1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Common Block IO controller cgroup interface
4 *
5 * Based on ideas and code from CFQ, CFS and BFQ:
6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7 *
8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9 * Paolo Valente <paolo.valente@unimore.it>
10 *
11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12 * Nauman Rafique <nauman@google.com>
13 *
14 * For policy-specific per-blkcg data:
15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16 * Arianna Avanzini <avanzini.arianna@gmail.com>
17 */
18#include <linux/ioprio.h>
19#include <linux/kdev_t.h>
20#include <linux/module.h>
21#include <linux/sched/signal.h>
22#include <linux/err.h>
23#include <linux/blkdev.h>
24#include <linux/backing-dev.h>
25#include <linux/slab.h>
26#include <linux/delay.h>
27#include <linux/atomic.h>
28#include <linux/ctype.h>
29#include <linux/resume_user_mode.h>
30#include <linux/psi.h>
31#include <linux/part_stat.h>
32#include "blk.h"
33#include "blk-cgroup.h"
34#include "blk-ioprio.h"
35#include "blk-throttle.h"
36
37static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu);
38
39/*
40 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
41 * blkcg_pol_register_mutex nests outside of it and synchronizes entire
42 * policy [un]register operations including cgroup file additions /
43 * removals. Putting cgroup file registration outside blkcg_pol_mutex
44 * allows grabbing it from cgroup callbacks.
45 */
46static DEFINE_MUTEX(blkcg_pol_register_mutex);
47static DEFINE_MUTEX(blkcg_pol_mutex);
48
49struct blkcg blkcg_root;
50EXPORT_SYMBOL_GPL(blkcg_root);
51
52struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
53EXPORT_SYMBOL_GPL(blkcg_root_css);
54
55static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
56
57static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */
58
59bool blkcg_debug_stats = false;
60
61static DEFINE_RAW_SPINLOCK(blkg_stat_lock);
62
63#define BLKG_DESTROY_BATCH_SIZE 64
64
65/*
66 * Lockless lists for tracking IO stats update
67 *
68 * New IO stats are stored in the percpu iostat_cpu within blkcg_gq (blkg).
69 * There are multiple blkg's (one for each block device) attached to each
70 * blkcg. The rstat code keeps track of which cpu has IO stats updated,
71 * but it doesn't know which blkg has the updated stats. If there are many
72 * block devices in a system, the cost of iterating all the blkg's to flush
73 * out the IO stats can be high. To reduce such overhead, a set of percpu
74 * lockless lists (lhead) per blkcg are used to track the set of recently
75 * updated iostat_cpu's since the last flush. An iostat_cpu will be put
76 * onto the lockless list on the update side [blk_cgroup_bio_start()] if
77 * not there yet and then removed when being flushed [blkcg_rstat_flush()].
78 * References to blkg are gotten and then put back in the process to
79 * protect against blkg removal.
80 *
81 * Return: 0 if successful or -ENOMEM if allocation fails.
82 */
83static int init_blkcg_llists(struct blkcg *blkcg)
84{
85 int cpu;
86
87 blkcg->lhead = alloc_percpu_gfp(struct llist_head, GFP_KERNEL);
88 if (!blkcg->lhead)
89 return -ENOMEM;
90
91 for_each_possible_cpu(cpu)
92 init_llist_head(per_cpu_ptr(blkcg->lhead, cpu));
93 return 0;
94}
95
96/**
97 * blkcg_css - find the current css
98 *
99 * Find the css associated with either the kthread or the current task.
100 * This may return a dying css, so it is up to the caller to use tryget logic
101 * to confirm it is alive and well.
102 */
103static struct cgroup_subsys_state *blkcg_css(void)
104{
105 struct cgroup_subsys_state *css;
106
107 css = kthread_blkcg();
108 if (css)
109 return css;
110 return task_css(current, subsys_id: io_cgrp_id);
111}
112
113static bool blkcg_policy_enabled(struct request_queue *q,
114 const struct blkcg_policy *pol)
115{
116 return pol && test_bit(pol->plid, q->blkcg_pols);
117}
118
119static void blkg_free_workfn(struct work_struct *work)
120{
121 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
122 free_work);
123 struct request_queue *q = blkg->q;
124 int i;
125
126 /*
127 * pd_free_fn() can also be called from blkcg_deactivate_policy(),
128 * in order to make sure pd_free_fn() is called in order, the deletion
129 * of the list blkg->q_node is delayed to here from blkg_destroy(), and
130 * blkcg_mutex is used to synchronize blkg_free_workfn() and
131 * blkcg_deactivate_policy().
132 */
133 mutex_lock(&q->blkcg_mutex);
134 for (i = 0; i < BLKCG_MAX_POLS; i++)
135 if (blkg->pd[i])
136 blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
137 if (blkg->parent)
138 blkg_put(blkg: blkg->parent);
139 spin_lock_irq(lock: &q->queue_lock);
140 list_del_init(entry: &blkg->q_node);
141 spin_unlock_irq(lock: &q->queue_lock);
142 mutex_unlock(lock: &q->blkcg_mutex);
143
144 blk_put_queue(q);
145 free_percpu(pdata: blkg->iostat_cpu);
146 percpu_ref_exit(ref: &blkg->refcnt);
147 kfree(objp: blkg);
148}
149
150/**
151 * blkg_free - free a blkg
152 * @blkg: blkg to free
153 *
154 * Free @blkg which may be partially allocated.
155 */
156static void blkg_free(struct blkcg_gq *blkg)
157{
158 if (!blkg)
159 return;
160
161 /*
162 * Both ->pd_free_fn() and request queue's release handler may
163 * sleep, so free us by scheduling one work func
164 */
165 INIT_WORK(&blkg->free_work, blkg_free_workfn);
166 schedule_work(work: &blkg->free_work);
167}
168
169static void __blkg_release(struct rcu_head *rcu)
170{
171 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
172 struct blkcg *blkcg = blkg->blkcg;
173 int cpu;
174
175#ifdef CONFIG_BLK_CGROUP_PUNT_BIO
176 WARN_ON(!bio_list_empty(&blkg->async_bios));
177#endif
178 /*
179 * Flush all the non-empty percpu lockless lists before releasing
180 * us, given these stat belongs to us.
181 *
182 * blkg_stat_lock is for serializing blkg stat update
183 */
184 for_each_possible_cpu(cpu)
185 __blkcg_rstat_flush(blkcg, cpu);
186
187 /* release the blkcg and parent blkg refs this blkg has been holding */
188 css_put(css: &blkg->blkcg->css);
189 blkg_free(blkg);
190}
191
192/*
193 * A group is RCU protected, but having an rcu lock does not mean that one
194 * can access all the fields of blkg and assume these are valid. For
195 * example, don't try to follow throtl_data and request queue links.
196 *
197 * Having a reference to blkg under an rcu allows accesses to only values
198 * local to groups like group stats and group rate limits.
199 */
200static void blkg_release(struct percpu_ref *ref)
201{
202 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
203
204 call_rcu(head: &blkg->rcu_head, func: __blkg_release);
205}
206
207#ifdef CONFIG_BLK_CGROUP_PUNT_BIO
208static struct workqueue_struct *blkcg_punt_bio_wq;
209
210static void blkg_async_bio_workfn(struct work_struct *work)
211{
212 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
213 async_bio_work);
214 struct bio_list bios = BIO_EMPTY_LIST;
215 struct bio *bio;
216 struct blk_plug plug;
217 bool need_plug = false;
218
219 /* as long as there are pending bios, @blkg can't go away */
220 spin_lock(lock: &blkg->async_bio_lock);
221 bio_list_merge(bl: &bios, bl2: &blkg->async_bios);
222 bio_list_init(bl: &blkg->async_bios);
223 spin_unlock(lock: &blkg->async_bio_lock);
224
225 /* start plug only when bio_list contains at least 2 bios */
226 if (bios.head && bios.head->bi_next) {
227 need_plug = true;
228 blk_start_plug(&plug);
229 }
230 while ((bio = bio_list_pop(bl: &bios)))
231 submit_bio(bio);
232 if (need_plug)
233 blk_finish_plug(&plug);
234}
235
236/*
237 * When a shared kthread issues a bio for a cgroup, doing so synchronously can
238 * lead to priority inversions as the kthread can be trapped waiting for that
239 * cgroup. Use this helper instead of submit_bio to punt the actual issuing to
240 * a dedicated per-blkcg work item to avoid such priority inversions.
241 */
242void blkcg_punt_bio_submit(struct bio *bio)
243{
244 struct blkcg_gq *blkg = bio->bi_blkg;
245
246 if (blkg->parent) {
247 spin_lock(lock: &blkg->async_bio_lock);
248 bio_list_add(bl: &blkg->async_bios, bio);
249 spin_unlock(lock: &blkg->async_bio_lock);
250 queue_work(wq: blkcg_punt_bio_wq, work: &blkg->async_bio_work);
251 } else {
252 /* never bounce for the root cgroup */
253 submit_bio(bio);
254 }
255}
256EXPORT_SYMBOL_GPL(blkcg_punt_bio_submit);
257
258static int __init blkcg_punt_bio_init(void)
259{
260 blkcg_punt_bio_wq = alloc_workqueue(fmt: "blkcg_punt_bio",
261 flags: WQ_MEM_RECLAIM | WQ_FREEZABLE |
262 WQ_UNBOUND | WQ_SYSFS, max_active: 0);
263 if (!blkcg_punt_bio_wq)
264 return -ENOMEM;
265 return 0;
266}
267subsys_initcall(blkcg_punt_bio_init);
268#endif /* CONFIG_BLK_CGROUP_PUNT_BIO */
269
270/**
271 * bio_blkcg_css - return the blkcg CSS associated with a bio
272 * @bio: target bio
273 *
274 * This returns the CSS for the blkcg associated with a bio, or %NULL if not
275 * associated. Callers are expected to either handle %NULL or know association
276 * has been done prior to calling this.
277 */
278struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio)
279{
280 if (!bio || !bio->bi_blkg)
281 return NULL;
282 return &bio->bi_blkg->blkcg->css;
283}
284EXPORT_SYMBOL_GPL(bio_blkcg_css);
285
286/**
287 * blkcg_parent - get the parent of a blkcg
288 * @blkcg: blkcg of interest
289 *
290 * Return the parent blkcg of @blkcg. Can be called anytime.
291 */
292static inline struct blkcg *blkcg_parent(struct blkcg *blkcg)
293{
294 return css_to_blkcg(css: blkcg->css.parent);
295}
296
297/**
298 * blkg_alloc - allocate a blkg
299 * @blkcg: block cgroup the new blkg is associated with
300 * @disk: gendisk the new blkg is associated with
301 * @gfp_mask: allocation mask to use
302 *
303 * Allocate a new blkg associating @blkcg and @disk.
304 */
305static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct gendisk *disk,
306 gfp_t gfp_mask)
307{
308 struct blkcg_gq *blkg;
309 int i, cpu;
310
311 /* alloc and init base part */
312 blkg = kzalloc_node(size: sizeof(*blkg), flags: gfp_mask, node: disk->queue->node);
313 if (!blkg)
314 return NULL;
315 if (percpu_ref_init(ref: &blkg->refcnt, release: blkg_release, flags: 0, gfp: gfp_mask))
316 goto out_free_blkg;
317 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
318 if (!blkg->iostat_cpu)
319 goto out_exit_refcnt;
320 if (!blk_get_queue(disk->queue))
321 goto out_free_iostat;
322
323 blkg->q = disk->queue;
324 INIT_LIST_HEAD(list: &blkg->q_node);
325 blkg->blkcg = blkcg;
326#ifdef CONFIG_BLK_CGROUP_PUNT_BIO
327 spin_lock_init(&blkg->async_bio_lock);
328 bio_list_init(bl: &blkg->async_bios);
329 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
330#endif
331
332 u64_stats_init(syncp: &blkg->iostat.sync);
333 for_each_possible_cpu(cpu) {
334 u64_stats_init(syncp: &per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
335 per_cpu_ptr(blkg->iostat_cpu, cpu)->blkg = blkg;
336 }
337
338 for (i = 0; i < BLKCG_MAX_POLS; i++) {
339 struct blkcg_policy *pol = blkcg_policy[i];
340 struct blkg_policy_data *pd;
341
342 if (!blkcg_policy_enabled(q: disk->queue, pol))
343 continue;
344
345 /* alloc per-policy data and attach it to blkg */
346 pd = pol->pd_alloc_fn(disk, blkcg, gfp_mask);
347 if (!pd)
348 goto out_free_pds;
349 blkg->pd[i] = pd;
350 pd->blkg = blkg;
351 pd->plid = i;
352 pd->online = false;
353 }
354
355 return blkg;
356
357out_free_pds:
358 while (--i >= 0)
359 if (blkg->pd[i])
360 blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
361 blk_put_queue(disk->queue);
362out_free_iostat:
363 free_percpu(pdata: blkg->iostat_cpu);
364out_exit_refcnt:
365 percpu_ref_exit(ref: &blkg->refcnt);
366out_free_blkg:
367 kfree(objp: blkg);
368 return NULL;
369}
370
371/*
372 * If @new_blkg is %NULL, this function tries to allocate a new one as
373 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return.
374 */
375static struct blkcg_gq *blkg_create(struct blkcg *blkcg, struct gendisk *disk,
376 struct blkcg_gq *new_blkg)
377{
378 struct blkcg_gq *blkg;
379 int i, ret;
380
381 lockdep_assert_held(&disk->queue->queue_lock);
382
383 /* request_queue is dying, do not create/recreate a blkg */
384 if (blk_queue_dying(disk->queue)) {
385 ret = -ENODEV;
386 goto err_free_blkg;
387 }
388
389 /* blkg holds a reference to blkcg */
390 if (!css_tryget_online(css: &blkcg->css)) {
391 ret = -ENODEV;
392 goto err_free_blkg;
393 }
394
395 /* allocate */
396 if (!new_blkg) {
397 new_blkg = blkg_alloc(blkcg, disk, GFP_NOWAIT | __GFP_NOWARN);
398 if (unlikely(!new_blkg)) {
399 ret = -ENOMEM;
400 goto err_put_css;
401 }
402 }
403 blkg = new_blkg;
404
405 /* link parent */
406 if (blkcg_parent(blkcg)) {
407 blkg->parent = blkg_lookup(blkcg: blkcg_parent(blkcg), q: disk->queue);
408 if (WARN_ON_ONCE(!blkg->parent)) {
409 ret = -ENODEV;
410 goto err_put_css;
411 }
412 blkg_get(blkg: blkg->parent);
413 }
414
415 /* invoke per-policy init */
416 for (i = 0; i < BLKCG_MAX_POLS; i++) {
417 struct blkcg_policy *pol = blkcg_policy[i];
418
419 if (blkg->pd[i] && pol->pd_init_fn)
420 pol->pd_init_fn(blkg->pd[i]);
421 }
422
423 /* insert */
424 spin_lock(lock: &blkcg->lock);
425 ret = radix_tree_insert(&blkcg->blkg_tree, index: disk->queue->id, blkg);
426 if (likely(!ret)) {
427 hlist_add_head_rcu(n: &blkg->blkcg_node, h: &blkcg->blkg_list);
428 list_add(new: &blkg->q_node, head: &disk->queue->blkg_list);
429
430 for (i = 0; i < BLKCG_MAX_POLS; i++) {
431 struct blkcg_policy *pol = blkcg_policy[i];
432
433 if (blkg->pd[i]) {
434 if (pol->pd_online_fn)
435 pol->pd_online_fn(blkg->pd[i]);
436 blkg->pd[i]->online = true;
437 }
438 }
439 }
440 blkg->online = true;
441 spin_unlock(lock: &blkcg->lock);
442
443 if (!ret)
444 return blkg;
445
446 /* @blkg failed fully initialized, use the usual release path */
447 blkg_put(blkg);
448 return ERR_PTR(error: ret);
449
450err_put_css:
451 css_put(css: &blkcg->css);
452err_free_blkg:
453 if (new_blkg)
454 blkg_free(blkg: new_blkg);
455 return ERR_PTR(error: ret);
456}
457
458/**
459 * blkg_lookup_create - lookup blkg, try to create one if not there
460 * @blkcg: blkcg of interest
461 * @disk: gendisk of interest
462 *
463 * Lookup blkg for the @blkcg - @disk pair. If it doesn't exist, try to
464 * create one. blkg creation is performed recursively from blkcg_root such
465 * that all non-root blkg's have access to the parent blkg. This function
466 * should be called under RCU read lock and takes @disk->queue->queue_lock.
467 *
468 * Returns the blkg or the closest blkg if blkg_create() fails as it walks
469 * down from root.
470 */
471static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
472 struct gendisk *disk)
473{
474 struct request_queue *q = disk->queue;
475 struct blkcg_gq *blkg;
476 unsigned long flags;
477
478 WARN_ON_ONCE(!rcu_read_lock_held());
479
480 blkg = blkg_lookup(blkcg, q);
481 if (blkg)
482 return blkg;
483
484 spin_lock_irqsave(&q->queue_lock, flags);
485 blkg = blkg_lookup(blkcg, q);
486 if (blkg) {
487 if (blkcg != &blkcg_root &&
488 blkg != rcu_dereference(blkcg->blkg_hint))
489 rcu_assign_pointer(blkcg->blkg_hint, blkg);
490 goto found;
491 }
492
493 /*
494 * Create blkgs walking down from blkcg_root to @blkcg, so that all
495 * non-root blkgs have access to their parents. Returns the closest
496 * blkg to the intended blkg should blkg_create() fail.
497 */
498 while (true) {
499 struct blkcg *pos = blkcg;
500 struct blkcg *parent = blkcg_parent(blkcg);
501 struct blkcg_gq *ret_blkg = q->root_blkg;
502
503 while (parent) {
504 blkg = blkg_lookup(blkcg: parent, q);
505 if (blkg) {
506 /* remember closest blkg */
507 ret_blkg = blkg;
508 break;
509 }
510 pos = parent;
511 parent = blkcg_parent(blkcg: parent);
512 }
513
514 blkg = blkg_create(blkcg: pos, disk, NULL);
515 if (IS_ERR(ptr: blkg)) {
516 blkg = ret_blkg;
517 break;
518 }
519 if (pos == blkcg)
520 break;
521 }
522
523found:
524 spin_unlock_irqrestore(lock: &q->queue_lock, flags);
525 return blkg;
526}
527
528static void blkg_destroy(struct blkcg_gq *blkg)
529{
530 struct blkcg *blkcg = blkg->blkcg;
531 int i;
532
533 lockdep_assert_held(&blkg->q->queue_lock);
534 lockdep_assert_held(&blkcg->lock);
535
536 /*
537 * blkg stays on the queue list until blkg_free_workfn(), see details in
538 * blkg_free_workfn(), hence this function can be called from
539 * blkcg_destroy_blkgs() first and again from blkg_destroy_all() before
540 * blkg_free_workfn().
541 */
542 if (hlist_unhashed(h: &blkg->blkcg_node))
543 return;
544
545 for (i = 0; i < BLKCG_MAX_POLS; i++) {
546 struct blkcg_policy *pol = blkcg_policy[i];
547
548 if (blkg->pd[i] && blkg->pd[i]->online) {
549 blkg->pd[i]->online = false;
550 if (pol->pd_offline_fn)
551 pol->pd_offline_fn(blkg->pd[i]);
552 }
553 }
554
555 blkg->online = false;
556
557 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
558 hlist_del_init_rcu(n: &blkg->blkcg_node);
559
560 /*
561 * Both setting lookup hint to and clearing it from @blkg are done
562 * under queue_lock. If it's not pointing to @blkg now, it never
563 * will. Hint assignment itself can race safely.
564 */
565 if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
566 rcu_assign_pointer(blkcg->blkg_hint, NULL);
567
568 /*
569 * Put the reference taken at the time of creation so that when all
570 * queues are gone, group can be destroyed.
571 */
572 percpu_ref_kill(ref: &blkg->refcnt);
573}
574
575static void blkg_destroy_all(struct gendisk *disk)
576{
577 struct request_queue *q = disk->queue;
578 struct blkcg_gq *blkg;
579 int count = BLKG_DESTROY_BATCH_SIZE;
580 int i;
581
582restart:
583 spin_lock_irq(lock: &q->queue_lock);
584 list_for_each_entry(blkg, &q->blkg_list, q_node) {
585 struct blkcg *blkcg = blkg->blkcg;
586
587 if (hlist_unhashed(h: &blkg->blkcg_node))
588 continue;
589
590 spin_lock(lock: &blkcg->lock);
591 blkg_destroy(blkg);
592 spin_unlock(lock: &blkcg->lock);
593
594 /*
595 * in order to avoid holding the spin lock for too long, release
596 * it when a batch of blkgs are destroyed.
597 */
598 if (!(--count)) {
599 count = BLKG_DESTROY_BATCH_SIZE;
600 spin_unlock_irq(lock: &q->queue_lock);
601 cond_resched();
602 goto restart;
603 }
604 }
605
606 /*
607 * Mark policy deactivated since policy offline has been done, and
608 * the free is scheduled, so future blkcg_deactivate_policy() can
609 * be bypassed
610 */
611 for (i = 0; i < BLKCG_MAX_POLS; i++) {
612 struct blkcg_policy *pol = blkcg_policy[i];
613
614 if (pol)
615 __clear_bit(pol->plid, q->blkcg_pols);
616 }
617
618 q->root_blkg = NULL;
619 spin_unlock_irq(lock: &q->queue_lock);
620}
621
622static int blkcg_reset_stats(struct cgroup_subsys_state *css,
623 struct cftype *cftype, u64 val)
624{
625 struct blkcg *blkcg = css_to_blkcg(css);
626 struct blkcg_gq *blkg;
627 int i, cpu;
628
629 mutex_lock(&blkcg_pol_mutex);
630 spin_lock_irq(lock: &blkcg->lock);
631
632 /*
633 * Note that stat reset is racy - it doesn't synchronize against
634 * stat updates. This is a debug feature which shouldn't exist
635 * anyway. If you get hit by a race, retry.
636 */
637 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
638 for_each_possible_cpu(cpu) {
639 struct blkg_iostat_set *bis =
640 per_cpu_ptr(blkg->iostat_cpu, cpu);
641 memset(bis, 0, sizeof(*bis));
642
643 /* Re-initialize the cleared blkg_iostat_set */
644 u64_stats_init(syncp: &bis->sync);
645 bis->blkg = blkg;
646 }
647 memset(&blkg->iostat, 0, sizeof(blkg->iostat));
648 u64_stats_init(syncp: &blkg->iostat.sync);
649
650 for (i = 0; i < BLKCG_MAX_POLS; i++) {
651 struct blkcg_policy *pol = blkcg_policy[i];
652
653 if (blkg->pd[i] && pol->pd_reset_stats_fn)
654 pol->pd_reset_stats_fn(blkg->pd[i]);
655 }
656 }
657
658 spin_unlock_irq(lock: &blkcg->lock);
659 mutex_unlock(lock: &blkcg_pol_mutex);
660 return 0;
661}
662
663const char *blkg_dev_name(struct blkcg_gq *blkg)
664{
665 if (!blkg->q->disk)
666 return NULL;
667 return bdi_dev_name(bdi: blkg->q->disk->bdi);
668}
669
670/**
671 * blkcg_print_blkgs - helper for printing per-blkg data
672 * @sf: seq_file to print to
673 * @blkcg: blkcg of interest
674 * @prfill: fill function to print out a blkg
675 * @pol: policy in question
676 * @data: data to be passed to @prfill
677 * @show_total: to print out sum of prfill return values or not
678 *
679 * This function invokes @prfill on each blkg of @blkcg if pd for the
680 * policy specified by @pol exists. @prfill is invoked with @sf, the
681 * policy data and @data and the matching queue lock held. If @show_total
682 * is %true, the sum of the return values from @prfill is printed with
683 * "Total" label at the end.
684 *
685 * This is to be used to construct print functions for
686 * cftype->read_seq_string method.
687 */
688void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
689 u64 (*prfill)(struct seq_file *,
690 struct blkg_policy_data *, int),
691 const struct blkcg_policy *pol, int data,
692 bool show_total)
693{
694 struct blkcg_gq *blkg;
695 u64 total = 0;
696
697 rcu_read_lock();
698 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
699 spin_lock_irq(lock: &blkg->q->queue_lock);
700 if (blkcg_policy_enabled(q: blkg->q, pol))
701 total += prfill(sf, blkg->pd[pol->plid], data);
702 spin_unlock_irq(lock: &blkg->q->queue_lock);
703 }
704 rcu_read_unlock();
705
706 if (show_total)
707 seq_printf(m: sf, fmt: "Total %llu\n", (unsigned long long)total);
708}
709EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
710
711/**
712 * __blkg_prfill_u64 - prfill helper for a single u64 value
713 * @sf: seq_file to print to
714 * @pd: policy private data of interest
715 * @v: value to print
716 *
717 * Print @v to @sf for the device associated with @pd.
718 */
719u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
720{
721 const char *dname = blkg_dev_name(blkg: pd->blkg);
722
723 if (!dname)
724 return 0;
725
726 seq_printf(m: sf, fmt: "%s %llu\n", dname, (unsigned long long)v);
727 return v;
728}
729EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
730
731/**
732 * blkg_conf_init - initialize a blkg_conf_ctx
733 * @ctx: blkg_conf_ctx to initialize
734 * @input: input string
735 *
736 * Initialize @ctx which can be used to parse blkg config input string @input.
737 * Once initialized, @ctx can be used with blkg_conf_open_bdev() and
738 * blkg_conf_prep(), and must be cleaned up with blkg_conf_exit().
739 */
740void blkg_conf_init(struct blkg_conf_ctx *ctx, char *input)
741{
742 *ctx = (struct blkg_conf_ctx){ .input = input };
743}
744EXPORT_SYMBOL_GPL(blkg_conf_init);
745
746/**
747 * blkg_conf_open_bdev - parse and open bdev for per-blkg config update
748 * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
749 *
750 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update from
751 * @ctx->input and get and store the matching bdev in @ctx->bdev. @ctx->body is
752 * set to point past the device node prefix.
753 *
754 * This function may be called multiple times on @ctx and the extra calls become
755 * NOOPs. blkg_conf_prep() implicitly calls this function. Use this function
756 * explicitly if bdev access is needed without resolving the blkcg / policy part
757 * of @ctx->input. Returns -errno on error.
758 */
759int blkg_conf_open_bdev(struct blkg_conf_ctx *ctx)
760{
761 char *input = ctx->input;
762 unsigned int major, minor;
763 struct block_device *bdev;
764 int key_len;
765
766 if (ctx->bdev)
767 return 0;
768
769 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
770 return -EINVAL;
771
772 input += key_len;
773 if (!isspace(*input))
774 return -EINVAL;
775 input = skip_spaces(input);
776
777 bdev = blkdev_get_no_open(MKDEV(major, minor));
778 if (!bdev)
779 return -ENODEV;
780 if (bdev_is_partition(bdev)) {
781 blkdev_put_no_open(bdev);
782 return -ENODEV;
783 }
784
785 mutex_lock(&bdev->bd_queue->rq_qos_mutex);
786 if (!disk_live(disk: bdev->bd_disk)) {
787 blkdev_put_no_open(bdev);
788 mutex_unlock(lock: &bdev->bd_queue->rq_qos_mutex);
789 return -ENODEV;
790 }
791
792 ctx->body = input;
793 ctx->bdev = bdev;
794 return 0;
795}
796
797/**
798 * blkg_conf_prep - parse and prepare for per-blkg config update
799 * @blkcg: target block cgroup
800 * @pol: target policy
801 * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
802 *
803 * Parse per-blkg config update from @ctx->input and initialize @ctx
804 * accordingly. On success, @ctx->body points to the part of @ctx->input
805 * following MAJ:MIN, @ctx->bdev points to the target block device and
806 * @ctx->blkg to the blkg being configured.
807 *
808 * blkg_conf_open_bdev() may be called on @ctx beforehand. On success, this
809 * function returns with queue lock held and must be followed by
810 * blkg_conf_exit().
811 */
812int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
813 struct blkg_conf_ctx *ctx)
814 __acquires(&bdev->bd_queue->queue_lock)
815{
816 struct gendisk *disk;
817 struct request_queue *q;
818 struct blkcg_gq *blkg;
819 int ret;
820
821 ret = blkg_conf_open_bdev(ctx);
822 if (ret)
823 return ret;
824
825 disk = ctx->bdev->bd_disk;
826 q = disk->queue;
827
828 /*
829 * blkcg_deactivate_policy() requires queue to be frozen, we can grab
830 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy().
831 */
832 ret = blk_queue_enter(q, flags: 0);
833 if (ret)
834 goto fail;
835
836 spin_lock_irq(lock: &q->queue_lock);
837
838 if (!blkcg_policy_enabled(q, pol)) {
839 ret = -EOPNOTSUPP;
840 goto fail_unlock;
841 }
842
843 blkg = blkg_lookup(blkcg, q);
844 if (blkg)
845 goto success;
846
847 /*
848 * Create blkgs walking down from blkcg_root to @blkcg, so that all
849 * non-root blkgs have access to their parents.
850 */
851 while (true) {
852 struct blkcg *pos = blkcg;
853 struct blkcg *parent;
854 struct blkcg_gq *new_blkg;
855
856 parent = blkcg_parent(blkcg);
857 while (parent && !blkg_lookup(blkcg: parent, q)) {
858 pos = parent;
859 parent = blkcg_parent(blkcg: parent);
860 }
861
862 /* Drop locks to do new blkg allocation with GFP_KERNEL. */
863 spin_unlock_irq(lock: &q->queue_lock);
864
865 new_blkg = blkg_alloc(blkcg: pos, disk, GFP_KERNEL);
866 if (unlikely(!new_blkg)) {
867 ret = -ENOMEM;
868 goto fail_exit_queue;
869 }
870
871 if (radix_tree_preload(GFP_KERNEL)) {
872 blkg_free(blkg: new_blkg);
873 ret = -ENOMEM;
874 goto fail_exit_queue;
875 }
876
877 spin_lock_irq(lock: &q->queue_lock);
878
879 if (!blkcg_policy_enabled(q, pol)) {
880 blkg_free(blkg: new_blkg);
881 ret = -EOPNOTSUPP;
882 goto fail_preloaded;
883 }
884
885 blkg = blkg_lookup(blkcg: pos, q);
886 if (blkg) {
887 blkg_free(blkg: new_blkg);
888 } else {
889 blkg = blkg_create(blkcg: pos, disk, new_blkg);
890 if (IS_ERR(ptr: blkg)) {
891 ret = PTR_ERR(ptr: blkg);
892 goto fail_preloaded;
893 }
894 }
895
896 radix_tree_preload_end();
897
898 if (pos == blkcg)
899 goto success;
900 }
901success:
902 blk_queue_exit(q);
903 ctx->blkg = blkg;
904 return 0;
905
906fail_preloaded:
907 radix_tree_preload_end();
908fail_unlock:
909 spin_unlock_irq(lock: &q->queue_lock);
910fail_exit_queue:
911 blk_queue_exit(q);
912fail:
913 /*
914 * If queue was bypassing, we should retry. Do so after a
915 * short msleep(). It isn't strictly necessary but queue
916 * can be bypassing for some time and it's always nice to
917 * avoid busy looping.
918 */
919 if (ret == -EBUSY) {
920 msleep(msecs: 10);
921 ret = restart_syscall();
922 }
923 return ret;
924}
925EXPORT_SYMBOL_GPL(blkg_conf_prep);
926
927/**
928 * blkg_conf_exit - clean up per-blkg config update
929 * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
930 *
931 * Clean up after per-blkg config update. This function must be called on all
932 * blkg_conf_ctx's initialized with blkg_conf_init().
933 */
934void blkg_conf_exit(struct blkg_conf_ctx *ctx)
935 __releases(&ctx->bdev->bd_queue->queue_lock)
936 __releases(&ctx->bdev->bd_queue->rq_qos_mutex)
937{
938 if (ctx->blkg) {
939 spin_unlock_irq(lock: &bdev_get_queue(bdev: ctx->bdev)->queue_lock);
940 ctx->blkg = NULL;
941 }
942
943 if (ctx->bdev) {
944 mutex_unlock(lock: &ctx->bdev->bd_queue->rq_qos_mutex);
945 blkdev_put_no_open(bdev: ctx->bdev);
946 ctx->body = NULL;
947 ctx->bdev = NULL;
948 }
949}
950EXPORT_SYMBOL_GPL(blkg_conf_exit);
951
952static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
953{
954 int i;
955
956 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
957 dst->bytes[i] = src->bytes[i];
958 dst->ios[i] = src->ios[i];
959 }
960}
961
962static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
963{
964 int i;
965
966 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
967 dst->bytes[i] += src->bytes[i];
968 dst->ios[i] += src->ios[i];
969 }
970}
971
972static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
973{
974 int i;
975
976 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
977 dst->bytes[i] -= src->bytes[i];
978 dst->ios[i] -= src->ios[i];
979 }
980}
981
982static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur,
983 struct blkg_iostat *last)
984{
985 struct blkg_iostat delta;
986 unsigned long flags;
987
988 /* propagate percpu delta to global */
989 flags = u64_stats_update_begin_irqsave(syncp: &blkg->iostat.sync);
990 blkg_iostat_set(dst: &delta, src: cur);
991 blkg_iostat_sub(dst: &delta, src: last);
992 blkg_iostat_add(dst: &blkg->iostat.cur, src: &delta);
993 blkg_iostat_add(dst: last, src: &delta);
994 u64_stats_update_end_irqrestore(syncp: &blkg->iostat.sync, flags);
995}
996
997static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu)
998{
999 struct llist_head *lhead = per_cpu_ptr(blkcg->lhead, cpu);
1000 struct llist_node *lnode;
1001 struct blkg_iostat_set *bisc, *next_bisc;
1002 unsigned long flags;
1003
1004 rcu_read_lock();
1005
1006 lnode = llist_del_all(head: lhead);
1007 if (!lnode)
1008 goto out;
1009
1010 /*
1011 * For covering concurrent parent blkg update from blkg_release().
1012 *
1013 * When flushing from cgroup, cgroup_rstat_lock is always held, so
1014 * this lock won't cause contention most of time.
1015 */
1016 raw_spin_lock_irqsave(&blkg_stat_lock, flags);
1017
1018 /*
1019 * Iterate only the iostat_cpu's queued in the lockless list.
1020 */
1021 llist_for_each_entry_safe(bisc, next_bisc, lnode, lnode) {
1022 struct blkcg_gq *blkg = bisc->blkg;
1023 struct blkcg_gq *parent = blkg->parent;
1024 struct blkg_iostat cur;
1025 unsigned int seq;
1026
1027 WRITE_ONCE(bisc->lqueued, false);
1028
1029 /* fetch the current per-cpu values */
1030 do {
1031 seq = u64_stats_fetch_begin(syncp: &bisc->sync);
1032 blkg_iostat_set(dst: &cur, src: &bisc->cur);
1033 } while (u64_stats_fetch_retry(syncp: &bisc->sync, start: seq));
1034
1035 blkcg_iostat_update(blkg, cur: &cur, last: &bisc->last);
1036
1037 /* propagate global delta to parent (unless that's root) */
1038 if (parent && parent->parent)
1039 blkcg_iostat_update(blkg: parent, cur: &blkg->iostat.cur,
1040 last: &blkg->iostat.last);
1041 }
1042 raw_spin_unlock_irqrestore(&blkg_stat_lock, flags);
1043out:
1044 rcu_read_unlock();
1045}
1046
1047static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
1048{
1049 /* Root-level stats are sourced from system-wide IO stats */
1050 if (cgroup_parent(cgrp: css->cgroup))
1051 __blkcg_rstat_flush(blkcg: css_to_blkcg(css), cpu);
1052}
1053
1054/*
1055 * We source root cgroup stats from the system-wide stats to avoid
1056 * tracking the same information twice and incurring overhead when no
1057 * cgroups are defined. For that reason, cgroup_rstat_flush in
1058 * blkcg_print_stat does not actually fill out the iostat in the root
1059 * cgroup's blkcg_gq.
1060 *
1061 * However, we would like to re-use the printing code between the root and
1062 * non-root cgroups to the extent possible. For that reason, we simulate
1063 * flushing the root cgroup's stats by explicitly filling in the iostat
1064 * with disk level statistics.
1065 */
1066static void blkcg_fill_root_iostats(void)
1067{
1068 struct class_dev_iter iter;
1069 struct device *dev;
1070
1071 class_dev_iter_init(iter: &iter, class: &block_class, NULL, type: &disk_type);
1072 while ((dev = class_dev_iter_next(iter: &iter))) {
1073 struct block_device *bdev = dev_to_bdev(dev);
1074 struct blkcg_gq *blkg = bdev->bd_disk->queue->root_blkg;
1075 struct blkg_iostat tmp;
1076 int cpu;
1077 unsigned long flags;
1078
1079 memset(&tmp, 0, sizeof(tmp));
1080 for_each_possible_cpu(cpu) {
1081 struct disk_stats *cpu_dkstats;
1082
1083 cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
1084 tmp.ios[BLKG_IOSTAT_READ] +=
1085 cpu_dkstats->ios[STAT_READ];
1086 tmp.ios[BLKG_IOSTAT_WRITE] +=
1087 cpu_dkstats->ios[STAT_WRITE];
1088 tmp.ios[BLKG_IOSTAT_DISCARD] +=
1089 cpu_dkstats->ios[STAT_DISCARD];
1090 // convert sectors to bytes
1091 tmp.bytes[BLKG_IOSTAT_READ] +=
1092 cpu_dkstats->sectors[STAT_READ] << 9;
1093 tmp.bytes[BLKG_IOSTAT_WRITE] +=
1094 cpu_dkstats->sectors[STAT_WRITE] << 9;
1095 tmp.bytes[BLKG_IOSTAT_DISCARD] +=
1096 cpu_dkstats->sectors[STAT_DISCARD] << 9;
1097 }
1098
1099 flags = u64_stats_update_begin_irqsave(syncp: &blkg->iostat.sync);
1100 blkg_iostat_set(dst: &blkg->iostat.cur, src: &tmp);
1101 u64_stats_update_end_irqrestore(syncp: &blkg->iostat.sync, flags);
1102 }
1103}
1104
1105static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s)
1106{
1107 struct blkg_iostat_set *bis = &blkg->iostat;
1108 u64 rbytes, wbytes, rios, wios, dbytes, dios;
1109 const char *dname;
1110 unsigned seq;
1111 int i;
1112
1113 if (!blkg->online)
1114 return;
1115
1116 dname = blkg_dev_name(blkg);
1117 if (!dname)
1118 return;
1119
1120 seq_printf(m: s, fmt: "%s ", dname);
1121
1122 do {
1123 seq = u64_stats_fetch_begin(syncp: &bis->sync);
1124
1125 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
1126 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
1127 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
1128 rios = bis->cur.ios[BLKG_IOSTAT_READ];
1129 wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
1130 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
1131 } while (u64_stats_fetch_retry(syncp: &bis->sync, start: seq));
1132
1133 if (rbytes || wbytes || rios || wios) {
1134 seq_printf(m: s, fmt: "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
1135 rbytes, wbytes, rios, wios,
1136 dbytes, dios);
1137 }
1138
1139 if (blkcg_debug_stats && atomic_read(v: &blkg->use_delay)) {
1140 seq_printf(m: s, fmt: " use_delay=%d delay_nsec=%llu",
1141 atomic_read(v: &blkg->use_delay),
1142 atomic64_read(v: &blkg->delay_nsec));
1143 }
1144
1145 for (i = 0; i < BLKCG_MAX_POLS; i++) {
1146 struct blkcg_policy *pol = blkcg_policy[i];
1147
1148 if (!blkg->pd[i] || !pol->pd_stat_fn)
1149 continue;
1150
1151 pol->pd_stat_fn(blkg->pd[i], s);
1152 }
1153
1154 seq_puts(m: s, s: "\n");
1155}
1156
1157static int blkcg_print_stat(struct seq_file *sf, void *v)
1158{
1159 struct blkcg *blkcg = css_to_blkcg(css: seq_css(seq: sf));
1160 struct blkcg_gq *blkg;
1161
1162 if (!seq_css(seq: sf)->parent)
1163 blkcg_fill_root_iostats();
1164 else
1165 cgroup_rstat_flush(cgrp: blkcg->css.cgroup);
1166
1167 rcu_read_lock();
1168 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
1169 spin_lock_irq(lock: &blkg->q->queue_lock);
1170 blkcg_print_one_stat(blkg, s: sf);
1171 spin_unlock_irq(lock: &blkg->q->queue_lock);
1172 }
1173 rcu_read_unlock();
1174 return 0;
1175}
1176
1177static struct cftype blkcg_files[] = {
1178 {
1179 .name = "stat",
1180 .seq_show = blkcg_print_stat,
1181 },
1182 { } /* terminate */
1183};
1184
1185static struct cftype blkcg_legacy_files[] = {
1186 {
1187 .name = "reset_stats",
1188 .write_u64 = blkcg_reset_stats,
1189 },
1190 { } /* terminate */
1191};
1192
1193#ifdef CONFIG_CGROUP_WRITEBACK
1194struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css)
1195{
1196 return &css_to_blkcg(css)->cgwb_list;
1197}
1198#endif
1199
1200/*
1201 * blkcg destruction is a three-stage process.
1202 *
1203 * 1. Destruction starts. The blkcg_css_offline() callback is invoked
1204 * which offlines writeback. Here we tie the next stage of blkg destruction
1205 * to the completion of writeback associated with the blkcg. This lets us
1206 * avoid punting potentially large amounts of outstanding writeback to root
1207 * while maintaining any ongoing policies. The next stage is triggered when
1208 * the nr_cgwbs count goes to zero.
1209 *
1210 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
1211 * and handles the destruction of blkgs. Here the css reference held by
1212 * the blkg is put back eventually allowing blkcg_css_free() to be called.
1213 * This work may occur in cgwb_release_workfn() on the cgwb_release
1214 * workqueue. Any submitted ios that fail to get the blkg ref will be
1215 * punted to the root_blkg.
1216 *
1217 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
1218 * This finally frees the blkcg.
1219 */
1220
1221/**
1222 * blkcg_destroy_blkgs - responsible for shooting down blkgs
1223 * @blkcg: blkcg of interest
1224 *
1225 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock
1226 * is nested inside q lock, this function performs reverse double lock dancing.
1227 * Destroying the blkgs releases the reference held on the blkcg's css allowing
1228 * blkcg_css_free to eventually be called.
1229 *
1230 * This is the blkcg counterpart of ioc_release_fn().
1231 */
1232static void blkcg_destroy_blkgs(struct blkcg *blkcg)
1233{
1234 might_sleep();
1235
1236 spin_lock_irq(lock: &blkcg->lock);
1237
1238 while (!hlist_empty(h: &blkcg->blkg_list)) {
1239 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1240 struct blkcg_gq, blkcg_node);
1241 struct request_queue *q = blkg->q;
1242
1243 if (need_resched() || !spin_trylock(lock: &q->queue_lock)) {
1244 /*
1245 * Given that the system can accumulate a huge number
1246 * of blkgs in pathological cases, check to see if we
1247 * need to rescheduling to avoid softlockup.
1248 */
1249 spin_unlock_irq(lock: &blkcg->lock);
1250 cond_resched();
1251 spin_lock_irq(lock: &blkcg->lock);
1252 continue;
1253 }
1254
1255 blkg_destroy(blkg);
1256 spin_unlock(lock: &q->queue_lock);
1257 }
1258
1259 spin_unlock_irq(lock: &blkcg->lock);
1260}
1261
1262/**
1263 * blkcg_pin_online - pin online state
1264 * @blkcg_css: blkcg of interest
1265 *
1266 * While pinned, a blkcg is kept online. This is primarily used to
1267 * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline
1268 * while an associated cgwb is still active.
1269 */
1270void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css)
1271{
1272 refcount_inc(r: &css_to_blkcg(css: blkcg_css)->online_pin);
1273}
1274
1275/**
1276 * blkcg_unpin_online - unpin online state
1277 * @blkcg_css: blkcg of interest
1278 *
1279 * This is primarily used to impedance-match blkg and cgwb lifetimes so
1280 * that blkg doesn't go offline while an associated cgwb is still active.
1281 * When this count goes to zero, all active cgwbs have finished so the
1282 * blkcg can continue destruction by calling blkcg_destroy_blkgs().
1283 */
1284void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css)
1285{
1286 struct blkcg *blkcg = css_to_blkcg(css: blkcg_css);
1287
1288 do {
1289 if (!refcount_dec_and_test(r: &blkcg->online_pin))
1290 break;
1291 blkcg_destroy_blkgs(blkcg);
1292 blkcg = blkcg_parent(blkcg);
1293 } while (blkcg);
1294}
1295
1296/**
1297 * blkcg_css_offline - cgroup css_offline callback
1298 * @css: css of interest
1299 *
1300 * This function is called when @css is about to go away. Here the cgwbs are
1301 * offlined first and only once writeback associated with the blkcg has
1302 * finished do we start step 2 (see above).
1303 */
1304static void blkcg_css_offline(struct cgroup_subsys_state *css)
1305{
1306 /* this prevents anyone from attaching or migrating to this blkcg */
1307 wb_blkcg_offline(css);
1308
1309 /* put the base online pin allowing step 2 to be triggered */
1310 blkcg_unpin_online(blkcg_css: css);
1311}
1312
1313static void blkcg_css_free(struct cgroup_subsys_state *css)
1314{
1315 struct blkcg *blkcg = css_to_blkcg(css);
1316 int i;
1317
1318 mutex_lock(&blkcg_pol_mutex);
1319
1320 list_del(entry: &blkcg->all_blkcgs_node);
1321
1322 for (i = 0; i < BLKCG_MAX_POLS; i++)
1323 if (blkcg->cpd[i])
1324 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1325
1326 mutex_unlock(lock: &blkcg_pol_mutex);
1327
1328 free_percpu(pdata: blkcg->lhead);
1329 kfree(objp: blkcg);
1330}
1331
1332static struct cgroup_subsys_state *
1333blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1334{
1335 struct blkcg *blkcg;
1336 int i;
1337
1338 mutex_lock(&blkcg_pol_mutex);
1339
1340 if (!parent_css) {
1341 blkcg = &blkcg_root;
1342 } else {
1343 blkcg = kzalloc(size: sizeof(*blkcg), GFP_KERNEL);
1344 if (!blkcg)
1345 goto unlock;
1346 }
1347
1348 if (init_blkcg_llists(blkcg))
1349 goto free_blkcg;
1350
1351 for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1352 struct blkcg_policy *pol = blkcg_policy[i];
1353 struct blkcg_policy_data *cpd;
1354
1355 /*
1356 * If the policy hasn't been attached yet, wait for it
1357 * to be attached before doing anything else. Otherwise,
1358 * check if the policy requires any specific per-cgroup
1359 * data: if it does, allocate and initialize it.
1360 */
1361 if (!pol || !pol->cpd_alloc_fn)
1362 continue;
1363
1364 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1365 if (!cpd)
1366 goto free_pd_blkcg;
1367
1368 blkcg->cpd[i] = cpd;
1369 cpd->blkcg = blkcg;
1370 cpd->plid = i;
1371 }
1372
1373 spin_lock_init(&blkcg->lock);
1374 refcount_set(r: &blkcg->online_pin, n: 1);
1375 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1376 INIT_HLIST_HEAD(&blkcg->blkg_list);
1377#ifdef CONFIG_CGROUP_WRITEBACK
1378 INIT_LIST_HEAD(list: &blkcg->cgwb_list);
1379#endif
1380 list_add_tail(new: &blkcg->all_blkcgs_node, head: &all_blkcgs);
1381
1382 mutex_unlock(lock: &blkcg_pol_mutex);
1383 return &blkcg->css;
1384
1385free_pd_blkcg:
1386 for (i--; i >= 0; i--)
1387 if (blkcg->cpd[i])
1388 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1389 free_percpu(pdata: blkcg->lhead);
1390free_blkcg:
1391 if (blkcg != &blkcg_root)
1392 kfree(objp: blkcg);
1393unlock:
1394 mutex_unlock(lock: &blkcg_pol_mutex);
1395 return ERR_PTR(error: -ENOMEM);
1396}
1397
1398static int blkcg_css_online(struct cgroup_subsys_state *css)
1399{
1400 struct blkcg *parent = blkcg_parent(blkcg: css_to_blkcg(css));
1401
1402 /*
1403 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1404 * don't go offline while cgwbs are still active on them. Pin the
1405 * parent so that offline always happens towards the root.
1406 */
1407 if (parent)
1408 blkcg_pin_online(blkcg_css: &parent->css);
1409 return 0;
1410}
1411
1412void blkg_init_queue(struct request_queue *q)
1413{
1414 INIT_LIST_HEAD(list: &q->blkg_list);
1415 mutex_init(&q->blkcg_mutex);
1416}
1417
1418int blkcg_init_disk(struct gendisk *disk)
1419{
1420 struct request_queue *q = disk->queue;
1421 struct blkcg_gq *new_blkg, *blkg;
1422 bool preloaded;
1423 int ret;
1424
1425 new_blkg = blkg_alloc(blkcg: &blkcg_root, disk, GFP_KERNEL);
1426 if (!new_blkg)
1427 return -ENOMEM;
1428
1429 preloaded = !radix_tree_preload(GFP_KERNEL);
1430
1431 /* Make sure the root blkg exists. */
1432 /* spin_lock_irq can serve as RCU read-side critical section. */
1433 spin_lock_irq(lock: &q->queue_lock);
1434 blkg = blkg_create(blkcg: &blkcg_root, disk, new_blkg);
1435 if (IS_ERR(ptr: blkg))
1436 goto err_unlock;
1437 q->root_blkg = blkg;
1438 spin_unlock_irq(lock: &q->queue_lock);
1439
1440 if (preloaded)
1441 radix_tree_preload_end();
1442
1443 ret = blk_ioprio_init(disk);
1444 if (ret)
1445 goto err_destroy_all;
1446
1447 ret = blk_throtl_init(disk);
1448 if (ret)
1449 goto err_ioprio_exit;
1450
1451 return 0;
1452
1453err_ioprio_exit:
1454 blk_ioprio_exit(disk);
1455err_destroy_all:
1456 blkg_destroy_all(disk);
1457 return ret;
1458err_unlock:
1459 spin_unlock_irq(lock: &q->queue_lock);
1460 if (preloaded)
1461 radix_tree_preload_end();
1462 return PTR_ERR(ptr: blkg);
1463}
1464
1465void blkcg_exit_disk(struct gendisk *disk)
1466{
1467 blkg_destroy_all(disk);
1468 blk_throtl_exit(disk);
1469}
1470
1471static void blkcg_exit(struct task_struct *tsk)
1472{
1473 if (tsk->throttle_disk)
1474 put_disk(disk: tsk->throttle_disk);
1475 tsk->throttle_disk = NULL;
1476}
1477
1478struct cgroup_subsys io_cgrp_subsys = {
1479 .css_alloc = blkcg_css_alloc,
1480 .css_online = blkcg_css_online,
1481 .css_offline = blkcg_css_offline,
1482 .css_free = blkcg_css_free,
1483 .css_rstat_flush = blkcg_rstat_flush,
1484 .dfl_cftypes = blkcg_files,
1485 .legacy_cftypes = blkcg_legacy_files,
1486 .legacy_name = "blkio",
1487 .exit = blkcg_exit,
1488#ifdef CONFIG_MEMCG
1489 /*
1490 * This ensures that, if available, memcg is automatically enabled
1491 * together on the default hierarchy so that the owner cgroup can
1492 * be retrieved from writeback pages.
1493 */
1494 .depends_on = 1 << memory_cgrp_id,
1495#endif
1496};
1497EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1498
1499/**
1500 * blkcg_activate_policy - activate a blkcg policy on a gendisk
1501 * @disk: gendisk of interest
1502 * @pol: blkcg policy to activate
1503 *
1504 * Activate @pol on @disk. Requires %GFP_KERNEL context. @disk goes through
1505 * bypass mode to populate its blkgs with policy_data for @pol.
1506 *
1507 * Activation happens with @disk bypassed, so nobody would be accessing blkgs
1508 * from IO path. Update of each blkg is protected by both queue and blkcg
1509 * locks so that holding either lock and testing blkcg_policy_enabled() is
1510 * always enough for dereferencing policy data.
1511 *
1512 * The caller is responsible for synchronizing [de]activations and policy
1513 * [un]registerations. Returns 0 on success, -errno on failure.
1514 */
1515int blkcg_activate_policy(struct gendisk *disk, const struct blkcg_policy *pol)
1516{
1517 struct request_queue *q = disk->queue;
1518 struct blkg_policy_data *pd_prealloc = NULL;
1519 struct blkcg_gq *blkg, *pinned_blkg = NULL;
1520 int ret;
1521
1522 if (blkcg_policy_enabled(q, pol))
1523 return 0;
1524
1525 if (queue_is_mq(q))
1526 blk_mq_freeze_queue(q);
1527retry:
1528 spin_lock_irq(lock: &q->queue_lock);
1529
1530 /* blkg_list is pushed at the head, reverse walk to initialize parents first */
1531 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1532 struct blkg_policy_data *pd;
1533
1534 if (blkg->pd[pol->plid])
1535 continue;
1536
1537 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1538 if (blkg == pinned_blkg) {
1539 pd = pd_prealloc;
1540 pd_prealloc = NULL;
1541 } else {
1542 pd = pol->pd_alloc_fn(disk, blkg->blkcg,
1543 GFP_NOWAIT | __GFP_NOWARN);
1544 }
1545
1546 if (!pd) {
1547 /*
1548 * GFP_NOWAIT failed. Free the existing one and
1549 * prealloc for @blkg w/ GFP_KERNEL.
1550 */
1551 if (pinned_blkg)
1552 blkg_put(blkg: pinned_blkg);
1553 blkg_get(blkg);
1554 pinned_blkg = blkg;
1555
1556 spin_unlock_irq(lock: &q->queue_lock);
1557
1558 if (pd_prealloc)
1559 pol->pd_free_fn(pd_prealloc);
1560 pd_prealloc = pol->pd_alloc_fn(disk, blkg->blkcg,
1561 GFP_KERNEL);
1562 if (pd_prealloc)
1563 goto retry;
1564 else
1565 goto enomem;
1566 }
1567
1568 spin_lock(lock: &blkg->blkcg->lock);
1569
1570 pd->blkg = blkg;
1571 pd->plid = pol->plid;
1572 blkg->pd[pol->plid] = pd;
1573
1574 if (pol->pd_init_fn)
1575 pol->pd_init_fn(pd);
1576
1577 if (pol->pd_online_fn)
1578 pol->pd_online_fn(pd);
1579 pd->online = true;
1580
1581 spin_unlock(lock: &blkg->blkcg->lock);
1582 }
1583
1584 __set_bit(pol->plid, q->blkcg_pols);
1585 ret = 0;
1586
1587 spin_unlock_irq(lock: &q->queue_lock);
1588out:
1589 if (queue_is_mq(q))
1590 blk_mq_unfreeze_queue(q);
1591 if (pinned_blkg)
1592 blkg_put(blkg: pinned_blkg);
1593 if (pd_prealloc)
1594 pol->pd_free_fn(pd_prealloc);
1595 return ret;
1596
1597enomem:
1598 /* alloc failed, take down everything */
1599 spin_lock_irq(lock: &q->queue_lock);
1600 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1601 struct blkcg *blkcg = blkg->blkcg;
1602 struct blkg_policy_data *pd;
1603
1604 spin_lock(lock: &blkcg->lock);
1605 pd = blkg->pd[pol->plid];
1606 if (pd) {
1607 if (pd->online && pol->pd_offline_fn)
1608 pol->pd_offline_fn(pd);
1609 pd->online = false;
1610 pol->pd_free_fn(pd);
1611 blkg->pd[pol->plid] = NULL;
1612 }
1613 spin_unlock(lock: &blkcg->lock);
1614 }
1615 spin_unlock_irq(lock: &q->queue_lock);
1616 ret = -ENOMEM;
1617 goto out;
1618}
1619EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1620
1621/**
1622 * blkcg_deactivate_policy - deactivate a blkcg policy on a gendisk
1623 * @disk: gendisk of interest
1624 * @pol: blkcg policy to deactivate
1625 *
1626 * Deactivate @pol on @disk. Follows the same synchronization rules as
1627 * blkcg_activate_policy().
1628 */
1629void blkcg_deactivate_policy(struct gendisk *disk,
1630 const struct blkcg_policy *pol)
1631{
1632 struct request_queue *q = disk->queue;
1633 struct blkcg_gq *blkg;
1634
1635 if (!blkcg_policy_enabled(q, pol))
1636 return;
1637
1638 if (queue_is_mq(q))
1639 blk_mq_freeze_queue(q);
1640
1641 mutex_lock(&q->blkcg_mutex);
1642 spin_lock_irq(lock: &q->queue_lock);
1643
1644 __clear_bit(pol->plid, q->blkcg_pols);
1645
1646 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1647 struct blkcg *blkcg = blkg->blkcg;
1648
1649 spin_lock(lock: &blkcg->lock);
1650 if (blkg->pd[pol->plid]) {
1651 if (blkg->pd[pol->plid]->online && pol->pd_offline_fn)
1652 pol->pd_offline_fn(blkg->pd[pol->plid]);
1653 pol->pd_free_fn(blkg->pd[pol->plid]);
1654 blkg->pd[pol->plid] = NULL;
1655 }
1656 spin_unlock(lock: &blkcg->lock);
1657 }
1658
1659 spin_unlock_irq(lock: &q->queue_lock);
1660 mutex_unlock(lock: &q->blkcg_mutex);
1661
1662 if (queue_is_mq(q))
1663 blk_mq_unfreeze_queue(q);
1664}
1665EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1666
1667static void blkcg_free_all_cpd(struct blkcg_policy *pol)
1668{
1669 struct blkcg *blkcg;
1670
1671 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1672 if (blkcg->cpd[pol->plid]) {
1673 pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1674 blkcg->cpd[pol->plid] = NULL;
1675 }
1676 }
1677}
1678
1679/**
1680 * blkcg_policy_register - register a blkcg policy
1681 * @pol: blkcg policy to register
1682 *
1683 * Register @pol with blkcg core. Might sleep and @pol may be modified on
1684 * successful registration. Returns 0 on success and -errno on failure.
1685 */
1686int blkcg_policy_register(struct blkcg_policy *pol)
1687{
1688 struct blkcg *blkcg;
1689 int i, ret;
1690
1691 mutex_lock(&blkcg_pol_register_mutex);
1692 mutex_lock(&blkcg_pol_mutex);
1693
1694 /* find an empty slot */
1695 ret = -ENOSPC;
1696 for (i = 0; i < BLKCG_MAX_POLS; i++)
1697 if (!blkcg_policy[i])
1698 break;
1699 if (i >= BLKCG_MAX_POLS) {
1700 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1701 goto err_unlock;
1702 }
1703
1704 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1705 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1706 (!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1707 goto err_unlock;
1708
1709 /* register @pol */
1710 pol->plid = i;
1711 blkcg_policy[pol->plid] = pol;
1712
1713 /* allocate and install cpd's */
1714 if (pol->cpd_alloc_fn) {
1715 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1716 struct blkcg_policy_data *cpd;
1717
1718 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1719 if (!cpd)
1720 goto err_free_cpds;
1721
1722 blkcg->cpd[pol->plid] = cpd;
1723 cpd->blkcg = blkcg;
1724 cpd->plid = pol->plid;
1725 }
1726 }
1727
1728 mutex_unlock(lock: &blkcg_pol_mutex);
1729
1730 /* everything is in place, add intf files for the new policy */
1731 if (pol->dfl_cftypes)
1732 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1733 pol->dfl_cftypes));
1734 if (pol->legacy_cftypes)
1735 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1736 pol->legacy_cftypes));
1737 mutex_unlock(lock: &blkcg_pol_register_mutex);
1738 return 0;
1739
1740err_free_cpds:
1741 if (pol->cpd_free_fn)
1742 blkcg_free_all_cpd(pol);
1743
1744 blkcg_policy[pol->plid] = NULL;
1745err_unlock:
1746 mutex_unlock(lock: &blkcg_pol_mutex);
1747 mutex_unlock(lock: &blkcg_pol_register_mutex);
1748 return ret;
1749}
1750EXPORT_SYMBOL_GPL(blkcg_policy_register);
1751
1752/**
1753 * blkcg_policy_unregister - unregister a blkcg policy
1754 * @pol: blkcg policy to unregister
1755 *
1756 * Undo blkcg_policy_register(@pol). Might sleep.
1757 */
1758void blkcg_policy_unregister(struct blkcg_policy *pol)
1759{
1760 mutex_lock(&blkcg_pol_register_mutex);
1761
1762 if (WARN_ON(blkcg_policy[pol->plid] != pol))
1763 goto out_unlock;
1764
1765 /* kill the intf files first */
1766 if (pol->dfl_cftypes)
1767 cgroup_rm_cftypes(cfts: pol->dfl_cftypes);
1768 if (pol->legacy_cftypes)
1769 cgroup_rm_cftypes(cfts: pol->legacy_cftypes);
1770
1771 /* remove cpds and unregister */
1772 mutex_lock(&blkcg_pol_mutex);
1773
1774 if (pol->cpd_free_fn)
1775 blkcg_free_all_cpd(pol);
1776
1777 blkcg_policy[pol->plid] = NULL;
1778
1779 mutex_unlock(lock: &blkcg_pol_mutex);
1780out_unlock:
1781 mutex_unlock(lock: &blkcg_pol_register_mutex);
1782}
1783EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1784
1785/*
1786 * Scale the accumulated delay based on how long it has been since we updated
1787 * the delay. We only call this when we are adding delay, in case it's been a
1788 * while since we added delay, and when we are checking to see if we need to
1789 * delay a task, to account for any delays that may have occurred.
1790 */
1791static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1792{
1793 u64 old = atomic64_read(v: &blkg->delay_start);
1794
1795 /* negative use_delay means no scaling, see blkcg_set_delay() */
1796 if (atomic_read(v: &blkg->use_delay) < 0)
1797 return;
1798
1799 /*
1800 * We only want to scale down every second. The idea here is that we
1801 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1802 * time window. We only want to throttle tasks for recent delay that
1803 * has occurred, in 1 second time windows since that's the maximum
1804 * things can be throttled. We save the current delay window in
1805 * blkg->last_delay so we know what amount is still left to be charged
1806 * to the blkg from this point onward. blkg->last_use keeps track of
1807 * the use_delay counter. The idea is if we're unthrottling the blkg we
1808 * are ok with whatever is happening now, and we can take away more of
1809 * the accumulated delay as we've already throttled enough that
1810 * everybody is happy with their IO latencies.
1811 */
1812 if (time_before64(old + NSEC_PER_SEC, now) &&
1813 atomic64_try_cmpxchg(v: &blkg->delay_start, old: &old, new: now)) {
1814 u64 cur = atomic64_read(v: &blkg->delay_nsec);
1815 u64 sub = min_t(u64, blkg->last_delay, now - old);
1816 int cur_use = atomic_read(v: &blkg->use_delay);
1817
1818 /*
1819 * We've been unthrottled, subtract a larger chunk of our
1820 * accumulated delay.
1821 */
1822 if (cur_use < blkg->last_use)
1823 sub = max_t(u64, sub, blkg->last_delay >> 1);
1824
1825 /*
1826 * This shouldn't happen, but handle it anyway. Our delay_nsec
1827 * should only ever be growing except here where we subtract out
1828 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1829 * rather not end up with negative numbers.
1830 */
1831 if (unlikely(cur < sub)) {
1832 atomic64_set(v: &blkg->delay_nsec, i: 0);
1833 blkg->last_delay = 0;
1834 } else {
1835 atomic64_sub(i: sub, v: &blkg->delay_nsec);
1836 blkg->last_delay = cur - sub;
1837 }
1838 blkg->last_use = cur_use;
1839 }
1840}
1841
1842/*
1843 * This is called when we want to actually walk up the hierarchy and check to
1844 * see if we need to throttle, and then actually throttle if there is some
1845 * accumulated delay. This should only be called upon return to user space so
1846 * we're not holding some lock that would induce a priority inversion.
1847 */
1848static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1849{
1850 unsigned long pflags;
1851 bool clamp;
1852 u64 now = blk_time_get_ns();
1853 u64 exp;
1854 u64 delay_nsec = 0;
1855 int tok;
1856
1857 while (blkg->parent) {
1858 int use_delay = atomic_read(v: &blkg->use_delay);
1859
1860 if (use_delay) {
1861 u64 this_delay;
1862
1863 blkcg_scale_delay(blkg, now);
1864 this_delay = atomic64_read(v: &blkg->delay_nsec);
1865 if (this_delay > delay_nsec) {
1866 delay_nsec = this_delay;
1867 clamp = use_delay > 0;
1868 }
1869 }
1870 blkg = blkg->parent;
1871 }
1872
1873 if (!delay_nsec)
1874 return;
1875
1876 /*
1877 * Let's not sleep for all eternity if we've amassed a huge delay.
1878 * Swapping or metadata IO can accumulate 10's of seconds worth of
1879 * delay, and we want userspace to be able to do _something_ so cap the
1880 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1881 * tasks will be delayed for 0.25 second for every syscall. If
1882 * blkcg_set_delay() was used as indicated by negative use_delay, the
1883 * caller is responsible for regulating the range.
1884 */
1885 if (clamp)
1886 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1887
1888 if (use_memdelay)
1889 psi_memstall_enter(flags: &pflags);
1890
1891 exp = ktime_add_ns(now, delay_nsec);
1892 tok = io_schedule_prepare();
1893 do {
1894 __set_current_state(TASK_KILLABLE);
1895 if (!schedule_hrtimeout(expires: &exp, mode: HRTIMER_MODE_ABS))
1896 break;
1897 } while (!fatal_signal_pending(current));
1898 io_schedule_finish(token: tok);
1899
1900 if (use_memdelay)
1901 psi_memstall_leave(flags: &pflags);
1902}
1903
1904/**
1905 * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1906 *
1907 * This is only called if we've been marked with set_notify_resume(). Obviously
1908 * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1909 * check to see if current->throttle_disk is set and if not this doesn't do
1910 * anything. This should only ever be called by the resume code, it's not meant
1911 * to be called by people willy-nilly as it will actually do the work to
1912 * throttle the task if it is setup for throttling.
1913 */
1914void blkcg_maybe_throttle_current(void)
1915{
1916 struct gendisk *disk = current->throttle_disk;
1917 struct blkcg *blkcg;
1918 struct blkcg_gq *blkg;
1919 bool use_memdelay = current->use_memdelay;
1920
1921 if (!disk)
1922 return;
1923
1924 current->throttle_disk = NULL;
1925 current->use_memdelay = false;
1926
1927 rcu_read_lock();
1928 blkcg = css_to_blkcg(css: blkcg_css());
1929 if (!blkcg)
1930 goto out;
1931 blkg = blkg_lookup(blkcg, q: disk->queue);
1932 if (!blkg)
1933 goto out;
1934 if (!blkg_tryget(blkg))
1935 goto out;
1936 rcu_read_unlock();
1937
1938 blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1939 blkg_put(blkg);
1940 put_disk(disk);
1941 return;
1942out:
1943 rcu_read_unlock();
1944}
1945
1946/**
1947 * blkcg_schedule_throttle - this task needs to check for throttling
1948 * @disk: disk to throttle
1949 * @use_memdelay: do we charge this to memory delay for PSI
1950 *
1951 * This is called by the IO controller when we know there's delay accumulated
1952 * for the blkg for this task. We do not pass the blkg because there are places
1953 * we call this that may not have that information, the swapping code for
1954 * instance will only have a block_device at that point. This set's the
1955 * notify_resume for the task to check and see if it requires throttling before
1956 * returning to user space.
1957 *
1958 * We will only schedule once per syscall. You can call this over and over
1959 * again and it will only do the check once upon return to user space, and only
1960 * throttle once. If the task needs to be throttled again it'll need to be
1961 * re-set at the next time we see the task.
1962 */
1963void blkcg_schedule_throttle(struct gendisk *disk, bool use_memdelay)
1964{
1965 if (unlikely(current->flags & PF_KTHREAD))
1966 return;
1967
1968 if (current->throttle_disk != disk) {
1969 if (test_bit(GD_DEAD, &disk->state))
1970 return;
1971 get_device(disk_to_dev(disk));
1972
1973 if (current->throttle_disk)
1974 put_disk(current->throttle_disk);
1975 current->throttle_disk = disk;
1976 }
1977
1978 if (use_memdelay)
1979 current->use_memdelay = use_memdelay;
1980 set_notify_resume(current);
1981}
1982
1983/**
1984 * blkcg_add_delay - add delay to this blkg
1985 * @blkg: blkg of interest
1986 * @now: the current time in nanoseconds
1987 * @delta: how many nanoseconds of delay to add
1988 *
1989 * Charge @delta to the blkg's current delay accumulation. This is used to
1990 * throttle tasks if an IO controller thinks we need more throttling.
1991 */
1992void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1993{
1994 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
1995 return;
1996 blkcg_scale_delay(blkg, now);
1997 atomic64_add(i: delta, v: &blkg->delay_nsec);
1998}
1999
2000/**
2001 * blkg_tryget_closest - try and get a blkg ref on the closet blkg
2002 * @bio: target bio
2003 * @css: target css
2004 *
2005 * As the failure mode here is to walk up the blkg tree, this ensure that the
2006 * blkg->parent pointers are always valid. This returns the blkg that it ended
2007 * up taking a reference on or %NULL if no reference was taken.
2008 */
2009static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
2010 struct cgroup_subsys_state *css)
2011{
2012 struct blkcg_gq *blkg, *ret_blkg = NULL;
2013
2014 rcu_read_lock();
2015 blkg = blkg_lookup_create(blkcg: css_to_blkcg(css), disk: bio->bi_bdev->bd_disk);
2016 while (blkg) {
2017 if (blkg_tryget(blkg)) {
2018 ret_blkg = blkg;
2019 break;
2020 }
2021 blkg = blkg->parent;
2022 }
2023 rcu_read_unlock();
2024
2025 return ret_blkg;
2026}
2027
2028/**
2029 * bio_associate_blkg_from_css - associate a bio with a specified css
2030 * @bio: target bio
2031 * @css: target css
2032 *
2033 * Associate @bio with the blkg found by combining the css's blkg and the
2034 * request_queue of the @bio. An association failure is handled by walking up
2035 * the blkg tree. Therefore, the blkg associated can be anything between @blkg
2036 * and q->root_blkg. This situation only happens when a cgroup is dying and
2037 * then the remaining bios will spill to the closest alive blkg.
2038 *
2039 * A reference will be taken on the blkg and will be released when @bio is
2040 * freed.
2041 */
2042void bio_associate_blkg_from_css(struct bio *bio,
2043 struct cgroup_subsys_state *css)
2044{
2045 if (bio->bi_blkg)
2046 blkg_put(blkg: bio->bi_blkg);
2047
2048 if (css && css->parent) {
2049 bio->bi_blkg = blkg_tryget_closest(bio, css);
2050 } else {
2051 blkg_get(blkg: bdev_get_queue(bdev: bio->bi_bdev)->root_blkg);
2052 bio->bi_blkg = bdev_get_queue(bdev: bio->bi_bdev)->root_blkg;
2053 }
2054}
2055EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2056
2057/**
2058 * bio_associate_blkg - associate a bio with a blkg
2059 * @bio: target bio
2060 *
2061 * Associate @bio with the blkg found from the bio's css and request_queue.
2062 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2063 * already associated, the css is reused and association redone as the
2064 * request_queue may have changed.
2065 */
2066void bio_associate_blkg(struct bio *bio)
2067{
2068 struct cgroup_subsys_state *css;
2069
2070 if (blk_op_is_passthrough(op: bio->bi_opf))
2071 return;
2072
2073 rcu_read_lock();
2074
2075 if (bio->bi_blkg)
2076 css = bio_blkcg_css(bio);
2077 else
2078 css = blkcg_css();
2079
2080 bio_associate_blkg_from_css(bio, css);
2081
2082 rcu_read_unlock();
2083}
2084EXPORT_SYMBOL_GPL(bio_associate_blkg);
2085
2086/**
2087 * bio_clone_blkg_association - clone blkg association from src to dst bio
2088 * @dst: destination bio
2089 * @src: source bio
2090 */
2091void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2092{
2093 if (src->bi_blkg)
2094 bio_associate_blkg_from_css(dst, bio_blkcg_css(src));
2095}
2096EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2097
2098static int blk_cgroup_io_type(struct bio *bio)
2099{
2100 if (op_is_discard(op: bio->bi_opf))
2101 return BLKG_IOSTAT_DISCARD;
2102 if (op_is_write(op: bio->bi_opf))
2103 return BLKG_IOSTAT_WRITE;
2104 return BLKG_IOSTAT_READ;
2105}
2106
2107void blk_cgroup_bio_start(struct bio *bio)
2108{
2109 struct blkcg *blkcg = bio->bi_blkg->blkcg;
2110 int rwd = blk_cgroup_io_type(bio), cpu;
2111 struct blkg_iostat_set *bis;
2112 unsigned long flags;
2113
2114 if (!cgroup_subsys_on_dfl(io_cgrp_subsys))
2115 return;
2116
2117 /* Root-level stats are sourced from system-wide IO stats */
2118 if (!cgroup_parent(cgrp: blkcg->css.cgroup))
2119 return;
2120
2121 cpu = get_cpu();
2122 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
2123 flags = u64_stats_update_begin_irqsave(syncp: &bis->sync);
2124
2125 /*
2126 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
2127 * bio and we would have already accounted for the size of the bio.
2128 */
2129 if (!bio_flagged(bio, bit: BIO_CGROUP_ACCT)) {
2130 bio_set_flag(bio, bit: BIO_CGROUP_ACCT);
2131 bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
2132 }
2133 bis->cur.ios[rwd]++;
2134
2135 /*
2136 * If the iostat_cpu isn't in a lockless list, put it into the
2137 * list to indicate that a stat update is pending.
2138 */
2139 if (!READ_ONCE(bis->lqueued)) {
2140 struct llist_head *lhead = this_cpu_ptr(blkcg->lhead);
2141
2142 llist_add(new: &bis->lnode, head: lhead);
2143 WRITE_ONCE(bis->lqueued, true);
2144 }
2145
2146 u64_stats_update_end_irqrestore(syncp: &bis->sync, flags);
2147 cgroup_rstat_updated(cgrp: blkcg->css.cgroup, cpu);
2148 put_cpu();
2149}
2150
2151bool blk_cgroup_congested(void)
2152{
2153 struct cgroup_subsys_state *css;
2154 bool ret = false;
2155
2156 rcu_read_lock();
2157 for (css = blkcg_css(); css; css = css->parent) {
2158 if (atomic_read(v: &css->cgroup->congestion_count)) {
2159 ret = true;
2160 break;
2161 }
2162 }
2163 rcu_read_unlock();
2164 return ret;
2165}
2166
2167module_param(blkcg_debug_stats, bool, 0644);
2168MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");
2169

source code of linux/block/blk-cgroup.c