1 | /**************************************************************************** |
2 | ** |
3 | ** Copyright (C) 2018 The Qt Company Ltd. |
4 | ** Contact: https://www.qt.io/licensing/ |
5 | ** |
6 | ** This file is part of the QtGui module of the Qt Toolkit. |
7 | ** |
8 | ** $QT_BEGIN_LICENSE:LGPL$ |
9 | ** Commercial License Usage |
10 | ** Licensees holding valid commercial Qt licenses may use this file in |
11 | ** accordance with the commercial license agreement provided with the |
12 | ** Software or, alternatively, in accordance with the terms contained in |
13 | ** a written agreement between you and The Qt Company. For licensing terms |
14 | ** and conditions see https://www.qt.io/terms-conditions. For further |
15 | ** information use the contact form at https://www.qt.io/contact-us. |
16 | ** |
17 | ** GNU Lesser General Public License Usage |
18 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
19 | ** General Public License version 3 as published by the Free Software |
20 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
21 | ** packaging of this file. Please review the following information to |
22 | ** ensure the GNU Lesser General Public License version 3 requirements |
23 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
24 | ** |
25 | ** GNU General Public License Usage |
26 | ** Alternatively, this file may be used under the terms of the GNU |
27 | ** General Public License version 2.0 or (at your option) the GNU General |
28 | ** Public license version 3 or any later version approved by the KDE Free |
29 | ** Qt Foundation. The licenses are as published by the Free Software |
30 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
31 | ** included in the packaging of this file. Please review the following |
32 | ** information to ensure the GNU General Public License requirements will |
33 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
34 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
35 | ** |
36 | ** $QT_END_LICENSE$ |
37 | ** |
38 | ****************************************************************************/ |
39 | |
40 | #include "qimage.h" |
41 | |
42 | #include "qbuffer.h" |
43 | #include "qdatastream.h" |
44 | #include "qcolortransform.h" |
45 | #include "qmap.h" |
46 | #include "qtransform.h" |
47 | #include "qimagereader.h" |
48 | #include "qimagewriter.h" |
49 | #include "qstringlist.h" |
50 | #include "qvariant.h" |
51 | #include "qimagepixmapcleanuphooks_p.h" |
52 | #include <qpa/qplatformintegration.h> |
53 | #include <private/qguiapplication_p.h> |
54 | #include <ctype.h> |
55 | #include <stdlib.h> |
56 | #include <limits.h> |
57 | #include <qpa/qplatformpixmap.h> |
58 | #include <private/qcolortransform_p.h> |
59 | #include <private/qmemrotate_p.h> |
60 | #include <private/qimagescale_p.h> |
61 | #include <private/qpixellayout_p.h> |
62 | #include <private/qsimd_p.h> |
63 | |
64 | #include <qhash.h> |
65 | |
66 | #include <private/qpaintengine_raster_p.h> |
67 | |
68 | #include <private/qimage_p.h> |
69 | #include <private/qfont_p.h> |
70 | |
71 | #if QT_CONFIG(thread) |
72 | #include "qsemaphore.h" |
73 | #include "qthreadpool.h" |
74 | #endif |
75 | |
76 | #include <qtgui_tracepoints_p.h> |
77 | |
78 | QT_BEGIN_NAMESPACE |
79 | |
80 | static inline bool isLocked(QImageData *data) |
81 | { |
82 | return data != nullptr && data->is_locked; |
83 | } |
84 | |
85 | #if defined(Q_CC_DEC) && defined(__alpha) && (__DECCXX_VER-0 >= 50190001) |
86 | #pragma message disable narrowptr |
87 | #endif |
88 | |
89 | |
90 | #define QIMAGE_SANITYCHECK_MEMORY(image) \ |
91 | if ((image).isNull()) { \ |
92 | qWarning("QImage: out of memory, returning null image"); \ |
93 | return QImage(); \ |
94 | } |
95 | |
96 | |
97 | static QImage rotated90(const QImage &src); |
98 | static QImage rotated180(const QImage &src); |
99 | static QImage rotated270(const QImage &src); |
100 | |
101 | static int next_qimage_serial_number() |
102 | { |
103 | static QBasicAtomicInt serial = Q_BASIC_ATOMIC_INITIALIZER(0); |
104 | return 1 + serial.fetchAndAddRelaxed(1); |
105 | } |
106 | |
107 | QImageData::QImageData() |
108 | : ref(0), width(0), height(0), depth(0), nbytes(0), devicePixelRatio(1.0), data(nullptr), |
109 | format(QImage::Format_ARGB32), bytes_per_line(0), |
110 | ser_no(next_qimage_serial_number()), |
111 | detach_no(0), |
112 | dpmx(qt_defaultDpiX() * 100 / qreal(2.54)), |
113 | dpmy(qt_defaultDpiY() * 100 / qreal(2.54)), |
114 | offset(0, 0), own_data(true), ro_data(false), has_alpha_clut(false), |
115 | is_cached(false), is_locked(false), cleanupFunction(nullptr), cleanupInfo(nullptr), |
116 | paintEngine(nullptr) |
117 | { |
118 | } |
119 | |
120 | /*! \fn QImageData * QImageData::create(const QSize &size, QImage::Format format) |
121 | |
122 | \internal |
123 | |
124 | Creates a new image data. |
125 | Returns \nullptr if invalid parameters are give or anything else failed. |
126 | */ |
127 | QImageData * QImageData::create(const QSize &size, QImage::Format format) |
128 | { |
129 | if (size.isEmpty() || format <= QImage::Format_Invalid || format >= QImage::NImageFormats) |
130 | return nullptr; // invalid parameter(s) |
131 | |
132 | Q_TRACE_SCOPE(QImageData_create, size, format); |
133 | |
134 | int width = size.width(); |
135 | int height = size.height(); |
136 | int depth = qt_depthForFormat(format); |
137 | auto params = calculateImageParameters(width, height, depth); |
138 | if (!params.isValid()) |
139 | return nullptr; |
140 | |
141 | QScopedPointer<QImageData> d(new QImageData); |
142 | |
143 | switch (format) { |
144 | case QImage::Format_Mono: |
145 | case QImage::Format_MonoLSB: |
146 | d->colortable.resize(2); |
147 | d->colortable[0] = QColor(Qt::black).rgba(); |
148 | d->colortable[1] = QColor(Qt::white).rgba(); |
149 | break; |
150 | default: |
151 | break; |
152 | } |
153 | |
154 | d->width = width; |
155 | d->height = height; |
156 | d->depth = depth; |
157 | d->format = format; |
158 | d->has_alpha_clut = false; |
159 | d->is_cached = false; |
160 | |
161 | d->bytes_per_line = params.bytesPerLine; |
162 | d->nbytes = params.totalSize; |
163 | d->data = (uchar *)malloc(d->nbytes); |
164 | |
165 | if (!d->data) |
166 | return nullptr; |
167 | |
168 | d->ref.ref(); |
169 | return d.take(); |
170 | } |
171 | |
172 | QImageData::~QImageData() |
173 | { |
174 | if (cleanupFunction) |
175 | cleanupFunction(cleanupInfo); |
176 | if (is_cached) |
177 | QImagePixmapCleanupHooks::executeImageHooks((((qint64) ser_no) << 32) | ((qint64) detach_no)); |
178 | delete paintEngine; |
179 | if (data && own_data) |
180 | free(data); |
181 | data = nullptr; |
182 | } |
183 | |
184 | #if defined(_M_ARM) && defined(_MSC_VER) |
185 | #pragma optimize("", off) |
186 | #endif |
187 | |
188 | bool QImageData::checkForAlphaPixels() const |
189 | { |
190 | bool has_alpha_pixels = false; |
191 | |
192 | switch (format) { |
193 | |
194 | case QImage::Format_Mono: |
195 | case QImage::Format_MonoLSB: |
196 | case QImage::Format_Indexed8: |
197 | has_alpha_pixels = has_alpha_clut; |
198 | break; |
199 | case QImage::Format_Alpha8: |
200 | has_alpha_pixels = true; |
201 | break; |
202 | case QImage::Format_ARGB32: |
203 | case QImage::Format_ARGB32_Premultiplied: { |
204 | const uchar *bits = data; |
205 | for (int y=0; y<height && !has_alpha_pixels; ++y) { |
206 | uint alphaAnd = 0xff000000; |
207 | for (int x=0; x<width; ++x) |
208 | alphaAnd &= reinterpret_cast<const uint*>(bits)[x]; |
209 | has_alpha_pixels = (alphaAnd != 0xff000000); |
210 | bits += bytes_per_line; |
211 | } |
212 | } break; |
213 | |
214 | case QImage::Format_RGBA8888: |
215 | case QImage::Format_RGBA8888_Premultiplied: { |
216 | const uchar *bits = data; |
217 | for (int y=0; y<height && !has_alpha_pixels; ++y) { |
218 | uchar alphaAnd = 0xff; |
219 | for (int x=0; x<width; ++x) |
220 | alphaAnd &= bits[x * 4+ 3]; |
221 | has_alpha_pixels = (alphaAnd != 0xff); |
222 | bits += bytes_per_line; |
223 | } |
224 | } break; |
225 | |
226 | case QImage::Format_A2BGR30_Premultiplied: |
227 | case QImage::Format_A2RGB30_Premultiplied: { |
228 | const uchar *bits = data; |
229 | for (int y=0; y<height && !has_alpha_pixels; ++y) { |
230 | uint alphaAnd = 0xc0000000; |
231 | for (int x=0; x<width; ++x) |
232 | alphaAnd &= reinterpret_cast<const uint*>(bits)[x]; |
233 | has_alpha_pixels = (alphaAnd != 0xc0000000); |
234 | bits += bytes_per_line; |
235 | } |
236 | } break; |
237 | |
238 | case QImage::Format_ARGB8555_Premultiplied: |
239 | case QImage::Format_ARGB8565_Premultiplied: { |
240 | const uchar *bits = data; |
241 | const uchar *end_bits = data + bytes_per_line; |
242 | |
243 | for (int y=0; y<height && !has_alpha_pixels; ++y) { |
244 | uchar alphaAnd = 0xff; |
245 | while (bits < end_bits) { |
246 | alphaAnd &= bits[0]; |
247 | bits += 3; |
248 | } |
249 | has_alpha_pixels = (alphaAnd != 0xff); |
250 | bits = end_bits; |
251 | end_bits += bytes_per_line; |
252 | } |
253 | } break; |
254 | |
255 | case QImage::Format_ARGB6666_Premultiplied: { |
256 | const uchar *bits = data; |
257 | const uchar *end_bits = data + bytes_per_line; |
258 | |
259 | for (int y=0; y<height && !has_alpha_pixels; ++y) { |
260 | uchar alphaAnd = 0xfc; |
261 | while (bits < end_bits) { |
262 | alphaAnd &= bits[0]; |
263 | bits += 3; |
264 | } |
265 | has_alpha_pixels = (alphaAnd != 0xfc); |
266 | bits = end_bits; |
267 | end_bits += bytes_per_line; |
268 | } |
269 | } break; |
270 | |
271 | case QImage::Format_ARGB4444_Premultiplied: { |
272 | const uchar *bits = data; |
273 | for (int y=0; y<height && !has_alpha_pixels; ++y) { |
274 | ushort alphaAnd = 0xf000; |
275 | for (int x=0; x<width; ++x) |
276 | alphaAnd &= reinterpret_cast<const ushort*>(bits)[x]; |
277 | has_alpha_pixels = (alphaAnd != 0xf000); |
278 | bits += bytes_per_line; |
279 | } |
280 | } break; |
281 | case QImage::Format_RGBA64: |
282 | case QImage::Format_RGBA64_Premultiplied: { |
283 | uchar *bits = data; |
284 | for (int y=0; y<height && !has_alpha_pixels; ++y) { |
285 | for (int x=0; x<width; ++x) { |
286 | has_alpha_pixels |= !(((QRgba64 *)bits)[x].isOpaque()); |
287 | } |
288 | bits += bytes_per_line; |
289 | } |
290 | } break; |
291 | |
292 | case QImage::Format_RGB32: |
293 | case QImage::Format_RGB16: |
294 | case QImage::Format_RGB444: |
295 | case QImage::Format_RGB555: |
296 | case QImage::Format_RGB666: |
297 | case QImage::Format_RGB888: |
298 | case QImage::Format_BGR888: |
299 | case QImage::Format_RGBX8888: |
300 | case QImage::Format_BGR30: |
301 | case QImage::Format_RGB30: |
302 | case QImage::Format_Grayscale8: |
303 | case QImage::Format_Grayscale16: |
304 | case QImage::Format_RGBX64: |
305 | break; |
306 | case QImage::Format_Invalid: |
307 | case QImage::NImageFormats: |
308 | Q_UNREACHABLE(); |
309 | break; |
310 | } |
311 | |
312 | return has_alpha_pixels; |
313 | } |
314 | #if defined(_M_ARM) && defined(_MSC_VER) |
315 | #pragma optimize("", on) |
316 | #endif |
317 | |
318 | /*! |
319 | \class QImage |
320 | |
321 | \inmodule QtGui |
322 | \ingroup painting |
323 | \ingroup shared |
324 | |
325 | \reentrant |
326 | |
327 | \brief The QImage class provides a hardware-independent image |
328 | representation that allows direct access to the pixel data, and |
329 | can be used as a paint device. |
330 | |
331 | Qt provides four classes for handling image data: QImage, QPixmap, |
332 | QBitmap and QPicture. QImage is designed and optimized for I/O, |
333 | and for direct pixel access and manipulation, while QPixmap is |
334 | designed and optimized for showing images on screen. QBitmap is |
335 | only a convenience class that inherits QPixmap, ensuring a |
336 | depth of 1. Finally, the QPicture class is a paint device that |
337 | records and replays QPainter commands. |
338 | |
339 | Because QImage is a QPaintDevice subclass, QPainter can be used to |
340 | draw directly onto images. When using QPainter on a QImage, the |
341 | painting can be performed in another thread than the current GUI |
342 | thread. |
343 | |
344 | The QImage class supports several image formats described by the |
345 | \l Format enum. These include monochrome, 8-bit, 32-bit and |
346 | alpha-blended images which are available in all versions of Qt |
347 | 4.x. |
348 | |
349 | QImage provides a collection of functions that can be used to |
350 | obtain a variety of information about the image. There are also |
351 | several functions that enables transformation of the image. |
352 | |
353 | QImage objects can be passed around by value since the QImage |
354 | class uses \l{Implicit Data Sharing}{implicit data |
355 | sharing}. QImage objects can also be streamed and compared. |
356 | |
357 | \note If you would like to load QImage objects in a static build of Qt, |
358 | refer to the \l{How to Create Qt Plugins}{Plugin HowTo}. |
359 | |
360 | \warning Painting on a QImage with the format |
361 | QImage::Format_Indexed8 is not supported. |
362 | |
363 | \tableofcontents |
364 | |
365 | \section1 Reading and Writing Image Files |
366 | |
367 | QImage provides several ways of loading an image file: The file |
368 | can be loaded when constructing the QImage object, or by using the |
369 | load() or loadFromData() functions later on. QImage also provides |
370 | the static fromData() function, constructing a QImage from the |
371 | given data. When loading an image, the file name can either refer |
372 | to an actual file on disk or to one of the application's embedded |
373 | resources. See \l{The Qt Resource System} overview for details |
374 | on how to embed images and other resource files in the |
375 | application's executable. |
376 | |
377 | Simply call the save() function to save a QImage object. |
378 | |
379 | The complete list of supported file formats are available through |
380 | the QImageReader::supportedImageFormats() and |
381 | QImageWriter::supportedImageFormats() functions. New file formats |
382 | can be added as plugins. By default, Qt supports the following |
383 | formats: |
384 | |
385 | \table |
386 | \header \li Format \li Description \li Qt's support |
387 | \row \li BMP \li Windows Bitmap \li Read/write |
388 | \row \li GIF \li Graphic Interchange Format (optional) \li Read |
389 | \row \li JPG \li Joint Photographic Experts Group \li Read/write |
390 | \row \li JPEG \li Joint Photographic Experts Group \li Read/write |
391 | \row \li PNG \li Portable Network Graphics \li Read/write |
392 | \row \li PBM \li Portable Bitmap \li Read |
393 | \row \li PGM \li Portable Graymap \li Read |
394 | \row \li PPM \li Portable Pixmap \li Read/write |
395 | \row \li XBM \li X11 Bitmap \li Read/write |
396 | \row \li XPM \li X11 Pixmap \li Read/write |
397 | \endtable |
398 | |
399 | \section1 Image Information |
400 | |
401 | QImage provides a collection of functions that can be used to |
402 | obtain a variety of information about the image: |
403 | |
404 | \table |
405 | \header |
406 | \li \li Available Functions |
407 | |
408 | \row |
409 | \li Geometry |
410 | \li |
411 | |
412 | The size(), width(), height(), dotsPerMeterX(), and |
413 | dotsPerMeterY() functions provide information about the image size |
414 | and aspect ratio. |
415 | |
416 | The rect() function returns the image's enclosing rectangle. The |
417 | valid() function tells if a given pair of coordinates is within |
418 | this rectangle. The offset() function returns the number of pixels |
419 | by which the image is intended to be offset by when positioned |
420 | relative to other images, which also can be manipulated using the |
421 | setOffset() function. |
422 | |
423 | \row |
424 | \li Colors |
425 | \li |
426 | |
427 | The color of a pixel can be retrieved by passing its coordinates |
428 | to the pixel() function. The pixel() function returns the color |
429 | as a QRgb value indepedent of the image's format. |
430 | |
431 | In case of monochrome and 8-bit images, the colorCount() and |
432 | colorTable() functions provide information about the color |
433 | components used to store the image data: The colorTable() function |
434 | returns the image's entire color table. To obtain a single entry, |
435 | use the pixelIndex() function to retrieve the pixel index for a |
436 | given pair of coordinates, then use the color() function to |
437 | retrieve the color. Note that if you create an 8-bit image |
438 | manually, you have to set a valid color table on the image as |
439 | well. |
440 | |
441 | The hasAlphaChannel() function tells if the image's format |
442 | respects the alpha channel, or not. The allGray() and |
443 | isGrayscale() functions tell whether an image's colors are all |
444 | shades of gray. |
445 | |
446 | See also the \l {QImage#Pixel Manipulation}{Pixel Manipulation} |
447 | and \l {QImage#Image Transformations}{Image Transformations} |
448 | sections. |
449 | |
450 | \row |
451 | \li Text |
452 | \li |
453 | |
454 | The text() function returns the image text associated with the |
455 | given text key. An image's text keys can be retrieved using the |
456 | textKeys() function. Use the setText() function to alter an |
457 | image's text. |
458 | |
459 | \row |
460 | \li Low-level information |
461 | \li |
462 | |
463 | The depth() function returns the depth of the image. The supported |
464 | depths are 1 (monochrome), 8, 16, 24 and 32 bits. The |
465 | bitPlaneCount() function tells how many of those bits that are |
466 | used. For more information see the |
467 | \l {QImage#Image Formats}{Image Formats} section. |
468 | |
469 | The format(), bytesPerLine(), and sizeInBytes() functions provide |
470 | low-level information about the data stored in the image. |
471 | |
472 | The cacheKey() function returns a number that uniquely |
473 | identifies the contents of this QImage object. |
474 | \endtable |
475 | |
476 | \section1 Pixel Manipulation |
477 | |
478 | The functions used to manipulate an image's pixels depend on the |
479 | image format. The reason is that monochrome and 8-bit images are |
480 | index-based and use a color lookup table, while 32-bit images |
481 | store ARGB values directly. For more information on image formats, |
482 | see the \l {Image Formats} section. |
483 | |
484 | In case of a 32-bit image, the setPixel() function can be used to |
485 | alter the color of the pixel at the given coordinates to any other |
486 | color specified as an ARGB quadruplet. To make a suitable QRgb |
487 | value, use the qRgb() (adding a default alpha component to the |
488 | given RGB values, i.e. creating an opaque color) or qRgba() |
489 | function. For example: |
490 | |
491 | \table |
492 | \header |
493 | \li {2,1}32-bit |
494 | \row |
495 | \li \inlineimage qimage-32bit_scaled.png |
496 | \li |
497 | \snippet code/src_gui_image_qimage.cpp 0 |
498 | \endtable |
499 | |
500 | In case of a 8-bit and monchrome images, the pixel value is only |
501 | an index from the image's color table. So the setPixel() function |
502 | can only be used to alter the color of the pixel at the given |
503 | coordinates to a predefined color from the image's color table, |
504 | i.e. it can only change the pixel's index value. To alter or add a |
505 | color to an image's color table, use the setColor() function. |
506 | |
507 | An entry in the color table is an ARGB quadruplet encoded as an |
508 | QRgb value. Use the qRgb() and qRgba() functions to make a |
509 | suitable QRgb value for use with the setColor() function. For |
510 | example: |
511 | |
512 | \table |
513 | \header |
514 | \li {2,1} 8-bit |
515 | \row |
516 | \li \inlineimage qimage-8bit_scaled.png |
517 | \li |
518 | \snippet code/src_gui_image_qimage.cpp 1 |
519 | \endtable |
520 | |
521 | For images with more than 8-bit per color-channel. The methods |
522 | setPixelColor() and pixelColor() can be used to set and get |
523 | with QColor values. |
524 | |
525 | QImage also provide the scanLine() function which returns a |
526 | pointer to the pixel data at the scanline with the given index, |
527 | and the bits() function which returns a pointer to the first pixel |
528 | data (this is equivalent to \c scanLine(0)). |
529 | |
530 | \section1 Image Formats |
531 | |
532 | Each pixel stored in a QImage is represented by an integer. The |
533 | size of the integer varies depending on the format. QImage |
534 | supports several image formats described by the \l Format |
535 | enum. |
536 | |
537 | Monochrome images are stored using 1-bit indexes into a color table |
538 | with at most two colors. There are two different types of |
539 | monochrome images: big endian (MSB first) or little endian (LSB |
540 | first) bit order. |
541 | |
542 | 8-bit images are stored using 8-bit indexes into a color table, |
543 | i.e. they have a single byte per pixel. The color table is a |
544 | QList<QRgb>, and the QRgb typedef is equivalent to an unsigned |
545 | int containing an ARGB quadruplet on the format 0xAARRGGBB. |
546 | |
547 | 32-bit images have no color table; instead, each pixel contains an |
548 | QRgb value. There are three different types of 32-bit images |
549 | storing RGB (i.e. 0xffRRGGBB), ARGB and premultiplied ARGB |
550 | values respectively. In the premultiplied format the red, green, |
551 | and blue channels are multiplied by the alpha component divided by |
552 | 255. |
553 | |
554 | An image's format can be retrieved using the format() |
555 | function. Use the convertToFormat() functions to convert an image |
556 | into another format. The allGray() and isGrayscale() functions |
557 | tell whether a color image can safely be converted to a grayscale |
558 | image. |
559 | |
560 | \section1 Image Transformations |
561 | |
562 | QImage supports a number of functions for creating a new image |
563 | that is a transformed version of the original: The |
564 | createAlphaMask() function builds and returns a 1-bpp mask from |
565 | the alpha buffer in this image, and the createHeuristicMask() |
566 | function creates and returns a 1-bpp heuristic mask for this |
567 | image. The latter function works by selecting a color from one of |
568 | the corners, then chipping away pixels of that color starting at |
569 | all the edges. |
570 | |
571 | The mirrored() function returns a mirror of the image in the |
572 | desired direction, the scaled() returns a copy of the image scaled |
573 | to a rectangle of the desired measures, and the rgbSwapped() function |
574 | constructs a BGR image from a RGB image. |
575 | |
576 | The scaledToWidth() and scaledToHeight() functions return scaled |
577 | copies of the image. |
578 | |
579 | The transformed() function returns a copy of the image that is |
580 | transformed with the given transformation matrix and |
581 | transformation mode: Internally, the transformation matrix is |
582 | adjusted to compensate for unwanted translation, |
583 | i.e. transformed() returns the smallest image containing all |
584 | transformed points of the original image. The static trueMatrix() |
585 | function returns the actual matrix used for transforming the |
586 | image. |
587 | |
588 | There are also functions for changing attributes of an image |
589 | in-place: |
590 | |
591 | \table |
592 | \header \li Function \li Description |
593 | \row |
594 | \li setDotsPerMeterX() |
595 | \li Defines the aspect ratio by setting the number of pixels that fit |
596 | horizontally in a physical meter. |
597 | \row |
598 | \li setDotsPerMeterY() |
599 | \li Defines the aspect ratio by setting the number of pixels that fit |
600 | vertically in a physical meter. |
601 | \row |
602 | \li fill() |
603 | \li Fills the entire image with the given pixel value. |
604 | \row |
605 | \li invertPixels() |
606 | \li Inverts all pixel values in the image using the given InvertMode value. |
607 | \row |
608 | \li setColorTable() |
609 | \li Sets the color table used to translate color indexes. Only |
610 | monochrome and 8-bit formats. |
611 | \row |
612 | \li setColorCount() |
613 | \li Resizes the color table. Only monochrome and 8-bit formats. |
614 | |
615 | \endtable |
616 | |
617 | \sa QImageReader, QImageWriter, QPixmap, QSvgRenderer, {Image Composition Example}, |
618 | {Image Viewer Example}, {Scribble Example}, {Pixelator Example} |
619 | */ |
620 | |
621 | /*! |
622 | \fn QImage::QImage(QImage &&other) |
623 | |
624 | Move-constructs a QImage instance, making it point at the same |
625 | object that \a other was pointing to. |
626 | |
627 | \since 5.2 |
628 | */ |
629 | |
630 | /*! |
631 | \fn QImage &QImage::operator=(QImage &&other) |
632 | |
633 | Move-assigns \a other to this QImage instance. |
634 | |
635 | \since 5.2 |
636 | */ |
637 | |
638 | /*! |
639 | \typedef QImageCleanupFunction |
640 | \relates QImage |
641 | \since 5.0 |
642 | |
643 | A function with the following signature that can be used to |
644 | implement basic image memory management: |
645 | |
646 | \code |
647 | void myImageCleanupHandler(void *info); |
648 | \endcode |
649 | */ |
650 | |
651 | /*! |
652 | \enum QImage::InvertMode |
653 | |
654 | This enum type is used to describe how pixel values should be |
655 | inverted in the invertPixels() function. |
656 | |
657 | \value InvertRgb Invert only the RGB values and leave the alpha |
658 | channel unchanged. |
659 | |
660 | \value InvertRgba Invert all channels, including the alpha channel. |
661 | |
662 | \sa invertPixels() |
663 | */ |
664 | |
665 | /*! |
666 | \enum QImage::Format |
667 | |
668 | The following image formats are available in Qt. |
669 | See the notes after the table. |
670 | |
671 | \value Format_Invalid The image is invalid. |
672 | \value Format_Mono The image is stored using 1-bit per pixel. Bytes are |
673 | packed with the most significant bit (MSB) first. |
674 | \value Format_MonoLSB The image is stored using 1-bit per pixel. Bytes are |
675 | packed with the less significant bit (LSB) first. |
676 | |
677 | \value Format_Indexed8 The image is stored using 8-bit indexes |
678 | into a colormap. |
679 | |
680 | \value Format_RGB32 The image is stored using a 32-bit RGB format (0xffRRGGBB). |
681 | |
682 | \value Format_ARGB32 The image is stored using a 32-bit ARGB |
683 | format (0xAARRGGBB). |
684 | |
685 | \value Format_ARGB32_Premultiplied The image is stored using a premultiplied 32-bit |
686 | ARGB format (0xAARRGGBB), i.e. the red, |
687 | green, and blue channels are multiplied |
688 | by the alpha component divided by 255. (If RR, GG, or BB |
689 | has a higher value than the alpha channel, the results are |
690 | undefined.) Certain operations (such as image composition |
691 | using alpha blending) are faster using premultiplied ARGB32 |
692 | than with plain ARGB32. |
693 | |
694 | \value Format_RGB16 The image is stored using a 16-bit RGB format (5-6-5). |
695 | |
696 | \value Format_ARGB8565_Premultiplied The image is stored using a |
697 | premultiplied 24-bit ARGB format (8-5-6-5). |
698 | \value Format_RGB666 The image is stored using a 24-bit RGB format (6-6-6). |
699 | The unused most significant bits is always zero. |
700 | \value Format_ARGB6666_Premultiplied The image is stored using a |
701 | premultiplied 24-bit ARGB format (6-6-6-6). |
702 | \value Format_RGB555 The image is stored using a 16-bit RGB format (5-5-5). |
703 | The unused most significant bit is always zero. |
704 | \value Format_ARGB8555_Premultiplied The image is stored using a |
705 | premultiplied 24-bit ARGB format (8-5-5-5). |
706 | \value Format_RGB888 The image is stored using a 24-bit RGB format (8-8-8). |
707 | \value Format_RGB444 The image is stored using a 16-bit RGB format (4-4-4). |
708 | The unused bits are always zero. |
709 | \value Format_ARGB4444_Premultiplied The image is stored using a |
710 | premultiplied 16-bit ARGB format (4-4-4-4). |
711 | \value Format_RGBX8888 The image is stored using a 32-bit byte-ordered RGB(x) format (8-8-8-8). |
712 | This is the same as the Format_RGBA8888 except alpha must always be 255. (added in Qt 5.2) |
713 | \value Format_RGBA8888 The image is stored using a 32-bit byte-ordered RGBA format (8-8-8-8). |
714 | Unlike ARGB32 this is a byte-ordered format, which means the 32bit |
715 | encoding differs between big endian and little endian architectures, |
716 | being respectively (0xRRGGBBAA) and (0xAABBGGRR). The order of the colors |
717 | is the same on any architecture if read as bytes 0xRR,0xGG,0xBB,0xAA. (added in Qt 5.2) |
718 | \value Format_RGBA8888_Premultiplied The image is stored using a |
719 | premultiplied 32-bit byte-ordered RGBA format (8-8-8-8). (added in Qt 5.2) |
720 | \value Format_BGR30 The image is stored using a 32-bit BGR format (x-10-10-10). (added in Qt 5.4) |
721 | \value Format_A2BGR30_Premultiplied The image is stored using a 32-bit premultiplied ABGR format (2-10-10-10). (added in Qt 5.4) |
722 | \value Format_RGB30 The image is stored using a 32-bit RGB format (x-10-10-10). (added in Qt 5.4) |
723 | \value Format_A2RGB30_Premultiplied The image is stored using a 32-bit premultiplied ARGB format (2-10-10-10). (added in Qt 5.4) |
724 | \value Format_Alpha8 The image is stored using an 8-bit alpha only format. (added in Qt 5.5) |
725 | \value Format_Grayscale8 The image is stored using an 8-bit grayscale format. (added in Qt 5.5) |
726 | \value Format_Grayscale16 The image is stored using an 16-bit grayscale format. (added in Qt 5.13) |
727 | \value Format_RGBX64 The image is stored using a 64-bit halfword-ordered RGB(x) format (16-16-16-16). |
728 | This is the same as the Format_RGBA64 except alpha must always be 65535. (added in Qt 5.12) |
729 | \value Format_RGBA64 The image is stored using a 64-bit halfword-ordered RGBA format (16-16-16-16). (added in Qt 5.12) |
730 | \value Format_RGBA64_Premultiplied The image is stored using a premultiplied 64-bit halfword-ordered |
731 | RGBA format (16-16-16-16). (added in Qt 5.12) |
732 | \value Format_BGR888 The image is stored using a 24-bit BGR format. (added in Qt 5.14) |
733 | |
734 | \note Drawing into a QImage with QImage::Format_Indexed8 is not |
735 | supported. |
736 | |
737 | \note Avoid most rendering directly to most of these formats using QPainter. Rendering |
738 | is best optimized to the \c Format_RGB32 and \c Format_ARGB32_Premultiplied formats, and secondarily for rendering to the |
739 | \c Format_RGB16, \c Format_RGBX8888, \c Format_RGBA8888_Premultiplied, \c Format_RGBX64 and \c Format_RGBA64_Premultiplied formats |
740 | |
741 | \sa format(), convertToFormat() |
742 | */ |
743 | |
744 | /***************************************************************************** |
745 | QImage member functions |
746 | *****************************************************************************/ |
747 | |
748 | /*! |
749 | Constructs a null image. |
750 | |
751 | \sa isNull() |
752 | */ |
753 | |
754 | QImage::QImage() noexcept |
755 | : QPaintDevice() |
756 | { |
757 | d = nullptr; |
758 | } |
759 | |
760 | /*! |
761 | Constructs an image with the given \a width, \a height and \a |
762 | format. |
763 | |
764 | A \l{isNull()}{null} image will be returned if memory cannot be allocated. |
765 | |
766 | \warning This will create a QImage with uninitialized data. Call |
767 | fill() to fill the image with an appropriate pixel value before |
768 | drawing onto it with QPainter. |
769 | */ |
770 | QImage::QImage(int width, int height, Format format) |
771 | : QImage(QSize(width, height), format) |
772 | { |
773 | } |
774 | |
775 | /*! |
776 | Constructs an image with the given \a size and \a format. |
777 | |
778 | A \l{isNull()}{null} image is returned if memory cannot be allocated. |
779 | |
780 | \warning This will create a QImage with uninitialized data. Call |
781 | fill() to fill the image with an appropriate pixel value before |
782 | drawing onto it with QPainter. |
783 | */ |
784 | QImage::QImage(const QSize &size, Format format) |
785 | : QPaintDevice() |
786 | { |
787 | d = QImageData::create(size, format); |
788 | } |
789 | |
790 | |
791 | |
792 | QImageData *QImageData::create(uchar *data, int width, int height, qsizetype bpl, QImage::Format format, bool readOnly, QImageCleanupFunction cleanupFunction, void *cleanupInfo) |
793 | { |
794 | if (width <= 0 || height <= 0 || !data || format <= QImage::Format_Invalid || format >= QImage::NImageFormats) |
795 | return nullptr; |
796 | |
797 | const int depth = qt_depthForFormat(format); |
798 | auto params = calculateImageParameters(width, height, depth); |
799 | if (!params.isValid()) |
800 | return nullptr; |
801 | |
802 | if (bpl > 0) { |
803 | // can't overflow, because has calculateImageParameters already done this multiplication |
804 | const qsizetype min_bytes_per_line = (qsizetype(width) * depth + 7)/8; |
805 | if (bpl < min_bytes_per_line) |
806 | return nullptr; |
807 | |
808 | // recalculate the total with this value |
809 | params.bytesPerLine = bpl; |
810 | if (mul_overflow<qsizetype>(bpl, height, ¶ms.totalSize)) |
811 | return nullptr; |
812 | } |
813 | |
814 | QImageData *d = new QImageData; |
815 | d->ref.ref(); |
816 | |
817 | d->own_data = false; |
818 | d->ro_data = readOnly; |
819 | d->data = data; |
820 | d->width = width; |
821 | d->height = height; |
822 | d->depth = depth; |
823 | d->format = format; |
824 | |
825 | d->bytes_per_line = params.bytesPerLine; |
826 | d->nbytes = params.totalSize; |
827 | |
828 | d->cleanupFunction = cleanupFunction; |
829 | d->cleanupInfo = cleanupInfo; |
830 | |
831 | return d; |
832 | } |
833 | |
834 | /*! |
835 | Constructs an image with the given \a width, \a height and \a |
836 | format, that uses an existing memory buffer, \a data. The \a width |
837 | and \a height must be specified in pixels, \a data must be 32-bit aligned, |
838 | and each scanline of data in the image must also be 32-bit aligned. |
839 | |
840 | The buffer must remain valid throughout the life of the QImage and |
841 | all copies that have not been modified or otherwise detached from |
842 | the original buffer. The image does not delete the buffer at destruction. |
843 | You can provide a function pointer \a cleanupFunction along with an |
844 | extra pointer \a cleanupInfo that will be called when the last copy |
845 | is destroyed. |
846 | |
847 | If \a format is an indexed color format, the image color table is |
848 | initially empty and must be sufficiently expanded with |
849 | setColorCount() or setColorTable() before the image is used. |
850 | */ |
851 | QImage::QImage(uchar* data, int width, int height, Format format, QImageCleanupFunction cleanupFunction, void *cleanupInfo) |
852 | : QPaintDevice() |
853 | { |
854 | d = QImageData::create(data, width, height, 0, format, false, cleanupFunction, cleanupInfo); |
855 | } |
856 | |
857 | /*! |
858 | Constructs an image with the given \a width, \a height and \a |
859 | format, that uses an existing read-only memory buffer, \a |
860 | data. The \a width and \a height must be specified in pixels, \a |
861 | data must be 32-bit aligned, and each scanline of data in the |
862 | image must also be 32-bit aligned. |
863 | |
864 | The buffer must remain valid throughout the life of the QImage and |
865 | all copies that have not been modified or otherwise detached from |
866 | the original buffer. The image does not delete the buffer at destruction. |
867 | You can provide a function pointer \a cleanupFunction along with an |
868 | extra pointer \a cleanupInfo that will be called when the last copy |
869 | is destroyed. |
870 | |
871 | If \a format is an indexed color format, the image color table is |
872 | initially empty and must be sufficiently expanded with |
873 | setColorCount() or setColorTable() before the image is used. |
874 | |
875 | Unlike the similar QImage constructor that takes a non-const data buffer, |
876 | this version will never alter the contents of the buffer. For example, |
877 | calling QImage::bits() will return a deep copy of the image, rather than |
878 | the buffer passed to the constructor. This allows for the efficiency of |
879 | constructing a QImage from raw data, without the possibility of the raw |
880 | data being changed. |
881 | */ |
882 | QImage::QImage(const uchar* data, int width, int height, Format format, QImageCleanupFunction cleanupFunction, void *cleanupInfo) |
883 | : QPaintDevice() |
884 | { |
885 | d = QImageData::create(const_cast<uchar*>(data), width, height, 0, format, true, cleanupFunction, cleanupInfo); |
886 | } |
887 | |
888 | /*! |
889 | Constructs an image with the given \a width, \a height and \a |
890 | format, that uses an existing memory buffer, \a data. The \a width |
891 | and \a height must be specified in pixels. \a bytesPerLine |
892 | specifies the number of bytes per line (stride). |
893 | |
894 | The buffer must remain valid throughout the life of the QImage and |
895 | all copies that have not been modified or otherwise detached from |
896 | the original buffer. The image does not delete the buffer at destruction. |
897 | You can provide a function pointer \a cleanupFunction along with an |
898 | extra pointer \a cleanupInfo that will be called when the last copy |
899 | is destroyed. |
900 | |
901 | If \a format is an indexed color format, the image color table is |
902 | initially empty and must be sufficiently expanded with |
903 | setColorCount() or setColorTable() before the image is used. |
904 | */ |
905 | |
906 | QImage::QImage(uchar *data, int width, int height, qsizetype bytesPerLine, Format format, QImageCleanupFunction cleanupFunction, void *cleanupInfo) |
907 | :QPaintDevice() |
908 | { |
909 | d = QImageData::create(data, width, height, bytesPerLine, format, false, cleanupFunction, cleanupInfo); |
910 | } |
911 | |
912 | /*! |
913 | Constructs an image with the given \a width, \a height and \a |
914 | format, that uses an existing memory buffer, \a data. The \a width |
915 | and \a height must be specified in pixels. \a bytesPerLine |
916 | specifies the number of bytes per line (stride). |
917 | |
918 | The buffer must remain valid throughout the life of the QImage and |
919 | all copies that have not been modified or otherwise detached from |
920 | the original buffer. The image does not delete the buffer at destruction. |
921 | You can provide a function pointer \a cleanupFunction along with an |
922 | extra pointer \a cleanupInfo that will be called when the last copy |
923 | is destroyed. |
924 | |
925 | If \a format is an indexed color format, the image color table is |
926 | initially empty and must be sufficiently expanded with |
927 | setColorCount() or setColorTable() before the image is used. |
928 | |
929 | Unlike the similar QImage constructor that takes a non-const data buffer, |
930 | this version will never alter the contents of the buffer. For example, |
931 | calling QImage::bits() will return a deep copy of the image, rather than |
932 | the buffer passed to the constructor. This allows for the efficiency of |
933 | constructing a QImage from raw data, without the possibility of the raw |
934 | data being changed. |
935 | */ |
936 | |
937 | QImage::QImage(const uchar *data, int width, int height, qsizetype bytesPerLine, Format format, QImageCleanupFunction cleanupFunction, void *cleanupInfo) |
938 | :QPaintDevice() |
939 | { |
940 | d = QImageData::create(const_cast<uchar*>(data), width, height, bytesPerLine, format, true, cleanupFunction, cleanupInfo); |
941 | } |
942 | |
943 | /*! |
944 | Constructs an image and tries to load the image from the file with |
945 | the given \a fileName. |
946 | |
947 | The loader attempts to read the image using the specified \a |
948 | format. If the \a format is not specified (which is the default), |
949 | it is auto-detected based on the file's suffix and header. For |
950 | details, see {QImageReader::setAutoDetectImageFormat()}{QImageReader}. |
951 | |
952 | If the loading of the image failed, this object is a null image. |
953 | |
954 | The file name can either refer to an actual file on disk or to one |
955 | of the application's embedded resources. See the |
956 | \l{resources.html}{Resource System} overview for details on how to |
957 | embed images and other resource files in the application's |
958 | executable. |
959 | |
960 | \sa isNull(), {QImage#Reading and Writing Image Files}{Reading and Writing Image Files} |
961 | */ |
962 | |
963 | QImage::QImage(const QString &fileName, const char *format) |
964 | : QPaintDevice() |
965 | { |
966 | d = nullptr; |
967 | load(fileName, format); |
968 | } |
969 | |
970 | #ifndef QT_NO_IMAGEFORMAT_XPM |
971 | extern bool qt_read_xpm_image_or_array(QIODevice *device, const char * const *source, QImage &image); |
972 | |
973 | /*! |
974 | Constructs an image from the given \a xpm image. |
975 | |
976 | Make sure that the image is a valid XPM image. Errors are silently |
977 | ignored. |
978 | |
979 | Note that it's possible to squeeze the XPM variable a little bit |
980 | by using an unusual declaration: |
981 | |
982 | \snippet code/src_gui_image_qimage.cpp 2 |
983 | |
984 | The extra \c const makes the entire definition read-only, which is |
985 | slightly more efficient (e.g., when the code is in a shared |
986 | library) and able to be stored in ROM with the application. |
987 | */ |
988 | |
989 | QImage::QImage(const char * const xpm[]) |
990 | : QPaintDevice() |
991 | { |
992 | d = nullptr; |
993 | if (!xpm) |
994 | return; |
995 | if (!qt_read_xpm_image_or_array(nullptr, xpm, *this)) |
996 | // Issue: Warning because the constructor may be ambigious |
997 | qWarning("QImage::QImage(), XPM is not supported" ); |
998 | } |
999 | #endif // QT_NO_IMAGEFORMAT_XPM |
1000 | |
1001 | /*! |
1002 | Constructs a shallow copy of the given \a image. |
1003 | |
1004 | For more information about shallow copies, see the \l {Implicit |
1005 | Data Sharing} documentation. |
1006 | |
1007 | \sa copy() |
1008 | */ |
1009 | |
1010 | QImage::QImage(const QImage &image) |
1011 | : QPaintDevice() |
1012 | { |
1013 | if (image.paintingActive() || isLocked(image.d)) { |
1014 | d = nullptr; |
1015 | image.copy().swap(*this); |
1016 | } else { |
1017 | d = image.d; |
1018 | if (d) |
1019 | d->ref.ref(); |
1020 | } |
1021 | } |
1022 | |
1023 | /*! |
1024 | Destroys the image and cleans up. |
1025 | */ |
1026 | |
1027 | QImage::~QImage() |
1028 | { |
1029 | if (d && !d->ref.deref()) |
1030 | delete d; |
1031 | } |
1032 | |
1033 | /*! |
1034 | Assigns a shallow copy of the given \a image to this image and |
1035 | returns a reference to this image. |
1036 | |
1037 | For more information about shallow copies, see the \l {Implicit |
1038 | Data Sharing} documentation. |
1039 | |
1040 | \sa copy(), QImage() |
1041 | */ |
1042 | |
1043 | QImage &QImage::operator=(const QImage &image) |
1044 | { |
1045 | if (image.paintingActive() || isLocked(image.d)) { |
1046 | operator=(image.copy()); |
1047 | } else { |
1048 | if (image.d) |
1049 | image.d->ref.ref(); |
1050 | if (d && !d->ref.deref()) |
1051 | delete d; |
1052 | d = image.d; |
1053 | } |
1054 | return *this; |
1055 | } |
1056 | |
1057 | /*! |
1058 | \fn void QImage::swap(QImage &other) |
1059 | \since 4.8 |
1060 | |
1061 | Swaps image \a other with this image. This operation is very |
1062 | fast and never fails. |
1063 | */ |
1064 | |
1065 | /*! |
1066 | \internal |
1067 | */ |
1068 | int QImage::devType() const |
1069 | { |
1070 | return QInternal::Image; |
1071 | } |
1072 | |
1073 | /*! |
1074 | Returns the image as a QVariant. |
1075 | */ |
1076 | QImage::operator QVariant() const |
1077 | { |
1078 | return QVariant::fromValue(*this); |
1079 | } |
1080 | |
1081 | /*! |
1082 | \internal |
1083 | |
1084 | If multiple images share common data, this image makes a copy of |
1085 | the data and detaches itself from the sharing mechanism, making |
1086 | sure that this image is the only one referring to the data. |
1087 | |
1088 | Nothing is done if there is just a single reference. |
1089 | |
1090 | \sa copy(), {QImage::isDetached()}{isDetached()}, {Implicit Data Sharing} |
1091 | */ |
1092 | void QImage::detach() |
1093 | { |
1094 | if (d) { |
1095 | if (d->is_cached && d->ref.loadRelaxed() == 1) |
1096 | QImagePixmapCleanupHooks::executeImageHooks(cacheKey()); |
1097 | |
1098 | if (d->ref.loadRelaxed() != 1 || d->ro_data) |
1099 | *this = copy(); |
1100 | |
1101 | if (d) |
1102 | ++d->detach_no; |
1103 | } |
1104 | } |
1105 | |
1106 | |
1107 | static void copyPhysicalMetadata(QImageData *dst, const QImageData *src) |
1108 | { |
1109 | dst->dpmx = src->dpmx; |
1110 | dst->dpmy = src->dpmy; |
1111 | dst->devicePixelRatio = src->devicePixelRatio; |
1112 | } |
1113 | |
1114 | static void copyMetadata(QImageData *dst, const QImageData *src) |
1115 | { |
1116 | // Doesn't copy colortable and alpha_clut, or offset. |
1117 | copyPhysicalMetadata(dst, src); |
1118 | dst->text = src->text; |
1119 | dst->colorSpace = src->colorSpace; |
1120 | } |
1121 | |
1122 | static void copyMetadata(QImage *dst, const QImage &src) |
1123 | { |
1124 | dst->setDotsPerMeterX(src.dotsPerMeterX()); |
1125 | dst->setDotsPerMeterY(src.dotsPerMeterY()); |
1126 | dst->setDevicePixelRatio(src.devicePixelRatio()); |
1127 | const auto textKeys = src.textKeys(); |
1128 | for (const auto &key: textKeys) |
1129 | dst->setText(key, src.text(key)); |
1130 | |
1131 | } |
1132 | |
1133 | /*! |
1134 | \fn QImage QImage::copy(int x, int y, int width, int height) const |
1135 | \overload |
1136 | |
1137 | The returned image is copied from the position (\a x, \a y) in |
1138 | this image, and will always have the given \a width and \a height. |
1139 | In areas beyond this image, pixels are set to 0. |
1140 | |
1141 | */ |
1142 | |
1143 | /*! |
1144 | \fn QImage QImage::copy(const QRect& rectangle) const |
1145 | |
1146 | Returns a sub-area of the image as a new image. |
1147 | |
1148 | The returned image is copied from the position (\a |
1149 | {rectangle}.x(), \a{rectangle}.y()) in this image, and will always |
1150 | have the size of the given \a rectangle. |
1151 | |
1152 | In areas beyond this image, pixels are set to 0. For 32-bit RGB |
1153 | images, this means black; for 32-bit ARGB images, this means |
1154 | transparent black; for 8-bit images, this means the color with |
1155 | index 0 in the color table which can be anything; for 1-bit |
1156 | images, this means Qt::color0. |
1157 | |
1158 | If the given \a rectangle is a null rectangle the entire image is |
1159 | copied. |
1160 | |
1161 | \sa QImage() |
1162 | */ |
1163 | QImage QImage::copy(const QRect& r) const |
1164 | { |
1165 | Q_TRACE_SCOPE(QImage_copy, r); |
1166 | if (!d) |
1167 | return QImage(); |
1168 | |
1169 | if (r.isNull()) { |
1170 | QImage image(d->width, d->height, d->format); |
1171 | if (image.isNull()) |
1172 | return image; |
1173 | |
1174 | // Qt for Embedded Linux can create images with non-default bpl |
1175 | // make sure we don't crash. |
1176 | if (image.d->nbytes != d->nbytes) { |
1177 | qsizetype bpl = qMin(bytesPerLine(), image.bytesPerLine()); |
1178 | for (int i = 0; i < height(); i++) |
1179 | memcpy(image.scanLine(i), scanLine(i), bpl); |
1180 | } else |
1181 | memcpy(image.bits(), bits(), d->nbytes); |
1182 | image.d->colortable = d->colortable; |
1183 | image.d->offset = d->offset; |
1184 | image.d->has_alpha_clut = d->has_alpha_clut; |
1185 | copyMetadata(image.d, d); |
1186 | return image; |
1187 | } |
1188 | |
1189 | int x = r.x(); |
1190 | int y = r.y(); |
1191 | int w = r.width(); |
1192 | int h = r.height(); |
1193 | |
1194 | int dx = 0; |
1195 | int dy = 0; |
1196 | if (w <= 0 || h <= 0) |
1197 | return QImage(); |
1198 | |
1199 | QImage image(w, h, d->format); |
1200 | if (image.isNull()) |
1201 | return image; |
1202 | |
1203 | if (x < 0 || y < 0 || x + w > d->width || y + h > d->height) { |
1204 | // bitBlt will not cover entire image - clear it. |
1205 | image.fill(0); |
1206 | if (x < 0) { |
1207 | dx = -x; |
1208 | x = 0; |
1209 | } |
1210 | if (y < 0) { |
1211 | dy = -y; |
1212 | y = 0; |
1213 | } |
1214 | } |
1215 | |
1216 | image.d->colortable = d->colortable; |
1217 | |
1218 | int pixels_to_copy = qMax(w - dx, 0); |
1219 | if (x > d->width) |
1220 | pixels_to_copy = 0; |
1221 | else if (pixels_to_copy > d->width - x) |
1222 | pixels_to_copy = d->width - x; |
1223 | int lines_to_copy = qMax(h - dy, 0); |
1224 | if (y > d->height) |
1225 | lines_to_copy = 0; |
1226 | else if (lines_to_copy > d->height - y) |
1227 | lines_to_copy = d->height - y; |
1228 | |
1229 | bool byteAligned = true; |
1230 | if (d->format == Format_Mono || d->format == Format_MonoLSB) |
1231 | byteAligned = !(dx & 7) && !(x & 7) && !(pixels_to_copy & 7); |
1232 | |
1233 | if (byteAligned) { |
1234 | const uchar *src = d->data + ((x * d->depth) >> 3) + y * d->bytes_per_line; |
1235 | uchar *dest = image.d->data + ((dx * d->depth) >> 3) + dy * image.d->bytes_per_line; |
1236 | const qsizetype bytes_to_copy = (qsizetype(pixels_to_copy) * d->depth) >> 3; |
1237 | for (int i = 0; i < lines_to_copy; ++i) { |
1238 | memcpy(dest, src, bytes_to_copy); |
1239 | src += d->bytes_per_line; |
1240 | dest += image.d->bytes_per_line; |
1241 | } |
1242 | } else if (d->format == Format_Mono) { |
1243 | const uchar *src = d->data + y * d->bytes_per_line; |
1244 | uchar *dest = image.d->data + dy * image.d->bytes_per_line; |
1245 | for (int i = 0; i < lines_to_copy; ++i) { |
1246 | for (int j = 0; j < pixels_to_copy; ++j) { |
1247 | if (src[(x + j) >> 3] & (0x80 >> ((x + j) & 7))) |
1248 | dest[(dx + j) >> 3] |= (0x80 >> ((dx + j) & 7)); |
1249 | else |
1250 | dest[(dx + j) >> 3] &= ~(0x80 >> ((dx + j) & 7)); |
1251 | } |
1252 | src += d->bytes_per_line; |
1253 | dest += image.d->bytes_per_line; |
1254 | } |
1255 | } else { // Format_MonoLSB |
1256 | Q_ASSERT(d->format == Format_MonoLSB); |
1257 | const uchar *src = d->data + y * d->bytes_per_line; |
1258 | uchar *dest = image.d->data + dy * image.d->bytes_per_line; |
1259 | for (int i = 0; i < lines_to_copy; ++i) { |
1260 | for (int j = 0; j < pixels_to_copy; ++j) { |
1261 | if (src[(x + j) >> 3] & (0x1 << ((x + j) & 7))) |
1262 | dest[(dx + j) >> 3] |= (0x1 << ((dx + j) & 7)); |
1263 | else |
1264 | dest[(dx + j) >> 3] &= ~(0x1 << ((dx + j) & 7)); |
1265 | } |
1266 | src += d->bytes_per_line; |
1267 | dest += image.d->bytes_per_line; |
1268 | } |
1269 | } |
1270 | |
1271 | copyMetadata(image.d, d); |
1272 | image.d->offset = offset(); |
1273 | image.d->has_alpha_clut = d->has_alpha_clut; |
1274 | return image; |
1275 | } |
1276 | |
1277 | |
1278 | /*! |
1279 | \fn bool QImage::isNull() const |
1280 | |
1281 | Returns \c true if it is a null image, otherwise returns \c false. |
1282 | |
1283 | A null image has all parameters set to zero and no allocated data. |
1284 | */ |
1285 | bool QImage::isNull() const |
1286 | { |
1287 | return !d; |
1288 | } |
1289 | |
1290 | /*! |
1291 | \fn int QImage::width() const |
1292 | |
1293 | Returns the width of the image. |
1294 | |
1295 | \sa {QImage#Image Information}{Image Information} |
1296 | */ |
1297 | int QImage::width() const |
1298 | { |
1299 | return d ? d->width : 0; |
1300 | } |
1301 | |
1302 | /*! |
1303 | \fn int QImage::height() const |
1304 | |
1305 | Returns the height of the image. |
1306 | |
1307 | \sa {QImage#Image Information}{Image Information} |
1308 | */ |
1309 | int QImage::height() const |
1310 | { |
1311 | return d ? d->height : 0; |
1312 | } |
1313 | |
1314 | /*! |
1315 | \fn QSize QImage::size() const |
1316 | |
1317 | Returns the size of the image, i.e. its width() and height(). |
1318 | |
1319 | \sa {QImage#Image Information}{Image Information}, deviceIndependentSize() |
1320 | */ |
1321 | QSize QImage::size() const |
1322 | { |
1323 | return d ? QSize(d->width, d->height) : QSize(0, 0); |
1324 | } |
1325 | |
1326 | /*! |
1327 | \fn QRect QImage::rect() const |
1328 | |
1329 | Returns the enclosing rectangle (0, 0, width(), height()) of the |
1330 | image. |
1331 | |
1332 | \sa {QImage#Image Information}{Image Information} |
1333 | */ |
1334 | QRect QImage::rect() const |
1335 | { |
1336 | return d ? QRect(0, 0, d->width, d->height) : QRect(); |
1337 | } |
1338 | |
1339 | /*! |
1340 | Returns the depth of the image. |
1341 | |
1342 | The image depth is the number of bits used to store a single |
1343 | pixel, also called bits per pixel (bpp). |
1344 | |
1345 | The supported depths are 1, 8, 16, 24, 32 and 64. |
1346 | |
1347 | \sa bitPlaneCount(), convertToFormat(), {QImage#Image Formats}{Image Formats}, |
1348 | {QImage#Image Information}{Image Information} |
1349 | |
1350 | */ |
1351 | int QImage::depth() const |
1352 | { |
1353 | return d ? d->depth : 0; |
1354 | } |
1355 | |
1356 | /*! |
1357 | \since 4.6 |
1358 | \fn int QImage::colorCount() const |
1359 | |
1360 | Returns the size of the color table for the image. |
1361 | |
1362 | Notice that colorCount() returns 0 for 32-bpp images because these |
1363 | images do not use color tables, but instead encode pixel values as |
1364 | ARGB quadruplets. |
1365 | |
1366 | \sa setColorCount(), {QImage#Image Information}{Image Information} |
1367 | */ |
1368 | int QImage::colorCount() const |
1369 | { |
1370 | return d ? d->colortable.size() : 0; |
1371 | } |
1372 | |
1373 | /*! |
1374 | Sets the color table used to translate color indexes to QRgb |
1375 | values, to the specified \a colors. |
1376 | |
1377 | When the image is used, the color table must be large enough to |
1378 | have entries for all the pixel/index values present in the image, |
1379 | otherwise the results are undefined. |
1380 | |
1381 | \sa colorTable(), setColor(), {QImage#Image Transformations}{Image |
1382 | Transformations} |
1383 | */ |
1384 | void QImage::setColorTable(const QList<QRgb> &colors) |
1385 | { |
1386 | if (!d) |
1387 | return; |
1388 | detach(); |
1389 | |
1390 | // In case detach() ran out of memory |
1391 | if (!d) |
1392 | return; |
1393 | |
1394 | d->colortable = colors; |
1395 | d->has_alpha_clut = false; |
1396 | for (int i = 0; i < d->colortable.size(); ++i) { |
1397 | if (qAlpha(d->colortable.at(i)) != 255) { |
1398 | d->has_alpha_clut = true; |
1399 | break; |
1400 | } |
1401 | } |
1402 | } |
1403 | |
1404 | /*! |
1405 | Returns a list of the colors contained in the image's color table, |
1406 | or an empty list if the image does not have a color table |
1407 | |
1408 | \sa setColorTable(), colorCount(), color() |
1409 | */ |
1410 | QList<QRgb> QImage::colorTable() const |
1411 | { |
1412 | return d ? d->colortable : QList<QRgb>(); |
1413 | } |
1414 | |
1415 | /*! |
1416 | Returns the device pixel ratio for the image. This is the |
1417 | ratio between \e{device pixels} and \e{device independent pixels}. |
1418 | |
1419 | Use this function when calculating layout geometry based on |
1420 | the image size: QSize layoutSize = image.size() / image.devicePixelRatio() |
1421 | |
1422 | The default value is 1.0. |
1423 | |
1424 | \sa setDevicePixelRatio(), QImageReader |
1425 | */ |
1426 | qreal QImage::devicePixelRatio() const |
1427 | { |
1428 | if (!d) |
1429 | return 1.0; |
1430 | return d->devicePixelRatio; |
1431 | } |
1432 | |
1433 | /*! |
1434 | Sets the device pixel ratio for the image. This is the |
1435 | ratio between image pixels and device-independent pixels. |
1436 | |
1437 | The default \a scaleFactor is 1.0. Setting it to something else has |
1438 | two effects: |
1439 | |
1440 | QPainters that are opened on the image will be scaled. For |
1441 | example, painting on a 200x200 image if with a ratio of 2.0 |
1442 | will result in effective (device-independent) painting bounds |
1443 | of 100x100. |
1444 | |
1445 | Code paths in Qt that calculate layout geometry based on the |
1446 | image size will take the ratio into account: |
1447 | QSize layoutSize = image.size() / image.devicePixelRatio() |
1448 | The net effect of this is that the image is displayed as |
1449 | high-DPI image rather than a large image |
1450 | (see \l{Drawing High Resolution Versions of Pixmaps and Images}). |
1451 | |
1452 | \sa devicePixelRatio(), deviceIndependentSize() |
1453 | */ |
1454 | void QImage::setDevicePixelRatio(qreal scaleFactor) |
1455 | { |
1456 | if (!d) |
1457 | return; |
1458 | |
1459 | if (scaleFactor == d->devicePixelRatio) |
1460 | return; |
1461 | |
1462 | detach(); |
1463 | if (d) |
1464 | d->devicePixelRatio = scaleFactor; |
1465 | } |
1466 | |
1467 | /*! |
1468 | Returns the size of the pixmap in device independent pixels. |
1469 | |
1470 | This value should be used when using the pixmap size in user interface |
1471 | size calculations. |
1472 | |
1473 | The return value is equivalent to pixmap.size() / pixmap.devicePixelRatio(), |
1474 | */ |
1475 | QSizeF QImage::deviceIndependentSize() const |
1476 | { |
1477 | if (!d) |
1478 | return QSizeF(0, 0); |
1479 | return QSizeF(d->width, d->height) / d->devicePixelRatio; |
1480 | } |
1481 | |
1482 | |
1483 | /*! |
1484 | \since 5.10 |
1485 | Returns the image data size in bytes. |
1486 | |
1487 | \sa bytesPerLine(), bits(), {QImage#Image Information}{Image |
1488 | Information} |
1489 | */ |
1490 | qsizetype QImage::sizeInBytes() const |
1491 | { |
1492 | return d ? d->nbytes : 0; |
1493 | } |
1494 | |
1495 | /*! |
1496 | Returns the number of bytes per image scanline. |
1497 | |
1498 | This is equivalent to sizeInBytes() / height() if height() is non-zero. |
1499 | |
1500 | \sa scanLine() |
1501 | */ |
1502 | qsizetype QImage::bytesPerLine() const |
1503 | { |
1504 | return d ? d->bytes_per_line : 0; |
1505 | } |
1506 | |
1507 | |
1508 | /*! |
1509 | Returns the color in the color table at index \a i. The first |
1510 | color is at index 0. |
1511 | |
1512 | The colors in an image's color table are specified as ARGB |
1513 | quadruplets (QRgb). Use the qAlpha(), qRed(), qGreen(), and |
1514 | qBlue() functions to get the color value components. |
1515 | |
1516 | \sa setColor(), pixelIndex(), {QImage#Pixel Manipulation}{Pixel |
1517 | Manipulation} |
1518 | */ |
1519 | QRgb QImage::color(int i) const |
1520 | { |
1521 | Q_ASSERT(i < colorCount()); |
1522 | return d ? d->colortable.at(i) : QRgb(uint(-1)); |
1523 | } |
1524 | |
1525 | /*! |
1526 | \fn void QImage::setColor(int index, QRgb colorValue) |
1527 | |
1528 | Sets the color at the given \a index in the color table, to the |
1529 | given to \a colorValue. The color value is an ARGB quadruplet. |
1530 | |
1531 | If \a index is outside the current size of the color table, it is |
1532 | expanded with setColorCount(). |
1533 | |
1534 | \sa color(), colorCount(), setColorTable(), {QImage#Pixel Manipulation}{Pixel |
1535 | Manipulation} |
1536 | */ |
1537 | void QImage::setColor(int i, QRgb c) |
1538 | { |
1539 | if (!d) |
1540 | return; |
1541 | if (i < 0 || d->depth > 8 || i >= 1<<d->depth) { |
1542 | qWarning("QImage::setColor: Index out of bound %d" , i); |
1543 | return; |
1544 | } |
1545 | detach(); |
1546 | |
1547 | // In case detach() run out of memory |
1548 | if (!d) |
1549 | return; |
1550 | |
1551 | if (i >= d->colortable.size()) |
1552 | setColorCount(i+1); |
1553 | d->colortable[i] = c; |
1554 | d->has_alpha_clut |= (qAlpha(c) != 255); |
1555 | } |
1556 | |
1557 | /*! |
1558 | Returns a pointer to the pixel data at the scanline with index \a |
1559 | i. The first scanline is at index 0. |
1560 | |
1561 | The scanline data is as minimum 32-bit aligned. For 64-bit formats |
1562 | it follows the native alignment of 64-bit integers (64-bit for most |
1563 | platforms, but notably 32-bit on i386). |
1564 | |
1565 | For example, to remove the green component of each pixel in an image: |
1566 | |
1567 | \snippet code/src_gui_image_qimage.cpp scanLine |
1568 | |
1569 | \warning If you are accessing 32-bpp image data, cast the returned |
1570 | pointer to \c{QRgb*} (QRgb has a 32-bit size) and use it to |
1571 | read/write the pixel value. You cannot use the \c{uchar*} pointer |
1572 | directly, because the pixel format depends on the byte order on |
1573 | the underlying platform. Use qRed(), qGreen(), qBlue(), and |
1574 | qAlpha() to access the pixels. |
1575 | |
1576 | \sa bytesPerLine(), bits(), {QImage#Pixel Manipulation}{Pixel |
1577 | Manipulation}, constScanLine() |
1578 | */ |
1579 | uchar *QImage::scanLine(int i) |
1580 | { |
1581 | if (!d) |
1582 | return nullptr; |
1583 | |
1584 | detach(); |
1585 | |
1586 | // In case detach() ran out of memory |
1587 | if (!d) |
1588 | return nullptr; |
1589 | |
1590 | return d->data + i * d->bytes_per_line; |
1591 | } |
1592 | |
1593 | /*! |
1594 | \overload |
1595 | */ |
1596 | const uchar *QImage::scanLine(int i) const |
1597 | { |
1598 | if (!d) |
1599 | return nullptr; |
1600 | |
1601 | Q_ASSERT(i >= 0 && i < height()); |
1602 | return d->data + i * d->bytes_per_line; |
1603 | } |
1604 | |
1605 | |
1606 | /*! |
1607 | Returns a pointer to the pixel data at the scanline with index \a |
1608 | i. The first scanline is at index 0. |
1609 | |
1610 | The scanline data is as minimum 32-bit aligned. For 64-bit formats |
1611 | it follows the native alignment of 64-bit integers (64-bit for most |
1612 | platforms, but notably 32-bit on i386). |
1613 | |
1614 | Note that QImage uses \l{Implicit Data Sharing} {implicit data |
1615 | sharing}, but this function does \e not perform a deep copy of the |
1616 | shared pixel data, because the returned data is const. |
1617 | |
1618 | \sa scanLine(), constBits() |
1619 | \since 4.7 |
1620 | */ |
1621 | const uchar *QImage::constScanLine(int i) const |
1622 | { |
1623 | if (!d) |
1624 | return nullptr; |
1625 | |
1626 | Q_ASSERT(i >= 0 && i < height()); |
1627 | return d->data + i * d->bytes_per_line; |
1628 | } |
1629 | |
1630 | /*! |
1631 | Returns a pointer to the first pixel data. This is equivalent to |
1632 | scanLine(0). |
1633 | |
1634 | Note that QImage uses \l{Implicit Data Sharing} {implicit data |
1635 | sharing}. This function performs a deep copy of the shared pixel |
1636 | data, thus ensuring that this QImage is the only one using the |
1637 | current return value. |
1638 | |
1639 | \sa scanLine(), sizeInBytes(), constBits() |
1640 | */ |
1641 | uchar *QImage::bits() |
1642 | { |
1643 | if (!d) |
1644 | return nullptr; |
1645 | detach(); |
1646 | |
1647 | // In case detach ran out of memory... |
1648 | if (!d) |
1649 | return nullptr; |
1650 | |
1651 | return d->data; |
1652 | } |
1653 | |
1654 | /*! |
1655 | \overload |
1656 | |
1657 | Note that QImage uses \l{Implicit Data Sharing} {implicit data |
1658 | sharing}, but this function does \e not perform a deep copy of the |
1659 | shared pixel data, because the returned data is const. |
1660 | */ |
1661 | const uchar *QImage::bits() const |
1662 | { |
1663 | return d ? d->data : nullptr; |
1664 | } |
1665 | |
1666 | |
1667 | /*! |
1668 | Returns a pointer to the first pixel data. |
1669 | |
1670 | Note that QImage uses \l{Implicit Data Sharing} {implicit data |
1671 | sharing}, but this function does \e not perform a deep copy of the |
1672 | shared pixel data, because the returned data is const. |
1673 | |
1674 | \sa bits(), constScanLine() |
1675 | \since 4.7 |
1676 | */ |
1677 | const uchar *QImage::constBits() const |
1678 | { |
1679 | return d ? d->data : nullptr; |
1680 | } |
1681 | |
1682 | /*! |
1683 | \fn void QImage::fill(uint pixelValue) |
1684 | |
1685 | Fills the entire image with the given \a pixelValue. |
1686 | |
1687 | If the depth of this image is 1, only the lowest bit is used. If |
1688 | you say fill(0), fill(2), etc., the image is filled with 0s. If |
1689 | you say fill(1), fill(3), etc., the image is filled with 1s. If |
1690 | the depth is 8, the lowest 8 bits are used and if the depth is 16 |
1691 | the lowest 16 bits are used. |
1692 | |
1693 | If the image depth is higher than 32bit the result is undefined. |
1694 | |
1695 | \note There are no corresponding value getter, though QImage::pixelIndex() |
1696 | will return the same value for indexed formats, and QImage::pixel() for |
1697 | RGB32, ARGB32, and ARGB32PM formats. |
1698 | |
1699 | \sa depth(), {QImage#Image Transformations}{Image Transformations} |
1700 | */ |
1701 | |
1702 | void QImage::fill(uint pixel) |
1703 | { |
1704 | if (!d) |
1705 | return; |
1706 | |
1707 | detach(); |
1708 | |
1709 | // In case detach() ran out of memory |
1710 | if (!d) |
1711 | return; |
1712 | |
1713 | if (d->depth == 1 || d->depth == 8) { |
1714 | int w = d->width; |
1715 | if (d->depth == 1) { |
1716 | if (pixel & 1) |
1717 | pixel = 0xffffffff; |
1718 | else |
1719 | pixel = 0; |
1720 | w = (w + 7) / 8; |
1721 | } else { |
1722 | pixel &= 0xff; |
1723 | } |
1724 | qt_rectfill<quint8>(d->data, pixel, 0, 0, |
1725 | w, d->height, d->bytes_per_line); |
1726 | return; |
1727 | } else if (d->depth == 16) { |
1728 | if (d->format == Format_RGB444) |
1729 | pixel |= 0xf000; |
1730 | qt_rectfill<quint16>(reinterpret_cast<quint16*>(d->data), pixel, |
1731 | 0, 0, d->width, d->height, d->bytes_per_line); |
1732 | return; |
1733 | } else if (d->depth == 24) { |
1734 | if (d->format == Format_RGB666) |
1735 | pixel |= 0xfc0000; |
1736 | qt_rectfill<quint24>(reinterpret_cast<quint24*>(d->data), pixel, |
1737 | 0, 0, d->width, d->height, d->bytes_per_line); |
1738 | return; |
1739 | } else if (d->depth == 64) { |
1740 | qt_rectfill<quint64>(reinterpret_cast<quint64*>(d->data), QRgba64::fromArgb32(pixel), |
1741 | 0, 0, d->width, d->height, d->bytes_per_line); |
1742 | return; |
1743 | } |
1744 | |
1745 | if (d->format == Format_RGB32) |
1746 | pixel |= 0xff000000; |
1747 | if (d->format == Format_RGBX8888) |
1748 | #if Q_BYTE_ORDER == Q_LITTLE_ENDIAN |
1749 | pixel |= 0xff000000; |
1750 | #else |
1751 | pixel |= 0x000000ff; |
1752 | #endif |
1753 | if (d->format == Format_BGR30 || d->format == Format_RGB30) |
1754 | pixel |= 0xc0000000; |
1755 | |
1756 | qt_rectfill<uint>(reinterpret_cast<uint*>(d->data), pixel, |
1757 | 0, 0, d->width, d->height, d->bytes_per_line); |
1758 | } |
1759 | |
1760 | |
1761 | /*! |
1762 | \fn void QImage::fill(Qt::GlobalColor color) |
1763 | \overload |
1764 | \since 4.8 |
1765 | |
1766 | Fills the image with the given \a color, described as a standard global |
1767 | color. |
1768 | */ |
1769 | |
1770 | void QImage::fill(Qt::GlobalColor color) |
1771 | { |
1772 | fill(QColor(color)); |
1773 | } |
1774 | |
1775 | |
1776 | |
1777 | /*! |
1778 | \fn void QImage::fill(const QColor &color) |
1779 | |
1780 | \overload |
1781 | |
1782 | Fills the entire image with the given \a color. |
1783 | |
1784 | If the depth of the image is 1, the image will be filled with 1 if |
1785 | \a color equals Qt::color1; it will otherwise be filled with 0. |
1786 | |
1787 | If the depth of the image is 8, the image will be filled with the |
1788 | index corresponding the \a color in the color table if present; it |
1789 | will otherwise be filled with 0. |
1790 | |
1791 | \since 4.8 |
1792 | */ |
1793 | |
1794 | void QImage::fill(const QColor &color) |
1795 | { |
1796 | if (!d) |
1797 | return; |
1798 | detach(); |
1799 | |
1800 | // In case we run out of memory |
1801 | if (!d) |
1802 | return; |
1803 | |
1804 | QRgba64 opaque = color.rgba64(); |
1805 | opaque.setAlpha(65535); |
1806 | switch (d->format) { |
1807 | case QImage::Format_RGB32: |
1808 | case QImage::Format_ARGB32: |
1809 | fill(color.rgba()); |
1810 | break; |
1811 | case QImage::Format_ARGB32_Premultiplied: |
1812 | fill(qPremultiply(color.rgba())); |
1813 | break; |
1814 | case QImage::Format_RGBX8888: |
1815 | fill(ARGB2RGBA(color.rgba() | 0xff000000)); |
1816 | break; |
1817 | case QImage::Format_RGBA8888: |
1818 | fill(ARGB2RGBA(color.rgba())); |
1819 | break; |
1820 | case QImage::Format_RGBA8888_Premultiplied: |
1821 | fill(ARGB2RGBA(qPremultiply(color.rgba()))); |
1822 | break; |
1823 | case QImage::Format_BGR30: |
1824 | fill(qConvertRgb64ToRgb30<PixelOrderBGR>(opaque)); |
1825 | break; |
1826 | case QImage::Format_RGB30: |
1827 | fill(qConvertRgb64ToRgb30<PixelOrderRGB>(opaque)); |
1828 | break; |
1829 | case QImage::Format_RGB16: |
1830 | fill((uint) qConvertRgb32To16(color.rgba())); |
1831 | break; |
1832 | case QImage::Format_Indexed8: { |
1833 | uint pixel = 0; |
1834 | for (int i=0; i<d->colortable.size(); ++i) { |
1835 | if (color.rgba() == d->colortable.at(i)) { |
1836 | pixel = i; |
1837 | break; |
1838 | } |
1839 | } |
1840 | fill(pixel); |
1841 | break; |
1842 | } |
1843 | case QImage::Format_Mono: |
1844 | case QImage::Format_MonoLSB: |
1845 | if (color == Qt::color1) |
1846 | fill((uint) 1); |
1847 | else |
1848 | fill((uint) 0); |
1849 | break; |
1850 | case QImage::Format_RGBX64: |
1851 | qt_rectfill<quint64>(reinterpret_cast<quint64*>(d->data), opaque, |
1852 | 0, 0, d->width, d->height, d->bytes_per_line); |
1853 | break; |
1854 | case QImage::Format_RGBA64: |
1855 | qt_rectfill<quint64>(reinterpret_cast<quint64*>(d->data), color.rgba64(), |
1856 | 0, 0, d->width, d->height, d->bytes_per_line); |
1857 | break; |
1858 | case QImage::Format_RGBA64_Premultiplied: |
1859 | qt_rectfill<quint64>(reinterpret_cast<quint64 *>(d->data), color.rgba64().premultiplied(), |
1860 | 0, 0, d->width, d->height, d->bytes_per_line); |
1861 | break; |
1862 | default: { |
1863 | QPainter p(this); |
1864 | p.setCompositionMode(QPainter::CompositionMode_Source); |
1865 | p.fillRect(rect(), color); |
1866 | }} |
1867 | } |
1868 | |
1869 | |
1870 | |
1871 | /*! |
1872 | Inverts all pixel values in the image. |
1873 | |
1874 | The given invert \a mode only have a meaning when the image's |
1875 | depth is 32. The default \a mode is InvertRgb, which leaves the |
1876 | alpha channel unchanged. If the \a mode is InvertRgba, the alpha |
1877 | bits are also inverted. |
1878 | |
1879 | Inverting an 8-bit image means to replace all pixels using color |
1880 | index \e i with a pixel using color index 255 minus \e i. The same |
1881 | is the case for a 1-bit image. Note that the color table is \e not |
1882 | changed. |
1883 | |
1884 | If the image has a premultiplied alpha channel, the image is first |
1885 | converted to an unpremultiplied image format to be inverted and |
1886 | then converted back. |
1887 | |
1888 | \sa {QImage#Image Transformations}{Image Transformations} |
1889 | */ |
1890 | |
1891 | void QImage::invertPixels(InvertMode mode) |
1892 | { |
1893 | if (!d) |
1894 | return; |
1895 | |
1896 | detach(); |
1897 | |
1898 | // In case detach() ran out of memory |
1899 | if (!d) |
1900 | return; |
1901 | |
1902 | QImage::Format originalFormat = d->format; |
1903 | // Inverting premultiplied pixels would produce invalid image data. |
1904 | if (hasAlphaChannel() && qPixelLayouts[d->format].premultiplied) { |
1905 | if (depth() > 32) { |
1906 | if (!d->convertInPlace(QImage::Format_RGBA64, { })) |
1907 | *this = convertToFormat(QImage::Format_RGBA64); |
1908 | } else { |
1909 | if (!d->convertInPlace(QImage::Format_ARGB32, { })) |
1910 | *this = convertToFormat(QImage::Format_ARGB32); |
1911 | } |
1912 | } |
1913 | |
1914 | if (depth() < 32) { |
1915 | // This assumes no alpha-channel as the only formats with non-premultipled alpha are 32bit. |
1916 | qsizetype bpl = (qsizetype(d->width) * d->depth + 7) / 8; |
1917 | int pad = d->bytes_per_line - bpl; |
1918 | uchar *sl = d->data; |
1919 | for (int y=0; y<d->height; ++y) { |
1920 | for (qsizetype x=0; x<bpl; ++x) |
1921 | *sl++ ^= 0xff; |
1922 | sl += pad; |
1923 | } |
1924 | } |
1925 | else if (depth() == 64) { |
1926 | quint16 *p = (quint16*)d->data; |
1927 | quint16 *end = (quint16*)(d->data + d->nbytes); |
1928 | quint16 xorbits = 0xffff; |
1929 | while (p < end) { |
1930 | *p++ ^= xorbits; |
1931 | *p++ ^= xorbits; |
1932 | *p++ ^= xorbits; |
1933 | if (mode == InvertRgba) |
1934 | *p++ ^= xorbits; |
1935 | else |
1936 | p++; |
1937 | } |
1938 | } else { |
1939 | quint32 *p = (quint32*)d->data; |
1940 | quint32 *end = (quint32*)(d->data + d->nbytes); |
1941 | quint32 xorbits = 0xffffffff; |
1942 | switch (d->format) { |
1943 | case QImage::Format_RGBA8888: |
1944 | if (mode == InvertRgba) |
1945 | break; |
1946 | Q_FALLTHROUGH(); |
1947 | case QImage::Format_RGBX8888: |
1948 | #if Q_BYTE_ORDER == Q_BIG_ENDIAN |
1949 | xorbits = 0xffffff00; |
1950 | break; |
1951 | #else |
1952 | xorbits = 0x00ffffff; |
1953 | break; |
1954 | #endif |
1955 | case QImage::Format_ARGB32: |
1956 | if (mode == InvertRgba) |
1957 | break; |
1958 | Q_FALLTHROUGH(); |
1959 | case QImage::Format_RGB32: |
1960 | xorbits = 0x00ffffff; |
1961 | break; |
1962 | case QImage::Format_BGR30: |
1963 | case QImage::Format_RGB30: |
1964 | xorbits = 0x3fffffff; |
1965 | break; |
1966 | default: |
1967 | Q_UNREACHABLE(); |
1968 | xorbits = 0; |
1969 | break; |
1970 | } |
1971 | while (p < end) |
1972 | *p++ ^= xorbits; |
1973 | } |
1974 | |
1975 | if (originalFormat != d->format) { |
1976 | if (!d->convertInPlace(originalFormat, { })) |
1977 | *this = convertToFormat(originalFormat); |
1978 | } |
1979 | } |
1980 | |
1981 | // Windows defines these |
1982 | #if defined(write) |
1983 | # undef write |
1984 | #endif |
1985 | #if defined(close) |
1986 | # undef close |
1987 | #endif |
1988 | #if defined(read) |
1989 | # undef read |
1990 | #endif |
1991 | |
1992 | /*! |
1993 | \since 4.6 |
1994 | Resizes the color table to contain \a colorCount entries. |
1995 | |
1996 | If the color table is expanded, all the extra colors will be set to |
1997 | transparent (i.e qRgba(0, 0, 0, 0)). |
1998 | |
1999 | When the image is used, the color table must be large enough to |
2000 | have entries for all the pixel/index values present in the image, |
2001 | otherwise the results are undefined. |
2002 | |
2003 | \sa colorCount(), colorTable(), setColor(), {QImage#Image |
2004 | Transformations}{Image Transformations} |
2005 | */ |
2006 | |
2007 | void QImage::setColorCount(int colorCount) |
2008 | { |
2009 | if (!d) { |
2010 | qWarning("QImage::setColorCount: null image" ); |
2011 | return; |
2012 | } |
2013 | |
2014 | detach(); |
2015 | |
2016 | // In case detach() ran out of memory |
2017 | if (!d) |
2018 | return; |
2019 | |
2020 | if (colorCount == d->colortable.size()) |
2021 | return; |
2022 | if (colorCount <= 0) { // use no color table |
2023 | d->colortable.clear(); |
2024 | return; |
2025 | } |
2026 | int nc = d->colortable.size(); |
2027 | d->colortable.resize(colorCount); |
2028 | for (int i = nc; i < colorCount; ++i) |
2029 | d->colortable[i] = 0; |
2030 | } |
2031 | |
2032 | /*! |
2033 | Returns the format of the image. |
2034 | |
2035 | \sa {QImage#Image Formats}{Image Formats} |
2036 | */ |
2037 | QImage::Format QImage::format() const |
2038 | { |
2039 | return d ? d->format : Format_Invalid; |
2040 | } |
2041 | |
2042 | /*! |
2043 | \fn QImage QImage::convertToFormat(Format format, Qt::ImageConversionFlags flags) const & |
2044 | \fn QImage QImage::convertToFormat(Format format, Qt::ImageConversionFlags flags) && |
2045 | |
2046 | Returns a copy of the image in the given \a format. |
2047 | |
2048 | The specified image conversion \a flags control how the image data |
2049 | is handled during the conversion process. |
2050 | |
2051 | \sa convertTo(), {Image Formats} |
2052 | */ |
2053 | |
2054 | /*! |
2055 | \fn QImage QImage::convertedTo(Format format, Qt::ImageConversionFlags flags) const & |
2056 | \fn QImage QImage::convertedTo(Format format, Qt::ImageConversionFlags flags) && |
2057 | \since 6.0 |
2058 | |
2059 | Returns a copy of the image in the given \a format. |
2060 | |
2061 | The specified image conversion \a flags control how the image data |
2062 | is handled during the conversion process. |
2063 | |
2064 | \sa convertTo(), {Image Formats} |
2065 | */ |
2066 | |
2067 | /*! |
2068 | \internal |
2069 | */ |
2070 | QImage QImage::convertToFormat_helper(Format format, Qt::ImageConversionFlags flags) const |
2071 | { |
2072 | if (!d || d->format == format) |
2073 | return *this; |
2074 | |
2075 | if (d->format == Format_Invalid || format <= Format_Invalid || format >= NImageFormats) |
2076 | return QImage(); |
2077 | |
2078 | const QPixelLayout *destLayout = &qPixelLayouts[format]; |
2079 | Image_Converter converter = qimage_converter_map[d->format][format]; |
2080 | if (!converter && format > QImage::Format_Indexed8 && d->format > QImage::Format_Indexed8) { |
2081 | if (qt_highColorPrecision(d->format, !destLayout->hasAlphaChannel) |
2082 | && qt_highColorPrecision(format, !hasAlphaChannel())) { |
2083 | converter = convert_generic_over_rgb64; |
2084 | } else |
2085 | converter = convert_generic; |
2086 | } |
2087 | if (converter) { |
2088 | QImage image(d->width, d->height, format); |
2089 | |
2090 | QIMAGE_SANITYCHECK_MEMORY(image); |
2091 | |
2092 | image.d->offset = offset(); |
2093 | copyMetadata(image.d, d); |
2094 | |
2095 | converter(image.d, d, flags); |
2096 | return image; |
2097 | } |
2098 | |
2099 | // Convert indexed formats over ARGB32 or RGB32 to the final format. |
2100 | Q_ASSERT(format != QImage::Format_ARGB32 && format != QImage::Format_RGB32); |
2101 | Q_ASSERT(d->format != QImage::Format_ARGB32 && d->format != QImage::Format_RGB32); |
2102 | |
2103 | if (!hasAlphaChannel()) |
2104 | return convertToFormat(Format_RGB32, flags).convertToFormat(format, flags); |
2105 | |
2106 | return convertToFormat(Format_ARGB32, flags).convertToFormat(format, flags); |
2107 | } |
2108 | |
2109 | /*! |
2110 | \internal |
2111 | */ |
2112 | bool QImage::convertToFormat_inplace(Format format, Qt::ImageConversionFlags flags) |
2113 | { |
2114 | return d && d->convertInPlace(format, flags); |
2115 | } |
2116 | |
2117 | static inline int pixel_distance(QRgb p1, QRgb p2) { |
2118 | int r1 = qRed(p1); |
2119 | int g1 = qGreen(p1); |
2120 | int b1 = qBlue(p1); |
2121 | int a1 = qAlpha(p1); |
2122 | |
2123 | int r2 = qRed(p2); |
2124 | int g2 = qGreen(p2); |
2125 | int b2 = qBlue(p2); |
2126 | int a2 = qAlpha(p2); |
2127 | |
2128 | return abs(r1 - r2) + abs(g1 - g2) + abs(b1 - b2) + abs(a1 - a2); |
2129 | } |
2130 | |
2131 | static inline int closestMatch(QRgb pixel, const QList<QRgb> &clut) { |
2132 | int idx = 0; |
2133 | int current_distance = INT_MAX; |
2134 | for (int i=0; i<clut.size(); ++i) { |
2135 | int dist = pixel_distance(pixel, clut.at(i)); |
2136 | if (dist < current_distance) { |
2137 | current_distance = dist; |
2138 | idx = i; |
2139 | } |
2140 | } |
2141 | return idx; |
2142 | } |
2143 | |
2144 | static QImage convertWithPalette(const QImage &src, QImage::Format format, |
2145 | const QList<QRgb> &clut) { |
2146 | QImage dest(src.size(), format); |
2147 | dest.setColorTable(clut); |
2148 | |
2149 | QImageData::get(dest)->text = QImageData::get(src)->text; |
2150 | |
2151 | int h = src.height(); |
2152 | int w = src.width(); |
2153 | |
2154 | QHash<QRgb, int> cache; |
2155 | |
2156 | if (format == QImage::Format_Indexed8) { |
2157 | for (int y=0; y<h; ++y) { |
2158 | const QRgb *src_pixels = (const QRgb *) src.scanLine(y); |
2159 | uchar *dest_pixels = (uchar *) dest.scanLine(y); |
2160 | for (int x=0; x<w; ++x) { |
2161 | int src_pixel = src_pixels[x]; |
2162 | int value = cache.value(src_pixel, -1); |
2163 | if (value == -1) { |
2164 | value = closestMatch(src_pixel, clut); |
2165 | cache.insert(src_pixel, value); |
2166 | } |
2167 | dest_pixels[x] = (uchar) value; |
2168 | } |
2169 | } |
2170 | } else { |
2171 | QList<QRgb> table = clut; |
2172 | table.resize(2); |
2173 | for (int y=0; y<h; ++y) { |
2174 | const QRgb *src_pixels = (const QRgb *) src.scanLine(y); |
2175 | for (int x=0; x<w; ++x) { |
2176 | int src_pixel = src_pixels[x]; |
2177 | int value = cache.value(src_pixel, -1); |
2178 | if (value == -1) { |
2179 | value = closestMatch(src_pixel, table); |
2180 | cache.insert(src_pixel, value); |
2181 | } |
2182 | dest.setPixel(x, y, value); |
2183 | } |
2184 | } |
2185 | } |
2186 | |
2187 | return dest; |
2188 | } |
2189 | |
2190 | /*! |
2191 | \overload |
2192 | |
2193 | Returns a copy of the image converted to the given \a format, |
2194 | using the specified \a colorTable. |
2195 | |
2196 | Conversion from RGB formats to indexed formats is a slow operation |
2197 | and will use a straightforward nearest color approach, with no |
2198 | dithering. |
2199 | */ |
2200 | QImage QImage::convertToFormat(Format format, const QList<QRgb> &colorTable, Qt::ImageConversionFlags flags) const |
2201 | { |
2202 | if (!d || d->format == format) |
2203 | return *this; |
2204 | |
2205 | if (format <= QImage::Format_Invalid || format >= QImage::NImageFormats) |
2206 | return QImage(); |
2207 | if (format <= QImage::Format_Indexed8) |
2208 | return convertWithPalette(convertToFormat(QImage::Format_ARGB32, flags), format, colorTable); |
2209 | |
2210 | return convertToFormat(format, flags); |
2211 | } |
2212 | |
2213 | /*! |
2214 | \since 5.9 |
2215 | |
2216 | Changes the format of the image to \a format without changing the |
2217 | data. Only works between formats of the same depth. |
2218 | |
2219 | Returns \c true if successful. |
2220 | |
2221 | This function can be used to change images with alpha-channels to |
2222 | their corresponding opaque formats if the data is known to be opaque-only, |
2223 | or to change the format of a given image buffer before overwriting |
2224 | it with new data. |
2225 | |
2226 | \warning The function does not check if the image data is valid in the |
2227 | new format and will still return \c true if the depths are compatible. |
2228 | Operations on an image with invalid data are undefined. |
2229 | |
2230 | \warning If the image is not detached, this will cause the data to be |
2231 | copied. |
2232 | |
2233 | \sa hasAlphaChannel(), convertToFormat() |
2234 | */ |
2235 | |
2236 | bool QImage::reinterpretAsFormat(Format format) |
2237 | { |
2238 | if (!d) |
2239 | return false; |
2240 | if (d->format == format) |
2241 | return true; |
2242 | if (qt_depthForFormat(format) != qt_depthForFormat(d->format)) |
2243 | return false; |
2244 | if (!isDetached()) { // Detach only if shared, not for read-only data. |
2245 | QImageData *oldD = d; |
2246 | detach(); |
2247 | // In case detach() ran out of memory |
2248 | if (!d) { |
2249 | d = oldD; |
2250 | return false; |
2251 | } |
2252 | } |
2253 | |
2254 | d->format = format; |
2255 | return true; |
2256 | } |
2257 | |
2258 | /*! |
2259 | \since 5.13 |
2260 | |
2261 | Converts the image to the given \a format in place, detaching if necessary. |
2262 | |
2263 | The specified image conversion \a flags control how the image data |
2264 | is handled during the conversion process. |
2265 | |
2266 | \sa convertedTo() |
2267 | */ |
2268 | |
2269 | void QImage::convertTo(Format format, Qt::ImageConversionFlags flags) |
2270 | { |
2271 | if (!d || format <= QImage::Format_Invalid || format >= QImage::NImageFormats) |
2272 | return; |
2273 | |
2274 | if (d->format == format) |
2275 | return; |
2276 | |
2277 | detach(); |
2278 | if (convertToFormat_inplace(format, flags)) |
2279 | return; |
2280 | |
2281 | *this = convertToFormat_helper(format, flags); |
2282 | } |
2283 | |
2284 | /*! |
2285 | \fn bool QImage::valid(const QPoint &pos) const |
2286 | |
2287 | Returns \c true if \a pos is a valid coordinate pair within the |
2288 | image; otherwise returns \c false. |
2289 | |
2290 | \sa rect(), QRect::contains() |
2291 | */ |
2292 | |
2293 | /*! |
2294 | \overload |
2295 | |
2296 | Returns \c true if QPoint(\a x, \a y) is a valid coordinate pair |
2297 | within the image; otherwise returns \c false. |
2298 | */ |
2299 | bool QImage::valid(int x, int y) const |
2300 | { |
2301 | return d |
2302 | && x >= 0 && x < d->width |
2303 | && y >= 0 && y < d->height; |
2304 | } |
2305 | |
2306 | /*! |
2307 | \fn int QImage::pixelIndex(const QPoint &position) const |
2308 | |
2309 | Returns the pixel index at the given \a position. |
2310 | |
2311 | If \a position is not valid, or if the image is not a paletted |
2312 | image (depth() > 8), the results are undefined. |
2313 | |
2314 | \sa valid(), depth(), {QImage#Pixel Manipulation}{Pixel Manipulation} |
2315 | */ |
2316 | |
2317 | /*! |
2318 | \overload |
2319 | |
2320 | Returns the pixel index at (\a x, \a y). |
2321 | */ |
2322 | int QImage::pixelIndex(int x, int y) const |
2323 | { |
2324 | if (!d || x < 0 || x >= d->width || y < 0 || y >= height()) { |
2325 | qWarning("QImage::pixelIndex: coordinate (%d,%d) out of range" , x, y); |
2326 | return -12345; |
2327 | } |
2328 | const uchar * s = scanLine(y); |
2329 | switch(d->format) { |
2330 | case Format_Mono: |
2331 | return (*(s + (x >> 3)) >> (7- (x & 7))) & 1; |
2332 | case Format_MonoLSB: |
2333 | return (*(s + (x >> 3)) >> (x & 7)) & 1; |
2334 | case Format_Indexed8: |
2335 | return (int)s[x]; |
2336 | default: |
2337 | qWarning("QImage::pixelIndex: Not applicable for %d-bpp images (no palette)" , d->depth); |
2338 | } |
2339 | return 0; |
2340 | } |
2341 | |
2342 | |
2343 | /*! |
2344 | \fn QRgb QImage::pixel(const QPoint &position) const |
2345 | |
2346 | Returns the color of the pixel at the given \a position. |
2347 | |
2348 | If the \a position is not valid, the results are undefined. |
2349 | |
2350 | \warning This function is expensive when used for massive pixel |
2351 | manipulations. Use constBits() or constScanLine() when many |
2352 | pixels needs to be read. |
2353 | |
2354 | \sa setPixel(), valid(), constBits(), constScanLine(), {QImage#Pixel Manipulation}{Pixel |
2355 | Manipulation} |
2356 | */ |
2357 | |
2358 | /*! |
2359 | \overload |
2360 | |
2361 | Returns the color of the pixel at coordinates (\a x, \a y). |
2362 | */ |
2363 | QRgb QImage::pixel(int x, int y) const |
2364 | { |
2365 | if (!d || x < 0 || x >= d->width || y < 0 || y >= d->height) { |
2366 | qWarning("QImage::pixel: coordinate (%d,%d) out of range" , x, y); |
2367 | return 12345; |
2368 | } |
2369 | |
2370 | const uchar *s = d->data + y * d->bytes_per_line; |
2371 | |
2372 | int index = -1; |
2373 | switch (d->format) { |
2374 | case Format_Mono: |
2375 | index = (*(s + (x >> 3)) >> (~x & 7)) & 1; |
2376 | break; |
2377 | case Format_MonoLSB: |
2378 | index = (*(s + (x >> 3)) >> (x & 7)) & 1; |
2379 | break; |
2380 | case Format_Indexed8: |
2381 | index = s[x]; |
2382 | break; |
2383 | default: |
2384 | break; |
2385 | } |
2386 | if (index >= 0) { // Indexed format |
2387 | if (index >= d->colortable.size()) { |
2388 | qWarning("QImage::pixel: color table index %d out of range." , index); |
2389 | return 0; |
2390 | } |
2391 | return d->colortable.at(index); |
2392 | } |
2393 | |
2394 | switch (d->format) { |
2395 | case Format_RGB32: |
2396 | return 0xff000000 | reinterpret_cast<const QRgb *>(s)[x]; |
2397 | case Format_ARGB32: // Keep old behaviour. |
2398 | case Format_ARGB32_Premultiplied: |
2399 | return reinterpret_cast<const QRgb *>(s)[x]; |
2400 | case Format_RGBX8888: |
2401 | case Format_RGBA8888: // Match ARGB32 behavior. |
2402 | case Format_RGBA8888_Premultiplied: |
2403 | return RGBA2ARGB(reinterpret_cast<const quint32 *>(s)[x]); |
2404 | case Format_BGR30: |
2405 | case Format_A2BGR30_Premultiplied: |
2406 | return qConvertA2rgb30ToArgb32<PixelOrderBGR>(reinterpret_cast<const quint32 *>(s)[x]); |
2407 | case Format_RGB30: |
2408 | case Format_A2RGB30_Premultiplied: |
2409 | return qConvertA2rgb30ToArgb32<PixelOrderRGB>(reinterpret_cast<const quint32 *>(s)[x]); |
2410 | case Format_RGB16: |
2411 | return qConvertRgb16To32(reinterpret_cast<const quint16 *>(s)[x]); |
2412 | case Format_RGBX64: |
2413 | case Format_RGBA64: // Match ARGB32 behavior. |
2414 | case Format_RGBA64_Premultiplied: |
2415 | return reinterpret_cast<const QRgba64 *>(s)[x].toArgb32(); |
2416 | default: |
2417 | break; |
2418 | } |
2419 | const QPixelLayout *layout = &qPixelLayouts[d->format]; |
2420 | uint result; |
2421 | return *layout->fetchToARGB32PM(&result, s, x, 1, nullptr, nullptr); |
2422 | } |
2423 | |
2424 | /*! |
2425 | \fn void QImage::setPixel(const QPoint &position, uint index_or_rgb) |
2426 | |
2427 | Sets the pixel index or color at the given \a position to \a |
2428 | index_or_rgb. |
2429 | |
2430 | If the image's format is either monochrome or paletted, the given \a |
2431 | index_or_rgb value must be an index in the image's color table, |
2432 | otherwise the parameter must be a QRgb value. |
2433 | |
2434 | If \a position is not a valid coordinate pair in the image, or if |
2435 | \a index_or_rgb >= colorCount() in the case of monochrome and |
2436 | paletted images, the result is undefined. |
2437 | |
2438 | \warning This function is expensive due to the call of the internal |
2439 | \c{detach()} function called within; if performance is a concern, we |
2440 | recommend the use of scanLine() or bits() to access pixel data directly. |
2441 | |
2442 | \sa pixel(), {QImage#Pixel Manipulation}{Pixel Manipulation} |
2443 | */ |
2444 | |
2445 | /*! |
2446 | \overload |
2447 | |
2448 | Sets the pixel index or color at (\a x, \a y) to \a index_or_rgb. |
2449 | */ |
2450 | void QImage::setPixel(int x, int y, uint index_or_rgb) |
2451 | { |
2452 | if (!d || x < 0 || x >= width() || y < 0 || y >= height()) { |
2453 | qWarning("QImage::setPixel: coordinate (%d,%d) out of range" , x, y); |
2454 | return; |
2455 | } |
2456 | // detach is called from within scanLine |
2457 | uchar * s = scanLine(y); |
2458 | switch(d->format) { |
2459 | case Format_Mono: |
2460 | case Format_MonoLSB: |
2461 | if (index_or_rgb > 1) { |
2462 | qWarning("QImage::setPixel: Index %d out of range" , index_or_rgb); |
2463 | } else if (format() == Format_MonoLSB) { |
2464 | if (index_or_rgb==0) |
2465 | *(s + (x >> 3)) &= ~(1 << (x & 7)); |
2466 | else |
2467 | *(s + (x >> 3)) |= (1 << (x & 7)); |
2468 | } else { |
2469 | if (index_or_rgb==0) |
2470 | *(s + (x >> 3)) &= ~(1 << (7-(x & 7))); |
2471 | else |
2472 | *(s + (x >> 3)) |= (1 << (7-(x & 7))); |
2473 | } |
2474 | return; |
2475 | case Format_Indexed8: |
2476 | if (index_or_rgb >= (uint)d->colortable.size()) { |
2477 | qWarning("QImage::setPixel: Index %d out of range" , index_or_rgb); |
2478 | return; |
2479 | } |
2480 | s[x] = index_or_rgb; |
2481 | return; |
2482 | case Format_RGB32: |
2483 | //make sure alpha is 255, we depend on it in qdrawhelper for cases |
2484 | // when image is set as a texture pattern on a qbrush |
2485 | ((uint *)s)[x] = 0xff000000 | index_or_rgb; |
2486 | return; |
2487 | case Format_ARGB32: |
2488 | case Format_ARGB32_Premultiplied: |
2489 | ((uint *)s)[x] = index_or_rgb; |
2490 | return; |
2491 | case Format_RGB16: |
2492 | ((quint16 *)s)[x] = qConvertRgb32To16(index_or_rgb); |
2493 | return; |
2494 | case Format_RGBX8888: |
2495 | ((uint *)s)[x] = ARGB2RGBA(0xff000000 | index_or_rgb); |
2496 | return; |
2497 | case Format_RGBA8888: |
2498 | case Format_RGBA8888_Premultiplied: |
2499 | ((uint *)s)[x] = ARGB2RGBA(index_or_rgb); |
2500 | return; |
2501 | case Format_BGR30: |
2502 | ((uint *)s)[x] = qConvertRgb32ToRgb30<PixelOrderBGR>(index_or_rgb); |
2503 | return; |
2504 | case Format_A2BGR30_Premultiplied: |
2505 | ((uint *)s)[x] = qConvertArgb32ToA2rgb30<PixelOrderBGR>(index_or_rgb); |
2506 | return; |
2507 | case Format_RGB30: |
2508 | ((uint *)s)[x] = qConvertRgb32ToRgb30<PixelOrderRGB>(index_or_rgb); |
2509 | return; |
2510 | case Format_A2RGB30_Premultiplied: |
2511 | ((uint *)s)[x] = qConvertArgb32ToA2rgb30<PixelOrderRGB>(index_or_rgb); |
2512 | return; |
2513 | case Format_RGBA64: |
2514 | case Format_RGBA64_Premultiplied: |
2515 | ((QRgba64 *)s)[x] = QRgba64::fromArgb32(index_or_rgb); |
2516 | return; |
2517 | case Format_Invalid: |
2518 | case NImageFormats: |
2519 | Q_ASSERT(false); |
2520 | return; |
2521 | default: |
2522 | break; |
2523 | } |
2524 | |
2525 | const QPixelLayout *layout = &qPixelLayouts[d->format]; |
2526 | if (!hasAlphaChannel()) |
2527 | layout->storeFromRGB32(s, &index_or_rgb, x, 1, nullptr, nullptr); |
2528 | else |
2529 | layout->storeFromARGB32PM(s, &index_or_rgb, x, 1, nullptr, nullptr); |
2530 | } |
2531 | |
2532 | /*! |
2533 | \fn QColor QImage::pixelColor(const QPoint &position) const |
2534 | \since 5.6 |
2535 | |
2536 | Returns the color of the pixel at the given \a position as a QColor. |
2537 | |
2538 | If the \a position is not valid, an invalid QColor is returned. |
2539 | |
2540 | \warning This function is expensive when used for massive pixel |
2541 | manipulations. Use constBits() or constScanLine() when many |
2542 | pixels needs to be read. |
2543 | |
2544 | \sa setPixel(), valid(), constBits(), constScanLine(), {QImage#Pixel Manipulation}{Pixel |
2545 | Manipulation} |
2546 | */ |
2547 | |
2548 | /*! |
2549 | \overload |
2550 | \since 5.6 |
2551 | |
2552 | Returns the color of the pixel at coordinates (\a x, \a y) as a QColor. |
2553 | */ |
2554 | QColor QImage::pixelColor(int x, int y) const |
2555 | { |
2556 | if (!d || x < 0 || x >= d->width || y < 0 || y >= height()) { |
2557 | qWarning("QImage::pixelColor: coordinate (%d,%d) out of range" , x, y); |
2558 | return QColor(); |
2559 | } |
2560 | |
2561 | QRgba64 c; |
2562 | const uchar * s = constScanLine(y); |
2563 | switch (d->format) { |
2564 | case Format_BGR30: |
2565 | case Format_A2BGR30_Premultiplied: |
2566 | c = qConvertA2rgb30ToRgb64<PixelOrderBGR>(reinterpret_cast<const quint32 *>(s)[x]); |
2567 | break; |
2568 | case Format_RGB30: |
2569 | case Format_A2RGB30_Premultiplied: |
2570 | c = qConvertA2rgb30ToRgb64<PixelOrderRGB>(reinterpret_cast<const quint32 *>(s)[x]); |
2571 | break; |
2572 | case Format_RGBX64: |
2573 | case Format_RGBA64: |
2574 | case Format_RGBA64_Premultiplied: |
2575 | c = reinterpret_cast<const QRgba64 *>(s)[x]; |
2576 | break; |
2577 | case Format_Grayscale16: { |
2578 | quint16 v = reinterpret_cast<const quint16 *>(s)[x]; |
2579 | return QColor(qRgba64(v, v, v, 0xffff)); |
2580 | } |
2581 | default: |
2582 | c = QRgba64::fromArgb32(pixel(x, y)); |
2583 | break; |
2584 | } |
2585 | // QColor is always unpremultiplied |
2586 | if (hasAlphaChannel() && qPixelLayouts[d->format].premultiplied) |
2587 | c = c.unpremultiplied(); |
2588 | return QColor(c); |
2589 | } |
2590 | |
2591 | /*! |
2592 | \fn void QImage::setPixelColor(const QPoint &position, const QColor &color) |
2593 | \since 5.6 |
2594 | |
2595 | Sets the color at the given \a position to \a color. |
2596 | |
2597 | If \a position is not a valid coordinate pair in the image, or |
2598 | the image's format is either monochrome or paletted, the result is undefined. |
2599 | |
2600 | \warning This function is expensive due to the call of the internal |
2601 | \c{detach()} function called within; if performance is a concern, we |
2602 | recommend the use of scanLine() or bits() to access pixel data directly. |
2603 | |
2604 | \sa pixel(), bits(), scanLine(), {QImage#Pixel Manipulation}{Pixel Manipulation} |
2605 | */ |
2606 | |
2607 | /*! |
2608 | \overload |
2609 | \since 5.6 |
2610 | |
2611 | Sets the pixel color at (\a x, \a y) to \a color. |
2612 | */ |
2613 | void QImage::setPixelColor(int x, int y, const QColor &color) |
2614 | { |
2615 | if (!d || x < 0 || x >= width() || y < 0 || y >= height()) { |
2616 | qWarning("QImage::setPixelColor: coordinate (%d,%d) out of range" , x, y); |
2617 | return; |
2618 | } |
2619 | |
2620 | if (!color.isValid()) { |
2621 | qWarning("QImage::setPixelColor: color is invalid" ); |
2622 | return; |
2623 | } |
2624 | |
2625 | // QColor is always unpremultiplied |
2626 | QRgba64 c = color.rgba64(); |
2627 | if (!hasAlphaChannel()) |
2628 | c.setAlpha(65535); |
2629 | else if (qPixelLayouts[d->format].premultiplied) |
2630 | c = c.premultiplied(); |
2631 | // detach is called from within scanLine |
2632 | uchar * s = scanLine(y); |
2633 | switch (d->format) { |
2634 | case Format_Mono: |
2635 | case Format_MonoLSB: |
2636 | case Format_Indexed8: |
2637 | qWarning("QImage::setPixelColor: called on monochrome or indexed format" ); |
2638 | return; |
2639 | case Format_BGR30: |
2640 | ((uint *)s)[x] = qConvertRgb64ToRgb30<PixelOrderBGR>(c) | 0xc0000000; |
2641 | return; |
2642 | case Format_A2BGR30_Premultiplied: |
2643 | ((uint *)s)[x] = qConvertRgb64ToRgb30<PixelOrderBGR>(c); |
2644 | return; |
2645 | case Format_RGB30: |
2646 | ((uint *)s)[x] = qConvertRgb64ToRgb30<PixelOrderRGB>(c) | 0xc0000000; |
2647 | return; |
2648 | case Format_A2RGB30_Premultiplied: |
2649 | ((uint *)s)[x] = qConvertRgb64ToRgb30<PixelOrderRGB>(c); |
2650 | return; |
2651 | case Format_RGBX64: |
2652 | case Format_RGBA64: |
2653 | case Format_RGBA64_Premultiplied: |
2654 | ((QRgba64 *)s)[x] = c; |
2655 | return; |
2656 | default: |
2657 | setPixel(x, y, c.toArgb32()); |
2658 | return; |
2659 | } |
2660 | } |
2661 | |
2662 | /*! |
2663 | Returns \c true if all the colors in the image are shades of gray |
2664 | (i.e. their red, green and blue components are equal); otherwise |
2665 | false. |
2666 | |
2667 | Note that this function is slow for images without color table. |
2668 | |
2669 | \sa isGrayscale() |
2670 | */ |
2671 | bool QImage::allGray() const |
2672 | { |
2673 | if (!d) |
2674 | return true; |
2675 | |
2676 | switch (d->format) { |
2677 | case Format_Mono: |
2678 | case Format_MonoLSB: |
2679 | case Format_Indexed8: |
2680 | for (int i = 0; i < d->colortable.size(); ++i) { |
2681 | if (!qIsGray(d->colortable.at(i))) |
2682 | return false; |
2683 | } |
2684 | return true; |
2685 | case Format_Alpha8: |
2686 | return false; |
2687 | case Format_Grayscale8: |
2688 | case Format_Grayscale16: |
2689 | return true; |
2690 | case Format_RGB32: |
2691 | case Format_ARGB32: |
2692 | case Format_ARGB32_Premultiplied: |
2693 | #if Q_BYTE_ORDER == Q_LITTLE_ENDIAN |
2694 | case Format_RGBX8888: |
2695 | case Format_RGBA8888: |
2696 | case Format_RGBA8888_Premultiplied: |
2697 | #endif |
2698 | for (int j = 0; j < d->height; ++j) { |
2699 | const QRgb *b = (const QRgb *)constScanLine(j); |
2700 | for (int i = 0; i < d->width; ++i) { |
2701 | if (!qIsGray(b[i])) |
2702 | return false; |
2703 | } |
2704 | } |
2705 | return true; |
2706 | case Format_RGB16: |
2707 | for (int j = 0; j < d->height; ++j) { |
2708 | const quint16 *b = (const quint16 *)constScanLine(j); |
2709 | for (int i = 0; i < d->width; ++i) { |
2710 | if (!qIsGray(qConvertRgb16To32(b[i]))) |
2711 | return false; |
2712 | } |
2713 | } |
2714 | return true; |
2715 | default: |
2716 | break; |
2717 | } |
2718 | |
2719 | uint buffer[BufferSize]; |
2720 | const QPixelLayout *layout = &qPixelLayouts[d->format]; |
2721 | const auto fetch = layout->fetchToARGB32PM; |
2722 | for (int j = 0; j < d->height; ++j) { |
2723 | const uchar *b = constScanLine(j); |
2724 | int x = 0; |
2725 | while (x < d->width) { |
2726 | int l = qMin(d->width - x, BufferSize); |
2727 | const uint *ptr = fetch(buffer, b, x, l, nullptr, nullptr); |
2728 | for (int i = 0; i < l; ++i) { |
2729 | if (!qIsGray(ptr[i])) |
2730 | return false; |
2731 | } |
2732 | x += l; |
2733 | } |
2734 | } |
2735 | return true; |
2736 | } |
2737 | |
2738 | /*! |
2739 | For 32-bit images, this function is equivalent to allGray(). |
2740 | |
2741 | For color indexed images, this function returns \c true if |
2742 | color(i) is QRgb(i, i, i) for all indexes of the color table; |
2743 | otherwise returns \c false. |
2744 | |
2745 | \sa allGray(), {QImage#Image Formats}{Image Formats} |
2746 | */ |
2747 | bool QImage::isGrayscale() const |
2748 | { |
2749 | if (!d) |
2750 | return false; |
2751 | |
2752 | if (d->format == QImage::Format_Alpha8) |
2753 | return false; |
2754 | |
2755 | if (d->format == QImage::Format_Grayscale8 || d->format == QImage::Format_Grayscale16) |
2756 | return true; |
2757 | |
2758 | switch (depth()) { |
2759 | case 32: |
2760 | case 24: |
2761 | case 16: |
2762 | return allGray(); |
2763 | case 8: { |
2764 | Q_ASSERT(d->format == QImage::Format_Indexed8); |
2765 | for (int i = 0; i < colorCount(); i++) |
2766 | if (d->colortable.at(i) != qRgb(i,i,i)) |
2767 | return false; |
2768 | return true; |
2769 | } |
2770 | } |
2771 | return false; |
2772 | } |
2773 | |
2774 | /*! |
2775 | \fn QImage QImage::scaled(int width, int height, Qt::AspectRatioMode aspectRatioMode, |
2776 | Qt::TransformationMode transformMode) const |
2777 | \overload |
2778 | |
2779 | Returns a copy of the image scaled to a rectangle with the given |
2780 | \a width and \a height according to the given \a aspectRatioMode |
2781 | and \a transformMode. |
2782 | |
2783 | If either the \a width or the \a height is zero or negative, this |
2784 | function returns a null image. |
2785 | */ |
2786 | |
2787 | /*! |
2788 | \fn QImage QImage::scaled(const QSize &size, Qt::AspectRatioMode aspectRatioMode, |
2789 | Qt::TransformationMode transformMode) const |
2790 | |
2791 | Returns a copy of the image scaled to a rectangle defined by the |
2792 | given \a size according to the given \a aspectRatioMode and \a |
2793 | transformMode. |
2794 | |
2795 | \image qimage-scaling.png |
2796 | |
2797 | \list |
2798 | \li If \a aspectRatioMode is Qt::IgnoreAspectRatio, the image |
2799 | is scaled to \a size. |
2800 | \li If \a aspectRatioMode is Qt::KeepAspectRatio, the image is |
2801 | scaled to a rectangle as large as possible inside \a size, preserving the aspect ratio. |
2802 | \li If \a aspectRatioMode is Qt::KeepAspectRatioByExpanding, |
2803 | the image is scaled to a rectangle as small as possible |
2804 | outside \a size, preserving the aspect ratio. |
2805 | \endlist |
2806 | |
2807 | If the given \a size is empty, this function returns a null image. |
2808 | |
2809 | \sa isNull(), {QImage#Image Transformations}{Image |
2810 | Transformations} |
2811 | */ |
2812 | QImage QImage::scaled(const QSize& s, Qt::AspectRatioMode aspectMode, Qt::TransformationMode mode) const |
2813 | { |
2814 | if (!d) { |
2815 | qWarning("QImage::scaled: Image is a null image" ); |
2816 | return QImage(); |
2817 | } |
2818 | if (s.isEmpty()) |
2819 | return QImage(); |
2820 | |
2821 | QSize newSize = size(); |
2822 | newSize.scale(s, aspectMode); |
2823 | newSize.rwidth() = qMax(newSize.width(), 1); |
2824 | newSize.rheight() = qMax(newSize.height(), 1); |
2825 | if (newSize == size()) |
2826 | return *this; |
2827 | |
2828 | Q_TRACE_SCOPE(QImage_scaled, s, aspectMode, mode); |
2829 | |
2830 | QTransform wm = QTransform::fromScale((qreal)newSize.width() / width(), (qreal)newSize.height() / height()); |
2831 | QImage img = transformed(wm, mode); |
2832 | return img; |
2833 | } |
2834 | |
2835 | /*! |
2836 | \fn QImage QImage::scaledToWidth(int width, Qt::TransformationMode mode) const |
2837 | |
2838 | Returns a scaled copy of the image. The returned image is scaled |
2839 | to the given \a width using the specified transformation \a |
2840 | mode. |
2841 | |
2842 | This function automatically calculates the height of the image so |
2843 | that its aspect ratio is preserved. |
2844 | |
2845 | If the given \a width is 0 or negative, a null image is returned. |
2846 | |
2847 | \sa {QImage#Image Transformations}{Image Transformations} |
2848 | */ |
2849 | QImage QImage::scaledToWidth(int w, Qt::TransformationMode mode) const |
2850 | { |
2851 | if (!d) { |
2852 | qWarning("QImage::scaleWidth: Image is a null image" ); |
2853 | return QImage(); |
2854 | } |
2855 | if (w <= 0) |
2856 | return QImage(); |
2857 | |
2858 | Q_TRACE_SCOPE(QImage_scaledToWidth, w, mode); |
2859 | |
2860 | qreal factor = (qreal) w / width(); |
2861 | QTransform wm = QTransform::fromScale(factor, factor); |
2862 | return transformed(wm, mode); |
2863 | } |
2864 | |
2865 | /*! |
2866 | \fn QImage QImage::scaledToHeight(int height, Qt::TransformationMode mode) const |
2867 | |
2868 | Returns a scaled copy of the image. The returned image is scaled |
2869 | to the given \a height using the specified transformation \a |
2870 | mode. |
2871 | |
2872 | This function automatically calculates the width of the image so that |
2873 | the ratio of the image is preserved. |
2874 | |
2875 | If the given \a height is 0 or negative, a null image is returned. |
2876 | |
2877 | \sa {QImage#Image Transformations}{Image Transformations} |
2878 | */ |
2879 | QImage QImage::scaledToHeight(int h, Qt::TransformationMode mode) const |
2880 | { |
2881 | if (!d) { |
2882 | qWarning("QImage::scaleHeight: Image is a null image" ); |
2883 | return QImage(); |
2884 | } |
2885 | if (h <= 0) |
2886 | return QImage(); |
2887 | |
2888 | Q_TRACE_SCOPE(QImage_scaledToHeight, h, mode); |
2889 | |
2890 | qreal factor = (qreal) h / height(); |
2891 | QTransform wm = QTransform::fromScale(factor, factor); |
2892 | return transformed(wm, mode); |
2893 | } |
2894 | |
2895 | /*! |
2896 | Builds and returns a 1-bpp mask from the alpha buffer in this |
2897 | image. Returns a null image if the image's format is |
2898 | QImage::Format_RGB32. |
2899 | |
2900 | The \a flags argument is a bitwise-OR of the |
2901 | Qt::ImageConversionFlags, and controls the conversion |
2902 | process. Passing 0 for flags sets all the default options. |
2903 | |
2904 | The returned image has little-endian bit order (i.e. the image's |
2905 | format is QImage::Format_MonoLSB), which you can convert to |
2906 | big-endian (QImage::Format_Mono) using the convertToFormat() |
2907 | function. |
2908 | |
2909 | \sa createHeuristicMask(), {QImage#Image Transformations}{Image |
2910 | Transformations} |
2911 | */ |
2912 | QImage QImage::createAlphaMask(Qt::ImageConversionFlags flags) const |
2913 | { |
2914 | if (!d || d->format == QImage::Format_RGB32) |
2915 | return QImage(); |
2916 | |
2917 | if (d->depth == 1) { |
2918 | // A monochrome pixmap, with alpha channels on those two colors. |
2919 | // Pretty unlikely, so use less efficient solution. |
2920 | return convertToFormat(Format_Indexed8, flags).createAlphaMask(flags); |
2921 | } |
2922 | |
2923 | QImage mask(d->width, d->height, Format_MonoLSB); |
2924 | if (!mask.isNull()) { |
2925 | dither_to_Mono(mask.d, d, flags, true); |
2926 | copyPhysicalMetadata(mask.d, d); |
2927 | } |
2928 | return mask; |
2929 | } |
2930 | |
2931 | #ifndef QT_NO_IMAGE_HEURISTIC_MASK |
2932 | /*! |
2933 | Creates and returns a 1-bpp heuristic mask for this image. |
2934 | |
2935 | The function works by selecting a color from one of the corners, |
2936 | then chipping away pixels of that color starting at all the edges. |
2937 | The four corners vote for which color is to be masked away. In |
2938 | case of a draw (this generally means that this function is not |
2939 | applicable to the image), the result is arbitrary. |
2940 | |
2941 | The returned image has little-endian bit order (i.e. the image's |
2942 | format is QImage::Format_MonoLSB), which you can convert to |
2943 | big-endian (QImage::Format_Mono) using the convertToFormat() |
2944 | function. |
2945 | |
2946 | If \a clipTight is true (the default) the mask is just large |
2947 | enough to cover the pixels; otherwise, the mask is larger than the |
2948 | data pixels. |
2949 | |
2950 | Note that this function disregards the alpha buffer. |
2951 | |
2952 | \sa createAlphaMask(), {QImage#Image Transformations}{Image |
2953 | Transformations} |
2954 | */ |
2955 | |
2956 | QImage QImage::createHeuristicMask(bool clipTight) const |
2957 | { |
2958 | if (!d) |
2959 | return QImage(); |
2960 | |
2961 | if (d->depth != 32) { |
2962 | QImage img32 = convertToFormat(Format_RGB32); |
2963 | return img32.createHeuristicMask(clipTight); |
2964 | } |
2965 | |
2966 | #define PIX(x,y) (*((const QRgb*)scanLine(y)+x) & 0x00ffffff) |
2967 | |
2968 | int w = width(); |
2969 | int h = height(); |
2970 | QImage m(w, h, Format_MonoLSB); |
2971 | QIMAGE_SANITYCHECK_MEMORY(m); |
2972 | m.setColorCount(2); |
2973 | m.setColor(0, QColor(Qt::color0).rgba()); |
2974 | m.setColor(1, QColor(Qt::color1).rgba()); |
2975 | m.fill(0xff); |
2976 | |
2977 | QRgb background = PIX(0,0); |
2978 | if (background != PIX(w-1,0) && |
2979 | background != PIX(0,h-1) && |
2980 | background != PIX(w-1,h-1)) { |
2981 | background = PIX(w-1,0); |
2982 | if (background != PIX(w-1,h-1) && |
2983 | background != PIX(0,h-1) && |
2984 | PIX(0,h-1) == PIX(w-1,h-1)) { |
2985 | background = PIX(w-1,h-1); |
2986 | } |
2987 | } |
2988 | |
2989 | int x,y; |
2990 | bool done = false; |
2991 | uchar *ypp, *ypc, *ypn; |
2992 | while(!done) { |
2993 | done = true; |
2994 | ypn = m.scanLine(0); |
2995 | ypc = nullptr; |
2996 | for (y = 0; y < h; y++) { |
2997 | ypp = ypc; |
2998 | ypc = ypn; |
2999 | ypn = (y == h-1) ? nullptr : m.scanLine(y+1); |
3000 | const QRgb *p = (const QRgb *)scanLine(y); |
3001 | for (x = 0; x < w; x++) { |
3002 | // slowness here - it's possible to do six of these tests |
3003 | // together in one go. oh well. |
3004 | if ((x == 0 || y == 0 || x == w-1 || y == h-1 || |
3005 | !(*(ypc + ((x-1) >> 3)) & (1 << ((x-1) & 7))) || |
3006 | !(*(ypc + ((x+1) >> 3)) & (1 << ((x+1) & 7))) || |
3007 | !(*(ypp + (x >> 3)) & (1 << (x & 7))) || |
3008 | !(*(ypn + (x >> 3)) & (1 << (x & 7)))) && |
3009 | ( (*(ypc + (x >> 3)) & (1 << (x & 7)))) && |
3010 | ((*p & 0x00ffffff) == background)) { |
3011 | done = false; |
3012 | *(ypc + (x >> 3)) &= ~(1 << (x & 7)); |
3013 | } |
3014 | p++; |
3015 | } |
3016 | } |
3017 | } |
3018 | |
3019 | if (!clipTight) { |
3020 | ypn = m.scanLine(0); |
3021 | ypc = nullptr; |
3022 | for (y = 0; y < h; y++) { |
3023 | ypp = ypc; |
3024 | ypc = ypn; |
3025 | ypn = (y == h-1) ? nullptr : m.scanLine(y+1); |
3026 | const QRgb *p = (const QRgb *)scanLine(y); |
3027 | for (x = 0; x < w; x++) { |
3028 | if ((*p & 0x00ffffff) != background) { |
3029 | if (x > 0) |
3030 | *(ypc + ((x-1) >> 3)) |= (1 << ((x-1) & 7)); |
3031 | if (x < w-1) |
3032 | *(ypc + ((x+1) >> 3)) |= (1 << ((x+1) & 7)); |
3033 | if (y > 0) |
3034 | *(ypp + (x >> 3)) |= (1 << (x & 7)); |
3035 | if (y < h-1) |
3036 | *(ypn + (x >> 3)) |= (1 << (x & 7)); |
3037 | } |
3038 | p++; |
3039 | } |
3040 | } |
3041 | } |
3042 | |
3043 | #undef PIX |
3044 | |
3045 | copyPhysicalMetadata(m.d, d); |
3046 | return m; |
3047 | } |
3048 | #endif //QT_NO_IMAGE_HEURISTIC_MASK |
3049 | |
3050 | /*! |
3051 | Creates and returns a mask for this image based on the given \a |
3052 | color value. If the \a mode is MaskInColor (the default value), |
3053 | all pixels matching \a color will be opaque pixels in the mask. If |
3054 | \a mode is MaskOutColor, all pixels matching the given color will |
3055 | be transparent. |
3056 | |
3057 | \sa createAlphaMask(), createHeuristicMask() |
3058 | */ |
3059 | |
3060 | QImage QImage::createMaskFromColor(QRgb color, Qt::MaskMode mode) const |
3061 | { |
3062 | if (!d) |
3063 | return QImage(); |
3064 | QImage maskImage(size(), QImage::Format_MonoLSB); |
3065 | QIMAGE_SANITYCHECK_MEMORY(maskImage); |
3066 | maskImage.fill(0); |
3067 | uchar *s = maskImage.bits(); |
3068 | if (!s) |
3069 | return QImage(); |
3070 | |
3071 | if (depth() == 32) { |
3072 | for (int h = 0; h < d->height; h++) { |
3073 | const uint *sl = (const uint *) scanLine(h); |
3074 | for (int w = 0; w < d->width; w++) { |
3075 | if (sl[w] == color) |
3076 | *(s + (w >> 3)) |= (1 << (w & 7)); |
3077 | } |
3078 | s += maskImage.bytesPerLine(); |
3079 | } |
3080 | } else { |
3081 | for (int h = 0; h < d->height; h++) { |
3082 | for (int w = 0; w < d->width; w++) { |
3083 | if ((uint) pixel(w, h) == color) |
3084 | *(s + (w >> 3)) |= (1 << (w & 7)); |
3085 | } |
3086 | s += maskImage.bytesPerLine(); |
3087 | } |
3088 | } |
3089 | if (mode == Qt::MaskOutColor) |
3090 | maskImage.invertPixels(); |
3091 | |
3092 | copyPhysicalMetadata(maskImage.d, d); |
3093 | return maskImage; |
3094 | } |
3095 | |
3096 | /*! |
3097 | \fn QImage QImage::mirrored(bool horizontal = false, bool vertical = true) const & |
3098 | \fn QImage QImage::mirrored(bool horizontal = false, bool vertical = true) && |
3099 | |
3100 | Returns a mirror of the image, mirrored in the horizontal and/or |
3101 | the vertical direction depending on whether \a horizontal and \a |
3102 | vertical are set to true or false. |
3103 | |
3104 | Note that the original image is not changed. |
3105 | |
3106 | \sa mirror(), {QImage#Image Transformations}{Image Transformations} |
3107 | */ |
3108 | |
3109 | /*! |
3110 | \fn void QImage::mirror(bool horizontal = false, bool vertical = true) |
3111 | \since 6.0 |
3112 | |
3113 | Mirrors of the image in the horizontal and/or the vertical direction depending |
3114 | on whether \a horizontal and \a vertical are set to true or false. |
3115 | |
3116 | \sa mirrored(), {QImage#Image Transformations}{Image Transformations} |
3117 | */ |
3118 | |
3119 | template<class T> inline void do_mirror_data(QImageData *dst, QImageData *src, |
3120 | int dstX0, int dstY0, |
3121 | int dstXIncr, int dstYIncr, |
3122 | int w, int h) |
3123 | { |
3124 | if (dst == src) { |
3125 | // When mirroring in-place, stop in the middle for one of the directions, since we |
3126 | // are swapping the bytes instead of merely copying. |
3127 | const int srcXEnd = (dstX0 && !dstY0) ? w / 2 : w; |
3128 | const int srcYEnd = dstY0 ? h / 2 : h; |
3129 | for (int srcY = 0, dstY = dstY0; srcY < srcYEnd; ++srcY, dstY += dstYIncr) { |
3130 | T *srcPtr = (T *) (src->data + srcY * src->bytes_per_line); |
3131 | T *dstPtr = (T *) (dst->data + dstY * dst->bytes_per_line); |
3132 | for (int srcX = 0, dstX = dstX0; srcX < srcXEnd; ++srcX, dstX += dstXIncr) |
3133 | std::swap(srcPtr[srcX], dstPtr[dstX]); |
3134 | } |
3135 | // If mirroring both ways, the middle line needs to be mirrored horizontally only. |
3136 | if (dstX0 && dstY0 && (h & 1)) { |
3137 | int srcY = h / 2; |
3138 | int srcXEnd2 = w / 2; |
3139 | T *srcPtr = (T *) (src->data + srcY * src->bytes_per_line); |
3140 | for (int srcX = 0, dstX = dstX0; srcX < srcXEnd2; ++srcX, dstX += dstXIncr) |
3141 | std::swap(srcPtr[srcX], srcPtr[dstX]); |
3142 | } |
3143 | } else { |
3144 | for (int srcY = 0, dstY = dstY0; srcY < h; ++srcY, dstY += dstYIncr) { |
3145 | T *srcPtr = (T *) (src->data + srcY * src->bytes_per_line); |
3146 | T *dstPtr = (T *) (dst->data + dstY * dst->bytes_per_line); |
3147 | for (int srcX = 0, dstX = dstX0; srcX < w; ++srcX, dstX += dstXIncr) |
3148 | dstPtr[dstX] = srcPtr[srcX]; |
3149 | } |
3150 | } |
3151 | } |
3152 | |
3153 | inline void do_flip(QImageData *dst, QImageData *src, int w, int h, int depth) |
3154 | { |
3155 | const int data_bytes_per_line = w * (depth / 8); |
3156 | if (dst == src) { |
3157 | uint *srcPtr = reinterpret_cast<uint *>(src->data); |
3158 | uint *dstPtr = reinterpret_cast<uint *>(dst->data + (h - 1) * dst->bytes_per_line); |
3159 | h = h / 2; |
3160 | const int uint_per_line = (data_bytes_per_line + 3) >> 2; // bytes per line must be a multiple of 4 |
3161 | for (int y = 0; y < h; ++y) { |
3162 | // This is auto-vectorized, no need for SSE2 or NEON versions: |
3163 | for (int x = 0; x < uint_per_line; x++) { |
3164 | const uint d = dstPtr[x]; |
3165 | const uint s = srcPtr[x]; |
3166 | dstPtr[x] = s; |
3167 | srcPtr[x] = d; |
3168 | } |
3169 | srcPtr += src->bytes_per_line >> 2; |
3170 | dstPtr -= dst->bytes_per_line >> 2; |
3171 | } |
3172 | |
3173 | } else { |
3174 | const uchar *srcPtr = src->data; |
3175 | uchar *dstPtr = dst->data + (h - 1) * dst->bytes_per_line; |
3176 | for (int y = 0; y < h; ++y) { |
3177 | memcpy(dstPtr, srcPtr, data_bytes_per_line); |
3178 | srcPtr += src->bytes_per_line; |
3179 | dstPtr -= dst->bytes_per_line; |
3180 | } |
3181 | } |
3182 | } |
3183 | |
3184 | inline void do_mirror(QImageData *dst, QImageData *src, bool horizontal, bool vertical) |
3185 | { |
3186 | Q_ASSERT(src->width == dst->width && src->height == dst->height && src->depth == dst->depth); |
3187 | int w = src->width; |
3188 | int h = src->height; |
3189 | int depth = src->depth; |
3190 | |
3191 | if (src->depth == 1) { |
3192 | w = (w + 7) / 8; // byte aligned width |
3193 | depth = 8; |
3194 | } |
3195 | |
3196 | if (vertical && !horizontal) { |
3197 | // This one is simple and common, so do it a little more optimized |
3198 | do_flip(dst, src, w, h, depth); |
3199 | return; |
3200 | } |
3201 | |
3202 | int dstX0 = 0, dstXIncr = 1; |
3203 | int dstY0 = 0, dstYIncr = 1; |
3204 | if (horizontal) { |
3205 | // 0 -> w-1, 1 -> w-2, 2 -> w-3, ... |
3206 | dstX0 = w - 1; |
3207 | dstXIncr = -1; |
3208 | } |
3209 | if (vertical) { |
3210 | // 0 -> h-1, 1 -> h-2, 2 -> h-3, ... |
3211 | dstY0 = h - 1; |
3212 | dstYIncr = -1; |
3213 | } |
3214 | |
3215 | switch (depth) { |
3216 | case 64: |
3217 | do_mirror_data<quint64>(dst, src, dstX0, dstY0, dstXIncr, dstYIncr, w, h); |
3218 | break; |
3219 | case 32: |
3220 | do_mirror_data<quint32>(dst, src, dstX0, dstY0, dstXIncr, dstYIncr, w, h); |
3221 | break; |
3222 | case 24: |
3223 | do_mirror_data<quint24>(dst, src, dstX0, dstY0, dstXIncr, dstYIncr, w, h); |
3224 | break; |
3225 | case 16: |
3226 | do_mirror_data<quint16>(dst, src, dstX0, dstY0, dstXIncr, dstYIncr, w, h); |
3227 | break; |
3228 | case 8: |
3229 | do_mirror_data<quint8>(dst, src, dstX0, dstY0, dstXIncr, dstYIncr, w, h); |
3230 | break; |
3231 | default: |
3232 | Q_ASSERT(false); |
3233 | break; |
3234 | } |
3235 | |
3236 | // The bytes are now all in the correct place. In addition, the bits in the individual |
3237 | // bytes have to be flipped too when horizontally mirroring a 1 bit-per-pixel image. |
3238 | if (horizontal && dst->depth == 1) { |
3239 | Q_ASSERT(dst->format == QImage::Format_Mono || dst->format == QImage::Format_MonoLSB); |
3240 | const int shift = 8 - (dst->width % 8); |
3241 | const uchar *bitflip = qt_get_bitflip_array(); |
3242 | for (int y = 0; y < h; ++y) { |
3243 | uchar *begin = dst->data + y * dst->bytes_per_line; |
3244 | uchar *end = begin + dst->bytes_per_line; |
3245 | for (uchar *p = begin; p < end; ++p) { |
3246 | *p = bitflip[*p]; |
3247 | // When the data is non-byte aligned, an extra bit shift (of the number of |
3248 | // unused bits at the end) is needed for the entire scanline. |
3249 | if (shift != 8 && p != begin) { |
3250 | if (dst->format == QImage::Format_Mono) { |
3251 | for (int i = 0; i < shift; ++i) { |
3252 | p[-1] <<= 1; |
3253 | p[-1] |= (*p & (128 >> i)) >> (7 - i); |
3254 | } |
3255 | } else { |
3256 | for (int i = 0; i < shift; ++i) { |
3257 | p[-1] >>= 1; |
3258 | p[-1] |= (*p & (1 << i)) << (7 - i); |
3259 | } |
3260 | } |
3261 | } |
3262 | } |
3263 | if (shift != 8) { |
3264 | if (dst->format == QImage::Format_Mono) |
3265 | end[-1] <<= shift; |
3266 | else |
3267 | end[-1] >>= shift; |
3268 | } |
3269 | } |
3270 | } |
3271 | } |
3272 | |
3273 | /*! |
3274 | \internal |
3275 | */ |
3276 | QImage QImage::mirrored_helper(bool horizontal, bool vertical) const |
3277 | { |
3278 | if (!d) |
3279 | return QImage(); |
3280 | |
3281 | if ((d->width <= 1 && d->height <= 1) || (!horizontal && !vertical)) |
3282 | return *this; |
3283 | |
3284 | // Create result image, copy colormap |
3285 | QImage result(d->width, d->height, d->format); |
3286 | QIMAGE_SANITYCHECK_MEMORY(result); |
3287 | |
3288 | // check if we ran out of of memory.. |
3289 | if (!result.d) |
3290 | return QImage(); |
3291 | |
3292 | result.d->colortable = d->colortable; |
3293 | result.d->has_alpha_clut = d->has_alpha_clut; |
3294 | copyMetadata(result.d, d); |
3295 | |
3296 | do_mirror(result.d, d, horizontal, vertical); |
3297 | |
3298 | return result; |
3299 | } |
3300 | |
3301 | /*! |
3302 | \internal |
3303 | */ |
3304 | void QImage::mirrored_inplace(bool horizontal, bool vertical) |
3305 | { |
3306 | if (!d || (d->width <= 1 && d->height <= 1) || (!horizontal && !vertical)) |
3307 | return; |
3308 | |
3309 | detach(); |
3310 | if (!d) |
3311 | return; |
3312 | if (!d->own_data) |
3313 | *this = copy(); |
3314 | |
3315 | do_mirror(d, d, horizontal, vertical); |
3316 | } |
3317 | |
3318 | /*! |
3319 | \fn QImage QImage::rgbSwapped() const & |
3320 | \fn QImage QImage::rgbSwapped() && |
3321 | |
3322 | Returns a QImage in which the values of the red and blue |
3323 | components of all pixels have been swapped, effectively converting |
3324 | an RGB image to an BGR image. |
3325 | |
3326 | The original QImage is not changed. |
3327 | |
3328 | \sa rgbSwap(), {QImage#Image Transformations}{Image Transformations} |
3329 | */ |
3330 | |
3331 | /*! |
3332 | \fn void QImage::rgbSwap() |
3333 | \since 6.0 |
3334 | |
3335 | Swaps the values of the red and blue components of all pixels, effectively converting |
3336 | an RGB image to an BGR image. |
3337 | |
3338 | \sa rgbSwapped(), {QImage#Image Transformations}{Image Transformations} |
3339 | */ |
3340 | |
3341 | static inline void rgbSwapped_generic(int width, int height, const QImage *src, QImage *dst, const QPixelLayout* layout) |
3342 | { |
3343 | const RbSwapFunc func = layout->rbSwap; |
3344 | if (!func) { |
3345 | qWarning("Trying to rb-swap an image format where it doesn't make sense" ); |
3346 | if (src != dst) |
3347 | *dst = *src; |
3348 | return; |
3349 | } |
3350 | |
3351 | for (int i = 0; i < height; ++i) { |
3352 | uchar *q = dst->scanLine(i); |
3353 | const uchar *p = src->constScanLine(i); |
3354 | func(q, p, width); |
3355 | } |
3356 | } |
3357 | |
3358 | /*! |
3359 | \internal |
3360 | */ |
3361 | QImage QImage::rgbSwapped_helper() const |
3362 | { |
3363 | if (isNull()) |
3364 | return *this; |
3365 | |
3366 | Q_TRACE_SCOPE(QImage_rgbSwapped_helper); |
3367 | |
3368 | QImage res; |
3369 | |
3370 | switch (d->format) { |
3371 | case Format_Invalid: |
3372 | case NImageFormats: |
3373 | Q_ASSERT(false); |
3374 | break; |
3375 | case Format_Alpha8: |
3376 | case Format_Grayscale8: |
3377 | case Format_Grayscale16: |
3378 | return *this; |
3379 | case Format_Mono: |
3380 | case Format_MonoLSB: |
3381 | case Format_Indexed8: |
3382 | res = copy(); |
3383 | for (int i = 0; i < res.d->colortable.size(); i++) { |
3384 | QRgb c = res.d->colortable.at(i); |
3385 | res.d->colortable[i] = QRgb(((c << 16) & 0xff0000) | ((c >> 16) & 0xff) | (c & 0xff00ff00)); |
3386 | } |
3387 | break; |
3388 | case Format_RGBX8888: |
3389 | case Format_RGBA8888: |
3390 | case Format_RGBA8888_Premultiplied: |
3391 | #if Q_BYTE_ORDER == Q_BIG_ENDIAN |
3392 | res = QImage(d->width, d->height, d->format); |
3393 | QIMAGE_SANITYCHECK_MEMORY(res); |
3394 | for (int i = 0; i < d->height; i++) { |
3395 | uint *q = (uint*)res.scanLine(i); |
3396 | const uint *p = (const uint*)constScanLine(i); |
3397 | const uint *end = p + d->width; |
3398 | while (p < end) { |
3399 | uint c = *p; |
3400 | *q = ((c << 16) & 0xff000000) | ((c >> 16) & 0xff00) | (c & 0x00ff00ff); |
3401 | p++; |
3402 | q++; |
3403 | } |
3404 | } |
3405 | break; |
3406 | #else |
3407 | // On little-endian rgba8888 is abgr32 and can use same rgb-swap as argb32 |
3408 | Q_FALLTHROUGH(); |
3409 | #endif |
3410 | case Format_RGB32: |
3411 | case Format_ARGB32: |
3412 | case Format_ARGB32_Premultiplied: |
3413 | res = QImage(d->width, d->height, d->format); |
3414 | QIMAGE_SANITYCHECK_MEMORY(res); |
3415 | for (int i = 0; i < d->height; i++) { |
3416 | uint *q = (uint*)res.scanLine(i); |
3417 | const uint *p = (const uint*)constScanLine(i); |
3418 | const uint *end = p + d->width; |
3419 | while (p < end) { |
3420 | uint c = *p; |
3421 | *q = ((c << 16) & 0xff0000) | ((c >> 16) & 0xff) | (c & 0xff00ff00); |
3422 | p++; |
3423 | q++; |
3424 | } |
3425 | } |
3426 | break; |
3427 | case Format_RGB16: |
3428 | res = QImage(d->width, d->height, d->format); |
3429 | QIMAGE_SANITYCHECK_MEMORY(res); |
3430 | for (int i = 0; i < d->height; i++) { |
3431 | ushort *q = (ushort*)res.scanLine(i); |
3432 | const ushort *p = (const ushort*)constScanLine(i); |
3433 | const ushort *end = p + d->width; |
3434 | while (p < end) { |
3435 | ushort c = *p; |
3436 | *q = ((c << 11) & 0xf800) | ((c >> 11) & 0x1f) | (c & 0x07e0); |
3437 | p++; |
3438 | q++; |
3439 | } |
3440 | } |
3441 | break; |
3442 | default: |
3443 | res = QImage(d->width, d->height, d->format); |
3444 | QIMAGE_SANITYCHECK_MEMORY(res); |
3445 | rgbSwapped_generic(d->width, d->height, this, &res, &qPixelLayouts[d->format]); |
3446 | break; |
3447 | } |
3448 | copyMetadata(res.d, d); |
3449 | return res; |
3450 | } |
3451 | |
3452 | /*! |
3453 | \internal |
3454 | */ |
3455 | void QImage::rgbSwapped_inplace() |
3456 | { |
3457 | if (isNull()) |
3458 | return; |
3459 | |
3460 | detach(); |
3461 | if (!d) |
3462 | return; |
3463 | if (!d->own_data) |
3464 | *this = copy(); |
3465 | |
3466 | switch (d->format) { |
3467 | case Format_Invalid: |
3468 | case NImageFormats: |
3469 | Q_ASSERT(false); |
3470 | break; |
3471 | case Format_Alpha8: |
3472 | case Format_Grayscale8: |
3473 | case Format_Grayscale16: |
3474 | return; |
3475 | case Format_Mono: |
3476 | case Format_MonoLSB: |
3477 | case Format_Indexed8: |
3478 | for (int i = 0; i < d->colortable.size(); i++) { |
3479 | QRgb c = d->colortable.at(i); |
3480 | d->colortable[i] = QRgb(((c << 16) & 0xff0000) | ((c >> 16) & 0xff) | (c & 0xff00ff00)); |
3481 | } |
3482 | break; |
3483 | case Format_RGBX8888: |
3484 | case Format_RGBA8888: |
3485 | case Format_RGBA8888_Premultiplied: |
3486 | #if Q_BYTE_ORDER == Q_BIG_ENDIAN |
3487 | for (int i = 0; i < d->height; i++) { |
3488 | uint *p = (uint*)scanLine(i); |
3489 | uint *end = p + d->width; |
3490 | while (p < end) { |
3491 | uint c = *p; |
3492 | *p = ((c << 16) & 0xff000000) | ((c >> 16) & 0xff00) | (c & 0x00ff00ff); |
3493 | p++; |
3494 | } |
3495 | } |
3496 | break; |
3497 | #else |
3498 | // On little-endian rgba8888 is abgr32 and can use same rgb-swap as argb32 |
3499 | Q_FALLTHROUGH(); |
3500 | #endif |
3501 | case Format_RGB32: |
3502 | case Format_ARGB32: |
3503 | case Format_ARGB32_Premultiplied: |
3504 | for (int i = 0; i < d->height; i++) { |
3505 | uint *p = (uint*)scanLine(i); |
3506 | uint *end = p + d->width; |
3507 | while (p < end) { |
3508 | uint c = *p; |
3509 | *p = ((c << 16) & 0xff0000) | ((c >> 16) & 0xff) | (c & 0xff00ff00); |
3510 | p++; |
3511 | } |
3512 | } |
3513 | break; |
3514 | case Format_RGB16: |
3515 | for (int i = 0; i < d->height; i++) { |
3516 | ushort *p = (ushort*)scanLine(i); |
3517 | ushort *end = p + d->width; |
3518 | while (p < end) { |
3519 | ushort c = *p; |
3520 | *p = ((c << 11) & 0xf800) | ((c >> 11) & 0x1f) | (c & 0x07e0); |
3521 | p++; |
3522 | } |
3523 | } |
3524 | break; |
3525 | case Format_BGR30: |
3526 | case Format_A2BGR30_Premultiplied: |
3527 | case Format_RGB30: |
3528 | case Format_A2RGB30_Premultiplied: |
3529 | for (int i = 0; i < d->height; i++) { |
3530 | uint *p = (uint*)scanLine(i); |
3531 | uint *end = p + d->width; |
3532 | while (p < end) { |
3533 | *p = qRgbSwapRgb30(*p); |
3534 | p++; |
3535 | } |
3536 | } |
3537 | break; |
3538 | default: |
3539 | rgbSwapped_generic(d->width, d->height, this, this, &qPixelLayouts[d->format]); |
3540 | break; |
3541 | } |
3542 | } |
3543 | |
3544 | /*! |
3545 | Loads an image from the file with the given \a fileName. Returns \c true if |
3546 | the image was successfully loaded; otherwise invalidates the image |
3547 | and returns \c false. |
3548 | |
3549 | The loader attempts to read the image using the specified \a format, e.g., |
3550 | PNG or JPG. If \a format is not specified (which is the default), it is |
3551 | auto-detected based on the file's suffix and header. For details, see |
3552 | QImageReader::setAutoDetectImageFormat(). |
3553 | |
3554 | The file name can either refer to an actual file on disk or to one |
3555 | of the application's embedded resources. See the |
3556 | \l{resources.html}{Resource System} overview for details on how to |
3557 | embed images and other resource files in the application's |
3558 | executable. |
3559 | |
3560 | \sa {QImage#Reading and Writing Image Files}{Reading and Writing Image Files} |
3561 | */ |
3562 | |
3563 | bool QImage::load(const QString &fileName, const char* format) |
3564 | { |
3565 | *this = QImageReader(fileName, format).read(); |
3566 | return !isNull(); |
3567 | } |
3568 | |
3569 | /*! |
3570 | \overload |
3571 | |
3572 | This function reads a QImage from the given \a device. This can, |
3573 | for example, be used to load an image directly into a QByteArray. |
3574 | */ |
3575 | |
3576 | bool QImage::load(QIODevice* device, const char* format) |
3577 | { |
3578 | *this = QImageReader(device, format).read(); |
3579 | return !isNull(); |
3580 | } |
3581 | |
3582 | /*! |
3583 | \fn bool QImage::loadFromData(const uchar *data, int len, const char *format) |
3584 | |
3585 | Loads an image from the first \a len bytes of the given binary \a |
3586 | data. Returns \c true if the image was successfully loaded; otherwise |
3587 | invalidates the image and returns \c false. |
3588 | |
3589 | The loader attempts to read the image using the specified \a format, e.g., |
3590 | PNG or JPG. If \a format is not specified (which is the default), the |
3591 | loader probes the file for a header to guess the file format. |
3592 | |
3593 | \sa {QImage#Reading and Writing Image Files}{Reading and Writing Image Files} |
3594 | */ |
3595 | |
3596 | bool QImage::loadFromData(const uchar *data, int len, const char *format) |
3597 | { |
3598 | *this = fromData(data, len, format); |
3599 | return !isNull(); |
3600 | } |
3601 | |
3602 | /*! |
3603 | \fn bool QImage::loadFromData(const QByteArray &data, const char *format) |
3604 | |
3605 | \overload |
3606 | |
3607 | Loads an image from the given QByteArray \a data. |
3608 | */ |
3609 | |
3610 | /*! |
3611 | \fn QImage QImage::fromData(const uchar *data, int size, const char *format) |
3612 | |
3613 | Constructs a QImage from the first \a size bytes of the given |
3614 | binary \a data. The loader attempts to read the image using the |
3615 | specified \a format. If \a format is not specified (which is the default), |
3616 | the loader probes the data for a header to guess the file format. |
3617 | |
3618 | If \a format is specified, it must be one of the values returned by |
3619 | QImageReader::supportedImageFormats(). |
3620 | |
3621 | If the loading of the image fails, the image returned will be a null image. |
3622 | |
3623 | \sa load(), save(), {QImage#Reading and Writing Image Files}{Reading and Writing Image Files} |
3624 | */ |
3625 | |
3626 | QImage QImage::fromData(const uchar *data, int size, const char *format) |
3627 | { |
3628 | QByteArray a = QByteArray::fromRawData(reinterpret_cast<const char *>(data), size); |
3629 | QBuffer b; |
3630 | b.setData(a); |
3631 | b.open(QIODevice::ReadOnly); |
3632 | return QImageReader(&b, format).read(); |
3633 | } |
3634 | |
3635 | /*! |
3636 | \fn QImage QImage::fromData(const QByteArray &data, const char *format) |
3637 | |
3638 | \overload |
3639 | |
3640 | Loads an image from the given QByteArray \a data. |
3641 | */ |
3642 | |
3643 | /*! |
3644 | Saves the image to the file with the given \a fileName, using the |
3645 | given image file \a format and \a quality factor. If \a format is |
3646 | \nullptr, QImage will attempt to guess the format by looking at |
3647 | \a fileName's suffix. |
3648 | |
3649 | The \a quality factor must be in the range 0 to 100 or -1. Specify |
3650 | 0 to obtain small compressed files, 100 for large uncompressed |
3651 | files, and -1 (the default) to use the default settings. |
3652 | |
3653 | Returns \c true if the image was successfully saved; otherwise |
3654 | returns \c false. |
3655 | |
3656 | \sa {QImage#Reading and Writing Image Files}{Reading and Writing |
3657 | Image Files} |
3658 | */ |
3659 | bool QImage::save(const QString &fileName, const char *format, int quality) const |
3660 | { |
3661 | if (isNull()) |
3662 | return false; |
3663 | QImageWriter writer(fileName, format); |
3664 | return d->doImageIO(this, &writer, quality); |
3665 | } |
3666 | |
3667 | /*! |
3668 | \overload |
3669 | |
3670 | This function writes a QImage to the given \a device. |
3671 | |
3672 | This can, for example, be used to save an image directly into a |
3673 | QByteArray: |
3674 | |
3675 | \snippet image/image.cpp 0 |
3676 | */ |
3677 | |
3678 | bool QImage::save(QIODevice* device, const char* format, int quality) const |
3679 | { |
3680 | if (isNull()) |
3681 | return false; // nothing to save |
3682 | QImageWriter writer(device, format); |
3683 | return d->doImageIO(this, &writer, quality); |
3684 | } |
3685 | |
3686 | /* \internal |
3687 | */ |
3688 | |
3689 | bool QImageData::doImageIO(const QImage *image, QImageWriter *writer, int quality) const |
3690 | { |
3691 | if (quality > 100 || quality < -1) |
3692 | qWarning("QPixmap::save: Quality out of range [-1, 100]" ); |
3693 | if (quality >= 0) |
3694 | writer->setQuality(qMin(quality,100)); |
3695 | return writer->write(*image); |
3696 | } |
3697 | |
3698 | /***************************************************************************** |
3699 | QImage stream functions |
3700 | *****************************************************************************/ |
3701 | #if !defined(QT_NO_DATASTREAM) |
3702 | /*! |
3703 | \fn QDataStream &operator<<(QDataStream &stream, const QImage &image) |
3704 | \relates QImage |
3705 | |
3706 | Writes the given \a image to the given \a stream as a PNG image, |
3707 | or as a BMP image if the stream's version is 1. Note that writing |
3708 | the stream to a file will not produce a valid image file. |
3709 | |
3710 | \sa QImage::save(), {Serializing Qt Data Types} |
3711 | */ |
3712 | |
3713 | QDataStream &operator<<(QDataStream &s, const QImage &image) |
3714 | { |
3715 | if (s.version() >= 5) { |
3716 | if (image.isNull()) { |
3717 | s << (qint32) 0; // null image marker |
3718 | return s; |
3719 | } else { |
3720 | s << (qint32) 1; |
3721 | // continue ... |
3722 | } |
3723 | } |
3724 | QImageWriter writer(s.device(), s.version() == 1 ? "bmp" : "png" ); |
3725 | writer.write(image); |
3726 | return s; |
3727 | } |
3728 | |
3729 | /*! |
3730 | \fn QDataStream &operator>>(QDataStream &stream, QImage &image) |
3731 | \relates QImage |
3732 | |
3733 | Reads an image from the given \a stream and stores it in the given |
3734 | \a image. |
3735 | |
3736 | \sa QImage::load(), {Serializing Qt Data Types} |
3737 | */ |
3738 | |
3739 | QDataStream &operator>>(QDataStream &s, QImage &image) |
3740 | { |
3741 | if (s.version() >= 5) { |
3742 | qint32 nullMarker; |
3743 | s >> nullMarker; |
3744 | if (!nullMarker) { |
3745 | image = QImage(); // null image |
3746 | return s; |
3747 | } |
3748 | } |
3749 | image = QImageReader(s.device(), s.version() == 1 ? "bmp" : "png" ).read(); |
3750 | if (image.isNull() && s.version() >= 5) |
3751 | s.setStatus(QDataStream::ReadPastEnd); |
3752 | return s; |
3753 | } |
3754 | #endif // QT_NO_DATASTREAM |
3755 | |
3756 | |
3757 | |
3758 | /*! |
3759 | \fn bool QImage::operator==(const QImage & image) const |
3760 | |
3761 | Returns \c true if this image and the given \a image have the same |
3762 | contents; otherwise returns \c false. |
3763 | |
3764 | The comparison can be slow, unless there is some obvious |
3765 | difference (e.g. different size or format), in which case the |
3766 | function will return quickly. |
3767 | |
3768 | \sa operator=() |
3769 | */ |
3770 | |
3771 | bool QImage::operator==(const QImage & i) const |
3772 | { |
3773 | // same object, or shared? |
3774 | if (i.d == d) |
3775 | return true; |
3776 | if (!i.d || !d) |
3777 | return false; |
3778 | |
3779 | // obviously different stuff? |
3780 | if (i.d->height != d->height || i.d->width != d->width || i.d->format != d->format) |
3781 | return false; |
3782 | |
3783 | if (d->format != Format_RGB32) { |
3784 | if (d->format >= Format_ARGB32) { // all bits defined |
3785 | const int n = d->width * d->depth / 8; |
3786 | if (n == d->bytes_per_line && n == i.d->bytes_per_line) { |
3787 | if (memcmp(bits(), i.bits(), d->nbytes)) |
3788 | return false; |
3789 | } else { |
3790 | for (int y = 0; y < d->height; ++y) { |
3791 | if (memcmp(scanLine(y), i.scanLine(y), n)) |
3792 | return false; |
3793 | } |
3794 | } |
3795 | } else { |
3796 | const int w = width(); |
3797 | const int h = height(); |
3798 | const QList<QRgb> &colortable = d->colortable; |
3799 | const QList<QRgb> &icolortable = i.d->colortable; |
3800 | for (int y=0; y<h; ++y) { |
3801 | for (int x=0; x<w; ++x) { |
3802 | if (colortable[pixelIndex(x, y)] != icolortable[i.pixelIndex(x, y)]) |
3803 | return false; |
3804 | } |
3805 | } |
3806 | } |
3807 | } else { |
3808 | //alpha channel undefined, so we must mask it out |
3809 | for(int l = 0; l < d->height; l++) { |
3810 | int w = d->width; |
3811 | const uint *p1 = reinterpret_cast<const uint*>(scanLine(l)); |
3812 | const uint *p2 = reinterpret_cast<const uint*>(i.scanLine(l)); |
3813 | while (w--) { |
3814 | if ((*p1++ & 0x00ffffff) != (*p2++ & 0x00ffffff)) |
3815 | return false; |
3816 | } |
3817 | } |
3818 | } |
3819 | return true; |
3820 | } |
3821 | |
3822 | |
3823 | /*! |
3824 | \fn bool QImage::operator!=(const QImage & image) const |
3825 | |
3826 | Returns \c true if this image and the given \a image have different |
3827 | contents; otherwise returns \c false. |
3828 | |
3829 | The comparison can be slow, unless there is some obvious |
3830 | difference, such as different widths, in which case the function |
3831 | will return quickly. |
3832 | |
3833 | \sa operator=() |
3834 | */ |
3835 | |
3836 | bool QImage::operator!=(const QImage & i) const |
3837 | { |
3838 | return !(*this == i); |
3839 | } |
3840 | |
3841 | |
3842 | |
3843 | |
3844 | /*! |
3845 | Returns the number of pixels that fit horizontally in a physical |
3846 | meter. Together with dotsPerMeterY(), this number defines the |
3847 | intended scale and aspect ratio of the image. |
3848 | |
3849 | \sa setDotsPerMeterX(), {QImage#Image Information}{Image |
3850 | Information} |
3851 | */ |
3852 | int QImage::dotsPerMeterX() const |
3853 | { |
3854 | return d ? qRound(d->dpmx) : 0; |
3855 | } |
3856 | |
3857 | /*! |
3858 | Returns the number of pixels that fit vertically in a physical |
3859 | meter. Together with dotsPerMeterX(), this number defines the |
3860 | intended scale and aspect ratio of the image. |
3861 | |
3862 | \sa setDotsPerMeterY(), {QImage#Image Information}{Image |
3863 | Information} |
3864 | */ |
3865 | int QImage::dotsPerMeterY() const |
3866 | { |
3867 | return d ? qRound(d->dpmy) : 0; |
3868 | } |
3869 | |
3870 | /*! |
3871 | Sets the number of pixels that fit horizontally in a physical |
3872 | meter, to \a x. |
3873 | |
3874 | Together with dotsPerMeterY(), this number defines the intended |
3875 | scale and aspect ratio of the image, and determines the scale |
3876 | at which QPainter will draw graphics on the image. It does not |
3877 | change the scale or aspect ratio of the image when it is rendered |
3878 | on other paint devices. |
3879 | |
3880 | \sa dotsPerMeterX(), {QImage#Image Information}{Image Information} |
3881 | */ |
3882 | void QImage::setDotsPerMeterX(int x) |
3883 | { |
3884 | if (!d || !x) |
3885 | return; |
3886 | detach(); |
3887 | |
3888 | if (d) |
3889 | d->dpmx = x; |
3890 | } |
3891 | |
3892 | /*! |
3893 | Sets the number of pixels that fit vertically in a physical meter, |
3894 | to \a y. |
3895 | |
3896 | Together with dotsPerMeterX(), this number defines the intended |
3897 | scale and aspect ratio of the image, and determines the scale |
3898 | at which QPainter will draw graphics on the image. It does not |
3899 | change the scale or aspect ratio of the image when it is rendered |
3900 | on other paint devices. |
3901 | |
3902 | \sa dotsPerMeterY(), {QImage#Image Information}{Image Information} |
3903 | */ |
3904 | void QImage::setDotsPerMeterY(int y) |
3905 | { |
3906 | if (!d || !y) |
3907 | return; |
3908 | detach(); |
3909 | |
3910 | if (d) |
3911 | d->dpmy = y; |
3912 | } |
3913 | |
3914 | /*! |
3915 | \fn QPoint QImage::offset() const |
3916 | |
3917 | Returns the number of pixels by which the image is intended to be |
3918 | offset by when positioning relative to other images. |
3919 | |
3920 | \sa setOffset(), {QImage#Image Information}{Image Information} |
3921 | */ |
3922 | QPoint QImage::offset() const |
3923 | { |
3924 | return d ? d->offset : QPoint(); |
3925 | } |
3926 | |
3927 | |
3928 | /*! |
3929 | \fn void QImage::setOffset(const QPoint& offset) |
3930 | |
3931 | Sets the number of pixels by which the image is intended to be |
3932 | offset by when positioning relative to other images, to \a offset. |
3933 | |
3934 | \sa offset(), {QImage#Image Information}{Image Information} |
3935 | */ |
3936 | void QImage::setOffset(const QPoint& p) |
3937 | { |
3938 | if (!d) |
3939 | return; |
3940 | detach(); |
3941 | |
3942 | if (d) |
3943 | d->offset = p; |
3944 | } |
3945 | |
3946 | /*! |
3947 | Returns the text keys for this image. |
3948 | |
3949 | You can use these keys with text() to list the image text for a |
3950 | certain key. |
3951 | |
3952 | \sa text() |
3953 | */ |
3954 | QStringList QImage::textKeys() const |
3955 | { |
3956 | return d ? QStringList(d->text.keys()) : QStringList(); |
3957 | } |
3958 | |
3959 | /*! |
3960 | Returns the image text associated with the given \a key. If the |
3961 | specified \a key is an empty string, the whole image text is |
3962 | returned, with each key-text pair separated by a newline. |
3963 | |
3964 | \sa setText(), textKeys() |
3965 | */ |
3966 | QString QImage::text(const QString &key) const |
3967 | { |
3968 | if (!d) |
3969 | return QString(); |
3970 | |
3971 | if (!key.isEmpty()) |
3972 | return d->text.value(key); |
3973 | |
3974 | QString tmp; |
3975 | for (auto it = d->text.begin(), end = d->text.end(); it != end; ++it) |
3976 | tmp += it.key() + QLatin1String(": " ) + it.value().simplified() + QLatin1String("\n\n" ); |
3977 | if (!tmp.isEmpty()) |
3978 | tmp.chop(2); // remove final \n\n |
3979 | return tmp; |
3980 | } |
3981 | |
3982 | /*! |
3983 | \fn void QImage::setText(const QString &key, const QString &text) |
3984 | |
3985 | Sets the image text to the given \a text and associate it with the |
3986 | given \a key. |
3987 | |
3988 | If you just want to store a single text block (i.e., a "comment" |
3989 | or just a description), you can either pass an empty key, or use a |
3990 | generic key like "Description". |
3991 | |
3992 | The image text is embedded into the image data when you |
3993 | call save() or QImageWriter::write(). |
3994 | |
3995 | Not all image formats support embedded text. You can find out |
3996 | if a specific image or format supports embedding text |
3997 | by using QImageWriter::supportsOption(). We give an example: |
3998 | |
3999 | \snippet image/supportedformat.cpp 0 |
4000 | |
4001 | You can use QImageWriter::supportedImageFormats() to find out |
4002 | which image formats are available to you. |
4003 | |
4004 | \sa text(), textKeys() |
4005 | */ |
4006 | void QImage::setText(const QString &key, const QString &value) |
4007 | { |
4008 | if (!d) |
4009 | return; |
4010 | detach(); |
4011 | |
4012 | if (d) |
4013 | d->text.insert(key, value); |
4014 | } |
4015 | |
4016 | /*! |
4017 | \internal |
4018 | |
4019 | Used by QPainter to retrieve a paint engine for the image. |
4020 | */ |
4021 | QPaintEngine *QImage::paintEngine() const |
4022 | { |
4023 | if (!d) |
4024 | return nullptr; |
4025 | |
4026 | if (!d->paintEngine) { |
4027 | QPaintDevice *paintDevice = const_cast<QImage *>(this); |
4028 | QPlatformIntegration *platformIntegration = QGuiApplicationPrivate::platformIntegration(); |
4029 | if (platformIntegration) |
4030 | d->paintEngine = platformIntegration->createImagePaintEngine(paintDevice); |
4031 | if (!d->paintEngine) |
4032 | d->paintEngine = new QRasterPaintEngine(paintDevice); |
4033 | } |
4034 | |
4035 | return d->paintEngine; |
4036 | } |
4037 | |
4038 | |
4039 | /*! |
4040 | \internal |
4041 | |
4042 | Returns the size for the specified \a metric on the device. |
4043 | */ |
4044 | int QImage::metric(PaintDeviceMetric metric) const |
4045 | { |
4046 | if (!d) |
4047 | return 0; |
4048 | |
4049 | switch (metric) { |
4050 | case PdmWidth: |
4051 | return d->width; |
4052 | |
4053 | case PdmHeight: |
4054 | return d->height; |
4055 | |
4056 | case PdmWidthMM: |
4057 | return qRound(d->width * 1000 / d->dpmx); |
4058 | |
4059 | case PdmHeightMM: |
4060 | return qRound(d->height * 1000 / d->dpmy); |
4061 | |
4062 | case PdmNumColors: |
4063 | return d->colortable.size(); |
4064 | |
4065 | case PdmDepth: |
4066 | return d->depth; |
4067 | |
4068 | case PdmDpiX: |
4069 | return qRound(d->dpmx * 0.0254); |
4070 | break; |
4071 | |
4072 | case PdmDpiY: |
4073 | return qRound(d->dpmy * 0.0254); |
4074 | break; |
4075 | |
4076 | case PdmPhysicalDpiX: |
4077 | return qRound(d->dpmx * 0.0254); |
4078 | break; |
4079 | |
4080 | case PdmPhysicalDpiY: |
4081 | return qRound(d->dpmy * 0.0254); |
4082 | break; |
4083 | |
4084 | case PdmDevicePixelRatio: |
4085 | return d->devicePixelRatio; |
4086 | break; |
4087 | |
4088 | case PdmDevicePixelRatioScaled: |
4089 | return d->devicePixelRatio * QPaintDevice::devicePixelRatioFScale(); |
4090 | break; |
4091 | |
4092 | default: |
4093 | qWarning("QImage::metric(): Unhandled metric type %d" , metric); |
4094 | break; |
4095 | } |
4096 | return 0; |
4097 | } |
4098 | |
4099 | |
4100 | |
4101 | /***************************************************************************** |
4102 | QPixmap (and QImage) helper functions |
4103 | *****************************************************************************/ |
4104 | /* |
4105 | This internal function contains the common (i.e. platform independent) code |
4106 | to do a transformation of pixel data. It is used by QPixmap::transform() and by |
4107 | QImage::transform(). |
4108 | |
4109 | \a trueMat is the true transformation matrix (see QPixmap::trueMatrix()) and |
4110 | \a xoffset is an offset to the matrix. |
4111 | |
4112 | \a msbfirst specifies for 1bpp images, if the MSB or LSB comes first and \a |
4113 | depth specifies the colordepth of the data. |
4114 | |
4115 | \a dptr is a pointer to the destination data, \a dbpl specifies the bits per |
4116 | line for the destination data, \a p_inc is the offset that we advance for |
4117 | every scanline and \a dHeight is the height of the destination image. |
4118 | |
4119 | \a sprt is the pointer to the source data, \a sbpl specifies the bits per |
4120 | line of the source data, \a sWidth and \a sHeight are the width and height of |
4121 | the source data. |
4122 | */ |
4123 | |
4124 | #undef IWX_MSB |
4125 | #define IWX_MSB(b) if (trigx < maxws && trigy < maxhs) { \ |
4126 | if (*(sptr+sbpl*(trigy>>12)+(trigx>>15)) & \ |
4127 | (1 << (7-((trigx>>12)&7)))) \ |
4128 | *dptr |= b; \ |
4129 | } \ |
4130 | trigx += m11; \ |
4131 | trigy += m12; |
4132 | // END OF MACRO |
4133 | #undef IWX_LSB |
4134 | #define IWX_LSB(b) if (trigx < maxws && trigy < maxhs) { \ |
4135 | if (*(sptr+sbpl*(trigy>>12)+(trigx>>15)) & \ |
4136 | (1 << ((trigx>>12)&7))) \ |
4137 | *dptr |= b; \ |
4138 | } \ |
4139 | trigx += m11; \ |
4140 | trigy += m12; |
4141 | // END OF MACRO |
4142 | #undef IWX_PIX |
4143 | #define IWX_PIX(b) if (trigx < maxws && trigy < maxhs) { \ |
4144 | if ((*(sptr+sbpl*(trigy>>12)+(trigx>>15)) & \ |
4145 | (1 << (7-((trigx>>12)&7)))) == 0) \ |
4146 | *dptr &= ~b; \ |
4147 | } \ |
4148 | trigx += m11; \ |
4149 | trigy += m12; |
4150 | // END OF MACRO |
4151 | bool qt_xForm_helper(const QTransform &trueMat, int xoffset, int type, int depth, |
4152 | uchar *dptr, qsizetype dbpl, int p_inc, int dHeight, |
4153 | const uchar *sptr, qsizetype sbpl, int sWidth, int sHeight) |
4154 | { |
4155 | int m11 = int(trueMat.m11()*4096.0); |
4156 | int m12 = int(trueMat.m12()*4096.0); |
4157 | int m21 = int(trueMat.m21()*4096.0); |
4158 | int m22 = int(trueMat.m22()*4096.0); |
4159 | int dx = qRound(trueMat.dx()*4096.0); |
4160 | int dy = qRound(trueMat.dy()*4096.0); |
4161 | |
4162 | int m21ydx = dx + (xoffset<<16) + (m11 + m21) / 2; |
4163 | int m22ydy = dy + (m12 + m22) / 2; |
4164 | uint trigx; |
4165 | uint trigy; |
4166 | uint maxws = sWidth<<12; |
4167 | uint maxhs = sHeight<<12; |
4168 | |
4169 | for (int y=0; y<dHeight; y++) { // for each target scanline |
4170 | trigx = m21ydx; |
4171 | trigy = m22ydy; |
4172 | uchar *maxp = dptr + dbpl; |
4173 | if (depth != 1) { |
4174 | switch (depth) { |
4175 | case 8: // 8 bpp transform |
4176 | while (dptr < maxp) { |
4177 | if (trigx < maxws && trigy < maxhs) |
4178 | *dptr = *(sptr+sbpl*(trigy>>12)+(trigx>>12)); |
4179 | |
---|