (S[1] == 'N') // ON
788 return true;
789 [[fallthrough]];
790 case 'o':
791 if (S[1] == 'n') //[Oo]n
792 return true;
793 return std::nullopt;
794 case 'N':
795 if (S[1] == 'O') // NO
796 return false;
797 [[fallthrough]];
798 case 'n':
799 if (S[1] == 'o') //[Nn]o
800 return false;
801 return std::nullopt;
802 default:
803 return std::nullopt;
804 }
805 case 3:
806 switch (S.front()) {
807 case 'O':
808 if (S.drop_front() == "FF") // OFF
809 return false;
810 [[fallthrough]];
811 case 'o':
812 if (S.drop_front() == "ff") //[Oo]ff
813 return false;
814 return std::nullopt;
815 case 'Y':
816 if (S.drop_front() == "ES") // YES
817 return true;
818 [[fallthrough]];
819 case 'y':
820 if (S.drop_front() == "es") //[Yy]es
821 return true;
822 return std::nullopt;
823 default:
824 return std::nullopt;
825 }
826 case 4:
827 switch (S.front()) {
828 case 'T':
829 if (S.drop_front() == "RUE") // TRUE
830 return true;
831 [[fallthrough]];
832 case 't':
833 if (S.drop_front() == "rue") //[Tt]rue
834 return true;
835 return std::nullopt;
836 default:
837 return std::nullopt;
838 }
839 case 5:
840 switch (S.front()) {
841 case 'F':
842 if (S.drop_front() == "ALSE") // FALSE
843 return false;
844 [[fallthrough]];
845 case 'f':
846 if (S.drop_front() == "alse") //[Ff]alse
847 return false;
848 return std::nullopt;
849 default:
850 return std::nullopt;
851 }
852 default:
853 return std::nullopt;
854 }
855}
856
857Scanner::Scanner(StringRef Input, SourceMgr &sm, bool ShowColors,
858 std::error_code *EC)
859 : SM(sm), ShowColors(ShowColors), EC(EC) {
860 init(Buffer: MemoryBufferRef(Input, "YAML"));
861}
862
863Scanner::Scanner(MemoryBufferRef Buffer, SourceMgr &SM_, bool ShowColors,
864 std::error_code *EC)
865 : SM(SM_), ShowColors(ShowColors), EC(EC) {
866 init(Buffer);
867}
868
869void Scanner::init(MemoryBufferRef Buffer) {
870 InputBuffer = Buffer;
871 Current = InputBuffer.getBufferStart();
872 End = InputBuffer.getBufferEnd();
873 Indent = -1;
874 Column = 0;
875 Line = 0;
876 FlowLevel = 0;
877 IsStartOfStream = true;
878 IsSimpleKeyAllowed = true;
879 IsAdjacentValueAllowedInFlow = false;
880 Failed = false;
881 std::unique_ptr<MemoryBuffer> InputBufferOwner =
882 MemoryBuffer::getMemBuffer(Ref: Buffer, /*RequiresNullTerminator=*/false);
883 SM.AddNewSourceBuffer(F: std::move(InputBufferOwner), IncludeLoc: SMLoc());
884}
885
886Token &Scanner::peekNext() {
887 // If the current token is a possible simple key, keep parsing until we
888 // can confirm.
889 bool NeedMore = false;
890 while (true) {
891 if (TokenQueue.empty() || NeedMore) {
892 if (!fetchMoreTokens()) {
893 TokenQueue.clear();
894 SimpleKeys.clear();
895 TokenQueue.push_back(V: Token());
896 return TokenQueue.front();
897 }
898 }
899 assert(!TokenQueue.empty() &&
900 "fetchMoreTokens lied about getting tokens!");
901
902 removeStaleSimpleKeyCandidates();
903 SimpleKey SK;
904 SK.Tok = TokenQueue.begin();
905 if (!is_contained(Range&: SimpleKeys, Element: SK))
906 break;
907 else
908 NeedMore = true;
909 }
910 return TokenQueue.front();
911}
912
913Token Scanner::getNext() {
914 Token Ret = peekNext();
915 // TokenQueue can be empty if there was an error getting the next token.
916 if (!TokenQueue.empty())
917 TokenQueue.pop_front();
918
919 // There cannot be any referenced Token's if the TokenQueue is empty. So do a
920 // quick deallocation of them all.
921 if (TokenQueue.empty())
922 TokenQueue.resetAlloc();
923
924 return Ret;
925}
926
927StringRef::iterator Scanner::skip_nb_char(StringRef::iterator Position) {
928 if (Position == End)
929 return Position;
930 // Check 7 bit c-printable - b-char.
931 if ( *Position == 0x09
932 || (*Position >= 0x20 && *Position <= 0x7E))
933 return Position + 1;
934
935 // Check for valid UTF-8.
936 if (uint8_t(*Position) & 0x80) {
937 UTF8Decoded u8d = decodeUTF8(Position);
938 if ( u8d.second != 0
939 && u8d.first != 0xFEFF
940 && ( u8d.first == 0x85
941 || ( u8d.first >= 0xA0
942 && u8d.first <= 0xD7FF)
943 || ( u8d.first >= 0xE000
944 && u8d.first <= 0xFFFD)
945 || ( u8d.first >= 0x10000
946 && u8d.first <= 0x10FFFF)))
947 return Position + u8d.second;
948 }
949 return Position;
950}
951
952StringRef::iterator Scanner::skip_b_break(StringRef::iterator Position) {
953 if (Position == End)
954 return Position;
955 if (*Position == 0x0D) {
956 if (Position + 1 != End && *(Position + 1) == 0x0A)
957 return Position + 2;
958 return Position + 1;
959 }
960
961 if (*Position == 0x0A)
962 return Position + 1;
963 return Position;
964}
965
966StringRef::iterator Scanner::skip_s_space(StringRef::iterator Position) {
967 if (Position == End)
968 return Position;
969 if (*Position == ' ')
970 return Position + 1;
971 return Position;
972}
973
974StringRef::iterator Scanner::skip_s_white(StringRef::iterator Position) {
975 if (Position == End)
976 return Position;
977 if (*Position == ' ' || *Position == '\t')
978 return Position + 1;
979 return Position;
980}
981
982StringRef::iterator Scanner::skip_ns_char(StringRef::iterator Position) {
983 if (Position == End)
984 return Position;
985 if (*Position == ' ' || *Position == '\t')
986 return Position;
987 return skip_nb_char(Position);
988}
989
990StringRef::iterator Scanner::skip_while( SkipWhileFunc Func
991 , StringRef::iterator Position) {
992 while (true) {
993 StringRef::iterator i = (this->*Func)(Position);
994 if (i == Position)
995 break;
996 Position = i;
997 }
998 return Position;
999}
1000
1001void Scanner::advanceWhile(SkipWhileFunc Func) {
1002 auto Final = skip_while(Func, Position: Current);
1003 Column += Final - Current;
1004 Current = Final;
1005}
1006
1007static bool is_ns_hex_digit(const char C) { return isAlnum(C); }
1008
1009static bool is_ns_word_char(const char C) { return C == '-' || isAlpha(C); }
1010
1011void Scanner::scan_ns_uri_char() {
1012 while (true) {
1013 if (Current == End)
1014 break;
1015 if (( *Current == '%'
1016 && Current + 2 < End
1017 && is_ns_hex_digit(C: *(Current + 1))
1018 && is_ns_hex_digit(C: *(Current + 2)))
1019 || is_ns_word_char(C: *Current)
1020 || StringRef(Current, 1).find_first_of(Chars: "#;/?:@&=+$,_.!~*'()[]")
1021 != StringRef::npos) {
1022 ++Current;
1023 ++Column;
1024 } else
1025 break;
1026 }
1027}
1028
1029bool Scanner::consume(uint32_t Expected) {
1030 if (Expected >= 0x80) {
1031 setError(Message: "Cannot consume non-ascii characters", Position: Current);
1032 return false;
1033 }
1034 if (Current == End)
1035 return false;
1036 if (uint8_t(*Current) >= 0x80) {
1037 setError(Message: "Cannot consume non-ascii characters", Position: Current);
1038 return false;
1039 }
1040 if (uint8_t(*Current) == Expected) {
1041 ++Current;
1042 ++Column;
1043 return true;
1044 }
1045 return false;
1046}
1047
1048void Scanner::skip(uint32_t Distance) {
1049 Current += Distance;
1050 Column += Distance;
1051 assert(Current <= End && "Skipped past the end");
1052}
1053
1054bool Scanner::isBlankOrBreak(StringRef::iterator Position) {
1055 if (Position == End)
1056 return false;
1057 return *Position == ' ' || *Position == '\t' || *Position == '\r' ||
1058 *Position == '\n';
1059}
1060
1061bool Scanner::isPlainSafeNonBlank(StringRef::iterator Position) {
1062 if (Position == End || isBlankOrBreak(Position))
1063 return false;
1064 if (FlowLevel &&
1065 StringRef(Position, 1).find_first_of(Chars: ",[]{}") != StringRef::npos)
1066 return false;
1067 return true;
1068}
1069
1070bool Scanner::isLineEmpty(StringRef Line) {
1071 for (const auto *Position = Line.begin(); Position != Line.end(); ++Position)
1072 if (!isBlankOrBreak(Position))
1073 return false;
1074 return true;
1075}
1076
1077bool Scanner::consumeLineBreakIfPresent() {
1078 auto Next = skip_b_break(Position: Current);
1079 if (Next == Current)
1080 return false;
1081 Column = 0;
1082 ++Line;
1083 Current = Next;
1084 return true;
1085}
1086
1087void Scanner::saveSimpleKeyCandidate( TokenQueueT::iterator Tok
1088 , unsigned AtColumn
1089 , bool IsRequired) {
1090 if (IsSimpleKeyAllowed) {
1091 SimpleKey SK;
1092 SK.Tok = Tok;
1093 SK.Line = Line;
1094 SK.Column = AtColumn;
1095 SK.IsRequired = IsRequired;
1096 SK.FlowLevel = FlowLevel;
1097 SimpleKeys.push_back(Elt: SK);
1098 }
1099}
1100
1101void Scanner::removeStaleSimpleKeyCandidates() {
1102 for (SmallVectorImpl<SimpleKey>::iterator i = SimpleKeys.begin();
1103 i != SimpleKeys.end();) {
1104 if (i->Line != Line || i->Column + 1024 < Column) {
1105 if (i->IsRequired)
1106 setError( Message: "Could not find expected : for simple key"
1107 , Position: i->Tok->Range.begin());
1108 i = SimpleKeys.erase(CI: i);
1109 } else
1110 ++i;
1111 }
1112}
1113
1114void Scanner::removeSimpleKeyCandidatesOnFlowLevel(unsigned Level) {
1115 if (!SimpleKeys.empty() && (SimpleKeys.end() - 1)->FlowLevel == Level)
1116 SimpleKeys.pop_back();
1117}
1118
1119bool Scanner::unrollIndent(int ToColumn) {
1120 Token T;
1121 // Indentation is ignored in flow.
1122 if (FlowLevel != 0)
1123 return true;
1124
1125 while (Indent > ToColumn) {
1126 T.Kind = Token::TK_BlockEnd;
1127 T.Range = StringRef(Current, 1);
1128 TokenQueue.push_back(V: T);
1129 Indent = Indents.pop_back_val();
1130 }
1131
1132 return true;
1133}
1134
1135bool Scanner::rollIndent( int ToColumn
1136 , Token::TokenKind Kind
1137 , TokenQueueT::iterator InsertPoint) {
1138 if (FlowLevel)
1139 return true;
1140 if (Indent < ToColumn) {
1141 Indents.push_back(Elt: Indent);
1142 Indent = ToColumn;
1143
1144 Token T;
1145 T.Kind = Kind;
1146 T.Range = StringRef(Current, 0);
1147 TokenQueue.insert(I: InsertPoint, V: T);
1148 }
1149 return true;
1150}
1151
1152void Scanner::skipComment() {
1153 if (Current == End || *Current != '#')
1154 return;
1155 while (true) {
1156 // This may skip more than one byte, thus Column is only incremented
1157 // for code points.
1158 StringRef::iterator I = skip_nb_char(Position: Current);
1159 if (I == Current)
1160 break;
1161 Current = I;
1162 ++Column;
1163 }
1164}
1165
1166void Scanner::scanToNextToken() {
1167 while (true) {
1168 while (Current != End && (*Current == ' ' || *Current == '\t')) {
1169 skip(Distance: 1);
1170 }
1171
1172 skipComment();
1173
1174 // Skip EOL.
1175 StringRef::iterator i = skip_b_break(Position: Current);
1176 if (i == Current)
1177 break;
1178 Current = i;
1179 ++Line;
1180 Column = 0;
1181 // New lines may start a simple key.
1182 if (!FlowLevel)
1183 IsSimpleKeyAllowed = true;
1184 }
1185}
1186
1187bool Scanner::scanStreamStart() {
1188 IsStartOfStream = false;
1189
1190 EncodingInfo EI = getUnicodeEncoding(Input: currentInput());
1191
1192 Token T;
1193 T.Kind = Token::TK_StreamStart;
1194 T.Range = StringRef(Current, EI.second);
1195 TokenQueue.push_back(V: T);
1196 Current += EI.second;
1197 return true;
1198}
1199
1200bool Scanner::scanStreamEnd() {
1201 // Force an ending new line if one isn't present.
1202 if (Column != 0) {
1203 Column = 0;
1204 ++Line;
1205 }
1206
1207 unrollIndent(ToColumn: -1);
1208 SimpleKeys.clear();
1209 IsSimpleKeyAllowed = false;
1210 IsAdjacentValueAllowedInFlow = false;
1211
1212 Token T;
1213 T.Kind = Token::TK_StreamEnd;
1214 T.Range = StringRef(Current, 0);
1215 TokenQueue.push_back(V: T);
1216 return true;
1217}
1218
1219bool Scanner::scanDirective() {
1220 // Reset the indentation level.
1221 unrollIndent(ToColumn: -1);
1222 SimpleKeys.clear();
1223 IsSimpleKeyAllowed = false;
1224 IsAdjacentValueAllowedInFlow = false;
1225
1226 StringRef::iterator Start = Current;
1227 consume(Expected: '%');
1228 StringRef::iterator NameStart = Current;
1229 Current = skip_while(Func: &Scanner::skip_ns_char, Position: Current);
1230 StringRef Name(NameStart, Current - NameStart);
1231 Current = skip_while(Func: &Scanner::skip_s_white, Position: Current);
1232
1233 Token T;
1234 if (Name == "YAML") {
1235 Current = skip_while(Func: &Scanner::skip_ns_char, Position: Current);
1236 T.Kind = Token::TK_VersionDirective;
1237 T.Range = StringRef(Start, Current - Start);
1238 TokenQueue.push_back(V: T);
1239 return true;
1240 } else if(Name == "TAG") {
1241 Current = skip_while(Func: &Scanner::skip_ns_char, Position: Current);
1242 Current = skip_while(Func: &Scanner::skip_s_white, Position: Current);
1243 Current = skip_while(Func: &Scanner::skip_ns_char, Position: Current);
1244 T.Kind = Token::TK_TagDirective;
1245 T.Range = StringRef(Start, Current - Start);
1246 TokenQueue.push_back(V: T);
1247 return true;
1248 }
1249 return false;
1250}
1251
1252bool Scanner::scanDocumentIndicator(bool IsStart) {
1253 unrollIndent(ToColumn: -1);
1254 SimpleKeys.clear();
1255 IsSimpleKeyAllowed = false;
1256 IsAdjacentValueAllowedInFlow = false;
1257
1258 Token T;
1259 T.Kind = IsStart ? Token::TK_DocumentStart : Token::TK_DocumentEnd;
1260 T.Range = StringRef(Current, 3);
1261 skip(Distance: 3);
1262 TokenQueue.push_back(V: T);
1263 return true;
1264}
1265
1266bool Scanner::scanFlowCollectionStart(bool IsSequence) {
1267 Token T;
1268 T.Kind = IsSequence ? Token::TK_FlowSequenceStart
1269 : Token::TK_FlowMappingStart;
1270 T.Range = StringRef(Current, 1);
1271 skip(Distance: 1);
1272 TokenQueue.push_back(V: T);
1273
1274 // [ and { may begin a simple key.
1275 saveSimpleKeyCandidate(Tok: --TokenQueue.end(), AtColumn: Column - 1, IsRequired: false);
1276
1277 // And may also be followed by a simple key.
1278 IsSimpleKeyAllowed = true;
1279 // Adjacent values are allowed in flows only after JSON-style keys.
1280 IsAdjacentValueAllowedInFlow = false;
1281 ++FlowLevel;
1282 return true;
1283}
1284
1285bool Scanner::scanFlowCollectionEnd(bool IsSequence) {
1286 removeSimpleKeyCandidatesOnFlowLevel(Level: FlowLevel);
1287 IsSimpleKeyAllowed = false;
1288 IsAdjacentValueAllowedInFlow = true;
1289 Token T;
1290 T.Kind = IsSequence ? Token::TK_FlowSequenceEnd
1291 : Token::TK_FlowMappingEnd;
1292 T.Range = StringRef(Current, 1);
1293 skip(Distance: 1);
1294 TokenQueue.push_back(V: T);
1295 if (FlowLevel)
1296 --FlowLevel;
1297 return true;
1298}
1299
1300bool Scanner::scanFlowEntry() {
1301 removeSimpleKeyCandidatesOnFlowLevel(Level: FlowLevel);
1302 IsSimpleKeyAllowed = true;
1303 IsAdjacentValueAllowedInFlow = false;
1304 Token T;
1305 T.Kind = Token::TK_FlowEntry;
1306 T.Range = StringRef(Current, 1);
1307 skip(Distance: 1);
1308 TokenQueue.push_back(V: T);
1309 return true;
1310}
1311
1312bool Scanner::scanBlockEntry() {
1313 rollIndent(ToColumn: Column, Kind: Token::TK_BlockSequenceStart, InsertPoint: TokenQueue.end());
1314 removeSimpleKeyCandidatesOnFlowLevel(Level: FlowLevel);
1315 IsSimpleKeyAllowed = true;
1316 IsAdjacentValueAllowedInFlow = false;
1317 Token T;
1318 T.Kind = Token::TK_BlockEntry;
1319 T.Range = StringRef(Current, 1);
1320 skip(Distance: 1);
1321 TokenQueue.push_back(V: T);
1322 return true;
1323}
1324
1325bool Scanner::scanKey() {
1326 if (!FlowLevel)
1327 rollIndent(ToColumn: Column, Kind: Token::TK_BlockMappingStart, InsertPoint: TokenQueue.end());
1328
1329 removeSimpleKeyCandidatesOnFlowLevel(Level: FlowLevel);
1330 IsSimpleKeyAllowed = !FlowLevel;
1331 IsAdjacentValueAllowedInFlow = false;
1332
1333 Token T;
1334 T.Kind = Token::TK_Key;
1335 T.Range = StringRef(Current, 1);
1336 skip(Distance: 1);
1337 TokenQueue.push_back(V: T);
1338 return true;
1339}
1340
1341bool Scanner::scanValue() {
1342 // If the previous token could have been a simple key, insert the key token
1343 // into the token queue.
1344 if (!SimpleKeys.empty()) {
1345 SimpleKey SK = SimpleKeys.pop_back_val();
1346 Token T;
1347 T.Kind = Token::TK_Key;
1348 T.Range = SK.Tok->Range;
1349 TokenQueueT::iterator i, e;
1350 for (i = TokenQueue.begin(), e = TokenQueue.end(); i != e; ++i) {
1351 if (i == SK.Tok)
1352 break;
1353 }
1354 if (i == e) {
1355 Failed = true;
1356 return false;
1357 }
1358 i = TokenQueue.insert(I: i, V: T);
1359
1360 // We may also need to add a Block-Mapping-Start token.
1361 rollIndent(ToColumn: SK.Column, Kind: Token::TK_BlockMappingStart, InsertPoint: i);
1362
1363 IsSimpleKeyAllowed = false;
1364 } else {
1365 if (!FlowLevel)
1366 rollIndent(ToColumn: Column, Kind: Token::TK_BlockMappingStart, InsertPoint: TokenQueue.end());
1367 IsSimpleKeyAllowed = !FlowLevel;
1368 }
1369 IsAdjacentValueAllowedInFlow = false;
1370
1371 Token T;
1372 T.Kind = Token::TK_Value;
1373 T.Range = StringRef(Current, 1);
1374 skip(Distance: 1);
1375 TokenQueue.push_back(V: T);
1376 return true;
1377}
1378
1379// Forbidding inlining improves performance by roughly 20%.
1380// FIXME: Remove once llvm optimizes this to the faster version without hints.
1381LLVM_ATTRIBUTE_NOINLINE static bool
1382wasEscaped(StringRef::iterator First, StringRef::iterator Position);
1383
1384// Returns whether a character at 'Position' was escaped with a leading '\'.
1385// 'First' specifies the position of the first character in the string.
1386static bool wasEscaped(StringRef::iterator First,
1387 StringRef::iterator Position) {
1388 assert(Position - 1 >= First);
1389 StringRef::iterator I = Position - 1;
1390 // We calculate the number of consecutive '\'s before the current position
1391 // by iterating backwards through our string.
1392 while (I >= First && *I == '\\') --I;
1393 // (Position - 1 - I) now contains the number of '\'s before the current
1394 // position. If it is odd, the character at 'Position' was escaped.
1395 return (Position - 1 - I) % 2 == 1;
1396}
1397
1398bool Scanner::scanFlowScalar(bool IsDoubleQuoted) {
1399 StringRef::iterator Start = Current;
1400 unsigned ColStart = Column;
1401 if (IsDoubleQuoted) {
1402 do {
1403 ++Current;
1404 while (Current != End && *Current != '"')
1405 ++Current;
1406 // Repeat until the previous character was not a '\' or was an escaped
1407 // backslash.
1408 } while ( Current != End
1409 && *(Current - 1) == '\\'
1410 && wasEscaped(First: Start + 1, Position: Current));
1411 } else {
1412 skip(Distance: 1);
1413 while (Current != End) {
1414 // Skip a ' followed by another '.
1415 if (Current + 1 < End && *Current == '\'' && *(Current + 1) == '\'') {
1416 skip(Distance: 2);
1417 continue;
1418 } else if (*Current == '\'')
1419 break;
1420 StringRef::iterator i = skip_nb_char(Position: Current);
1421 if (i == Current) {
1422 i = skip_b_break(Position: Current);
1423 if (i == Current)
1424 break;
1425 Current = i;
1426 Column = 0;
1427 ++Line;
1428 } else {
1429 if (i == End)
1430 break;
1431 Current = i;
1432 ++Column;
1433 }
1434 }
1435 }
1436
1437 if (Current == End) {
1438 setError(Message: "Expected quote at end of scalar", Position: Current);
1439 return false;
1440 }
1441
1442 skip(Distance: 1); // Skip ending quote.
1443 Token T;
1444 T.Kind = Token::TK_Scalar;
1445 T.Range = StringRef(Start, Current - Start);
1446 TokenQueue.push_back(V: T);
1447
1448 saveSimpleKeyCandidate(Tok: --TokenQueue.end(), AtColumn: ColStart, IsRequired: false);
1449
1450 IsSimpleKeyAllowed = false;
1451 IsAdjacentValueAllowedInFlow = true;
1452
1453 return true;
1454}
1455
1456bool Scanner::scanPlainScalar() {
1457 StringRef::iterator Start = Current;
1458 unsigned ColStart = Column;
1459 unsigned LeadingBlanks = 0;
1460 assert(Indent >= -1 && "Indent must be >= -1 !");
1461 unsigned indent = static_cast<unsigned>(Indent + 1);
1462 while (Current != End) {
1463 if (*Current == '#')
1464 break;
1465
1466 while (Current != End &&
1467 ((*Current != ':' && isPlainSafeNonBlank(Position: Current)) ||
1468 (*Current == ':' && isPlainSafeNonBlank(Position: Current + 1)))) {
1469 StringRef::iterator i = skip_nb_char(Position: Current);
1470 if (i == Current)
1471 break;
1472 Current = i;
1473 ++Column;
1474 }
1475
1476 // Are we at the end?
1477 if (!isBlankOrBreak(Position: Current))
1478 break;
1479
1480 // Eat blanks.
1481 StringRef::iterator Tmp = Current;
1482 while (isBlankOrBreak(Position: Tmp)) {
1483 StringRef::iterator i = skip_s_white(Position: Tmp);
1484 if (i != Tmp) {
1485 if (LeadingBlanks && (Column < indent) && *Tmp == '\t') {
1486 setError(Message: "Found invalid tab character in indentation", Position: Tmp);
1487 return false;
1488 }
1489 Tmp = i;
1490 ++Column;
1491 } else {
1492 i = skip_b_break(Position: Tmp);
1493 if (!LeadingBlanks)
1494 LeadingBlanks = 1;
1495 Tmp = i;
1496 Column = 0;
1497 ++Line;
1498 }
1499 }
1500
1501 if (!FlowLevel && Column < indent)
1502 break;
1503
1504 Current = Tmp;
1505 }
1506 if (Start == Current) {
1507 setError(Message: "Got empty plain scalar", Position: Start);
1508 return false;
1509 }
1510 Token T;
1511 T.Kind = Token::TK_Scalar;
1512 T.Range = StringRef(Start, Current - Start);
1513 TokenQueue.push_back(V: T);
1514
1515 // Plain scalars can be simple keys.
1516 saveSimpleKeyCandidate(Tok: --TokenQueue.end(), AtColumn: ColStart, IsRequired: false);
1517
1518 IsSimpleKeyAllowed = false;
1519 IsAdjacentValueAllowedInFlow = false;
1520
1521 return true;
1522}
1523
1524bool Scanner::scanAliasOrAnchor(bool IsAlias) {
1525 StringRef::iterator Start = Current;
1526 unsigned ColStart = Column;
1527 skip(Distance: 1);
1528 while (Current != End) {
1529 if ( *Current == '[' || *Current == ']'
1530 || *Current == '{' || *Current == '}'
1531 || *Current == ','
1532 || *Current == ':')
1533 break;
1534 StringRef::iterator i = skip_ns_char(Position: Current);
1535 if (i == Current)
1536 break;
1537 Current = i;
1538 ++Column;
1539 }
1540
1541 if (Start + 1 == Current) {
1542 setError(Message: "Got empty alias or anchor", Position: Start);
1543 return false;
1544 }
1545
1546 Token T;
1547 T.Kind = IsAlias ? Token::TK_Alias : Token::TK_Anchor;
1548 T.Range = StringRef(Start, Current - Start);
1549 TokenQueue.push_back(V: T);
1550
1551 // Alias and anchors can be simple keys.
1552 saveSimpleKeyCandidate(Tok: --TokenQueue.end(), AtColumn: ColStart, IsRequired: false);
1553
1554 IsSimpleKeyAllowed = false;
1555 IsAdjacentValueAllowedInFlow = false;
1556
1557 return true;
1558}
1559
1560bool Scanner::scanBlockScalarIndicators(char &StyleIndicator,
1561 char &ChompingIndicator,
1562 unsigned &IndentIndicator,
1563 bool &IsDone) {
1564 StyleIndicator = scanBlockStyleIndicator();
1565 if (!scanBlockScalarHeader(ChompingIndicator, IndentIndicator, IsDone))
1566 return false;
1567 return true;
1568}
1569
1570char Scanner::scanBlockStyleIndicator() {
1571 char Indicator = ' ';
1572 if (Current != End && (*Current == '>' || *Current == '|')) {
1573 Indicator = *Current;
1574 skip(Distance: 1);
1575 }
1576 return Indicator;
1577}
1578
1579char Scanner::scanBlockChompingIndicator() {
1580 char Indicator = ' ';
1581 if (Current != End && (*Current == '+' || *Current == '-')) {
1582 Indicator = *Current;
1583 skip(Distance: 1);
1584 }
1585 return Indicator;
1586}
1587
1588/// Get the number of line breaks after chomping.
1589///
1590/// Return the number of trailing line breaks to emit, depending on
1591/// \p ChompingIndicator.
1592static unsigned getChompedLineBreaks(char ChompingIndicator,
1593 unsigned LineBreaks, StringRef Str) {
1594 if (ChompingIndicator == '-') // Strip all line breaks.
1595 return 0;
1596 if (ChompingIndicator == '+') // Keep all line breaks.
1597 return LineBreaks;
1598 // Clip trailing lines.
1599 return Str.empty() ? 0 : 1;
1600}
1601
1602unsigned Scanner::scanBlockIndentationIndicator() {
1603 unsigned Indent = 0;
1604 if (Current != End && (*Current >= '1' && *Current <= '9')) {
1605 Indent = unsigned(*Current - '0');
1606 skip(Distance: 1);
1607 }
1608 return Indent;
1609}
1610
1611bool Scanner::scanBlockScalarHeader(char &ChompingIndicator,
1612 unsigned &IndentIndicator, bool &IsDone) {
1613 auto Start = Current;
1614
1615 ChompingIndicator = scanBlockChompingIndicator();
1616 IndentIndicator = scanBlockIndentationIndicator();
1617 // Check for the chomping indicator once again.
1618 if (ChompingIndicator == ' ')
1619 ChompingIndicator = scanBlockChompingIndicator();
1620 Current = skip_while(Func: &Scanner::skip_s_white, Position: Current);
1621 skipComment();
1622
1623 if (Current == End) { // EOF, we have an empty scalar.
1624 Token T;
1625 T.Kind = Token::TK_BlockScalar;
1626 T.Range = StringRef(Start, Current - Start);
1627 TokenQueue.push_back(V: T);
1628 IsDone = true;
1629 return true;
1630 }
1631
1632 if (!consumeLineBreakIfPresent()) {
1633 setError(Message: "Expected a line break after block scalar header", Position: Current);
1634 return false;
1635 }
1636 return true;
1637}
1638
1639bool Scanner::findBlockScalarIndent(unsigned &BlockIndent,
1640 unsigned BlockExitIndent,
1641 unsigned &LineBreaks, bool &IsDone) {
1642 unsigned MaxAllSpaceLineCharacters = 0;
1643 StringRef::iterator LongestAllSpaceLine;
1644
1645 while (true) {
1646 advanceWhile(Func: &Scanner::skip_s_space);
1647 if (skip_nb_char(Position: Current) != Current) {
1648 // This line isn't empty, so try and find the indentation.
1649 if (Column <= BlockExitIndent) { // End of the block literal.
1650 IsDone = true;
1651 return true;
1652 }
1653 // We found the block's indentation.
1654 BlockIndent = Column;
1655 if (MaxAllSpaceLineCharacters > BlockIndent) {
1656 setError(
1657 Message: "Leading all-spaces line must be smaller than the block indent",
1658 Position: LongestAllSpaceLine);
1659 return false;
1660 }
1661 return true;
1662 }
1663 if (skip_b_break(Position: Current) != Current &&
1664 Column > MaxAllSpaceLineCharacters) {
1665 // Record the longest all-space line in case it's longer than the
1666 // discovered block indent.
1667 MaxAllSpaceLineCharacters = Column;
1668 LongestAllSpaceLine = Current;
1669 }
1670
1671 // Check for EOF.
1672 if (Current == End) {
1673 IsDone = true;
1674 return true;
1675 }
1676
1677 if (!consumeLineBreakIfPresent()) {
1678 IsDone = true;
1679 return true;
1680 }
1681 ++LineBreaks;
1682 }
1683 return true;
1684}
1685
1686bool Scanner::scanBlockScalarIndent(unsigned BlockIndent,
1687 unsigned BlockExitIndent, bool &IsDone) {
1688 // Skip the indentation.
1689 while (Column < BlockIndent) {
1690 auto I = skip_s_space(Position: Current);
1691 if (I == Current)
1692 break;
1693 Current = I;
1694 ++Column;
1695 }
1696
1697 if (skip_nb_char(Position: Current) == Current)
1698 return true;
1699
1700 if (Column <= BlockExitIndent) { // End of the block literal.
1701 IsDone = true;
1702 return true;
1703 }
1704
1705 if (Column < BlockIndent) {
1706 if (Current != End && *Current == '#') { // Trailing comment.
1707 IsDone = true;
1708 return true;
1709 }
1710 setError(Message: "A text line is less indented than the block scalar", Position: Current);
1711 return false;
1712 }
1713 return true; // A normal text line.
1714}
1715
1716bool Scanner::scanBlockScalar(bool IsLiteral) {
1717 assert(*Current == '|' || *Current == '>');
1718 char StyleIndicator;
1719 char ChompingIndicator;
1720 unsigned BlockIndent;
1721 bool IsDone = false;
1722 if (!scanBlockScalarIndicators(StyleIndicator, ChompingIndicator, IndentIndicator&: BlockIndent,
1723 IsDone))
1724 return false;
1725 if (IsDone)
1726 return true;
1727 bool IsFolded = StyleIndicator == '>';
1728
1729 const auto *Start = Current;
1730 unsigned BlockExitIndent = Indent < 0 ? 0 : (unsigned)Indent;
1731 unsigned LineBreaks = 0;
1732 if (BlockIndent == 0) {
1733 if (!findBlockScalarIndent(BlockIndent, BlockExitIndent, LineBreaks,
1734 IsDone))
1735 return false;
1736 }
1737
1738 // Scan the block's scalars body.
1739 SmallString<256> Str;
1740 while (!IsDone) {
1741 if (!scanBlockScalarIndent(BlockIndent, BlockExitIndent, IsDone))
1742 return false;
1743 if (IsDone)
1744 break;
1745
1746 // Parse the current line.
1747 auto LineStart = Current;
1748 advanceWhile(Func: &Scanner::skip_nb_char);
1749 if (LineStart != Current) {
1750 if (LineBreaks && IsFolded && !Scanner::isLineEmpty(Line: Str)) {
1751 // The folded style "folds" any single line break between content into a
1752 // single space, except when that content is "empty" (only contains
1753 // whitespace) in which case the line break is left as-is.
1754 if (LineBreaks == 1) {
1755 Str.append(NumInputs: LineBreaks,
1756 Elt: isLineEmpty(Line: StringRef(LineStart, Current - LineStart))
1757 ? '\n'
1758 : ' ');
1759 }
1760 // If we saw a single line break, we are completely replacing it and so
1761 // want `LineBreaks == 0`. Otherwise this decrement accounts for the
1762 // fact that the first line break is "trimmed", only being used to
1763 // signal a sequence of line breaks which should not be folded.
1764 LineBreaks--;
1765 }
1766 Str.append(NumInputs: LineBreaks, Elt: '\n');
1767 Str.append(RHS: StringRef(LineStart, Current - LineStart));
1768 LineBreaks = 0;
1769 }
1770
1771 // Check for EOF.
1772 if (Current == End)
1773 break;
1774
1775 if (!consumeLineBreakIfPresent())
1776 break;
1777 ++LineBreaks;
1778 }
1779
1780 if (Current == End && !LineBreaks)
1781 // Ensure that there is at least one line break before the end of file.
1782 LineBreaks = 1;
1783 Str.append(NumInputs: getChompedLineBreaks(ChompingIndicator, LineBreaks, Str), Elt: '\n');
1784
1785 // New lines may start a simple key.
1786 if (!FlowLevel)
1787 IsSimpleKeyAllowed = true;
1788 IsAdjacentValueAllowedInFlow = false;
1789
1790 Token T;
1791 T.Kind = Token::TK_BlockScalar;
1792 T.Range = StringRef(Start, Current - Start);
1793 T.Value = std::string(Str);
1794 TokenQueue.push_back(V: T);
1795 return true;
1796}
1797
1798bool Scanner::scanTag() {
1799 StringRef::iterator Start = Current;
1800 unsigned ColStart = Column;
1801 skip(Distance: 1); // Eat !.
1802 if (Current == End || isBlankOrBreak(Position: Current)); // An empty tag.
1803 else if (*Current == '<') {
1804 skip(Distance: 1);
1805 scan_ns_uri_char();
1806 if (!consume(Expected: '>'))
1807 return false;
1808 } else {
1809 // FIXME: Actually parse the c-ns-shorthand-tag rule.
1810 Current = skip_while(Func: &Scanner::skip_ns_char, Position: Current);
1811 }
1812
1813 Token T;
1814 T.Kind = Token::TK_Tag;
1815 T.Range = StringRef(Start, Current - Start);
1816 TokenQueue.push_back(V: T);
1817
1818 // Tags can be simple keys.
1819 saveSimpleKeyCandidate(Tok: --TokenQueue.end(), AtColumn: ColStart, IsRequired: false);
1820
1821 IsSimpleKeyAllowed = false;
1822 IsAdjacentValueAllowedInFlow = false;
1823
1824 return true;
1825}
1826
1827bool Scanner::fetchMoreTokens() {
1828 if (IsStartOfStream)
1829 return scanStreamStart();
1830
1831 scanToNextToken();
1832
1833 if (Current == End)
1834 return scanStreamEnd();
1835
1836 removeStaleSimpleKeyCandidates();
1837
1838 unrollIndent(ToColumn: Column);
1839
1840 if (Column == 0 && *Current == '%')
1841 return scanDirective();
1842
1843 if (Column == 0 && Current + 4 <= End
1844 && *Current == '-'
1845 && *(Current + 1) == '-'
1846 && *(Current + 2) == '-'
1847 && (Current + 3 == End || isBlankOrBreak(Position: Current + 3)))
1848 return scanDocumentIndicator(IsStart: true);
1849
1850 if (Column == 0 && Current + 4 <= End
1851 && *Current == '.'
1852 && *(Current + 1) == '.'
1853 && *(Current + 2) == '.'
1854 && (Current + 3 == End || isBlankOrBreak(Position: Current + 3)))
1855 return scanDocumentIndicator(IsStart: false);
1856
1857 if (*Current == '[')
1858 return scanFlowCollectionStart(IsSequence: true);
1859
1860 if (*Current == '{')
1861 return scanFlowCollectionStart(IsSequence: false);
1862
1863 if (*Current == ']')
1864 return scanFlowCollectionEnd(IsSequence: true);
1865
1866 if (*Current == '}')
1867 return scanFlowCollectionEnd(IsSequence: false);
1868
1869 if (*Current == ',')
1870 return scanFlowEntry();
1871
1872 if (*Current == '-' && (isBlankOrBreak(Position: Current + 1) || Current + 1 == End))
1873 return scanBlockEntry();
1874
1875 if (*Current == '?' && (Current + 1 == End || isBlankOrBreak(Position: Current + 1)))
1876 return scanKey();
1877
1878 if (*Current == ':' &&
1879 (!isPlainSafeNonBlank(Position: Current + 1) || IsAdjacentValueAllowedInFlow))
1880 return scanValue();
1881
1882 if (*Current == '*')
1883 return scanAliasOrAnchor(IsAlias: true);
1884
1885 if (*Current == '&')
1886 return scanAliasOrAnchor(IsAlias: false);
1887
1888 if (*Current == '!')
1889 return scanTag();
1890
1891 if (*Current == '|' && !FlowLevel)
1892 return scanBlockScalar(IsLiteral: true);
1893
1894 if (*Current == '>' && !FlowLevel)
1895 return scanBlockScalar(IsLiteral: false);
1896
1897 if (*Current == '\'')
1898 return scanFlowScalar(IsDoubleQuoted: false);
1899
1900 if (*Current == '"')
1901 return scanFlowScalar(IsDoubleQuoted: true);
1902
1903 // Get a plain scalar.
1904 StringRef FirstChar(Current, 1);
1905 if ((!isBlankOrBreak(Position: Current) &&
1906 FirstChar.find_first_of(Chars: "-?:,[]{}#&*!|>'\"%@`") == StringRef::npos) ||
1907 (FirstChar.find_first_of(Chars: "?:-") != StringRef::npos &&
1908 isPlainSafeNonBlank(Position: Current + 1)))
1909 return scanPlainScalar();
1910
1911 setError(Message: "Unrecognized character while tokenizing.", Position: Current);
1912 return false;
1913}
1914
1915Stream::Stream(StringRef Input, SourceMgr &SM, bool ShowColors,
1916 std::error_code *EC)
1917 : scanner(new Scanner(Input, SM, ShowColors, EC)) {}
1918
1919Stream::Stream(MemoryBufferRef InputBuffer, SourceMgr &SM, bool ShowColors,
1920 std::error_code *EC)
1921 : scanner(new Scanner(InputBuffer, SM, ShowColors, EC)) {}
1922
1923Stream::~Stream() = default;
1924
1925bool Stream::failed() { return scanner->failed(); }
1926
1927void Stream::printError(Node *N, const Twine &Msg, SourceMgr::DiagKind Kind) {
1928 printError(Range: N ? N->getSourceRange() : SMRange(), Msg, Kind);
1929}
1930
1931void Stream::printError(const SMRange &Range, const Twine &Msg,
1932 SourceMgr::DiagKind Kind) {
1933 scanner->printError(Loc: Range.Start, Kind, Message: Msg, Ranges: Range);
1934}
1935
1936document_iterator Stream::begin() {
1937 if (CurrentDoc)
1938 report_fatal_error(reason: "Can only iterate over the stream once");
1939
1940 // Skip Stream-Start.
1941 scanner->getNext();
1942
1943 CurrentDoc.reset(p: new Document(*this));
1944 return document_iterator(CurrentDoc);
1945}
1946
1947document_iterator Stream::end() {
1948 return document_iterator();
1949}
1950
1951void Stream::skip() {
1952 for (Document &Doc : *this)
1953 Doc.skip();
1954}
1955
1956Node::Node(unsigned int Type, std::unique_ptr<Document> &D, StringRef A,
1957 StringRef T)
1958 : Doc(D), TypeID(Type), Anchor(A), Tag(T) {
1959 SMLoc Start = SMLoc::getFromPointer(Ptr: peekNext().Range.begin());
1960 SourceRange = SMRange(Start, Start);
1961}
1962
1963std::string Node::getVerbatimTag() const {
1964 StringRef Raw = getRawTag();
1965 if (!Raw.empty() && Raw != "!") {
1966 std::string Ret;
1967 if (Raw.find_last_of(C: '!') == 0) {
1968 Ret = std::string(Doc->getTagMap().find(x: "!")->second);
1969 Ret += Raw.substr(Start: 1);
1970 return Ret;
1971 } else if (Raw.starts_with(Prefix: "!!")) {
1972 Ret = std::string(Doc->getTagMap().find(x: "!!")->second);
1973 Ret += Raw.substr(Start: 2);
1974 return Ret;
1975 } else {
1976 StringRef TagHandle = Raw.substr(Start: 0, N: Raw.find_last_of(C: '!') + 1);
1977 std::map<StringRef, StringRef>::const_iterator It =
1978 Doc->getTagMap().find(x: TagHandle);
1979 if (It != Doc->getTagMap().end())
1980 Ret = std::string(It->second);
1981 else {
1982 Token T;
1983 T.Kind = Token::TK_Tag;
1984 T.Range = TagHandle;
1985 setError(Message: Twine("Unknown tag handle ") + TagHandle, Location&: T);
1986 }
1987 Ret += Raw.substr(Start: Raw.find_last_of(C: '!') + 1);
1988 return Ret;
1989 }
1990 }
1991
1992 switch (getType()) {
1993 case NK_Null:
1994 return "tag:yaml.org,2002:null";
1995 case NK_Scalar:
1996 case NK_BlockScalar:
1997 // TODO: Tag resolution.
1998 return "tag:yaml.org,2002:str";
1999 case NK_Mapping:
2000 return "tag:yaml.org,2002:map";
2001 case NK_Sequence:
2002 return "tag:yaml.org,2002:seq";
2003 }
2004
2005 return "";
2006}
2007
2008Token &Node::peekNext() {
2009 return Doc->peekNext();
2010}
2011
2012Token Node::getNext() {
2013 return Doc->getNext();
2014}
2015
2016Node *Node::parseBlockNode() {
2017 return Doc->parseBlockNode();
2018}
2019
2020BumpPtrAllocator &Node::getAllocator() {
2021 return Doc->NodeAllocator;
2022}
2023
2024void Node::setError(const Twine &Msg, Token &Tok) const {
2025 Doc->setError(Message: Msg, Location&: Tok);
2026}
2027
2028bool Node::failed() const {
2029 return Doc->failed();
2030}
2031
2032StringRef ScalarNode::getValue(SmallVectorImpl<char> &Storage) const {
2033 if (Value[0] == '"')
2034 return getDoubleQuotedValue(UnquotedValue: Value, Storage);
2035 if (Value[0] == '\'')
2036 return getSingleQuotedValue(RawValue: Value, Storage);
2037 return getPlainValue(RawValue: Value, Storage);
2038}
2039
2040/// parseScalarValue - A common parsing routine for all flow scalar styles.
2041/// It handles line break characters by itself, adds regular content characters
2042/// to the result, and forwards escaped sequences to the provided routine for
2043/// the style-specific processing.
2044///
2045/// \param UnquotedValue - An input value without quotation marks.
2046/// \param Storage - A storage for the result if the input value is multiline or
2047/// contains escaped characters.
2048/// \param LookupChars - A set of special characters to search in the input
2049/// string. Should include line break characters and the escape character
2050/// specific for the processing scalar style, if any.
2051/// \param UnescapeCallback - This is called when the escape character is found
2052/// in the input.
2053/// \returns - The unfolded and unescaped value.
2054static StringRef
2055parseScalarValue(StringRef UnquotedValue, SmallVectorImpl<char> &Storage,
2056 StringRef LookupChars,
2057 std::function<StringRef(StringRef, SmallVectorImpl<char> &)>
2058 UnescapeCallback) {
2059 size_t I = UnquotedValue.find_first_of(Chars: LookupChars);
2060 if (I == StringRef::npos)
2061 return UnquotedValue;
2062
2063 Storage.clear();
2064 Storage.reserve(N: UnquotedValue.size());
2065 char LastNewLineAddedAs = '\0';
2066 for (; I != StringRef::npos; I = UnquotedValue.find_first_of(Chars: LookupChars)) {
2067 if (UnquotedValue[I] != '\r' && UnquotedValue[I] != '\n') {
2068 llvm::append_range(C&: Storage, R: UnquotedValue.take_front(N: I));
2069 UnquotedValue = UnescapeCallback(UnquotedValue.drop_front(N: I), Storage);
2070 LastNewLineAddedAs = '\0';
2071 continue;
2072 }
2073 if (size_t LastNonSWhite = UnquotedValue.find_last_not_of(Chars: " \t", From: I);
2074 LastNonSWhite != StringRef::npos) {
2075 llvm::append_range(C&: Storage, R: UnquotedValue.take_front(N: LastNonSWhite + 1));
2076 Storage.push_back(Elt: ' ');
2077 LastNewLineAddedAs = ' ';
2078 } else {
2079 // Note: we can't just check if the last character in Storage is ' ',
2080 // '\n', or something else; that would give a wrong result for double
2081 // quoted values containing an escaped space character before a new-line
2082 // character.
2083 switch (LastNewLineAddedAs) {
2084 case ' ':
2085 assert(!Storage.empty() && Storage.back() == ' ');
2086 Storage.back() = '\n';
2087 LastNewLineAddedAs = '\n';
2088 break;
2089 case '\n':
2090 assert(!Storage.empty() && Storage.back() == '\n');
2091 Storage.push_back(Elt: '\n');
2092 break;
2093 default:
2094 Storage.push_back(Elt: ' ');
2095 LastNewLineAddedAs = ' ';
2096 break;
2097 }
2098 }
2099 // Handle Windows-style EOL
2100 if (UnquotedValue.substr(Start: I, N: 2) == "\r\n")
2101 I++;
2102 UnquotedValue = UnquotedValue.drop_front(N: I + 1).ltrim(Chars: " \t");
2103 }
2104 llvm::append_range(C&: Storage, R&: UnquotedValue);
2105 return StringRef(Storage.begin(), Storage.size());
2106}
2107
2108StringRef
2109ScalarNode::getDoubleQuotedValue(StringRef RawValue,
2110 SmallVectorImpl<char> &Storage) const {
2111 assert(RawValue.size() >= 2 && RawValue.front() == '"' &&
2112 RawValue.back() == '"');
2113 StringRef UnquotedValue = RawValue.substr(Start: 1, N: RawValue.size() - 2);
2114
2115 auto UnescapeFunc = [this](StringRef UnquotedValue,
2116 SmallVectorImpl<char> &Storage) {
2117 assert(UnquotedValue.take_front(1) == "\\");
2118 if (UnquotedValue.size() == 1) {
2119 Token T;
2120 T.Range = UnquotedValue;
2121 setError(Msg: "Unrecognized escape code", Tok&: T);
2122 Storage.clear();
2123 return StringRef();
2124 }
2125 UnquotedValue = UnquotedValue.drop_front(N: 1);
2126 switch (UnquotedValue[0]) {
2127 default: {
2128 Token T;
2129 T.Range = UnquotedValue.take_front(N: 1);
2130 setError(Msg: "Unrecognized escape code", Tok&: T);
2131 Storage.clear();
2132 return StringRef();
2133 }
2134 case '\r':
2135 // Shrink the Windows-style EOL.
2136 if (UnquotedValue.size() >= 2 && UnquotedValue[1] == '\n')
2137 UnquotedValue = UnquotedValue.drop_front(N: 1);
2138 [[fallthrough]];
2139 case '\n':
2140 return UnquotedValue.drop_front(N: 1).ltrim(Chars: " \t");
2141 case '0':
2142 Storage.push_back(Elt: 0x00);
2143 break;
2144 case 'a':
2145 Storage.push_back(Elt: 0x07);
2146 break;
2147 case 'b':
2148 Storage.push_back(Elt: 0x08);
2149 break;
2150 case 't':
2151 case 0x09:
2152 Storage.push_back(Elt: 0x09);
2153 break;
2154 case 'n':
2155 Storage.push_back(Elt: 0x0A);
2156 break;
2157 case 'v':
2158 Storage.push_back(Elt: 0x0B);
2159 break;
2160 case 'f':
2161 Storage.push_back(Elt: 0x0C);
2162 break;
2163 case 'r':
2164 Storage.push_back(Elt: 0x0D);
2165 break;
2166 case 'e':
2167 Storage.push_back(Elt: 0x1B);
2168 break;
2169 case ' ':
2170 Storage.push_back(Elt: 0x20);
2171 break;
2172 case '"':
2173 Storage.push_back(Elt: 0x22);
2174 break;
2175 case '/':
2176 Storage.push_back(Elt: 0x2F);
2177 break;
2178 case '\\':
2179 Storage.push_back(Elt: 0x5C);
2180 break;
2181 case 'N':
2182 encodeUTF8(UnicodeScalarValue: 0x85, Result&: Storage);
2183 break;
2184 case '_':
2185 encodeUTF8(UnicodeScalarValue: 0xA0, Result&: Storage);
2186 break;
2187 case 'L':
2188 encodeUTF8(UnicodeScalarValue: 0x2028, Result&: Storage);
2189 break;
2190 case 'P':
2191 encodeUTF8(UnicodeScalarValue: 0x2029, Result&: Storage);
2192 break;
2193 case 'x': {
2194 if (UnquotedValue.size() < 3)
2195 // TODO: Report error.
2196 break;
2197 unsigned int UnicodeScalarValue;
2198 if (UnquotedValue.substr(Start: 1, N: 2).getAsInteger(Radix: 16, Result&: UnicodeScalarValue))
2199 // TODO: Report error.
2200 UnicodeScalarValue = 0xFFFD;
2201 encodeUTF8(UnicodeScalarValue, Result&: Storage);
2202 return UnquotedValue.drop_front(N: 3);
2203 }
2204 case 'u': {
2205 if (UnquotedValue.size() < 5)
2206 // TODO: Report error.
2207 break;
2208 unsigned int UnicodeScalarValue;
2209 if (UnquotedValue.substr(Start: 1, N: 4).getAsInteger(Radix: 16, Result&: UnicodeScalarValue))
2210 // TODO: Report error.
2211 UnicodeScalarValue = 0xFFFD;
2212 encodeUTF8(UnicodeScalarValue, Result&: Storage);
2213 return UnquotedValue.drop_front(N: 5);
2214 }
2215 case 'U': {
2216 if (UnquotedValue.size() < 9)
2217 // TODO: Report error.
2218 break;
2219 unsigned int UnicodeScalarValue;
2220 if (UnquotedValue.substr(Start: 1, N: 8).getAsInteger(Radix: 16, Result&: UnicodeScalarValue))
2221 // TODO: Report error.
2222 UnicodeScalarValue = 0xFFFD;
2223 encodeUTF8(UnicodeScalarValue, Result&: Storage);
2224 return UnquotedValue.drop_front(N: 9);
2225 }
2226 }
2227 return UnquotedValue.drop_front(N: 1);
2228 };
2229
2230 return parseScalarValue(UnquotedValue, Storage, LookupChars: "\\\r\n", UnescapeCallback: UnescapeFunc);
2231}
2232
2233StringRef ScalarNode::getSingleQuotedValue(StringRef RawValue,
2234 SmallVectorImpl<char> &Storage) {
2235 assert(RawValue.size() >= 2 && RawValue.front() == '\'' &&
2236 RawValue.back() == '\'');
2237 StringRef UnquotedValue = RawValue.substr(Start: 1, N: RawValue.size() - 2);
2238
2239 auto UnescapeFunc = [](StringRef UnquotedValue,
2240 SmallVectorImpl<char> &Storage) {
2241 assert(UnquotedValue.take_front(2) == "''");
2242 Storage.push_back(Elt: '\'');
2243 return UnquotedValue.drop_front(N: 2);
2244 };
2245
2246 return parseScalarValue(UnquotedValue, Storage, LookupChars: "'\r\n", UnescapeCallback: UnescapeFunc);
2247}
2248
2249StringRef ScalarNode::getPlainValue(StringRef RawValue,
2250 SmallVectorImpl<char> &Storage) {
2251 // Trim trailing whitespace ('b-char' and 's-white').
2252 // NOTE: Alternatively we could change the scanner to not include whitespace
2253 // here in the first place.
2254 RawValue = RawValue.rtrim(Chars: "\r\n \t");
2255 return parseScalarValue(UnquotedValue: RawValue, Storage, LookupChars: "\r\n", UnescapeCallback: nullptr);
2256}
2257
2258Node *KeyValueNode::getKey() {
2259 if (Key)
2260 return Key;
2261 // Handle implicit null keys.
2262 {
2263 Token &t = peekNext();
2264 if ( t.Kind == Token::TK_BlockEnd
2265 || t.Kind == Token::TK_Value
2266 || t.Kind == Token::TK_Error) {
2267 return Key = new (getAllocator()) NullNode(Doc);
2268 }
2269 if (t.Kind == Token::TK_Key)
2270 getNext(); // skip TK_Key.
2271 }
2272
2273 // Handle explicit null keys.
2274 Token &t = peekNext();
2275 if (t.Kind == Token::TK_BlockEnd || t.Kind == Token::TK_Value) {
2276 return Key = new (getAllocator()) NullNode(Doc);
2277 }
2278
2279 // We've got a normal key.
2280 return Key = parseBlockNode();
2281}
2282
2283Node *KeyValueNode::getValue() {
2284 if (Value)
2285 return Value;
2286
2287 if (Node* Key = getKey())
2288 Key->skip();
2289 else {
2290 setError(Msg: "Null key in Key Value.", Tok&: peekNext());
2291 return Value = new (getAllocator()) NullNode(Doc);
2292 }
2293
2294 if (failed())
2295 return Value = new (getAllocator()) NullNode(Doc);
2296
2297 // Handle implicit null values.
2298 {
2299 Token &t = peekNext();
2300 if ( t.Kind == Token::TK_BlockEnd
2301 || t.Kind == Token::TK_FlowMappingEnd
2302 || t.Kind == Token::TK_Key
2303 || t.Kind == Token::TK_FlowEntry
2304 || t.Kind == Token::TK_Error) {
2305 return Value = new (getAllocator()) NullNode(Doc);
2306 }
2307
2308 if (t.Kind != Token::TK_Value) {
2309 setError(Msg: "Unexpected token in Key Value.", Tok&: t);
2310 return Value = new (getAllocator()) NullNode(Doc);
2311 }
2312 getNext(); // skip TK_Value.
2313 }
2314
2315 // Handle explicit null values.
2316 Token &t = peekNext();
2317 if (t.Kind == Token::TK_BlockEnd || t.Kind == Token::TK_Key) {
2318 return Value = new (getAllocator()) NullNode(Doc);
2319 }
2320
2321 // We got a normal value.
2322 return Value = parseBlockNode();
2323}
2324
2325void MappingNode::increment() {
2326 if (failed()) {
2327 IsAtEnd = true;
2328 CurrentEntry = nullptr;
2329 return;
2330 }
2331 if (CurrentEntry) {
2332 CurrentEntry->skip();
2333 if (Type == MT_Inline) {
2334 IsAtEnd = true;
2335 CurrentEntry = nullptr;
2336 return;
2337 }
2338 }
2339 Token T = peekNext();
2340 if (T.Kind == Token::TK_Key || T.Kind == Token::TK_Scalar) {
2341 // KeyValueNode eats the TK_Key. That way it can detect null keys.
2342 CurrentEntry = new (getAllocator()) KeyValueNode(Doc);
2343 } else if (Type == MT_Block) {
2344 switch (T.Kind) {
2345 case Token::TK_BlockEnd:
2346 getNext();
2347 IsAtEnd = true;
2348 CurrentEntry = nullptr;
2349 break;
2350 default:
2351 setError(Msg: "Unexpected token. Expected Key or Block End", Tok&: T);
2352 [[fallthrough]];
2353 case Token::TK_Error:
2354 IsAtEnd = true;
2355 CurrentEntry = nullptr;
2356 }
2357 } else {
2358 switch (T.Kind) {
2359 case Token::TK_FlowEntry:
2360 // Eat the flow entry and recurse.
2361 getNext();
2362 return increment();
2363 case Token::TK_FlowMappingEnd:
2364 getNext();
2365 [[fallthrough]];
2366 case Token::TK_Error:
2367 // Set this to end iterator.
2368 IsAtEnd = true;
2369 CurrentEntry = nullptr;
2370 break;
2371 default:
2372 setError( Msg: "Unexpected token. Expected Key, Flow Entry, or Flow "
2373 "Mapping End."
2374 , Tok&: T);
2375 IsAtEnd = true;
2376 CurrentEntry = nullptr;
2377 }
2378 }
2379}
2380
2381void SequenceNode::increment() {
2382 if (failed()) {
2383 IsAtEnd = true;
2384 CurrentEntry = nullptr;
2385 return;
2386 }
2387 if (CurrentEntry)
2388 CurrentEntry->skip();
2389 Token T = peekNext();
2390 if (SeqType == ST_Block) {
2391 switch (T.Kind) {
2392 case Token::TK_BlockEntry:
2393 getNext();
2394 CurrentEntry = parseBlockNode();
2395 if (!CurrentEntry) { // An error occurred.
2396 IsAtEnd = true;
2397 CurrentEntry = nullptr;
2398 }
2399 break;
2400 case Token::TK_BlockEnd:
2401 getNext();
2402 IsAtEnd = true;
2403 CurrentEntry = nullptr;
2404 break;
2405 default:
2406 setError( Msg: "Unexpected token. Expected Block Entry or Block End."
2407 , Tok&: T);
2408 [[fallthrough]];
2409 case Token::TK_Error:
2410 IsAtEnd = true;
2411 CurrentEntry = nullptr;
2412 }
2413 } else if (SeqType == ST_Indentless) {
2414 switch (T.Kind) {
2415 case Token::TK_BlockEntry:
2416 getNext();
2417 CurrentEntry = parseBlockNode();
2418 if (!CurrentEntry) { // An error occurred.
2419 IsAtEnd = true;
2420 CurrentEntry = nullptr;
2421 }
2422 break;
2423 default:
2424 case Token::TK_Error:
2425 IsAtEnd = true;
2426 CurrentEntry = nullptr;
2427 }
2428 } else if (SeqType == ST_Flow) {
2429 switch (T.Kind) {
2430 case Token::TK_FlowEntry:
2431 // Eat the flow entry and recurse.
2432 getNext();
2433 WasPreviousTokenFlowEntry = true;
2434 return increment();
2435 case Token::TK_FlowSequenceEnd:
2436 getNext();
2437 [[fallthrough]];
2438 case Token::TK_Error:
2439 // Set this to end iterator.
2440 IsAtEnd = true;
2441 CurrentEntry = nullptr;
2442 break;
2443 case Token::TK_StreamEnd:
2444 case Token::TK_DocumentEnd:
2445 case Token::TK_DocumentStart:
2446 setError(Msg: "Could not find closing ]!", Tok&: T);
2447 // Set this to end iterator.
2448 IsAtEnd = true;
2449 CurrentEntry = nullptr;
2450 break;
2451 default:
2452 if (!WasPreviousTokenFlowEntry) {
2453 setError(Msg: "Expected , between entries!", Tok&: T);
2454 IsAtEnd = true;
2455 CurrentEntry = nullptr;
2456 break;
2457 }
2458 // Otherwise it must be a flow entry.
2459 CurrentEntry = parseBlockNode();
2460 if (!CurrentEntry) {
2461 IsAtEnd = true;
2462 }
2463 WasPreviousTokenFlowEntry = false;
2464 break;
2465 }
2466 }
2467}
2468
2469Document::Document(Stream &S) : stream(S), Root(nullptr) {
2470 // Tag maps starts with two default mappings.
2471 TagMap["!"] = "!";
2472 TagMap["!!"] = "tag:yaml.org,2002:";
2473
2474 if (parseDirectives())
2475 expectToken(TK: Token::TK_DocumentStart);
2476 Token &T = peekNext();
2477 if (T.Kind == Token::TK_DocumentStart)
2478 getNext();
2479}
2480
2481bool Document::skip() {
2482 if (stream.scanner->failed())
2483 return false;
2484 if (!Root && !getRoot())
2485 return false;
2486 Root->skip();
2487 Token &T = peekNext();
2488 if (T.Kind == Token::TK_StreamEnd)
2489 return false;
2490 if (T.Kind == Token::TK_DocumentEnd) {
2491 getNext();
2492 return skip();
2493 }
2494 return true;
2495}
2496
2497Token &Document::peekNext() {
2498 return stream.scanner->peekNext();
2499}
2500
2501Token Document::getNext() {
2502 return stream.scanner->getNext();
2503}
2504
2505void Document::setError(const Twine &Message, Token &Location) const {
2506 stream.scanner->setError(Message, Position: Location.Range.begin());
2507}
2508
2509bool Document::failed() const {
2510 return stream.scanner->failed();
2511}
2512
2513Node *Document::parseBlockNode() {
2514 Token T = peekNext();
2515 // Handle properties.
2516 Token AnchorInfo;
2517 Token TagInfo;
2518parse_property:
2519 switch (T.Kind) {
2520 case Token::TK_Alias:
2521 getNext();
2522 return new (NodeAllocator) AliasNode(stream.CurrentDoc, T.Range.substr(Start: 1));
2523 case Token::TK_Anchor:
2524 if (AnchorInfo.Kind == Token::TK_Anchor) {
2525 setError(Message: "Already encountered an anchor for this node!", Location&: T);
2526 return nullptr;
2527 }
2528 AnchorInfo = getNext(); // Consume TK_Anchor.
2529 T = peekNext();
2530 goto parse_property;
2531 case Token::TK_Tag:
2532 if (TagInfo.Kind == Token::TK_Tag) {
2533 setError(Message: "Already encountered a tag for this node!", Location&: T);
2534 return nullptr;
2535 }
2536 TagInfo = getNext(); // Consume TK_Tag.
2537 T = peekNext();
2538 goto parse_property;
2539 default:
2540 break;
2541 }
2542
2543 switch (T.Kind) {
2544 case Token::TK_BlockEntry:
2545 // We got an unindented BlockEntry sequence. This is not terminated with
2546 // a BlockEnd.
2547 // Don't eat the TK_BlockEntry, SequenceNode needs it.
2548 return new (NodeAllocator) SequenceNode( stream.CurrentDoc
2549 , AnchorInfo.Range.substr(Start: 1)
2550 , TagInfo.Range
2551 , SequenceNode::ST_Indentless);
2552 case Token::TK_BlockSequenceStart:
2553 getNext();
2554 return new (NodeAllocator)
2555 SequenceNode( stream.CurrentDoc
2556 , AnchorInfo.Range.substr(Start: 1)
2557 , TagInfo.Range
2558 , SequenceNode::ST_Block);
2559 case Token::TK_BlockMappingStart:
2560 getNext();
2561 return new (NodeAllocator)
2562 MappingNode( stream.CurrentDoc
2563 , AnchorInfo.Range.substr(Start: 1)
2564 , TagInfo.Range
2565 , MappingNode::MT_Block);
2566 case Token::TK_FlowSequenceStart:
2567 getNext();
2568 return new (NodeAllocator)
2569 SequenceNode( stream.CurrentDoc
2570 , AnchorInfo.Range.substr(Start: 1)
2571 , TagInfo.Range
2572 , SequenceNode::ST_Flow);
2573 case Token::TK_FlowMappingStart:
2574 getNext();
2575 return new (NodeAllocator)
2576 MappingNode( stream.CurrentDoc
2577 , AnchorInfo.Range.substr(Start: 1)
2578 , TagInfo.Range
2579 , MappingNode::MT_Flow);
2580 case Token::TK_Scalar:
2581 getNext();
2582 return new (NodeAllocator)
2583 ScalarNode( stream.CurrentDoc
2584 , AnchorInfo.Range.substr(Start: 1)
2585 , TagInfo.Range
2586 , T.Range);
2587 case Token::TK_BlockScalar: {
2588 getNext();
2589 StringRef NullTerminatedStr(T.Value.c_str(), T.Value.length() + 1);
2590 StringRef StrCopy = NullTerminatedStr.copy(A&: NodeAllocator).drop_back();
2591 return new (NodeAllocator)
2592 BlockScalarNode(stream.CurrentDoc, AnchorInfo.Range.substr(Start: 1),
2593 TagInfo.Range, StrCopy, T.Range);
2594 }
2595 case Token::TK_Key:
2596 // Don't eat the TK_Key, KeyValueNode expects it.
2597 return new (NodeAllocator)
2598 MappingNode( stream.CurrentDoc
2599 , AnchorInfo.Range.substr(Start: 1)
2600 , TagInfo.Range
2601 , MappingNode::MT_Inline);
2602 case Token::TK_DocumentStart:
2603 case Token::TK_DocumentEnd:
2604 case Token::TK_StreamEnd:
2605 default:
2606 // TODO: Properly handle tags. "[!!str ]" should resolve to !!str "", not
2607 // !!null null.
2608 return new (NodeAllocator) NullNode(stream.CurrentDoc);
2609 case Token::TK_FlowMappingEnd:
2610 case Token::TK_FlowSequenceEnd:
2611 case Token::TK_FlowEntry: {
2612 if (Root && (isa<MappingNode>(Val: Root) || isa<SequenceNode>(Val: Root)))
2613 return new (NodeAllocator) NullNode(stream.CurrentDoc);
2614
2615 setError(Message: "Unexpected token", Location&: T);
2616 return nullptr;
2617 }
2618 case Token::TK_Error:
2619 return nullptr;
2620 }
2621 llvm_unreachable("Control flow shouldn't reach here.");
2622 return nullptr;
2623}
2624
2625bool Document::parseDirectives() {
2626 bool isDirective = false;
2627 while (true) {
2628 Token T = peekNext();
2629 if (T.Kind == Token::TK_TagDirective) {
2630 parseTAGDirective();
2631 isDirective = true;
2632 } else if (T.Kind == Token::TK_VersionDirective) {
2633 parseYAMLDirective();
2634 isDirective = true;
2635 } else
2636 break;
2637 }
2638 return isDirective;
2639}
2640
2641void Document::parseYAMLDirective() {
2642 getNext(); // Eat %YAML <version>
2643}
2644
2645void Document::parseTAGDirective() {
2646 Token Tag = getNext(); // %TAG <handle> <prefix>
2647 StringRef T = Tag.Range;
2648 // Strip %TAG
2649 T = T.substr(Start: T.find_first_of(Chars: " \t")).ltrim(Chars: " \t");
2650 std::size_t HandleEnd = T.find_first_of(Chars: " \t");
2651 StringRef TagHandle = T.substr(Start: 0, N: HandleEnd);
2652 StringRef TagPrefix = T.substr(Start: HandleEnd).ltrim(Chars: " \t");
2653 TagMap[TagHandle] = TagPrefix;
2654}
2655
2656bool Document::expectToken(int TK) {
2657 Token T = getNext();
2658 if (T.Kind != TK) {
2659 setError(Message: "Unexpected token", Location&: T);
2660 return false;
2661 }
2662 return true;
2663}
2664

source code of llvm/lib/Support/YAMLParser.cpp