1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 1994 Linus Torvalds
4 *
5 * Cyrix stuff, June 1998 by:
6 * - Rafael R. Reilova (moved everything from head.S),
7 * <rreilova@ececs.uc.edu>
8 * - Channing Corn (tests & fixes),
9 * - Andrew D. Balsa (code cleanup).
10 */
11#include <linux/init.h>
12#include <linux/cpu.h>
13#include <linux/module.h>
14#include <linux/nospec.h>
15#include <linux/prctl.h>
16#include <linux/sched/smt.h>
17#include <linux/pgtable.h>
18#include <linux/bpf.h>
19
20#include <asm/spec-ctrl.h>
21#include <asm/cmdline.h>
22#include <asm/bugs.h>
23#include <asm/processor.h>
24#include <asm/processor-flags.h>
25#include <asm/fpu/api.h>
26#include <asm/msr.h>
27#include <asm/vmx.h>
28#include <asm/paravirt.h>
29#include <asm/intel-family.h>
30#include <asm/e820/api.h>
31#include <asm/hypervisor.h>
32#include <asm/tlbflush.h>
33#include <asm/cpu.h>
34
35#include "cpu.h"
36
37static void __init spectre_v1_select_mitigation(void);
38static void __init spectre_v2_select_mitigation(void);
39static void __init retbleed_select_mitigation(void);
40static void __init spectre_v2_user_select_mitigation(void);
41static void __init ssb_select_mitigation(void);
42static void __init l1tf_select_mitigation(void);
43static void __init mds_select_mitigation(void);
44static void __init md_clear_update_mitigation(void);
45static void __init md_clear_select_mitigation(void);
46static void __init taa_select_mitigation(void);
47static void __init mmio_select_mitigation(void);
48static void __init srbds_select_mitigation(void);
49static void __init l1d_flush_select_mitigation(void);
50static void __init srso_select_mitigation(void);
51static void __init gds_select_mitigation(void);
52
53/* The base value of the SPEC_CTRL MSR without task-specific bits set */
54u64 x86_spec_ctrl_base;
55EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
56
57/* The current value of the SPEC_CTRL MSR with task-specific bits set */
58DEFINE_PER_CPU(u64, x86_spec_ctrl_current);
59EXPORT_PER_CPU_SYMBOL_GPL(x86_spec_ctrl_current);
60
61u64 x86_pred_cmd __ro_after_init = PRED_CMD_IBPB;
62EXPORT_SYMBOL_GPL(x86_pred_cmd);
63
64static u64 __ro_after_init x86_arch_cap_msr;
65
66static DEFINE_MUTEX(spec_ctrl_mutex);
67
68void (*x86_return_thunk)(void) __ro_after_init = __x86_return_thunk;
69
70/* Update SPEC_CTRL MSR and its cached copy unconditionally */
71static void update_spec_ctrl(u64 val)
72{
73 this_cpu_write(x86_spec_ctrl_current, val);
74 wrmsrl(MSR_IA32_SPEC_CTRL, val);
75}
76
77/*
78 * Keep track of the SPEC_CTRL MSR value for the current task, which may differ
79 * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update().
80 */
81void update_spec_ctrl_cond(u64 val)
82{
83 if (this_cpu_read(x86_spec_ctrl_current) == val)
84 return;
85
86 this_cpu_write(x86_spec_ctrl_current, val);
87
88 /*
89 * When KERNEL_IBRS this MSR is written on return-to-user, unless
90 * forced the update can be delayed until that time.
91 */
92 if (!cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
93 wrmsrl(MSR_IA32_SPEC_CTRL, val);
94}
95
96noinstr u64 spec_ctrl_current(void)
97{
98 return this_cpu_read(x86_spec_ctrl_current);
99}
100EXPORT_SYMBOL_GPL(spec_ctrl_current);
101
102/*
103 * AMD specific MSR info for Speculative Store Bypass control.
104 * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
105 */
106u64 __ro_after_init x86_amd_ls_cfg_base;
107u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
108
109/* Control conditional STIBP in switch_to() */
110DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
111/* Control conditional IBPB in switch_mm() */
112DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
113/* Control unconditional IBPB in switch_mm() */
114DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
115
116/* Control MDS CPU buffer clear before idling (halt, mwait) */
117DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
118EXPORT_SYMBOL_GPL(mds_idle_clear);
119
120/*
121 * Controls whether l1d flush based mitigations are enabled,
122 * based on hw features and admin setting via boot parameter
123 * defaults to false
124 */
125DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
126
127/* Controls CPU Fill buffer clear before KVM guest MMIO accesses */
128DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear);
129EXPORT_SYMBOL_GPL(mmio_stale_data_clear);
130
131void __init cpu_select_mitigations(void)
132{
133 /*
134 * Read the SPEC_CTRL MSR to account for reserved bits which may
135 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
136 * init code as it is not enumerated and depends on the family.
137 */
138 if (cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) {
139 rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
140
141 /*
142 * Previously running kernel (kexec), may have some controls
143 * turned ON. Clear them and let the mitigations setup below
144 * rediscover them based on configuration.
145 */
146 x86_spec_ctrl_base &= ~SPEC_CTRL_MITIGATIONS_MASK;
147 }
148
149 x86_arch_cap_msr = x86_read_arch_cap_msr();
150
151 /* Select the proper CPU mitigations before patching alternatives: */
152 spectre_v1_select_mitigation();
153 spectre_v2_select_mitigation();
154 /*
155 * retbleed_select_mitigation() relies on the state set by
156 * spectre_v2_select_mitigation(); specifically it wants to know about
157 * spectre_v2=ibrs.
158 */
159 retbleed_select_mitigation();
160 /*
161 * spectre_v2_user_select_mitigation() relies on the state set by
162 * retbleed_select_mitigation(); specifically the STIBP selection is
163 * forced for UNRET or IBPB.
164 */
165 spectre_v2_user_select_mitigation();
166 ssb_select_mitigation();
167 l1tf_select_mitigation();
168 md_clear_select_mitigation();
169 srbds_select_mitigation();
170 l1d_flush_select_mitigation();
171
172 /*
173 * srso_select_mitigation() depends and must run after
174 * retbleed_select_mitigation().
175 */
176 srso_select_mitigation();
177 gds_select_mitigation();
178}
179
180/*
181 * NOTE: This function is *only* called for SVM, since Intel uses
182 * MSR_IA32_SPEC_CTRL for SSBD.
183 */
184void
185x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl, bool setguest)
186{
187 u64 guestval, hostval;
188 struct thread_info *ti = current_thread_info();
189
190 /*
191 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
192 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
193 */
194 if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
195 !static_cpu_has(X86_FEATURE_VIRT_SSBD))
196 return;
197
198 /*
199 * If the host has SSBD mitigation enabled, force it in the host's
200 * virtual MSR value. If its not permanently enabled, evaluate
201 * current's TIF_SSBD thread flag.
202 */
203 if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
204 hostval = SPEC_CTRL_SSBD;
205 else
206 hostval = ssbd_tif_to_spec_ctrl(tifn: ti->flags);
207
208 /* Sanitize the guest value */
209 guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
210
211 if (hostval != guestval) {
212 unsigned long tif;
213
214 tif = setguest ? ssbd_spec_ctrl_to_tif(spec_ctrl: guestval) :
215 ssbd_spec_ctrl_to_tif(spec_ctrl: hostval);
216
217 speculation_ctrl_update(tif);
218 }
219}
220EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
221
222static void x86_amd_ssb_disable(void)
223{
224 u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
225
226 if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
227 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
228 else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
229 wrmsrl(MSR_AMD64_LS_CFG, val: msrval);
230}
231
232#undef pr_fmt
233#define pr_fmt(fmt) "MDS: " fmt
234
235/* Default mitigation for MDS-affected CPUs */
236static enum mds_mitigations mds_mitigation __ro_after_init = MDS_MITIGATION_FULL;
237static bool mds_nosmt __ro_after_init = false;
238
239static const char * const mds_strings[] = {
240 [MDS_MITIGATION_OFF] = "Vulnerable",
241 [MDS_MITIGATION_FULL] = "Mitigation: Clear CPU buffers",
242 [MDS_MITIGATION_VMWERV] = "Vulnerable: Clear CPU buffers attempted, no microcode",
243};
244
245static void __init mds_select_mitigation(void)
246{
247 if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) {
248 mds_mitigation = MDS_MITIGATION_OFF;
249 return;
250 }
251
252 if (mds_mitigation == MDS_MITIGATION_FULL) {
253 if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
254 mds_mitigation = MDS_MITIGATION_VMWERV;
255
256 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
257
258 if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
259 (mds_nosmt || cpu_mitigations_auto_nosmt()))
260 cpu_smt_disable(force: false);
261 }
262}
263
264static int __init mds_cmdline(char *str)
265{
266 if (!boot_cpu_has_bug(X86_BUG_MDS))
267 return 0;
268
269 if (!str)
270 return -EINVAL;
271
272 if (!strcmp(str, "off"))
273 mds_mitigation = MDS_MITIGATION_OFF;
274 else if (!strcmp(str, "full"))
275 mds_mitigation = MDS_MITIGATION_FULL;
276 else if (!strcmp(str, "full,nosmt")) {
277 mds_mitigation = MDS_MITIGATION_FULL;
278 mds_nosmt = true;
279 }
280
281 return 0;
282}
283early_param("mds", mds_cmdline);
284
285#undef pr_fmt
286#define pr_fmt(fmt) "TAA: " fmt
287
288enum taa_mitigations {
289 TAA_MITIGATION_OFF,
290 TAA_MITIGATION_UCODE_NEEDED,
291 TAA_MITIGATION_VERW,
292 TAA_MITIGATION_TSX_DISABLED,
293};
294
295/* Default mitigation for TAA-affected CPUs */
296static enum taa_mitigations taa_mitigation __ro_after_init = TAA_MITIGATION_VERW;
297static bool taa_nosmt __ro_after_init;
298
299static const char * const taa_strings[] = {
300 [TAA_MITIGATION_OFF] = "Vulnerable",
301 [TAA_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode",
302 [TAA_MITIGATION_VERW] = "Mitigation: Clear CPU buffers",
303 [TAA_MITIGATION_TSX_DISABLED] = "Mitigation: TSX disabled",
304};
305
306static void __init taa_select_mitigation(void)
307{
308 if (!boot_cpu_has_bug(X86_BUG_TAA)) {
309 taa_mitigation = TAA_MITIGATION_OFF;
310 return;
311 }
312
313 /* TSX previously disabled by tsx=off */
314 if (!boot_cpu_has(X86_FEATURE_RTM)) {
315 taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
316 return;
317 }
318
319 if (cpu_mitigations_off()) {
320 taa_mitigation = TAA_MITIGATION_OFF;
321 return;
322 }
323
324 /*
325 * TAA mitigation via VERW is turned off if both
326 * tsx_async_abort=off and mds=off are specified.
327 */
328 if (taa_mitigation == TAA_MITIGATION_OFF &&
329 mds_mitigation == MDS_MITIGATION_OFF)
330 return;
331
332 if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
333 taa_mitigation = TAA_MITIGATION_VERW;
334 else
335 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
336
337 /*
338 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
339 * A microcode update fixes this behavior to clear CPU buffers. It also
340 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
341 * ARCH_CAP_TSX_CTRL_MSR bit.
342 *
343 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
344 * update is required.
345 */
346 if ( (x86_arch_cap_msr & ARCH_CAP_MDS_NO) &&
347 !(x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR))
348 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
349
350 /*
351 * TSX is enabled, select alternate mitigation for TAA which is
352 * the same as MDS. Enable MDS static branch to clear CPU buffers.
353 *
354 * For guests that can't determine whether the correct microcode is
355 * present on host, enable the mitigation for UCODE_NEEDED as well.
356 */
357 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
358
359 if (taa_nosmt || cpu_mitigations_auto_nosmt())
360 cpu_smt_disable(force: false);
361}
362
363static int __init tsx_async_abort_parse_cmdline(char *str)
364{
365 if (!boot_cpu_has_bug(X86_BUG_TAA))
366 return 0;
367
368 if (!str)
369 return -EINVAL;
370
371 if (!strcmp(str, "off")) {
372 taa_mitigation = TAA_MITIGATION_OFF;
373 } else if (!strcmp(str, "full")) {
374 taa_mitigation = TAA_MITIGATION_VERW;
375 } else if (!strcmp(str, "full,nosmt")) {
376 taa_mitigation = TAA_MITIGATION_VERW;
377 taa_nosmt = true;
378 }
379
380 return 0;
381}
382early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
383
384#undef pr_fmt
385#define pr_fmt(fmt) "MMIO Stale Data: " fmt
386
387enum mmio_mitigations {
388 MMIO_MITIGATION_OFF,
389 MMIO_MITIGATION_UCODE_NEEDED,
390 MMIO_MITIGATION_VERW,
391};
392
393/* Default mitigation for Processor MMIO Stale Data vulnerabilities */
394static enum mmio_mitigations mmio_mitigation __ro_after_init = MMIO_MITIGATION_VERW;
395static bool mmio_nosmt __ro_after_init = false;
396
397static const char * const mmio_strings[] = {
398 [MMIO_MITIGATION_OFF] = "Vulnerable",
399 [MMIO_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode",
400 [MMIO_MITIGATION_VERW] = "Mitigation: Clear CPU buffers",
401};
402
403static void __init mmio_select_mitigation(void)
404{
405 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) ||
406 boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN) ||
407 cpu_mitigations_off()) {
408 mmio_mitigation = MMIO_MITIGATION_OFF;
409 return;
410 }
411
412 if (mmio_mitigation == MMIO_MITIGATION_OFF)
413 return;
414
415 /*
416 * Enable CPU buffer clear mitigation for host and VMM, if also affected
417 * by MDS or TAA. Otherwise, enable mitigation for VMM only.
418 */
419 if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) &&
420 boot_cpu_has(X86_FEATURE_RTM)))
421 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
422
423 /*
424 * X86_FEATURE_CLEAR_CPU_BUF could be enabled by other VERW based
425 * mitigations, disable KVM-only mitigation in that case.
426 */
427 if (boot_cpu_has(X86_FEATURE_CLEAR_CPU_BUF))
428 static_branch_disable(&mmio_stale_data_clear);
429 else
430 static_branch_enable(&mmio_stale_data_clear);
431
432 /*
433 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
434 * be propagated to uncore buffers, clearing the Fill buffers on idle
435 * is required irrespective of SMT state.
436 */
437 if (!(x86_arch_cap_msr & ARCH_CAP_FBSDP_NO))
438 static_branch_enable(&mds_idle_clear);
439
440 /*
441 * Check if the system has the right microcode.
442 *
443 * CPU Fill buffer clear mitigation is enumerated by either an explicit
444 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
445 * affected systems.
446 */
447 if ((x86_arch_cap_msr & ARCH_CAP_FB_CLEAR) ||
448 (boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
449 boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
450 !(x86_arch_cap_msr & ARCH_CAP_MDS_NO)))
451 mmio_mitigation = MMIO_MITIGATION_VERW;
452 else
453 mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;
454
455 if (mmio_nosmt || cpu_mitigations_auto_nosmt())
456 cpu_smt_disable(force: false);
457}
458
459static int __init mmio_stale_data_parse_cmdline(char *str)
460{
461 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
462 return 0;
463
464 if (!str)
465 return -EINVAL;
466
467 if (!strcmp(str, "off")) {
468 mmio_mitigation = MMIO_MITIGATION_OFF;
469 } else if (!strcmp(str, "full")) {
470 mmio_mitigation = MMIO_MITIGATION_VERW;
471 } else if (!strcmp(str, "full,nosmt")) {
472 mmio_mitigation = MMIO_MITIGATION_VERW;
473 mmio_nosmt = true;
474 }
475
476 return 0;
477}
478early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);
479
480#undef pr_fmt
481#define pr_fmt(fmt) "Register File Data Sampling: " fmt
482
483enum rfds_mitigations {
484 RFDS_MITIGATION_OFF,
485 RFDS_MITIGATION_VERW,
486 RFDS_MITIGATION_UCODE_NEEDED,
487};
488
489/* Default mitigation for Register File Data Sampling */
490static enum rfds_mitigations rfds_mitigation __ro_after_init =
491 IS_ENABLED(CONFIG_MITIGATION_RFDS) ? RFDS_MITIGATION_VERW : RFDS_MITIGATION_OFF;
492
493static const char * const rfds_strings[] = {
494 [RFDS_MITIGATION_OFF] = "Vulnerable",
495 [RFDS_MITIGATION_VERW] = "Mitigation: Clear Register File",
496 [RFDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
497};
498
499static void __init rfds_select_mitigation(void)
500{
501 if (!boot_cpu_has_bug(X86_BUG_RFDS) || cpu_mitigations_off()) {
502 rfds_mitigation = RFDS_MITIGATION_OFF;
503 return;
504 }
505 if (rfds_mitigation == RFDS_MITIGATION_OFF)
506 return;
507
508 if (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR)
509 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
510 else
511 rfds_mitigation = RFDS_MITIGATION_UCODE_NEEDED;
512}
513
514static __init int rfds_parse_cmdline(char *str)
515{
516 if (!str)
517 return -EINVAL;
518
519 if (!boot_cpu_has_bug(X86_BUG_RFDS))
520 return 0;
521
522 if (!strcmp(str, "off"))
523 rfds_mitigation = RFDS_MITIGATION_OFF;
524 else if (!strcmp(str, "on"))
525 rfds_mitigation = RFDS_MITIGATION_VERW;
526
527 return 0;
528}
529early_param("reg_file_data_sampling", rfds_parse_cmdline);
530
531#undef pr_fmt
532#define pr_fmt(fmt) "" fmt
533
534static void __init md_clear_update_mitigation(void)
535{
536 if (cpu_mitigations_off())
537 return;
538
539 if (!boot_cpu_has(X86_FEATURE_CLEAR_CPU_BUF))
540 goto out;
541
542 /*
543 * X86_FEATURE_CLEAR_CPU_BUF is now enabled. Update MDS, TAA and MMIO
544 * Stale Data mitigation, if necessary.
545 */
546 if (mds_mitigation == MDS_MITIGATION_OFF &&
547 boot_cpu_has_bug(X86_BUG_MDS)) {
548 mds_mitigation = MDS_MITIGATION_FULL;
549 mds_select_mitigation();
550 }
551 if (taa_mitigation == TAA_MITIGATION_OFF &&
552 boot_cpu_has_bug(X86_BUG_TAA)) {
553 taa_mitigation = TAA_MITIGATION_VERW;
554 taa_select_mitigation();
555 }
556 /*
557 * MMIO_MITIGATION_OFF is not checked here so that mmio_stale_data_clear
558 * gets updated correctly as per X86_FEATURE_CLEAR_CPU_BUF state.
559 */
560 if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) {
561 mmio_mitigation = MMIO_MITIGATION_VERW;
562 mmio_select_mitigation();
563 }
564 if (rfds_mitigation == RFDS_MITIGATION_OFF &&
565 boot_cpu_has_bug(X86_BUG_RFDS)) {
566 rfds_mitigation = RFDS_MITIGATION_VERW;
567 rfds_select_mitigation();
568 }
569out:
570 if (boot_cpu_has_bug(X86_BUG_MDS))
571 pr_info("MDS: %s\n", mds_strings[mds_mitigation]);
572 if (boot_cpu_has_bug(X86_BUG_TAA))
573 pr_info("TAA: %s\n", taa_strings[taa_mitigation]);
574 if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
575 pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]);
576 else if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
577 pr_info("MMIO Stale Data: Unknown: No mitigations\n");
578 if (boot_cpu_has_bug(X86_BUG_RFDS))
579 pr_info("Register File Data Sampling: %s\n", rfds_strings[rfds_mitigation]);
580}
581
582static void __init md_clear_select_mitigation(void)
583{
584 mds_select_mitigation();
585 taa_select_mitigation();
586 mmio_select_mitigation();
587 rfds_select_mitigation();
588
589 /*
590 * As these mitigations are inter-related and rely on VERW instruction
591 * to clear the microarchitural buffers, update and print their status
592 * after mitigation selection is done for each of these vulnerabilities.
593 */
594 md_clear_update_mitigation();
595}
596
597#undef pr_fmt
598#define pr_fmt(fmt) "SRBDS: " fmt
599
600enum srbds_mitigations {
601 SRBDS_MITIGATION_OFF,
602 SRBDS_MITIGATION_UCODE_NEEDED,
603 SRBDS_MITIGATION_FULL,
604 SRBDS_MITIGATION_TSX_OFF,
605 SRBDS_MITIGATION_HYPERVISOR,
606};
607
608static enum srbds_mitigations srbds_mitigation __ro_after_init = SRBDS_MITIGATION_FULL;
609
610static const char * const srbds_strings[] = {
611 [SRBDS_MITIGATION_OFF] = "Vulnerable",
612 [SRBDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
613 [SRBDS_MITIGATION_FULL] = "Mitigation: Microcode",
614 [SRBDS_MITIGATION_TSX_OFF] = "Mitigation: TSX disabled",
615 [SRBDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status",
616};
617
618static bool srbds_off;
619
620void update_srbds_msr(void)
621{
622 u64 mcu_ctrl;
623
624 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
625 return;
626
627 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
628 return;
629
630 if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
631 return;
632
633 /*
634 * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX
635 * being disabled and it hasn't received the SRBDS MSR microcode.
636 */
637 if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
638 return;
639
640 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
641
642 switch (srbds_mitigation) {
643 case SRBDS_MITIGATION_OFF:
644 case SRBDS_MITIGATION_TSX_OFF:
645 mcu_ctrl |= RNGDS_MITG_DIS;
646 break;
647 case SRBDS_MITIGATION_FULL:
648 mcu_ctrl &= ~RNGDS_MITG_DIS;
649 break;
650 default:
651 break;
652 }
653
654 wrmsrl(MSR_IA32_MCU_OPT_CTRL, val: mcu_ctrl);
655}
656
657static void __init srbds_select_mitigation(void)
658{
659 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
660 return;
661
662 /*
663 * Check to see if this is one of the MDS_NO systems supporting TSX that
664 * are only exposed to SRBDS when TSX is enabled or when CPU is affected
665 * by Processor MMIO Stale Data vulnerability.
666 */
667 if ((x86_arch_cap_msr & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) &&
668 !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
669 srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
670 else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
671 srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
672 else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
673 srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
674 else if (cpu_mitigations_off() || srbds_off)
675 srbds_mitigation = SRBDS_MITIGATION_OFF;
676
677 update_srbds_msr();
678 pr_info("%s\n", srbds_strings[srbds_mitigation]);
679}
680
681static int __init srbds_parse_cmdline(char *str)
682{
683 if (!str)
684 return -EINVAL;
685
686 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
687 return 0;
688
689 srbds_off = !strcmp(str, "off");
690 return 0;
691}
692early_param("srbds", srbds_parse_cmdline);
693
694#undef pr_fmt
695#define pr_fmt(fmt) "L1D Flush : " fmt
696
697enum l1d_flush_mitigations {
698 L1D_FLUSH_OFF = 0,
699 L1D_FLUSH_ON,
700};
701
702static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF;
703
704static void __init l1d_flush_select_mitigation(void)
705{
706 if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D))
707 return;
708
709 static_branch_enable(&switch_mm_cond_l1d_flush);
710 pr_info("Conditional flush on switch_mm() enabled\n");
711}
712
713static int __init l1d_flush_parse_cmdline(char *str)
714{
715 if (!strcmp(str, "on"))
716 l1d_flush_mitigation = L1D_FLUSH_ON;
717
718 return 0;
719}
720early_param("l1d_flush", l1d_flush_parse_cmdline);
721
722#undef pr_fmt
723#define pr_fmt(fmt) "GDS: " fmt
724
725enum gds_mitigations {
726 GDS_MITIGATION_OFF,
727 GDS_MITIGATION_UCODE_NEEDED,
728 GDS_MITIGATION_FORCE,
729 GDS_MITIGATION_FULL,
730 GDS_MITIGATION_FULL_LOCKED,
731 GDS_MITIGATION_HYPERVISOR,
732};
733
734#if IS_ENABLED(CONFIG_MITIGATION_GDS_FORCE)
735static enum gds_mitigations gds_mitigation __ro_after_init = GDS_MITIGATION_FORCE;
736#else
737static enum gds_mitigations gds_mitigation __ro_after_init = GDS_MITIGATION_FULL;
738#endif
739
740static const char * const gds_strings[] = {
741 [GDS_MITIGATION_OFF] = "Vulnerable",
742 [GDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
743 [GDS_MITIGATION_FORCE] = "Mitigation: AVX disabled, no microcode",
744 [GDS_MITIGATION_FULL] = "Mitigation: Microcode",
745 [GDS_MITIGATION_FULL_LOCKED] = "Mitigation: Microcode (locked)",
746 [GDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status",
747};
748
749bool gds_ucode_mitigated(void)
750{
751 return (gds_mitigation == GDS_MITIGATION_FULL ||
752 gds_mitigation == GDS_MITIGATION_FULL_LOCKED);
753}
754EXPORT_SYMBOL_GPL(gds_ucode_mitigated);
755
756void update_gds_msr(void)
757{
758 u64 mcu_ctrl_after;
759 u64 mcu_ctrl;
760
761 switch (gds_mitigation) {
762 case GDS_MITIGATION_OFF:
763 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
764 mcu_ctrl |= GDS_MITG_DIS;
765 break;
766 case GDS_MITIGATION_FULL_LOCKED:
767 /*
768 * The LOCKED state comes from the boot CPU. APs might not have
769 * the same state. Make sure the mitigation is enabled on all
770 * CPUs.
771 */
772 case GDS_MITIGATION_FULL:
773 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
774 mcu_ctrl &= ~GDS_MITG_DIS;
775 break;
776 case GDS_MITIGATION_FORCE:
777 case GDS_MITIGATION_UCODE_NEEDED:
778 case GDS_MITIGATION_HYPERVISOR:
779 return;
780 }
781
782 wrmsrl(MSR_IA32_MCU_OPT_CTRL, val: mcu_ctrl);
783
784 /*
785 * Check to make sure that the WRMSR value was not ignored. Writes to
786 * GDS_MITG_DIS will be ignored if this processor is locked but the boot
787 * processor was not.
788 */
789 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl_after);
790 WARN_ON_ONCE(mcu_ctrl != mcu_ctrl_after);
791}
792
793static void __init gds_select_mitigation(void)
794{
795 u64 mcu_ctrl;
796
797 if (!boot_cpu_has_bug(X86_BUG_GDS))
798 return;
799
800 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
801 gds_mitigation = GDS_MITIGATION_HYPERVISOR;
802 goto out;
803 }
804
805 if (cpu_mitigations_off())
806 gds_mitigation = GDS_MITIGATION_OFF;
807 /* Will verify below that mitigation _can_ be disabled */
808
809 /* No microcode */
810 if (!(x86_arch_cap_msr & ARCH_CAP_GDS_CTRL)) {
811 if (gds_mitigation == GDS_MITIGATION_FORCE) {
812 /*
813 * This only needs to be done on the boot CPU so do it
814 * here rather than in update_gds_msr()
815 */
816 setup_clear_cpu_cap(X86_FEATURE_AVX);
817 pr_warn("Microcode update needed! Disabling AVX as mitigation.\n");
818 } else {
819 gds_mitigation = GDS_MITIGATION_UCODE_NEEDED;
820 }
821 goto out;
822 }
823
824 /* Microcode has mitigation, use it */
825 if (gds_mitigation == GDS_MITIGATION_FORCE)
826 gds_mitigation = GDS_MITIGATION_FULL;
827
828 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
829 if (mcu_ctrl & GDS_MITG_LOCKED) {
830 if (gds_mitigation == GDS_MITIGATION_OFF)
831 pr_warn("Mitigation locked. Disable failed.\n");
832
833 /*
834 * The mitigation is selected from the boot CPU. All other CPUs
835 * _should_ have the same state. If the boot CPU isn't locked
836 * but others are then update_gds_msr() will WARN() of the state
837 * mismatch. If the boot CPU is locked update_gds_msr() will
838 * ensure the other CPUs have the mitigation enabled.
839 */
840 gds_mitigation = GDS_MITIGATION_FULL_LOCKED;
841 }
842
843 update_gds_msr();
844out:
845 pr_info("%s\n", gds_strings[gds_mitigation]);
846}
847
848static int __init gds_parse_cmdline(char *str)
849{
850 if (!str)
851 return -EINVAL;
852
853 if (!boot_cpu_has_bug(X86_BUG_GDS))
854 return 0;
855
856 if (!strcmp(str, "off"))
857 gds_mitigation = GDS_MITIGATION_OFF;
858 else if (!strcmp(str, "force"))
859 gds_mitigation = GDS_MITIGATION_FORCE;
860
861 return 0;
862}
863early_param("gather_data_sampling", gds_parse_cmdline);
864
865#undef pr_fmt
866#define pr_fmt(fmt) "Spectre V1 : " fmt
867
868enum spectre_v1_mitigation {
869 SPECTRE_V1_MITIGATION_NONE,
870 SPECTRE_V1_MITIGATION_AUTO,
871};
872
873static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
874 SPECTRE_V1_MITIGATION_AUTO;
875
876static const char * const spectre_v1_strings[] = {
877 [SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
878 [SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
879};
880
881/*
882 * Does SMAP provide full mitigation against speculative kernel access to
883 * userspace?
884 */
885static bool smap_works_speculatively(void)
886{
887 if (!boot_cpu_has(X86_FEATURE_SMAP))
888 return false;
889
890 /*
891 * On CPUs which are vulnerable to Meltdown, SMAP does not
892 * prevent speculative access to user data in the L1 cache.
893 * Consider SMAP to be non-functional as a mitigation on these
894 * CPUs.
895 */
896 if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
897 return false;
898
899 return true;
900}
901
902static void __init spectre_v1_select_mitigation(void)
903{
904 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) {
905 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
906 return;
907 }
908
909 if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
910 /*
911 * With Spectre v1, a user can speculatively control either
912 * path of a conditional swapgs with a user-controlled GS
913 * value. The mitigation is to add lfences to both code paths.
914 *
915 * If FSGSBASE is enabled, the user can put a kernel address in
916 * GS, in which case SMAP provides no protection.
917 *
918 * If FSGSBASE is disabled, the user can only put a user space
919 * address in GS. That makes an attack harder, but still
920 * possible if there's no SMAP protection.
921 */
922 if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
923 !smap_works_speculatively()) {
924 /*
925 * Mitigation can be provided from SWAPGS itself or
926 * PTI as the CR3 write in the Meltdown mitigation
927 * is serializing.
928 *
929 * If neither is there, mitigate with an LFENCE to
930 * stop speculation through swapgs.
931 */
932 if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
933 !boot_cpu_has(X86_FEATURE_PTI))
934 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
935
936 /*
937 * Enable lfences in the kernel entry (non-swapgs)
938 * paths, to prevent user entry from speculatively
939 * skipping swapgs.
940 */
941 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
942 }
943 }
944
945 pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
946}
947
948static int __init nospectre_v1_cmdline(char *str)
949{
950 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
951 return 0;
952}
953early_param("nospectre_v1", nospectre_v1_cmdline);
954
955enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init = SPECTRE_V2_NONE;
956
957#undef pr_fmt
958#define pr_fmt(fmt) "RETBleed: " fmt
959
960enum retbleed_mitigation {
961 RETBLEED_MITIGATION_NONE,
962 RETBLEED_MITIGATION_UNRET,
963 RETBLEED_MITIGATION_IBPB,
964 RETBLEED_MITIGATION_IBRS,
965 RETBLEED_MITIGATION_EIBRS,
966 RETBLEED_MITIGATION_STUFF,
967};
968
969enum retbleed_mitigation_cmd {
970 RETBLEED_CMD_OFF,
971 RETBLEED_CMD_AUTO,
972 RETBLEED_CMD_UNRET,
973 RETBLEED_CMD_IBPB,
974 RETBLEED_CMD_STUFF,
975};
976
977static const char * const retbleed_strings[] = {
978 [RETBLEED_MITIGATION_NONE] = "Vulnerable",
979 [RETBLEED_MITIGATION_UNRET] = "Mitigation: untrained return thunk",
980 [RETBLEED_MITIGATION_IBPB] = "Mitigation: IBPB",
981 [RETBLEED_MITIGATION_IBRS] = "Mitigation: IBRS",
982 [RETBLEED_MITIGATION_EIBRS] = "Mitigation: Enhanced IBRS",
983 [RETBLEED_MITIGATION_STUFF] = "Mitigation: Stuffing",
984};
985
986static enum retbleed_mitigation retbleed_mitigation __ro_after_init =
987 RETBLEED_MITIGATION_NONE;
988static enum retbleed_mitigation_cmd retbleed_cmd __ro_after_init =
989 RETBLEED_CMD_AUTO;
990
991static int __ro_after_init retbleed_nosmt = false;
992
993static int __init retbleed_parse_cmdline(char *str)
994{
995 if (!str)
996 return -EINVAL;
997
998 while (str) {
999 char *next = strchr(str, ',');
1000 if (next) {
1001 *next = 0;
1002 next++;
1003 }
1004
1005 if (!strcmp(str, "off")) {
1006 retbleed_cmd = RETBLEED_CMD_OFF;
1007 } else if (!strcmp(str, "auto")) {
1008 retbleed_cmd = RETBLEED_CMD_AUTO;
1009 } else if (!strcmp(str, "unret")) {
1010 retbleed_cmd = RETBLEED_CMD_UNRET;
1011 } else if (!strcmp(str, "ibpb")) {
1012 retbleed_cmd = RETBLEED_CMD_IBPB;
1013 } else if (!strcmp(str, "stuff")) {
1014 retbleed_cmd = RETBLEED_CMD_STUFF;
1015 } else if (!strcmp(str, "nosmt")) {
1016 retbleed_nosmt = true;
1017 } else if (!strcmp(str, "force")) {
1018 setup_force_cpu_bug(X86_BUG_RETBLEED);
1019 } else {
1020 pr_err("Ignoring unknown retbleed option (%s).", str);
1021 }
1022
1023 str = next;
1024 }
1025
1026 return 0;
1027}
1028early_param("retbleed", retbleed_parse_cmdline);
1029
1030#define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n"
1031#define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n"
1032
1033static void __init retbleed_select_mitigation(void)
1034{
1035 bool mitigate_smt = false;
1036
1037 if (!boot_cpu_has_bug(X86_BUG_RETBLEED) || cpu_mitigations_off())
1038 return;
1039
1040 switch (retbleed_cmd) {
1041 case RETBLEED_CMD_OFF:
1042 return;
1043
1044 case RETBLEED_CMD_UNRET:
1045 if (IS_ENABLED(CONFIG_MITIGATION_UNRET_ENTRY)) {
1046 retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1047 } else {
1048 pr_err("WARNING: kernel not compiled with MITIGATION_UNRET_ENTRY.\n");
1049 goto do_cmd_auto;
1050 }
1051 break;
1052
1053 case RETBLEED_CMD_IBPB:
1054 if (!boot_cpu_has(X86_FEATURE_IBPB)) {
1055 pr_err("WARNING: CPU does not support IBPB.\n");
1056 goto do_cmd_auto;
1057 } else if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) {
1058 retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1059 } else {
1060 pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n");
1061 goto do_cmd_auto;
1062 }
1063 break;
1064
1065 case RETBLEED_CMD_STUFF:
1066 if (IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING) &&
1067 spectre_v2_enabled == SPECTRE_V2_RETPOLINE) {
1068 retbleed_mitigation = RETBLEED_MITIGATION_STUFF;
1069
1070 } else {
1071 if (IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING))
1072 pr_err("WARNING: retbleed=stuff depends on spectre_v2=retpoline\n");
1073 else
1074 pr_err("WARNING: kernel not compiled with MITIGATION_CALL_DEPTH_TRACKING.\n");
1075
1076 goto do_cmd_auto;
1077 }
1078 break;
1079
1080do_cmd_auto:
1081 case RETBLEED_CMD_AUTO:
1082 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1083 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
1084 if (IS_ENABLED(CONFIG_MITIGATION_UNRET_ENTRY))
1085 retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1086 else if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY) &&
1087 boot_cpu_has(X86_FEATURE_IBPB))
1088 retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1089 }
1090
1091 /*
1092 * The Intel mitigation (IBRS or eIBRS) was already selected in
1093 * spectre_v2_select_mitigation(). 'retbleed_mitigation' will
1094 * be set accordingly below.
1095 */
1096
1097 break;
1098 }
1099
1100 switch (retbleed_mitigation) {
1101 case RETBLEED_MITIGATION_UNRET:
1102 setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1103 setup_force_cpu_cap(X86_FEATURE_UNRET);
1104
1105 x86_return_thunk = retbleed_return_thunk;
1106
1107 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
1108 boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
1109 pr_err(RETBLEED_UNTRAIN_MSG);
1110
1111 mitigate_smt = true;
1112 break;
1113
1114 case RETBLEED_MITIGATION_IBPB:
1115 setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
1116 setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
1117 mitigate_smt = true;
1118 break;
1119
1120 case RETBLEED_MITIGATION_STUFF:
1121 setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1122 setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH);
1123
1124 x86_return_thunk = call_depth_return_thunk;
1125 break;
1126
1127 default:
1128 break;
1129 }
1130
1131 if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) &&
1132 (retbleed_nosmt || cpu_mitigations_auto_nosmt()))
1133 cpu_smt_disable(force: false);
1134
1135 /*
1136 * Let IBRS trump all on Intel without affecting the effects of the
1137 * retbleed= cmdline option except for call depth based stuffing
1138 */
1139 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1140 switch (spectre_v2_enabled) {
1141 case SPECTRE_V2_IBRS:
1142 retbleed_mitigation = RETBLEED_MITIGATION_IBRS;
1143 break;
1144 case SPECTRE_V2_EIBRS:
1145 case SPECTRE_V2_EIBRS_RETPOLINE:
1146 case SPECTRE_V2_EIBRS_LFENCE:
1147 retbleed_mitigation = RETBLEED_MITIGATION_EIBRS;
1148 break;
1149 default:
1150 if (retbleed_mitigation != RETBLEED_MITIGATION_STUFF)
1151 pr_err(RETBLEED_INTEL_MSG);
1152 }
1153 }
1154
1155 pr_info("%s\n", retbleed_strings[retbleed_mitigation]);
1156}
1157
1158#undef pr_fmt
1159#define pr_fmt(fmt) "Spectre V2 : " fmt
1160
1161static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
1162 SPECTRE_V2_USER_NONE;
1163static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
1164 SPECTRE_V2_USER_NONE;
1165
1166#ifdef CONFIG_MITIGATION_RETPOLINE
1167static bool spectre_v2_bad_module;
1168
1169bool retpoline_module_ok(bool has_retpoline)
1170{
1171 if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
1172 return true;
1173
1174 pr_err("System may be vulnerable to spectre v2\n");
1175 spectre_v2_bad_module = true;
1176 return false;
1177}
1178
1179static inline const char *spectre_v2_module_string(void)
1180{
1181 return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
1182}
1183#else
1184static inline const char *spectre_v2_module_string(void) { return ""; }
1185#endif
1186
1187#define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n"
1188#define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n"
1189#define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n"
1190#define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n"
1191
1192#ifdef CONFIG_BPF_SYSCALL
1193void unpriv_ebpf_notify(int new_state)
1194{
1195 if (new_state)
1196 return;
1197
1198 /* Unprivileged eBPF is enabled */
1199
1200 switch (spectre_v2_enabled) {
1201 case SPECTRE_V2_EIBRS:
1202 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1203 break;
1204 case SPECTRE_V2_EIBRS_LFENCE:
1205 if (sched_smt_active())
1206 pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1207 break;
1208 default:
1209 break;
1210 }
1211}
1212#endif
1213
1214static inline bool match_option(const char *arg, int arglen, const char *opt)
1215{
1216 int len = strlen(opt);
1217
1218 return len == arglen && !strncmp(arg, opt, len);
1219}
1220
1221/* The kernel command line selection for spectre v2 */
1222enum spectre_v2_mitigation_cmd {
1223 SPECTRE_V2_CMD_NONE,
1224 SPECTRE_V2_CMD_AUTO,
1225 SPECTRE_V2_CMD_FORCE,
1226 SPECTRE_V2_CMD_RETPOLINE,
1227 SPECTRE_V2_CMD_RETPOLINE_GENERIC,
1228 SPECTRE_V2_CMD_RETPOLINE_LFENCE,
1229 SPECTRE_V2_CMD_EIBRS,
1230 SPECTRE_V2_CMD_EIBRS_RETPOLINE,
1231 SPECTRE_V2_CMD_EIBRS_LFENCE,
1232 SPECTRE_V2_CMD_IBRS,
1233};
1234
1235enum spectre_v2_user_cmd {
1236 SPECTRE_V2_USER_CMD_NONE,
1237 SPECTRE_V2_USER_CMD_AUTO,
1238 SPECTRE_V2_USER_CMD_FORCE,
1239 SPECTRE_V2_USER_CMD_PRCTL,
1240 SPECTRE_V2_USER_CMD_PRCTL_IBPB,
1241 SPECTRE_V2_USER_CMD_SECCOMP,
1242 SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
1243};
1244
1245static const char * const spectre_v2_user_strings[] = {
1246 [SPECTRE_V2_USER_NONE] = "User space: Vulnerable",
1247 [SPECTRE_V2_USER_STRICT] = "User space: Mitigation: STIBP protection",
1248 [SPECTRE_V2_USER_STRICT_PREFERRED] = "User space: Mitigation: STIBP always-on protection",
1249 [SPECTRE_V2_USER_PRCTL] = "User space: Mitigation: STIBP via prctl",
1250 [SPECTRE_V2_USER_SECCOMP] = "User space: Mitigation: STIBP via seccomp and prctl",
1251};
1252
1253static const struct {
1254 const char *option;
1255 enum spectre_v2_user_cmd cmd;
1256 bool secure;
1257} v2_user_options[] __initconst = {
1258 { "auto", SPECTRE_V2_USER_CMD_AUTO, false },
1259 { "off", SPECTRE_V2_USER_CMD_NONE, false },
1260 { "on", SPECTRE_V2_USER_CMD_FORCE, true },
1261 { "prctl", SPECTRE_V2_USER_CMD_PRCTL, false },
1262 { "prctl,ibpb", SPECTRE_V2_USER_CMD_PRCTL_IBPB, false },
1263 { "seccomp", SPECTRE_V2_USER_CMD_SECCOMP, false },
1264 { "seccomp,ibpb", SPECTRE_V2_USER_CMD_SECCOMP_IBPB, false },
1265};
1266
1267static void __init spec_v2_user_print_cond(const char *reason, bool secure)
1268{
1269 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1270 pr_info("spectre_v2_user=%s forced on command line.\n", reason);
1271}
1272
1273static __ro_after_init enum spectre_v2_mitigation_cmd spectre_v2_cmd;
1274
1275static enum spectre_v2_user_cmd __init
1276spectre_v2_parse_user_cmdline(void)
1277{
1278 char arg[20];
1279 int ret, i;
1280
1281 switch (spectre_v2_cmd) {
1282 case SPECTRE_V2_CMD_NONE:
1283 return SPECTRE_V2_USER_CMD_NONE;
1284 case SPECTRE_V2_CMD_FORCE:
1285 return SPECTRE_V2_USER_CMD_FORCE;
1286 default:
1287 break;
1288 }
1289
1290 ret = cmdline_find_option(cmdline_ptr: boot_command_line, option: "spectre_v2_user",
1291 buffer: arg, bufsize: sizeof(arg));
1292 if (ret < 0)
1293 return SPECTRE_V2_USER_CMD_AUTO;
1294
1295 for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
1296 if (match_option(arg, arglen: ret, opt: v2_user_options[i].option)) {
1297 spec_v2_user_print_cond(reason: v2_user_options[i].option,
1298 secure: v2_user_options[i].secure);
1299 return v2_user_options[i].cmd;
1300 }
1301 }
1302
1303 pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg);
1304 return SPECTRE_V2_USER_CMD_AUTO;
1305}
1306
1307static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)
1308{
1309 return spectre_v2_in_eibrs_mode(mode) || mode == SPECTRE_V2_IBRS;
1310}
1311
1312static void __init
1313spectre_v2_user_select_mitigation(void)
1314{
1315 enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE;
1316 bool smt_possible = IS_ENABLED(CONFIG_SMP);
1317 enum spectre_v2_user_cmd cmd;
1318
1319 if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
1320 return;
1321
1322 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
1323 cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
1324 smt_possible = false;
1325
1326 cmd = spectre_v2_parse_user_cmdline();
1327 switch (cmd) {
1328 case SPECTRE_V2_USER_CMD_NONE:
1329 goto set_mode;
1330 case SPECTRE_V2_USER_CMD_FORCE:
1331 mode = SPECTRE_V2_USER_STRICT;
1332 break;
1333 case SPECTRE_V2_USER_CMD_AUTO:
1334 case SPECTRE_V2_USER_CMD_PRCTL:
1335 case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1336 mode = SPECTRE_V2_USER_PRCTL;
1337 break;
1338 case SPECTRE_V2_USER_CMD_SECCOMP:
1339 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1340 if (IS_ENABLED(CONFIG_SECCOMP))
1341 mode = SPECTRE_V2_USER_SECCOMP;
1342 else
1343 mode = SPECTRE_V2_USER_PRCTL;
1344 break;
1345 }
1346
1347 /* Initialize Indirect Branch Prediction Barrier */
1348 if (boot_cpu_has(X86_FEATURE_IBPB)) {
1349 setup_force_cpu_cap(X86_FEATURE_USE_IBPB);
1350
1351 spectre_v2_user_ibpb = mode;
1352 switch (cmd) {
1353 case SPECTRE_V2_USER_CMD_NONE:
1354 break;
1355 case SPECTRE_V2_USER_CMD_FORCE:
1356 case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1357 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1358 static_branch_enable(&switch_mm_always_ibpb);
1359 spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
1360 break;
1361 case SPECTRE_V2_USER_CMD_PRCTL:
1362 case SPECTRE_V2_USER_CMD_AUTO:
1363 case SPECTRE_V2_USER_CMD_SECCOMP:
1364 static_branch_enable(&switch_mm_cond_ibpb);
1365 break;
1366 }
1367
1368 pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
1369 static_key_enabled(&switch_mm_always_ibpb) ?
1370 "always-on" : "conditional");
1371 }
1372
1373 /*
1374 * If no STIBP, Intel enhanced IBRS is enabled, or SMT impossible, STIBP
1375 * is not required.
1376 *
1377 * Intel's Enhanced IBRS also protects against cross-thread branch target
1378 * injection in user-mode as the IBRS bit remains always set which
1379 * implicitly enables cross-thread protections. However, in legacy IBRS
1380 * mode, the IBRS bit is set only on kernel entry and cleared on return
1381 * to userspace. AMD Automatic IBRS also does not protect userspace.
1382 * These modes therefore disable the implicit cross-thread protection,
1383 * so allow for STIBP to be selected in those cases.
1384 */
1385 if (!boot_cpu_has(X86_FEATURE_STIBP) ||
1386 !smt_possible ||
1387 (spectre_v2_in_eibrs_mode(mode: spectre_v2_enabled) &&
1388 !boot_cpu_has(X86_FEATURE_AUTOIBRS)))
1389 return;
1390
1391 /*
1392 * At this point, an STIBP mode other than "off" has been set.
1393 * If STIBP support is not being forced, check if STIBP always-on
1394 * is preferred.
1395 */
1396 if (mode != SPECTRE_V2_USER_STRICT &&
1397 boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
1398 mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1399
1400 if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
1401 retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
1402 if (mode != SPECTRE_V2_USER_STRICT &&
1403 mode != SPECTRE_V2_USER_STRICT_PREFERRED)
1404 pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n");
1405 mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1406 }
1407
1408 spectre_v2_user_stibp = mode;
1409
1410set_mode:
1411 pr_info("%s\n", spectre_v2_user_strings[mode]);
1412}
1413
1414static const char * const spectre_v2_strings[] = {
1415 [SPECTRE_V2_NONE] = "Vulnerable",
1416 [SPECTRE_V2_RETPOLINE] = "Mitigation: Retpolines",
1417 [SPECTRE_V2_LFENCE] = "Mitigation: LFENCE",
1418 [SPECTRE_V2_EIBRS] = "Mitigation: Enhanced / Automatic IBRS",
1419 [SPECTRE_V2_EIBRS_LFENCE] = "Mitigation: Enhanced / Automatic IBRS + LFENCE",
1420 [SPECTRE_V2_EIBRS_RETPOLINE] = "Mitigation: Enhanced / Automatic IBRS + Retpolines",
1421 [SPECTRE_V2_IBRS] = "Mitigation: IBRS",
1422};
1423
1424static const struct {
1425 const char *option;
1426 enum spectre_v2_mitigation_cmd cmd;
1427 bool secure;
1428} mitigation_options[] __initconst = {
1429 { "off", SPECTRE_V2_CMD_NONE, false },
1430 { "on", SPECTRE_V2_CMD_FORCE, true },
1431 { "retpoline", SPECTRE_V2_CMD_RETPOLINE, false },
1432 { "retpoline,amd", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false },
1433 { "retpoline,lfence", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false },
1434 { "retpoline,generic", SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
1435 { "eibrs", SPECTRE_V2_CMD_EIBRS, false },
1436 { "eibrs,lfence", SPECTRE_V2_CMD_EIBRS_LFENCE, false },
1437 { "eibrs,retpoline", SPECTRE_V2_CMD_EIBRS_RETPOLINE, false },
1438 { "auto", SPECTRE_V2_CMD_AUTO, false },
1439 { "ibrs", SPECTRE_V2_CMD_IBRS, false },
1440};
1441
1442static void __init spec_v2_print_cond(const char *reason, bool secure)
1443{
1444 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1445 pr_info("%s selected on command line.\n", reason);
1446}
1447
1448static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
1449{
1450 enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO;
1451 char arg[20];
1452 int ret, i;
1453
1454 if (cmdline_find_option_bool(cmdline_ptr: boot_command_line, option: "nospectre_v2") ||
1455 cpu_mitigations_off())
1456 return SPECTRE_V2_CMD_NONE;
1457
1458 ret = cmdline_find_option(cmdline_ptr: boot_command_line, option: "spectre_v2", buffer: arg, bufsize: sizeof(arg));
1459 if (ret < 0)
1460 return SPECTRE_V2_CMD_AUTO;
1461
1462 for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
1463 if (!match_option(arg, arglen: ret, opt: mitigation_options[i].option))
1464 continue;
1465 cmd = mitigation_options[i].cmd;
1466 break;
1467 }
1468
1469 if (i >= ARRAY_SIZE(mitigation_options)) {
1470 pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1471 return SPECTRE_V2_CMD_AUTO;
1472 }
1473
1474 if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
1475 cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1476 cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC ||
1477 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1478 cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1479 !IS_ENABLED(CONFIG_MITIGATION_RETPOLINE)) {
1480 pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1481 mitigation_options[i].option);
1482 return SPECTRE_V2_CMD_AUTO;
1483 }
1484
1485 if ((cmd == SPECTRE_V2_CMD_EIBRS ||
1486 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1487 cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1488 !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1489 pr_err("%s selected but CPU doesn't have Enhanced or Automatic IBRS. Switching to AUTO select\n",
1490 mitigation_options[i].option);
1491 return SPECTRE_V2_CMD_AUTO;
1492 }
1493
1494 if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1495 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) &&
1496 !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
1497 pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n",
1498 mitigation_options[i].option);
1499 return SPECTRE_V2_CMD_AUTO;
1500 }
1501
1502 if (cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_MITIGATION_IBRS_ENTRY)) {
1503 pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1504 mitigation_options[i].option);
1505 return SPECTRE_V2_CMD_AUTO;
1506 }
1507
1508 if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1509 pr_err("%s selected but not Intel CPU. Switching to AUTO select\n",
1510 mitigation_options[i].option);
1511 return SPECTRE_V2_CMD_AUTO;
1512 }
1513
1514 if (cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) {
1515 pr_err("%s selected but CPU doesn't have IBRS. Switching to AUTO select\n",
1516 mitigation_options[i].option);
1517 return SPECTRE_V2_CMD_AUTO;
1518 }
1519
1520 if (cmd == SPECTRE_V2_CMD_IBRS && cpu_feature_enabled(X86_FEATURE_XENPV)) {
1521 pr_err("%s selected but running as XenPV guest. Switching to AUTO select\n",
1522 mitigation_options[i].option);
1523 return SPECTRE_V2_CMD_AUTO;
1524 }
1525
1526 spec_v2_print_cond(reason: mitigation_options[i].option,
1527 secure: mitigation_options[i].secure);
1528 return cmd;
1529}
1530
1531static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void)
1532{
1533 if (!IS_ENABLED(CONFIG_MITIGATION_RETPOLINE)) {
1534 pr_err("Kernel not compiled with retpoline; no mitigation available!");
1535 return SPECTRE_V2_NONE;
1536 }
1537
1538 return SPECTRE_V2_RETPOLINE;
1539}
1540
1541static bool __ro_after_init rrsba_disabled;
1542
1543/* Disable in-kernel use of non-RSB RET predictors */
1544static void __init spec_ctrl_disable_kernel_rrsba(void)
1545{
1546 if (rrsba_disabled)
1547 return;
1548
1549 if (!(x86_arch_cap_msr & ARCH_CAP_RRSBA)) {
1550 rrsba_disabled = true;
1551 return;
1552 }
1553
1554 if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL))
1555 return;
1556
1557 x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S;
1558 update_spec_ctrl(val: x86_spec_ctrl_base);
1559 rrsba_disabled = true;
1560}
1561
1562static void __init spectre_v2_determine_rsb_fill_type_at_vmexit(enum spectre_v2_mitigation mode)
1563{
1564 /*
1565 * Similar to context switches, there are two types of RSB attacks
1566 * after VM exit:
1567 *
1568 * 1) RSB underflow
1569 *
1570 * 2) Poisoned RSB entry
1571 *
1572 * When retpoline is enabled, both are mitigated by filling/clearing
1573 * the RSB.
1574 *
1575 * When IBRS is enabled, while #1 would be mitigated by the IBRS branch
1576 * prediction isolation protections, RSB still needs to be cleared
1577 * because of #2. Note that SMEP provides no protection here, unlike
1578 * user-space-poisoned RSB entries.
1579 *
1580 * eIBRS should protect against RSB poisoning, but if the EIBRS_PBRSB
1581 * bug is present then a LITE version of RSB protection is required,
1582 * just a single call needs to retire before a RET is executed.
1583 */
1584 switch (mode) {
1585 case SPECTRE_V2_NONE:
1586 return;
1587
1588 case SPECTRE_V2_EIBRS_LFENCE:
1589 case SPECTRE_V2_EIBRS:
1590 if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
1591 setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE);
1592 pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n");
1593 }
1594 return;
1595
1596 case SPECTRE_V2_EIBRS_RETPOLINE:
1597 case SPECTRE_V2_RETPOLINE:
1598 case SPECTRE_V2_LFENCE:
1599 case SPECTRE_V2_IBRS:
1600 setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1601 pr_info("Spectre v2 / SpectreRSB : Filling RSB on VMEXIT\n");
1602 return;
1603 }
1604
1605 pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation at VM exit");
1606 dump_stack();
1607}
1608
1609/*
1610 * Set BHI_DIS_S to prevent indirect branches in kernel to be influenced by
1611 * branch history in userspace. Not needed if BHI_NO is set.
1612 */
1613static bool __init spec_ctrl_bhi_dis(void)
1614{
1615 if (!boot_cpu_has(X86_FEATURE_BHI_CTRL))
1616 return false;
1617
1618 x86_spec_ctrl_base |= SPEC_CTRL_BHI_DIS_S;
1619 update_spec_ctrl(val: x86_spec_ctrl_base);
1620 setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_HW);
1621
1622 return true;
1623}
1624
1625enum bhi_mitigations {
1626 BHI_MITIGATION_OFF,
1627 BHI_MITIGATION_ON,
1628};
1629
1630static enum bhi_mitigations bhi_mitigation __ro_after_init =
1631 IS_ENABLED(CONFIG_MITIGATION_SPECTRE_BHI) ? BHI_MITIGATION_ON : BHI_MITIGATION_OFF;
1632
1633static int __init spectre_bhi_parse_cmdline(char *str)
1634{
1635 if (!str)
1636 return -EINVAL;
1637
1638 if (!strcmp(str, "off"))
1639 bhi_mitigation = BHI_MITIGATION_OFF;
1640 else if (!strcmp(str, "on"))
1641 bhi_mitigation = BHI_MITIGATION_ON;
1642 else
1643 pr_err("Ignoring unknown spectre_bhi option (%s)", str);
1644
1645 return 0;
1646}
1647early_param("spectre_bhi", spectre_bhi_parse_cmdline);
1648
1649static void __init bhi_select_mitigation(void)
1650{
1651 if (bhi_mitigation == BHI_MITIGATION_OFF)
1652 return;
1653
1654 /* Retpoline mitigates against BHI unless the CPU has RRSBA behavior */
1655 if (boot_cpu_has(X86_FEATURE_RETPOLINE) &&
1656 !boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE)) {
1657 spec_ctrl_disable_kernel_rrsba();
1658 if (rrsba_disabled)
1659 return;
1660 }
1661
1662 if (spec_ctrl_bhi_dis())
1663 return;
1664
1665 if (!IS_ENABLED(CONFIG_X86_64))
1666 return;
1667
1668 /* Mitigate KVM by default */
1669 setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP_ON_VMEXIT);
1670 pr_info("Spectre BHI mitigation: SW BHB clearing on vm exit\n");
1671
1672 /* Mitigate syscalls when the mitigation is forced =on */
1673 setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP);
1674 pr_info("Spectre BHI mitigation: SW BHB clearing on syscall\n");
1675}
1676
1677static void __init spectre_v2_select_mitigation(void)
1678{
1679 enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline();
1680 enum spectre_v2_mitigation mode = SPECTRE_V2_NONE;
1681
1682 /*
1683 * If the CPU is not affected and the command line mode is NONE or AUTO
1684 * then nothing to do.
1685 */
1686 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
1687 (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO))
1688 return;
1689
1690 switch (cmd) {
1691 case SPECTRE_V2_CMD_NONE:
1692 return;
1693
1694 case SPECTRE_V2_CMD_FORCE:
1695 case SPECTRE_V2_CMD_AUTO:
1696 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1697 mode = SPECTRE_V2_EIBRS;
1698 break;
1699 }
1700
1701 if (IS_ENABLED(CONFIG_MITIGATION_IBRS_ENTRY) &&
1702 boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1703 retbleed_cmd != RETBLEED_CMD_OFF &&
1704 retbleed_cmd != RETBLEED_CMD_STUFF &&
1705 boot_cpu_has(X86_FEATURE_IBRS) &&
1706 boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1707 mode = SPECTRE_V2_IBRS;
1708 break;
1709 }
1710
1711 mode = spectre_v2_select_retpoline();
1712 break;
1713
1714 case SPECTRE_V2_CMD_RETPOLINE_LFENCE:
1715 pr_err(SPECTRE_V2_LFENCE_MSG);
1716 mode = SPECTRE_V2_LFENCE;
1717 break;
1718
1719 case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
1720 mode = SPECTRE_V2_RETPOLINE;
1721 break;
1722
1723 case SPECTRE_V2_CMD_RETPOLINE:
1724 mode = spectre_v2_select_retpoline();
1725 break;
1726
1727 case SPECTRE_V2_CMD_IBRS:
1728 mode = SPECTRE_V2_IBRS;
1729 break;
1730
1731 case SPECTRE_V2_CMD_EIBRS:
1732 mode = SPECTRE_V2_EIBRS;
1733 break;
1734
1735 case SPECTRE_V2_CMD_EIBRS_LFENCE:
1736 mode = SPECTRE_V2_EIBRS_LFENCE;
1737 break;
1738
1739 case SPECTRE_V2_CMD_EIBRS_RETPOLINE:
1740 mode = SPECTRE_V2_EIBRS_RETPOLINE;
1741 break;
1742 }
1743
1744 if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
1745 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1746
1747 if (spectre_v2_in_ibrs_mode(mode)) {
1748 if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) {
1749 msr_set_bit(MSR_EFER, _EFER_AUTOIBRS);
1750 } else {
1751 x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
1752 update_spec_ctrl(val: x86_spec_ctrl_base);
1753 }
1754 }
1755
1756 switch (mode) {
1757 case SPECTRE_V2_NONE:
1758 case SPECTRE_V2_EIBRS:
1759 break;
1760
1761 case SPECTRE_V2_IBRS:
1762 setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS);
1763 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED))
1764 pr_warn(SPECTRE_V2_IBRS_PERF_MSG);
1765 break;
1766
1767 case SPECTRE_V2_LFENCE:
1768 case SPECTRE_V2_EIBRS_LFENCE:
1769 setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE);
1770 fallthrough;
1771
1772 case SPECTRE_V2_RETPOLINE:
1773 case SPECTRE_V2_EIBRS_RETPOLINE:
1774 setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
1775 break;
1776 }
1777
1778 /*
1779 * Disable alternate RSB predictions in kernel when indirect CALLs and
1780 * JMPs gets protection against BHI and Intramode-BTI, but RET
1781 * prediction from a non-RSB predictor is still a risk.
1782 */
1783 if (mode == SPECTRE_V2_EIBRS_LFENCE ||
1784 mode == SPECTRE_V2_EIBRS_RETPOLINE ||
1785 mode == SPECTRE_V2_RETPOLINE)
1786 spec_ctrl_disable_kernel_rrsba();
1787
1788 if (boot_cpu_has(X86_BUG_BHI))
1789 bhi_select_mitigation();
1790
1791 spectre_v2_enabled = mode;
1792 pr_info("%s\n", spectre_v2_strings[mode]);
1793
1794 /*
1795 * If Spectre v2 protection has been enabled, fill the RSB during a
1796 * context switch. In general there are two types of RSB attacks
1797 * across context switches, for which the CALLs/RETs may be unbalanced.
1798 *
1799 * 1) RSB underflow
1800 *
1801 * Some Intel parts have "bottomless RSB". When the RSB is empty,
1802 * speculated return targets may come from the branch predictor,
1803 * which could have a user-poisoned BTB or BHB entry.
1804 *
1805 * AMD has it even worse: *all* returns are speculated from the BTB,
1806 * regardless of the state of the RSB.
1807 *
1808 * When IBRS or eIBRS is enabled, the "user -> kernel" attack
1809 * scenario is mitigated by the IBRS branch prediction isolation
1810 * properties, so the RSB buffer filling wouldn't be necessary to
1811 * protect against this type of attack.
1812 *
1813 * The "user -> user" attack scenario is mitigated by RSB filling.
1814 *
1815 * 2) Poisoned RSB entry
1816 *
1817 * If the 'next' in-kernel return stack is shorter than 'prev',
1818 * 'next' could be tricked into speculating with a user-poisoned RSB
1819 * entry.
1820 *
1821 * The "user -> kernel" attack scenario is mitigated by SMEP and
1822 * eIBRS.
1823 *
1824 * The "user -> user" scenario, also known as SpectreBHB, requires
1825 * RSB clearing.
1826 *
1827 * So to mitigate all cases, unconditionally fill RSB on context
1828 * switches.
1829 *
1830 * FIXME: Is this pointless for retbleed-affected AMD?
1831 */
1832 setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
1833 pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n");
1834
1835 spectre_v2_determine_rsb_fill_type_at_vmexit(mode);
1836
1837 /*
1838 * Retpoline protects the kernel, but doesn't protect firmware. IBRS
1839 * and Enhanced IBRS protect firmware too, so enable IBRS around
1840 * firmware calls only when IBRS / Enhanced / Automatic IBRS aren't
1841 * otherwise enabled.
1842 *
1843 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because
1844 * the user might select retpoline on the kernel command line and if
1845 * the CPU supports Enhanced IBRS, kernel might un-intentionally not
1846 * enable IBRS around firmware calls.
1847 */
1848 if (boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1849 boot_cpu_has(X86_FEATURE_IBPB) &&
1850 (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1851 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)) {
1852
1853 if (retbleed_cmd != RETBLEED_CMD_IBPB) {
1854 setup_force_cpu_cap(X86_FEATURE_USE_IBPB_FW);
1855 pr_info("Enabling Speculation Barrier for firmware calls\n");
1856 }
1857
1858 } else if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_ibrs_mode(mode)) {
1859 setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
1860 pr_info("Enabling Restricted Speculation for firmware calls\n");
1861 }
1862
1863 /* Set up IBPB and STIBP depending on the general spectre V2 command */
1864 spectre_v2_cmd = cmd;
1865}
1866
1867static void update_stibp_msr(void * __unused)
1868{
1869 u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP);
1870 update_spec_ctrl(val);
1871}
1872
1873/* Update x86_spec_ctrl_base in case SMT state changed. */
1874static void update_stibp_strict(void)
1875{
1876 u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
1877
1878 if (sched_smt_active())
1879 mask |= SPEC_CTRL_STIBP;
1880
1881 if (mask == x86_spec_ctrl_base)
1882 return;
1883
1884 pr_info("Update user space SMT mitigation: STIBP %s\n",
1885 mask & SPEC_CTRL_STIBP ? "always-on" : "off");
1886 x86_spec_ctrl_base = mask;
1887 on_each_cpu(func: update_stibp_msr, NULL, wait: 1);
1888}
1889
1890/* Update the static key controlling the evaluation of TIF_SPEC_IB */
1891static void update_indir_branch_cond(void)
1892{
1893 if (sched_smt_active())
1894 static_branch_enable(&switch_to_cond_stibp);
1895 else
1896 static_branch_disable(&switch_to_cond_stibp);
1897}
1898
1899#undef pr_fmt
1900#define pr_fmt(fmt) fmt
1901
1902/* Update the static key controlling the MDS CPU buffer clear in idle */
1903static void update_mds_branch_idle(void)
1904{
1905 /*
1906 * Enable the idle clearing if SMT is active on CPUs which are
1907 * affected only by MSBDS and not any other MDS variant.
1908 *
1909 * The other variants cannot be mitigated when SMT is enabled, so
1910 * clearing the buffers on idle just to prevent the Store Buffer
1911 * repartitioning leak would be a window dressing exercise.
1912 */
1913 if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
1914 return;
1915
1916 if (sched_smt_active()) {
1917 static_branch_enable(&mds_idle_clear);
1918 } else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
1919 (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO)) {
1920 static_branch_disable(&mds_idle_clear);
1921 }
1922}
1923
1924#define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
1925#define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
1926#define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n"
1927
1928void cpu_bugs_smt_update(void)
1929{
1930 mutex_lock(&spec_ctrl_mutex);
1931
1932 if (sched_smt_active() && unprivileged_ebpf_enabled() &&
1933 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
1934 pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1935
1936 switch (spectre_v2_user_stibp) {
1937 case SPECTRE_V2_USER_NONE:
1938 break;
1939 case SPECTRE_V2_USER_STRICT:
1940 case SPECTRE_V2_USER_STRICT_PREFERRED:
1941 update_stibp_strict();
1942 break;
1943 case SPECTRE_V2_USER_PRCTL:
1944 case SPECTRE_V2_USER_SECCOMP:
1945 update_indir_branch_cond();
1946 break;
1947 }
1948
1949 switch (mds_mitigation) {
1950 case MDS_MITIGATION_FULL:
1951 case MDS_MITIGATION_VMWERV:
1952 if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
1953 pr_warn_once(MDS_MSG_SMT);
1954 update_mds_branch_idle();
1955 break;
1956 case MDS_MITIGATION_OFF:
1957 break;
1958 }
1959
1960 switch (taa_mitigation) {
1961 case TAA_MITIGATION_VERW:
1962 case TAA_MITIGATION_UCODE_NEEDED:
1963 if (sched_smt_active())
1964 pr_warn_once(TAA_MSG_SMT);
1965 break;
1966 case TAA_MITIGATION_TSX_DISABLED:
1967 case TAA_MITIGATION_OFF:
1968 break;
1969 }
1970
1971 switch (mmio_mitigation) {
1972 case MMIO_MITIGATION_VERW:
1973 case MMIO_MITIGATION_UCODE_NEEDED:
1974 if (sched_smt_active())
1975 pr_warn_once(MMIO_MSG_SMT);
1976 break;
1977 case MMIO_MITIGATION_OFF:
1978 break;
1979 }
1980
1981 mutex_unlock(lock: &spec_ctrl_mutex);
1982}
1983
1984#undef pr_fmt
1985#define pr_fmt(fmt) "Speculative Store Bypass: " fmt
1986
1987static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;
1988
1989/* The kernel command line selection */
1990enum ssb_mitigation_cmd {
1991 SPEC_STORE_BYPASS_CMD_NONE,
1992 SPEC_STORE_BYPASS_CMD_AUTO,
1993 SPEC_STORE_BYPASS_CMD_ON,
1994 SPEC_STORE_BYPASS_CMD_PRCTL,
1995 SPEC_STORE_BYPASS_CMD_SECCOMP,
1996};
1997
1998static const char * const ssb_strings[] = {
1999 [SPEC_STORE_BYPASS_NONE] = "Vulnerable",
2000 [SPEC_STORE_BYPASS_DISABLE] = "Mitigation: Speculative Store Bypass disabled",
2001 [SPEC_STORE_BYPASS_PRCTL] = "Mitigation: Speculative Store Bypass disabled via prctl",
2002 [SPEC_STORE_BYPASS_SECCOMP] = "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
2003};
2004
2005static const struct {
2006 const char *option;
2007 enum ssb_mitigation_cmd cmd;
2008} ssb_mitigation_options[] __initconst = {
2009 { "auto", SPEC_STORE_BYPASS_CMD_AUTO }, /* Platform decides */
2010 { "on", SPEC_STORE_BYPASS_CMD_ON }, /* Disable Speculative Store Bypass */
2011 { "off", SPEC_STORE_BYPASS_CMD_NONE }, /* Don't touch Speculative Store Bypass */
2012 { "prctl", SPEC_STORE_BYPASS_CMD_PRCTL }, /* Disable Speculative Store Bypass via prctl */
2013 { "seccomp", SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
2014};
2015
2016static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
2017{
2018 enum ssb_mitigation_cmd cmd = SPEC_STORE_BYPASS_CMD_AUTO;
2019 char arg[20];
2020 int ret, i;
2021
2022 if (cmdline_find_option_bool(cmdline_ptr: boot_command_line, option: "nospec_store_bypass_disable") ||
2023 cpu_mitigations_off()) {
2024 return SPEC_STORE_BYPASS_CMD_NONE;
2025 } else {
2026 ret = cmdline_find_option(cmdline_ptr: boot_command_line, option: "spec_store_bypass_disable",
2027 buffer: arg, bufsize: sizeof(arg));
2028 if (ret < 0)
2029 return SPEC_STORE_BYPASS_CMD_AUTO;
2030
2031 for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
2032 if (!match_option(arg, arglen: ret, opt: ssb_mitigation_options[i].option))
2033 continue;
2034
2035 cmd = ssb_mitigation_options[i].cmd;
2036 break;
2037 }
2038
2039 if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
2040 pr_err("unknown option (%s). Switching to AUTO select\n", arg);
2041 return SPEC_STORE_BYPASS_CMD_AUTO;
2042 }
2043 }
2044
2045 return cmd;
2046}
2047
2048static enum ssb_mitigation __init __ssb_select_mitigation(void)
2049{
2050 enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE;
2051 enum ssb_mitigation_cmd cmd;
2052
2053 if (!boot_cpu_has(X86_FEATURE_SSBD))
2054 return mode;
2055
2056 cmd = ssb_parse_cmdline();
2057 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
2058 (cmd == SPEC_STORE_BYPASS_CMD_NONE ||
2059 cmd == SPEC_STORE_BYPASS_CMD_AUTO))
2060 return mode;
2061
2062 switch (cmd) {
2063 case SPEC_STORE_BYPASS_CMD_SECCOMP:
2064 /*
2065 * Choose prctl+seccomp as the default mode if seccomp is
2066 * enabled.
2067 */
2068 if (IS_ENABLED(CONFIG_SECCOMP))
2069 mode = SPEC_STORE_BYPASS_SECCOMP;
2070 else
2071 mode = SPEC_STORE_BYPASS_PRCTL;
2072 break;
2073 case SPEC_STORE_BYPASS_CMD_ON:
2074 mode = SPEC_STORE_BYPASS_DISABLE;
2075 break;
2076 case SPEC_STORE_BYPASS_CMD_AUTO:
2077 case SPEC_STORE_BYPASS_CMD_PRCTL:
2078 mode = SPEC_STORE_BYPASS_PRCTL;
2079 break;
2080 case SPEC_STORE_BYPASS_CMD_NONE:
2081 break;
2082 }
2083
2084 /*
2085 * We have three CPU feature flags that are in play here:
2086 * - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
2087 * - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
2088 * - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
2089 */
2090 if (mode == SPEC_STORE_BYPASS_DISABLE) {
2091 setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
2092 /*
2093 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
2094 * use a completely different MSR and bit dependent on family.
2095 */
2096 if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
2097 !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
2098 x86_amd_ssb_disable();
2099 } else {
2100 x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
2101 update_spec_ctrl(val: x86_spec_ctrl_base);
2102 }
2103 }
2104
2105 return mode;
2106}
2107
2108static void ssb_select_mitigation(void)
2109{
2110 ssb_mode = __ssb_select_mitigation();
2111
2112 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2113 pr_info("%s\n", ssb_strings[ssb_mode]);
2114}
2115
2116#undef pr_fmt
2117#define pr_fmt(fmt) "Speculation prctl: " fmt
2118
2119static void task_update_spec_tif(struct task_struct *tsk)
2120{
2121 /* Force the update of the real TIF bits */
2122 set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
2123
2124 /*
2125 * Immediately update the speculation control MSRs for the current
2126 * task, but for a non-current task delay setting the CPU
2127 * mitigation until it is scheduled next.
2128 *
2129 * This can only happen for SECCOMP mitigation. For PRCTL it's
2130 * always the current task.
2131 */
2132 if (tsk == current)
2133 speculation_ctrl_update_current();
2134}
2135
2136static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl)
2137{
2138
2139 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2140 return -EPERM;
2141
2142 switch (ctrl) {
2143 case PR_SPEC_ENABLE:
2144 set_ti_thread_flag(ti: &task->thread_info, TIF_SPEC_L1D_FLUSH);
2145 return 0;
2146 case PR_SPEC_DISABLE:
2147 clear_ti_thread_flag(ti: &task->thread_info, TIF_SPEC_L1D_FLUSH);
2148 return 0;
2149 default:
2150 return -ERANGE;
2151 }
2152}
2153
2154static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
2155{
2156 if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
2157 ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
2158 return -ENXIO;
2159
2160 switch (ctrl) {
2161 case PR_SPEC_ENABLE:
2162 /* If speculation is force disabled, enable is not allowed */
2163 if (task_spec_ssb_force_disable(p: task))
2164 return -EPERM;
2165 task_clear_spec_ssb_disable(p: task);
2166 task_clear_spec_ssb_noexec(p: task);
2167 task_update_spec_tif(tsk: task);
2168 break;
2169 case PR_SPEC_DISABLE:
2170 task_set_spec_ssb_disable(p: task);
2171 task_clear_spec_ssb_noexec(p: task);
2172 task_update_spec_tif(tsk: task);
2173 break;
2174 case PR_SPEC_FORCE_DISABLE:
2175 task_set_spec_ssb_disable(p: task);
2176 task_set_spec_ssb_force_disable(p: task);
2177 task_clear_spec_ssb_noexec(p: task);
2178 task_update_spec_tif(tsk: task);
2179 break;
2180 case PR_SPEC_DISABLE_NOEXEC:
2181 if (task_spec_ssb_force_disable(p: task))
2182 return -EPERM;
2183 task_set_spec_ssb_disable(p: task);
2184 task_set_spec_ssb_noexec(p: task);
2185 task_update_spec_tif(tsk: task);
2186 break;
2187 default:
2188 return -ERANGE;
2189 }
2190 return 0;
2191}
2192
2193static bool is_spec_ib_user_controlled(void)
2194{
2195 return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
2196 spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2197 spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
2198 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
2199}
2200
2201static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
2202{
2203 switch (ctrl) {
2204 case PR_SPEC_ENABLE:
2205 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2206 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2207 return 0;
2208
2209 /*
2210 * With strict mode for both IBPB and STIBP, the instruction
2211 * code paths avoid checking this task flag and instead,
2212 * unconditionally run the instruction. However, STIBP and IBPB
2213 * are independent and either can be set to conditionally
2214 * enabled regardless of the mode of the other.
2215 *
2216 * If either is set to conditional, allow the task flag to be
2217 * updated, unless it was force-disabled by a previous prctl
2218 * call. Currently, this is possible on an AMD CPU which has the
2219 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
2220 * kernel is booted with 'spectre_v2_user=seccomp', then
2221 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
2222 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
2223 */
2224 if (!is_spec_ib_user_controlled() ||
2225 task_spec_ib_force_disable(p: task))
2226 return -EPERM;
2227
2228 task_clear_spec_ib_disable(p: task);
2229 task_update_spec_tif(tsk: task);
2230 break;
2231 case PR_SPEC_DISABLE:
2232 case PR_SPEC_FORCE_DISABLE:
2233 /*
2234 * Indirect branch speculation is always allowed when
2235 * mitigation is force disabled.
2236 */
2237 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2238 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2239 return -EPERM;
2240
2241 if (!is_spec_ib_user_controlled())
2242 return 0;
2243
2244 task_set_spec_ib_disable(p: task);
2245 if (ctrl == PR_SPEC_FORCE_DISABLE)
2246 task_set_spec_ib_force_disable(p: task);
2247 task_update_spec_tif(tsk: task);
2248 if (task == current)
2249 indirect_branch_prediction_barrier();
2250 break;
2251 default:
2252 return -ERANGE;
2253 }
2254 return 0;
2255}
2256
2257int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
2258 unsigned long ctrl)
2259{
2260 switch (which) {
2261 case PR_SPEC_STORE_BYPASS:
2262 return ssb_prctl_set(task, ctrl);
2263 case PR_SPEC_INDIRECT_BRANCH:
2264 return ib_prctl_set(task, ctrl);
2265 case PR_SPEC_L1D_FLUSH:
2266 return l1d_flush_prctl_set(task, ctrl);
2267 default:
2268 return -ENODEV;
2269 }
2270}
2271
2272#ifdef CONFIG_SECCOMP
2273void arch_seccomp_spec_mitigate(struct task_struct *task)
2274{
2275 if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
2276 ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2277 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2278 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
2279 ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2280}
2281#endif
2282
2283static int l1d_flush_prctl_get(struct task_struct *task)
2284{
2285 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2286 return PR_SPEC_FORCE_DISABLE;
2287
2288 if (test_ti_thread_flag(ti: &task->thread_info, TIF_SPEC_L1D_FLUSH))
2289 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2290 else
2291 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2292}
2293
2294static int ssb_prctl_get(struct task_struct *task)
2295{
2296 switch (ssb_mode) {
2297 case SPEC_STORE_BYPASS_NONE:
2298 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2299 return PR_SPEC_ENABLE;
2300 return PR_SPEC_NOT_AFFECTED;
2301 case SPEC_STORE_BYPASS_DISABLE:
2302 return PR_SPEC_DISABLE;
2303 case SPEC_STORE_BYPASS_SECCOMP:
2304 case SPEC_STORE_BYPASS_PRCTL:
2305 if (task_spec_ssb_force_disable(p: task))
2306 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2307 if (task_spec_ssb_noexec(p: task))
2308 return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
2309 if (task_spec_ssb_disable(p: task))
2310 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2311 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2312 }
2313 BUG();
2314}
2315
2316static int ib_prctl_get(struct task_struct *task)
2317{
2318 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
2319 return PR_SPEC_NOT_AFFECTED;
2320
2321 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2322 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2323 return PR_SPEC_ENABLE;
2324 else if (is_spec_ib_user_controlled()) {
2325 if (task_spec_ib_force_disable(p: task))
2326 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2327 if (task_spec_ib_disable(p: task))
2328 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2329 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2330 } else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
2331 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2332 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
2333 return PR_SPEC_DISABLE;
2334 else
2335 return PR_SPEC_NOT_AFFECTED;
2336}
2337
2338int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
2339{
2340 switch (which) {
2341 case PR_SPEC_STORE_BYPASS:
2342 return ssb_prctl_get(task);
2343 case PR_SPEC_INDIRECT_BRANCH:
2344 return ib_prctl_get(task);
2345 case PR_SPEC_L1D_FLUSH:
2346 return l1d_flush_prctl_get(task);
2347 default:
2348 return -ENODEV;
2349 }
2350}
2351
2352void x86_spec_ctrl_setup_ap(void)
2353{
2354 if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
2355 update_spec_ctrl(val: x86_spec_ctrl_base);
2356
2357 if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
2358 x86_amd_ssb_disable();
2359}
2360
2361bool itlb_multihit_kvm_mitigation;
2362EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
2363
2364#undef pr_fmt
2365#define pr_fmt(fmt) "L1TF: " fmt
2366
2367/* Default mitigation for L1TF-affected CPUs */
2368enum l1tf_mitigations l1tf_mitigation __ro_after_init = L1TF_MITIGATION_FLUSH;
2369#if IS_ENABLED(CONFIG_KVM_INTEL)
2370EXPORT_SYMBOL_GPL(l1tf_mitigation);
2371#endif
2372enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
2373EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
2374
2375/*
2376 * These CPUs all support 44bits physical address space internally in the
2377 * cache but CPUID can report a smaller number of physical address bits.
2378 *
2379 * The L1TF mitigation uses the top most address bit for the inversion of
2380 * non present PTEs. When the installed memory reaches into the top most
2381 * address bit due to memory holes, which has been observed on machines
2382 * which report 36bits physical address bits and have 32G RAM installed,
2383 * then the mitigation range check in l1tf_select_mitigation() triggers.
2384 * This is a false positive because the mitigation is still possible due to
2385 * the fact that the cache uses 44bit internally. Use the cache bits
2386 * instead of the reported physical bits and adjust them on the affected
2387 * machines to 44bit if the reported bits are less than 44.
2388 */
2389static void override_cache_bits(struct cpuinfo_x86 *c)
2390{
2391 if (c->x86 != 6)
2392 return;
2393
2394 switch (c->x86_model) {
2395 case INTEL_FAM6_NEHALEM:
2396 case INTEL_FAM6_WESTMERE:
2397 case INTEL_FAM6_SANDYBRIDGE:
2398 case INTEL_FAM6_IVYBRIDGE:
2399 case INTEL_FAM6_HASWELL:
2400 case INTEL_FAM6_HASWELL_L:
2401 case INTEL_FAM6_HASWELL_G:
2402 case INTEL_FAM6_BROADWELL:
2403 case INTEL_FAM6_BROADWELL_G:
2404 case INTEL_FAM6_SKYLAKE_L:
2405 case INTEL_FAM6_SKYLAKE:
2406 case INTEL_FAM6_KABYLAKE_L:
2407 case INTEL_FAM6_KABYLAKE:
2408 if (c->x86_cache_bits < 44)
2409 c->x86_cache_bits = 44;
2410 break;
2411 }
2412}
2413
2414static void __init l1tf_select_mitigation(void)
2415{
2416 u64 half_pa;
2417
2418 if (!boot_cpu_has_bug(X86_BUG_L1TF))
2419 return;
2420
2421 if (cpu_mitigations_off())
2422 l1tf_mitigation = L1TF_MITIGATION_OFF;
2423 else if (cpu_mitigations_auto_nosmt())
2424 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2425
2426 override_cache_bits(c: &boot_cpu_data);
2427
2428 switch (l1tf_mitigation) {
2429 case L1TF_MITIGATION_OFF:
2430 case L1TF_MITIGATION_FLUSH_NOWARN:
2431 case L1TF_MITIGATION_FLUSH:
2432 break;
2433 case L1TF_MITIGATION_FLUSH_NOSMT:
2434 case L1TF_MITIGATION_FULL:
2435 cpu_smt_disable(force: false);
2436 break;
2437 case L1TF_MITIGATION_FULL_FORCE:
2438 cpu_smt_disable(force: true);
2439 break;
2440 }
2441
2442#if CONFIG_PGTABLE_LEVELS == 2
2443 pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
2444 return;
2445#endif
2446
2447 half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
2448 if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
2449 e820__mapped_any(start: half_pa, ULLONG_MAX - half_pa, type: E820_TYPE_RAM)) {
2450 pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
2451 pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
2452 half_pa);
2453 pr_info("However, doing so will make a part of your RAM unusable.\n");
2454 pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
2455 return;
2456 }
2457
2458 setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
2459}
2460
2461static int __init l1tf_cmdline(char *str)
2462{
2463 if (!boot_cpu_has_bug(X86_BUG_L1TF))
2464 return 0;
2465
2466 if (!str)
2467 return -EINVAL;
2468
2469 if (!strcmp(str, "off"))
2470 l1tf_mitigation = L1TF_MITIGATION_OFF;
2471 else if (!strcmp(str, "flush,nowarn"))
2472 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
2473 else if (!strcmp(str, "flush"))
2474 l1tf_mitigation = L1TF_MITIGATION_FLUSH;
2475 else if (!strcmp(str, "flush,nosmt"))
2476 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2477 else if (!strcmp(str, "full"))
2478 l1tf_mitigation = L1TF_MITIGATION_FULL;
2479 else if (!strcmp(str, "full,force"))
2480 l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
2481
2482 return 0;
2483}
2484early_param("l1tf", l1tf_cmdline);
2485
2486#undef pr_fmt
2487#define pr_fmt(fmt) "Speculative Return Stack Overflow: " fmt
2488
2489enum srso_mitigation {
2490 SRSO_MITIGATION_NONE,
2491 SRSO_MITIGATION_UCODE_NEEDED,
2492 SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED,
2493 SRSO_MITIGATION_MICROCODE,
2494 SRSO_MITIGATION_SAFE_RET,
2495 SRSO_MITIGATION_IBPB,
2496 SRSO_MITIGATION_IBPB_ON_VMEXIT,
2497};
2498
2499enum srso_mitigation_cmd {
2500 SRSO_CMD_OFF,
2501 SRSO_CMD_MICROCODE,
2502 SRSO_CMD_SAFE_RET,
2503 SRSO_CMD_IBPB,
2504 SRSO_CMD_IBPB_ON_VMEXIT,
2505};
2506
2507static const char * const srso_strings[] = {
2508 [SRSO_MITIGATION_NONE] = "Vulnerable",
2509 [SRSO_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
2510 [SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED] = "Vulnerable: Safe RET, no microcode",
2511 [SRSO_MITIGATION_MICROCODE] = "Vulnerable: Microcode, no safe RET",
2512 [SRSO_MITIGATION_SAFE_RET] = "Mitigation: Safe RET",
2513 [SRSO_MITIGATION_IBPB] = "Mitigation: IBPB",
2514 [SRSO_MITIGATION_IBPB_ON_VMEXIT] = "Mitigation: IBPB on VMEXIT only"
2515};
2516
2517static enum srso_mitigation srso_mitigation __ro_after_init = SRSO_MITIGATION_NONE;
2518static enum srso_mitigation_cmd srso_cmd __ro_after_init = SRSO_CMD_SAFE_RET;
2519
2520static int __init srso_parse_cmdline(char *str)
2521{
2522 if (!str)
2523 return -EINVAL;
2524
2525 if (!strcmp(str, "off"))
2526 srso_cmd = SRSO_CMD_OFF;
2527 else if (!strcmp(str, "microcode"))
2528 srso_cmd = SRSO_CMD_MICROCODE;
2529 else if (!strcmp(str, "safe-ret"))
2530 srso_cmd = SRSO_CMD_SAFE_RET;
2531 else if (!strcmp(str, "ibpb"))
2532 srso_cmd = SRSO_CMD_IBPB;
2533 else if (!strcmp(str, "ibpb-vmexit"))
2534 srso_cmd = SRSO_CMD_IBPB_ON_VMEXIT;
2535 else
2536 pr_err("Ignoring unknown SRSO option (%s).", str);
2537
2538 return 0;
2539}
2540early_param("spec_rstack_overflow", srso_parse_cmdline);
2541
2542#define SRSO_NOTICE "WARNING: See https://kernel.org/doc/html/latest/admin-guide/hw-vuln/srso.html for mitigation options."
2543
2544static void __init srso_select_mitigation(void)
2545{
2546 bool has_microcode = boot_cpu_has(X86_FEATURE_IBPB_BRTYPE);
2547
2548 if (cpu_mitigations_off())
2549 return;
2550
2551 if (!boot_cpu_has_bug(X86_BUG_SRSO)) {
2552 if (boot_cpu_has(X86_FEATURE_SBPB))
2553 x86_pred_cmd = PRED_CMD_SBPB;
2554 return;
2555 }
2556
2557 if (has_microcode) {
2558 /*
2559 * Zen1/2 with SMT off aren't vulnerable after the right
2560 * IBPB microcode has been applied.
2561 *
2562 * Zen1/2 don't have SBPB, no need to try to enable it here.
2563 */
2564 if (boot_cpu_data.x86 < 0x19 && !cpu_smt_possible()) {
2565 setup_force_cpu_cap(X86_FEATURE_SRSO_NO);
2566 return;
2567 }
2568
2569 if (retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2570 srso_mitigation = SRSO_MITIGATION_IBPB;
2571 goto out;
2572 }
2573 } else {
2574 pr_warn("IBPB-extending microcode not applied!\n");
2575 pr_warn(SRSO_NOTICE);
2576
2577 /* may be overwritten by SRSO_CMD_SAFE_RET below */
2578 srso_mitigation = SRSO_MITIGATION_UCODE_NEEDED;
2579 }
2580
2581 switch (srso_cmd) {
2582 case SRSO_CMD_OFF:
2583 if (boot_cpu_has(X86_FEATURE_SBPB))
2584 x86_pred_cmd = PRED_CMD_SBPB;
2585 return;
2586
2587 case SRSO_CMD_MICROCODE:
2588 if (has_microcode) {
2589 srso_mitigation = SRSO_MITIGATION_MICROCODE;
2590 pr_warn(SRSO_NOTICE);
2591 }
2592 break;
2593
2594 case SRSO_CMD_SAFE_RET:
2595 if (IS_ENABLED(CONFIG_MITIGATION_SRSO)) {
2596 /*
2597 * Enable the return thunk for generated code
2598 * like ftrace, static_call, etc.
2599 */
2600 setup_force_cpu_cap(X86_FEATURE_RETHUNK);
2601 setup_force_cpu_cap(X86_FEATURE_UNRET);
2602
2603 if (boot_cpu_data.x86 == 0x19) {
2604 setup_force_cpu_cap(X86_FEATURE_SRSO_ALIAS);
2605 x86_return_thunk = srso_alias_return_thunk;
2606 } else {
2607 setup_force_cpu_cap(X86_FEATURE_SRSO);
2608 x86_return_thunk = srso_return_thunk;
2609 }
2610 if (has_microcode)
2611 srso_mitigation = SRSO_MITIGATION_SAFE_RET;
2612 else
2613 srso_mitigation = SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED;
2614 } else {
2615 pr_err("WARNING: kernel not compiled with MITIGATION_SRSO.\n");
2616 }
2617 break;
2618
2619 case SRSO_CMD_IBPB:
2620 if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) {
2621 if (has_microcode) {
2622 setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
2623 srso_mitigation = SRSO_MITIGATION_IBPB;
2624 }
2625 } else {
2626 pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n");
2627 }
2628 break;
2629
2630 case SRSO_CMD_IBPB_ON_VMEXIT:
2631 if (IS_ENABLED(CONFIG_MITIGATION_SRSO)) {
2632 if (!boot_cpu_has(X86_FEATURE_ENTRY_IBPB) && has_microcode) {
2633 setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
2634 srso_mitigation = SRSO_MITIGATION_IBPB_ON_VMEXIT;
2635 }
2636 } else {
2637 pr_err("WARNING: kernel not compiled with MITIGATION_SRSO.\n");
2638 }
2639 break;
2640 }
2641
2642out:
2643 pr_info("%s\n", srso_strings[srso_mitigation]);
2644}
2645
2646#undef pr_fmt
2647#define pr_fmt(fmt) fmt
2648
2649#ifdef CONFIG_SYSFS
2650
2651#define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
2652
2653#if IS_ENABLED(CONFIG_KVM_INTEL)
2654static const char * const l1tf_vmx_states[] = {
2655 [VMENTER_L1D_FLUSH_AUTO] = "auto",
2656 [VMENTER_L1D_FLUSH_NEVER] = "vulnerable",
2657 [VMENTER_L1D_FLUSH_COND] = "conditional cache flushes",
2658 [VMENTER_L1D_FLUSH_ALWAYS] = "cache flushes",
2659 [VMENTER_L1D_FLUSH_EPT_DISABLED] = "EPT disabled",
2660 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = "flush not necessary"
2661};
2662
2663static ssize_t l1tf_show_state(char *buf)
2664{
2665 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
2666 return sysfs_emit(buf, fmt: "%s\n", L1TF_DEFAULT_MSG);
2667
2668 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
2669 (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
2670 sched_smt_active())) {
2671 return sysfs_emit(buf, fmt: "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
2672 l1tf_vmx_states[l1tf_vmx_mitigation]);
2673 }
2674
2675 return sysfs_emit(buf, fmt: "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
2676 l1tf_vmx_states[l1tf_vmx_mitigation],
2677 sched_smt_active() ? "vulnerable" : "disabled");
2678}
2679
2680static ssize_t itlb_multihit_show_state(char *buf)
2681{
2682 if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2683 !boot_cpu_has(X86_FEATURE_VMX))
2684 return sysfs_emit(buf, fmt: "KVM: Mitigation: VMX unsupported\n");
2685 else if (!(cr4_read_shadow() & X86_CR4_VMXE))
2686 return sysfs_emit(buf, fmt: "KVM: Mitigation: VMX disabled\n");
2687 else if (itlb_multihit_kvm_mitigation)
2688 return sysfs_emit(buf, fmt: "KVM: Mitigation: Split huge pages\n");
2689 else
2690 return sysfs_emit(buf, fmt: "KVM: Vulnerable\n");
2691}
2692#else
2693static ssize_t l1tf_show_state(char *buf)
2694{
2695 return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2696}
2697
2698static ssize_t itlb_multihit_show_state(char *buf)
2699{
2700 return sysfs_emit(buf, "Processor vulnerable\n");
2701}
2702#endif
2703
2704static ssize_t mds_show_state(char *buf)
2705{
2706 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2707 return sysfs_emit(buf, fmt: "%s; SMT Host state unknown\n",
2708 mds_strings[mds_mitigation]);
2709 }
2710
2711 if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
2712 return sysfs_emit(buf, fmt: "%s; SMT %s\n", mds_strings[mds_mitigation],
2713 (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
2714 sched_smt_active() ? "mitigated" : "disabled"));
2715 }
2716
2717 return sysfs_emit(buf, fmt: "%s; SMT %s\n", mds_strings[mds_mitigation],
2718 sched_smt_active() ? "vulnerable" : "disabled");
2719}
2720
2721static ssize_t tsx_async_abort_show_state(char *buf)
2722{
2723 if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
2724 (taa_mitigation == TAA_MITIGATION_OFF))
2725 return sysfs_emit(buf, fmt: "%s\n", taa_strings[taa_mitigation]);
2726
2727 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2728 return sysfs_emit(buf, fmt: "%s; SMT Host state unknown\n",
2729 taa_strings[taa_mitigation]);
2730 }
2731
2732 return sysfs_emit(buf, fmt: "%s; SMT %s\n", taa_strings[taa_mitigation],
2733 sched_smt_active() ? "vulnerable" : "disabled");
2734}
2735
2736static ssize_t mmio_stale_data_show_state(char *buf)
2737{
2738 if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2739 return sysfs_emit(buf, fmt: "Unknown: No mitigations\n");
2740
2741 if (mmio_mitigation == MMIO_MITIGATION_OFF)
2742 return sysfs_emit(buf, fmt: "%s\n", mmio_strings[mmio_mitigation]);
2743
2744 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2745 return sysfs_emit(buf, fmt: "%s; SMT Host state unknown\n",
2746 mmio_strings[mmio_mitigation]);
2747 }
2748
2749 return sysfs_emit(buf, fmt: "%s; SMT %s\n", mmio_strings[mmio_mitigation],
2750 sched_smt_active() ? "vulnerable" : "disabled");
2751}
2752
2753static ssize_t rfds_show_state(char *buf)
2754{
2755 return sysfs_emit(buf, fmt: "%s\n", rfds_strings[rfds_mitigation]);
2756}
2757
2758static char *stibp_state(void)
2759{
2760 if (spectre_v2_in_eibrs_mode(mode: spectre_v2_enabled) &&
2761 !boot_cpu_has(X86_FEATURE_AUTOIBRS))
2762 return "";
2763
2764 switch (spectre_v2_user_stibp) {
2765 case SPECTRE_V2_USER_NONE:
2766 return "; STIBP: disabled";
2767 case SPECTRE_V2_USER_STRICT:
2768 return "; STIBP: forced";
2769 case SPECTRE_V2_USER_STRICT_PREFERRED:
2770 return "; STIBP: always-on";
2771 case SPECTRE_V2_USER_PRCTL:
2772 case SPECTRE_V2_USER_SECCOMP:
2773 if (static_key_enabled(&switch_to_cond_stibp))
2774 return "; STIBP: conditional";
2775 }
2776 return "";
2777}
2778
2779static char *ibpb_state(void)
2780{
2781 if (boot_cpu_has(X86_FEATURE_IBPB)) {
2782 if (static_key_enabled(&switch_mm_always_ibpb))
2783 return "; IBPB: always-on";
2784 if (static_key_enabled(&switch_mm_cond_ibpb))
2785 return "; IBPB: conditional";
2786 return "; IBPB: disabled";
2787 }
2788 return "";
2789}
2790
2791static char *pbrsb_eibrs_state(void)
2792{
2793 if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
2794 if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) ||
2795 boot_cpu_has(X86_FEATURE_RSB_VMEXIT))
2796 return "; PBRSB-eIBRS: SW sequence";
2797 else
2798 return "; PBRSB-eIBRS: Vulnerable";
2799 } else {
2800 return "; PBRSB-eIBRS: Not affected";
2801 }
2802}
2803
2804static const char *spectre_bhi_state(void)
2805{
2806 if (!boot_cpu_has_bug(X86_BUG_BHI))
2807 return "; BHI: Not affected";
2808 else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_HW))
2809 return "; BHI: BHI_DIS_S";
2810 else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_LOOP))
2811 return "; BHI: SW loop, KVM: SW loop";
2812 else if (boot_cpu_has(X86_FEATURE_RETPOLINE) &&
2813 !boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE) &&
2814 rrsba_disabled)
2815 return "; BHI: Retpoline";
2816 else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_LOOP_ON_VMEXIT))
2817 return "; BHI: Vulnerable, KVM: SW loop";
2818
2819 return "; BHI: Vulnerable";
2820}
2821
2822static ssize_t spectre_v2_show_state(char *buf)
2823{
2824 if (spectre_v2_enabled == SPECTRE_V2_LFENCE)
2825 return sysfs_emit(buf, fmt: "Vulnerable: LFENCE\n");
2826
2827 if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
2828 return sysfs_emit(buf, fmt: "Vulnerable: eIBRS with unprivileged eBPF\n");
2829
2830 if (sched_smt_active() && unprivileged_ebpf_enabled() &&
2831 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
2832 return sysfs_emit(buf, fmt: "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n");
2833
2834 return sysfs_emit(buf, fmt: "%s%s%s%s%s%s%s%s\n",
2835 spectre_v2_strings[spectre_v2_enabled],
2836 ibpb_state(),
2837 boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? "; IBRS_FW" : "",
2838 stibp_state(),
2839 boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? "; RSB filling" : "",
2840 pbrsb_eibrs_state(),
2841 spectre_bhi_state(),
2842 /* this should always be at the end */
2843 spectre_v2_module_string());
2844}
2845
2846static ssize_t srbds_show_state(char *buf)
2847{
2848 return sysfs_emit(buf, fmt: "%s\n", srbds_strings[srbds_mitigation]);
2849}
2850
2851static ssize_t retbleed_show_state(char *buf)
2852{
2853 if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
2854 retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2855 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
2856 boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
2857 return sysfs_emit(buf, fmt: "Vulnerable: untrained return thunk / IBPB on non-AMD based uarch\n");
2858
2859 return sysfs_emit(buf, fmt: "%s; SMT %s\n", retbleed_strings[retbleed_mitigation],
2860 !sched_smt_active() ? "disabled" :
2861 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2862 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ?
2863 "enabled with STIBP protection" : "vulnerable");
2864 }
2865
2866 return sysfs_emit(buf, fmt: "%s\n", retbleed_strings[retbleed_mitigation]);
2867}
2868
2869static ssize_t srso_show_state(char *buf)
2870{
2871 if (boot_cpu_has(X86_FEATURE_SRSO_NO))
2872 return sysfs_emit(buf, fmt: "Mitigation: SMT disabled\n");
2873
2874 return sysfs_emit(buf, fmt: "%s\n", srso_strings[srso_mitigation]);
2875}
2876
2877static ssize_t gds_show_state(char *buf)
2878{
2879 return sysfs_emit(buf, fmt: "%s\n", gds_strings[gds_mitigation]);
2880}
2881
2882static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
2883 char *buf, unsigned int bug)
2884{
2885 if (!boot_cpu_has_bug(bug))
2886 return sysfs_emit(buf, fmt: "Not affected\n");
2887
2888 switch (bug) {
2889 case X86_BUG_CPU_MELTDOWN:
2890 if (boot_cpu_has(X86_FEATURE_PTI))
2891 return sysfs_emit(buf, fmt: "Mitigation: PTI\n");
2892
2893 if (hypervisor_is_type(type: X86_HYPER_XEN_PV))
2894 return sysfs_emit(buf, fmt: "Unknown (XEN PV detected, hypervisor mitigation required)\n");
2895
2896 break;
2897
2898 case X86_BUG_SPECTRE_V1:
2899 return sysfs_emit(buf, fmt: "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
2900
2901 case X86_BUG_SPECTRE_V2:
2902 return spectre_v2_show_state(buf);
2903
2904 case X86_BUG_SPEC_STORE_BYPASS:
2905 return sysfs_emit(buf, fmt: "%s\n", ssb_strings[ssb_mode]);
2906
2907 case X86_BUG_L1TF:
2908 if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
2909 return l1tf_show_state(buf);
2910 break;
2911
2912 case X86_BUG_MDS:
2913 return mds_show_state(buf);
2914
2915 case X86_BUG_TAA:
2916 return tsx_async_abort_show_state(buf);
2917
2918 case X86_BUG_ITLB_MULTIHIT:
2919 return itlb_multihit_show_state(buf);
2920
2921 case X86_BUG_SRBDS:
2922 return srbds_show_state(buf);
2923
2924 case X86_BUG_MMIO_STALE_DATA:
2925 case X86_BUG_MMIO_UNKNOWN:
2926 return mmio_stale_data_show_state(buf);
2927
2928 case X86_BUG_RETBLEED:
2929 return retbleed_show_state(buf);
2930
2931 case X86_BUG_SRSO:
2932 return srso_show_state(buf);
2933
2934 case X86_BUG_GDS:
2935 return gds_show_state(buf);
2936
2937 case X86_BUG_RFDS:
2938 return rfds_show_state(buf);
2939
2940 default:
2941 break;
2942 }
2943
2944 return sysfs_emit(buf, fmt: "Vulnerable\n");
2945}
2946
2947ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
2948{
2949 return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
2950}
2951
2952ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
2953{
2954 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
2955}
2956
2957ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
2958{
2959 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
2960}
2961
2962ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
2963{
2964 return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
2965}
2966
2967ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
2968{
2969 return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
2970}
2971
2972ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
2973{
2974 return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
2975}
2976
2977ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
2978{
2979 return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
2980}
2981
2982ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
2983{
2984 return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
2985}
2986
2987ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
2988{
2989 return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
2990}
2991
2992ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf)
2993{
2994 if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2995 return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_UNKNOWN);
2996 else
2997 return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA);
2998}
2999
3000ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf)
3001{
3002 return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED);
3003}
3004
3005ssize_t cpu_show_spec_rstack_overflow(struct device *dev, struct device_attribute *attr, char *buf)
3006{
3007 return cpu_show_common(dev, attr, buf, X86_BUG_SRSO);
3008}
3009
3010ssize_t cpu_show_gds(struct device *dev, struct device_attribute *attr, char *buf)
3011{
3012 return cpu_show_common(dev, attr, buf, X86_BUG_GDS);
3013}
3014
3015ssize_t cpu_show_reg_file_data_sampling(struct device *dev, struct device_attribute *attr, char *buf)
3016{
3017 return cpu_show_common(dev, attr, buf, X86_BUG_RFDS);
3018}
3019#endif
3020
3021void __warn_thunk(void)
3022{
3023 WARN_ONCE(1, "Unpatched return thunk in use. This should not happen!\n");
3024}
3025

source code of linux/arch/x86/kernel/cpu/bugs.c