1 | /**************************************************************************** |
---|---|

2 | ** |

3 | ** Copyright (C) 2016 The Qt Company Ltd. |

4 | ** Contact: https://www.qt.io/licensing/ |

5 | ** |

6 | ** This file is part of the QtGui module of the Qt Toolkit. |

7 | ** |

8 | ** $QT_BEGIN_LICENSE:LGPL$ |

9 | ** Commercial License Usage |

10 | ** Licensees holding valid commercial Qt licenses may use this file in |

11 | ** accordance with the commercial license agreement provided with the |

12 | ** Software or, alternatively, in accordance with the terms contained in |

13 | ** a written agreement between you and The Qt Company. For licensing terms |

14 | ** and conditions see https://www.qt.io/terms-conditions. For further |

15 | ** information use the contact form at https://www.qt.io/contact-us. |

16 | ** |

17 | ** GNU Lesser General Public License Usage |

18 | ** Alternatively, this file may be used under the terms of the GNU Lesser |

19 | ** General Public License version 3 as published by the Free Software |

20 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |

21 | ** packaging of this file. Please review the following information to |

22 | ** ensure the GNU Lesser General Public License version 3 requirements |

23 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |

24 | ** |

25 | ** GNU General Public License Usage |

26 | ** Alternatively, this file may be used under the terms of the GNU |

27 | ** General Public License version 2.0 or (at your option) the GNU General |

28 | ** Public license version 3 or any later version approved by the KDE Free |

29 | ** Qt Foundation. The licenses are as published by the Free Software |

30 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |

31 | ** included in the packaging of this file. Please review the following |

32 | ** information to ensure the GNU General Public License requirements will |

33 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |

34 | ** https://www.gnu.org/licenses/gpl-3.0.html. |

35 | ** |

36 | ** $QT_END_LICENSE$ |

37 | ** |

38 | ****************************************************************************/ |

39 | |

40 | #include "qtriangulatingstroker_p.h" |

41 | #include <qmath.h> |

42 | |

43 | QT_BEGIN_NAMESPACE |

44 | |

45 | #define CURVE_FLATNESS Q_PI / 8 |

46 | |

47 | |

48 | |

49 | |

50 | void QTriangulatingStroker::endCapOrJoinClosed(const qreal *start, const qreal *cur, |

51 | bool implicitClose, bool endsAtStart) |

52 | { |

53 | if (endsAtStart) { |

54 | join(start + 2); |

55 | } else if (implicitClose) { |

56 | join(start); |

57 | lineTo(start); |

58 | join(start+2); |

59 | } else { |

60 | endCap(cur); |

61 | } |

62 | int count = m_vertices.size(); |

63 | |

64 | // Copy the (x, y) values because QDataBuffer::add(const float& t) |

65 | // may resize the buffer, which will leave t pointing at the |

66 | // previous buffer's memory region if we don't copy first. |

67 | float x = m_vertices.at(count-2); |

68 | float y = m_vertices.at(count-1); |

69 | m_vertices.add(x); |

70 | m_vertices.add(y); |

71 | } |

72 | |

73 | static inline void skipDuplicatePoints(const qreal **pts, const qreal *endPts) |

74 | { |

75 | while ((*pts + 2) < endPts && float((*pts)[0]) == float((*pts)[2]) |

76 | && float((*pts)[1]) == float((*pts)[3])) |

77 | { |

78 | *pts += 2; |

79 | } |

80 | } |

81 | |

82 | void QTriangulatingStroker::process(const QVectorPath &path, const QPen &pen, const QRectF &, QPainter::RenderHints hints) |

83 | { |

84 | const qreal *pts = path.points(); |

85 | const QPainterPath::ElementType *types = path.elements(); |

86 | int count = path.elementCount(); |

87 | if (count < 2) |

88 | return; |

89 | |

90 | float realWidth = qpen_widthf(pen); |

91 | if (realWidth == 0) |

92 | realWidth = 1; |

93 | |

94 | m_width = realWidth / 2; |

95 | |

96 | bool cosmetic = qt_pen_is_cosmetic(pen, hints); |

97 | if (cosmetic) { |

98 | m_width = m_width * m_inv_scale; |

99 | } |

100 | |

101 | m_join_style = qpen_joinStyle(pen); |

102 | m_cap_style = qpen_capStyle(pen); |

103 | m_vertices.reset(); |

104 | m_miter_limit = pen.miterLimit() * qpen_widthf(pen); |

105 | |

106 | // The curvyness is based on the notion that I originally wanted |

107 | // roughly one line segment pr 4 pixels. This may seem little, but |

108 | // because we sample at constantly incrementing B(t) E [0<t<1], we |

109 | // will get longer segments where the curvature is small and smaller |

110 | // segments when the curvature is high. |

111 | // |

112 | // To get a rough idea of the length of each curve, I pretend that |

113 | // the curve is a 90 degree arc, whose radius is |

114 | // qMax(curveBounds.width, curveBounds.height). Based on this |

115 | // logic we can estimate the length of the outline edges based on |

116 | // the radius + a pen width and adjusting for scale factors |

117 | // depending on if the pen is cosmetic or not. |

118 | // |

119 | // The curvyness value of PI/14 was based on, |

120 | // arcLength = 2*PI*r/4 = PI*r/2 and splitting length into somewhere |

121 | // between 3 and 8 where 5 seemed to be give pretty good results |

122 | // hence: Q_PI/14. Lower divisors will give more detail at the |

123 | // direct cost of performance. |

124 | |

125 | // simplfy pens that are thin in device size (2px wide or less) |

126 | if (realWidth < 2.5 && (cosmetic || m_inv_scale == 1)) { |

127 | if (m_cap_style == Qt::RoundCap) |

128 | m_cap_style = Qt::SquareCap; |

129 | if (m_join_style == Qt::RoundJoin) |

130 | m_join_style = Qt::MiterJoin; |

131 | m_curvyness_add = 0.5; |

132 | m_curvyness_mul = CURVE_FLATNESS / m_inv_scale; |

133 | m_roundness = 1; |

134 | } else if (cosmetic) { |

135 | m_curvyness_add = realWidth / 2; |

136 | m_curvyness_mul = float(CURVE_FLATNESS); |

137 | m_roundness = qMax<int>(4, realWidth * CURVE_FLATNESS); |

138 | } else { |

139 | m_curvyness_add = m_width; |

140 | m_curvyness_mul = CURVE_FLATNESS / m_inv_scale; |

141 | m_roundness = qMax<int>(4, realWidth * m_curvyness_mul); |

142 | } |

143 | |

144 | // Over this level of segmentation, there doesn't seem to be any |

145 | // benefit, even for huge penWidth |

146 | if (m_roundness > 24) |

147 | m_roundness = 24; |

148 | |

149 | m_sin_theta = qFastSin(Q_PI / m_roundness); |

150 | m_cos_theta = qFastCos(Q_PI / m_roundness); |

151 | |

152 | const qreal *endPts = pts + (count<<1); |

153 | const qreal *startPts = 0; |

154 | |

155 | Qt::PenCapStyle cap = m_cap_style; |

156 | |

157 | if (!types) { |

158 | skipDuplicatePoints(&pts, endPts); |

159 | if ((pts + 2) == endPts) |

160 | return; |

161 | |

162 | startPts = pts; |

163 | |

164 | bool endsAtStart = float(startPts[0]) == float(endPts[-2]) |

165 | && float(startPts[1]) == float(endPts[-1]); |

166 | |

167 | if (endsAtStart || path.hasImplicitClose()) |

168 | m_cap_style = Qt::FlatCap; |

169 | moveTo(pts); |

170 | m_cap_style = cap; |

171 | pts += 2; |

172 | skipDuplicatePoints(&pts, endPts); |

173 | lineTo(pts); |

174 | pts += 2; |

175 | skipDuplicatePoints(&pts, endPts); |

176 | while (pts < endPts) { |

177 | join(pts); |

178 | lineTo(pts); |

179 | pts += 2; |

180 | skipDuplicatePoints(&pts, endPts); |

181 | } |

182 | endCapOrJoinClosed(startPts, pts-2, path.hasImplicitClose(), endsAtStart); |

183 | |

184 | } else { |

185 | bool endsAtStart = false; |

186 | QPainterPath::ElementType previousType = QPainterPath::MoveToElement; |

187 | const qreal *previousPts = pts; |

188 | while (pts < endPts) { |

189 | switch (*types) { |

190 | case QPainterPath::MoveToElement: { |

191 | if (previousType != QPainterPath::MoveToElement) |

192 | endCapOrJoinClosed(startPts, previousPts, path.hasImplicitClose(), endsAtStart); |

193 | |

194 | startPts = pts; |

195 | skipDuplicatePoints(&startPts, endPts); // Skip duplicates to find correct normal. |

196 | if (startPts + 2 >= endPts) |

197 | return; // Nothing to see here... |

198 | |

199 | int end = (endPts - pts) / 2; |

200 | int i = 2; // Start looking to ahead since we never have two moveto's in a row |

201 | while (i<end && types[i] != QPainterPath::MoveToElement) { |

202 | ++i; |

203 | } |

204 | endsAtStart = float(startPts[0]) == float(pts[i*2 - 2]) |

205 | && float(startPts[1]) == float(pts[i*2 - 1]); |

206 | if (endsAtStart || path.hasImplicitClose()) |

207 | m_cap_style = Qt::FlatCap; |

208 | |

209 | moveTo(startPts); |

210 | m_cap_style = cap; |

211 | previousType = QPainterPath::MoveToElement; |

212 | previousPts = pts; |

213 | pts+=2; |

214 | ++types; |

215 | break; } |

216 | case QPainterPath::LineToElement: |

217 | if (float(m_cx) != float(pts[0]) || float(m_cy) != float(pts[1])) { |

218 | if (previousType != QPainterPath::MoveToElement) |

219 | join(pts); |

220 | lineTo(pts); |

221 | previousType = QPainterPath::LineToElement; |

222 | previousPts = pts; |

223 | } |

224 | pts+=2; |

225 | ++types; |

226 | break; |

227 | case QPainterPath::CurveToElement: |

228 | if (float(m_cx) != float(pts[0]) || float(m_cy) != float(pts[1]) |

229 | || float(pts[0]) != float(pts[2]) || float(pts[1]) != float(pts[3]) |

230 | || float(pts[2]) != float(pts[4]) || float(pts[3]) != float(pts[5])) |

231 | { |

232 | if (float(m_cx) != float(pts[0]) || float(m_cy) != float(pts[1])) { |

233 | if (previousType != QPainterPath::MoveToElement) |

234 | join(pts); |

235 | } |

236 | cubicTo(pts); |

237 | previousType = QPainterPath::CurveToElement; |

238 | previousPts = pts + 4; |

239 | } |

240 | pts+=6; |

241 | types+=3; |

242 | break; |

243 | default: |

244 | Q_ASSERT(false); |

245 | break; |

246 | } |

247 | } |

248 | |

249 | if (previousType != QPainterPath::MoveToElement) |

250 | endCapOrJoinClosed(startPts, previousPts, path.hasImplicitClose(), endsAtStart); |

251 | } |

252 | } |

253 | |

254 | void QTriangulatingStroker::moveTo(const qreal *pts) |

255 | { |

256 | m_cx = pts[0]; |

257 | m_cy = pts[1]; |

258 | |

259 | float x2 = pts[2]; |

260 | float y2 = pts[3]; |

261 | normalVector(m_cx, m_cy, x2, y2, &m_nvx, &m_nvy); |

262 | |

263 | |

264 | // To achieve jumps we insert zero-area tringles. This is done by |

265 | // adding two identical points in both the end of previous strip |

266 | // and beginning of next strip |

267 | bool invisibleJump = m_vertices.size(); |

268 | |

269 | switch (m_cap_style) { |

270 | case Qt::FlatCap: |

271 | if (invisibleJump) { |

272 | m_vertices.add(m_cx + m_nvx); |

273 | m_vertices.add(m_cy + m_nvy); |

274 | } |

275 | break; |

276 | case Qt::SquareCap: { |

277 | float sx = m_cx - m_nvy; |

278 | float sy = m_cy + m_nvx; |

279 | if (invisibleJump) { |

280 | m_vertices.add(sx + m_nvx); |

281 | m_vertices.add(sy + m_nvy); |

282 | } |

283 | emitLineSegment(sx, sy, m_nvx, m_nvy); |

284 | break; } |

285 | case Qt::RoundCap: { |

286 | QVarLengthArray<float> points; |

287 | arcPoints(m_cx, m_cy, m_cx + m_nvx, m_cy + m_nvy, m_cx - m_nvx, m_cy - m_nvy, points); |

288 | m_vertices.resize(m_vertices.size() + points.size() + 2 * int(invisibleJump)); |

289 | int count = m_vertices.size(); |

290 | int front = 0; |

291 | int end = points.size() / 2; |

292 | while (front != end) { |

293 | m_vertices.at(--count) = points[2 * end - 1]; |

294 | m_vertices.at(--count) = points[2 * end - 2]; |

295 | --end; |

296 | if (front == end) |

297 | break; |

298 | m_vertices.at(--count) = points[2 * front + 1]; |

299 | m_vertices.at(--count) = points[2 * front + 0]; |

300 | ++front; |

301 | } |

302 | |

303 | if (invisibleJump) { |

304 | m_vertices.at(count - 1) = m_vertices.at(count + 1); |

305 | m_vertices.at(count - 2) = m_vertices.at(count + 0); |

306 | } |

307 | break; } |

308 | default: break; // ssssh gcc... |

309 | } |

310 | emitLineSegment(m_cx, m_cy, m_nvx, m_nvy); |

311 | } |

312 | |

313 | void QTriangulatingStroker::cubicTo(const qreal *pts) |

314 | { |

315 | const QPointF *p = (const QPointF *) pts; |

316 | QBezier bezier = QBezier::fromPoints(*(p - 1), p[0], p[1], p[2]); |

317 | |

318 | QRectF bounds = bezier.bounds(); |

319 | float rad = qMax(bounds.width(), bounds.height()); |

320 | int threshold = qMin<float>(64, (rad + m_curvyness_add) * m_curvyness_mul); |

321 | if (threshold < 4) |

322 | threshold = 4; |

323 | qreal threshold_minus_1 = threshold - 1; |

324 | float vx = 0, vy = 0; |

325 | |

326 | float cx = m_cx, cy = m_cy; |

327 | float x, y; |

328 | |

329 | for (int i=1; i<threshold; ++i) { |

330 | qreal t = qreal(i) / threshold_minus_1; |

331 | QPointF p = bezier.pointAt(t); |

332 | x = p.x(); |

333 | y = p.y(); |

334 | |

335 | normalVector(cx, cy, x, y, &vx, &vy); |

336 | |

337 | emitLineSegment(x, y, vx, vy); |

338 | |

339 | cx = x; |

340 | cy = y; |

341 | } |

342 | |

343 | m_cx = cx; |

344 | m_cy = cy; |

345 | |

346 | m_nvx = vx; |

347 | m_nvy = vy; |

348 | } |

349 | |

350 | void QTriangulatingStroker::join(const qreal *pts) |

351 | { |

352 | // Creates a join to the next segment (m_cx, m_cy) -> (pts[0], pts[1]) |

353 | normalVector(m_cx, m_cy, pts[0], pts[1], &m_nvx, &m_nvy); |

354 | |

355 | switch (m_join_style) { |

356 | case Qt::BevelJoin: |

357 | break; |

358 | case Qt::SvgMiterJoin: |

359 | case Qt::MiterJoin: { |

360 | // Find out on which side the join should be. |

361 | int count = m_vertices.size(); |

362 | float prevNvx = m_vertices.at(count - 2) - m_cx; |

363 | float prevNvy = m_vertices.at(count - 1) - m_cy; |

364 | float xprod = prevNvx * m_nvy - prevNvy * m_nvx; |

365 | float px, py, qx, qy; |

366 | |

367 | // If the segments are parallel, use bevel join. |

368 | if (qFuzzyIsNull(xprod)) |

369 | break; |

370 | |

371 | // Find the corners of the previous and next segment to join. |

372 | if (xprod < 0) { |

373 | px = m_vertices.at(count - 2); |

374 | py = m_vertices.at(count - 1); |

375 | qx = m_cx - m_nvx; |

376 | qy = m_cy - m_nvy; |

377 | } else { |

378 | px = m_vertices.at(count - 4); |

379 | py = m_vertices.at(count - 3); |

380 | qx = m_cx + m_nvx; |

381 | qy = m_cy + m_nvy; |

382 | } |

383 | |

384 | // Find intersection point. |

385 | float pu = px * prevNvx + py * prevNvy; |

386 | float qv = qx * m_nvx + qy * m_nvy; |

387 | float ix = (m_nvy * pu - prevNvy * qv) / xprod; |

388 | float iy = (prevNvx * qv - m_nvx * pu) / xprod; |

389 | |

390 | // Check that the distance to the intersection point is less than the miter limit. |

391 | if ((ix - px) * (ix - px) + (iy - py) * (iy - py) <= m_miter_limit * m_miter_limit) { |

392 | m_vertices.add(ix); |

393 | m_vertices.add(iy); |

394 | m_vertices.add(ix); |

395 | m_vertices.add(iy); |

396 | } |

397 | // else |

398 | // Do a plain bevel join if the miter limit is exceeded or if |

399 | // the lines are parallel. This is not what the raster |

400 | // engine's stroker does, but it is both faster and similar to |

401 | // what some other graphics API's do. |

402 | |

403 | break; } |

404 | case Qt::RoundJoin: { |

405 | QVarLengthArray<float> points; |

406 | int count = m_vertices.size(); |

407 | float prevNvx = m_vertices.at(count - 2) - m_cx; |

408 | float prevNvy = m_vertices.at(count - 1) - m_cy; |

409 | if (m_nvx * prevNvy - m_nvy * prevNvx < 0) { |

410 | arcPoints(0, 0, m_nvx, m_nvy, -prevNvx, -prevNvy, points); |

411 | for (int i = points.size() / 2; i > 0; --i) |

412 | emitLineSegment(m_cx, m_cy, points[2 * i - 2], points[2 * i - 1]); |

413 | } else { |

414 | arcPoints(0, 0, -prevNvx, -prevNvy, m_nvx, m_nvy, points); |

415 | for (int i = 0; i < points.size() / 2; ++i) |

416 | emitLineSegment(m_cx, m_cy, points[2 * i + 0], points[2 * i + 1]); |

417 | } |

418 | break; } |

419 | default: break; // gcc warn-- |

420 | } |

421 | |

422 | emitLineSegment(m_cx, m_cy, m_nvx, m_nvy); |

423 | } |

424 | |

425 | void QTriangulatingStroker::endCap(const qreal *) |

426 | { |

427 | switch (m_cap_style) { |

428 | case Qt::FlatCap: |

429 | break; |

430 | case Qt::SquareCap: |

431 | emitLineSegment(m_cx + m_nvy, m_cy - m_nvx, m_nvx, m_nvy); |

432 | break; |

433 | case Qt::RoundCap: { |

434 | QVarLengthArray<float> points; |

435 | int count = m_vertices.size(); |

436 | arcPoints(m_cx, m_cy, m_vertices.at(count - 2), m_vertices.at(count - 1), m_vertices.at(count - 4), m_vertices.at(count - 3), points); |

437 | int front = 0; |

438 | int end = points.size() / 2; |

439 | while (front != end) { |

440 | m_vertices.add(points[2 * end - 2]); |

441 | m_vertices.add(points[2 * end - 1]); |

442 | --end; |

443 | if (front == end) |

444 | break; |

445 | m_vertices.add(points[2 * front + 0]); |

446 | m_vertices.add(points[2 * front + 1]); |

447 | ++front; |

448 | } |

449 | break; } |

450 | default: break; // to shut gcc up... |

451 | } |

452 | } |

453 | |

454 | void QTriangulatingStroker::arcPoints(float cx, float cy, float fromX, float fromY, float toX, float toY, QVarLengthArray<float> &points) |

455 | { |

456 | float dx1 = fromX - cx; |

457 | float dy1 = fromY - cy; |

458 | float dx2 = toX - cx; |

459 | float dy2 = toY - cy; |

460 | |

461 | // while more than 180 degrees left: |

462 | while (dx1 * dy2 - dx2 * dy1 < 0) { |

463 | float tmpx = dx1 * m_cos_theta - dy1 * m_sin_theta; |

464 | float tmpy = dx1 * m_sin_theta + dy1 * m_cos_theta; |

465 | dx1 = tmpx; |

466 | dy1 = tmpy; |

467 | points.append(cx + dx1); |

468 | points.append(cy + dy1); |

469 | } |

470 | |

471 | // while more than 90 degrees left: |

472 | while (dx1 * dx2 + dy1 * dy2 < 0) { |

473 | float tmpx = dx1 * m_cos_theta - dy1 * m_sin_theta; |

474 | float tmpy = dx1 * m_sin_theta + dy1 * m_cos_theta; |

475 | dx1 = tmpx; |

476 | dy1 = tmpy; |

477 | points.append(cx + dx1); |

478 | points.append(cy + dy1); |

479 | } |

480 | |

481 | // while more than 0 degrees left: |

482 | while (dx1 * dy2 - dx2 * dy1 > 0) { |

483 | float tmpx = dx1 * m_cos_theta - dy1 * m_sin_theta; |

484 | float tmpy = dx1 * m_sin_theta + dy1 * m_cos_theta; |

485 | dx1 = tmpx; |

486 | dy1 = tmpy; |

487 | points.append(cx + dx1); |

488 | points.append(cy + dy1); |

489 | } |

490 | |

491 | // remove last point which was rotated beyond [toX, toY]. |

492 | if (!points.isEmpty()) |

493 | points.resize(points.size() - 2); |

494 | } |

495 | |

496 | static void qdashprocessor_moveTo(qreal x, qreal y, void *data) |

497 | { |

498 | ((QDashedStrokeProcessor *) data)->addElement(QPainterPath::MoveToElement, x, y); |

499 | } |

500 | |

501 | static void qdashprocessor_lineTo(qreal x, qreal y, void *data) |

502 | { |

503 | ((QDashedStrokeProcessor *) data)->addElement(QPainterPath::LineToElement, x, y); |

504 | } |

505 | |

506 | static void qdashprocessor_cubicTo(qreal, qreal, qreal, qreal, qreal, qreal, void *) |

507 | { |

508 | Q_ASSERT(0); // The dasher should not produce curves... |

509 | } |

510 | |

511 | QDashedStrokeProcessor::QDashedStrokeProcessor() |

512 | : m_points(0), m_types(0), |

513 | m_dash_stroker(0), m_inv_scale(1) |

514 | { |

515 | m_dash_stroker.setMoveToHook(qdashprocessor_moveTo); |

516 | m_dash_stroker.setLineToHook(qdashprocessor_lineTo); |

517 | m_dash_stroker.setCubicToHook(qdashprocessor_cubicTo); |

518 | } |

519 | |

520 | void QDashedStrokeProcessor::process(const QVectorPath &path, const QPen &pen, const QRectF &clip, QPainter::RenderHints hints) |

521 | { |

522 | |

523 | const qreal *pts = path.points(); |

524 | const QPainterPath::ElementType *types = path.elements(); |

525 | int count = path.elementCount(); |

526 | |

527 | bool cosmetic = qt_pen_is_cosmetic(pen, hints); |

528 | bool implicitClose = path.hasImplicitClose(); |

529 | |

530 | m_points.reset(); |

531 | m_types.reset(); |

532 | m_points.reserve(path.elementCount()); |

533 | m_types.reserve(path.elementCount()); |

534 | |

535 | qreal width = qpen_widthf(pen); |

536 | if (width == 0) |

537 | width = 1; |

538 | |

539 | m_dash_stroker.setDashPattern(pen.dashPattern()); |

540 | m_dash_stroker.setStrokeWidth(cosmetic ? width * m_inv_scale : width); |

541 | m_dash_stroker.setDashOffset(pen.dashOffset()); |

542 | m_dash_stroker.setMiterLimit(pen.miterLimit()); |

543 | m_dash_stroker.setClipRect(clip); |

544 | |

545 | float curvynessAdd, curvynessMul; |

546 | |

547 | // simplify pens that are thin in device size (2px wide or less) |

548 | if (width < 2.5 && (cosmetic || m_inv_scale == 1)) { |

549 | curvynessAdd = 0.5; |

550 | curvynessMul = CURVE_FLATNESS / m_inv_scale; |

551 | } else if (cosmetic) { |

552 | curvynessAdd= width / 2; |

553 | curvynessMul= float(CURVE_FLATNESS); |

554 | } else { |

555 | curvynessAdd = width * m_inv_scale; |

556 | curvynessMul = CURVE_FLATNESS / m_inv_scale; |

557 | } |

558 | |

559 | if (count < 2) |

560 | return; |

561 | |

562 | bool needsClose = false; |

563 | if (implicitClose) { |

564 | if (pts[0] != pts[count * 2 - 2] || pts[1] != pts[count * 2 - 1]) |

565 | needsClose = true; |

566 | } |

567 | |

568 | const qreal *firstPts = pts; |

569 | const qreal *endPts = pts + (count<<1); |

570 | m_dash_stroker.begin(this); |

571 | |

572 | if (!types) { |

573 | m_dash_stroker.moveTo(pts[0], pts[1]); |

574 | pts += 2; |

575 | while (pts < endPts) { |

576 | m_dash_stroker.lineTo(pts[0], pts[1]); |

577 | pts += 2; |

578 | } |

579 | } else { |

580 | while (pts < endPts) { |

581 | switch (*types) { |

582 | case QPainterPath::MoveToElement: |

583 | m_dash_stroker.moveTo(pts[0], pts[1]); |

584 | pts += 2; |

585 | ++types; |

586 | break; |

587 | case QPainterPath::LineToElement: |

588 | m_dash_stroker.lineTo(pts[0], pts[1]); |

589 | pts += 2; |

590 | ++types; |

591 | break; |

592 | case QPainterPath::CurveToElement: { |

593 | QBezier b = QBezier::fromPoints(*(((const QPointF *) pts) - 1), |

594 | *(((const QPointF *) pts)), |

595 | *(((const QPointF *) pts) + 1), |

596 | *(((const QPointF *) pts) + 2)); |

597 | QRectF bounds = b.bounds(); |

598 | float rad = qMax(bounds.width(), bounds.height()); |

599 | int threshold = qMin<float>(64, (rad + curvynessAdd) * curvynessMul); |

600 | if (threshold < 4) |

601 | threshold = 4; |

602 | |

603 | qreal threshold_minus_1 = threshold - 1; |

604 | for (int i=0; i<threshold; ++i) { |

605 | QPointF pt = b.pointAt(i / threshold_minus_1); |

606 | m_dash_stroker.lineTo(pt.x(), pt.y()); |

607 | } |

608 | pts += 6; |

609 | types += 3; |

610 | break; } |

611 | default: break; |

612 | } |

613 | } |

614 | } |

615 | if (needsClose) |

616 | m_dash_stroker.lineTo(firstPts[0], firstPts[1]); |

617 | |

618 | m_dash_stroker.end(); |

619 | } |

620 | |

621 | QT_END_NAMESPACE |

622 | |

623 |