1/* Optimized version of the standard memset() function.
2 This file is part of the GNU C Library.
3 Copyright (C) 2000-2022 Free Software Foundation, Inc.
4
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
9
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
14
15 You should have received a copy of the GNU Lesser General Public
16 License along with the GNU C Library; if not, see
17 <https://www.gnu.org/licenses/>. */
18
19/* Return: dest
20
21 Inputs:
22 in0: dest
23 in1: value
24 in2: count
25
26 The algorithm is fairly straightforward: set byte by byte until we
27 we get to a 16B-aligned address, then loop on 128 B chunks using an
28 early store as prefetching, then loop on 32B chucks, then clear remaining
29 words, finally clear remaining bytes.
30 Since a stf.spill f0 can store 16B in one go, we use this instruction
31 to get peak speed when value = 0. */
32
33#include <sysdep.h>
34#undef ret
35
36#define dest in0
37#define value in1
38#define cnt in2
39
40#define tmp r31
41#define save_lc r30
42#define ptr0 r29
43#define ptr1 r28
44#define ptr2 r27
45#define ptr3 r26
46#define ptr9 r24
47#define loopcnt r23
48#define linecnt r22
49#define bytecnt r21
50
51#define fvalue f6
52
53// This routine uses only scratch predicate registers (p6 - p15)
54#define p_scr p6 // default register for same-cycle branches
55#define p_nz p7
56#define p_zr p8
57#define p_unalgn p9
58#define p_y p11
59#define p_n p12
60#define p_yy p13
61#define p_nn p14
62
63#define movi0 mov
64
65#define MIN1 15
66#define MIN1P1HALF 8
67#define LINE_SIZE 128
68#define LSIZE_SH 7 // shift amount
69#define PREF_AHEAD 8
70
71#define USE_FLP
72#if defined(USE_INT)
73#define store st8
74#define myval value
75#elif defined(USE_FLP)
76#define store stf8
77#define myval fvalue
78#endif
79
80.align 64
81ENTRY(memset)
82{ .mmi
83 .prologue
84 alloc tmp = ar.pfs, 3, 0, 0, 0
85 lfetch.nt1 [dest]
86 .save ar.lc, save_lc
87 movi0 save_lc = ar.lc
88} { .mmi
89 .body
90 mov ret0 = dest // return value
91 cmp.ne p_nz, p_zr = value, r0 // use stf.spill if value is zero
92 cmp.eq p_scr, p0 = cnt, r0
93;; }
94{ .mmi
95 and ptr2 = -(MIN1+1), dest // aligned address
96 and tmp = MIN1, dest // prepare to check for alignment
97 tbit.nz p_y, p_n = dest, 0 // Do we have an odd address? (M_B_U)
98} { .mib
99 mov ptr1 = dest
100 mux1 value = value, @brcst // create 8 identical bytes in word
101(p_scr) br.ret.dpnt.many rp // return immediately if count = 0
102;; }
103{ .mib
104 cmp.ne p_unalgn, p0 = tmp, r0
105} { .mib // NB: # of bytes to move is 1 higher
106 sub bytecnt = (MIN1+1), tmp // than loopcnt
107 cmp.gt p_scr, p0 = 16, cnt // is it a minimalistic task?
108(p_scr) br.cond.dptk.many .move_bytes_unaligned // go move just a few (M_B_U)
109;; }
110{ .mmi
111(p_unalgn) add ptr1 = (MIN1+1), ptr2 // after alignment
112(p_unalgn) add ptr2 = MIN1P1HALF, ptr2 // after alignment
113(p_unalgn) tbit.nz.unc p_y, p_n = bytecnt, 3 // should we do a st8 ?
114;; }
115{ .mib
116(p_y) add cnt = -8, cnt
117(p_unalgn) tbit.nz.unc p_yy, p_nn = bytecnt, 2 // should we do a st4 ?
118} { .mib
119(p_y) st8 [ptr2] = value, -4
120(p_n) add ptr2 = 4, ptr2
121;; }
122{ .mib
123(p_yy) add cnt = -4, cnt
124(p_unalgn) tbit.nz.unc p_y, p_n = bytecnt, 1 // should we do a st2 ?
125} { .mib
126(p_yy) st4 [ptr2] = value, -2
127(p_nn) add ptr2 = 2, ptr2
128;; }
129{ .mmi
130 mov tmp = LINE_SIZE+1 // for compare
131(p_y) add cnt = -2, cnt
132(p_unalgn) tbit.nz.unc p_yy, p_nn = bytecnt, 0 // should we do a st1 ?
133} { .mmi
134 setf.sig fvalue=value // transfer value to FLP side
135(p_y) st2 [ptr2] = value, -1
136(p_n) add ptr2 = 1, ptr2
137;; }
138
139{ .mmi
140(p_yy) st1 [ptr2] = value
141 cmp.gt p_scr, p0 = tmp, cnt // is it a minimalistic task?
142} { .mbb
143(p_yy) add cnt = -1, cnt
144(p_scr) br.cond.dpnt.many .fraction_of_line // go move just a few
145;; }
146
147{ .mib
148 nop.m 0
149 shr.u linecnt = cnt, LSIZE_SH
150(p_zr) br.cond.dptk.many .l1b // Jump to use stf.spill
151;; }
152
153#ifndef GAS_ALIGN_BREAKS_UNWIND_INFO
154 .align 32 // -------- // L1A: store ahead into cache lines; fill later
155#endif
156{ .mmi
157 and tmp = -(LINE_SIZE), cnt // compute end of range
158 mov ptr9 = ptr1 // used for prefetching
159 and cnt = (LINE_SIZE-1), cnt // remainder
160} { .mmi
161 mov loopcnt = PREF_AHEAD-1 // default prefetch loop
162 cmp.gt p_scr, p0 = PREF_AHEAD, linecnt // check against actual value
163;; }
164{ .mmi
165(p_scr) add loopcnt = -1, linecnt // start of stores
166 add ptr2 = 8, ptr1 // (beyond prefetch stores)
167 add ptr1 = tmp, ptr1 // first address beyond total
168;; } // range
169{ .mmi
170 add tmp = -1, linecnt // next loop count
171 movi0 ar.lc = loopcnt
172;; }
173.pref_l1a:
174{ .mib
175 store [ptr9] = myval, 128 // Do stores one cache line apart
176 nop.i 0
177 br.cloop.dptk.few .pref_l1a
178;; }
179{ .mmi
180 add ptr0 = 16, ptr2 // Two stores in parallel
181 movi0 ar.lc = tmp
182;; }
183.l1ax:
184 { .mmi
185 store [ptr2] = myval, 8
186 store [ptr0] = myval, 8
187 ;; }
188 { .mmi
189 store [ptr2] = myval, 24
190 store [ptr0] = myval, 24
191 ;; }
192 { .mmi
193 store [ptr2] = myval, 8
194 store [ptr0] = myval, 8
195 ;; }
196 { .mmi
197 store [ptr2] = myval, 24
198 store [ptr0] = myval, 24
199 ;; }
200 { .mmi
201 store [ptr2] = myval, 8
202 store [ptr0] = myval, 8
203 ;; }
204 { .mmi
205 store [ptr2] = myval, 24
206 store [ptr0] = myval, 24
207 ;; }
208 { .mmi
209 store [ptr2] = myval, 8
210 store [ptr0] = myval, 32
211 cmp.lt p_scr, p0 = ptr9, ptr1 // do we need more prefetching?
212 ;; }
213{ .mmb
214 store [ptr2] = myval, 24
215(p_scr) store [ptr9] = myval, 128
216 br.cloop.dptk.few .l1ax
217;; }
218{ .mbb
219 cmp.le p_scr, p0 = 8, cnt // just a few bytes left ?
220(p_scr) br.cond.dpnt.many .fraction_of_line // Branch no. 2
221 br.cond.dpnt.many .move_bytes_from_alignment // Branch no. 3
222;; }
223
224#ifdef GAS_ALIGN_BREAKS_UNWIND_INFO
225 { nop 0 }
226#else
227 .align 32
228#endif
229.l1b: // ------------------ // L1B: store ahead into cache lines; fill later
230{ .mmi
231 and tmp = -(LINE_SIZE), cnt // compute end of range
232 mov ptr9 = ptr1 // used for prefetching
233 and cnt = (LINE_SIZE-1), cnt // remainder
234} { .mmi
235 mov loopcnt = PREF_AHEAD-1 // default prefetch loop
236 cmp.gt p_scr, p0 = PREF_AHEAD, linecnt // check against actual value
237;; }
238{ .mmi
239(p_scr) add loopcnt = -1, linecnt
240 add ptr2 = 16, ptr1 // start of stores (beyond prefetch stores)
241 add ptr1 = tmp, ptr1 // first address beyond total range
242;; }
243{ .mmi
244 add tmp = -1, linecnt // next loop count
245 movi0 ar.lc = loopcnt
246;; }
247.pref_l1b:
248{ .mib
249 stf.spill [ptr9] = f0, 128 // Do stores one cache line apart
250 nop.i 0
251 br.cloop.dptk.few .pref_l1b
252;; }
253{ .mmi
254 add ptr0 = 16, ptr2 // Two stores in parallel
255 movi0 ar.lc = tmp
256;; }
257.l1bx:
258 { .mmi
259 stf.spill [ptr2] = f0, 32
260 stf.spill [ptr0] = f0, 32
261 ;; }
262 { .mmi
263 stf.spill [ptr2] = f0, 32
264 stf.spill [ptr0] = f0, 32
265 ;; }
266 { .mmi
267 stf.spill [ptr2] = f0, 32
268 stf.spill [ptr0] = f0, 64
269 cmp.lt p_scr, p0 = ptr9, ptr1 // do we need more prefetching?
270 ;; }
271{ .mmb
272 stf.spill [ptr2] = f0, 32
273(p_scr) stf.spill [ptr9] = f0, 128
274 br.cloop.dptk.few .l1bx
275;; }
276{ .mib
277 cmp.gt p_scr, p0 = 8, cnt // just a few bytes left ?
278(p_scr) br.cond.dpnt.many .move_bytes_from_alignment
279;; }
280
281.fraction_of_line:
282{ .mib
283 add ptr2 = 16, ptr1
284 shr.u loopcnt = cnt, 5 // loopcnt = cnt / 32
285;; }
286{ .mib
287 cmp.eq p_scr, p0 = loopcnt, r0
288 add loopcnt = -1, loopcnt
289(p_scr) br.cond.dpnt.many store_words
290;; }
291{ .mib
292 and cnt = 0x1f, cnt // compute the remaining cnt
293 movi0 ar.lc = loopcnt
294;; }
295#ifndef GAS_ALIGN_BREAKS_UNWIND_INFO
296 .align 32
297#endif
298.l2: // ---------------------------- // L2A: store 32B in 2 cycles
299{ .mmb
300 store [ptr1] = myval, 8
301 store [ptr2] = myval, 8
302;; } { .mmb
303 store [ptr1] = myval, 24
304 store [ptr2] = myval, 24
305 br.cloop.dptk.many .l2
306;; }
307store_words:
308{ .mib
309 cmp.gt p_scr, p0 = 8, cnt // just a few bytes left ?
310(p_scr) br.cond.dpnt.many .move_bytes_from_alignment // Branch
311;; }
312
313{ .mmi
314 store [ptr1] = myval, 8 // store
315 cmp.le p_y, p_n = 16, cnt //
316 add cnt = -8, cnt // subtract
317;; }
318{ .mmi
319(p_y) store [ptr1] = myval, 8 // store
320(p_y) cmp.le.unc p_yy, p_nn = 16, cnt //
321(p_y) add cnt = -8, cnt // subtract
322;; }
323{ .mmi // store
324(p_yy) store [ptr1] = myval, 8 //
325(p_yy) add cnt = -8, cnt // subtract
326;; }
327
328.move_bytes_from_alignment:
329{ .mib
330 cmp.eq p_scr, p0 = cnt, r0
331 tbit.nz.unc p_y, p0 = cnt, 2 // should we terminate with a st4 ?
332(p_scr) br.cond.dpnt.few .restore_and_exit
333;; }
334{ .mib
335(p_y) st4 [ptr1] = value, 4
336 tbit.nz.unc p_yy, p0 = cnt, 1 // should we terminate with a st2 ?
337;; }
338{ .mib
339(p_yy) st2 [ptr1] = value, 2
340 tbit.nz.unc p_y, p0 = cnt, 0
341;; }
342
343{ .mib
344(p_y) st1 [ptr1] = value
345;; }
346.restore_and_exit:
347{ .mib
348 nop.m 0
349 movi0 ar.lc = save_lc
350 br.ret.sptk.many rp
351;; }
352
353.move_bytes_unaligned:
354{ .mmi
355 .pred.rel "mutex",p_y, p_n
356 .pred.rel "mutex",p_yy, p_nn
357(p_n) cmp.le p_yy, p_nn = 4, cnt
358(p_y) cmp.le p_yy, p_nn = 5, cnt
359(p_n) add ptr2 = 2, ptr1
360} { .mmi
361(p_y) add ptr2 = 3, ptr1
362(p_y) st1 [ptr1] = value, 1 // fill 1 (odd-aligned) byte
363(p_y) add cnt = -1, cnt // [15, 14 (or less) left]
364;; }
365{ .mmi
366(p_yy) cmp.le.unc p_y, p0 = 8, cnt
367 add ptr3 = ptr1, cnt // prepare last store
368 movi0 ar.lc = save_lc
369} { .mmi
370(p_yy) st2 [ptr1] = value, 4 // fill 2 (aligned) bytes
371(p_yy) st2 [ptr2] = value, 4 // fill 2 (aligned) bytes
372(p_yy) add cnt = -4, cnt // [11, 10 (o less) left]
373;; }
374{ .mmi
375(p_y) cmp.le.unc p_yy, p0 = 8, cnt
376 add ptr3 = -1, ptr3 // last store
377 tbit.nz p_scr, p0 = cnt, 1 // will there be a st2 at the end ?
378} { .mmi
379(p_y) st2 [ptr1] = value, 4 // fill 2 (aligned) bytes
380(p_y) st2 [ptr2] = value, 4 // fill 2 (aligned) bytes
381(p_y) add cnt = -4, cnt // [7, 6 (or less) left]
382;; }
383{ .mmi
384(p_yy) st2 [ptr1] = value, 4 // fill 2 (aligned) bytes
385(p_yy) st2 [ptr2] = value, 4 // fill 2 (aligned) bytes
386 // [3, 2 (or less) left]
387 tbit.nz p_y, p0 = cnt, 0 // will there be a st1 at the end ?
388} { .mmi
389(p_yy) add cnt = -4, cnt
390;; }
391{ .mmb
392(p_scr) st2 [ptr1] = value // fill 2 (aligned) bytes
393(p_y) st1 [ptr3] = value // fill last byte (using ptr3)
394 br.ret.sptk.many rp
395;; }
396END(memset)
397libc_hidden_builtin_def (memset)
398

source code of glibc/sysdeps/ia64/memset.S