1/****************************************************************************
2**
3** Copyright (C) 2016 The Qt Company Ltd.
4** Contact: https://www.qt.io/licensing/
5**
6** This file is part of the QtGui module of the Qt Toolkit.
7**
8** $QT_BEGIN_LICENSE:LGPL$
9** Commercial License Usage
10** Licensees holding valid commercial Qt licenses may use this file in
11** accordance with the commercial license agreement provided with the
12** Software or, alternatively, in accordance with the terms contained in
13** a written agreement between you and The Qt Company. For licensing terms
14** and conditions see https://www.qt.io/terms-conditions. For further
15** information use the contact form at https://www.qt.io/contact-us.
16**
17** GNU Lesser General Public License Usage
18** Alternatively, this file may be used under the terms of the GNU Lesser
19** General Public License version 3 as published by the Free Software
20** Foundation and appearing in the file LICENSE.LGPL3 included in the
21** packaging of this file. Please review the following information to
22** ensure the GNU Lesser General Public License version 3 requirements
23** will be met: https://www.gnu.org/licenses/lgpl-3.0.html.
24**
25** GNU General Public License Usage
26** Alternatively, this file may be used under the terms of the GNU
27** General Public License version 2.0 or (at your option) the GNU General
28** Public license version 3 or any later version approved by the KDE Free
29** Qt Foundation. The licenses are as published by the Free Software
30** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3
31** included in the packaging of this file. Please review the following
32** information to ensure the GNU General Public License requirements will
33** be met: https://www.gnu.org/licenses/gpl-2.0.html and
34** https://www.gnu.org/licenses/gpl-3.0.html.
35**
36** $QT_END_LICENSE$
37**
38****************************************************************************/
39
40#ifndef QDRAWINGPRIMITIVE_SSE2_P_H
41#define QDRAWINGPRIMITIVE_SSE2_P_H
42
43#include <QtGui/private/qtguiglobal_p.h>
44#include <private/qsimd_p.h>
45#include "qdrawhelper_x86_p.h"
46#include "qrgba64_p.h"
47
48#ifdef __SSE2__
49
50//
51// W A R N I N G
52// -------------
53//
54// This file is not part of the Qt API. It exists purely as an
55// implementation detail. This header file may change from version to
56// version without notice, or even be removed.
57//
58// We mean it.
59//
60
61QT_BEGIN_NAMESPACE
62
63/*
64 * Multiply the components of pixelVector by alphaChannel
65 * Each 32bits components of alphaChannel must be in the form 0x00AA00AA
66 * colorMask must have 0x00ff00ff on each 32 bits component
67 * half must have the value 128 (0x80) for each 32 bits compnent
68 */
69#define BYTE_MUL_SSE2(result, pixelVector, alphaChannel, colorMask, half) \
70{ \
71 /* 1. separate the colors in 2 vectors so each color is on 16 bits \
72 (in order to be multiplied by the alpha \
73 each 32 bit of dstVectorAG are in the form 0x00AA00GG \
74 each 32 bit of dstVectorRB are in the form 0x00RR00BB */\
75 __m128i pixelVectorAG = _mm_srli_epi16(pixelVector, 8); \
76 __m128i pixelVectorRB = _mm_and_si128(pixelVector, colorMask); \
77 \
78 /* 2. multiply the vectors by the alpha channel */\
79 pixelVectorAG = _mm_mullo_epi16(pixelVectorAG, alphaChannel); \
80 pixelVectorRB = _mm_mullo_epi16(pixelVectorRB, alphaChannel); \
81 \
82 /* 3. divide by 255, that's the tricky part. \
83 we do it like for BYTE_MUL(), with bit shift: X/255 ~= (X + X/256 + rounding)/256 */ \
84 /** so first (X + X/256 + rounding) */\
85 pixelVectorRB = _mm_add_epi16(pixelVectorRB, _mm_srli_epi16(pixelVectorRB, 8)); \
86 pixelVectorRB = _mm_add_epi16(pixelVectorRB, half); \
87 pixelVectorAG = _mm_add_epi16(pixelVectorAG, _mm_srli_epi16(pixelVectorAG, 8)); \
88 pixelVectorAG = _mm_add_epi16(pixelVectorAG, half); \
89 \
90 /** second divide by 256 */\
91 pixelVectorRB = _mm_srli_epi16(pixelVectorRB, 8); \
92 /** for AG, we could >> 8 to divide followed by << 8 to put the \
93 bytes in the correct position. By masking instead, we execute \
94 only one instruction */\
95 pixelVectorAG = _mm_andnot_si128(colorMask, pixelVectorAG); \
96 \
97 /* 4. combine the 2 pairs of colors */ \
98 result = _mm_or_si128(pixelVectorAG, pixelVectorRB); \
99}
100
101/*
102 * Each 32bits components of alphaChannel must be in the form 0x00AA00AA
103 * oneMinusAlphaChannel must be 255 - alpha for each 32 bits component
104 * colorMask must have 0x00ff00ff on each 32 bits component
105 * half must have the value 128 (0x80) for each 32 bits compnent
106 */
107#define INTERPOLATE_PIXEL_255_SSE2(result, srcVector, dstVector, alphaChannel, oneMinusAlphaChannel, colorMask, half) { \
108 /* interpolate AG */\
109 __m128i srcVectorAG = _mm_srli_epi16(srcVector, 8); \
110 __m128i dstVectorAG = _mm_srli_epi16(dstVector, 8); \
111 __m128i srcVectorAGalpha = _mm_mullo_epi16(srcVectorAG, alphaChannel); \
112 __m128i dstVectorAGoneMinusAlphalpha = _mm_mullo_epi16(dstVectorAG, oneMinusAlphaChannel); \
113 __m128i finalAG = _mm_add_epi16(srcVectorAGalpha, dstVectorAGoneMinusAlphalpha); \
114 finalAG = _mm_add_epi16(finalAG, _mm_srli_epi16(finalAG, 8)); \
115 finalAG = _mm_add_epi16(finalAG, half); \
116 finalAG = _mm_andnot_si128(colorMask, finalAG); \
117 \
118 /* interpolate RB */\
119 __m128i srcVectorRB = _mm_and_si128(srcVector, colorMask); \
120 __m128i dstVectorRB = _mm_and_si128(dstVector, colorMask); \
121 __m128i srcVectorRBalpha = _mm_mullo_epi16(srcVectorRB, alphaChannel); \
122 __m128i dstVectorRBoneMinusAlphalpha = _mm_mullo_epi16(dstVectorRB, oneMinusAlphaChannel); \
123 __m128i finalRB = _mm_add_epi16(srcVectorRBalpha, dstVectorRBoneMinusAlphalpha); \
124 finalRB = _mm_add_epi16(finalRB, _mm_srli_epi16(finalRB, 8)); \
125 finalRB = _mm_add_epi16(finalRB, half); \
126 finalRB = _mm_srli_epi16(finalRB, 8); \
127 \
128 /* combine */\
129 result = _mm_or_si128(finalAG, finalRB); \
130}
131
132// same as BLEND_SOURCE_OVER_ARGB32_SSE2, but for one vector srcVector
133#define BLEND_SOURCE_OVER_ARGB32_SSE2_helper(dst, srcVector, nullVector, half, one, colorMask, alphaMask) { \
134 const __m128i srcVectorAlpha = _mm_and_si128(srcVector, alphaMask); \
135 if (_mm_movemask_epi8(_mm_cmpeq_epi32(srcVectorAlpha, alphaMask)) == 0xffff) { \
136 /* all opaque */ \
137 _mm_store_si128((__m128i *)&dst[x], srcVector); \
138 } else if (_mm_movemask_epi8(_mm_cmpeq_epi32(srcVectorAlpha, nullVector)) != 0xffff) { \
139 /* not fully transparent */ \
140 /* extract the alpha channel on 2 x 16 bits */ \
141 /* so we have room for the multiplication */ \
142 /* each 32 bits will be in the form 0x00AA00AA */ \
143 /* with A being the 1 - alpha */ \
144 __m128i alphaChannel = _mm_srli_epi32(srcVector, 24); \
145 alphaChannel = _mm_or_si128(alphaChannel, _mm_slli_epi32(alphaChannel, 16)); \
146 alphaChannel = _mm_sub_epi16(one, alphaChannel); \
147 \
148 const __m128i dstVector = _mm_load_si128((__m128i *)&dst[x]); \
149 __m128i destMultipliedByOneMinusAlpha; \
150 BYTE_MUL_SSE2(destMultipliedByOneMinusAlpha, dstVector, alphaChannel, colorMask, half); \
151 \
152 /* result = s + d * (1-alpha) */\
153 const __m128i result = _mm_add_epi8(srcVector, destMultipliedByOneMinusAlpha); \
154 _mm_store_si128((__m128i *)&dst[x], result); \
155 } \
156 }
157
158
159// Basically blend src over dst with the const alpha defined as constAlphaVector.
160// nullVector, half, one, colorMask are constant across the whole image/texture, and should be defined as:
161//const __m128i nullVector = _mm_set1_epi32(0);
162//const __m128i half = _mm_set1_epi16(0x80);
163//const __m128i one = _mm_set1_epi16(0xff);
164//const __m128i colorMask = _mm_set1_epi32(0x00ff00ff);
165//const __m128i alphaMask = _mm_set1_epi32(0xff000000);
166//
167// The computation being done is:
168// result = s + d * (1-alpha)
169// with shortcuts if fully opaque or fully transparent.
170#define BLEND_SOURCE_OVER_ARGB32_SSE2(dst, src, length, nullVector, half, one, colorMask, alphaMask) { \
171 int x = 0; \
172\
173 /* First, get dst aligned. */ \
174 ALIGNMENT_PROLOGUE_16BYTES(dst, x, length) { \
175 blend_pixel(dst[x], src[x]); \
176 } \
177\
178 for (; x < length-3; x += 4) { \
179 const __m128i srcVector = _mm_loadu_si128((const __m128i *)&src[x]); \
180 BLEND_SOURCE_OVER_ARGB32_SSE2_helper(dst, srcVector, nullVector, half, one, colorMask, alphaMask) \
181 } \
182 SIMD_EPILOGUE(x, length, 3) { \
183 blend_pixel(dst[x], src[x]); \
184 } \
185}
186
187// Basically blend src over dst with the const alpha defined as constAlphaVector.
188// nullVector, half, one, colorMask are constant across the whole image/texture, and should be defined as:
189//const __m128i nullVector = _mm_set1_epi32(0);
190//const __m128i half = _mm_set1_epi16(0x80);
191//const __m128i one = _mm_set1_epi16(0xff);
192//const __m128i colorMask = _mm_set1_epi32(0x00ff00ff);
193//
194// The computation being done is:
195// dest = (s + d * sia) * ca + d * cia
196// = s * ca + d * (sia * ca + cia)
197// = s * ca + d * (1 - sa*ca)
198#define BLEND_SOURCE_OVER_ARGB32_WITH_CONST_ALPHA_SSE2(dst, src, length, nullVector, half, one, colorMask, constAlphaVector) \
199{ \
200 int x = 0; \
201\
202 ALIGNMENT_PROLOGUE_16BYTES(dst, x, length) { \
203 blend_pixel(dst[x], src[x], const_alpha); \
204 } \
205\
206 for (; x < length-3; x += 4) { \
207 __m128i srcVector = _mm_loadu_si128((const __m128i *)&src[x]); \
208 if (_mm_movemask_epi8(_mm_cmpeq_epi32(srcVector, nullVector)) != 0xffff) { \
209 BYTE_MUL_SSE2(srcVector, srcVector, constAlphaVector, colorMask, half); \
210\
211 __m128i alphaChannel = _mm_srli_epi32(srcVector, 24); \
212 alphaChannel = _mm_or_si128(alphaChannel, _mm_slli_epi32(alphaChannel, 16)); \
213 alphaChannel = _mm_sub_epi16(one, alphaChannel); \
214 \
215 const __m128i dstVector = _mm_load_si128((__m128i *)&dst[x]); \
216 __m128i destMultipliedByOneMinusAlpha; \
217 BYTE_MUL_SSE2(destMultipliedByOneMinusAlpha, dstVector, alphaChannel, colorMask, half); \
218 \
219 const __m128i result = _mm_add_epi8(srcVector, destMultipliedByOneMinusAlpha); \
220 _mm_store_si128((__m128i *)&dst[x], result); \
221 } \
222 } \
223 SIMD_EPILOGUE(x, length, 3) { \
224 blend_pixel(dst[x], src[x], const_alpha); \
225 } \
226}
227
228QT_END_NAMESPACE
229
230#endif // __SSE2__
231
232QT_BEGIN_NAMESPACE
233#if QT_COMPILER_SUPPORTS_HERE(SSE4_1)
234QT_FUNCTION_TARGET(SSE2)
235Q_ALWAYS_INLINE void Q_DECL_VECTORCALL reciprocal_mul_ss(__m128 &ia, const __m128 a, float mul)
236{
237 ia = _mm_rcp_ss(a); // Approximate 1/a
238 // Improve precision of ia using Newton-Raphson
239 ia = _mm_sub_ss(_mm_add_ss(ia, ia), _mm_mul_ss(ia, _mm_mul_ss(ia, a)));
240 ia = _mm_mul_ss(ia, _mm_set_ss(mul));
241 ia = _mm_shuffle_ps(ia, ia, _MM_SHUFFLE(0,0,0,0));
242}
243
244QT_FUNCTION_TARGET(SSE4_1)
245inline QRgb qUnpremultiply_sse4(QRgb p)
246{
247 const uint alpha = qAlpha(p);
248 if (alpha == 255)
249 return p;
250 if (alpha == 0)
251 return 0;
252 const __m128 va = _mm_set1_ps(alpha);
253 __m128 via;
254 reciprocal_mul_ss(via, va, 255.0f); // Approximate 1/a
255 __m128i vl = _mm_cvtepu8_epi32(_mm_cvtsi32_si128(p));
256 vl = _mm_cvtps_epi32(_mm_mul_ps(_mm_cvtepi32_ps(vl), via));
257 vl = _mm_packus_epi32(vl, vl);
258 vl = _mm_insert_epi16(vl, alpha, 3);
259 vl = _mm_packus_epi16(vl, vl);
260 return _mm_cvtsi128_si32(vl);
261}
262
263template<enum QtPixelOrder PixelOrder>
264QT_FUNCTION_TARGET(SSE4_1)
265inline uint qConvertArgb32ToA2rgb30_sse4(QRgb p)
266{
267 const uint alpha = qAlpha(p);
268 if (alpha == 255)
269 return qConvertRgb32ToRgb30<PixelOrder>(p);
270 if (alpha == 0)
271 return 0;
272 Q_CONSTEXPR float mult = 1023.0f / (255 >> 6);
273 const uint newalpha = (alpha >> 6);
274 const __m128 va = _mm_set1_ps(alpha);
275 __m128 via;
276 reciprocal_mul_ss(via, va, mult * newalpha);
277 __m128i vl = _mm_cvtsi32_si128(p);
278 vl = _mm_cvtepu8_epi32(vl);
279 vl = _mm_cvtps_epi32(_mm_mul_ps(_mm_cvtepi32_ps(vl), via));
280 vl = _mm_packus_epi32(vl, vl);
281 uint rgb30 = (newalpha << 30);
282 rgb30 |= ((uint)_mm_extract_epi16(vl, 1)) << 10;
283 if (PixelOrder == PixelOrderRGB) {
284 rgb30 |= ((uint)_mm_extract_epi16(vl, 2)) << 20;
285 rgb30 |= ((uint)_mm_extract_epi16(vl, 0));
286 } else {
287 rgb30 |= ((uint)_mm_extract_epi16(vl, 0)) << 20;
288 rgb30 |= ((uint)_mm_extract_epi16(vl, 2));
289 }
290 return rgb30;
291}
292
293template<enum QtPixelOrder PixelOrder>
294QT_FUNCTION_TARGET(SSE4_1)
295inline uint qConvertRgba64ToRgb32_sse4(QRgba64 p)
296{
297 if (p.isTransparent())
298 return 0;
299 __m128i vl = _mm_loadl_epi64(reinterpret_cast<const __m128i *>(&p));
300 if (!p.isOpaque()) {
301 const __m128 va = _mm_set1_ps(p.alpha());
302 __m128 via;
303 reciprocal_mul_ss(via, va, 65535.0f);
304 vl = _mm_unpacklo_epi16(vl, _mm_setzero_si128());
305 vl = _mm_cvtps_epi32(_mm_mul_ps(_mm_cvtepi32_ps(vl) , via));
306 vl = _mm_packus_epi32(vl, vl);
307 vl = _mm_insert_epi16(vl, p.alpha(), 3);
308 }
309 if (PixelOrder == PixelOrderBGR)
310 vl = _mm_shufflelo_epi16(vl, _MM_SHUFFLE(3, 0, 1, 2));
311 return toArgb32(vl);
312}
313#endif
314QT_END_NAMESPACE
315
316#endif // QDRAWINGPRIMITIVE_SSE2_P_H
317