1 | /* |
2 | Open Asset Import Library (assimp) |
3 | ---------------------------------------------------------------------- |
4 | |
5 | Copyright (c) 2006-2017, assimp team |
6 | |
7 | All rights reserved. |
8 | |
9 | Redistribution and use of this software in source and binary forms, |
10 | with or without modification, are permitted provided that the |
11 | following conditions are met: |
12 | |
13 | * Redistributions of source code must retain the above |
14 | copyright notice, this list of conditions and the |
15 | following disclaimer. |
16 | |
17 | * Redistributions in binary form must reproduce the above |
18 | copyright notice, this list of conditions and the |
19 | following disclaimer in the documentation and/or other |
20 | materials provided with the distribution. |
21 | |
22 | * Neither the name of the assimp team, nor the names of its |
23 | contributors may be used to endorse or promote products |
24 | derived from this software without specific prior |
25 | written permission of the assimp team. |
26 | |
27 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
28 | "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
29 | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
30 | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
31 | OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
32 | SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
33 | LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
34 | DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
35 | THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
36 | (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
37 | OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
38 | |
39 | ---------------------------------------------------------------------- |
40 | */ |
41 | /** @file Defines a helper class to represent an interleaved vertex |
42 | along with arithmetic operations to support vertex operations |
43 | such as subdivision, smoothing etc. |
44 | |
45 | While the code is kept as general as possible, arithmetic operations |
46 | that are not currently well-defined (and would cause compile errors |
47 | due to missing operators in the math library), are commented. |
48 | */ |
49 | #ifndef AI_VERTEX_H_INC |
50 | #define AI_VERTEX_H_INC |
51 | |
52 | #include <assimp/vector3.h> |
53 | #include <assimp/mesh.h> |
54 | #include <assimp/ai_assert.h> |
55 | #include <functional> |
56 | |
57 | namespace Assimp { |
58 | |
59 | /////////////////////////////////////////////////////////////////////////// |
60 | // std::plus-family operates on operands with identical types - we need to |
61 | // support all the (vectype op float) combinations in vector maths. |
62 | // Providing T(float) would open the way to endless implicit conversions. |
63 | /////////////////////////////////////////////////////////////////////////// |
64 | namespace Intern { |
65 | template <typename T0, typename T1, typename TRES = T0> struct plus { |
66 | TRES operator() (const T0& t0, const T1& t1) const { |
67 | return t0+t1; |
68 | } |
69 | }; |
70 | template <typename T0, typename T1, typename TRES = T0> struct minus { |
71 | TRES operator() (const T0& t0, const T1& t1) const { |
72 | return t0-t1; |
73 | } |
74 | }; |
75 | template <typename T0, typename T1, typename TRES = T0> struct multiplies { |
76 | TRES operator() (const T0& t0, const T1& t1) const { |
77 | return t0*t1; |
78 | } |
79 | }; |
80 | template <typename T0, typename T1, typename TRES = T0> struct divides { |
81 | TRES operator() (const T0& t0, const T1& t1) const { |
82 | return t0/t1; |
83 | } |
84 | }; |
85 | } |
86 | |
87 | // ------------------------------------------------------------------------------------------------ |
88 | /** Intermediate description a vertex with all possible components. Defines a full set of |
89 | * operators, so you may use such a 'Vertex' in basic arithmetics. All operators are applied |
90 | * to *all* vertex components equally. This is useful for stuff like interpolation |
91 | * or subdivision, but won't work if special handling is required for some vertex components. */ |
92 | // ------------------------------------------------------------------------------------------------ |
93 | class Vertex |
94 | { |
95 | friend Vertex operator + (const Vertex&,const Vertex&); |
96 | friend Vertex operator - (const Vertex&,const Vertex&); |
97 | |
98 | // friend Vertex operator + (const Vertex&,ai_real); |
99 | // friend Vertex operator - (const Vertex&,ai_real); |
100 | friend Vertex operator * (const Vertex&,ai_real); |
101 | friend Vertex operator / (const Vertex&,ai_real); |
102 | |
103 | // friend Vertex operator + (ai_real, const Vertex&); |
104 | // friend Vertex operator - (ai_real, const Vertex&); |
105 | friend Vertex operator * (ai_real, const Vertex&); |
106 | // friend Vertex operator / (ai_real, const Vertex&); |
107 | |
108 | public: |
109 | |
110 | Vertex() {} |
111 | |
112 | // ---------------------------------------------------------------------------- |
113 | /** Extract a particular vertex from a mesh and interleave all components */ |
114 | explicit Vertex(const aiMesh* msh, unsigned int idx) { |
115 | ai_assert(idx < msh->mNumVertices); |
116 | position = msh->mVertices[idx]; |
117 | |
118 | if (msh->HasNormals()) { |
119 | normal = msh->mNormals[idx]; |
120 | } |
121 | |
122 | if (msh->HasTangentsAndBitangents()) { |
123 | tangent = msh->mTangents[idx]; |
124 | bitangent = msh->mBitangents[idx]; |
125 | } |
126 | |
127 | for (unsigned int i = 0; msh->HasTextureCoords(i); ++i) { |
128 | texcoords[i] = msh->mTextureCoords[i][idx]; |
129 | } |
130 | |
131 | for (unsigned int i = 0; msh->HasVertexColors(i); ++i) { |
132 | colors[i] = msh->mColors[i][idx]; |
133 | } |
134 | } |
135 | |
136 | public: |
137 | |
138 | Vertex& operator += (const Vertex& v) { |
139 | *this = *this+v; |
140 | return *this; |
141 | } |
142 | |
143 | Vertex& operator -= (const Vertex& v) { |
144 | *this = *this-v; |
145 | return *this; |
146 | } |
147 | |
148 | |
149 | /* |
150 | Vertex& operator += (ai_real v) { |
151 | *this = *this+v; |
152 | return *this; |
153 | } |
154 | |
155 | Vertex& operator -= (ai_real v) { |
156 | *this = *this-v; |
157 | return *this; |
158 | } |
159 | */ |
160 | Vertex& operator *= (ai_real v) { |
161 | *this = *this*v; |
162 | return *this; |
163 | } |
164 | |
165 | Vertex& operator /= (ai_real v) { |
166 | *this = *this/v; |
167 | return *this; |
168 | } |
169 | |
170 | public: |
171 | |
172 | // ---------------------------------------------------------------------------- |
173 | /** Convert back to non-interleaved storage */ |
174 | void SortBack(aiMesh* out, unsigned int idx) const { |
175 | |
176 | ai_assert(idx<out->mNumVertices); |
177 | out->mVertices[idx] = position; |
178 | |
179 | if (out->HasNormals()) { |
180 | out->mNormals[idx] = normal; |
181 | } |
182 | |
183 | if (out->HasTangentsAndBitangents()) { |
184 | out->mTangents[idx] = tangent; |
185 | out->mBitangents[idx] = bitangent; |
186 | } |
187 | |
188 | for(unsigned int i = 0; out->HasTextureCoords(i); ++i) { |
189 | out->mTextureCoords[i][idx] = texcoords[i]; |
190 | } |
191 | |
192 | for(unsigned int i = 0; out->HasVertexColors(i); ++i) { |
193 | out->mColors[i][idx] = colors[i]; |
194 | } |
195 | } |
196 | |
197 | private: |
198 | |
199 | // ---------------------------------------------------------------------------- |
200 | /** Construct from two operands and a binary operation to combine them */ |
201 | template <template <typename t> class op> static Vertex BinaryOp(const Vertex& v0, const Vertex& v1) { |
202 | // this is a heavy task for the compiler to optimize ... *pray* |
203 | |
204 | Vertex res; |
205 | res.position = op<aiVector3D>()(v0.position,v1.position); |
206 | res.normal = op<aiVector3D>()(v0.normal,v1.normal); |
207 | res.tangent = op<aiVector3D>()(v0.tangent,v1.tangent); |
208 | res.bitangent = op<aiVector3D>()(v0.bitangent,v1.bitangent); |
209 | |
210 | for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) { |
211 | res.texcoords[i] = op<aiVector3D>()(v0.texcoords[i],v1.texcoords[i]); |
212 | } |
213 | for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_COLOR_SETS; ++i) { |
214 | res.colors[i] = op<aiColor4D>()(v0.colors[i],v1.colors[i]); |
215 | } |
216 | return res; |
217 | } |
218 | |
219 | // ---------------------------------------------------------------------------- |
220 | /** This time binary arithmetics of v0 with a floating-point number */ |
221 | template <template <typename, typename, typename> class op> static Vertex BinaryOp(const Vertex& v0, ai_real f) { |
222 | // this is a heavy task for the compiler to optimize ... *pray* |
223 | |
224 | Vertex res; |
225 | res.position = op<aiVector3D,ai_real,aiVector3D>()(v0.position,f); |
226 | res.normal = op<aiVector3D,ai_real,aiVector3D>()(v0.normal,f); |
227 | res.tangent = op<aiVector3D,ai_real,aiVector3D>()(v0.tangent,f); |
228 | res.bitangent = op<aiVector3D,ai_real,aiVector3D>()(v0.bitangent,f); |
229 | |
230 | for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) { |
231 | res.texcoords[i] = op<aiVector3D,ai_real,aiVector3D>()(v0.texcoords[i],f); |
232 | } |
233 | for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_COLOR_SETS; ++i) { |
234 | res.colors[i] = op<aiColor4D,ai_real,aiColor4D>()(v0.colors[i],f); |
235 | } |
236 | return res; |
237 | } |
238 | |
239 | // ---------------------------------------------------------------------------- |
240 | /** This time binary arithmetics of v0 with a floating-point number */ |
241 | template <template <typename, typename, typename> class op> static Vertex BinaryOp(ai_real f, const Vertex& v0) { |
242 | // this is a heavy task for the compiler to optimize ... *pray* |
243 | |
244 | Vertex res; |
245 | res.position = op<ai_real,aiVector3D,aiVector3D>()(f,v0.position); |
246 | res.normal = op<ai_real,aiVector3D,aiVector3D>()(f,v0.normal); |
247 | res.tangent = op<ai_real,aiVector3D,aiVector3D>()(f,v0.tangent); |
248 | res.bitangent = op<ai_real,aiVector3D,aiVector3D>()(f,v0.bitangent); |
249 | |
250 | for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) { |
251 | res.texcoords[i] = op<ai_real,aiVector3D,aiVector3D>()(f,v0.texcoords[i]); |
252 | } |
253 | for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_COLOR_SETS; ++i) { |
254 | res.colors[i] = op<ai_real,aiColor4D,aiColor4D>()(f,v0.colors[i]); |
255 | } |
256 | return res; |
257 | } |
258 | |
259 | public: |
260 | |
261 | aiVector3D position; |
262 | aiVector3D normal; |
263 | aiVector3D tangent, bitangent; |
264 | |
265 | aiVector3D texcoords[AI_MAX_NUMBER_OF_TEXTURECOORDS]; |
266 | aiColor4D colors[AI_MAX_NUMBER_OF_COLOR_SETS]; |
267 | }; |
268 | |
269 | |
270 | |
271 | // ------------------------------------------------------------------------------------------------ |
272 | AI_FORCE_INLINE Vertex operator + (const Vertex& v0,const Vertex& v1) { |
273 | return Vertex::BinaryOp<std::plus>(v0,v1); |
274 | } |
275 | |
276 | AI_FORCE_INLINE Vertex operator - (const Vertex& v0,const Vertex& v1) { |
277 | return Vertex::BinaryOp<std::minus>(v0,v1); |
278 | } |
279 | |
280 | |
281 | // ------------------------------------------------------------------------------------------------ |
282 | /* |
283 | AI_FORCE_INLINE Vertex operator + (const Vertex& v0,ai_real f) { |
284 | return Vertex::BinaryOp<Intern::plus>(v0,f); |
285 | } |
286 | |
287 | AI_FORCE_INLINE Vertex operator - (const Vertex& v0,ai_real f) { |
288 | return Vertex::BinaryOp<Intern::minus>(v0,f); |
289 | } |
290 | |
291 | */ |
292 | |
293 | AI_FORCE_INLINE Vertex operator * (const Vertex& v0,ai_real f) { |
294 | return Vertex::BinaryOp<Intern::multiplies>(v0,f); |
295 | } |
296 | |
297 | AI_FORCE_INLINE Vertex operator / (const Vertex& v0,ai_real f) { |
298 | return Vertex::BinaryOp<Intern::multiplies>(v0,1.f/f); |
299 | } |
300 | |
301 | // ------------------------------------------------------------------------------------------------ |
302 | /* |
303 | AI_FORCE_INLINE Vertex operator + (ai_real f,const Vertex& v0) { |
304 | return Vertex::BinaryOp<Intern::plus>(f,v0); |
305 | } |
306 | |
307 | AI_FORCE_INLINE Vertex operator - (ai_real f,const Vertex& v0) { |
308 | return Vertex::BinaryOp<Intern::minus>(f,v0); |
309 | } |
310 | */ |
311 | |
312 | AI_FORCE_INLINE Vertex operator * (ai_real f,const Vertex& v0) { |
313 | return Vertex::BinaryOp<Intern::multiplies>(f,v0); |
314 | } |
315 | |
316 | /* |
317 | AI_FORCE_INLINE Vertex operator / (ai_real f,const Vertex& v0) { |
318 | return Vertex::BinaryOp<Intern::divides>(f,v0); |
319 | } |
320 | */ |
321 | |
322 | } |
323 | #endif |
324 | |