1/******************************************************************************
2 iphase.c: Device driver for Interphase ATM PCI adapter cards
3 Author: Peter Wang <pwang@iphase.com>
4 Some fixes: Arnaldo Carvalho de Melo <acme@conectiva.com.br>
5 Interphase Corporation <www.iphase.com>
6 Version: 1.0
7*******************************************************************************
8
9 This software may be used and distributed according to the terms
10 of the GNU General Public License (GPL), incorporated herein by reference.
11 Drivers based on this skeleton fall under the GPL and must retain
12 the authorship (implicit copyright) notice.
13
14 This program is distributed in the hope that it will be useful, but
15 WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 General Public License for more details.
18
19 Modified from an incomplete driver for Interphase 5575 1KVC 1M card which
20 was originally written by Monalisa Agrawal at UNH. Now this driver
21 supports a variety of varients of Interphase ATM PCI (i)Chip adapter
22 card family (See www.iphase.com/products/ClassSheet.cfm?ClassID=ATM)
23 in terms of PHY type, the size of control memory and the size of
24 packet memory. The following are the change log and history:
25
26 Bugfix the Mona's UBR driver.
27 Modify the basic memory allocation and dma logic.
28 Port the driver to the latest kernel from 2.0.46.
29 Complete the ABR logic of the driver, and added the ABR work-
30 around for the hardware anormalies.
31 Add the CBR support.
32 Add the flow control logic to the driver to allow rate-limit VC.
33 Add 4K VC support to the board with 512K control memory.
34 Add the support of all the variants of the Interphase ATM PCI
35 (i)Chip adapter cards including x575 (155M OC3 and UTP155), x525
36 (25M UTP25) and x531 (DS3 and E3).
37 Add SMP support.
38
39 Support and updates available at: ftp://ftp.iphase.com/pub/atm
40
41*******************************************************************************/
42
43#include <linux/module.h>
44#include <linux/kernel.h>
45#include <linux/mm.h>
46#include <linux/pci.h>
47#include <linux/errno.h>
48#include <linux/atm.h>
49#include <linux/atmdev.h>
50#include <linux/ctype.h>
51#include <linux/sonet.h>
52#include <linux/skbuff.h>
53#include <linux/time.h>
54#include <linux/delay.h>
55#include <linux/uio.h>
56#include <linux/init.h>
57#include <linux/interrupt.h>
58#include <linux/wait.h>
59#include <linux/slab.h>
60#include <asm/io.h>
61#include <linux/atomic.h>
62#include <linux/uaccess.h>
63#include <asm/string.h>
64#include <asm/byteorder.h>
65#include <linux/vmalloc.h>
66#include <linux/jiffies.h>
67#include <linux/nospec.h>
68#include "iphase.h"
69#include "suni.h"
70#define swap_byte_order(x) (((x & 0xff) << 8) | ((x & 0xff00) >> 8))
71
72#define PRIV(dev) ((struct suni_priv *) dev->phy_data)
73
74static unsigned char ia_phy_get(struct atm_dev *dev, unsigned long addr);
75static void desc_dbg(IADEV *iadev);
76
77static IADEV *ia_dev[8];
78static struct atm_dev *_ia_dev[8];
79static int iadev_count;
80static void ia_led_timer(struct timer_list *unused);
81static DEFINE_TIMER(ia_timer, ia_led_timer);
82static int IA_TX_BUF = DFL_TX_BUFFERS, IA_TX_BUF_SZ = DFL_TX_BUF_SZ;
83static int IA_RX_BUF = DFL_RX_BUFFERS, IA_RX_BUF_SZ = DFL_RX_BUF_SZ;
84static uint IADebugFlag = /* IF_IADBG_ERR | IF_IADBG_CBR| IF_IADBG_INIT_ADAPTER
85 |IF_IADBG_ABR | IF_IADBG_EVENT*/ 0;
86
87module_param(IA_TX_BUF, int, 0);
88module_param(IA_TX_BUF_SZ, int, 0);
89module_param(IA_RX_BUF, int, 0);
90module_param(IA_RX_BUF_SZ, int, 0);
91module_param(IADebugFlag, uint, 0644);
92
93MODULE_DESCRIPTION("Driver for Interphase ATM PCI NICs");
94MODULE_LICENSE("GPL");
95
96/**************************** IA_LIB **********************************/
97
98static void ia_init_rtn_q (IARTN_Q *que)
99{
100 que->next = NULL;
101 que->tail = NULL;
102}
103
104static void ia_enque_head_rtn_q (IARTN_Q *que, IARTN_Q * data)
105{
106 data->next = NULL;
107 if (que->next == NULL)
108 que->next = que->tail = data;
109 else {
110 data->next = que->next;
111 que->next = data;
112 }
113 return;
114}
115
116static int ia_enque_rtn_q (IARTN_Q *que, struct desc_tbl_t data) {
117 IARTN_Q *entry = kmalloc(size: sizeof(*entry), GFP_ATOMIC);
118 if (!entry)
119 return -ENOMEM;
120 entry->data = data;
121 entry->next = NULL;
122 if (que->next == NULL)
123 que->next = que->tail = entry;
124 else {
125 que->tail->next = entry;
126 que->tail = que->tail->next;
127 }
128 return 1;
129}
130
131static IARTN_Q * ia_deque_rtn_q (IARTN_Q *que) {
132 IARTN_Q *tmpdata;
133 if (que->next == NULL)
134 return NULL;
135 tmpdata = que->next;
136 if ( que->next == que->tail)
137 que->next = que->tail = NULL;
138 else
139 que->next = que->next->next;
140 return tmpdata;
141}
142
143static void ia_hack_tcq(IADEV *dev) {
144
145 u_short desc1;
146 u_short tcq_wr;
147 struct ia_vcc *iavcc_r = NULL;
148
149 tcq_wr = readl(addr: dev->seg_reg+TCQ_WR_PTR) & 0xffff;
150 while (dev->host_tcq_wr != tcq_wr) {
151 desc1 = *(u_short *)(dev->seg_ram + dev->host_tcq_wr);
152 if (!desc1) ;
153 else if (!dev->desc_tbl[desc1 -1].timestamp) {
154 IF_ABR(printk(" Desc %d is reset at %ld\n", desc1 -1, jiffies);)
155 *(u_short *) (dev->seg_ram + dev->host_tcq_wr) = 0;
156 }
157 else if (dev->desc_tbl[desc1 -1].timestamp) {
158 if (!(iavcc_r = dev->desc_tbl[desc1 -1].iavcc)) {
159 printk("IA: Fatal err in get_desc\n");
160 continue;
161 }
162 iavcc_r->vc_desc_cnt--;
163 dev->desc_tbl[desc1 -1].timestamp = 0;
164 IF_EVENT(printk("ia_hack: return_q skb = 0x%p desc = %d\n",
165 dev->desc_tbl[desc1 -1].txskb, desc1);)
166 if (iavcc_r->pcr < dev->rate_limit) {
167 IA_SKB_STATE (dev->desc_tbl[desc1-1].txskb) |= IA_TX_DONE;
168 if (ia_enque_rtn_q(que: &dev->tx_return_q, data: dev->desc_tbl[desc1 -1]) < 0)
169 printk("ia_hack_tcq: No memory available\n");
170 }
171 dev->desc_tbl[desc1 -1].iavcc = NULL;
172 dev->desc_tbl[desc1 -1].txskb = NULL;
173 }
174 dev->host_tcq_wr += 2;
175 if (dev->host_tcq_wr > dev->ffL.tcq_ed)
176 dev->host_tcq_wr = dev->ffL.tcq_st;
177 }
178} /* ia_hack_tcq */
179
180static u16 get_desc (IADEV *dev, struct ia_vcc *iavcc) {
181 u_short desc_num, i;
182 struct ia_vcc *iavcc_r = NULL;
183 unsigned long delta;
184 static unsigned long timer = 0;
185 int ltimeout;
186
187 ia_hack_tcq (dev);
188 if((time_after(jiffies,timer+50)) || ((dev->ffL.tcq_rd==dev->host_tcq_wr))) {
189 timer = jiffies;
190 i=0;
191 while (i < dev->num_tx_desc) {
192 if (!dev->desc_tbl[i].timestamp) {
193 i++;
194 continue;
195 }
196 ltimeout = dev->desc_tbl[i].iavcc->ltimeout;
197 delta = jiffies - dev->desc_tbl[i].timestamp;
198 if (delta >= ltimeout) {
199 IF_ABR(printk("RECOVER run!! desc_tbl %d = %d delta = %ld, time = %ld\n", i,dev->desc_tbl[i].timestamp, delta, jiffies);)
200 if (dev->ffL.tcq_rd == dev->ffL.tcq_st)
201 dev->ffL.tcq_rd = dev->ffL.tcq_ed;
202 else
203 dev->ffL.tcq_rd -= 2;
204 *(u_short *)(dev->seg_ram + dev->ffL.tcq_rd) = i+1;
205 if (!dev->desc_tbl[i].txskb || !(iavcc_r = dev->desc_tbl[i].iavcc))
206 printk("Fatal err, desc table vcc or skb is NULL\n");
207 else
208 iavcc_r->vc_desc_cnt--;
209 dev->desc_tbl[i].timestamp = 0;
210 dev->desc_tbl[i].iavcc = NULL;
211 dev->desc_tbl[i].txskb = NULL;
212 }
213 i++;
214 } /* while */
215 }
216 if (dev->ffL.tcq_rd == dev->host_tcq_wr)
217 return 0xFFFF;
218
219 /* Get the next available descriptor number from TCQ */
220 desc_num = *(u_short *)(dev->seg_ram + dev->ffL.tcq_rd);
221
222 while (!desc_num || (dev->desc_tbl[desc_num -1]).timestamp) {
223 dev->ffL.tcq_rd += 2;
224 if (dev->ffL.tcq_rd > dev->ffL.tcq_ed)
225 dev->ffL.tcq_rd = dev->ffL.tcq_st;
226 if (dev->ffL.tcq_rd == dev->host_tcq_wr)
227 return 0xFFFF;
228 desc_num = *(u_short *)(dev->seg_ram + dev->ffL.tcq_rd);
229 }
230
231 /* get system time */
232 dev->desc_tbl[desc_num -1].timestamp = jiffies;
233 return desc_num;
234}
235
236static void clear_lockup (struct atm_vcc *vcc, IADEV *dev) {
237 u_char foundLockUp;
238 vcstatus_t *vcstatus;
239 u_short *shd_tbl;
240 u_short tempCellSlot, tempFract;
241 struct main_vc *abr_vc = (struct main_vc *)dev->MAIN_VC_TABLE_ADDR;
242 struct ext_vc *eabr_vc = (struct ext_vc *)dev->EXT_VC_TABLE_ADDR;
243 u_int i;
244
245 if (vcc->qos.txtp.traffic_class == ATM_ABR) {
246 vcstatus = (vcstatus_t *) &(dev->testTable[vcc->vci]->vc_status);
247 vcstatus->cnt++;
248 foundLockUp = 0;
249 if( vcstatus->cnt == 0x05 ) {
250 abr_vc += vcc->vci;
251 eabr_vc += vcc->vci;
252 if( eabr_vc->last_desc ) {
253 if( (abr_vc->status & 0x07) == ABR_STATE /* 0x2 */ ) {
254 /* Wait for 10 Micro sec */
255 udelay(10);
256 if ((eabr_vc->last_desc)&&((abr_vc->status & 0x07)==ABR_STATE))
257 foundLockUp = 1;
258 }
259 else {
260 tempCellSlot = abr_vc->last_cell_slot;
261 tempFract = abr_vc->fraction;
262 if((tempCellSlot == dev->testTable[vcc->vci]->lastTime)
263 && (tempFract == dev->testTable[vcc->vci]->fract))
264 foundLockUp = 1;
265 dev->testTable[vcc->vci]->lastTime = tempCellSlot;
266 dev->testTable[vcc->vci]->fract = tempFract;
267 }
268 } /* last descriptor */
269 vcstatus->cnt = 0;
270 } /* vcstatus->cnt */
271
272 if (foundLockUp) {
273 IF_ABR(printk("LOCK UP found\n");)
274 writew(val: 0xFFFD, addr: dev->seg_reg+MODE_REG_0);
275 /* Wait for 10 Micro sec */
276 udelay(10);
277 abr_vc->status &= 0xFFF8;
278 abr_vc->status |= 0x0001; /* state is idle */
279 shd_tbl = (u_short *)dev->ABR_SCHED_TABLE_ADDR;
280 for( i = 0; ((i < dev->num_vc) && (shd_tbl[i])); i++ );
281 if (i < dev->num_vc)
282 shd_tbl[i] = vcc->vci;
283 else
284 IF_ERR(printk("ABR Seg. may not continue on VC %x\n",vcc->vci);)
285 writew(T_ONLINE, addr: dev->seg_reg+MODE_REG_0);
286 writew(val: ~(TRANSMIT_DONE|TCQ_NOT_EMPTY), addr: dev->seg_reg+SEG_MASK_REG);
287 writew(TRANSMIT_DONE, addr: dev->seg_reg+SEG_INTR_STATUS_REG);
288 vcstatus->cnt = 0;
289 } /* foundLockUp */
290
291 } /* if an ABR VC */
292
293
294}
295
296/*
297** Conversion of 24-bit cellrate (cells/sec) to 16-bit floating point format.
298**
299** +----+----+------------------+-------------------------------+
300** | R | NZ | 5-bit exponent | 9-bit mantissa |
301** +----+----+------------------+-------------------------------+
302**
303** R = reserved (written as 0)
304** NZ = 0 if 0 cells/sec; 1 otherwise
305**
306** if NZ = 1, rate = 1.mmmmmmmmm x 2^(eeeee) cells/sec
307*/
308static u16
309cellrate_to_float(u32 cr)
310{
311
312#define NZ 0x4000
313#define M_BITS 9 /* Number of bits in mantissa */
314#define E_BITS 5 /* Number of bits in exponent */
315#define M_MASK 0x1ff
316#define E_MASK 0x1f
317 u16 flot;
318 u32 tmp = cr & 0x00ffffff;
319 int i = 0;
320 if (cr == 0)
321 return 0;
322 while (tmp != 1) {
323 tmp >>= 1;
324 i++;
325 }
326 if (i == M_BITS)
327 flot = NZ | (i << M_BITS) | (cr & M_MASK);
328 else if (i < M_BITS)
329 flot = NZ | (i << M_BITS) | ((cr << (M_BITS - i)) & M_MASK);
330 else
331 flot = NZ | (i << M_BITS) | ((cr >> (i - M_BITS)) & M_MASK);
332 return flot;
333}
334
335#if 0
336/*
337** Conversion of 16-bit floating point format to 24-bit cellrate (cells/sec).
338*/
339static u32
340float_to_cellrate(u16 rate)
341{
342 u32 exp, mantissa, cps;
343 if ((rate & NZ) == 0)
344 return 0;
345 exp = (rate >> M_BITS) & E_MASK;
346 mantissa = rate & M_MASK;
347 if (exp == 0)
348 return 1;
349 cps = (1 << M_BITS) | mantissa;
350 if (exp == M_BITS)
351 cps = cps;
352 else if (exp > M_BITS)
353 cps <<= (exp - M_BITS);
354 else
355 cps >>= (M_BITS - exp);
356 return cps;
357}
358#endif
359
360static void init_abr_vc (IADEV *dev, srv_cls_param_t *srv_p) {
361 srv_p->class_type = ATM_ABR;
362 srv_p->pcr = dev->LineRate;
363 srv_p->mcr = 0;
364 srv_p->icr = 0x055cb7;
365 srv_p->tbe = 0xffffff;
366 srv_p->frtt = 0x3a;
367 srv_p->rif = 0xf;
368 srv_p->rdf = 0xb;
369 srv_p->nrm = 0x4;
370 srv_p->trm = 0x7;
371 srv_p->cdf = 0x3;
372 srv_p->adtf = 50;
373}
374
375static int
376ia_open_abr_vc(IADEV *dev, srv_cls_param_t *srv_p,
377 struct atm_vcc *vcc, u8 flag)
378{
379 f_vc_abr_entry *f_abr_vc;
380 r_vc_abr_entry *r_abr_vc;
381 u32 icr;
382 u8 trm, nrm, crm;
383 u16 adtf, air, *ptr16;
384 f_abr_vc =(f_vc_abr_entry *)dev->MAIN_VC_TABLE_ADDR;
385 f_abr_vc += vcc->vci;
386 switch (flag) {
387 case 1: /* FFRED initialization */
388#if 0 /* sanity check */
389 if (srv_p->pcr == 0)
390 return INVALID_PCR;
391 if (srv_p->pcr > dev->LineRate)
392 srv_p->pcr = dev->LineRate;
393 if ((srv_p->mcr + dev->sum_mcr) > dev->LineRate)
394 return MCR_UNAVAILABLE;
395 if (srv_p->mcr > srv_p->pcr)
396 return INVALID_MCR;
397 if (!(srv_p->icr))
398 srv_p->icr = srv_p->pcr;
399 if ((srv_p->icr < srv_p->mcr) || (srv_p->icr > srv_p->pcr))
400 return INVALID_ICR;
401 if ((srv_p->tbe < MIN_TBE) || (srv_p->tbe > MAX_TBE))
402 return INVALID_TBE;
403 if ((srv_p->frtt < MIN_FRTT) || (srv_p->frtt > MAX_FRTT))
404 return INVALID_FRTT;
405 if (srv_p->nrm > MAX_NRM)
406 return INVALID_NRM;
407 if (srv_p->trm > MAX_TRM)
408 return INVALID_TRM;
409 if (srv_p->adtf > MAX_ADTF)
410 return INVALID_ADTF;
411 else if (srv_p->adtf == 0)
412 srv_p->adtf = 1;
413 if (srv_p->cdf > MAX_CDF)
414 return INVALID_CDF;
415 if (srv_p->rif > MAX_RIF)
416 return INVALID_RIF;
417 if (srv_p->rdf > MAX_RDF)
418 return INVALID_RDF;
419#endif
420 memset ((caddr_t)f_abr_vc, 0, sizeof(*f_abr_vc));
421 f_abr_vc->f_vc_type = ABR;
422 nrm = 2 << srv_p->nrm; /* (2 ** (srv_p->nrm +1)) */
423 /* i.e 2**n = 2 << (n-1) */
424 f_abr_vc->f_nrm = nrm << 8 | nrm;
425 trm = 100000/(2 << (16 - srv_p->trm));
426 if ( trm == 0) trm = 1;
427 f_abr_vc->f_nrmexp =(((srv_p->nrm +1) & 0x0f) << 12)|(MRM << 8) | trm;
428 crm = srv_p->tbe / nrm;
429 if (crm == 0) crm = 1;
430 f_abr_vc->f_crm = crm & 0xff;
431 f_abr_vc->f_pcr = cellrate_to_float(cr: srv_p->pcr);
432 icr = min( srv_p->icr, (srv_p->tbe > srv_p->frtt) ?
433 ((srv_p->tbe/srv_p->frtt)*1000000) :
434 (1000000/(srv_p->frtt/srv_p->tbe)));
435 f_abr_vc->f_icr = cellrate_to_float(cr: icr);
436 adtf = (10000 * srv_p->adtf)/8192;
437 if (adtf == 0) adtf = 1;
438 f_abr_vc->f_cdf = ((7 - srv_p->cdf) << 12 | adtf) & 0xfff;
439 f_abr_vc->f_mcr = cellrate_to_float(cr: srv_p->mcr);
440 f_abr_vc->f_acr = f_abr_vc->f_icr;
441 f_abr_vc->f_status = 0x0042;
442 break;
443 case 0: /* RFRED initialization */
444 ptr16 = (u_short *)(dev->reass_ram + REASS_TABLE*dev->memSize);
445 *(ptr16 + vcc->vci) = NO_AAL5_PKT | REASS_ABR;
446 r_abr_vc = (r_vc_abr_entry*)(dev->reass_ram+ABR_VC_TABLE*dev->memSize);
447 r_abr_vc += vcc->vci;
448 r_abr_vc->r_status_rdf = (15 - srv_p->rdf) & 0x000f;
449 air = srv_p->pcr << (15 - srv_p->rif);
450 if (air == 0) air = 1;
451 r_abr_vc->r_air = cellrate_to_float(cr: air);
452 dev->testTable[vcc->vci]->vc_status = VC_ACTIVE | VC_ABR;
453 dev->sum_mcr += srv_p->mcr;
454 dev->n_abr++;
455 break;
456 default:
457 break;
458 }
459 return 0;
460}
461static int ia_cbr_setup (IADEV *dev, struct atm_vcc *vcc) {
462 u32 rateLow=0, rateHigh, rate;
463 int entries;
464 struct ia_vcc *ia_vcc;
465
466 int idealSlot =0, testSlot, toBeAssigned, inc;
467 u32 spacing;
468 u16 *SchedTbl, *TstSchedTbl;
469 u16 cbrVC, vcIndex;
470 u32 fracSlot = 0;
471 u32 sp_mod = 0;
472 u32 sp_mod2 = 0;
473
474 /* IpAdjustTrafficParams */
475 if (vcc->qos.txtp.max_pcr <= 0) {
476 IF_ERR(printk("PCR for CBR not defined\n");)
477 return -1;
478 }
479 rate = vcc->qos.txtp.max_pcr;
480 entries = rate / dev->Granularity;
481 IF_CBR(printk("CBR: CBR entries=0x%x for rate=0x%x & Gran=0x%x\n",
482 entries, rate, dev->Granularity);)
483 if (entries < 1)
484 IF_CBR(printk("CBR: Bandwidth smaller than granularity of CBR table\n");)
485 rateLow = entries * dev->Granularity;
486 rateHigh = (entries + 1) * dev->Granularity;
487 if (3*(rate - rateLow) > (rateHigh - rate))
488 entries++;
489 if (entries > dev->CbrRemEntries) {
490 IF_CBR(printk("CBR: Not enough bandwidth to support this PCR.\n");)
491 IF_CBR(printk("Entries = 0x%x, CbrRemEntries = 0x%x.\n",
492 entries, dev->CbrRemEntries);)
493 return -EBUSY;
494 }
495
496 ia_vcc = INPH_IA_VCC(vcc);
497 ia_vcc->NumCbrEntry = entries;
498 dev->sum_mcr += entries * dev->Granularity;
499 /* IaFFrednInsertCbrSched */
500 // Starting at an arbitrary location, place the entries into the table
501 // as smoothly as possible
502 cbrVC = 0;
503 spacing = dev->CbrTotEntries / entries;
504 sp_mod = dev->CbrTotEntries % entries; // get modulo
505 toBeAssigned = entries;
506 fracSlot = 0;
507 vcIndex = vcc->vci;
508 IF_CBR(printk("Vci=0x%x,Spacing=0x%x,Sp_mod=0x%x\n",vcIndex,spacing,sp_mod);)
509 while (toBeAssigned)
510 {
511 // If this is the first time, start the table loading for this connection
512 // as close to entryPoint as possible.
513 if (toBeAssigned == entries)
514 {
515 idealSlot = dev->CbrEntryPt;
516 dev->CbrEntryPt += 2; // Adding 2 helps to prevent clumping
517 if (dev->CbrEntryPt >= dev->CbrTotEntries)
518 dev->CbrEntryPt -= dev->CbrTotEntries;// Wrap if necessary
519 } else {
520 idealSlot += (u32)(spacing + fracSlot); // Point to the next location
521 // in the table that would be smoothest
522 fracSlot = ((sp_mod + sp_mod2) / entries); // get new integer part
523 sp_mod2 = ((sp_mod + sp_mod2) % entries); // calc new fractional part
524 }
525 if (idealSlot >= (int)dev->CbrTotEntries)
526 idealSlot -= dev->CbrTotEntries;
527 // Continuously check around this ideal value until a null
528 // location is encountered.
529 SchedTbl = (u16*)(dev->seg_ram+CBR_SCHED_TABLE*dev->memSize);
530 inc = 0;
531 testSlot = idealSlot;
532 TstSchedTbl = (u16*)(SchedTbl+testSlot); //set index and read in value
533 IF_CBR(printk("CBR Testslot 0x%x AT Location 0x%p, NumToAssign=%d\n",
534 testSlot, TstSchedTbl,toBeAssigned);)
535 memcpy((caddr_t)&cbrVC,(caddr_t)TstSchedTbl,sizeof(cbrVC));
536 while (cbrVC) // If another VC at this location, we have to keep looking
537 {
538 inc++;
539 testSlot = idealSlot - inc;
540 if (testSlot < 0) { // Wrap if necessary
541 testSlot += dev->CbrTotEntries;
542 IF_CBR(printk("Testslot Wrap. STable Start=0x%p,Testslot=%d\n",
543 SchedTbl,testSlot);)
544 }
545 TstSchedTbl = (u16 *)(SchedTbl + testSlot); // set table index
546 memcpy((caddr_t)&cbrVC,(caddr_t)TstSchedTbl,sizeof(cbrVC));
547 if (!cbrVC)
548 break;
549 testSlot = idealSlot + inc;
550 if (testSlot >= (int)dev->CbrTotEntries) { // Wrap if necessary
551 testSlot -= dev->CbrTotEntries;
552 IF_CBR(printk("TotCbrEntries=%d",dev->CbrTotEntries);)
553 IF_CBR(printk(" Testslot=0x%x ToBeAssgned=%d\n",
554 testSlot, toBeAssigned);)
555 }
556 // set table index and read in value
557 TstSchedTbl = (u16*)(SchedTbl + testSlot);
558 IF_CBR(printk("Reading CBR Tbl from 0x%p, CbrVal=0x%x Iteration %d\n",
559 TstSchedTbl,cbrVC,inc);)
560 memcpy((caddr_t)&cbrVC,(caddr_t)TstSchedTbl,sizeof(cbrVC));
561 } /* while */
562 // Move this VCI number into this location of the CBR Sched table.
563 memcpy((caddr_t)TstSchedTbl, (caddr_t)&vcIndex, sizeof(*TstSchedTbl));
564 dev->CbrRemEntries--;
565 toBeAssigned--;
566 } /* while */
567
568 /* IaFFrednCbrEnable */
569 dev->NumEnabledCBR++;
570 if (dev->NumEnabledCBR == 1) {
571 writew(val: (CBR_EN | UBR_EN | ABR_EN | (0x23 << 2)), addr: dev->seg_reg+STPARMS);
572 IF_CBR(printk("CBR is enabled\n");)
573 }
574 return 0;
575}
576static void ia_cbrVc_close (struct atm_vcc *vcc) {
577 IADEV *iadev;
578 u16 *SchedTbl, NullVci = 0;
579 u32 i, NumFound;
580
581 iadev = INPH_IA_DEV(vcc->dev);
582 iadev->NumEnabledCBR--;
583 SchedTbl = (u16*)(iadev->seg_ram+CBR_SCHED_TABLE*iadev->memSize);
584 if (iadev->NumEnabledCBR == 0) {
585 writew(val: (UBR_EN | ABR_EN | (0x23 << 2)), addr: iadev->seg_reg+STPARMS);
586 IF_CBR (printk("CBR support disabled\n");)
587 }
588 NumFound = 0;
589 for (i=0; i < iadev->CbrTotEntries; i++)
590 {
591 if (*SchedTbl == vcc->vci) {
592 iadev->CbrRemEntries++;
593 *SchedTbl = NullVci;
594 IF_CBR(NumFound++;)
595 }
596 SchedTbl++;
597 }
598 IF_CBR(printk("Exit ia_cbrVc_close, NumRemoved=%d\n",NumFound);)
599}
600
601static int ia_avail_descs(IADEV *iadev) {
602 int tmp = 0;
603 ia_hack_tcq(dev: iadev);
604 if (iadev->host_tcq_wr >= iadev->ffL.tcq_rd)
605 tmp = (iadev->host_tcq_wr - iadev->ffL.tcq_rd) / 2;
606 else
607 tmp = (iadev->ffL.tcq_ed - iadev->ffL.tcq_rd + 2 + iadev->host_tcq_wr -
608 iadev->ffL.tcq_st) / 2;
609 return tmp;
610}
611
612static int ia_pkt_tx (struct atm_vcc *vcc, struct sk_buff *skb);
613
614static int ia_que_tx (IADEV *iadev) {
615 struct sk_buff *skb;
616 int num_desc;
617 struct atm_vcc *vcc;
618 num_desc = ia_avail_descs(iadev);
619
620 while (num_desc && (skb = skb_dequeue(list: &iadev->tx_backlog))) {
621 if (!(vcc = ATM_SKB(skb)->vcc)) {
622 dev_kfree_skb_any(skb);
623 printk("ia_que_tx: Null vcc\n");
624 break;
625 }
626 if (!test_bit(ATM_VF_READY,&vcc->flags)) {
627 dev_kfree_skb_any(skb);
628 printk("Free the SKB on closed vci %d \n", vcc->vci);
629 break;
630 }
631 if (ia_pkt_tx (vcc, skb)) {
632 skb_queue_head(list: &iadev->tx_backlog, newsk: skb);
633 }
634 num_desc--;
635 }
636 return 0;
637}
638
639static void ia_tx_poll (IADEV *iadev) {
640 struct atm_vcc *vcc = NULL;
641 struct sk_buff *skb = NULL, *skb1 = NULL;
642 struct ia_vcc *iavcc;
643 IARTN_Q * rtne;
644
645 ia_hack_tcq(dev: iadev);
646 while ( (rtne = ia_deque_rtn_q(que: &iadev->tx_return_q))) {
647 skb = rtne->data.txskb;
648 if (!skb) {
649 printk("ia_tx_poll: skb is null\n");
650 goto out;
651 }
652 vcc = ATM_SKB(skb)->vcc;
653 if (!vcc) {
654 printk("ia_tx_poll: vcc is null\n");
655 dev_kfree_skb_any(skb);
656 goto out;
657 }
658
659 iavcc = INPH_IA_VCC(vcc);
660 if (!iavcc) {
661 printk("ia_tx_poll: iavcc is null\n");
662 dev_kfree_skb_any(skb);
663 goto out;
664 }
665
666 skb1 = skb_dequeue(list: &iavcc->txing_skb);
667 while (skb1 && (skb1 != skb)) {
668 if (!(IA_SKB_STATE(skb1) & IA_TX_DONE)) {
669 printk("IA_tx_intr: Vci %d lost pkt!!!\n", vcc->vci);
670 }
671 IF_ERR(printk("Release the SKB not match\n");)
672 if ((vcc->pop) && (skb1->len != 0))
673 {
674 vcc->pop(vcc, skb1);
675 IF_EVENT(printk("Transmit Done - skb 0x%lx return\n",
676 (long)skb1);)
677 }
678 else
679 dev_kfree_skb_any(skb: skb1);
680 skb1 = skb_dequeue(list: &iavcc->txing_skb);
681 }
682 if (!skb1) {
683 IF_EVENT(printk("IA: Vci %d - skb not found requeued\n",vcc->vci);)
684 ia_enque_head_rtn_q (que: &iadev->tx_return_q, data: rtne);
685 break;
686 }
687 if ((vcc->pop) && (skb->len != 0))
688 {
689 vcc->pop(vcc, skb);
690 IF_EVENT(printk("Tx Done - skb 0x%lx return\n",(long)skb);)
691 }
692 else
693 dev_kfree_skb_any(skb);
694 kfree(objp: rtne);
695 }
696 ia_que_tx(iadev);
697out:
698 return;
699}
700#if 0
701static void ia_eeprom_put (IADEV *iadev, u32 addr, u_short val)
702{
703 u32 t;
704 int i;
705 /*
706 * Issue a command to enable writes to the NOVRAM
707 */
708 NVRAM_CMD (EXTEND + EWEN);
709 NVRAM_CLR_CE;
710 /*
711 * issue the write command
712 */
713 NVRAM_CMD(IAWRITE + addr);
714 /*
715 * Send the data, starting with D15, then D14, and so on for 16 bits
716 */
717 for (i=15; i>=0; i--) {
718 NVRAM_CLKOUT (val & 0x8000);
719 val <<= 1;
720 }
721 NVRAM_CLR_CE;
722 CFG_OR(NVCE);
723 t = readl(iadev->reg+IPHASE5575_EEPROM_ACCESS);
724 while (!(t & NVDO))
725 t = readl(iadev->reg+IPHASE5575_EEPROM_ACCESS);
726
727 NVRAM_CLR_CE;
728 /*
729 * disable writes again
730 */
731 NVRAM_CMD(EXTEND + EWDS)
732 NVRAM_CLR_CE;
733 CFG_AND(~NVDI);
734}
735#endif
736
737static u16 ia_eeprom_get (IADEV *iadev, u32 addr)
738{
739 u_short val;
740 u32 t;
741 int i;
742 /*
743 * Read the first bit that was clocked with the falling edge of
744 * the last command data clock
745 */
746 NVRAM_CMD(IAREAD + addr);
747 /*
748 * Now read the rest of the bits, the next bit read is D14, then D13,
749 * and so on.
750 */
751 val = 0;
752 for (i=15; i>=0; i--) {
753 NVRAM_CLKIN(t);
754 val |= (t << i);
755 }
756 NVRAM_CLR_CE;
757 CFG_AND(~NVDI);
758 return val;
759}
760
761static void ia_hw_type(IADEV *iadev) {
762 u_short memType = ia_eeprom_get(iadev, addr: 25);
763 iadev->memType = memType;
764 if ((memType & MEM_SIZE_MASK) == MEM_SIZE_1M) {
765 iadev->num_tx_desc = IA_TX_BUF;
766 iadev->tx_buf_sz = IA_TX_BUF_SZ;
767 iadev->num_rx_desc = IA_RX_BUF;
768 iadev->rx_buf_sz = IA_RX_BUF_SZ;
769 } else if ((memType & MEM_SIZE_MASK) == MEM_SIZE_512K) {
770 if (IA_TX_BUF == DFL_TX_BUFFERS)
771 iadev->num_tx_desc = IA_TX_BUF / 2;
772 else
773 iadev->num_tx_desc = IA_TX_BUF;
774 iadev->tx_buf_sz = IA_TX_BUF_SZ;
775 if (IA_RX_BUF == DFL_RX_BUFFERS)
776 iadev->num_rx_desc = IA_RX_BUF / 2;
777 else
778 iadev->num_rx_desc = IA_RX_BUF;
779 iadev->rx_buf_sz = IA_RX_BUF_SZ;
780 }
781 else {
782 if (IA_TX_BUF == DFL_TX_BUFFERS)
783 iadev->num_tx_desc = IA_TX_BUF / 8;
784 else
785 iadev->num_tx_desc = IA_TX_BUF;
786 iadev->tx_buf_sz = IA_TX_BUF_SZ;
787 if (IA_RX_BUF == DFL_RX_BUFFERS)
788 iadev->num_rx_desc = IA_RX_BUF / 8;
789 else
790 iadev->num_rx_desc = IA_RX_BUF;
791 iadev->rx_buf_sz = IA_RX_BUF_SZ;
792 }
793 iadev->rx_pkt_ram = TX_PACKET_RAM + (iadev->num_tx_desc * iadev->tx_buf_sz);
794 IF_INIT(printk("BUF: tx=%d,sz=%d rx=%d sz= %d rx_pkt_ram=%d\n",
795 iadev->num_tx_desc, iadev->tx_buf_sz, iadev->num_rx_desc,
796 iadev->rx_buf_sz, iadev->rx_pkt_ram);)
797
798#if 0
799 if ((memType & FE_MASK) == FE_SINGLE_MODE) {
800 iadev->phy_type = PHY_OC3C_S;
801 else if ((memType & FE_MASK) == FE_UTP_OPTION)
802 iadev->phy_type = PHY_UTP155;
803 else
804 iadev->phy_type = PHY_OC3C_M;
805#endif
806
807 iadev->phy_type = memType & FE_MASK;
808 IF_INIT(printk("memType = 0x%x iadev->phy_type = 0x%x\n",
809 memType,iadev->phy_type);)
810 if (iadev->phy_type == FE_25MBIT_PHY)
811 iadev->LineRate = (u32)(((25600000/8)*26)/(27*53));
812 else if (iadev->phy_type == FE_DS3_PHY)
813 iadev->LineRate = (u32)(((44736000/8)*26)/(27*53));
814 else if (iadev->phy_type == FE_E3_PHY)
815 iadev->LineRate = (u32)(((34368000/8)*26)/(27*53));
816 else
817 iadev->LineRate = (u32)(ATM_OC3_PCR);
818 IF_INIT(printk("iadev->LineRate = %d \n", iadev->LineRate);)
819
820}
821
822static u32 ia_phy_read32(struct iadev_priv *ia, unsigned int reg)
823{
824 return readl(addr: ia->phy + (reg >> 2));
825}
826
827static void ia_phy_write32(struct iadev_priv *ia, unsigned int reg, u32 val)
828{
829 writel(val, addr: ia->phy + (reg >> 2));
830}
831
832static void ia_frontend_intr(struct iadev_priv *iadev)
833{
834 u32 status;
835
836 if (iadev->phy_type & FE_25MBIT_PHY) {
837 status = ia_phy_read32(ia: iadev, reg: MB25_INTR_STATUS);
838 iadev->carrier_detect = (status & MB25_IS_GSB) ? 1 : 0;
839 } else if (iadev->phy_type & FE_DS3_PHY) {
840 ia_phy_read32(ia: iadev, reg: SUNI_DS3_FRM_INTR_STAT);
841 status = ia_phy_read32(ia: iadev, reg: SUNI_DS3_FRM_STAT);
842 iadev->carrier_detect = (status & SUNI_DS3_LOSV) ? 0 : 1;
843 } else if (iadev->phy_type & FE_E3_PHY) {
844 ia_phy_read32(ia: iadev, reg: SUNI_E3_FRM_MAINT_INTR_IND);
845 status = ia_phy_read32(ia: iadev, reg: SUNI_E3_FRM_FRAM_INTR_IND_STAT);
846 iadev->carrier_detect = (status & SUNI_E3_LOS) ? 0 : 1;
847 } else {
848 status = ia_phy_read32(ia: iadev, reg: SUNI_RSOP_STATUS);
849 iadev->carrier_detect = (status & SUNI_LOSV) ? 0 : 1;
850 }
851
852 printk(KERN_INFO "IA: SUNI carrier %s\n",
853 iadev->carrier_detect ? "detected" : "lost signal");
854}
855
856static void ia_mb25_init(struct iadev_priv *iadev)
857{
858#if 0
859 mb25->mb25_master_ctrl = MB25_MC_DRIC | MB25_MC_DREC | MB25_MC_ENABLED;
860#endif
861 ia_phy_write32(ia: iadev, reg: MB25_MASTER_CTRL, MB25_MC_DRIC | MB25_MC_DREC);
862 ia_phy_write32(ia: iadev, reg: MB25_DIAG_CONTROL, val: 0);
863
864 iadev->carrier_detect =
865 (ia_phy_read32(ia: iadev, reg: MB25_INTR_STATUS) & MB25_IS_GSB) ? 1 : 0;
866}
867
868struct ia_reg {
869 u16 reg;
870 u16 val;
871};
872
873static void ia_phy_write(struct iadev_priv *iadev,
874 const struct ia_reg *regs, int len)
875{
876 while (len--) {
877 ia_phy_write32(ia: iadev, reg: regs->reg, val: regs->val);
878 regs++;
879 }
880}
881
882static void ia_suni_pm7345_init_ds3(struct iadev_priv *iadev)
883{
884 static const struct ia_reg suni_ds3_init[] = {
885 { SUNI_DS3_FRM_INTR_ENBL, 0x17 },
886 { SUNI_DS3_FRM_CFG, 0x01 },
887 { SUNI_DS3_TRAN_CFG, 0x01 },
888 { SUNI_CONFIG, 0 },
889 { SUNI_SPLR_CFG, 0 },
890 { SUNI_SPLT_CFG, 0 }
891 };
892 u32 status;
893
894 status = ia_phy_read32(ia: iadev, reg: SUNI_DS3_FRM_STAT);
895 iadev->carrier_detect = (status & SUNI_DS3_LOSV) ? 0 : 1;
896
897 ia_phy_write(iadev, regs: suni_ds3_init, ARRAY_SIZE(suni_ds3_init));
898}
899
900static void ia_suni_pm7345_init_e3(struct iadev_priv *iadev)
901{
902 static const struct ia_reg suni_e3_init[] = {
903 { SUNI_E3_FRM_FRAM_OPTIONS, 0x04 },
904 { SUNI_E3_FRM_MAINT_OPTIONS, 0x20 },
905 { SUNI_E3_FRM_FRAM_INTR_ENBL, 0x1d },
906 { SUNI_E3_FRM_MAINT_INTR_ENBL, 0x30 },
907 { SUNI_E3_TRAN_STAT_DIAG_OPTIONS, 0 },
908 { SUNI_E3_TRAN_FRAM_OPTIONS, 0x01 },
909 { SUNI_CONFIG, SUNI_PM7345_E3ENBL },
910 { SUNI_SPLR_CFG, 0x41 },
911 { SUNI_SPLT_CFG, 0x41 }
912 };
913 u32 status;
914
915 status = ia_phy_read32(ia: iadev, reg: SUNI_E3_FRM_FRAM_INTR_IND_STAT);
916 iadev->carrier_detect = (status & SUNI_E3_LOS) ? 0 : 1;
917 ia_phy_write(iadev, regs: suni_e3_init, ARRAY_SIZE(suni_e3_init));
918}
919
920static void ia_suni_pm7345_init(struct iadev_priv *iadev)
921{
922 static const struct ia_reg suni_init[] = {
923 /* Enable RSOP loss of signal interrupt. */
924 { SUNI_INTR_ENBL, 0x28 },
925 /* Clear error counters. */
926 { SUNI_ID_RESET, 0 },
927 /* Clear "PMCTST" in master test register. */
928 { SUNI_MASTER_TEST, 0 },
929
930 { SUNI_RXCP_CTRL, 0x2c },
931 { SUNI_RXCP_FCTRL, 0x81 },
932
933 { SUNI_RXCP_IDLE_PAT_H1, 0 },
934 { SUNI_RXCP_IDLE_PAT_H2, 0 },
935 { SUNI_RXCP_IDLE_PAT_H3, 0 },
936 { SUNI_RXCP_IDLE_PAT_H4, 0x01 },
937
938 { SUNI_RXCP_IDLE_MASK_H1, 0xff },
939 { SUNI_RXCP_IDLE_MASK_H2, 0xff },
940 { SUNI_RXCP_IDLE_MASK_H3, 0xff },
941 { SUNI_RXCP_IDLE_MASK_H4, 0xfe },
942
943 { SUNI_RXCP_CELL_PAT_H1, 0 },
944 { SUNI_RXCP_CELL_PAT_H2, 0 },
945 { SUNI_RXCP_CELL_PAT_H3, 0 },
946 { SUNI_RXCP_CELL_PAT_H4, 0x01 },
947
948 { SUNI_RXCP_CELL_MASK_H1, 0xff },
949 { SUNI_RXCP_CELL_MASK_H2, 0xff },
950 { SUNI_RXCP_CELL_MASK_H3, 0xff },
951 { SUNI_RXCP_CELL_MASK_H4, 0xff },
952
953 { SUNI_TXCP_CTRL, 0xa4 },
954 { SUNI_TXCP_INTR_EN_STS, 0x10 },
955 { SUNI_TXCP_IDLE_PAT_H5, 0x55 }
956 };
957
958 if (iadev->phy_type & FE_DS3_PHY)
959 ia_suni_pm7345_init_ds3(iadev);
960 else
961 ia_suni_pm7345_init_e3(iadev);
962
963 ia_phy_write(iadev, regs: suni_init, ARRAY_SIZE(suni_init));
964
965 ia_phy_write32(ia: iadev, reg: SUNI_CONFIG, val: ia_phy_read32(ia: iadev, reg: SUNI_CONFIG) &
966 ~(SUNI_PM7345_LLB | SUNI_PM7345_CLB |
967 SUNI_PM7345_DLB | SUNI_PM7345_PLB));
968#ifdef __SNMP__
969 suni_pm7345->suni_rxcp_intr_en_sts |= SUNI_OOCDE;
970#endif /* __SNMP__ */
971 return;
972}
973
974
975/***************************** IA_LIB END *****************************/
976
977#ifdef CONFIG_ATM_IA_DEBUG
978static int tcnter = 0;
979static void xdump( u_char* cp, int length, char* prefix )
980{
981 int col, count;
982 u_char prntBuf[120];
983 u_char* pBuf = prntBuf;
984 count = 0;
985 while(count < length){
986 pBuf += sprintf( buf: pBuf, fmt: "%s", prefix );
987 for(col = 0;count + col < length && col < 16; col++){
988 if (col != 0 && (col % 4) == 0)
989 pBuf += sprintf( buf: pBuf, fmt: " " );
990 pBuf += sprintf( buf: pBuf, fmt: "%02X ", cp[count + col] );
991 }
992 while(col++ < 16){ /* pad end of buffer with blanks */
993 if ((col % 4) == 0)
994 sprintf( buf: pBuf, fmt: " " );
995 pBuf += sprintf( buf: pBuf, fmt: " " );
996 }
997 pBuf += sprintf( buf: pBuf, fmt: " " );
998 for(col = 0;count + col < length && col < 16; col++){
999 u_char c = cp[count + col];
1000
1001 if (isascii(c) && isprint(c))
1002 pBuf += sprintf(buf: pBuf, fmt: "%c", c);
1003 else
1004 pBuf += sprintf(buf: pBuf, fmt: ".");
1005 }
1006 printk("%s\n", prntBuf);
1007 count += col;
1008 pBuf = prntBuf;
1009 }
1010
1011} /* close xdump(... */
1012#endif /* CONFIG_ATM_IA_DEBUG */
1013
1014
1015static struct atm_dev *ia_boards = NULL;
1016
1017#define ACTUAL_RAM_BASE \
1018 RAM_BASE*((iadev->mem)/(128 * 1024))
1019#define ACTUAL_SEG_RAM_BASE \
1020 IPHASE5575_FRAG_CONTROL_RAM_BASE*((iadev->mem)/(128 * 1024))
1021#define ACTUAL_REASS_RAM_BASE \
1022 IPHASE5575_REASS_CONTROL_RAM_BASE*((iadev->mem)/(128 * 1024))
1023
1024
1025/*-- some utilities and memory allocation stuff will come here -------------*/
1026
1027static void desc_dbg(IADEV *iadev) {
1028
1029 u_short tcq_wr_ptr, tcq_st_ptr, tcq_ed_ptr;
1030 u32 i;
1031 void __iomem *tmp;
1032 // regval = readl((u32)ia_cmds->maddr);
1033 tcq_wr_ptr = readw(addr: iadev->seg_reg+TCQ_WR_PTR);
1034 printk("B_tcq_wr = 0x%x desc = %d last desc = %d\n",
1035 tcq_wr_ptr, readw(iadev->seg_ram+tcq_wr_ptr),
1036 readw(iadev->seg_ram+tcq_wr_ptr-2));
1037 printk(" host_tcq_wr = 0x%x host_tcq_rd = 0x%x \n", iadev->host_tcq_wr,
1038 iadev->ffL.tcq_rd);
1039 tcq_st_ptr = readw(addr: iadev->seg_reg+TCQ_ST_ADR);
1040 tcq_ed_ptr = readw(addr: iadev->seg_reg+TCQ_ED_ADR);
1041 printk("tcq_st_ptr = 0x%x tcq_ed_ptr = 0x%x \n", tcq_st_ptr, tcq_ed_ptr);
1042 i = 0;
1043 while (tcq_st_ptr != tcq_ed_ptr) {
1044 tmp = iadev->seg_ram+tcq_st_ptr;
1045 printk("TCQ slot %d desc = %d Addr = %p\n", i++, readw(tmp), tmp);
1046 tcq_st_ptr += 2;
1047 }
1048 for(i=0; i <iadev->num_tx_desc; i++)
1049 printk("Desc_tbl[%d] = %d \n", i, iadev->desc_tbl[i].timestamp);
1050}
1051
1052
1053/*----------------------------- Receiving side stuff --------------------------*/
1054
1055static void rx_excp_rcvd(struct atm_dev *dev)
1056{
1057#if 0 /* closing the receiving size will cause too many excp int */
1058 IADEV *iadev;
1059 u_short state;
1060 u_short excpq_rd_ptr;
1061 //u_short *ptr;
1062 int vci, error = 1;
1063 iadev = INPH_IA_DEV(dev);
1064 state = readl(iadev->reass_reg + STATE_REG) & 0xffff;
1065 while((state & EXCPQ_EMPTY) != EXCPQ_EMPTY)
1066 { printk("state = %x \n", state);
1067 excpq_rd_ptr = readw(iadev->reass_reg + EXCP_Q_RD_PTR) & 0xffff;
1068 printk("state = %x excpq_rd_ptr = %x \n", state, excpq_rd_ptr);
1069 if (excpq_rd_ptr == *(u16*)(iadev->reass_reg + EXCP_Q_WR_PTR))
1070 IF_ERR(printk("excpq_rd_ptr is wrong!!!\n");)
1071 // TODO: update exception stat
1072 vci = readw(iadev->reass_ram+excpq_rd_ptr);
1073 error = readw(iadev->reass_ram+excpq_rd_ptr+2) & 0x0007;
1074 // pwang_test
1075 excpq_rd_ptr += 4;
1076 if (excpq_rd_ptr > (readw(iadev->reass_reg + EXCP_Q_ED_ADR)& 0xffff))
1077 excpq_rd_ptr = readw(iadev->reass_reg + EXCP_Q_ST_ADR)& 0xffff;
1078 writew( excpq_rd_ptr, iadev->reass_reg + EXCP_Q_RD_PTR);
1079 state = readl(iadev->reass_reg + STATE_REG) & 0xffff;
1080 }
1081#endif
1082}
1083
1084static void free_desc(struct atm_dev *dev, int desc)
1085{
1086 IADEV *iadev;
1087 iadev = INPH_IA_DEV(dev);
1088 writew(val: desc, addr: iadev->reass_ram+iadev->rfL.fdq_wr);
1089 iadev->rfL.fdq_wr +=2;
1090 if (iadev->rfL.fdq_wr > iadev->rfL.fdq_ed)
1091 iadev->rfL.fdq_wr = iadev->rfL.fdq_st;
1092 writew(val: iadev->rfL.fdq_wr, addr: iadev->reass_reg+FREEQ_WR_PTR);
1093}
1094
1095
1096static int rx_pkt(struct atm_dev *dev)
1097{
1098 IADEV *iadev;
1099 struct atm_vcc *vcc;
1100 unsigned short status;
1101 struct rx_buf_desc __iomem *buf_desc_ptr;
1102 int desc;
1103 struct dle* wr_ptr;
1104 int len;
1105 struct sk_buff *skb;
1106 u_int buf_addr, dma_addr;
1107
1108 iadev = INPH_IA_DEV(dev);
1109 if (iadev->rfL.pcq_rd == (readw(addr: iadev->reass_reg+PCQ_WR_PTR)&0xffff))
1110 {
1111 printk(KERN_ERR DEV_LABEL "(itf %d) Receive queue empty\n", dev->number);
1112 return -EINVAL;
1113 }
1114 /* mask 1st 3 bits to get the actual descno. */
1115 desc = readw(addr: iadev->reass_ram+iadev->rfL.pcq_rd) & 0x1fff;
1116 IF_RX(printk("reass_ram = %p iadev->rfL.pcq_rd = 0x%x desc = %d\n",
1117 iadev->reass_ram, iadev->rfL.pcq_rd, desc);
1118 printk(" pcq_wr_ptr = 0x%x\n",
1119 readw(iadev->reass_reg+PCQ_WR_PTR)&0xffff);)
1120 /* update the read pointer - maybe we shud do this in the end*/
1121 if ( iadev->rfL.pcq_rd== iadev->rfL.pcq_ed)
1122 iadev->rfL.pcq_rd = iadev->rfL.pcq_st;
1123 else
1124 iadev->rfL.pcq_rd += 2;
1125 writew(val: iadev->rfL.pcq_rd, addr: iadev->reass_reg+PCQ_RD_PTR);
1126
1127 /* get the buffer desc entry.
1128 update stuff. - doesn't seem to be any update necessary
1129 */
1130 buf_desc_ptr = iadev->RX_DESC_BASE_ADDR;
1131 /* make the ptr point to the corresponding buffer desc entry */
1132 buf_desc_ptr += desc;
1133 if (!desc || (desc > iadev->num_rx_desc) ||
1134 ((buf_desc_ptr->vc_index & 0xffff) >= iadev->num_vc)) {
1135 free_desc(dev, desc);
1136 IF_ERR(printk("IA: bad descriptor desc = %d \n", desc);)
1137 return -1;
1138 }
1139 vcc = iadev->rx_open[buf_desc_ptr->vc_index & 0xffff];
1140 if (!vcc)
1141 {
1142 free_desc(dev, desc);
1143 printk("IA: null vcc, drop PDU\n");
1144 return -1;
1145 }
1146
1147
1148 /* might want to check the status bits for errors */
1149 status = (u_short) (buf_desc_ptr->desc_mode);
1150 if (status & (RX_CER | RX_PTE | RX_OFL))
1151 {
1152 atomic_inc(v: &vcc->stats->rx_err);
1153 IF_ERR(printk("IA: bad packet, dropping it");)
1154 if (status & RX_CER) {
1155 IF_ERR(printk(" cause: packet CRC error\n");)
1156 }
1157 else if (status & RX_PTE) {
1158 IF_ERR(printk(" cause: packet time out\n");)
1159 }
1160 else {
1161 IF_ERR(printk(" cause: buffer overflow\n");)
1162 }
1163 goto out_free_desc;
1164 }
1165
1166 /*
1167 build DLE.
1168 */
1169
1170 buf_addr = (buf_desc_ptr->buf_start_hi << 16) | buf_desc_ptr->buf_start_lo;
1171 dma_addr = (buf_desc_ptr->dma_start_hi << 16) | buf_desc_ptr->dma_start_lo;
1172 len = dma_addr - buf_addr;
1173 if (len > iadev->rx_buf_sz) {
1174 printk("Over %d bytes sdu received, dropped!!!\n", iadev->rx_buf_sz);
1175 atomic_inc(v: &vcc->stats->rx_err);
1176 goto out_free_desc;
1177 }
1178
1179 if (!(skb = atm_alloc_charge(vcc, pdu_size: len, GFP_ATOMIC))) {
1180 if (vcc->vci < 32)
1181 printk("Drop control packets\n");
1182 goto out_free_desc;
1183 }
1184 skb_put(skb,len);
1185 // pwang_test
1186 ATM_SKB(skb)->vcc = vcc;
1187 ATM_DESC(skb) = desc;
1188 skb_queue_tail(list: &iadev->rx_dma_q, newsk: skb);
1189
1190 /* Build the DLE structure */
1191 wr_ptr = iadev->rx_dle_q.write;
1192 wr_ptr->sys_pkt_addr = dma_map_single(&iadev->pci->dev, skb->data,
1193 len, DMA_FROM_DEVICE);
1194 wr_ptr->local_pkt_addr = buf_addr;
1195 wr_ptr->bytes = len; /* We don't know this do we ?? */
1196 wr_ptr->mode = DMA_INT_ENABLE;
1197
1198 /* shud take care of wrap around here too. */
1199 if(++wr_ptr == iadev->rx_dle_q.end)
1200 wr_ptr = iadev->rx_dle_q.start;
1201 iadev->rx_dle_q.write = wr_ptr;
1202 udelay(1);
1203 /* Increment transaction counter */
1204 writel(val: 1, addr: iadev->dma+IPHASE5575_RX_COUNTER);
1205out: return 0;
1206out_free_desc:
1207 free_desc(dev, desc);
1208 goto out;
1209}
1210
1211static void rx_intr(struct atm_dev *dev)
1212{
1213 IADEV *iadev;
1214 u_short status;
1215 u_short state, i;
1216
1217 iadev = INPH_IA_DEV(dev);
1218 status = readl(addr: iadev->reass_reg+REASS_INTR_STATUS_REG) & 0xffff;
1219 IF_EVENT(printk("rx_intr: status = 0x%x\n", status);)
1220 if (status & RX_PKT_RCVD)
1221 {
1222 /* do something */
1223 /* Basically recvd an interrupt for receiving a packet.
1224 A descriptor would have been written to the packet complete
1225 queue. Get all the descriptors and set up dma to move the
1226 packets till the packet complete queue is empty..
1227 */
1228 state = readl(addr: iadev->reass_reg + STATE_REG) & 0xffff;
1229 IF_EVENT(printk("Rx intr status: RX_PKT_RCVD %08x\n", status);)
1230 while(!(state & PCQ_EMPTY))
1231 {
1232 rx_pkt(dev);
1233 state = readl(addr: iadev->reass_reg + STATE_REG) & 0xffff;
1234 }
1235 iadev->rxing = 1;
1236 }
1237 if (status & RX_FREEQ_EMPT)
1238 {
1239 if (iadev->rxing) {
1240 iadev->rx_tmp_cnt = iadev->rx_pkt_cnt;
1241 iadev->rx_tmp_jif = jiffies;
1242 iadev->rxing = 0;
1243 }
1244 else if ((time_after(jiffies, iadev->rx_tmp_jif + 50)) &&
1245 ((iadev->rx_pkt_cnt - iadev->rx_tmp_cnt) == 0)) {
1246 for (i = 1; i <= iadev->num_rx_desc; i++)
1247 free_desc(dev, desc: i);
1248printk("Test logic RUN!!!!\n");
1249 writew( val: ~(RX_FREEQ_EMPT|RX_EXCP_RCVD),addr: iadev->reass_reg+REASS_MASK_REG);
1250 iadev->rxing = 1;
1251 }
1252 IF_EVENT(printk("Rx intr status: RX_FREEQ_EMPT %08x\n", status);)
1253 }
1254
1255 if (status & RX_EXCP_RCVD)
1256 {
1257 /* probably need to handle the exception queue also. */
1258 IF_EVENT(printk("Rx intr status: RX_EXCP_RCVD %08x\n", status);)
1259 rx_excp_rcvd(dev);
1260 }
1261
1262
1263 if (status & RX_RAW_RCVD)
1264 {
1265 /* need to handle the raw incoming cells. This deepnds on
1266 whether we have programmed to receive the raw cells or not.
1267 Else ignore. */
1268 IF_EVENT(printk("Rx intr status: RX_RAW_RCVD %08x\n", status);)
1269 }
1270}
1271
1272
1273static void rx_dle_intr(struct atm_dev *dev)
1274{
1275 IADEV *iadev;
1276 struct atm_vcc *vcc;
1277 struct sk_buff *skb;
1278 int desc;
1279 u_short state;
1280 struct dle *dle, *cur_dle;
1281 u_int dle_lp;
1282 int len;
1283 iadev = INPH_IA_DEV(dev);
1284
1285 /* free all the dles done, that is just update our own dle read pointer
1286 - do we really need to do this. Think not. */
1287 /* DMA is done, just get all the recevie buffers from the rx dma queue
1288 and push them up to the higher layer protocol. Also free the desc
1289 associated with the buffer. */
1290 dle = iadev->rx_dle_q.read;
1291 dle_lp = readl(addr: iadev->dma+IPHASE5575_RX_LIST_ADDR) & (sizeof(struct dle)*DLE_ENTRIES - 1);
1292 cur_dle = (struct dle*)(iadev->rx_dle_q.start + (dle_lp >> 4));
1293 while(dle != cur_dle)
1294 {
1295 /* free the DMAed skb */
1296 skb = skb_dequeue(list: &iadev->rx_dma_q);
1297 if (!skb)
1298 goto INCR_DLE;
1299 desc = ATM_DESC(skb);
1300 free_desc(dev, desc);
1301
1302 if (!(len = skb->len))
1303 {
1304 printk("rx_dle_intr: skb len 0\n");
1305 dev_kfree_skb_any(skb);
1306 }
1307 else
1308 {
1309 struct cpcs_trailer *trailer;
1310 u_short length;
1311 struct ia_vcc *ia_vcc;
1312
1313 dma_unmap_single(&iadev->pci->dev, iadev->rx_dle_q.write->sys_pkt_addr,
1314 len, DMA_FROM_DEVICE);
1315 /* no VCC related housekeeping done as yet. lets see */
1316 vcc = ATM_SKB(skb)->vcc;
1317 if (!vcc) {
1318 printk("IA: null vcc\n");
1319 dev_kfree_skb_any(skb);
1320 goto INCR_DLE;
1321 }
1322 ia_vcc = INPH_IA_VCC(vcc);
1323 if (ia_vcc == NULL)
1324 {
1325 atomic_inc(v: &vcc->stats->rx_err);
1326 atm_return(vcc, truesize: skb->truesize);
1327 dev_kfree_skb_any(skb);
1328 goto INCR_DLE;
1329 }
1330 // get real pkt length pwang_test
1331 trailer = (struct cpcs_trailer*)((u_char *)skb->data +
1332 skb->len - sizeof(*trailer));
1333 length = swap_byte_order(trailer->length);
1334 if ((length > iadev->rx_buf_sz) || (length >
1335 (skb->len - sizeof(struct cpcs_trailer))))
1336 {
1337 atomic_inc(v: &vcc->stats->rx_err);
1338 IF_ERR(printk("rx_dle_intr: Bad AAL5 trailer %d (skb len %d)",
1339 length, skb->len);)
1340 atm_return(vcc, truesize: skb->truesize);
1341 dev_kfree_skb_any(skb);
1342 goto INCR_DLE;
1343 }
1344 skb_trim(skb, len: length);
1345
1346 /* Display the packet */
1347 IF_RXPKT(printk("\nDmad Recvd data: len = %d \n", skb->len);
1348 xdump(skb->data, skb->len, "RX: ");
1349 printk("\n");)
1350
1351 IF_RX(printk("rx_dle_intr: skb push");)
1352 vcc->push(vcc,skb);
1353 atomic_inc(v: &vcc->stats->rx);
1354 iadev->rx_pkt_cnt++;
1355 }
1356INCR_DLE:
1357 if (++dle == iadev->rx_dle_q.end)
1358 dle = iadev->rx_dle_q.start;
1359 }
1360 iadev->rx_dle_q.read = dle;
1361
1362 /* if the interrupts are masked because there were no free desc available,
1363 unmask them now. */
1364 if (!iadev->rxing) {
1365 state = readl(addr: iadev->reass_reg + STATE_REG) & 0xffff;
1366 if (!(state & FREEQ_EMPTY)) {
1367 state = readl(addr: iadev->reass_reg + REASS_MASK_REG) & 0xffff;
1368 writel(val: state & ~(RX_FREEQ_EMPT |/* RX_EXCP_RCVD |*/ RX_PKT_RCVD),
1369 addr: iadev->reass_reg+REASS_MASK_REG);
1370 iadev->rxing++;
1371 }
1372 }
1373}
1374
1375
1376static int open_rx(struct atm_vcc *vcc)
1377{
1378 IADEV *iadev;
1379 u_short __iomem *vc_table;
1380 u_short __iomem *reass_ptr;
1381 IF_EVENT(printk("iadev: open_rx %d.%d\n", vcc->vpi, vcc->vci);)
1382
1383 if (vcc->qos.rxtp.traffic_class == ATM_NONE) return 0;
1384 iadev = INPH_IA_DEV(vcc->dev);
1385 if (vcc->qos.rxtp.traffic_class == ATM_ABR) {
1386 if (iadev->phy_type & FE_25MBIT_PHY) {
1387 printk("IA: ABR not support\n");
1388 return -EINVAL;
1389 }
1390 }
1391 /* Make only this VCI in the vc table valid and let all
1392 others be invalid entries */
1393 vc_table = iadev->reass_ram+RX_VC_TABLE*iadev->memSize;
1394 vc_table += vcc->vci;
1395 /* mask the last 6 bits and OR it with 3 for 1K VCs */
1396
1397 *vc_table = vcc->vci << 6;
1398 /* Also keep a list of open rx vcs so that we can attach them with
1399 incoming PDUs later. */
1400 if ((vcc->qos.rxtp.traffic_class == ATM_ABR) ||
1401 (vcc->qos.txtp.traffic_class == ATM_ABR))
1402 {
1403 srv_cls_param_t srv_p;
1404 init_abr_vc(dev: iadev, srv_p: &srv_p);
1405 ia_open_abr_vc(dev: iadev, srv_p: &srv_p, vcc, flag: 0);
1406 }
1407 else { /* for UBR later may need to add CBR logic */
1408 reass_ptr = iadev->reass_ram+REASS_TABLE*iadev->memSize;
1409 reass_ptr += vcc->vci;
1410 *reass_ptr = NO_AAL5_PKT;
1411 }
1412
1413 if (iadev->rx_open[vcc->vci])
1414 printk(KERN_CRIT DEV_LABEL "(itf %d): VCI %d already open\n",
1415 vcc->dev->number, vcc->vci);
1416 iadev->rx_open[vcc->vci] = vcc;
1417 return 0;
1418}
1419
1420static int rx_init(struct atm_dev *dev)
1421{
1422 IADEV *iadev;
1423 struct rx_buf_desc __iomem *buf_desc_ptr;
1424 unsigned long rx_pkt_start = 0;
1425 void *dle_addr;
1426 struct abr_vc_table *abr_vc_table;
1427 u16 *vc_table;
1428 u16 *reass_table;
1429 int i,j, vcsize_sel;
1430 u_short freeq_st_adr;
1431 u_short *freeq_start;
1432
1433 iadev = INPH_IA_DEV(dev);
1434 // spin_lock_init(&iadev->rx_lock);
1435
1436 /* Allocate 4k bytes - more aligned than needed (4k boundary) */
1437 dle_addr = dma_alloc_coherent(dev: &iadev->pci->dev, DLE_TOTAL_SIZE,
1438 dma_handle: &iadev->rx_dle_dma, GFP_KERNEL);
1439 if (!dle_addr) {
1440 printk(KERN_ERR DEV_LABEL "can't allocate DLEs\n");
1441 goto err_out;
1442 }
1443 iadev->rx_dle_q.start = (struct dle *)dle_addr;
1444 iadev->rx_dle_q.read = iadev->rx_dle_q.start;
1445 iadev->rx_dle_q.write = iadev->rx_dle_q.start;
1446 iadev->rx_dle_q.end = (struct dle*)((unsigned long)dle_addr+sizeof(struct dle)*DLE_ENTRIES);
1447 /* the end of the dle q points to the entry after the last
1448 DLE that can be used. */
1449
1450 /* write the upper 20 bits of the start address to rx list address register */
1451 /* We know this is 32bit bus addressed so the following is safe */
1452 writel(val: iadev->rx_dle_dma & 0xfffff000,
1453 addr: iadev->dma + IPHASE5575_RX_LIST_ADDR);
1454 IF_INIT(printk("Tx Dle list addr: 0x%p value: 0x%0x\n",
1455 iadev->dma+IPHASE5575_TX_LIST_ADDR,
1456 readl(iadev->dma + IPHASE5575_TX_LIST_ADDR));
1457 printk("Rx Dle list addr: 0x%p value: 0x%0x\n",
1458 iadev->dma+IPHASE5575_RX_LIST_ADDR,
1459 readl(iadev->dma + IPHASE5575_RX_LIST_ADDR));)
1460
1461 writew(val: 0xffff, addr: iadev->reass_reg+REASS_MASK_REG);
1462 writew(val: 0, addr: iadev->reass_reg+MODE_REG);
1463 writew(RESET_REASS, addr: iadev->reass_reg+REASS_COMMAND_REG);
1464
1465 /* Receive side control memory map
1466 -------------------------------
1467
1468 Buffer descr 0x0000 (736 - 23K)
1469 VP Table 0x5c00 (256 - 512)
1470 Except q 0x5e00 (128 - 512)
1471 Free buffer q 0x6000 (1K - 2K)
1472 Packet comp q 0x6800 (1K - 2K)
1473 Reass Table 0x7000 (1K - 2K)
1474 VC Table 0x7800 (1K - 2K)
1475 ABR VC Table 0x8000 (1K - 32K)
1476 */
1477
1478 /* Base address for Buffer Descriptor Table */
1479 writew(RX_DESC_BASE >> 16, addr: iadev->reass_reg+REASS_DESC_BASE);
1480 /* Set the buffer size register */
1481 writew(val: iadev->rx_buf_sz, addr: iadev->reass_reg+BUF_SIZE);
1482
1483 /* Initialize each entry in the Buffer Descriptor Table */
1484 iadev->RX_DESC_BASE_ADDR = iadev->reass_ram+RX_DESC_BASE*iadev->memSize;
1485 buf_desc_ptr = iadev->RX_DESC_BASE_ADDR;
1486 memset_io(buf_desc_ptr, 0, sizeof(*buf_desc_ptr));
1487 buf_desc_ptr++;
1488 rx_pkt_start = iadev->rx_pkt_ram;
1489 for(i=1; i<=iadev->num_rx_desc; i++)
1490 {
1491 memset_io(buf_desc_ptr, 0, sizeof(*buf_desc_ptr));
1492 buf_desc_ptr->buf_start_hi = rx_pkt_start >> 16;
1493 buf_desc_ptr->buf_start_lo = rx_pkt_start & 0x0000ffff;
1494 buf_desc_ptr++;
1495 rx_pkt_start += iadev->rx_buf_sz;
1496 }
1497 IF_INIT(printk("Rx Buffer desc ptr: 0x%p\n", buf_desc_ptr);)
1498 i = FREE_BUF_DESC_Q*iadev->memSize;
1499 writew(val: i >> 16, addr: iadev->reass_reg+REASS_QUEUE_BASE);
1500 writew(val: i, addr: iadev->reass_reg+FREEQ_ST_ADR);
1501 writew(val: i+iadev->num_rx_desc*sizeof(u_short),
1502 addr: iadev->reass_reg+FREEQ_ED_ADR);
1503 writew(val: i, addr: iadev->reass_reg+FREEQ_RD_PTR);
1504 writew(val: i+iadev->num_rx_desc*sizeof(u_short),
1505 addr: iadev->reass_reg+FREEQ_WR_PTR);
1506 /* Fill the FREEQ with all the free descriptors. */
1507 freeq_st_adr = readw(addr: iadev->reass_reg+FREEQ_ST_ADR);
1508 freeq_start = (u_short *)(iadev->reass_ram+freeq_st_adr);
1509 for(i=1; i<=iadev->num_rx_desc; i++)
1510 {
1511 *freeq_start = (u_short)i;
1512 freeq_start++;
1513 }
1514 IF_INIT(printk("freeq_start: 0x%p\n", freeq_start);)
1515 /* Packet Complete Queue */
1516 i = (PKT_COMP_Q * iadev->memSize) & 0xffff;
1517 writew(val: i, addr: iadev->reass_reg+PCQ_ST_ADR);
1518 writew(val: i+iadev->num_vc*sizeof(u_short), addr: iadev->reass_reg+PCQ_ED_ADR);
1519 writew(val: i, addr: iadev->reass_reg+PCQ_RD_PTR);
1520 writew(val: i, addr: iadev->reass_reg+PCQ_WR_PTR);
1521
1522 /* Exception Queue */
1523 i = (EXCEPTION_Q * iadev->memSize) & 0xffff;
1524 writew(val: i, addr: iadev->reass_reg+EXCP_Q_ST_ADR);
1525 writew(val: i + NUM_RX_EXCP * sizeof(RX_ERROR_Q),
1526 addr: iadev->reass_reg+EXCP_Q_ED_ADR);
1527 writew(val: i, addr: iadev->reass_reg+EXCP_Q_RD_PTR);
1528 writew(val: i, addr: iadev->reass_reg+EXCP_Q_WR_PTR);
1529
1530 /* Load local copy of FREEQ and PCQ ptrs */
1531 iadev->rfL.fdq_st = readw(addr: iadev->reass_reg+FREEQ_ST_ADR) & 0xffff;
1532 iadev->rfL.fdq_ed = readw(addr: iadev->reass_reg+FREEQ_ED_ADR) & 0xffff ;
1533 iadev->rfL.fdq_rd = readw(addr: iadev->reass_reg+FREEQ_RD_PTR) & 0xffff;
1534 iadev->rfL.fdq_wr = readw(addr: iadev->reass_reg+FREEQ_WR_PTR) & 0xffff;
1535 iadev->rfL.pcq_st = readw(addr: iadev->reass_reg+PCQ_ST_ADR) & 0xffff;
1536 iadev->rfL.pcq_ed = readw(addr: iadev->reass_reg+PCQ_ED_ADR) & 0xffff;
1537 iadev->rfL.pcq_rd = readw(addr: iadev->reass_reg+PCQ_RD_PTR) & 0xffff;
1538 iadev->rfL.pcq_wr = readw(addr: iadev->reass_reg+PCQ_WR_PTR) & 0xffff;
1539
1540 IF_INIT(printk("INIT:pcq_st:0x%x pcq_ed:0x%x pcq_rd:0x%x pcq_wr:0x%x",
1541 iadev->rfL.pcq_st, iadev->rfL.pcq_ed, iadev->rfL.pcq_rd,
1542 iadev->rfL.pcq_wr);)
1543 /* just for check - no VP TBL */
1544 /* VP Table */
1545 /* writew(0x0b80, iadev->reass_reg+VP_LKUP_BASE); */
1546 /* initialize VP Table for invalid VPIs
1547 - I guess we can write all 1s or 0x000f in the entire memory
1548 space or something similar.
1549 */
1550
1551 /* This seems to work and looks right to me too !!! */
1552 i = REASS_TABLE * iadev->memSize;
1553 writew(val: (i >> 3), addr: iadev->reass_reg+REASS_TABLE_BASE);
1554 /* initialize Reassembly table to I don't know what ???? */
1555 reass_table = (u16 *)(iadev->reass_ram+i);
1556 j = REASS_TABLE_SZ * iadev->memSize;
1557 for(i=0; i < j; i++)
1558 *reass_table++ = NO_AAL5_PKT;
1559 i = 8*1024;
1560 vcsize_sel = 0;
1561 while (i != iadev->num_vc) {
1562 i /= 2;
1563 vcsize_sel++;
1564 }
1565 i = RX_VC_TABLE * iadev->memSize;
1566 writew(val: ((i>>3) & 0xfff8) | vcsize_sel, addr: iadev->reass_reg+VC_LKUP_BASE);
1567 vc_table = (u16 *)(iadev->reass_ram+RX_VC_TABLE*iadev->memSize);
1568 j = RX_VC_TABLE_SZ * iadev->memSize;
1569 for(i = 0; i < j; i++)
1570 {
1571 /* shift the reassembly pointer by 3 + lower 3 bits of
1572 vc_lkup_base register (=3 for 1K VCs) and the last byte
1573 is those low 3 bits.
1574 Shall program this later.
1575 */
1576 *vc_table = (i << 6) | 15; /* for invalid VCI */
1577 vc_table++;
1578 }
1579 /* ABR VC table */
1580 i = ABR_VC_TABLE * iadev->memSize;
1581 writew(val: i >> 3, addr: iadev->reass_reg+ABR_LKUP_BASE);
1582
1583 i = ABR_VC_TABLE * iadev->memSize;
1584 abr_vc_table = (struct abr_vc_table *)(iadev->reass_ram+i);
1585 j = REASS_TABLE_SZ * iadev->memSize;
1586 memset ((char*)abr_vc_table, 0, j * sizeof(*abr_vc_table));
1587 for(i = 0; i < j; i++) {
1588 abr_vc_table->rdf = 0x0003;
1589 abr_vc_table->air = 0x5eb1;
1590 abr_vc_table++;
1591 }
1592
1593 /* Initialize other registers */
1594
1595 /* VP Filter Register set for VC Reassembly only */
1596 writew(val: 0xff00, addr: iadev->reass_reg+VP_FILTER);
1597 writew(val: 0, addr: iadev->reass_reg+XTRA_RM_OFFSET);
1598 writew(val: 0x1, addr: iadev->reass_reg+PROTOCOL_ID);
1599
1600 /* Packet Timeout Count related Registers :
1601 Set packet timeout to occur in about 3 seconds
1602 Set Packet Aging Interval count register to overflow in about 4 us
1603 */
1604 writew(val: 0xF6F8, addr: iadev->reass_reg+PKT_TM_CNT );
1605
1606 i = (j >> 6) & 0xFF;
1607 j += 2 * (j - 1);
1608 i |= ((j << 2) & 0xFF00);
1609 writew(val: i, addr: iadev->reass_reg+TMOUT_RANGE);
1610
1611 /* initiate the desc_tble */
1612 for(i=0; i<iadev->num_tx_desc;i++)
1613 iadev->desc_tbl[i].timestamp = 0;
1614
1615 /* to clear the interrupt status register - read it */
1616 readw(addr: iadev->reass_reg+REASS_INTR_STATUS_REG);
1617
1618 /* Mask Register - clear it */
1619 writew(val: ~(RX_FREEQ_EMPT|RX_PKT_RCVD), addr: iadev->reass_reg+REASS_MASK_REG);
1620
1621 skb_queue_head_init(list: &iadev->rx_dma_q);
1622 iadev->rx_free_desc_qhead = NULL;
1623
1624 iadev->rx_open = kcalloc(n: iadev->num_vc, size: sizeof(void *), GFP_KERNEL);
1625 if (!iadev->rx_open) {
1626 printk(KERN_ERR DEV_LABEL "itf %d couldn't get free page\n",
1627 dev->number);
1628 goto err_free_dle;
1629 }
1630
1631 iadev->rxing = 1;
1632 iadev->rx_pkt_cnt = 0;
1633 /* Mode Register */
1634 writew(R_ONLINE, addr: iadev->reass_reg+MODE_REG);
1635 return 0;
1636
1637err_free_dle:
1638 dma_free_coherent(dev: &iadev->pci->dev, DLE_TOTAL_SIZE, cpu_addr: iadev->rx_dle_q.start,
1639 dma_handle: iadev->rx_dle_dma);
1640err_out:
1641 return -ENOMEM;
1642}
1643
1644
1645/*
1646 The memory map suggested in appendix A and the coding for it.
1647 Keeping it around just in case we change our mind later.
1648
1649 Buffer descr 0x0000 (128 - 4K)
1650 UBR sched 0x1000 (1K - 4K)
1651 UBR Wait q 0x2000 (1K - 4K)
1652 Commn queues 0x3000 Packet Ready, Trasmit comp(0x3100)
1653 (128 - 256) each
1654 extended VC 0x4000 (1K - 8K)
1655 ABR sched 0x6000 and ABR wait queue (1K - 2K) each
1656 CBR sched 0x7000 (as needed)
1657 VC table 0x8000 (1K - 32K)
1658*/
1659
1660static void tx_intr(struct atm_dev *dev)
1661{
1662 IADEV *iadev;
1663 unsigned short status;
1664 unsigned long flags;
1665
1666 iadev = INPH_IA_DEV(dev);
1667
1668 status = readl(addr: iadev->seg_reg+SEG_INTR_STATUS_REG);
1669 if (status & TRANSMIT_DONE){
1670
1671 IF_EVENT(printk("Transmit Done Intr logic run\n");)
1672 spin_lock_irqsave(&iadev->tx_lock, flags);
1673 ia_tx_poll(iadev);
1674 spin_unlock_irqrestore(lock: &iadev->tx_lock, flags);
1675 writew(TRANSMIT_DONE, addr: iadev->seg_reg+SEG_INTR_STATUS_REG);
1676 if (iadev->close_pending)
1677 wake_up(&iadev->close_wait);
1678 }
1679 if (status & TCQ_NOT_EMPTY)
1680 {
1681 IF_EVENT(printk("TCQ_NOT_EMPTY int received\n");)
1682 }
1683}
1684
1685static void tx_dle_intr(struct atm_dev *dev)
1686{
1687 IADEV *iadev;
1688 struct dle *dle, *cur_dle;
1689 struct sk_buff *skb;
1690 struct atm_vcc *vcc;
1691 struct ia_vcc *iavcc;
1692 u_int dle_lp;
1693 unsigned long flags;
1694
1695 iadev = INPH_IA_DEV(dev);
1696 spin_lock_irqsave(&iadev->tx_lock, flags);
1697 dle = iadev->tx_dle_q.read;
1698 dle_lp = readl(addr: iadev->dma+IPHASE5575_TX_LIST_ADDR) &
1699 (sizeof(struct dle)*DLE_ENTRIES - 1);
1700 cur_dle = (struct dle*)(iadev->tx_dle_q.start + (dle_lp >> 4));
1701 while (dle != cur_dle)
1702 {
1703 /* free the DMAed skb */
1704 skb = skb_dequeue(list: &iadev->tx_dma_q);
1705 if (!skb) break;
1706
1707 /* Revenge of the 2 dle (skb + trailer) used in ia_pkt_tx() */
1708 if (!((dle - iadev->tx_dle_q.start)%(2*sizeof(struct dle)))) {
1709 dma_unmap_single(&iadev->pci->dev, dle->sys_pkt_addr, skb->len,
1710 DMA_TO_DEVICE);
1711 }
1712 vcc = ATM_SKB(skb)->vcc;
1713 if (!vcc) {
1714 printk("tx_dle_intr: vcc is null\n");
1715 spin_unlock_irqrestore(lock: &iadev->tx_lock, flags);
1716 dev_kfree_skb_any(skb);
1717
1718 return;
1719 }
1720 iavcc = INPH_IA_VCC(vcc);
1721 if (!iavcc) {
1722 printk("tx_dle_intr: iavcc is null\n");
1723 spin_unlock_irqrestore(lock: &iadev->tx_lock, flags);
1724 dev_kfree_skb_any(skb);
1725 return;
1726 }
1727 if (vcc->qos.txtp.pcr >= iadev->rate_limit) {
1728 if ((vcc->pop) && (skb->len != 0))
1729 {
1730 vcc->pop(vcc, skb);
1731 }
1732 else {
1733 dev_kfree_skb_any(skb);
1734 }
1735 }
1736 else { /* Hold the rate-limited skb for flow control */
1737 IA_SKB_STATE(skb) |= IA_DLED;
1738 skb_queue_tail(list: &iavcc->txing_skb, newsk: skb);
1739 }
1740 IF_EVENT(printk("tx_dle_intr: enque skb = 0x%p \n", skb);)
1741 if (++dle == iadev->tx_dle_q.end)
1742 dle = iadev->tx_dle_q.start;
1743 }
1744 iadev->tx_dle_q.read = dle;
1745 spin_unlock_irqrestore(lock: &iadev->tx_lock, flags);
1746}
1747
1748static int open_tx(struct atm_vcc *vcc)
1749{
1750 struct ia_vcc *ia_vcc;
1751 IADEV *iadev;
1752 struct main_vc *vc;
1753 struct ext_vc *evc;
1754 int ret;
1755 IF_EVENT(printk("iadev: open_tx entered vcc->vci = %d\n", vcc->vci);)
1756 if (vcc->qos.txtp.traffic_class == ATM_NONE) return 0;
1757 iadev = INPH_IA_DEV(vcc->dev);
1758
1759 if (iadev->phy_type & FE_25MBIT_PHY) {
1760 if (vcc->qos.txtp.traffic_class == ATM_ABR) {
1761 printk("IA: ABR not support\n");
1762 return -EINVAL;
1763 }
1764 if (vcc->qos.txtp.traffic_class == ATM_CBR) {
1765 printk("IA: CBR not support\n");
1766 return -EINVAL;
1767 }
1768 }
1769 ia_vcc = INPH_IA_VCC(vcc);
1770 memset((caddr_t)ia_vcc, 0, sizeof(*ia_vcc));
1771 if (vcc->qos.txtp.max_sdu >
1772 (iadev->tx_buf_sz - sizeof(struct cpcs_trailer))){
1773 printk("IA: SDU size over (%d) the configured SDU size %d\n",
1774 vcc->qos.txtp.max_sdu,iadev->tx_buf_sz);
1775 vcc->dev_data = NULL;
1776 kfree(objp: ia_vcc);
1777 return -EINVAL;
1778 }
1779 ia_vcc->vc_desc_cnt = 0;
1780 ia_vcc->txing = 1;
1781
1782 /* find pcr */
1783 if (vcc->qos.txtp.max_pcr == ATM_MAX_PCR)
1784 vcc->qos.txtp.pcr = iadev->LineRate;
1785 else if ((vcc->qos.txtp.max_pcr == 0)&&( vcc->qos.txtp.pcr <= 0))
1786 vcc->qos.txtp.pcr = iadev->LineRate;
1787 else if ((vcc->qos.txtp.max_pcr > vcc->qos.txtp.pcr) && (vcc->qos.txtp.max_pcr> 0))
1788 vcc->qos.txtp.pcr = vcc->qos.txtp.max_pcr;
1789 if (vcc->qos.txtp.pcr > iadev->LineRate)
1790 vcc->qos.txtp.pcr = iadev->LineRate;
1791 ia_vcc->pcr = vcc->qos.txtp.pcr;
1792
1793 if (ia_vcc->pcr > (iadev->LineRate / 6) ) ia_vcc->ltimeout = HZ / 10;
1794 else if (ia_vcc->pcr > (iadev->LineRate / 130)) ia_vcc->ltimeout = HZ;
1795 else if (ia_vcc->pcr <= 170) ia_vcc->ltimeout = 16 * HZ;
1796 else ia_vcc->ltimeout = 2700 * HZ / ia_vcc->pcr;
1797 if (ia_vcc->pcr < iadev->rate_limit)
1798 skb_queue_head_init (list: &ia_vcc->txing_skb);
1799 if (ia_vcc->pcr < iadev->rate_limit) {
1800 struct sock *sk = sk_atm(vcc);
1801
1802 if (vcc->qos.txtp.max_sdu != 0) {
1803 if (ia_vcc->pcr > 60000)
1804 sk->sk_sndbuf = vcc->qos.txtp.max_sdu * 5;
1805 else if (ia_vcc->pcr > 2000)
1806 sk->sk_sndbuf = vcc->qos.txtp.max_sdu * 4;
1807 else
1808 sk->sk_sndbuf = vcc->qos.txtp.max_sdu * 3;
1809 }
1810 else
1811 sk->sk_sndbuf = 24576;
1812 }
1813
1814 vc = (struct main_vc *)iadev->MAIN_VC_TABLE_ADDR;
1815 evc = (struct ext_vc *)iadev->EXT_VC_TABLE_ADDR;
1816 vc += vcc->vci;
1817 evc += vcc->vci;
1818 memset((caddr_t)vc, 0, sizeof(*vc));
1819 memset((caddr_t)evc, 0, sizeof(*evc));
1820
1821 /* store the most significant 4 bits of vci as the last 4 bits
1822 of first part of atm header.
1823 store the last 12 bits of vci as first 12 bits of the second
1824 part of the atm header.
1825 */
1826 evc->atm_hdr1 = (vcc->vci >> 12) & 0x000f;
1827 evc->atm_hdr2 = (vcc->vci & 0x0fff) << 4;
1828
1829 /* check the following for different traffic classes */
1830 if (vcc->qos.txtp.traffic_class == ATM_UBR)
1831 {
1832 vc->type = UBR;
1833 vc->status = CRC_APPEND;
1834 vc->acr = cellrate_to_float(cr: iadev->LineRate);
1835 if (vcc->qos.txtp.pcr > 0)
1836 vc->acr = cellrate_to_float(cr: vcc->qos.txtp.pcr);
1837 IF_UBR(printk("UBR: txtp.pcr = 0x%x f_rate = 0x%x\n",
1838 vcc->qos.txtp.max_pcr,vc->acr);)
1839 }
1840 else if (vcc->qos.txtp.traffic_class == ATM_ABR)
1841 { srv_cls_param_t srv_p;
1842 IF_ABR(printk("Tx ABR VCC\n");)
1843 init_abr_vc(dev: iadev, srv_p: &srv_p);
1844 if (vcc->qos.txtp.pcr > 0)
1845 srv_p.pcr = vcc->qos.txtp.pcr;
1846 if (vcc->qos.txtp.min_pcr > 0) {
1847 int tmpsum = iadev->sum_mcr+iadev->sum_cbr+vcc->qos.txtp.min_pcr;
1848 if (tmpsum > iadev->LineRate)
1849 return -EBUSY;
1850 srv_p.mcr = vcc->qos.txtp.min_pcr;
1851 iadev->sum_mcr += vcc->qos.txtp.min_pcr;
1852 }
1853 else srv_p.mcr = 0;
1854 if (vcc->qos.txtp.icr)
1855 srv_p.icr = vcc->qos.txtp.icr;
1856 if (vcc->qos.txtp.tbe)
1857 srv_p.tbe = vcc->qos.txtp.tbe;
1858 if (vcc->qos.txtp.frtt)
1859 srv_p.frtt = vcc->qos.txtp.frtt;
1860 if (vcc->qos.txtp.rif)
1861 srv_p.rif = vcc->qos.txtp.rif;
1862 if (vcc->qos.txtp.rdf)
1863 srv_p.rdf = vcc->qos.txtp.rdf;
1864 if (vcc->qos.txtp.nrm_pres)
1865 srv_p.nrm = vcc->qos.txtp.nrm;
1866 if (vcc->qos.txtp.trm_pres)
1867 srv_p.trm = vcc->qos.txtp.trm;
1868 if (vcc->qos.txtp.adtf_pres)
1869 srv_p.adtf = vcc->qos.txtp.adtf;
1870 if (vcc->qos.txtp.cdf_pres)
1871 srv_p.cdf = vcc->qos.txtp.cdf;
1872 if (srv_p.icr > srv_p.pcr)
1873 srv_p.icr = srv_p.pcr;
1874 IF_ABR(printk("ABR:vcc->qos.txtp.max_pcr = %d mcr = %d\n",
1875 srv_p.pcr, srv_p.mcr);)
1876 ia_open_abr_vc(dev: iadev, srv_p: &srv_p, vcc, flag: 1);
1877 } else if (vcc->qos.txtp.traffic_class == ATM_CBR) {
1878 if (iadev->phy_type & FE_25MBIT_PHY) {
1879 printk("IA: CBR not support\n");
1880 return -EINVAL;
1881 }
1882 if (vcc->qos.txtp.max_pcr > iadev->LineRate) {
1883 IF_CBR(printk("PCR is not available\n");)
1884 return -1;
1885 }
1886 vc->type = CBR;
1887 vc->status = CRC_APPEND;
1888 if ((ret = ia_cbr_setup (dev: iadev, vcc)) < 0) {
1889 return ret;
1890 }
1891 } else {
1892 printk("iadev: Non UBR, ABR and CBR traffic not supported\n");
1893 }
1894
1895 iadev->testTable[vcc->vci]->vc_status |= VC_ACTIVE;
1896 IF_EVENT(printk("ia open_tx returning \n");)
1897 return 0;
1898}
1899
1900
1901static int tx_init(struct atm_dev *dev)
1902{
1903 IADEV *iadev;
1904 struct tx_buf_desc *buf_desc_ptr;
1905 unsigned int tx_pkt_start;
1906 void *dle_addr;
1907 int i;
1908 u_short tcq_st_adr;
1909 u_short *tcq_start;
1910 u_short prq_st_adr;
1911 u_short *prq_start;
1912 struct main_vc *vc;
1913 struct ext_vc *evc;
1914 u_short tmp16;
1915 u32 vcsize_sel;
1916
1917 iadev = INPH_IA_DEV(dev);
1918 spin_lock_init(&iadev->tx_lock);
1919
1920 IF_INIT(printk("Tx MASK REG: 0x%0x\n",
1921 readw(iadev->seg_reg+SEG_MASK_REG));)
1922
1923 /* Allocate 4k (boundary aligned) bytes */
1924 dle_addr = dma_alloc_coherent(dev: &iadev->pci->dev, DLE_TOTAL_SIZE,
1925 dma_handle: &iadev->tx_dle_dma, GFP_KERNEL);
1926 if (!dle_addr) {
1927 printk(KERN_ERR DEV_LABEL "can't allocate DLEs\n");
1928 goto err_out;
1929 }
1930 iadev->tx_dle_q.start = (struct dle*)dle_addr;
1931 iadev->tx_dle_q.read = iadev->tx_dle_q.start;
1932 iadev->tx_dle_q.write = iadev->tx_dle_q.start;
1933 iadev->tx_dle_q.end = (struct dle*)((unsigned long)dle_addr+sizeof(struct dle)*DLE_ENTRIES);
1934
1935 /* write the upper 20 bits of the start address to tx list address register */
1936 writel(val: iadev->tx_dle_dma & 0xfffff000,
1937 addr: iadev->dma + IPHASE5575_TX_LIST_ADDR);
1938 writew(val: 0xffff, addr: iadev->seg_reg+SEG_MASK_REG);
1939 writew(val: 0, addr: iadev->seg_reg+MODE_REG_0);
1940 writew(RESET_SEG, addr: iadev->seg_reg+SEG_COMMAND_REG);
1941 iadev->MAIN_VC_TABLE_ADDR = iadev->seg_ram+MAIN_VC_TABLE*iadev->memSize;
1942 iadev->EXT_VC_TABLE_ADDR = iadev->seg_ram+EXT_VC_TABLE*iadev->memSize;
1943 iadev->ABR_SCHED_TABLE_ADDR=iadev->seg_ram+ABR_SCHED_TABLE*iadev->memSize;
1944
1945 /*
1946 Transmit side control memory map
1947 --------------------------------
1948 Buffer descr 0x0000 (128 - 4K)
1949 Commn queues 0x1000 Transmit comp, Packet ready(0x1400)
1950 (512 - 1K) each
1951 TCQ - 4K, PRQ - 5K
1952 CBR Table 0x1800 (as needed) - 6K
1953 UBR Table 0x3000 (1K - 4K) - 12K
1954 UBR Wait queue 0x4000 (1K - 4K) - 16K
1955 ABR sched 0x5000 and ABR wait queue (1K - 2K) each
1956 ABR Tbl - 20K, ABR Wq - 22K
1957 extended VC 0x6000 (1K - 8K) - 24K
1958 VC Table 0x8000 (1K - 32K) - 32K
1959
1960 Between 0x2000 (8K) and 0x3000 (12K) there is 4K space left for VBR Tbl
1961 and Wait q, which can be allotted later.
1962 */
1963
1964 /* Buffer Descriptor Table Base address */
1965 writew(TX_DESC_BASE, addr: iadev->seg_reg+SEG_DESC_BASE);
1966
1967 /* initialize each entry in the buffer descriptor table */
1968 buf_desc_ptr =(struct tx_buf_desc *)(iadev->seg_ram+TX_DESC_BASE);
1969 memset((caddr_t)buf_desc_ptr, 0, sizeof(*buf_desc_ptr));
1970 buf_desc_ptr++;
1971 tx_pkt_start = TX_PACKET_RAM;
1972 for(i=1; i<=iadev->num_tx_desc; i++)
1973 {
1974 memset((caddr_t)buf_desc_ptr, 0, sizeof(*buf_desc_ptr));
1975 buf_desc_ptr->desc_mode = AAL5;
1976 buf_desc_ptr->buf_start_hi = tx_pkt_start >> 16;
1977 buf_desc_ptr->buf_start_lo = tx_pkt_start & 0x0000ffff;
1978 buf_desc_ptr++;
1979 tx_pkt_start += iadev->tx_buf_sz;
1980 }
1981 iadev->tx_buf = kmalloc_array(n: iadev->num_tx_desc,
1982 size: sizeof(*iadev->tx_buf),
1983 GFP_KERNEL);
1984 if (!iadev->tx_buf) {
1985 printk(KERN_ERR DEV_LABEL " couldn't get mem\n");
1986 goto err_free_dle;
1987 }
1988 for (i= 0; i< iadev->num_tx_desc; i++)
1989 {
1990 struct cpcs_trailer *cpcs;
1991
1992 cpcs = kmalloc(size: sizeof(*cpcs), GFP_KERNEL|GFP_DMA);
1993 if(!cpcs) {
1994 printk(KERN_ERR DEV_LABEL " couldn't get freepage\n");
1995 goto err_free_tx_bufs;
1996 }
1997 iadev->tx_buf[i].cpcs = cpcs;
1998 iadev->tx_buf[i].dma_addr = dma_map_single(&iadev->pci->dev,
1999 cpcs,
2000 sizeof(*cpcs),
2001 DMA_TO_DEVICE);
2002 }
2003 iadev->desc_tbl = kmalloc_array(n: iadev->num_tx_desc,
2004 size: sizeof(*iadev->desc_tbl),
2005 GFP_KERNEL);
2006 if (!iadev->desc_tbl) {
2007 printk(KERN_ERR DEV_LABEL " couldn't get mem\n");
2008 goto err_free_all_tx_bufs;
2009 }
2010
2011 /* Communication Queues base address */
2012 i = TX_COMP_Q * iadev->memSize;
2013 writew(val: i >> 16, addr: iadev->seg_reg+SEG_QUEUE_BASE);
2014
2015 /* Transmit Complete Queue */
2016 writew(val: i, addr: iadev->seg_reg+TCQ_ST_ADR);
2017 writew(val: i, addr: iadev->seg_reg+TCQ_RD_PTR);
2018 writew(val: i+iadev->num_tx_desc*sizeof(u_short),addr: iadev->seg_reg+TCQ_WR_PTR);
2019 iadev->host_tcq_wr = i + iadev->num_tx_desc*sizeof(u_short);
2020 writew(val: i+2 * iadev->num_tx_desc * sizeof(u_short),
2021 addr: iadev->seg_reg+TCQ_ED_ADR);
2022 /* Fill the TCQ with all the free descriptors. */
2023 tcq_st_adr = readw(addr: iadev->seg_reg+TCQ_ST_ADR);
2024 tcq_start = (u_short *)(iadev->seg_ram+tcq_st_adr);
2025 for(i=1; i<=iadev->num_tx_desc; i++)
2026 {
2027 *tcq_start = (u_short)i;
2028 tcq_start++;
2029 }
2030
2031 /* Packet Ready Queue */
2032 i = PKT_RDY_Q * iadev->memSize;
2033 writew(val: i, addr: iadev->seg_reg+PRQ_ST_ADR);
2034 writew(val: i+2 * iadev->num_tx_desc * sizeof(u_short),
2035 addr: iadev->seg_reg+PRQ_ED_ADR);
2036 writew(val: i, addr: iadev->seg_reg+PRQ_RD_PTR);
2037 writew(val: i, addr: iadev->seg_reg+PRQ_WR_PTR);
2038
2039 /* Load local copy of PRQ and TCQ ptrs */
2040 iadev->ffL.prq_st = readw(addr: iadev->seg_reg+PRQ_ST_ADR) & 0xffff;
2041 iadev->ffL.prq_ed = readw(addr: iadev->seg_reg+PRQ_ED_ADR) & 0xffff;
2042 iadev->ffL.prq_wr = readw(addr: iadev->seg_reg+PRQ_WR_PTR) & 0xffff;
2043
2044 iadev->ffL.tcq_st = readw(addr: iadev->seg_reg+TCQ_ST_ADR) & 0xffff;
2045 iadev->ffL.tcq_ed = readw(addr: iadev->seg_reg+TCQ_ED_ADR) & 0xffff;
2046 iadev->ffL.tcq_rd = readw(addr: iadev->seg_reg+TCQ_RD_PTR) & 0xffff;
2047
2048 /* Just for safety initializing the queue to have desc 1 always */
2049 /* Fill the PRQ with all the free descriptors. */
2050 prq_st_adr = readw(addr: iadev->seg_reg+PRQ_ST_ADR);
2051 prq_start = (u_short *)(iadev->seg_ram+prq_st_adr);
2052 for(i=1; i<=iadev->num_tx_desc; i++)
2053 {
2054 *prq_start = (u_short)0; /* desc 1 in all entries */
2055 prq_start++;
2056 }
2057 /* CBR Table */
2058 IF_INIT(printk("Start CBR Init\n");)
2059#if 1 /* for 1K VC board, CBR_PTR_BASE is 0 */
2060 writew(val: 0,addr: iadev->seg_reg+CBR_PTR_BASE);
2061#else /* Charlie's logic is wrong ? */
2062 tmp16 = (iadev->seg_ram+CBR_SCHED_TABLE*iadev->memSize)>>17;
2063 IF_INIT(printk("cbr_ptr_base = 0x%x ", tmp16);)
2064 writew(tmp16,iadev->seg_reg+CBR_PTR_BASE);
2065#endif
2066
2067 IF_INIT(printk("value in register = 0x%x\n",
2068 readw(iadev->seg_reg+CBR_PTR_BASE));)
2069 tmp16 = (CBR_SCHED_TABLE*iadev->memSize) >> 1;
2070 writew(val: tmp16, addr: iadev->seg_reg+CBR_TAB_BEG);
2071 IF_INIT(printk("cbr_tab_beg = 0x%x in reg = 0x%x \n", tmp16,
2072 readw(iadev->seg_reg+CBR_TAB_BEG));)
2073 writew(val: tmp16, addr: iadev->seg_reg+CBR_TAB_END+1); // CBR_PTR;
2074 tmp16 = (CBR_SCHED_TABLE*iadev->memSize + iadev->num_vc*6 - 2) >> 1;
2075 writew(val: tmp16, addr: iadev->seg_reg+CBR_TAB_END);
2076 IF_INIT(printk("iadev->seg_reg = 0x%p CBR_PTR_BASE = 0x%x\n",
2077 iadev->seg_reg, readw(iadev->seg_reg+CBR_PTR_BASE));)
2078 IF_INIT(printk("CBR_TAB_BEG = 0x%x, CBR_TAB_END = 0x%x, CBR_PTR = 0x%x\n",
2079 readw(iadev->seg_reg+CBR_TAB_BEG), readw(iadev->seg_reg+CBR_TAB_END),
2080 readw(iadev->seg_reg+CBR_TAB_END+1));)
2081
2082 /* Initialize the CBR Schedualing Table */
2083 memset_io(iadev->seg_ram+CBR_SCHED_TABLE*iadev->memSize,
2084 0, iadev->num_vc*6);
2085 iadev->CbrRemEntries = iadev->CbrTotEntries = iadev->num_vc*3;
2086 iadev->CbrEntryPt = 0;
2087 iadev->Granularity = MAX_ATM_155 / iadev->CbrTotEntries;
2088 iadev->NumEnabledCBR = 0;
2089
2090 /* UBR scheduling Table and wait queue */
2091 /* initialize all bytes of UBR scheduler table and wait queue to 0
2092 - SCHEDSZ is 1K (# of entries).
2093 - UBR Table size is 4K
2094 - UBR wait queue is 4K
2095 since the table and wait queues are contiguous, all the bytes
2096 can be initialized by one memeset.
2097 */
2098
2099 vcsize_sel = 0;
2100 i = 8*1024;
2101 while (i != iadev->num_vc) {
2102 i /= 2;
2103 vcsize_sel++;
2104 }
2105
2106 i = MAIN_VC_TABLE * iadev->memSize;
2107 writew(val: vcsize_sel | ((i >> 8) & 0xfff8),addr: iadev->seg_reg+VCT_BASE);
2108 i = EXT_VC_TABLE * iadev->memSize;
2109 writew(val: (i >> 8) & 0xfffe, addr: iadev->seg_reg+VCTE_BASE);
2110 i = UBR_SCHED_TABLE * iadev->memSize;
2111 writew(val: (i & 0xffff) >> 11, addr: iadev->seg_reg+UBR_SBPTR_BASE);
2112 i = UBR_WAIT_Q * iadev->memSize;
2113 writew(val: (i >> 7) & 0xffff, addr: iadev->seg_reg+UBRWQ_BASE);
2114 memset((caddr_t)(iadev->seg_ram+UBR_SCHED_TABLE*iadev->memSize),
2115 0, iadev->num_vc*8);
2116 /* ABR scheduling Table(0x5000-0x57ff) and wait queue(0x5800-0x5fff)*/
2117 /* initialize all bytes of ABR scheduler table and wait queue to 0
2118 - SCHEDSZ is 1K (# of entries).
2119 - ABR Table size is 2K
2120 - ABR wait queue is 2K
2121 since the table and wait queues are contiguous, all the bytes
2122 can be initialized by one memeset.
2123 */
2124 i = ABR_SCHED_TABLE * iadev->memSize;
2125 writew(val: (i >> 11) & 0xffff, addr: iadev->seg_reg+ABR_SBPTR_BASE);
2126 i = ABR_WAIT_Q * iadev->memSize;
2127 writew(val: (i >> 7) & 0xffff, addr: iadev->seg_reg+ABRWQ_BASE);
2128
2129 i = ABR_SCHED_TABLE*iadev->memSize;
2130 memset((caddr_t)(iadev->seg_ram+i), 0, iadev->num_vc*4);
2131 vc = (struct main_vc *)iadev->MAIN_VC_TABLE_ADDR;
2132 evc = (struct ext_vc *)iadev->EXT_VC_TABLE_ADDR;
2133 iadev->testTable = kmalloc_array(n: iadev->num_vc,
2134 size: sizeof(*iadev->testTable),
2135 GFP_KERNEL);
2136 if (!iadev->testTable) {
2137 printk("Get freepage failed\n");
2138 goto err_free_desc_tbl;
2139 }
2140 for(i=0; i<iadev->num_vc; i++)
2141 {
2142 memset((caddr_t)vc, 0, sizeof(*vc));
2143 memset((caddr_t)evc, 0, sizeof(*evc));
2144 iadev->testTable[i] = kmalloc(size: sizeof(struct testTable_t),
2145 GFP_KERNEL);
2146 if (!iadev->testTable[i])
2147 goto err_free_test_tables;
2148 iadev->testTable[i]->lastTime = 0;
2149 iadev->testTable[i]->fract = 0;
2150 iadev->testTable[i]->vc_status = VC_UBR;
2151 vc++;
2152 evc++;
2153 }
2154
2155 /* Other Initialization */
2156
2157 /* Max Rate Register */
2158 if (iadev->phy_type & FE_25MBIT_PHY) {
2159 writew(RATE25, addr: iadev->seg_reg+MAXRATE);
2160 writew(val: (UBR_EN | (0x23 << 2)), addr: iadev->seg_reg+STPARMS);
2161 }
2162 else {
2163 writew(val: cellrate_to_float(cr: iadev->LineRate),addr: iadev->seg_reg+MAXRATE);
2164 writew(val: (UBR_EN | ABR_EN | (0x23 << 2)), addr: iadev->seg_reg+STPARMS);
2165 }
2166 /* Set Idle Header Reigisters to be sure */
2167 writew(val: 0, addr: iadev->seg_reg+IDLEHEADHI);
2168 writew(val: 0, addr: iadev->seg_reg+IDLEHEADLO);
2169
2170 /* Program ABR UBR Priority Register as PRI_ABR_UBR_EQUAL */
2171 writew(val: 0xaa00, addr: iadev->seg_reg+ABRUBR_ARB);
2172
2173 iadev->close_pending = 0;
2174 init_waitqueue_head(&iadev->close_wait);
2175 init_waitqueue_head(&iadev->timeout_wait);
2176 skb_queue_head_init(list: &iadev->tx_dma_q);
2177 ia_init_rtn_q(que: &iadev->tx_return_q);
2178
2179 /* RM Cell Protocol ID and Message Type */
2180 writew(RM_TYPE_4_0, addr: iadev->seg_reg+RM_TYPE);
2181 skb_queue_head_init (list: &iadev->tx_backlog);
2182
2183 /* Mode Register 1 */
2184 writew(MODE_REG_1_VAL, addr: iadev->seg_reg+MODE_REG_1);
2185
2186 /* Mode Register 0 */
2187 writew(T_ONLINE, addr: iadev->seg_reg+MODE_REG_0);
2188
2189 /* Interrupt Status Register - read to clear */
2190 readw(addr: iadev->seg_reg+SEG_INTR_STATUS_REG);
2191
2192 /* Interrupt Mask Reg- don't mask TCQ_NOT_EMPTY interrupt generation */
2193 writew(val: ~(TRANSMIT_DONE | TCQ_NOT_EMPTY), addr: iadev->seg_reg+SEG_MASK_REG);
2194 writew(TRANSMIT_DONE, addr: iadev->seg_reg+SEG_INTR_STATUS_REG);
2195 iadev->tx_pkt_cnt = 0;
2196 iadev->rate_limit = iadev->LineRate / 3;
2197
2198 return 0;
2199
2200err_free_test_tables:
2201 while (--i >= 0)
2202 kfree(objp: iadev->testTable[i]);
2203 kfree(objp: iadev->testTable);
2204err_free_desc_tbl:
2205 kfree(objp: iadev->desc_tbl);
2206err_free_all_tx_bufs:
2207 i = iadev->num_tx_desc;
2208err_free_tx_bufs:
2209 while (--i >= 0) {
2210 struct cpcs_trailer_desc *desc = iadev->tx_buf + i;
2211
2212 dma_unmap_single(&iadev->pci->dev, desc->dma_addr,
2213 sizeof(*desc->cpcs), DMA_TO_DEVICE);
2214 kfree(objp: desc->cpcs);
2215 }
2216 kfree(objp: iadev->tx_buf);
2217err_free_dle:
2218 dma_free_coherent(dev: &iadev->pci->dev, DLE_TOTAL_SIZE, cpu_addr: iadev->tx_dle_q.start,
2219 dma_handle: iadev->tx_dle_dma);
2220err_out:
2221 return -ENOMEM;
2222}
2223
2224static irqreturn_t ia_int(int irq, void *dev_id)
2225{
2226 struct atm_dev *dev;
2227 IADEV *iadev;
2228 unsigned int status;
2229 int handled = 0;
2230
2231 dev = dev_id;
2232 iadev = INPH_IA_DEV(dev);
2233 while( (status = readl(addr: iadev->reg+IPHASE5575_BUS_STATUS_REG) & 0x7f))
2234 {
2235 handled = 1;
2236 IF_EVENT(printk("ia_int: status = 0x%x\n", status);)
2237 if (status & STAT_REASSINT)
2238 {
2239 /* do something */
2240 IF_EVENT(printk("REASSINT Bus status reg: %08x\n", status);)
2241 rx_intr(dev);
2242 }
2243 if (status & STAT_DLERINT)
2244 {
2245 /* Clear this bit by writing a 1 to it. */
2246 writel(STAT_DLERINT, addr: iadev->reg + IPHASE5575_BUS_STATUS_REG);
2247 rx_dle_intr(dev);
2248 }
2249 if (status & STAT_SEGINT)
2250 {
2251 /* do something */
2252 IF_EVENT(printk("IA: tx_intr \n");)
2253 tx_intr(dev);
2254 }
2255 if (status & STAT_DLETINT)
2256 {
2257 writel(STAT_DLETINT, addr: iadev->reg + IPHASE5575_BUS_STATUS_REG);
2258 tx_dle_intr(dev);
2259 }
2260 if (status & (STAT_FEINT | STAT_ERRINT | STAT_MARKINT))
2261 {
2262 if (status & STAT_FEINT)
2263 ia_frontend_intr(iadev);
2264 }
2265 }
2266 return IRQ_RETVAL(handled);
2267}
2268
2269
2270
2271/*----------------------------- entries --------------------------------*/
2272static int get_esi(struct atm_dev *dev)
2273{
2274 IADEV *iadev;
2275 int i;
2276 u32 mac1;
2277 u16 mac2;
2278
2279 iadev = INPH_IA_DEV(dev);
2280 mac1 = cpu_to_be32(le32_to_cpu(readl(
2281 iadev->reg+IPHASE5575_MAC1)));
2282 mac2 = cpu_to_be16(le16_to_cpu(readl(iadev->reg+IPHASE5575_MAC2)));
2283 IF_INIT(printk("ESI: 0x%08x%04x\n", mac1, mac2);)
2284 for (i=0; i<MAC1_LEN; i++)
2285 dev->esi[i] = mac1 >>(8*(MAC1_LEN-1-i));
2286
2287 for (i=0; i<MAC2_LEN; i++)
2288 dev->esi[i+MAC1_LEN] = mac2 >>(8*(MAC2_LEN - 1 -i));
2289 return 0;
2290}
2291
2292static int reset_sar(struct atm_dev *dev)
2293{
2294 IADEV *iadev;
2295 int i, error;
2296 unsigned int pci[64];
2297
2298 iadev = INPH_IA_DEV(dev);
2299 for (i = 0; i < 64; i++) {
2300 error = pci_read_config_dword(dev: iadev->pci, where: i * 4, val: &pci[i]);
2301 if (error != PCIBIOS_SUCCESSFUL)
2302 return error;
2303 }
2304 writel(val: 0, addr: iadev->reg+IPHASE5575_EXT_RESET);
2305 for (i = 0; i < 64; i++) {
2306 error = pci_write_config_dword(dev: iadev->pci, where: i * 4, val: pci[i]);
2307 if (error != PCIBIOS_SUCCESSFUL)
2308 return error;
2309 }
2310 udelay(5);
2311 return 0;
2312}
2313
2314
2315static int ia_init(struct atm_dev *dev)
2316{
2317 IADEV *iadev;
2318 unsigned long real_base;
2319 void __iomem *base;
2320 unsigned short command;
2321 int error, i;
2322
2323 /* The device has been identified and registered. Now we read
2324 necessary configuration info like memory base address,
2325 interrupt number etc */
2326
2327 IF_INIT(printk(">ia_init\n");)
2328 dev->ci_range.vpi_bits = 0;
2329 dev->ci_range.vci_bits = NR_VCI_LD;
2330
2331 iadev = INPH_IA_DEV(dev);
2332 real_base = pci_resource_start (iadev->pci, 0);
2333 iadev->irq = iadev->pci->irq;
2334
2335 error = pci_read_config_word(dev: iadev->pci, PCI_COMMAND, val: &command);
2336 if (error) {
2337 printk(KERN_ERR DEV_LABEL "(itf %d): init error 0x%x\n",
2338 dev->number,error);
2339 return -EINVAL;
2340 }
2341 IF_INIT(printk(DEV_LABEL "(itf %d): rev.%d,realbase=0x%lx,irq=%d\n",
2342 dev->number, iadev->pci->revision, real_base, iadev->irq);)
2343
2344 /* find mapping size of board */
2345
2346 iadev->pci_map_size = pci_resource_len(iadev->pci, 0);
2347
2348 if (iadev->pci_map_size == 0x100000){
2349 iadev->num_vc = 4096;
2350 dev->ci_range.vci_bits = NR_VCI_4K_LD;
2351 iadev->memSize = 4;
2352 }
2353 else if (iadev->pci_map_size == 0x40000) {
2354 iadev->num_vc = 1024;
2355 iadev->memSize = 1;
2356 }
2357 else {
2358 printk("Unknown pci_map_size = 0x%x\n", iadev->pci_map_size);
2359 return -EINVAL;
2360 }
2361 IF_INIT(printk (DEV_LABEL "map size: %i\n", iadev->pci_map_size);)
2362
2363 /* enable bus mastering */
2364 pci_set_master(dev: iadev->pci);
2365
2366 /*
2367 * Delay at least 1us before doing any mem accesses (how 'bout 10?)
2368 */
2369 udelay(10);
2370
2371 /* mapping the physical address to a virtual address in address space */
2372 base = ioremap(offset: real_base,size: iadev->pci_map_size); /* ioremap is not resolved ??? */
2373
2374 if (!base)
2375 {
2376 printk(DEV_LABEL " (itf %d): can't set up page mapping\n",
2377 dev->number);
2378 return -ENOMEM;
2379 }
2380 IF_INIT(printk(DEV_LABEL " (itf %d): rev.%d,base=%p,irq=%d\n",
2381 dev->number, iadev->pci->revision, base, iadev->irq);)
2382
2383 /* filling the iphase dev structure */
2384 iadev->mem = iadev->pci_map_size /2;
2385 iadev->real_base = real_base;
2386 iadev->base = base;
2387
2388 /* Bus Interface Control Registers */
2389 iadev->reg = base + REG_BASE;
2390 /* Segmentation Control Registers */
2391 iadev->seg_reg = base + SEG_BASE;
2392 /* Reassembly Control Registers */
2393 iadev->reass_reg = base + REASS_BASE;
2394 /* Front end/ DMA control registers */
2395 iadev->phy = base + PHY_BASE;
2396 iadev->dma = base + PHY_BASE;
2397 /* RAM - Segmentation RAm and Reassembly RAM */
2398 iadev->ram = base + ACTUAL_RAM_BASE;
2399 iadev->seg_ram = base + ACTUAL_SEG_RAM_BASE;
2400 iadev->reass_ram = base + ACTUAL_REASS_RAM_BASE;
2401
2402 /* lets print out the above */
2403 IF_INIT(printk("Base addrs: %p %p %p \n %p %p %p %p\n",
2404 iadev->reg,iadev->seg_reg,iadev->reass_reg,
2405 iadev->phy, iadev->ram, iadev->seg_ram,
2406 iadev->reass_ram);)
2407
2408 /* lets try reading the MAC address */
2409 error = get_esi(dev);
2410 if (error) {
2411 iounmap(addr: iadev->base);
2412 return error;
2413 }
2414 printk("IA: ");
2415 for (i=0; i < ESI_LEN; i++)
2416 printk("%s%02X",i ? "-" : "",dev->esi[i]);
2417 printk("\n");
2418
2419 /* reset SAR */
2420 if (reset_sar(dev)) {
2421 iounmap(addr: iadev->base);
2422 printk("IA: reset SAR fail, please try again\n");
2423 return 1;
2424 }
2425 return 0;
2426}
2427
2428static void ia_update_stats(IADEV *iadev) {
2429 if (!iadev->carrier_detect)
2430 return;
2431 iadev->rx_cell_cnt += readw(addr: iadev->reass_reg+CELL_CTR0)&0xffff;
2432 iadev->rx_cell_cnt += (readw(addr: iadev->reass_reg+CELL_CTR1) & 0xffff) << 16;
2433 iadev->drop_rxpkt += readw(addr: iadev->reass_reg + DRP_PKT_CNTR ) & 0xffff;
2434 iadev->drop_rxcell += readw(addr: iadev->reass_reg + ERR_CNTR) & 0xffff;
2435 iadev->tx_cell_cnt += readw(addr: iadev->seg_reg + CELL_CTR_LO_AUTO)&0xffff;
2436 iadev->tx_cell_cnt += (readw(addr: iadev->seg_reg+CELL_CTR_HIGH_AUTO)&0xffff)<<16;
2437 return;
2438}
2439
2440static void ia_led_timer(struct timer_list *unused) {
2441 unsigned long flags;
2442 static u_char blinking[8] = {0, 0, 0, 0, 0, 0, 0, 0};
2443 u_char i;
2444 static u32 ctrl_reg;
2445 for (i = 0; i < iadev_count; i++) {
2446 if (ia_dev[i]) {
2447 ctrl_reg = readl(addr: ia_dev[i]->reg+IPHASE5575_BUS_CONTROL_REG);
2448 if (blinking[i] == 0) {
2449 blinking[i]++;
2450 ctrl_reg &= (~CTRL_LED);
2451 writel(val: ctrl_reg, addr: ia_dev[i]->reg+IPHASE5575_BUS_CONTROL_REG);
2452 ia_update_stats(iadev: ia_dev[i]);
2453 }
2454 else {
2455 blinking[i] = 0;
2456 ctrl_reg |= CTRL_LED;
2457 writel(val: ctrl_reg, addr: ia_dev[i]->reg+IPHASE5575_BUS_CONTROL_REG);
2458 spin_lock_irqsave(&ia_dev[i]->tx_lock, flags);
2459 if (ia_dev[i]->close_pending)
2460 wake_up(&ia_dev[i]->close_wait);
2461 ia_tx_poll(iadev: ia_dev[i]);
2462 spin_unlock_irqrestore(lock: &ia_dev[i]->tx_lock, flags);
2463 }
2464 }
2465 }
2466 mod_timer(timer: &ia_timer, expires: jiffies + HZ / 4);
2467 return;
2468}
2469
2470static void ia_phy_put(struct atm_dev *dev, unsigned char value,
2471 unsigned long addr)
2472{
2473 writel(val: value, INPH_IA_DEV(dev)->phy+addr);
2474}
2475
2476static unsigned char ia_phy_get(struct atm_dev *dev, unsigned long addr)
2477{
2478 return readl(INPH_IA_DEV(dev)->phy+addr);
2479}
2480
2481static void ia_free_tx(IADEV *iadev)
2482{
2483 int i;
2484
2485 kfree(objp: iadev->desc_tbl);
2486 for (i = 0; i < iadev->num_vc; i++)
2487 kfree(objp: iadev->testTable[i]);
2488 kfree(objp: iadev->testTable);
2489 for (i = 0; i < iadev->num_tx_desc; i++) {
2490 struct cpcs_trailer_desc *desc = iadev->tx_buf + i;
2491
2492 dma_unmap_single(&iadev->pci->dev, desc->dma_addr,
2493 sizeof(*desc->cpcs), DMA_TO_DEVICE);
2494 kfree(objp: desc->cpcs);
2495 }
2496 kfree(objp: iadev->tx_buf);
2497 dma_free_coherent(dev: &iadev->pci->dev, DLE_TOTAL_SIZE, cpu_addr: iadev->tx_dle_q.start,
2498 dma_handle: iadev->tx_dle_dma);
2499}
2500
2501static void ia_free_rx(IADEV *iadev)
2502{
2503 kfree(objp: iadev->rx_open);
2504 dma_free_coherent(dev: &iadev->pci->dev, DLE_TOTAL_SIZE, cpu_addr: iadev->rx_dle_q.start,
2505 dma_handle: iadev->rx_dle_dma);
2506}
2507
2508static int ia_start(struct atm_dev *dev)
2509{
2510 IADEV *iadev;
2511 int error;
2512 unsigned char phy;
2513 u32 ctrl_reg;
2514 IF_EVENT(printk(">ia_start\n");)
2515 iadev = INPH_IA_DEV(dev);
2516 if (request_irq(irq: iadev->irq, handler: &ia_int, IRQF_SHARED, DEV_LABEL, dev)) {
2517 printk(KERN_ERR DEV_LABEL "(itf %d): IRQ%d is already in use\n",
2518 dev->number, iadev->irq);
2519 error = -EAGAIN;
2520 goto err_out;
2521 }
2522 /* @@@ should release IRQ on error */
2523 /* enabling memory + master */
2524 if ((error = pci_write_config_word(dev: iadev->pci,
2525 PCI_COMMAND,
2526 PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER )))
2527 {
2528 printk(KERN_ERR DEV_LABEL "(itf %d): can't enable memory+"
2529 "master (0x%x)\n",dev->number, error);
2530 error = -EIO;
2531 goto err_free_irq;
2532 }
2533 udelay(10);
2534
2535 /* Maybe we should reset the front end, initialize Bus Interface Control
2536 Registers and see. */
2537
2538 IF_INIT(printk("Bus ctrl reg: %08x\n",
2539 readl(iadev->reg+IPHASE5575_BUS_CONTROL_REG));)
2540 ctrl_reg = readl(addr: iadev->reg+IPHASE5575_BUS_CONTROL_REG);
2541 ctrl_reg = (ctrl_reg & (CTRL_LED | CTRL_FE_RST))
2542 | CTRL_B8
2543 | CTRL_B16
2544 | CTRL_B32
2545 | CTRL_B48
2546 | CTRL_B64
2547 | CTRL_B128
2548 | CTRL_ERRMASK
2549 | CTRL_DLETMASK /* shud be removed l8r */
2550 | CTRL_DLERMASK
2551 | CTRL_SEGMASK
2552 | CTRL_REASSMASK
2553 | CTRL_FEMASK
2554 | CTRL_CSPREEMPT;
2555
2556 writel(val: ctrl_reg, addr: iadev->reg+IPHASE5575_BUS_CONTROL_REG);
2557
2558 IF_INIT(printk("Bus ctrl reg after initializing: %08x\n",
2559 readl(iadev->reg+IPHASE5575_BUS_CONTROL_REG));
2560 printk("Bus status reg after init: %08x\n",
2561 readl(iadev->reg+IPHASE5575_BUS_STATUS_REG));)
2562
2563 ia_hw_type(iadev);
2564 error = tx_init(dev);
2565 if (error)
2566 goto err_free_irq;
2567 error = rx_init(dev);
2568 if (error)
2569 goto err_free_tx;
2570
2571 ctrl_reg = readl(addr: iadev->reg+IPHASE5575_BUS_CONTROL_REG);
2572 writel(val: ctrl_reg | CTRL_FE_RST, addr: iadev->reg+IPHASE5575_BUS_CONTROL_REG);
2573 IF_INIT(printk("Bus ctrl reg after initializing: %08x\n",
2574 readl(iadev->reg+IPHASE5575_BUS_CONTROL_REG));)
2575 phy = 0; /* resolve compiler complaint */
2576 IF_INIT (
2577 if ((phy=ia_phy_get(dev,0)) == 0x30)
2578 printk("IA: pm5346,rev.%d\n",phy&0x0f);
2579 else
2580 printk("IA: utopia,rev.%0x\n",phy);)
2581
2582 if (iadev->phy_type & FE_25MBIT_PHY)
2583 ia_mb25_init(iadev);
2584 else if (iadev->phy_type & (FE_DS3_PHY | FE_E3_PHY))
2585 ia_suni_pm7345_init(iadev);
2586 else {
2587 error = suni_init(dev);
2588 if (error)
2589 goto err_free_rx;
2590 if (dev->phy->start) {
2591 error = dev->phy->start(dev);
2592 if (error)
2593 goto err_free_rx;
2594 }
2595 /* Get iadev->carrier_detect status */
2596 ia_frontend_intr(iadev);
2597 }
2598 return 0;
2599
2600err_free_rx:
2601 ia_free_rx(iadev);
2602err_free_tx:
2603 ia_free_tx(iadev);
2604err_free_irq:
2605 free_irq(iadev->irq, dev);
2606err_out:
2607 return error;
2608}
2609
2610static void ia_close(struct atm_vcc *vcc)
2611{
2612 DEFINE_WAIT(wait);
2613 u16 *vc_table;
2614 IADEV *iadev;
2615 struct ia_vcc *ia_vcc;
2616 struct sk_buff *skb = NULL;
2617 struct sk_buff_head tmp_tx_backlog, tmp_vcc_backlog;
2618 unsigned long closetime, flags;
2619
2620 iadev = INPH_IA_DEV(vcc->dev);
2621 ia_vcc = INPH_IA_VCC(vcc);
2622 if (!ia_vcc) return;
2623
2624 IF_EVENT(printk("ia_close: ia_vcc->vc_desc_cnt = %d vci = %d\n",
2625 ia_vcc->vc_desc_cnt,vcc->vci);)
2626 clear_bit(nr: ATM_VF_READY,addr: &vcc->flags);
2627 skb_queue_head_init (list: &tmp_tx_backlog);
2628 skb_queue_head_init (list: &tmp_vcc_backlog);
2629 if (vcc->qos.txtp.traffic_class != ATM_NONE) {
2630 iadev->close_pending++;
2631 prepare_to_wait(wq_head: &iadev->timeout_wait, wq_entry: &wait, TASK_UNINTERRUPTIBLE);
2632 schedule_timeout(timeout: msecs_to_jiffies(m: 500));
2633 finish_wait(wq_head: &iadev->timeout_wait, wq_entry: &wait);
2634 spin_lock_irqsave(&iadev->tx_lock, flags);
2635 while((skb = skb_dequeue(list: &iadev->tx_backlog))) {
2636 if (ATM_SKB(skb)->vcc == vcc){
2637 if (vcc->pop) vcc->pop(vcc, skb);
2638 else dev_kfree_skb_any(skb);
2639 }
2640 else
2641 skb_queue_tail(list: &tmp_tx_backlog, newsk: skb);
2642 }
2643 while((skb = skb_dequeue(list: &tmp_tx_backlog)))
2644 skb_queue_tail(list: &iadev->tx_backlog, newsk: skb);
2645 IF_EVENT(printk("IA TX Done decs_cnt = %d\n", ia_vcc->vc_desc_cnt);)
2646 closetime = 300000 / ia_vcc->pcr;
2647 if (closetime == 0)
2648 closetime = 1;
2649 spin_unlock_irqrestore(lock: &iadev->tx_lock, flags);
2650 wait_event_timeout(iadev->close_wait, (ia_vcc->vc_desc_cnt <= 0), closetime);
2651 spin_lock_irqsave(&iadev->tx_lock, flags);
2652 iadev->close_pending--;
2653 iadev->testTable[vcc->vci]->lastTime = 0;
2654 iadev->testTable[vcc->vci]->fract = 0;
2655 iadev->testTable[vcc->vci]->vc_status = VC_UBR;
2656 if (vcc->qos.txtp.traffic_class == ATM_ABR) {
2657 if (vcc->qos.txtp.min_pcr > 0)
2658 iadev->sum_mcr -= vcc->qos.txtp.min_pcr;
2659 }
2660 if (vcc->qos.txtp.traffic_class == ATM_CBR) {
2661 ia_vcc = INPH_IA_VCC(vcc);
2662 iadev->sum_mcr -= ia_vcc->NumCbrEntry*iadev->Granularity;
2663 ia_cbrVc_close (vcc);
2664 }
2665 spin_unlock_irqrestore(lock: &iadev->tx_lock, flags);
2666 }
2667
2668 if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
2669 // reset reass table
2670 vc_table = (u16 *)(iadev->reass_ram+REASS_TABLE*iadev->memSize);
2671 vc_table += vcc->vci;
2672 *vc_table = NO_AAL5_PKT;
2673 // reset vc table
2674 vc_table = (u16 *)(iadev->reass_ram+RX_VC_TABLE*iadev->memSize);
2675 vc_table += vcc->vci;
2676 *vc_table = (vcc->vci << 6) | 15;
2677 if (vcc->qos.rxtp.traffic_class == ATM_ABR) {
2678 struct abr_vc_table __iomem *abr_vc_table =
2679 (iadev->reass_ram+ABR_VC_TABLE*iadev->memSize);
2680 abr_vc_table += vcc->vci;
2681 abr_vc_table->rdf = 0x0003;
2682 abr_vc_table->air = 0x5eb1;
2683 }
2684 // Drain the packets
2685 rx_dle_intr(dev: vcc->dev);
2686 iadev->rx_open[vcc->vci] = NULL;
2687 }
2688 kfree(INPH_IA_VCC(vcc));
2689 ia_vcc = NULL;
2690 vcc->dev_data = NULL;
2691 clear_bit(nr: ATM_VF_ADDR,addr: &vcc->flags);
2692 return;
2693}
2694
2695static int ia_open(struct atm_vcc *vcc)
2696{
2697 struct ia_vcc *ia_vcc;
2698 int error;
2699 if (!test_bit(ATM_VF_PARTIAL,&vcc->flags))
2700 {
2701 IF_EVENT(printk("ia: not partially allocated resources\n");)
2702 vcc->dev_data = NULL;
2703 }
2704 if (vcc->vci != ATM_VPI_UNSPEC && vcc->vpi != ATM_VCI_UNSPEC)
2705 {
2706 IF_EVENT(printk("iphase open: unspec part\n");)
2707 set_bit(nr: ATM_VF_ADDR,addr: &vcc->flags);
2708 }
2709 if (vcc->qos.aal != ATM_AAL5)
2710 return -EINVAL;
2711 IF_EVENT(printk(DEV_LABEL "(itf %d): open %d.%d\n",
2712 vcc->dev->number, vcc->vpi, vcc->vci);)
2713
2714 /* Device dependent initialization */
2715 ia_vcc = kmalloc(size: sizeof(*ia_vcc), GFP_KERNEL);
2716 if (!ia_vcc) return -ENOMEM;
2717 vcc->dev_data = ia_vcc;
2718
2719 if ((error = open_rx(vcc)))
2720 {
2721 IF_EVENT(printk("iadev: error in open_rx, closing\n");)
2722 ia_close(vcc);
2723 return error;
2724 }
2725
2726 if ((error = open_tx(vcc)))
2727 {
2728 IF_EVENT(printk("iadev: error in open_tx, closing\n");)
2729 ia_close(vcc);
2730 return error;
2731 }
2732
2733 set_bit(nr: ATM_VF_READY,addr: &vcc->flags);
2734
2735#if 0
2736 {
2737 static u8 first = 1;
2738 if (first) {
2739 ia_timer.expires = jiffies + 3*HZ;
2740 add_timer(&ia_timer);
2741 first = 0;
2742 }
2743 }
2744#endif
2745 IF_EVENT(printk("ia open returning\n");)
2746 return 0;
2747}
2748
2749static int ia_change_qos(struct atm_vcc *vcc, struct atm_qos *qos, int flags)
2750{
2751 IF_EVENT(printk(">ia_change_qos\n");)
2752 return 0;
2753}
2754
2755static int ia_ioctl(struct atm_dev *dev, unsigned int cmd, void __user *arg)
2756{
2757 IA_CMDBUF ia_cmds;
2758 IADEV *iadev;
2759 int i, board;
2760 u16 __user *tmps;
2761 IF_EVENT(printk(">ia_ioctl\n");)
2762 if (cmd != IA_CMD) {
2763 if (!dev->phy->ioctl) return -EINVAL;
2764 return dev->phy->ioctl(dev,cmd,arg);
2765 }
2766 if (copy_from_user(to: &ia_cmds, from: arg, n: sizeof ia_cmds)) return -EFAULT;
2767 board = ia_cmds.status;
2768
2769 if ((board < 0) || (board > iadev_count))
2770 board = 0;
2771 board = array_index_nospec(board, iadev_count + 1);
2772
2773 iadev = ia_dev[board];
2774 switch (ia_cmds.cmd) {
2775 case MEMDUMP:
2776 {
2777 switch (ia_cmds.sub_cmd) {
2778 case MEMDUMP_SEGREG:
2779 if (!capable(CAP_NET_ADMIN)) return -EPERM;
2780 tmps = (u16 __user *)ia_cmds.buf;
2781 for(i=0; i<0x80; i+=2, tmps++)
2782 if(put_user((u16)(readl(iadev->seg_reg+i) & 0xffff), tmps)) return -EFAULT;
2783 ia_cmds.status = 0;
2784 ia_cmds.len = 0x80;
2785 break;
2786 case MEMDUMP_REASSREG:
2787 if (!capable(CAP_NET_ADMIN)) return -EPERM;
2788 tmps = (u16 __user *)ia_cmds.buf;
2789 for(i=0; i<0x80; i+=2, tmps++)
2790 if(put_user((u16)(readl(iadev->reass_reg+i) & 0xffff), tmps)) return -EFAULT;
2791 ia_cmds.status = 0;
2792 ia_cmds.len = 0x80;
2793 break;
2794 case MEMDUMP_FFL:
2795 {
2796 ia_regs_t *regs_local;
2797 ffredn_t *ffL;
2798 rfredn_t *rfL;
2799
2800 if (!capable(CAP_NET_ADMIN)) return -EPERM;
2801 regs_local = kmalloc(size: sizeof(*regs_local), GFP_KERNEL);
2802 if (!regs_local) return -ENOMEM;
2803 ffL = &regs_local->ffredn;
2804 rfL = &regs_local->rfredn;
2805 /* Copy real rfred registers into the local copy */
2806 for (i=0; i<(sizeof (rfredn_t))/4; i++)
2807 ((u_int *)rfL)[i] = readl(addr: iadev->reass_reg + i) & 0xffff;
2808 /* Copy real ffred registers into the local copy */
2809 for (i=0; i<(sizeof (ffredn_t))/4; i++)
2810 ((u_int *)ffL)[i] = readl(addr: iadev->seg_reg + i) & 0xffff;
2811
2812 if (copy_to_user(to: ia_cmds.buf, from: regs_local,n: sizeof(ia_regs_t))) {
2813 kfree(objp: regs_local);
2814 return -EFAULT;
2815 }
2816 kfree(objp: regs_local);
2817 printk("Board %d registers dumped\n", board);
2818 ia_cmds.status = 0;
2819 }
2820 break;
2821 case READ_REG:
2822 {
2823 if (!capable(CAP_NET_ADMIN)) return -EPERM;
2824 desc_dbg(iadev);
2825 ia_cmds.status = 0;
2826 }
2827 break;
2828 case 0x6:
2829 {
2830 ia_cmds.status = 0;
2831 printk("skb = 0x%p\n", skb_peek(&iadev->tx_backlog));
2832 printk("rtn_q: 0x%p\n",ia_deque_rtn_q(&iadev->tx_return_q));
2833 }
2834 break;
2835 case 0x8:
2836 {
2837 struct k_sonet_stats *stats;
2838 stats = &PRIV(_ia_dev[board])->sonet_stats;
2839 printk("section_bip: %d\n", atomic_read(&stats->section_bip));
2840 printk("line_bip : %d\n", atomic_read(&stats->line_bip));
2841 printk("path_bip : %d\n", atomic_read(&stats->path_bip));
2842 printk("line_febe : %d\n", atomic_read(&stats->line_febe));
2843 printk("path_febe : %d\n", atomic_read(&stats->path_febe));
2844 printk("corr_hcs : %d\n", atomic_read(&stats->corr_hcs));
2845 printk("uncorr_hcs : %d\n", atomic_read(&stats->uncorr_hcs));
2846 printk("tx_cells : %d\n", atomic_read(&stats->tx_cells));
2847 printk("rx_cells : %d\n", atomic_read(&stats->rx_cells));
2848 }
2849 ia_cmds.status = 0;
2850 break;
2851 case 0x9:
2852 if (!capable(CAP_NET_ADMIN)) return -EPERM;
2853 for (i = 1; i <= iadev->num_rx_desc; i++)
2854 free_desc(dev: _ia_dev[board], desc: i);
2855 writew( val: ~(RX_FREEQ_EMPT | RX_EXCP_RCVD),
2856 addr: iadev->reass_reg+REASS_MASK_REG);
2857 iadev->rxing = 1;
2858
2859 ia_cmds.status = 0;
2860 break;
2861
2862 case 0xb:
2863 if (!capable(CAP_NET_ADMIN)) return -EPERM;
2864 ia_frontend_intr(iadev);
2865 break;
2866 case 0xa:
2867 if (!capable(CAP_NET_ADMIN)) return -EPERM;
2868 {
2869 ia_cmds.status = 0;
2870 IADebugFlag = ia_cmds.maddr;
2871 printk("New debug option loaded\n");
2872 }
2873 break;
2874 default:
2875 ia_cmds.status = 0;
2876 break;
2877 }
2878 }
2879 break;
2880 default:
2881 break;
2882
2883 }
2884 return 0;
2885}
2886
2887static int ia_pkt_tx (struct atm_vcc *vcc, struct sk_buff *skb) {
2888 IADEV *iadev;
2889 struct dle *wr_ptr;
2890 struct tx_buf_desc __iomem *buf_desc_ptr;
2891 int desc;
2892 int comp_code;
2893 int total_len;
2894 struct cpcs_trailer *trailer;
2895 struct ia_vcc *iavcc;
2896
2897 iadev = INPH_IA_DEV(vcc->dev);
2898 iavcc = INPH_IA_VCC(vcc);
2899 if (!iavcc->txing) {
2900 printk("discard packet on closed VC\n");
2901 if (vcc->pop)
2902 vcc->pop(vcc, skb);
2903 else
2904 dev_kfree_skb_any(skb);
2905 return 0;
2906 }
2907
2908 if (skb->len > iadev->tx_buf_sz - 8) {
2909 printk("Transmit size over tx buffer size\n");
2910 if (vcc->pop)
2911 vcc->pop(vcc, skb);
2912 else
2913 dev_kfree_skb_any(skb);
2914 return 0;
2915 }
2916 if ((unsigned long)skb->data & 3) {
2917 printk("Misaligned SKB\n");
2918 if (vcc->pop)
2919 vcc->pop(vcc, skb);
2920 else
2921 dev_kfree_skb_any(skb);
2922 return 0;
2923 }
2924 /* Get a descriptor number from our free descriptor queue
2925 We get the descr number from the TCQ now, since I am using
2926 the TCQ as a free buffer queue. Initially TCQ will be
2927 initialized with all the descriptors and is hence, full.
2928 */
2929 desc = get_desc (dev: iadev, iavcc);
2930 if (desc == 0xffff)
2931 return 1;
2932 comp_code = desc >> 13;
2933 desc &= 0x1fff;
2934
2935 if ((desc == 0) || (desc > iadev->num_tx_desc))
2936 {
2937 IF_ERR(printk(DEV_LABEL "invalid desc for send: %d\n", desc);)
2938 atomic_inc(v: &vcc->stats->tx);
2939 if (vcc->pop)
2940 vcc->pop(vcc, skb);
2941 else
2942 dev_kfree_skb_any(skb);
2943 return 0; /* return SUCCESS */
2944 }
2945
2946 if (comp_code)
2947 {
2948 IF_ERR(printk(DEV_LABEL "send desc:%d completion code %d error\n",
2949 desc, comp_code);)
2950 }
2951
2952 /* remember the desc and vcc mapping */
2953 iavcc->vc_desc_cnt++;
2954 iadev->desc_tbl[desc-1].iavcc = iavcc;
2955 iadev->desc_tbl[desc-1].txskb = skb;
2956 IA_SKB_STATE(skb) = 0;
2957
2958 iadev->ffL.tcq_rd += 2;
2959 if (iadev->ffL.tcq_rd > iadev->ffL.tcq_ed)
2960 iadev->ffL.tcq_rd = iadev->ffL.tcq_st;
2961 writew(val: iadev->ffL.tcq_rd, addr: iadev->seg_reg+TCQ_RD_PTR);
2962
2963 /* Put the descriptor number in the packet ready queue
2964 and put the updated write pointer in the DLE field
2965 */
2966 *(u16*)(iadev->seg_ram+iadev->ffL.prq_wr) = desc;
2967
2968 iadev->ffL.prq_wr += 2;
2969 if (iadev->ffL.prq_wr > iadev->ffL.prq_ed)
2970 iadev->ffL.prq_wr = iadev->ffL.prq_st;
2971
2972 /* Figure out the exact length of the packet and padding required to
2973 make it aligned on a 48 byte boundary. */
2974 total_len = skb->len + sizeof(struct cpcs_trailer);
2975 total_len = ((total_len + 47) / 48) * 48;
2976 IF_TX(printk("ia packet len:%d padding:%d\n", total_len, total_len - skb->len);)
2977
2978 /* Put the packet in a tx buffer */
2979 trailer = iadev->tx_buf[desc-1].cpcs;
2980 IF_TX(printk("Sent: skb = 0x%p skb->data: 0x%p len: %d, desc: %d\n",
2981 skb, skb->data, skb->len, desc);)
2982 trailer->control = 0;
2983 /*big endian*/
2984 trailer->length = ((skb->len & 0xff) << 8) | ((skb->len & 0xff00) >> 8);
2985 trailer->crc32 = 0; /* not needed - dummy bytes */
2986
2987 /* Display the packet */
2988 IF_TXPKT(printk("Sent data: len = %d MsgNum = %d\n",
2989 skb->len, tcnter++);
2990 xdump(skb->data, skb->len, "TX: ");
2991 printk("\n");)
2992
2993 /* Build the buffer descriptor */
2994 buf_desc_ptr = iadev->seg_ram+TX_DESC_BASE;
2995 buf_desc_ptr += desc; /* points to the corresponding entry */
2996 buf_desc_ptr->desc_mode = AAL5 | EOM_EN | APP_CRC32 | CMPL_INT;
2997 /* Huh ? p.115 of users guide describes this as a read-only register */
2998 writew(TRANSMIT_DONE, addr: iadev->seg_reg+SEG_INTR_STATUS_REG);
2999 buf_desc_ptr->vc_index = vcc->vci;
3000 buf_desc_ptr->bytes = total_len;
3001
3002 if (vcc->qos.txtp.traffic_class == ATM_ABR)
3003 clear_lockup (vcc, dev: iadev);
3004
3005 /* Build the DLE structure */
3006 wr_ptr = iadev->tx_dle_q.write;
3007 memset((caddr_t)wr_ptr, 0, sizeof(*wr_ptr));
3008 wr_ptr->sys_pkt_addr = dma_map_single(&iadev->pci->dev, skb->data,
3009 skb->len, DMA_TO_DEVICE);
3010 wr_ptr->local_pkt_addr = (buf_desc_ptr->buf_start_hi << 16) |
3011 buf_desc_ptr->buf_start_lo;
3012 /* wr_ptr->bytes = swap_byte_order(total_len); didn't seem to affect?? */
3013 wr_ptr->bytes = skb->len;
3014
3015 /* hw bug - DLEs of 0x2d, 0x2e, 0x2f cause DMA lockup */
3016 if ((wr_ptr->bytes >> 2) == 0xb)
3017 wr_ptr->bytes = 0x30;
3018
3019 wr_ptr->mode = TX_DLE_PSI;
3020 wr_ptr->prq_wr_ptr_data = 0;
3021
3022 /* end is not to be used for the DLE q */
3023 if (++wr_ptr == iadev->tx_dle_q.end)
3024 wr_ptr = iadev->tx_dle_q.start;
3025
3026 /* Build trailer dle */
3027 wr_ptr->sys_pkt_addr = iadev->tx_buf[desc-1].dma_addr;
3028 wr_ptr->local_pkt_addr = ((buf_desc_ptr->buf_start_hi << 16) |
3029 buf_desc_ptr->buf_start_lo) + total_len - sizeof(struct cpcs_trailer);
3030
3031 wr_ptr->bytes = sizeof(struct cpcs_trailer);
3032 wr_ptr->mode = DMA_INT_ENABLE;
3033 wr_ptr->prq_wr_ptr_data = iadev->ffL.prq_wr;
3034
3035 /* end is not to be used for the DLE q */
3036 if (++wr_ptr == iadev->tx_dle_q.end)
3037 wr_ptr = iadev->tx_dle_q.start;
3038
3039 iadev->tx_dle_q.write = wr_ptr;
3040 ATM_DESC(skb) = vcc->vci;
3041 skb_queue_tail(list: &iadev->tx_dma_q, newsk: skb);
3042
3043 atomic_inc(v: &vcc->stats->tx);
3044 iadev->tx_pkt_cnt++;
3045 /* Increment transaction counter */
3046 writel(val: 2, addr: iadev->dma+IPHASE5575_TX_COUNTER);
3047
3048#if 0
3049 /* add flow control logic */
3050 if (atomic_read(&vcc->stats->tx) % 20 == 0) {
3051 if (iavcc->vc_desc_cnt > 10) {
3052 vcc->tx_quota = vcc->tx_quota * 3 / 4;
3053 printk("Tx1: vcc->tx_quota = %d \n", (u32)vcc->tx_quota );
3054 iavcc->flow_inc = -1;
3055 iavcc->saved_tx_quota = vcc->tx_quota;
3056 } else if ((iavcc->flow_inc < 0) && (iavcc->vc_desc_cnt < 3)) {
3057 // vcc->tx_quota = 3 * iavcc->saved_tx_quota / 4;
3058 printk("Tx2: vcc->tx_quota = %d \n", (u32)vcc->tx_quota );
3059 iavcc->flow_inc = 0;
3060 }
3061 }
3062#endif
3063 IF_TX(printk("ia send done\n");)
3064 return 0;
3065}
3066
3067static int ia_send(struct atm_vcc *vcc, struct sk_buff *skb)
3068{
3069 IADEV *iadev;
3070 unsigned long flags;
3071
3072 iadev = INPH_IA_DEV(vcc->dev);
3073 if ((!skb)||(skb->len>(iadev->tx_buf_sz-sizeof(struct cpcs_trailer))))
3074 {
3075 if (!skb)
3076 printk(KERN_CRIT "null skb in ia_send\n");
3077 else dev_kfree_skb_any(skb);
3078 return -EINVAL;
3079 }
3080 spin_lock_irqsave(&iadev->tx_lock, flags);
3081 if (!test_bit(ATM_VF_READY,&vcc->flags)){
3082 dev_kfree_skb_any(skb);
3083 spin_unlock_irqrestore(lock: &iadev->tx_lock, flags);
3084 return -EINVAL;
3085 }
3086 ATM_SKB(skb)->vcc = vcc;
3087
3088 if (skb_peek(list_: &iadev->tx_backlog)) {
3089 skb_queue_tail(list: &iadev->tx_backlog, newsk: skb);
3090 }
3091 else {
3092 if (ia_pkt_tx (vcc, skb)) {
3093 skb_queue_tail(list: &iadev->tx_backlog, newsk: skb);
3094 }
3095 }
3096 spin_unlock_irqrestore(lock: &iadev->tx_lock, flags);
3097 return 0;
3098
3099}
3100
3101static int ia_proc_read(struct atm_dev *dev,loff_t *pos,char *page)
3102{
3103 int left = *pos, n;
3104 char *tmpPtr;
3105 IADEV *iadev = INPH_IA_DEV(dev);
3106 if(!left--) {
3107 if (iadev->phy_type == FE_25MBIT_PHY) {
3108 n = sprintf(buf: page, fmt: " Board Type : Iphase5525-1KVC-128K\n");
3109 return n;
3110 }
3111 if (iadev->phy_type == FE_DS3_PHY)
3112 n = sprintf(buf: page, fmt: " Board Type : Iphase-ATM-DS3");
3113 else if (iadev->phy_type == FE_E3_PHY)
3114 n = sprintf(buf: page, fmt: " Board Type : Iphase-ATM-E3");
3115 else if (iadev->phy_type == FE_UTP_OPTION)
3116 n = sprintf(buf: page, fmt: " Board Type : Iphase-ATM-UTP155");
3117 else
3118 n = sprintf(buf: page, fmt: " Board Type : Iphase-ATM-OC3");
3119 tmpPtr = page + n;
3120 if (iadev->pci_map_size == 0x40000)
3121 n += sprintf(buf: tmpPtr, fmt: "-1KVC-");
3122 else
3123 n += sprintf(buf: tmpPtr, fmt: "-4KVC-");
3124 tmpPtr = page + n;
3125 if ((iadev->memType & MEM_SIZE_MASK) == MEM_SIZE_1M)
3126 n += sprintf(buf: tmpPtr, fmt: "1M \n");
3127 else if ((iadev->memType & MEM_SIZE_MASK) == MEM_SIZE_512K)
3128 n += sprintf(buf: tmpPtr, fmt: "512K\n");
3129 else
3130 n += sprintf(buf: tmpPtr, fmt: "128K\n");
3131 return n;
3132 }
3133 if (!left) {
3134 return sprintf(buf: page, fmt: " Number of Tx Buffer: %u\n"
3135 " Size of Tx Buffer : %u\n"
3136 " Number of Rx Buffer: %u\n"
3137 " Size of Rx Buffer : %u\n"
3138 " Packets Received : %u\n"
3139 " Packets Transmitted: %u\n"
3140 " Cells Received : %u\n"
3141 " Cells Transmitted : %u\n"
3142 " Board Dropped Cells: %u\n"
3143 " Board Dropped Pkts : %u\n",
3144 iadev->num_tx_desc, iadev->tx_buf_sz,
3145 iadev->num_rx_desc, iadev->rx_buf_sz,
3146 iadev->rx_pkt_cnt, iadev->tx_pkt_cnt,
3147 iadev->rx_cell_cnt, iadev->tx_cell_cnt,
3148 iadev->drop_rxcell, iadev->drop_rxpkt);
3149 }
3150 return 0;
3151}
3152
3153static const struct atmdev_ops ops = {
3154 .open = ia_open,
3155 .close = ia_close,
3156 .ioctl = ia_ioctl,
3157 .send = ia_send,
3158 .phy_put = ia_phy_put,
3159 .phy_get = ia_phy_get,
3160 .change_qos = ia_change_qos,
3161 .proc_read = ia_proc_read,
3162 .owner = THIS_MODULE,
3163};
3164
3165static int ia_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
3166{
3167 struct atm_dev *dev;
3168 IADEV *iadev;
3169 int ret;
3170
3171 iadev = kzalloc(size: sizeof(*iadev), GFP_KERNEL);
3172 if (!iadev) {
3173 ret = -ENOMEM;
3174 goto err_out;
3175 }
3176
3177 iadev->pci = pdev;
3178
3179 IF_INIT(printk("ia detected at bus:%d dev: %d function:%d\n",
3180 pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));)
3181 if (pci_enable_device(dev: pdev)) {
3182 ret = -ENODEV;
3183 goto err_out_free_iadev;
3184 }
3185 dev = atm_dev_register(DEV_LABEL, parent: &pdev->dev, ops: &ops, number: -1, NULL);
3186 if (!dev) {
3187 ret = -ENOMEM;
3188 goto err_out_disable_dev;
3189 }
3190 dev->dev_data = iadev;
3191 IF_INIT(printk(DEV_LABEL "registered at (itf :%d)\n", dev->number);)
3192 IF_INIT(printk("dev_id = 0x%p iadev->LineRate = %d \n", dev,
3193 iadev->LineRate);)
3194
3195 pci_set_drvdata(pdev, data: dev);
3196
3197 ia_dev[iadev_count] = iadev;
3198 _ia_dev[iadev_count] = dev;
3199 iadev_count++;
3200 if (ia_init(dev) || ia_start(dev)) {
3201 IF_INIT(printk("IA register failed!\n");)
3202 iadev_count--;
3203 ia_dev[iadev_count] = NULL;
3204 _ia_dev[iadev_count] = NULL;
3205 ret = -EINVAL;
3206 goto err_out_deregister_dev;
3207 }
3208 IF_EVENT(printk("iadev_count = %d\n", iadev_count);)
3209
3210 iadev->next_board = ia_boards;
3211 ia_boards = dev;
3212
3213 return 0;
3214
3215err_out_deregister_dev:
3216 atm_dev_deregister(dev);
3217err_out_disable_dev:
3218 pci_disable_device(dev: pdev);
3219err_out_free_iadev:
3220 kfree(objp: iadev);
3221err_out:
3222 return ret;
3223}
3224
3225static void ia_remove_one(struct pci_dev *pdev)
3226{
3227 struct atm_dev *dev = pci_get_drvdata(pdev);
3228 IADEV *iadev = INPH_IA_DEV(dev);
3229
3230 /* Disable phy interrupts */
3231 ia_phy_put(dev, value: ia_phy_get(dev, SUNI_RSOP_CIE) & ~(SUNI_RSOP_CIE_LOSE),
3232 SUNI_RSOP_CIE);
3233 udelay(1);
3234
3235 if (dev->phy && dev->phy->stop)
3236 dev->phy->stop(dev);
3237
3238 /* De-register device */
3239 free_irq(iadev->irq, dev);
3240 iadev_count--;
3241 ia_dev[iadev_count] = NULL;
3242 _ia_dev[iadev_count] = NULL;
3243 IF_EVENT(printk("deregistering iav at (itf:%d)\n", dev->number);)
3244 atm_dev_deregister(dev);
3245
3246 iounmap(addr: iadev->base);
3247 pci_disable_device(dev: pdev);
3248
3249 ia_free_rx(iadev);
3250 ia_free_tx(iadev);
3251
3252 kfree(objp: iadev);
3253}
3254
3255static const struct pci_device_id ia_pci_tbl[] = {
3256 { PCI_VENDOR_ID_IPHASE, 0x0008, PCI_ANY_ID, PCI_ANY_ID, },
3257 { PCI_VENDOR_ID_IPHASE, 0x0009, PCI_ANY_ID, PCI_ANY_ID, },
3258 { 0,}
3259};
3260MODULE_DEVICE_TABLE(pci, ia_pci_tbl);
3261
3262static struct pci_driver ia_driver = {
3263 .name = DEV_LABEL,
3264 .id_table = ia_pci_tbl,
3265 .probe = ia_init_one,
3266 .remove = ia_remove_one,
3267};
3268
3269static int __init ia_module_init(void)
3270{
3271 int ret;
3272
3273 ret = pci_register_driver(&ia_driver);
3274 if (ret >= 0) {
3275 ia_timer.expires = jiffies + 3*HZ;
3276 add_timer(timer: &ia_timer);
3277 } else
3278 printk(KERN_ERR DEV_LABEL ": no adapter found\n");
3279 return ret;
3280}
3281
3282static void __exit ia_module_exit(void)
3283{
3284 pci_unregister_driver(dev: &ia_driver);
3285
3286 del_timer_sync(timer: &ia_timer);
3287}
3288
3289module_init(ia_module_init);
3290module_exit(ia_module_exit);
3291

source code of linux/drivers/atm/iphase.c