1/* Vectorizer
2 Copyright (C) 2003-2024 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21#ifndef GCC_TREE_VECTORIZER_H
22#define GCC_TREE_VECTORIZER_H
23
24typedef class _stmt_vec_info *stmt_vec_info;
25typedef struct _slp_tree *slp_tree;
26
27#include "tree-data-ref.h"
28#include "tree-hash-traits.h"
29#include "target.h"
30#include "internal-fn.h"
31#include "tree-ssa-operands.h"
32#include "gimple-match.h"
33
34/* Used for naming of new temporaries. */
35enum vect_var_kind {
36 vect_simple_var,
37 vect_pointer_var,
38 vect_scalar_var,
39 vect_mask_var
40};
41
42/* Defines type of operation. */
43enum operation_type {
44 unary_op = 1,
45 binary_op,
46 ternary_op
47};
48
49/* Define type of available alignment support. */
50enum dr_alignment_support {
51 dr_unaligned_unsupported,
52 dr_unaligned_supported,
53 dr_explicit_realign,
54 dr_explicit_realign_optimized,
55 dr_aligned
56};
57
58/* Define type of def-use cross-iteration cycle. */
59enum vect_def_type {
60 vect_uninitialized_def = 0,
61 vect_constant_def = 1,
62 vect_external_def,
63 vect_internal_def,
64 vect_induction_def,
65 vect_reduction_def,
66 vect_double_reduction_def,
67 vect_nested_cycle,
68 vect_first_order_recurrence,
69 vect_condition_def,
70 vect_unknown_def_type
71};
72
73/* Define operation type of linear/non-linear induction variable. */
74enum vect_induction_op_type {
75 vect_step_op_add = 0,
76 vect_step_op_neg,
77 vect_step_op_mul,
78 vect_step_op_shl,
79 vect_step_op_shr
80};
81
82/* Define type of reduction. */
83enum vect_reduction_type {
84 TREE_CODE_REDUCTION,
85 COND_REDUCTION,
86 INTEGER_INDUC_COND_REDUCTION,
87 CONST_COND_REDUCTION,
88
89 /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
90 to implement:
91
92 for (int i = 0; i < VF; ++i)
93 res = cond[i] ? val[i] : res; */
94 EXTRACT_LAST_REDUCTION,
95
96 /* Use a folding reduction within the loop to implement:
97
98 for (int i = 0; i < VF; ++i)
99 res = res OP val[i];
100
101 (with no reassocation). */
102 FOLD_LEFT_REDUCTION
103};
104
105#define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
106 || ((D) == vect_double_reduction_def) \
107 || ((D) == vect_nested_cycle))
108
109/* Structure to encapsulate information about a group of like
110 instructions to be presented to the target cost model. */
111struct stmt_info_for_cost {
112 int count;
113 enum vect_cost_for_stmt kind;
114 enum vect_cost_model_location where;
115 stmt_vec_info stmt_info;
116 slp_tree node;
117 tree vectype;
118 int misalign;
119};
120
121typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
122
123/* Maps base addresses to an innermost_loop_behavior and the stmt it was
124 derived from that gives the maximum known alignment for that base. */
125typedef hash_map<tree_operand_hash,
126 std::pair<stmt_vec_info, innermost_loop_behavior *> >
127 vec_base_alignments;
128
129/* Represents elements [START, START + LENGTH) of cyclical array OPS*
130 (i.e. OPS repeated to give at least START + LENGTH elements) */
131struct vect_scalar_ops_slice
132{
133 tree op (unsigned int i) const;
134 bool all_same_p () const;
135
136 vec<tree> *ops;
137 unsigned int start;
138 unsigned int length;
139};
140
141/* Return element I of the slice. */
142inline tree
143vect_scalar_ops_slice::op (unsigned int i) const
144{
145 return (*ops)[(i + start) % ops->length ()];
146}
147
148/* Hash traits for vect_scalar_ops_slice. */
149struct vect_scalar_ops_slice_hash : typed_noop_remove<vect_scalar_ops_slice>
150{
151 typedef vect_scalar_ops_slice value_type;
152 typedef vect_scalar_ops_slice compare_type;
153
154 static const bool empty_zero_p = true;
155
156 static void mark_deleted (value_type &s) { s.length = ~0U; }
157 static void mark_empty (value_type &s) { s.length = 0; }
158 static bool is_deleted (const value_type &s) { return s.length == ~0U; }
159 static bool is_empty (const value_type &s) { return s.length == 0; }
160 static hashval_t hash (const value_type &);
161 static bool equal (const value_type &, const compare_type &);
162};
163
164/************************************************************************
165 SLP
166 ************************************************************************/
167typedef vec<std::pair<unsigned, unsigned> > lane_permutation_t;
168typedef auto_vec<std::pair<unsigned, unsigned>, 16> auto_lane_permutation_t;
169typedef vec<unsigned> load_permutation_t;
170typedef auto_vec<unsigned, 16> auto_load_permutation_t;
171
172/* A computation tree of an SLP instance. Each node corresponds to a group of
173 stmts to be packed in a SIMD stmt. */
174struct _slp_tree {
175 _slp_tree ();
176 ~_slp_tree ();
177
178 void push_vec_def (gimple *def);
179 void push_vec_def (tree def) { vec_defs.quick_push (obj: def); }
180
181 /* Nodes that contain def-stmts of this node statements operands. */
182 vec<slp_tree> children;
183
184 /* A group of scalar stmts to be vectorized together. */
185 vec<stmt_vec_info> stmts;
186 /* A group of scalar operands to be vectorized together. */
187 vec<tree> ops;
188 /* The representative that should be used for analysis and
189 code generation. */
190 stmt_vec_info representative;
191
192 /* Load permutation relative to the stores, NULL if there is no
193 permutation. */
194 load_permutation_t load_permutation;
195 /* Lane permutation of the operands scalar lanes encoded as pairs
196 of { operand number, lane number }. The number of elements
197 denotes the number of output lanes. */
198 lane_permutation_t lane_permutation;
199
200 /* Selected SIMD clone's function info. First vector element
201 is SIMD clone's function decl, followed by a pair of trees (base + step)
202 for linear arguments (pair of NULLs for other arguments). */
203 vec<tree> simd_clone_info;
204
205 tree vectype;
206 /* Vectorized defs. */
207 vec<tree> vec_defs;
208 /* Number of vector stmts that are created to replace the group of scalar
209 stmts. It is calculated during the transformation phase as the number of
210 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
211 divided by vector size. */
212 unsigned int vec_stmts_size;
213
214 /* Reference count in the SLP graph. */
215 unsigned int refcnt;
216 /* The maximum number of vector elements for the subtree rooted
217 at this node. */
218 poly_uint64 max_nunits;
219 /* The DEF type of this node. */
220 enum vect_def_type def_type;
221 /* The number of scalar lanes produced by this node. */
222 unsigned int lanes;
223 /* The operation of this node. */
224 enum tree_code code;
225
226 int vertex;
227
228 /* If not NULL this is a cached failed SLP discovery attempt with
229 the lanes that failed during SLP discovery as 'false'. This is
230 a copy of the matches array. */
231 bool *failed;
232
233 /* Allocate from slp_tree_pool. */
234 static void *operator new (size_t);
235
236 /* Return memory to slp_tree_pool. */
237 static void operator delete (void *, size_t);
238
239 /* Linked list of nodes to release when we free the slp_tree_pool. */
240 slp_tree next_node;
241 slp_tree prev_node;
242};
243
244/* The enum describes the type of operations that an SLP instance
245 can perform. */
246
247enum slp_instance_kind {
248 slp_inst_kind_store,
249 slp_inst_kind_reduc_group,
250 slp_inst_kind_reduc_chain,
251 slp_inst_kind_bb_reduc,
252 slp_inst_kind_ctor
253};
254
255/* SLP instance is a sequence of stmts in a loop that can be packed into
256 SIMD stmts. */
257typedef class _slp_instance {
258public:
259 /* The root of SLP tree. */
260 slp_tree root;
261
262 /* For vector constructors, the constructor stmt that the SLP tree is built
263 from, NULL otherwise. */
264 vec<stmt_vec_info> root_stmts;
265
266 /* For slp_inst_kind_bb_reduc the defs that were not vectorized, NULL
267 otherwise. */
268 vec<tree> remain_defs;
269
270 /* The unrolling factor required to vectorized this SLP instance. */
271 poly_uint64 unrolling_factor;
272
273 /* The group of nodes that contain loads of this SLP instance. */
274 vec<slp_tree> loads;
275
276 /* The SLP node containing the reduction PHIs. */
277 slp_tree reduc_phis;
278
279 /* Vector cost of this entry to the SLP graph. */
280 stmt_vector_for_cost cost_vec;
281
282 /* If this instance is the main entry of a subgraph the set of
283 entries into the same subgraph, including itself. */
284 vec<_slp_instance *> subgraph_entries;
285
286 /* The type of operation the SLP instance is performing. */
287 slp_instance_kind kind;
288
289 dump_user_location_t location () const;
290} *slp_instance;
291
292
293/* Access Functions. */
294#define SLP_INSTANCE_TREE(S) (S)->root
295#define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor
296#define SLP_INSTANCE_LOADS(S) (S)->loads
297#define SLP_INSTANCE_ROOT_STMTS(S) (S)->root_stmts
298#define SLP_INSTANCE_REMAIN_DEFS(S) (S)->remain_defs
299#define SLP_INSTANCE_KIND(S) (S)->kind
300
301#define SLP_TREE_CHILDREN(S) (S)->children
302#define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
303#define SLP_TREE_SCALAR_OPS(S) (S)->ops
304#define SLP_TREE_REF_COUNT(S) (S)->refcnt
305#define SLP_TREE_VEC_DEFS(S) (S)->vec_defs
306#define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
307#define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
308#define SLP_TREE_LANE_PERMUTATION(S) (S)->lane_permutation
309#define SLP_TREE_SIMD_CLONE_INFO(S) (S)->simd_clone_info
310#define SLP_TREE_DEF_TYPE(S) (S)->def_type
311#define SLP_TREE_VECTYPE(S) (S)->vectype
312#define SLP_TREE_REPRESENTATIVE(S) (S)->representative
313#define SLP_TREE_LANES(S) (S)->lanes
314#define SLP_TREE_CODE(S) (S)->code
315
316enum vect_partial_vector_style {
317 vect_partial_vectors_none,
318 vect_partial_vectors_while_ult,
319 vect_partial_vectors_avx512,
320 vect_partial_vectors_len
321};
322
323/* Key for map that records association between
324 scalar conditions and corresponding loop mask, and
325 is populated by vect_record_loop_mask. */
326
327struct scalar_cond_masked_key
328{
329 scalar_cond_masked_key (tree t, unsigned ncopies_)
330 : ncopies (ncopies_)
331 {
332 get_cond_ops_from_tree (t);
333 }
334
335 void get_cond_ops_from_tree (tree);
336
337 unsigned ncopies;
338 bool inverted_p;
339 tree_code code;
340 tree op0;
341 tree op1;
342};
343
344template<>
345struct default_hash_traits<scalar_cond_masked_key>
346{
347 typedef scalar_cond_masked_key compare_type;
348 typedef scalar_cond_masked_key value_type;
349
350 static inline hashval_t
351 hash (value_type v)
352 {
353 inchash::hash h;
354 h.add_int (v: v.code);
355 inchash::add_expr (v.op0, h, 0);
356 inchash::add_expr (v.op1, h, 0);
357 h.add_int (v: v.ncopies);
358 h.add_flag (flag: v.inverted_p);
359 return h.end ();
360 }
361
362 static inline bool
363 equal (value_type existing, value_type candidate)
364 {
365 return (existing.ncopies == candidate.ncopies
366 && existing.code == candidate.code
367 && existing.inverted_p == candidate.inverted_p
368 && operand_equal_p (existing.op0, candidate.op0, flags: 0)
369 && operand_equal_p (existing.op1, candidate.op1, flags: 0));
370 }
371
372 static const bool empty_zero_p = true;
373
374 static inline void
375 mark_empty (value_type &v)
376 {
377 v.ncopies = 0;
378 v.inverted_p = false;
379 }
380
381 static inline bool
382 is_empty (value_type v)
383 {
384 return v.ncopies == 0;
385 }
386
387 static inline void mark_deleted (value_type &) {}
388
389 static inline bool is_deleted (const value_type &)
390 {
391 return false;
392 }
393
394 static inline void remove (value_type &) {}
395};
396
397typedef hash_set<scalar_cond_masked_key> scalar_cond_masked_set_type;
398
399/* Key and map that records association between vector conditions and
400 corresponding loop mask, and is populated by prepare_vec_mask. */
401
402typedef pair_hash<tree_operand_hash, tree_operand_hash> tree_cond_mask_hash;
403typedef hash_set<tree_cond_mask_hash> vec_cond_masked_set_type;
404
405/* Describes two objects whose addresses must be unequal for the vectorized
406 loop to be valid. */
407typedef std::pair<tree, tree> vec_object_pair;
408
409/* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE.
410 UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR. */
411class vec_lower_bound {
412public:
413 vec_lower_bound () {}
414 vec_lower_bound (tree e, bool u, poly_uint64 m)
415 : expr (e), unsigned_p (u), min_value (m) {}
416
417 tree expr;
418 bool unsigned_p;
419 poly_uint64 min_value;
420};
421
422/* Vectorizer state shared between different analyses like vector sizes
423 of the same CFG region. */
424class vec_info_shared {
425public:
426 vec_info_shared();
427 ~vec_info_shared();
428
429 void save_datarefs();
430 void check_datarefs();
431
432 /* The number of scalar stmts. */
433 unsigned n_stmts;
434
435 /* All data references. Freed by free_data_refs, so not an auto_vec. */
436 vec<data_reference_p> datarefs;
437 vec<data_reference> datarefs_copy;
438
439 /* The loop nest in which the data dependences are computed. */
440 auto_vec<loop_p> loop_nest;
441
442 /* All data dependences. Freed by free_dependence_relations, so not
443 an auto_vec. */
444 vec<ddr_p> ddrs;
445};
446
447/* Vectorizer state common between loop and basic-block vectorization. */
448class vec_info {
449public:
450 typedef hash_set<int_hash<machine_mode, E_VOIDmode, E_BLKmode> > mode_set;
451 enum vec_kind { bb, loop };
452
453 vec_info (vec_kind, vec_info_shared *);
454 ~vec_info ();
455
456 stmt_vec_info add_stmt (gimple *);
457 stmt_vec_info add_pattern_stmt (gimple *, stmt_vec_info);
458 stmt_vec_info lookup_stmt (gimple *);
459 stmt_vec_info lookup_def (tree);
460 stmt_vec_info lookup_single_use (tree);
461 class dr_vec_info *lookup_dr (data_reference *);
462 void move_dr (stmt_vec_info, stmt_vec_info);
463 void remove_stmt (stmt_vec_info);
464 void replace_stmt (gimple_stmt_iterator *, stmt_vec_info, gimple *);
465 void insert_on_entry (stmt_vec_info, gimple *);
466 void insert_seq_on_entry (stmt_vec_info, gimple_seq);
467
468 /* The type of vectorization. */
469 vec_kind kind;
470
471 /* Shared vectorizer state. */
472 vec_info_shared *shared;
473
474 /* The mapping of GIMPLE UID to stmt_vec_info. */
475 vec<stmt_vec_info> stmt_vec_infos;
476 /* Whether the above mapping is complete. */
477 bool stmt_vec_info_ro;
478
479 /* Whether we've done a transform we think OK to not update virtual
480 SSA form. */
481 bool any_known_not_updated_vssa;
482
483 /* The SLP graph. */
484 auto_vec<slp_instance> slp_instances;
485
486 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
487 known alignment for that base. */
488 vec_base_alignments base_alignments;
489
490 /* All interleaving chains of stores, represented by the first
491 stmt in the chain. */
492 auto_vec<stmt_vec_info> grouped_stores;
493
494 /* The set of vector modes used in the vectorized region. */
495 mode_set used_vector_modes;
496
497 /* The argument we should pass to related_vector_mode when looking up
498 the vector mode for a scalar mode, or VOIDmode if we haven't yet
499 made any decisions about which vector modes to use. */
500 machine_mode vector_mode;
501
502private:
503 stmt_vec_info new_stmt_vec_info (gimple *stmt);
504 void set_vinfo_for_stmt (gimple *, stmt_vec_info, bool = true);
505 void free_stmt_vec_infos ();
506 void free_stmt_vec_info (stmt_vec_info);
507};
508
509class _loop_vec_info;
510class _bb_vec_info;
511
512template<>
513template<>
514inline bool
515is_a_helper <_loop_vec_info *>::test (vec_info *i)
516{
517 return i->kind == vec_info::loop;
518}
519
520template<>
521template<>
522inline bool
523is_a_helper <_bb_vec_info *>::test (vec_info *i)
524{
525 return i->kind == vec_info::bb;
526}
527
528/* In general, we can divide the vector statements in a vectorized loop
529 into related groups ("rgroups") and say that for each rgroup there is
530 some nS such that the rgroup operates on nS values from one scalar
531 iteration followed by nS values from the next. That is, if VF is the
532 vectorization factor of the loop, the rgroup operates on a sequence:
533
534 (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
535
536 where (i,j) represents a scalar value with index j in a scalar
537 iteration with index i.
538
539 [ We use the term "rgroup" to emphasise that this grouping isn't
540 necessarily the same as the grouping of statements used elsewhere.
541 For example, if we implement a group of scalar loads using gather
542 loads, we'll use a separate gather load for each scalar load, and
543 thus each gather load will belong to its own rgroup. ]
544
545 In general this sequence will occupy nV vectors concatenated
546 together. If these vectors have nL lanes each, the total number
547 of scalar values N is given by:
548
549 N = nS * VF = nV * nL
550
551 None of nS, VF, nV and nL are required to be a power of 2. nS and nV
552 are compile-time constants but VF and nL can be variable (if the target
553 supports variable-length vectors).
554
555 In classical vectorization, each iteration of the vector loop would
556 handle exactly VF iterations of the original scalar loop. However,
557 in vector loops that are able to operate on partial vectors, a
558 particular iteration of the vector loop might handle fewer than VF
559 iterations of the scalar loop. The vector lanes that correspond to
560 iterations of the scalar loop are said to be "active" and the other
561 lanes are said to be "inactive".
562
563 In such vector loops, many rgroups need to be controlled to ensure
564 that they have no effect for the inactive lanes. Conceptually, each
565 such rgroup needs a sequence of booleans in the same order as above,
566 but with each (i,j) replaced by a boolean that indicates whether
567 iteration i is active. This sequence occupies nV vector controls
568 that again have nL lanes each. Thus the control sequence as a whole
569 consists of VF independent booleans that are each repeated nS times.
570
571 Taking mask-based approach as a partially-populated vectors example.
572 We make the simplifying assumption that if a sequence of nV masks is
573 suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
574 VIEW_CONVERTing it. This holds for all current targets that support
575 fully-masked loops. For example, suppose the scalar loop is:
576
577 float *f;
578 double *d;
579 for (int i = 0; i < n; ++i)
580 {
581 f[i * 2 + 0] += 1.0f;
582 f[i * 2 + 1] += 2.0f;
583 d[i] += 3.0;
584 }
585
586 and suppose that vectors have 256 bits. The vectorized f accesses
587 will belong to one rgroup and the vectorized d access to another:
588
589 f rgroup: nS = 2, nV = 1, nL = 8
590 d rgroup: nS = 1, nV = 1, nL = 4
591 VF = 4
592
593 [ In this simple example the rgroups do correspond to the normal
594 SLP grouping scheme. ]
595
596 If only the first three lanes are active, the masks we need are:
597
598 f rgroup: 1 1 | 1 1 | 1 1 | 0 0
599 d rgroup: 1 | 1 | 1 | 0
600
601 Here we can use a mask calculated for f's rgroup for d's, but not
602 vice versa.
603
604 Thus for each value of nV, it is enough to provide nV masks, with the
605 mask being calculated based on the highest nL (or, equivalently, based
606 on the highest nS) required by any rgroup with that nV. We therefore
607 represent the entire collection of masks as a two-level table, with the
608 first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
609 the second being indexed by the mask index 0 <= i < nV. */
610
611/* The controls (like masks or lengths) needed by rgroups with nV vectors,
612 according to the description above. */
613struct rgroup_controls {
614 /* The largest nS for all rgroups that use these controls.
615 For vect_partial_vectors_avx512 this is the constant nscalars_per_iter
616 for all members of the group. */
617 unsigned int max_nscalars_per_iter;
618
619 /* For the largest nS recorded above, the loop controls divide each scalar
620 into FACTOR equal-sized pieces. This is useful if we need to split
621 element-based accesses into byte-based accesses.
622 For vect_partial_vectors_avx512 this records nV instead. */
623 unsigned int factor;
624
625 /* This is a vector type with MAX_NSCALARS_PER_ITER * VF / nV elements.
626 For mask-based controls, it is the type of the masks in CONTROLS.
627 For length-based controls, it can be any vector type that has the
628 specified number of elements; the type of the elements doesn't matter. */
629 tree type;
630
631 /* When there is no uniformly used LOOP_VINFO_RGROUP_COMPARE_TYPE this
632 is the rgroup specific type used. */
633 tree compare_type;
634
635 /* A vector of nV controls, in iteration order. */
636 vec<tree> controls;
637
638 /* In case of len_load and len_store with a bias there is only one
639 rgroup. This holds the adjusted loop length for the this rgroup. */
640 tree bias_adjusted_ctrl;
641};
642
643struct vec_loop_masks
644{
645 bool is_empty () const { return mask_set.is_empty (); }
646
647 /* Set to record vectype, nvector pairs. */
648 hash_set<pair_hash <nofree_ptr_hash <tree_node>,
649 int_hash<unsigned, 0>>> mask_set;
650
651 /* rgroup_controls used for the partial vector scheme. */
652 auto_vec<rgroup_controls> rgc_vec;
653};
654
655typedef auto_vec<rgroup_controls> vec_loop_lens;
656
657typedef auto_vec<std::pair<data_reference*, tree> > drs_init_vec;
658
659/* Information about a reduction accumulator from the main loop that could
660 conceivably be reused as the input to a reduction in an epilogue loop. */
661struct vect_reusable_accumulator {
662 /* The final value of the accumulator, which forms the input to the
663 reduction operation. */
664 tree reduc_input;
665
666 /* The stmt_vec_info that describes the reduction (i.e. the one for
667 which is_reduc_info is true). */
668 stmt_vec_info reduc_info;
669};
670
671/*-----------------------------------------------------------------*/
672/* Info on vectorized loops. */
673/*-----------------------------------------------------------------*/
674typedef class _loop_vec_info : public vec_info {
675public:
676 _loop_vec_info (class loop *, vec_info_shared *);
677 ~_loop_vec_info ();
678
679 /* The loop to which this info struct refers to. */
680 class loop *loop;
681
682 /* The loop basic blocks. */
683 basic_block *bbs;
684
685 /* Number of latch executions. */
686 tree num_itersm1;
687 /* Number of iterations. */
688 tree num_iters;
689 /* Number of iterations of the original loop. */
690 tree num_iters_unchanged;
691 /* Condition under which this loop is analyzed and versioned. */
692 tree num_iters_assumptions;
693
694 /* The cost of the vector code. */
695 class vector_costs *vector_costs;
696
697 /* The cost of the scalar code. */
698 class vector_costs *scalar_costs;
699
700 /* Threshold of number of iterations below which vectorization will not be
701 performed. It is calculated from MIN_PROFITABLE_ITERS and
702 param_min_vect_loop_bound. */
703 unsigned int th;
704
705 /* When applying loop versioning, the vector form should only be used
706 if the number of scalar iterations is >= this value, on top of all
707 the other requirements. Ignored when loop versioning is not being
708 used. */
709 poly_uint64 versioning_threshold;
710
711 /* Unrolling factor */
712 poly_uint64 vectorization_factor;
713
714 /* If this loop is an epilogue loop whose main loop can be skipped,
715 MAIN_LOOP_EDGE is the edge from the main loop to this loop's
716 preheader. SKIP_MAIN_LOOP_EDGE is then the edge that skips the
717 main loop and goes straight to this loop's preheader.
718
719 Both fields are null otherwise. */
720 edge main_loop_edge;
721 edge skip_main_loop_edge;
722
723 /* If this loop is an epilogue loop that might be skipped after executing
724 the main loop, this edge is the one that skips the epilogue. */
725 edge skip_this_loop_edge;
726
727 /* The vectorized form of a standard reduction replaces the original
728 scalar code's final result (a loop-closed SSA PHI) with the result
729 of a vector-to-scalar reduction operation. After vectorization,
730 this variable maps these vector-to-scalar results to information
731 about the reductions that generated them. */
732 hash_map<tree, vect_reusable_accumulator> reusable_accumulators;
733
734 /* The number of times that the target suggested we unroll the vector loop
735 in order to promote more ILP. This value will be used to re-analyze the
736 loop for vectorization and if successful the value will be folded into
737 vectorization_factor (and therefore exactly divides
738 vectorization_factor). */
739 unsigned int suggested_unroll_factor;
740
741 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
742 if there is no particular limit. */
743 unsigned HOST_WIDE_INT max_vectorization_factor;
744
745 /* The masks that a fully-masked loop should use to avoid operating
746 on inactive scalars. */
747 vec_loop_masks masks;
748
749 /* The lengths that a loop with length should use to avoid operating
750 on inactive scalars. */
751 vec_loop_lens lens;
752
753 /* Set of scalar conditions that have loop mask applied. */
754 scalar_cond_masked_set_type scalar_cond_masked_set;
755
756 /* Set of vector conditions that have loop mask applied. */
757 vec_cond_masked_set_type vec_cond_masked_set;
758
759 /* If we are using a loop mask to align memory addresses, this variable
760 contains the number of vector elements that we should skip in the
761 first iteration of the vector loop (i.e. the number of leading
762 elements that should be false in the first mask). */
763 tree mask_skip_niters;
764
765 /* The type that the loop control IV should be converted to before
766 testing which of the VF scalars are active and inactive.
767 Only meaningful if LOOP_VINFO_USING_PARTIAL_VECTORS_P. */
768 tree rgroup_compare_type;
769
770 /* For #pragma omp simd if (x) loops the x expression. If constant 0,
771 the loop should not be vectorized, if constant non-zero, simd_if_cond
772 shouldn't be set and loop vectorized normally, if SSA_NAME, the loop
773 should be versioned on that condition, using scalar loop if the condition
774 is false and vectorized loop otherwise. */
775 tree simd_if_cond;
776
777 /* The type that the vector loop control IV should have when
778 LOOP_VINFO_USING_PARTIAL_VECTORS_P is true. */
779 tree rgroup_iv_type;
780
781 /* The style used for implementing partial vectors when
782 LOOP_VINFO_USING_PARTIAL_VECTORS_P is true. */
783 vect_partial_vector_style partial_vector_style;
784
785 /* Unknown DRs according to which loop was peeled. */
786 class dr_vec_info *unaligned_dr;
787
788 /* peeling_for_alignment indicates whether peeling for alignment will take
789 place, and what the peeling factor should be:
790 peeling_for_alignment = X means:
791 If X=0: Peeling for alignment will not be applied.
792 If X>0: Peel first X iterations.
793 If X=-1: Generate a runtime test to calculate the number of iterations
794 to be peeled, using the dataref recorded in the field
795 unaligned_dr. */
796 int peeling_for_alignment;
797
798 /* The mask used to check the alignment of pointers or arrays. */
799 int ptr_mask;
800
801 /* Data Dependence Relations defining address ranges that are candidates
802 for a run-time aliasing check. */
803 auto_vec<ddr_p> may_alias_ddrs;
804
805 /* Data Dependence Relations defining address ranges together with segment
806 lengths from which the run-time aliasing check is built. */
807 auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
808
809 /* Check that the addresses of each pair of objects is unequal. */
810 auto_vec<vec_object_pair> check_unequal_addrs;
811
812 /* List of values that are required to be nonzero. This is used to check
813 whether things like "x[i * n] += 1;" are safe and eventually gets added
814 to the checks for lower bounds below. */
815 auto_vec<tree> check_nonzero;
816
817 /* List of values that need to be checked for a minimum value. */
818 auto_vec<vec_lower_bound> lower_bounds;
819
820 /* Statements in the loop that have data references that are candidates for a
821 runtime (loop versioning) misalignment check. */
822 auto_vec<stmt_vec_info> may_misalign_stmts;
823
824 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
825 auto_vec<stmt_vec_info> reductions;
826
827 /* All reduction chains in the loop, represented by the first
828 stmt in the chain. */
829 auto_vec<stmt_vec_info> reduction_chains;
830
831 /* Cost vector for a single scalar iteration. */
832 auto_vec<stmt_info_for_cost> scalar_cost_vec;
833
834 /* Map of IV base/step expressions to inserted name in the preheader. */
835 hash_map<tree_operand_hash, tree> *ivexpr_map;
836
837 /* Map of OpenMP "omp simd array" scan variables to corresponding
838 rhs of the store of the initializer. */
839 hash_map<tree, tree> *scan_map;
840
841 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
842 applied to the loop, i.e., no unrolling is needed, this is 1. */
843 poly_uint64 slp_unrolling_factor;
844
845 /* The factor used to over weight those statements in an inner loop
846 relative to the loop being vectorized. */
847 unsigned int inner_loop_cost_factor;
848
849 /* Is the loop vectorizable? */
850 bool vectorizable;
851
852 /* Records whether we still have the option of vectorizing this loop
853 using partially-populated vectors; in other words, whether it is
854 still possible for one iteration of the vector loop to handle
855 fewer than VF scalars. */
856 bool can_use_partial_vectors_p;
857
858 /* True if we've decided to use partially-populated vectors, so that
859 the vector loop can handle fewer than VF scalars. */
860 bool using_partial_vectors_p;
861
862 /* True if we've decided to use a decrementing loop control IV that counts
863 scalars. This can be done for any loop that:
864
865 (a) uses length "controls"; and
866 (b) can iterate more than once. */
867 bool using_decrementing_iv_p;
868
869 /* True if we've decided to use output of select_vl to adjust IV of
870 both loop control and data reference pointer. This is only true
871 for single-rgroup control. */
872 bool using_select_vl_p;
873
874 /* True if we've decided to use partially-populated vectors for the
875 epilogue of loop. */
876 bool epil_using_partial_vectors_p;
877
878 /* The bias for len_load and len_store. For now, only 0 and -1 are
879 supported. -1 must be used when a backend does not support
880 len_load/len_store with a length of zero. */
881 signed char partial_load_store_bias;
882
883 /* When we have grouped data accesses with gaps, we may introduce invalid
884 memory accesses. We peel the last iteration of the loop to prevent
885 this. */
886 bool peeling_for_gaps;
887
888 /* When the number of iterations is not a multiple of the vector size
889 we need to peel off iterations at the end to form an epilogue loop. */
890 bool peeling_for_niter;
891
892 /* When the loop has early breaks that we can vectorize we need to peel
893 the loop for the break finding loop. */
894 bool early_breaks;
895
896 /* List of loop additional IV conditionals found in the loop. */
897 auto_vec<gcond *> conds;
898
899 /* Main loop IV cond. */
900 gcond* loop_iv_cond;
901
902 /* True if there are no loop carried data dependencies in the loop.
903 If loop->safelen <= 1, then this is always true, either the loop
904 didn't have any loop carried data dependencies, or the loop is being
905 vectorized guarded with some runtime alias checks, or couldn't
906 be vectorized at all, but then this field shouldn't be used.
907 For loop->safelen >= 2, the user has asserted that there are no
908 backward dependencies, but there still could be loop carried forward
909 dependencies in such loops. This flag will be false if normal
910 vectorizer data dependency analysis would fail or require versioning
911 for alias, but because of loop->safelen >= 2 it has been vectorized
912 even without versioning for alias. E.g. in:
913 #pragma omp simd
914 for (int i = 0; i < m; i++)
915 a[i] = a[i + k] * c;
916 (or #pragma simd or #pragma ivdep) we can vectorize this and it will
917 DTRT even for k > 0 && k < m, but without safelen we would not
918 vectorize this, so this field would be false. */
919 bool no_data_dependencies;
920
921 /* Mark loops having masked stores. */
922 bool has_mask_store;
923
924 /* Queued scaling factor for the scalar loop. */
925 profile_probability scalar_loop_scaling;
926
927 /* If if-conversion versioned this loop before conversion, this is the
928 loop version without if-conversion. */
929 class loop *scalar_loop;
930
931 /* For loops being epilogues of already vectorized loops
932 this points to the original vectorized loop. Otherwise NULL. */
933 _loop_vec_info *orig_loop_info;
934
935 /* Used to store loop_vec_infos of epilogues of this loop during
936 analysis. */
937 vec<_loop_vec_info *> epilogue_vinfos;
938
939 /* The controlling loop IV for the current loop when vectorizing. This IV
940 controls the natural exits of the loop. */
941 edge vec_loop_iv_exit;
942
943 /* The controlling loop IV for the epilogue loop when vectorizing. This IV
944 controls the natural exits of the loop. */
945 edge vec_epilogue_loop_iv_exit;
946
947 /* The controlling loop IV for the scalar loop being vectorized. This IV
948 controls the natural exits of the loop. */
949 edge scalar_loop_iv_exit;
950
951 /* Used to store the list of stores needing to be moved if doing early
952 break vectorization as they would violate the scalar loop semantics if
953 vectorized in their current location. These are stored in order that they
954 need to be moved. */
955 auto_vec<gimple *> early_break_stores;
956
957 /* The final basic block where to move statements to. In the case of
958 multiple exits this could be pretty far away. */
959 basic_block early_break_dest_bb;
960
961 /* Statements whose VUSES need updating if early break vectorization is to
962 happen. */
963 auto_vec<gimple*> early_break_vuses;
964} *loop_vec_info;
965
966/* Access Functions. */
967#define LOOP_VINFO_LOOP(L) (L)->loop
968#define LOOP_VINFO_IV_EXIT(L) (L)->vec_loop_iv_exit
969#define LOOP_VINFO_EPILOGUE_IV_EXIT(L) (L)->vec_epilogue_loop_iv_exit
970#define LOOP_VINFO_SCALAR_IV_EXIT(L) (L)->scalar_loop_iv_exit
971#define LOOP_VINFO_BBS(L) (L)->bbs
972#define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
973#define LOOP_VINFO_NITERS(L) (L)->num_iters
974/* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
975 prologue peeling retain total unchanged scalar loop iterations for
976 cost model. */
977#define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
978#define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
979#define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
980#define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
981#define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
982#define LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P(L) (L)->can_use_partial_vectors_p
983#define LOOP_VINFO_USING_PARTIAL_VECTORS_P(L) (L)->using_partial_vectors_p
984#define LOOP_VINFO_USING_DECREMENTING_IV_P(L) (L)->using_decrementing_iv_p
985#define LOOP_VINFO_USING_SELECT_VL_P(L) (L)->using_select_vl_p
986#define LOOP_VINFO_EPIL_USING_PARTIAL_VECTORS_P(L) \
987 (L)->epil_using_partial_vectors_p
988#define LOOP_VINFO_PARTIAL_LOAD_STORE_BIAS(L) (L)->partial_load_store_bias
989#define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
990#define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
991#define LOOP_VINFO_MASKS(L) (L)->masks
992#define LOOP_VINFO_LENS(L) (L)->lens
993#define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters
994#define LOOP_VINFO_RGROUP_COMPARE_TYPE(L) (L)->rgroup_compare_type
995#define LOOP_VINFO_RGROUP_IV_TYPE(L) (L)->rgroup_iv_type
996#define LOOP_VINFO_PARTIAL_VECTORS_STYLE(L) (L)->partial_vector_style
997#define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
998#define LOOP_VINFO_N_STMTS(L) (L)->shared->n_stmts
999#define LOOP_VINFO_LOOP_NEST(L) (L)->shared->loop_nest
1000#define LOOP_VINFO_DATAREFS(L) (L)->shared->datarefs
1001#define LOOP_VINFO_DDRS(L) (L)->shared->ddrs
1002#define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
1003#define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
1004#define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
1005#define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
1006#define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
1007#define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
1008#define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
1009#define LOOP_VINFO_CHECK_NONZERO(L) (L)->check_nonzero
1010#define LOOP_VINFO_LOWER_BOUNDS(L) (L)->lower_bounds
1011#define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
1012#define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
1013#define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
1014#define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
1015#define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
1016#define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
1017#define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
1018#define LOOP_VINFO_EARLY_BREAKS(L) (L)->early_breaks
1019#define LOOP_VINFO_EARLY_BRK_STORES(L) (L)->early_break_stores
1020#define LOOP_VINFO_EARLY_BREAKS_VECT_PEELED(L) \
1021 (single_pred ((L)->loop->latch) != (L)->vec_loop_iv_exit->src)
1022#define LOOP_VINFO_EARLY_BRK_DEST_BB(L) (L)->early_break_dest_bb
1023#define LOOP_VINFO_EARLY_BRK_VUSES(L) (L)->early_break_vuses
1024#define LOOP_VINFO_LOOP_CONDS(L) (L)->conds
1025#define LOOP_VINFO_LOOP_IV_COND(L) (L)->loop_iv_cond
1026#define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
1027#define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
1028#define LOOP_VINFO_SCALAR_LOOP_SCALING(L) (L)->scalar_loop_scaling
1029#define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
1030#define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
1031#define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
1032#define LOOP_VINFO_SIMD_IF_COND(L) (L)->simd_if_cond
1033#define LOOP_VINFO_INNER_LOOP_COST_FACTOR(L) (L)->inner_loop_cost_factor
1034
1035#define LOOP_VINFO_FULLY_MASKED_P(L) \
1036 (LOOP_VINFO_USING_PARTIAL_VECTORS_P (L) \
1037 && !LOOP_VINFO_MASKS (L).is_empty ())
1038
1039#define LOOP_VINFO_FULLY_WITH_LENGTH_P(L) \
1040 (LOOP_VINFO_USING_PARTIAL_VECTORS_P (L) \
1041 && !LOOP_VINFO_LENS (L).is_empty ())
1042
1043#define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
1044 ((L)->may_misalign_stmts.length () > 0)
1045#define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
1046 ((L)->comp_alias_ddrs.length () > 0 \
1047 || (L)->check_unequal_addrs.length () > 0 \
1048 || (L)->lower_bounds.length () > 0)
1049#define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
1050 (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
1051#define LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND(L) \
1052 (LOOP_VINFO_SIMD_IF_COND (L))
1053#define LOOP_REQUIRES_VERSIONING(L) \
1054 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
1055 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
1056 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L) \
1057 || LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND (L))
1058
1059#define LOOP_VINFO_NITERS_KNOWN_P(L) \
1060 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
1061
1062#define LOOP_VINFO_EPILOGUE_P(L) \
1063 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
1064
1065#define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
1066 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
1067
1068/* Wrapper for loop_vec_info, for tracking success/failure, where a non-NULL
1069 value signifies success, and a NULL value signifies failure, supporting
1070 propagating an opt_problem * describing the failure back up the call
1071 stack. */
1072typedef opt_pointer_wrapper <loop_vec_info> opt_loop_vec_info;
1073
1074inline loop_vec_info
1075loop_vec_info_for_loop (class loop *loop)
1076{
1077 return (loop_vec_info) loop->aux;
1078}
1079
1080struct slp_root
1081{
1082 slp_root (slp_instance_kind kind_, vec<stmt_vec_info> stmts_,
1083 vec<stmt_vec_info> roots_, vec<tree> remain_ = vNULL)
1084 : kind(kind_), stmts(stmts_), roots(roots_), remain(remain_) {}
1085 slp_instance_kind kind;
1086 vec<stmt_vec_info> stmts;
1087 vec<stmt_vec_info> roots;
1088 vec<tree> remain;
1089};
1090
1091typedef class _bb_vec_info : public vec_info
1092{
1093public:
1094 _bb_vec_info (vec<basic_block> bbs, vec_info_shared *);
1095 ~_bb_vec_info ();
1096
1097 /* The region we are operating on. bbs[0] is the entry, excluding
1098 its PHI nodes. In the future we might want to track an explicit
1099 entry edge to cover bbs[0] PHI nodes and have a region entry
1100 insert location. */
1101 vec<basic_block> bbs;
1102
1103 vec<slp_root> roots;
1104} *bb_vec_info;
1105
1106#define BB_VINFO_BB(B) (B)->bb
1107#define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
1108#define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
1109#define BB_VINFO_DATAREFS(B) (B)->shared->datarefs
1110#define BB_VINFO_DDRS(B) (B)->shared->ddrs
1111
1112/*-----------------------------------------------------------------*/
1113/* Info on vectorized defs. */
1114/*-----------------------------------------------------------------*/
1115enum stmt_vec_info_type {
1116 undef_vec_info_type = 0,
1117 load_vec_info_type,
1118 store_vec_info_type,
1119 shift_vec_info_type,
1120 op_vec_info_type,
1121 call_vec_info_type,
1122 call_simd_clone_vec_info_type,
1123 assignment_vec_info_type,
1124 condition_vec_info_type,
1125 comparison_vec_info_type,
1126 reduc_vec_info_type,
1127 induc_vec_info_type,
1128 type_promotion_vec_info_type,
1129 type_demotion_vec_info_type,
1130 type_conversion_vec_info_type,
1131 cycle_phi_info_type,
1132 lc_phi_info_type,
1133 phi_info_type,
1134 recurr_info_type,
1135 loop_exit_ctrl_vec_info_type
1136};
1137
1138/* Indicates whether/how a variable is used in the scope of loop/basic
1139 block. */
1140enum vect_relevant {
1141 vect_unused_in_scope = 0,
1142
1143 /* The def is only used outside the loop. */
1144 vect_used_only_live,
1145 /* The def is in the inner loop, and the use is in the outer loop, and the
1146 use is a reduction stmt. */
1147 vect_used_in_outer_by_reduction,
1148 /* The def is in the inner loop, and the use is in the outer loop (and is
1149 not part of reduction). */
1150 vect_used_in_outer,
1151
1152 /* defs that feed computations that end up (only) in a reduction. These
1153 defs may be used by non-reduction stmts, but eventually, any
1154 computations/values that are affected by these defs are used to compute
1155 a reduction (i.e. don't get stored to memory, for example). We use this
1156 to identify computations that we can change the order in which they are
1157 computed. */
1158 vect_used_by_reduction,
1159
1160 vect_used_in_scope
1161};
1162
1163/* The type of vectorization that can be applied to the stmt: regular loop-based
1164 vectorization; pure SLP - the stmt is a part of SLP instances and does not
1165 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
1166 a part of SLP instance and also must be loop-based vectorized, since it has
1167 uses outside SLP sequences.
1168
1169 In the loop context the meanings of pure and hybrid SLP are slightly
1170 different. By saying that pure SLP is applied to the loop, we mean that we
1171 exploit only intra-iteration parallelism in the loop; i.e., the loop can be
1172 vectorized without doing any conceptual unrolling, cause we don't pack
1173 together stmts from different iterations, only within a single iteration.
1174 Loop hybrid SLP means that we exploit both intra-iteration and
1175 inter-iteration parallelism (e.g., number of elements in the vector is 4
1176 and the slp-group-size is 2, in which case we don't have enough parallelism
1177 within an iteration, so we obtain the rest of the parallelism from subsequent
1178 iterations by unrolling the loop by 2). */
1179enum slp_vect_type {
1180 loop_vect = 0,
1181 pure_slp,
1182 hybrid
1183};
1184
1185/* Says whether a statement is a load, a store of a vectorized statement
1186 result, or a store of an invariant value. */
1187enum vec_load_store_type {
1188 VLS_LOAD,
1189 VLS_STORE,
1190 VLS_STORE_INVARIANT
1191};
1192
1193/* Describes how we're going to vectorize an individual load or store,
1194 or a group of loads or stores. */
1195enum vect_memory_access_type {
1196 /* An access to an invariant address. This is used only for loads. */
1197 VMAT_INVARIANT,
1198
1199 /* A simple contiguous access. */
1200 VMAT_CONTIGUOUS,
1201
1202 /* A contiguous access that goes down in memory rather than up,
1203 with no additional permutation. This is used only for stores
1204 of invariants. */
1205 VMAT_CONTIGUOUS_DOWN,
1206
1207 /* A simple contiguous access in which the elements need to be permuted
1208 after loading or before storing. Only used for loop vectorization;
1209 SLP uses separate permutes. */
1210 VMAT_CONTIGUOUS_PERMUTE,
1211
1212 /* A simple contiguous access in which the elements need to be reversed
1213 after loading or before storing. */
1214 VMAT_CONTIGUOUS_REVERSE,
1215
1216 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
1217 VMAT_LOAD_STORE_LANES,
1218
1219 /* An access in which each scalar element is loaded or stored
1220 individually. */
1221 VMAT_ELEMENTWISE,
1222
1223 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
1224 SLP accesses. Each unrolled iteration uses a contiguous load
1225 or store for the whole group, but the groups from separate iterations
1226 are combined in the same way as for VMAT_ELEMENTWISE. */
1227 VMAT_STRIDED_SLP,
1228
1229 /* The access uses gather loads or scatter stores. */
1230 VMAT_GATHER_SCATTER
1231};
1232
1233class dr_vec_info {
1234public:
1235 /* The data reference itself. */
1236 data_reference *dr;
1237 /* The statement that contains the data reference. */
1238 stmt_vec_info stmt;
1239 /* The analysis group this DR belongs to when doing BB vectorization.
1240 DRs of the same group belong to the same conditional execution context. */
1241 unsigned group;
1242 /* The misalignment in bytes of the reference, or -1 if not known. */
1243 int misalignment;
1244 /* The byte alignment that we'd ideally like the reference to have,
1245 and the value that misalignment is measured against. */
1246 poly_uint64 target_alignment;
1247 /* If true the alignment of base_decl needs to be increased. */
1248 bool base_misaligned;
1249 tree base_decl;
1250
1251 /* Stores current vectorized loop's offset. To be added to the DR's
1252 offset to calculate current offset of data reference. */
1253 tree offset;
1254};
1255
1256typedef struct data_reference *dr_p;
1257
1258class _stmt_vec_info {
1259public:
1260
1261 enum stmt_vec_info_type type;
1262
1263 /* Indicates whether this stmts is part of a computation whose result is
1264 used outside the loop. */
1265 bool live;
1266
1267 /* Stmt is part of some pattern (computation idiom) */
1268 bool in_pattern_p;
1269
1270 /* True if the statement was created during pattern recognition as
1271 part of the replacement for RELATED_STMT. This implies that the
1272 statement isn't part of any basic block, although for convenience
1273 its gimple_bb is the same as for RELATED_STMT. */
1274 bool pattern_stmt_p;
1275
1276 /* Is this statement vectorizable or should it be skipped in (partial)
1277 vectorization. */
1278 bool vectorizable;
1279
1280 /* The stmt to which this info struct refers to. */
1281 gimple *stmt;
1282
1283 /* The vector type to be used for the LHS of this statement. */
1284 tree vectype;
1285
1286 /* The vectorized stmts. */
1287 vec<gimple *> vec_stmts;
1288
1289 /* The following is relevant only for stmts that contain a non-scalar
1290 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
1291 at most one such data-ref. */
1292
1293 dr_vec_info dr_aux;
1294
1295 /* Information about the data-ref relative to this loop
1296 nest (the loop that is being considered for vectorization). */
1297 innermost_loop_behavior dr_wrt_vec_loop;
1298
1299 /* For loop PHI nodes, the base and evolution part of it. This makes sure
1300 this information is still available in vect_update_ivs_after_vectorizer
1301 where we may not be able to re-analyze the PHI nodes evolution as
1302 peeling for the prologue loop can make it unanalyzable. The evolution
1303 part is still correct after peeling, but the base may have changed from
1304 the version here. */
1305 tree loop_phi_evolution_base_unchanged;
1306 tree loop_phi_evolution_part;
1307 enum vect_induction_op_type loop_phi_evolution_type;
1308
1309 /* Used for various bookkeeping purposes, generally holding a pointer to
1310 some other stmt S that is in some way "related" to this stmt.
1311 Current use of this field is:
1312 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
1313 true): S is the "pattern stmt" that represents (and replaces) the
1314 sequence of stmts that constitutes the pattern. Similarly, the
1315 related_stmt of the "pattern stmt" points back to this stmt (which is
1316 the last stmt in the original sequence of stmts that constitutes the
1317 pattern). */
1318 stmt_vec_info related_stmt;
1319
1320 /* Used to keep a sequence of def stmts of a pattern stmt if such exists.
1321 The sequence is attached to the original statement rather than the
1322 pattern statement. */
1323 gimple_seq pattern_def_seq;
1324
1325 /* Selected SIMD clone's function info. First vector element
1326 is SIMD clone's function decl, followed by a pair of trees (base + step)
1327 for linear arguments (pair of NULLs for other arguments). */
1328 vec<tree> simd_clone_info;
1329
1330 /* Classify the def of this stmt. */
1331 enum vect_def_type def_type;
1332
1333 /* Whether the stmt is SLPed, loop-based vectorized, or both. */
1334 enum slp_vect_type slp_type;
1335
1336 /* Interleaving and reduction chains info. */
1337 /* First element in the group. */
1338 stmt_vec_info first_element;
1339 /* Pointer to the next element in the group. */
1340 stmt_vec_info next_element;
1341 /* The size of the group. */
1342 unsigned int size;
1343 /* For stores, number of stores from this group seen. We vectorize the last
1344 one. */
1345 unsigned int store_count;
1346 /* For loads only, the gap from the previous load. For consecutive loads, GAP
1347 is 1. */
1348 unsigned int gap;
1349
1350 /* The minimum negative dependence distance this stmt participates in
1351 or zero if none. */
1352 unsigned int min_neg_dist;
1353
1354 /* Not all stmts in the loop need to be vectorized. e.g, the increment
1355 of the loop induction variable and computation of array indexes. relevant
1356 indicates whether the stmt needs to be vectorized. */
1357 enum vect_relevant relevant;
1358
1359 /* For loads if this is a gather, for stores if this is a scatter. */
1360 bool gather_scatter_p;
1361
1362 /* True if this is an access with loop-invariant stride. */
1363 bool strided_p;
1364
1365 /* For both loads and stores. */
1366 unsigned simd_lane_access_p : 3;
1367
1368 /* Classifies how the load or store is going to be implemented
1369 for loop vectorization. */
1370 vect_memory_access_type memory_access_type;
1371
1372 /* For INTEGER_INDUC_COND_REDUCTION, the initial value to be used. */
1373 tree induc_cond_initial_val;
1374
1375 /* If not NULL the value to be added to compute final reduction value. */
1376 tree reduc_epilogue_adjustment;
1377
1378 /* On a reduction PHI the reduction type as detected by
1379 vect_is_simple_reduction and vectorizable_reduction. */
1380 enum vect_reduction_type reduc_type;
1381
1382 /* The original reduction code, to be used in the epilogue. */
1383 code_helper reduc_code;
1384 /* An internal function we should use in the epilogue. */
1385 internal_fn reduc_fn;
1386
1387 /* On a stmt participating in the reduction the index of the operand
1388 on the reduction SSA cycle. */
1389 int reduc_idx;
1390
1391 /* On a reduction PHI the def returned by vect_force_simple_reduction.
1392 On the def returned by vect_force_simple_reduction the
1393 corresponding PHI. */
1394 stmt_vec_info reduc_def;
1395
1396 /* The vector input type relevant for reduction vectorization. */
1397 tree reduc_vectype_in;
1398
1399 /* The vector type for performing the actual reduction. */
1400 tree reduc_vectype;
1401
1402 /* If IS_REDUC_INFO is true and if the vector code is performing
1403 N scalar reductions in parallel, this variable gives the initial
1404 scalar values of those N reductions. */
1405 vec<tree> reduc_initial_values;
1406
1407 /* If IS_REDUC_INFO is true and if the vector code is performing
1408 N scalar reductions in parallel, this variable gives the vectorized code's
1409 final (scalar) result for each of those N reductions. In other words,
1410 REDUC_SCALAR_RESULTS[I] replaces the original scalar code's loop-closed
1411 SSA PHI for reduction number I. */
1412 vec<tree> reduc_scalar_results;
1413
1414 /* Only meaningful if IS_REDUC_INFO. If non-null, the reduction is
1415 being performed by an epilogue loop and we have decided to reuse
1416 this accumulator from the main loop. */
1417 vect_reusable_accumulator *reused_accumulator;
1418
1419 /* Whether we force a single cycle PHI during reduction vectorization. */
1420 bool force_single_cycle;
1421
1422 /* Whether on this stmt reduction meta is recorded. */
1423 bool is_reduc_info;
1424
1425 /* If nonzero, the lhs of the statement could be truncated to this
1426 many bits without affecting any users of the result. */
1427 unsigned int min_output_precision;
1428
1429 /* If nonzero, all non-boolean input operands have the same precision,
1430 and they could each be truncated to this many bits without changing
1431 the result. */
1432 unsigned int min_input_precision;
1433
1434 /* If OPERATION_BITS is nonzero, the statement could be performed on
1435 an integer with the sign and number of bits given by OPERATION_SIGN
1436 and OPERATION_BITS without changing the result. */
1437 unsigned int operation_precision;
1438 signop operation_sign;
1439
1440 /* If the statement produces a boolean result, this value describes
1441 how we should choose the associated vector type. The possible
1442 values are:
1443
1444 - an integer precision N if we should use the vector mask type
1445 associated with N-bit integers. This is only used if all relevant
1446 input booleans also want the vector mask type for N-bit integers,
1447 or if we can convert them into that form by pattern-matching.
1448
1449 - ~0U if we considered choosing a vector mask type but decided
1450 to treat the boolean as a normal integer type instead.
1451
1452 - 0 otherwise. This means either that the operation isn't one that
1453 could have a vector mask type (and so should have a normal vector
1454 type instead) or that we simply haven't made a choice either way. */
1455 unsigned int mask_precision;
1456
1457 /* True if this is only suitable for SLP vectorization. */
1458 bool slp_vect_only_p;
1459
1460 /* True if this is a pattern that can only be handled by SLP
1461 vectorization. */
1462 bool slp_vect_pattern_only_p;
1463};
1464
1465/* Information about a gather/scatter call. */
1466struct gather_scatter_info {
1467 /* The internal function to use for the gather/scatter operation,
1468 or IFN_LAST if a built-in function should be used instead. */
1469 internal_fn ifn;
1470
1471 /* The FUNCTION_DECL for the built-in gather/scatter function,
1472 or null if an internal function should be used instead. */
1473 tree decl;
1474
1475 /* The loop-invariant base value. */
1476 tree base;
1477
1478 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
1479 tree offset;
1480
1481 /* Each offset element should be multiplied by this amount before
1482 being added to the base. */
1483 int scale;
1484
1485 /* The definition type for the vectorized offset. */
1486 enum vect_def_type offset_dt;
1487
1488 /* The type of the vectorized offset. */
1489 tree offset_vectype;
1490
1491 /* The type of the scalar elements after loading or before storing. */
1492 tree element_type;
1493
1494 /* The type of the scalar elements being loaded or stored. */
1495 tree memory_type;
1496};
1497
1498/* Access Functions. */
1499#define STMT_VINFO_TYPE(S) (S)->type
1500#define STMT_VINFO_STMT(S) (S)->stmt
1501#define STMT_VINFO_RELEVANT(S) (S)->relevant
1502#define STMT_VINFO_LIVE_P(S) (S)->live
1503#define STMT_VINFO_VECTYPE(S) (S)->vectype
1504#define STMT_VINFO_VEC_STMTS(S) (S)->vec_stmts
1505#define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
1506#define STMT_VINFO_DATA_REF(S) ((S)->dr_aux.dr + 0)
1507#define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
1508#define STMT_VINFO_STRIDED_P(S) (S)->strided_p
1509#define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
1510#define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
1511#define STMT_VINFO_VEC_INDUC_COND_INITIAL_VAL(S) (S)->induc_cond_initial_val
1512#define STMT_VINFO_REDUC_EPILOGUE_ADJUSTMENT(S) (S)->reduc_epilogue_adjustment
1513#define STMT_VINFO_REDUC_IDX(S) (S)->reduc_idx
1514#define STMT_VINFO_FORCE_SINGLE_CYCLE(S) (S)->force_single_cycle
1515
1516#define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
1517#define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
1518#define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
1519#define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
1520#define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
1521#define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
1522#define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
1523 (S)->dr_wrt_vec_loop.base_misalignment
1524#define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
1525 (S)->dr_wrt_vec_loop.offset_alignment
1526#define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
1527 (S)->dr_wrt_vec_loop.step_alignment
1528
1529#define STMT_VINFO_DR_INFO(S) \
1530 (gcc_checking_assert ((S)->dr_aux.stmt == (S)), &(S)->dr_aux)
1531
1532#define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
1533#define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
1534#define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
1535#define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
1536#define STMT_VINFO_DEF_TYPE(S) (S)->def_type
1537#define STMT_VINFO_GROUPED_ACCESS(S) \
1538 ((S)->dr_aux.dr && DR_GROUP_FIRST_ELEMENT(S))
1539#define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
1540#define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
1541#define STMT_VINFO_LOOP_PHI_EVOLUTION_TYPE(S) (S)->loop_phi_evolution_type
1542#define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
1543#define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
1544#define STMT_VINFO_REDUC_CODE(S) (S)->reduc_code
1545#define STMT_VINFO_REDUC_FN(S) (S)->reduc_fn
1546#define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
1547#define STMT_VINFO_REDUC_VECTYPE(S) (S)->reduc_vectype
1548#define STMT_VINFO_REDUC_VECTYPE_IN(S) (S)->reduc_vectype_in
1549#define STMT_VINFO_SLP_VECT_ONLY(S) (S)->slp_vect_only_p
1550#define STMT_VINFO_SLP_VECT_ONLY_PATTERN(S) (S)->slp_vect_pattern_only_p
1551
1552#define DR_GROUP_FIRST_ELEMENT(S) \
1553 (gcc_checking_assert ((S)->dr_aux.dr), (S)->first_element)
1554#define DR_GROUP_NEXT_ELEMENT(S) \
1555 (gcc_checking_assert ((S)->dr_aux.dr), (S)->next_element)
1556#define DR_GROUP_SIZE(S) \
1557 (gcc_checking_assert ((S)->dr_aux.dr), (S)->size)
1558#define DR_GROUP_STORE_COUNT(S) \
1559 (gcc_checking_assert ((S)->dr_aux.dr), (S)->store_count)
1560#define DR_GROUP_GAP(S) \
1561 (gcc_checking_assert ((S)->dr_aux.dr), (S)->gap)
1562
1563#define REDUC_GROUP_FIRST_ELEMENT(S) \
1564 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->first_element)
1565#define REDUC_GROUP_NEXT_ELEMENT(S) \
1566 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->next_element)
1567#define REDUC_GROUP_SIZE(S) \
1568 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->size)
1569
1570#define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
1571
1572#define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
1573#define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
1574#define STMT_SLP_TYPE(S) (S)->slp_type
1575
1576/* Contains the scalar or vector costs for a vec_info. */
1577class vector_costs
1578{
1579public:
1580 vector_costs (vec_info *, bool);
1581 virtual ~vector_costs () {}
1582
1583 /* Update the costs in response to adding COUNT copies of a statement.
1584
1585 - WHERE specifies whether the cost occurs in the loop prologue,
1586 the loop body, or the loop epilogue.
1587 - KIND is the kind of statement, which is always meaningful.
1588 - STMT_INFO or NODE, if nonnull, describe the statement that will be
1589 vectorized.
1590 - VECTYPE, if nonnull, is the vector type that the vectorized
1591 statement will operate on. Note that this should be used in
1592 preference to STMT_VINFO_VECTYPE (STMT_INFO) since the latter
1593 is not correct for SLP.
1594 - for unaligned_load and unaligned_store statements, MISALIGN is
1595 the byte misalignment of the load or store relative to the target's
1596 preferred alignment for VECTYPE, or DR_MISALIGNMENT_UNKNOWN
1597 if the misalignment is not known.
1598
1599 Return the calculated cost as well as recording it. The return
1600 value is used for dumping purposes. */
1601 virtual unsigned int add_stmt_cost (int count, vect_cost_for_stmt kind,
1602 stmt_vec_info stmt_info,
1603 slp_tree node,
1604 tree vectype, int misalign,
1605 vect_cost_model_location where);
1606
1607 /* Finish calculating the cost of the code. The results can be
1608 read back using the functions below.
1609
1610 If the costs describe vector code, SCALAR_COSTS gives the costs
1611 of the corresponding scalar code, otherwise it is null. */
1612 virtual void finish_cost (const vector_costs *scalar_costs);
1613
1614 /* The costs in THIS and OTHER both describe ways of vectorizing
1615 a main loop. Return true if the costs described by THIS are
1616 cheaper than the costs described by OTHER. Return false if any
1617 of the following are true:
1618
1619 - THIS and OTHER are of equal cost
1620 - OTHER is better than THIS
1621 - we can't be sure about the relative costs of THIS and OTHER. */
1622 virtual bool better_main_loop_than_p (const vector_costs *other) const;
1623
1624 /* Likewise, but the costs in THIS and OTHER both describe ways of
1625 vectorizing an epilogue loop of MAIN_LOOP. */
1626 virtual bool better_epilogue_loop_than_p (const vector_costs *other,
1627 loop_vec_info main_loop) const;
1628
1629 unsigned int prologue_cost () const;
1630 unsigned int body_cost () const;
1631 unsigned int epilogue_cost () const;
1632 unsigned int outside_cost () const;
1633 unsigned int total_cost () const;
1634 unsigned int suggested_unroll_factor () const;
1635
1636protected:
1637 unsigned int record_stmt_cost (stmt_vec_info, vect_cost_model_location,
1638 unsigned int);
1639 unsigned int adjust_cost_for_freq (stmt_vec_info, vect_cost_model_location,
1640 unsigned int);
1641 int compare_inside_loop_cost (const vector_costs *) const;
1642 int compare_outside_loop_cost (const vector_costs *) const;
1643
1644 /* The region of code that we're considering vectorizing. */
1645 vec_info *m_vinfo;
1646
1647 /* True if we're costing the scalar code, false if we're costing
1648 the vector code. */
1649 bool m_costing_for_scalar;
1650
1651 /* The costs of the three regions, indexed by vect_cost_model_location. */
1652 unsigned int m_costs[3];
1653
1654 /* The suggested unrolling factor determined at finish_cost. */
1655 unsigned int m_suggested_unroll_factor;
1656
1657 /* True if finish_cost has been called. */
1658 bool m_finished;
1659};
1660
1661/* Create costs for VINFO. COSTING_FOR_SCALAR is true if the costs
1662 are for scalar code, false if they are for vector code. */
1663
1664inline
1665vector_costs::vector_costs (vec_info *vinfo, bool costing_for_scalar)
1666 : m_vinfo (vinfo),
1667 m_costing_for_scalar (costing_for_scalar),
1668 m_costs (),
1669 m_suggested_unroll_factor(1),
1670 m_finished (false)
1671{
1672}
1673
1674/* Return the cost of the prologue code (in abstract units). */
1675
1676inline unsigned int
1677vector_costs::prologue_cost () const
1678{
1679 gcc_checking_assert (m_finished);
1680 return m_costs[vect_prologue];
1681}
1682
1683/* Return the cost of the body code (in abstract units). */
1684
1685inline unsigned int
1686vector_costs::body_cost () const
1687{
1688 gcc_checking_assert (m_finished);
1689 return m_costs[vect_body];
1690}
1691
1692/* Return the cost of the epilogue code (in abstract units). */
1693
1694inline unsigned int
1695vector_costs::epilogue_cost () const
1696{
1697 gcc_checking_assert (m_finished);
1698 return m_costs[vect_epilogue];
1699}
1700
1701/* Return the cost of the prologue and epilogue code (in abstract units). */
1702
1703inline unsigned int
1704vector_costs::outside_cost () const
1705{
1706 return prologue_cost () + epilogue_cost ();
1707}
1708
1709/* Return the cost of the prologue, body and epilogue code
1710 (in abstract units). */
1711
1712inline unsigned int
1713vector_costs::total_cost () const
1714{
1715 return body_cost () + outside_cost ();
1716}
1717
1718/* Return the suggested unroll factor. */
1719
1720inline unsigned int
1721vector_costs::suggested_unroll_factor () const
1722{
1723 gcc_checking_assert (m_finished);
1724 return m_suggested_unroll_factor;
1725}
1726
1727#define VECT_MAX_COST 1000
1728
1729/* The maximum number of intermediate steps required in multi-step type
1730 conversion. */
1731#define MAX_INTERM_CVT_STEPS 3
1732
1733#define MAX_VECTORIZATION_FACTOR INT_MAX
1734
1735/* Nonzero if TYPE represents a (scalar) boolean type or type
1736 in the middle-end compatible with it (unsigned precision 1 integral
1737 types). Used to determine which types should be vectorized as
1738 VECTOR_BOOLEAN_TYPE_P. */
1739
1740#define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
1741 (TREE_CODE (TYPE) == BOOLEAN_TYPE \
1742 || ((TREE_CODE (TYPE) == INTEGER_TYPE \
1743 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
1744 && TYPE_PRECISION (TYPE) == 1 \
1745 && TYPE_UNSIGNED (TYPE)))
1746
1747inline bool
1748nested_in_vect_loop_p (class loop *loop, stmt_vec_info stmt_info)
1749{
1750 return (loop->inner
1751 && (loop->inner == (gimple_bb (g: stmt_info->stmt))->loop_father));
1752}
1753
1754/* PHI is either a scalar reduction phi or a scalar induction phi.
1755 Return the initial value of the variable on entry to the containing
1756 loop. */
1757
1758inline tree
1759vect_phi_initial_value (gphi *phi)
1760{
1761 basic_block bb = gimple_bb (g: phi);
1762 edge pe = loop_preheader_edge (bb->loop_father);
1763 gcc_assert (pe->dest == bb);
1764 return PHI_ARG_DEF_FROM_EDGE (phi, pe);
1765}
1766
1767/* Return true if STMT_INFO should produce a vector mask type rather than
1768 a normal nonmask type. */
1769
1770inline bool
1771vect_use_mask_type_p (stmt_vec_info stmt_info)
1772{
1773 return stmt_info->mask_precision && stmt_info->mask_precision != ~0U;
1774}
1775
1776/* Return TRUE if a statement represented by STMT_INFO is a part of a
1777 pattern. */
1778
1779inline bool
1780is_pattern_stmt_p (stmt_vec_info stmt_info)
1781{
1782 return stmt_info->pattern_stmt_p;
1783}
1784
1785/* If STMT_INFO is a pattern statement, return the statement that it
1786 replaces, otherwise return STMT_INFO itself. */
1787
1788inline stmt_vec_info
1789vect_orig_stmt (stmt_vec_info stmt_info)
1790{
1791 if (is_pattern_stmt_p (stmt_info))
1792 return STMT_VINFO_RELATED_STMT (stmt_info);
1793 return stmt_info;
1794}
1795
1796/* Return the later statement between STMT1_INFO and STMT2_INFO. */
1797
1798inline stmt_vec_info
1799get_later_stmt (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info)
1800{
1801 if (gimple_uid (g: vect_orig_stmt (stmt_info: stmt1_info)->stmt)
1802 > gimple_uid (g: vect_orig_stmt (stmt_info: stmt2_info)->stmt))
1803 return stmt1_info;
1804 else
1805 return stmt2_info;
1806}
1807
1808/* If STMT_INFO has been replaced by a pattern statement, return the
1809 replacement statement, otherwise return STMT_INFO itself. */
1810
1811inline stmt_vec_info
1812vect_stmt_to_vectorize (stmt_vec_info stmt_info)
1813{
1814 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
1815 return STMT_VINFO_RELATED_STMT (stmt_info);
1816 return stmt_info;
1817}
1818
1819/* Return true if BB is a loop header. */
1820
1821inline bool
1822is_loop_header_bb_p (basic_block bb)
1823{
1824 if (bb == (bb->loop_father)->header)
1825 return true;
1826
1827 return false;
1828}
1829
1830/* Return pow2 (X). */
1831
1832inline int
1833vect_pow2 (int x)
1834{
1835 int i, res = 1;
1836
1837 for (i = 0; i < x; i++)
1838 res *= 2;
1839
1840 return res;
1841}
1842
1843/* Alias targetm.vectorize.builtin_vectorization_cost. */
1844
1845inline int
1846builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
1847 tree vectype, int misalign)
1848{
1849 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1850 vectype, misalign);
1851}
1852
1853/* Get cost by calling cost target builtin. */
1854
1855inline
1856int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
1857{
1858 return builtin_vectorization_cost (type_of_cost, NULL, misalign: 0);
1859}
1860
1861/* Alias targetm.vectorize.init_cost. */
1862
1863inline vector_costs *
1864init_cost (vec_info *vinfo, bool costing_for_scalar)
1865{
1866 return targetm.vectorize.create_costs (vinfo, costing_for_scalar);
1867}
1868
1869extern void dump_stmt_cost (FILE *, int, enum vect_cost_for_stmt,
1870 stmt_vec_info, slp_tree, tree, int, unsigned,
1871 enum vect_cost_model_location);
1872
1873/* Alias targetm.vectorize.add_stmt_cost. */
1874
1875inline unsigned
1876add_stmt_cost (vector_costs *costs, int count,
1877 enum vect_cost_for_stmt kind,
1878 stmt_vec_info stmt_info, slp_tree node,
1879 tree vectype, int misalign,
1880 enum vect_cost_model_location where)
1881{
1882 unsigned cost = costs->add_stmt_cost (count, kind, stmt_info, node, vectype,
1883 misalign, where);
1884 if (dump_file && (dump_flags & TDF_DETAILS))
1885 dump_stmt_cost (dump_file, count, kind, stmt_info, node, vectype, misalign,
1886 cost, where);
1887 return cost;
1888}
1889
1890inline unsigned
1891add_stmt_cost (vector_costs *costs, int count, enum vect_cost_for_stmt kind,
1892 enum vect_cost_model_location where)
1893{
1894 gcc_assert (kind == cond_branch_taken || kind == cond_branch_not_taken
1895 || kind == scalar_stmt);
1896 return add_stmt_cost (costs, count, kind, NULL, NULL, NULL_TREE, misalign: 0, where);
1897}
1898
1899/* Alias targetm.vectorize.add_stmt_cost. */
1900
1901inline unsigned
1902add_stmt_cost (vector_costs *costs, stmt_info_for_cost *i)
1903{
1904 return add_stmt_cost (costs, count: i->count, kind: i->kind, stmt_info: i->stmt_info, node: i->node,
1905 vectype: i->vectype, misalign: i->misalign, where: i->where);
1906}
1907
1908/* Alias targetm.vectorize.finish_cost. */
1909
1910inline void
1911finish_cost (vector_costs *costs, const vector_costs *scalar_costs,
1912 unsigned *prologue_cost, unsigned *body_cost,
1913 unsigned *epilogue_cost, unsigned *suggested_unroll_factor = NULL)
1914{
1915 costs->finish_cost (scalar_costs);
1916 *prologue_cost = costs->prologue_cost ();
1917 *body_cost = costs->body_cost ();
1918 *epilogue_cost = costs->epilogue_cost ();
1919 if (suggested_unroll_factor)
1920 *suggested_unroll_factor = costs->suggested_unroll_factor ();
1921}
1922
1923inline void
1924add_stmt_costs (vector_costs *costs, stmt_vector_for_cost *cost_vec)
1925{
1926 stmt_info_for_cost *cost;
1927 unsigned i;
1928 FOR_EACH_VEC_ELT (*cost_vec, i, cost)
1929 add_stmt_cost (costs, count: cost->count, kind: cost->kind, stmt_info: cost->stmt_info,
1930 node: cost->node, vectype: cost->vectype, misalign: cost->misalign, where: cost->where);
1931}
1932
1933/*-----------------------------------------------------------------*/
1934/* Info on data references alignment. */
1935/*-----------------------------------------------------------------*/
1936#define DR_MISALIGNMENT_UNKNOWN (-1)
1937#define DR_MISALIGNMENT_UNINITIALIZED (-2)
1938
1939inline void
1940set_dr_misalignment (dr_vec_info *dr_info, int val)
1941{
1942 dr_info->misalignment = val;
1943}
1944
1945extern int dr_misalignment (dr_vec_info *dr_info, tree vectype,
1946 poly_int64 offset = 0);
1947
1948#define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
1949
1950/* Only defined once DR_MISALIGNMENT is defined. */
1951inline const poly_uint64
1952dr_target_alignment (dr_vec_info *dr_info)
1953{
1954 if (STMT_VINFO_GROUPED_ACCESS (dr_info->stmt))
1955 dr_info = STMT_VINFO_DR_INFO (DR_GROUP_FIRST_ELEMENT (dr_info->stmt));
1956 return dr_info->target_alignment;
1957}
1958#define DR_TARGET_ALIGNMENT(DR) dr_target_alignment (DR)
1959
1960inline void
1961set_dr_target_alignment (dr_vec_info *dr_info, poly_uint64 val)
1962{
1963 dr_info->target_alignment = val;
1964}
1965#define SET_DR_TARGET_ALIGNMENT(DR, VAL) set_dr_target_alignment (DR, VAL)
1966
1967/* Return true if data access DR_INFO is aligned to the targets
1968 preferred alignment for VECTYPE (which may be less than a full vector). */
1969
1970inline bool
1971aligned_access_p (dr_vec_info *dr_info, tree vectype)
1972{
1973 return (dr_misalignment (dr_info, vectype) == 0);
1974}
1975
1976/* Return TRUE if the (mis-)alignment of the data access is known with
1977 respect to the targets preferred alignment for VECTYPE, and FALSE
1978 otherwise. */
1979
1980inline bool
1981known_alignment_for_access_p (dr_vec_info *dr_info, tree vectype)
1982{
1983 return (dr_misalignment (dr_info, vectype) != DR_MISALIGNMENT_UNKNOWN);
1984}
1985
1986/* Return the minimum alignment in bytes that the vectorized version
1987 of DR_INFO is guaranteed to have. */
1988
1989inline unsigned int
1990vect_known_alignment_in_bytes (dr_vec_info *dr_info, tree vectype)
1991{
1992 int misalignment = dr_misalignment (dr_info, vectype);
1993 if (misalignment == DR_MISALIGNMENT_UNKNOWN)
1994 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_info->dr)));
1995 else if (misalignment == 0)
1996 return known_alignment (DR_TARGET_ALIGNMENT (dr_info));
1997 return misalignment & -misalignment;
1998}
1999
2000/* Return the behavior of DR_INFO with respect to the vectorization context
2001 (which for outer loop vectorization might not be the behavior recorded
2002 in DR_INFO itself). */
2003
2004inline innermost_loop_behavior *
2005vect_dr_behavior (vec_info *vinfo, dr_vec_info *dr_info)
2006{
2007 stmt_vec_info stmt_info = dr_info->stmt;
2008 loop_vec_info loop_vinfo = dyn_cast<loop_vec_info> (p: vinfo);
2009 if (loop_vinfo == NULL
2010 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt_info))
2011 return &DR_INNERMOST (dr_info->dr);
2012 else
2013 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info);
2014}
2015
2016/* Return the offset calculated by adding the offset of this DR_INFO to the
2017 corresponding data_reference's offset. If CHECK_OUTER then use
2018 vect_dr_behavior to select the appropriate data_reference to use. */
2019
2020inline tree
2021get_dr_vinfo_offset (vec_info *vinfo,
2022 dr_vec_info *dr_info, bool check_outer = false)
2023{
2024 innermost_loop_behavior *base;
2025 if (check_outer)
2026 base = vect_dr_behavior (vinfo, dr_info);
2027 else
2028 base = &dr_info->dr->innermost;
2029
2030 tree offset = base->offset;
2031
2032 if (!dr_info->offset)
2033 return offset;
2034
2035 offset = fold_convert (sizetype, offset);
2036 return fold_build2 (PLUS_EXPR, TREE_TYPE (dr_info->offset), offset,
2037 dr_info->offset);
2038}
2039
2040
2041/* Return the vect cost model for LOOP. */
2042inline enum vect_cost_model
2043loop_cost_model (loop_p loop)
2044{
2045 if (loop != NULL
2046 && loop->force_vectorize
2047 && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
2048 return flag_simd_cost_model;
2049 return flag_vect_cost_model;
2050}
2051
2052/* Return true if the vect cost model is unlimited. */
2053inline bool
2054unlimited_cost_model (loop_p loop)
2055{
2056 return loop_cost_model (loop) == VECT_COST_MODEL_UNLIMITED;
2057}
2058
2059/* Return true if the loop described by LOOP_VINFO is fully-masked and
2060 if the first iteration should use a partial mask in order to achieve
2061 alignment. */
2062
2063inline bool
2064vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo)
2065{
2066 return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
2067 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
2068}
2069
2070/* Return the number of vectors of type VECTYPE that are needed to get
2071 NUNITS elements. NUNITS should be based on the vectorization factor,
2072 so it is always a known multiple of the number of elements in VECTYPE. */
2073
2074inline unsigned int
2075vect_get_num_vectors (poly_uint64 nunits, tree vectype)
2076{
2077 return exact_div (a: nunits, b: TYPE_VECTOR_SUBPARTS (node: vectype)).to_constant ();
2078}
2079
2080/* Return the number of copies needed for loop vectorization when
2081 a statement operates on vectors of type VECTYPE. This is the
2082 vectorization factor divided by the number of elements in
2083 VECTYPE and is always known at compile time. */
2084
2085inline unsigned int
2086vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype)
2087{
2088 return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype);
2089}
2090
2091/* Update maximum unit count *MAX_NUNITS so that it accounts for
2092 NUNITS. *MAX_NUNITS can be 1 if we haven't yet recorded anything. */
2093
2094inline void
2095vect_update_max_nunits (poly_uint64 *max_nunits, poly_uint64 nunits)
2096{
2097 /* All unit counts have the form vec_info::vector_size * X for some
2098 rational X, so two unit sizes must have a common multiple.
2099 Everything is a multiple of the initial value of 1. */
2100 *max_nunits = force_common_multiple (a: *max_nunits, b: nunits);
2101}
2102
2103/* Update maximum unit count *MAX_NUNITS so that it accounts for
2104 the number of units in vector type VECTYPE. *MAX_NUNITS can be 1
2105 if we haven't yet recorded any vector types. */
2106
2107inline void
2108vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype)
2109{
2110 vect_update_max_nunits (max_nunits, nunits: TYPE_VECTOR_SUBPARTS (node: vectype));
2111}
2112
2113/* Return the vectorization factor that should be used for costing
2114 purposes while vectorizing the loop described by LOOP_VINFO.
2115 Pick a reasonable estimate if the vectorization factor isn't
2116 known at compile time. */
2117
2118inline unsigned int
2119vect_vf_for_cost (loop_vec_info loop_vinfo)
2120{
2121 return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
2122}
2123
2124/* Estimate the number of elements in VEC_TYPE for costing purposes.
2125 Pick a reasonable estimate if the exact number isn't known at
2126 compile time. */
2127
2128inline unsigned int
2129vect_nunits_for_cost (tree vec_type)
2130{
2131 return estimated_poly_value (x: TYPE_VECTOR_SUBPARTS (node: vec_type));
2132}
2133
2134/* Return the maximum possible vectorization factor for LOOP_VINFO. */
2135
2136inline unsigned HOST_WIDE_INT
2137vect_max_vf (loop_vec_info loop_vinfo)
2138{
2139 unsigned HOST_WIDE_INT vf;
2140 if (LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (const_value: &vf))
2141 return vf;
2142 return MAX_VECTORIZATION_FACTOR;
2143}
2144
2145/* Return the size of the value accessed by unvectorized data reference
2146 DR_INFO. This is only valid once STMT_VINFO_VECTYPE has been calculated
2147 for the associated gimple statement, since that guarantees that DR_INFO
2148 accesses either a scalar or a scalar equivalent. ("Scalar equivalent"
2149 here includes things like V1SI, which can be vectorized in the same way
2150 as a plain SI.) */
2151
2152inline unsigned int
2153vect_get_scalar_dr_size (dr_vec_info *dr_info)
2154{
2155 return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_info->dr))));
2156}
2157
2158/* Return true if LOOP_VINFO requires a runtime check for whether the
2159 vector loop is profitable. */
2160
2161inline bool
2162vect_apply_runtime_profitability_check_p (loop_vec_info loop_vinfo)
2163{
2164 unsigned int th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
2165 return (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2166 && th >= vect_vf_for_cost (loop_vinfo));
2167}
2168
2169/* Source location + hotness information. */
2170extern dump_user_location_t vect_location;
2171
2172/* A macro for calling:
2173 dump_begin_scope (MSG, vect_location);
2174 via an RAII object, thus printing "=== MSG ===\n" to the dumpfile etc,
2175 and then calling
2176 dump_end_scope ();
2177 once the object goes out of scope, thus capturing the nesting of
2178 the scopes.
2179
2180 These scopes affect dump messages within them: dump messages at the
2181 top level implicitly default to MSG_PRIORITY_USER_FACING, whereas those
2182 in a nested scope implicitly default to MSG_PRIORITY_INTERNALS. */
2183
2184#define DUMP_VECT_SCOPE(MSG) \
2185 AUTO_DUMP_SCOPE (MSG, vect_location)
2186
2187/* A sentinel class for ensuring that the "vect_location" global gets
2188 reset at the end of a scope.
2189
2190 The "vect_location" global is used during dumping and contains a
2191 location_t, which could contain references to a tree block via the
2192 ad-hoc data. This data is used for tracking inlining information,
2193 but it's not a GC root; it's simply assumed that such locations never
2194 get accessed if the blocks are optimized away.
2195
2196 Hence we need to ensure that such locations are purged at the end
2197 of any operations using them (e.g. via this class). */
2198
2199class auto_purge_vect_location
2200{
2201 public:
2202 ~auto_purge_vect_location ();
2203};
2204
2205/*-----------------------------------------------------------------*/
2206/* Function prototypes. */
2207/*-----------------------------------------------------------------*/
2208
2209/* Simple loop peeling and versioning utilities for vectorizer's purposes -
2210 in tree-vect-loop-manip.cc. */
2211extern void vect_set_loop_condition (class loop *, edge, loop_vec_info,
2212 tree, tree, tree, bool);
2213extern bool slpeel_can_duplicate_loop_p (const class loop *, const_edge,
2214 const_edge);
2215class loop *slpeel_tree_duplicate_loop_to_edge_cfg (class loop *, edge,
2216 class loop *, edge,
2217 edge, edge *, bool = true,
2218 vec<basic_block> * = NULL);
2219class loop *vect_loop_versioning (loop_vec_info, gimple *);
2220extern class loop *vect_do_peeling (loop_vec_info, tree, tree,
2221 tree *, tree *, tree *, int, bool, bool,
2222 tree *);
2223extern tree vect_get_main_loop_result (loop_vec_info, tree, tree);
2224extern void vect_prepare_for_masked_peels (loop_vec_info);
2225extern dump_user_location_t find_loop_location (class loop *);
2226extern bool vect_can_advance_ivs_p (loop_vec_info);
2227extern void vect_update_inits_of_drs (loop_vec_info, tree, tree_code);
2228extern edge vec_init_loop_exit_info (class loop *);
2229extern void vect_iv_increment_position (edge, gimple_stmt_iterator *, bool *);
2230
2231/* In tree-vect-stmts.cc. */
2232extern tree get_related_vectype_for_scalar_type (machine_mode, tree,
2233 poly_uint64 = 0);
2234extern tree get_vectype_for_scalar_type (vec_info *, tree, unsigned int = 0);
2235extern tree get_vectype_for_scalar_type (vec_info *, tree, slp_tree);
2236extern tree get_mask_type_for_scalar_type (vec_info *, tree, unsigned int = 0);
2237extern tree get_mask_type_for_scalar_type (vec_info *, tree, slp_tree);
2238extern tree get_same_sized_vectype (tree, tree);
2239extern bool vect_chooses_same_modes_p (vec_info *, machine_mode);
2240extern bool vect_get_loop_mask_type (loop_vec_info);
2241extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
2242 stmt_vec_info * = NULL, gimple ** = NULL);
2243extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
2244 tree *, stmt_vec_info * = NULL,
2245 gimple ** = NULL);
2246extern bool vect_is_simple_use (vec_info *, stmt_vec_info, slp_tree,
2247 unsigned, tree *, slp_tree *,
2248 enum vect_def_type *,
2249 tree *, stmt_vec_info * = NULL);
2250extern bool vect_maybe_update_slp_op_vectype (slp_tree, tree);
2251extern tree perm_mask_for_reverse (tree);
2252extern bool supportable_widening_operation (vec_info*, code_helper,
2253 stmt_vec_info, tree, tree,
2254 code_helper*, code_helper*,
2255 int*, vec<tree> *);
2256extern bool supportable_narrowing_operation (code_helper, tree, tree,
2257 code_helper *, int *,
2258 vec<tree> *);
2259
2260extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
2261 enum vect_cost_for_stmt, stmt_vec_info,
2262 tree, int, enum vect_cost_model_location);
2263extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
2264 enum vect_cost_for_stmt, slp_tree,
2265 tree, int, enum vect_cost_model_location);
2266extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
2267 enum vect_cost_for_stmt,
2268 enum vect_cost_model_location);
2269
2270/* Overload of record_stmt_cost with VECTYPE derived from STMT_INFO. */
2271
2272inline unsigned
2273record_stmt_cost (stmt_vector_for_cost *body_cost_vec, int count,
2274 enum vect_cost_for_stmt kind, stmt_vec_info stmt_info,
2275 int misalign, enum vect_cost_model_location where)
2276{
2277 return record_stmt_cost (body_cost_vec, count, kind, stmt_info,
2278 STMT_VINFO_VECTYPE (stmt_info), misalign, where);
2279}
2280
2281extern void vect_finish_replace_stmt (vec_info *, stmt_vec_info, gimple *);
2282extern void vect_finish_stmt_generation (vec_info *, stmt_vec_info, gimple *,
2283 gimple_stmt_iterator *);
2284extern opt_result vect_mark_stmts_to_be_vectorized (loop_vec_info, bool *);
2285extern tree vect_get_store_rhs (stmt_vec_info);
2286void vect_get_vec_defs_for_operand (vec_info *vinfo, stmt_vec_info, unsigned,
2287 tree op, vec<tree> *, tree = NULL);
2288void vect_get_vec_defs (vec_info *, stmt_vec_info, slp_tree, unsigned,
2289 tree, vec<tree> *,
2290 tree = NULL, vec<tree> * = NULL,
2291 tree = NULL, vec<tree> * = NULL,
2292 tree = NULL, vec<tree> * = NULL);
2293void vect_get_vec_defs (vec_info *, stmt_vec_info, slp_tree, unsigned,
2294 tree, tree, vec<tree> *,
2295 tree = NULL, tree = NULL, vec<tree> * = NULL,
2296 tree = NULL, tree = NULL, vec<tree> * = NULL,
2297 tree = NULL, tree = NULL, vec<tree> * = NULL);
2298extern tree vect_init_vector (vec_info *, stmt_vec_info, tree, tree,
2299 gimple_stmt_iterator *);
2300extern tree vect_get_slp_vect_def (slp_tree, unsigned);
2301extern bool vect_transform_stmt (vec_info *, stmt_vec_info,
2302 gimple_stmt_iterator *,
2303 slp_tree, slp_instance);
2304extern void vect_remove_stores (vec_info *, stmt_vec_info);
2305extern bool vect_nop_conversion_p (stmt_vec_info);
2306extern opt_result vect_analyze_stmt (vec_info *, stmt_vec_info, bool *,
2307 slp_tree,
2308 slp_instance, stmt_vector_for_cost *);
2309extern void vect_get_load_cost (vec_info *, stmt_vec_info, int,
2310 dr_alignment_support, int, bool,
2311 unsigned int *, unsigned int *,
2312 stmt_vector_for_cost *,
2313 stmt_vector_for_cost *, bool);
2314extern void vect_get_store_cost (vec_info *, stmt_vec_info, int,
2315 dr_alignment_support, int,
2316 unsigned int *, stmt_vector_for_cost *);
2317extern bool vect_supportable_shift (vec_info *, enum tree_code, tree);
2318extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &);
2319extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &);
2320extern void optimize_mask_stores (class loop*);
2321extern tree vect_gen_while (gimple_seq *, tree, tree, tree,
2322 const char * = nullptr);
2323extern tree vect_gen_while_not (gimple_seq *, tree, tree, tree);
2324extern opt_result vect_get_vector_types_for_stmt (vec_info *,
2325 stmt_vec_info, tree *,
2326 tree *, unsigned int = 0);
2327extern opt_tree vect_get_mask_type_for_stmt (stmt_vec_info, unsigned int = 0);
2328
2329/* In tree-if-conv.cc. */
2330extern bool ref_within_array_bound (gimple *, tree);
2331
2332/* In tree-vect-data-refs.cc. */
2333extern bool vect_can_force_dr_alignment_p (const_tree, poly_uint64);
2334extern enum dr_alignment_support vect_supportable_dr_alignment
2335 (vec_info *, dr_vec_info *, tree, int);
2336extern tree vect_get_smallest_scalar_type (stmt_vec_info, tree);
2337extern opt_result vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *);
2338extern bool vect_slp_analyze_instance_dependence (vec_info *, slp_instance);
2339extern opt_result vect_enhance_data_refs_alignment (loop_vec_info);
2340extern opt_result vect_analyze_data_refs_alignment (loop_vec_info);
2341extern bool vect_slp_analyze_instance_alignment (vec_info *, slp_instance);
2342extern opt_result vect_analyze_data_ref_accesses (vec_info *, vec<int> *);
2343extern opt_result vect_prune_runtime_alias_test_list (loop_vec_info);
2344extern bool vect_gather_scatter_fn_p (vec_info *, bool, bool, tree, tree,
2345 tree, int, internal_fn *, tree *);
2346extern bool vect_check_gather_scatter (stmt_vec_info, loop_vec_info,
2347 gather_scatter_info *);
2348extern opt_result vect_find_stmt_data_reference (loop_p, gimple *,
2349 vec<data_reference_p> *,
2350 vec<int> *, int);
2351extern opt_result vect_analyze_data_refs (vec_info *, poly_uint64 *, bool *);
2352extern void vect_record_base_alignments (vec_info *);
2353extern tree vect_create_data_ref_ptr (vec_info *,
2354 stmt_vec_info, tree, class loop *, tree,
2355 tree *, gimple_stmt_iterator *,
2356 gimple **, bool,
2357 tree = NULL_TREE);
2358extern tree bump_vector_ptr (vec_info *, tree, gimple *, gimple_stmt_iterator *,
2359 stmt_vec_info, tree);
2360extern void vect_copy_ref_info (tree, tree);
2361extern tree vect_create_destination_var (tree, tree);
2362extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
2363extern internal_fn vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
2364extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT);
2365extern internal_fn vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
2366extern void vect_permute_store_chain (vec_info *, vec<tree> &,
2367 unsigned int, stmt_vec_info,
2368 gimple_stmt_iterator *, vec<tree> *);
2369extern tree vect_setup_realignment (vec_info *,
2370 stmt_vec_info, gimple_stmt_iterator *,
2371 tree *, enum dr_alignment_support, tree,
2372 class loop **);
2373extern void vect_transform_grouped_load (vec_info *, stmt_vec_info, vec<tree>,
2374 int, gimple_stmt_iterator *);
2375extern void vect_record_grouped_load_vectors (vec_info *,
2376 stmt_vec_info, vec<tree>);
2377extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
2378extern tree vect_get_new_ssa_name (tree, enum vect_var_kind,
2379 const char * = NULL);
2380extern tree vect_create_addr_base_for_vector_ref (vec_info *,
2381 stmt_vec_info, gimple_seq *,
2382 tree);
2383
2384/* In tree-vect-loop.cc. */
2385extern tree neutral_op_for_reduction (tree, code_helper, tree, bool = true);
2386extern widest_int vect_iv_limit_for_partial_vectors (loop_vec_info loop_vinfo);
2387bool vect_rgroup_iv_might_wrap_p (loop_vec_info, rgroup_controls *);
2388/* Used in tree-vect-loop-manip.cc */
2389extern opt_result vect_determine_partial_vectors_and_peeling (loop_vec_info);
2390/* Used in gimple-loop-interchange.c and tree-parloops.cc. */
2391extern bool check_reduction_path (dump_user_location_t, loop_p, gphi *, tree,
2392 enum tree_code);
2393extern bool needs_fold_left_reduction_p (tree, code_helper);
2394/* Drive for loop analysis stage. */
2395extern opt_loop_vec_info vect_analyze_loop (class loop *, vec_info_shared *);
2396extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL);
2397extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *,
2398 tree *, bool);
2399extern tree vect_halve_mask_nunits (tree, machine_mode);
2400extern tree vect_double_mask_nunits (tree, machine_mode);
2401extern void vect_record_loop_mask (loop_vec_info, vec_loop_masks *,
2402 unsigned int, tree, tree);
2403extern tree vect_get_loop_mask (loop_vec_info, gimple_stmt_iterator *,
2404 vec_loop_masks *,
2405 unsigned int, tree, unsigned int);
2406extern void vect_record_loop_len (loop_vec_info, vec_loop_lens *, unsigned int,
2407 tree, unsigned int);
2408extern tree vect_get_loop_len (loop_vec_info, gimple_stmt_iterator *,
2409 vec_loop_lens *, unsigned int, tree,
2410 unsigned int, unsigned int);
2411extern gimple_seq vect_gen_len (tree, tree, tree, tree);
2412extern stmt_vec_info info_for_reduction (vec_info *, stmt_vec_info);
2413extern bool reduction_fn_for_scalar_code (code_helper, internal_fn *);
2414
2415/* Drive for loop transformation stage. */
2416extern class loop *vect_transform_loop (loop_vec_info, gimple *);
2417struct vect_loop_form_info
2418{
2419 tree number_of_iterations;
2420 tree number_of_iterationsm1;
2421 tree assumptions;
2422 auto_vec<gcond *> conds;
2423 gcond *inner_loop_cond;
2424 edge loop_exit;
2425};
2426extern opt_result vect_analyze_loop_form (class loop *, vect_loop_form_info *);
2427extern loop_vec_info vect_create_loop_vinfo (class loop *, vec_info_shared *,
2428 const vect_loop_form_info *,
2429 loop_vec_info = nullptr);
2430extern bool vectorizable_live_operation (vec_info *, stmt_vec_info,
2431 slp_tree, slp_instance, int,
2432 bool, stmt_vector_for_cost *);
2433extern bool vectorizable_reduction (loop_vec_info, stmt_vec_info,
2434 slp_tree, slp_instance,
2435 stmt_vector_for_cost *);
2436extern bool vectorizable_induction (loop_vec_info, stmt_vec_info,
2437 gimple **, slp_tree,
2438 stmt_vector_for_cost *);
2439extern bool vect_transform_reduction (loop_vec_info, stmt_vec_info,
2440 gimple_stmt_iterator *,
2441 gimple **, slp_tree);
2442extern bool vect_transform_cycle_phi (loop_vec_info, stmt_vec_info,
2443 gimple **,
2444 slp_tree, slp_instance);
2445extern bool vectorizable_lc_phi (loop_vec_info, stmt_vec_info,
2446 gimple **, slp_tree);
2447extern bool vectorizable_phi (vec_info *, stmt_vec_info, gimple **, slp_tree,
2448 stmt_vector_for_cost *);
2449extern bool vectorizable_recurr (loop_vec_info, stmt_vec_info,
2450 gimple **, slp_tree, stmt_vector_for_cost *);
2451extern bool vect_emulated_vector_p (tree);
2452extern bool vect_can_vectorize_without_simd_p (tree_code);
2453extern bool vect_can_vectorize_without_simd_p (code_helper);
2454extern int vect_get_known_peeling_cost (loop_vec_info, int, int *,
2455 stmt_vector_for_cost *,
2456 stmt_vector_for_cost *,
2457 stmt_vector_for_cost *);
2458extern tree cse_and_gimplify_to_preheader (loop_vec_info, tree);
2459
2460/* Nonlinear induction. */
2461extern tree vect_peel_nonlinear_iv_init (gimple_seq*, tree, tree,
2462 tree, enum vect_induction_op_type);
2463
2464/* In tree-vect-slp.cc. */
2465extern void vect_slp_init (void);
2466extern void vect_slp_fini (void);
2467extern void vect_free_slp_instance (slp_instance);
2468extern bool vect_transform_slp_perm_load (vec_info *, slp_tree, const vec<tree> &,
2469 gimple_stmt_iterator *, poly_uint64,
2470 bool, unsigned *,
2471 unsigned * = nullptr, bool = false);
2472extern bool vect_slp_analyze_operations (vec_info *);
2473extern void vect_schedule_slp (vec_info *, const vec<slp_instance> &);
2474extern opt_result vect_analyze_slp (vec_info *, unsigned);
2475extern bool vect_make_slp_decision (loop_vec_info);
2476extern void vect_detect_hybrid_slp (loop_vec_info);
2477extern void vect_optimize_slp (vec_info *);
2478extern void vect_gather_slp_loads (vec_info *);
2479extern void vect_get_slp_defs (slp_tree, vec<tree> *);
2480extern void vect_get_slp_defs (vec_info *, slp_tree, vec<vec<tree> > *,
2481 unsigned n = -1U);
2482extern bool vect_slp_if_converted_bb (basic_block bb, loop_p orig_loop);
2483extern bool vect_slp_function (function *);
2484extern stmt_vec_info vect_find_last_scalar_stmt_in_slp (slp_tree);
2485extern stmt_vec_info vect_find_first_scalar_stmt_in_slp (slp_tree);
2486extern bool is_simple_and_all_uses_invariant (stmt_vec_info, loop_vec_info);
2487extern bool can_duplicate_and_interleave_p (vec_info *, unsigned int, tree,
2488 unsigned int * = NULL,
2489 tree * = NULL, tree * = NULL);
2490extern void duplicate_and_interleave (vec_info *, gimple_seq *, tree,
2491 const vec<tree> &, unsigned int, vec<tree> &);
2492extern int vect_get_place_in_interleaving_chain (stmt_vec_info, stmt_vec_info);
2493extern slp_tree vect_create_new_slp_node (unsigned, tree_code);
2494extern void vect_free_slp_tree (slp_tree);
2495extern bool compatible_calls_p (gcall *, gcall *);
2496extern int vect_slp_child_index_for_operand (const gimple *, int op, bool);
2497
2498/* In tree-vect-patterns.cc. */
2499extern void
2500vect_mark_pattern_stmts (vec_info *, stmt_vec_info, gimple *, tree);
2501extern bool vect_get_range_info (tree, wide_int*, wide_int*);
2502
2503/* Pattern recognition functions.
2504 Additional pattern recognition functions can (and will) be added
2505 in the future. */
2506void vect_pattern_recog (vec_info *);
2507
2508/* In tree-vectorizer.cc. */
2509unsigned vectorize_loops (void);
2510void vect_free_loop_info_assumptions (class loop *);
2511gimple *vect_loop_vectorized_call (class loop *, gcond **cond = NULL);
2512bool vect_stmt_dominates_stmt_p (gimple *, gimple *);
2513
2514/* SLP Pattern matcher types, tree-vect-slp-patterns.cc. */
2515
2516/* Forward declaration of possible two operands operation that can be matched
2517 by the complex numbers pattern matchers. */
2518enum _complex_operation : unsigned;
2519
2520/* All possible load permute values that could result from the partial data-flow
2521 analysis. */
2522typedef enum _complex_perm_kinds {
2523 PERM_UNKNOWN,
2524 PERM_EVENODD,
2525 PERM_ODDEVEN,
2526 PERM_ODDODD,
2527 PERM_EVENEVEN,
2528 /* Can be combined with any other PERM values. */
2529 PERM_TOP
2530} complex_perm_kinds_t;
2531
2532/* Cache from nodes to the load permutation they represent. */
2533typedef hash_map <slp_tree, complex_perm_kinds_t>
2534 slp_tree_to_load_perm_map_t;
2535
2536/* Cache from nodes pair to being compatible or not. */
2537typedef pair_hash <nofree_ptr_hash <_slp_tree>,
2538 nofree_ptr_hash <_slp_tree>> slp_node_hash;
2539typedef hash_map <slp_node_hash, bool> slp_compat_nodes_map_t;
2540
2541
2542/* Vector pattern matcher base class. All SLP pattern matchers must inherit
2543 from this type. */
2544
2545class vect_pattern
2546{
2547 protected:
2548 /* The number of arguments that the IFN requires. */
2549 unsigned m_num_args;
2550
2551 /* The internal function that will be used when a pattern is created. */
2552 internal_fn m_ifn;
2553
2554 /* The current node being inspected. */
2555 slp_tree *m_node;
2556
2557 /* The list of operands to be the children for the node produced when the
2558 internal function is created. */
2559 vec<slp_tree> m_ops;
2560
2561 /* Default constructor where NODE is the root of the tree to inspect. */
2562 vect_pattern (slp_tree *node, vec<slp_tree> *m_ops, internal_fn ifn)
2563 {
2564 this->m_ifn = ifn;
2565 this->m_node = node;
2566 this->m_ops.create (nelems: 0);
2567 if (m_ops)
2568 this->m_ops.safe_splice (src: *m_ops);
2569 }
2570
2571 public:
2572
2573 /* Create a new instance of the pattern matcher class of the given type. */
2574 static vect_pattern* recognize (slp_tree_to_load_perm_map_t *,
2575 slp_compat_nodes_map_t *, slp_tree *);
2576
2577 /* Build the pattern from the data collected so far. */
2578 virtual void build (vec_info *) = 0;
2579
2580 /* Default destructor. */
2581 virtual ~vect_pattern ()
2582 {
2583 this->m_ops.release ();
2584 }
2585};
2586
2587/* Function pointer to create a new pattern matcher from a generic type. */
2588typedef vect_pattern* (*vect_pattern_decl_t) (slp_tree_to_load_perm_map_t *,
2589 slp_compat_nodes_map_t *,
2590 slp_tree *);
2591
2592/* List of supported pattern matchers. */
2593extern vect_pattern_decl_t slp_patterns[];
2594
2595/* Number of supported pattern matchers. */
2596extern size_t num__slp_patterns;
2597
2598/* ----------------------------------------------------------------------
2599 Target support routines
2600 -----------------------------------------------------------------------
2601 The following routines are provided to simplify costing decisions in
2602 target code. Please add more as needed. */
2603
2604/* Return true if an operaton of kind KIND for STMT_INFO represents
2605 the extraction of an element from a vector in preparation for
2606 storing the element to memory. */
2607inline bool
2608vect_is_store_elt_extraction (vect_cost_for_stmt kind, stmt_vec_info stmt_info)
2609{
2610 return (kind == vec_to_scalar
2611 && STMT_VINFO_DATA_REF (stmt_info)
2612 && DR_IS_WRITE (STMT_VINFO_DATA_REF (stmt_info)));
2613}
2614
2615/* Return true if STMT_INFO represents part of a reduction. */
2616inline bool
2617vect_is_reduction (stmt_vec_info stmt_info)
2618{
2619 return STMT_VINFO_REDUC_IDX (stmt_info) >= 0;
2620}
2621
2622/* If STMT_INFO describes a reduction, return the vect_reduction_type
2623 of the reduction it describes, otherwise return -1. */
2624inline int
2625vect_reduc_type (vec_info *vinfo, stmt_vec_info stmt_info)
2626{
2627 if (loop_vec_info loop_vinfo = dyn_cast<loop_vec_info> (p: vinfo))
2628 if (STMT_VINFO_REDUC_DEF (stmt_info))
2629 {
2630 stmt_vec_info reduc_info = info_for_reduction (loop_vinfo, stmt_info);
2631 return int (STMT_VINFO_REDUC_TYPE (reduc_info));
2632 }
2633 return -1;
2634}
2635
2636/* If STMT_INFO is a COND_EXPR that includes an embedded comparison, return the
2637 scalar type of the values being compared. Return null otherwise. */
2638inline tree
2639vect_embedded_comparison_type (stmt_vec_info stmt_info)
2640{
2641 if (auto *assign = dyn_cast<gassign *> (p: stmt_info->stmt))
2642 if (gimple_assign_rhs_code (gs: assign) == COND_EXPR)
2643 {
2644 tree cond = gimple_assign_rhs1 (gs: assign);
2645 if (COMPARISON_CLASS_P (cond))
2646 return TREE_TYPE (TREE_OPERAND (cond, 0));
2647 }
2648 return NULL_TREE;
2649}
2650
2651/* If STMT_INFO is a comparison or contains an embedded comparison, return the
2652 scalar type of the values being compared. Return null otherwise. */
2653inline tree
2654vect_comparison_type (stmt_vec_info stmt_info)
2655{
2656 if (auto *assign = dyn_cast<gassign *> (p: stmt_info->stmt))
2657 if (TREE_CODE_CLASS (gimple_assign_rhs_code (assign)) == tcc_comparison)
2658 return TREE_TYPE (gimple_assign_rhs1 (assign));
2659 return vect_embedded_comparison_type (stmt_info);
2660}
2661
2662/* Return true if STMT_INFO extends the result of a load. */
2663inline bool
2664vect_is_extending_load (class vec_info *vinfo, stmt_vec_info stmt_info)
2665{
2666 /* Although this is quite large for an inline function, this part
2667 at least should be inline. */
2668 gassign *assign = dyn_cast <gassign *> (p: stmt_info->stmt);
2669 if (!assign || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (assign)))
2670 return false;
2671
2672 tree rhs = gimple_assign_rhs1 (gs: stmt_info->stmt);
2673 tree lhs_type = TREE_TYPE (gimple_assign_lhs (assign));
2674 tree rhs_type = TREE_TYPE (rhs);
2675 if (!INTEGRAL_TYPE_P (lhs_type)
2676 || !INTEGRAL_TYPE_P (rhs_type)
2677 || TYPE_PRECISION (lhs_type) <= TYPE_PRECISION (rhs_type))
2678 return false;
2679
2680 stmt_vec_info def_stmt_info = vinfo->lookup_def (rhs);
2681 return (def_stmt_info
2682 && STMT_VINFO_DATA_REF (def_stmt_info)
2683 && DR_IS_READ (STMT_VINFO_DATA_REF (def_stmt_info)));
2684}
2685
2686/* Return true if STMT_INFO is an integer truncation. */
2687inline bool
2688vect_is_integer_truncation (stmt_vec_info stmt_info)
2689{
2690 gassign *assign = dyn_cast <gassign *> (p: stmt_info->stmt);
2691 if (!assign || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (assign)))
2692 return false;
2693
2694 tree lhs_type = TREE_TYPE (gimple_assign_lhs (assign));
2695 tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (assign));
2696 return (INTEGRAL_TYPE_P (lhs_type)
2697 && INTEGRAL_TYPE_P (rhs_type)
2698 && TYPE_PRECISION (lhs_type) < TYPE_PRECISION (rhs_type));
2699}
2700
2701/* Build a GIMPLE_ASSIGN or GIMPLE_CALL with the tree_code,
2702 or internal_fn contained in ch, respectively. */
2703gimple * vect_gimple_build (tree, code_helper, tree, tree = NULL_TREE);
2704#endif /* GCC_TREE_VECTORIZER_H */
2705

source code of gcc/tree-vectorizer.h