1
2/*
3 rbd.c -- Export ceph rados objects as a Linux block device
4
5
6 based on drivers/block/osdblk.c:
7
8 Copyright 2009 Red Hat, Inc.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25 For usage instructions, please refer to:
26
27 Documentation/ABI/testing/sysfs-bus-rbd
28
29 */
30
31#include <linux/ceph/libceph.h>
32#include <linux/ceph/osd_client.h>
33#include <linux/ceph/mon_client.h>
34#include <linux/ceph/cls_lock_client.h>
35#include <linux/ceph/striper.h>
36#include <linux/ceph/decode.h>
37#include <linux/fs_parser.h>
38#include <linux/bsearch.h>
39
40#include <linux/kernel.h>
41#include <linux/device.h>
42#include <linux/module.h>
43#include <linux/blk-mq.h>
44#include <linux/fs.h>
45#include <linux/blkdev.h>
46#include <linux/slab.h>
47#include <linux/idr.h>
48#include <linux/workqueue.h>
49
50#include "rbd_types.h"
51
52#define RBD_DEBUG /* Activate rbd_assert() calls */
53
54/*
55 * Increment the given counter and return its updated value.
56 * If the counter is already 0 it will not be incremented.
57 * If the counter is already at its maximum value returns
58 * -EINVAL without updating it.
59 */
60static int atomic_inc_return_safe(atomic_t *v)
61{
62 unsigned int counter;
63
64 counter = (unsigned int)atomic_fetch_add_unless(v, a: 1, u: 0);
65 if (counter <= (unsigned int)INT_MAX)
66 return (int)counter;
67
68 atomic_dec(v);
69
70 return -EINVAL;
71}
72
73/* Decrement the counter. Return the resulting value, or -EINVAL */
74static int atomic_dec_return_safe(atomic_t *v)
75{
76 int counter;
77
78 counter = atomic_dec_return(v);
79 if (counter >= 0)
80 return counter;
81
82 atomic_inc(v);
83
84 return -EINVAL;
85}
86
87#define RBD_DRV_NAME "rbd"
88
89#define RBD_MINORS_PER_MAJOR 256
90#define RBD_SINGLE_MAJOR_PART_SHIFT 4
91
92#define RBD_MAX_PARENT_CHAIN_LEN 16
93
94#define RBD_SNAP_DEV_NAME_PREFIX "snap_"
95#define RBD_MAX_SNAP_NAME_LEN \
96 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97
98#define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
99
100#define RBD_SNAP_HEAD_NAME "-"
101
102#define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
103
104/* This allows a single page to hold an image name sent by OSD */
105#define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
106#define RBD_IMAGE_ID_LEN_MAX 64
107
108#define RBD_OBJ_PREFIX_LEN_MAX 64
109
110#define RBD_NOTIFY_TIMEOUT 5 /* seconds */
111#define RBD_RETRY_DELAY msecs_to_jiffies(1000)
112
113/* Feature bits */
114
115#define RBD_FEATURE_LAYERING (1ULL<<0)
116#define RBD_FEATURE_STRIPINGV2 (1ULL<<1)
117#define RBD_FEATURE_EXCLUSIVE_LOCK (1ULL<<2)
118#define RBD_FEATURE_OBJECT_MAP (1ULL<<3)
119#define RBD_FEATURE_FAST_DIFF (1ULL<<4)
120#define RBD_FEATURE_DEEP_FLATTEN (1ULL<<5)
121#define RBD_FEATURE_DATA_POOL (1ULL<<7)
122#define RBD_FEATURE_OPERATIONS (1ULL<<8)
123
124#define RBD_FEATURES_ALL (RBD_FEATURE_LAYERING | \
125 RBD_FEATURE_STRIPINGV2 | \
126 RBD_FEATURE_EXCLUSIVE_LOCK | \
127 RBD_FEATURE_OBJECT_MAP | \
128 RBD_FEATURE_FAST_DIFF | \
129 RBD_FEATURE_DEEP_FLATTEN | \
130 RBD_FEATURE_DATA_POOL | \
131 RBD_FEATURE_OPERATIONS)
132
133/* Features supported by this (client software) implementation. */
134
135#define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
136
137/*
138 * An RBD device name will be "rbd#", where the "rbd" comes from
139 * RBD_DRV_NAME above, and # is a unique integer identifier.
140 */
141#define DEV_NAME_LEN 32
142
143/*
144 * block device image metadata (in-memory version)
145 */
146struct rbd_image_header {
147 /* These six fields never change for a given rbd image */
148 char *object_prefix;
149 __u8 obj_order;
150 u64 stripe_unit;
151 u64 stripe_count;
152 s64 data_pool_id;
153 u64 features; /* Might be changeable someday? */
154
155 /* The remaining fields need to be updated occasionally */
156 u64 image_size;
157 struct ceph_snap_context *snapc;
158 char *snap_names; /* format 1 only */
159 u64 *snap_sizes; /* format 1 only */
160};
161
162/*
163 * An rbd image specification.
164 *
165 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166 * identify an image. Each rbd_dev structure includes a pointer to
167 * an rbd_spec structure that encapsulates this identity.
168 *
169 * Each of the id's in an rbd_spec has an associated name. For a
170 * user-mapped image, the names are supplied and the id's associated
171 * with them are looked up. For a layered image, a parent image is
172 * defined by the tuple, and the names are looked up.
173 *
174 * An rbd_dev structure contains a parent_spec pointer which is
175 * non-null if the image it represents is a child in a layered
176 * image. This pointer will refer to the rbd_spec structure used
177 * by the parent rbd_dev for its own identity (i.e., the structure
178 * is shared between the parent and child).
179 *
180 * Since these structures are populated once, during the discovery
181 * phase of image construction, they are effectively immutable so
182 * we make no effort to synchronize access to them.
183 *
184 * Note that code herein does not assume the image name is known (it
185 * could be a null pointer).
186 */
187struct rbd_spec {
188 u64 pool_id;
189 const char *pool_name;
190 const char *pool_ns; /* NULL if default, never "" */
191
192 const char *image_id;
193 const char *image_name;
194
195 u64 snap_id;
196 const char *snap_name;
197
198 struct kref kref;
199};
200
201/*
202 * an instance of the client. multiple devices may share an rbd client.
203 */
204struct rbd_client {
205 struct ceph_client *client;
206 struct kref kref;
207 struct list_head node;
208};
209
210struct pending_result {
211 int result; /* first nonzero result */
212 int num_pending;
213};
214
215struct rbd_img_request;
216
217enum obj_request_type {
218 OBJ_REQUEST_NODATA = 1,
219 OBJ_REQUEST_BIO, /* pointer into provided bio (list) */
220 OBJ_REQUEST_BVECS, /* pointer into provided bio_vec array */
221 OBJ_REQUEST_OWN_BVECS, /* private bio_vec array, doesn't own pages */
222};
223
224enum obj_operation_type {
225 OBJ_OP_READ = 1,
226 OBJ_OP_WRITE,
227 OBJ_OP_DISCARD,
228 OBJ_OP_ZEROOUT,
229};
230
231#define RBD_OBJ_FLAG_DELETION (1U << 0)
232#define RBD_OBJ_FLAG_COPYUP_ENABLED (1U << 1)
233#define RBD_OBJ_FLAG_COPYUP_ZEROS (1U << 2)
234#define RBD_OBJ_FLAG_MAY_EXIST (1U << 3)
235#define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT (1U << 4)
236
237enum rbd_obj_read_state {
238 RBD_OBJ_READ_START = 1,
239 RBD_OBJ_READ_OBJECT,
240 RBD_OBJ_READ_PARENT,
241};
242
243/*
244 * Writes go through the following state machine to deal with
245 * layering:
246 *
247 * . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
248 * . | .
249 * . v .
250 * . RBD_OBJ_WRITE_READ_FROM_PARENT. . . .
251 * . | . .
252 * . v v (deep-copyup .
253 * (image . RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC . not needed) .
254 * flattened) v | . .
255 * . v . .
256 * . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . . (copyup .
257 * | not needed) v
258 * v .
259 * done . . . . . . . . . . . . . . . . . .
260 * ^
261 * |
262 * RBD_OBJ_WRITE_FLAT
263 *
264 * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265 * assert_exists guard is needed or not (in some cases it's not needed
266 * even if there is a parent).
267 */
268enum rbd_obj_write_state {
269 RBD_OBJ_WRITE_START = 1,
270 RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271 RBD_OBJ_WRITE_OBJECT,
272 __RBD_OBJ_WRITE_COPYUP,
273 RBD_OBJ_WRITE_COPYUP,
274 RBD_OBJ_WRITE_POST_OBJECT_MAP,
275};
276
277enum rbd_obj_copyup_state {
278 RBD_OBJ_COPYUP_START = 1,
279 RBD_OBJ_COPYUP_READ_PARENT,
280 __RBD_OBJ_COPYUP_OBJECT_MAPS,
281 RBD_OBJ_COPYUP_OBJECT_MAPS,
282 __RBD_OBJ_COPYUP_WRITE_OBJECT,
283 RBD_OBJ_COPYUP_WRITE_OBJECT,
284};
285
286struct rbd_obj_request {
287 struct ceph_object_extent ex;
288 unsigned int flags; /* RBD_OBJ_FLAG_* */
289 union {
290 enum rbd_obj_read_state read_state; /* for reads */
291 enum rbd_obj_write_state write_state; /* for writes */
292 };
293
294 struct rbd_img_request *img_request;
295 struct ceph_file_extent *img_extents;
296 u32 num_img_extents;
297
298 union {
299 struct ceph_bio_iter bio_pos;
300 struct {
301 struct ceph_bvec_iter bvec_pos;
302 u32 bvec_count;
303 u32 bvec_idx;
304 };
305 };
306
307 enum rbd_obj_copyup_state copyup_state;
308 struct bio_vec *copyup_bvecs;
309 u32 copyup_bvec_count;
310
311 struct list_head osd_reqs; /* w/ r_private_item */
312
313 struct mutex state_mutex;
314 struct pending_result pending;
315 struct kref kref;
316};
317
318enum img_req_flags {
319 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
320 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
321};
322
323enum rbd_img_state {
324 RBD_IMG_START = 1,
325 RBD_IMG_EXCLUSIVE_LOCK,
326 __RBD_IMG_OBJECT_REQUESTS,
327 RBD_IMG_OBJECT_REQUESTS,
328};
329
330struct rbd_img_request {
331 struct rbd_device *rbd_dev;
332 enum obj_operation_type op_type;
333 enum obj_request_type data_type;
334 unsigned long flags;
335 enum rbd_img_state state;
336 union {
337 u64 snap_id; /* for reads */
338 struct ceph_snap_context *snapc; /* for writes */
339 };
340 struct rbd_obj_request *obj_request; /* obj req initiator */
341
342 struct list_head lock_item;
343 struct list_head object_extents; /* obj_req.ex structs */
344
345 struct mutex state_mutex;
346 struct pending_result pending;
347 struct work_struct work;
348 int work_result;
349};
350
351#define for_each_obj_request(ireq, oreq) \
352 list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
353#define for_each_obj_request_safe(ireq, oreq, n) \
354 list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
355
356enum rbd_watch_state {
357 RBD_WATCH_STATE_UNREGISTERED,
358 RBD_WATCH_STATE_REGISTERED,
359 RBD_WATCH_STATE_ERROR,
360};
361
362enum rbd_lock_state {
363 RBD_LOCK_STATE_UNLOCKED,
364 RBD_LOCK_STATE_LOCKED,
365 RBD_LOCK_STATE_RELEASING,
366};
367
368/* WatchNotify::ClientId */
369struct rbd_client_id {
370 u64 gid;
371 u64 handle;
372};
373
374struct rbd_mapping {
375 u64 size;
376};
377
378/*
379 * a single device
380 */
381struct rbd_device {
382 int dev_id; /* blkdev unique id */
383
384 int major; /* blkdev assigned major */
385 int minor;
386 struct gendisk *disk; /* blkdev's gendisk and rq */
387
388 u32 image_format; /* Either 1 or 2 */
389 struct rbd_client *rbd_client;
390
391 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
392
393 spinlock_t lock; /* queue, flags, open_count */
394
395 struct rbd_image_header header;
396 unsigned long flags; /* possibly lock protected */
397 struct rbd_spec *spec;
398 struct rbd_options *opts;
399 char *config_info; /* add{,_single_major} string */
400
401 struct ceph_object_id header_oid;
402 struct ceph_object_locator header_oloc;
403
404 struct ceph_file_layout layout; /* used for all rbd requests */
405
406 struct mutex watch_mutex;
407 enum rbd_watch_state watch_state;
408 struct ceph_osd_linger_request *watch_handle;
409 u64 watch_cookie;
410 struct delayed_work watch_dwork;
411
412 struct rw_semaphore lock_rwsem;
413 enum rbd_lock_state lock_state;
414 char lock_cookie[32];
415 struct rbd_client_id owner_cid;
416 struct work_struct acquired_lock_work;
417 struct work_struct released_lock_work;
418 struct delayed_work lock_dwork;
419 struct work_struct unlock_work;
420 spinlock_t lock_lists_lock;
421 struct list_head acquiring_list;
422 struct list_head running_list;
423 struct completion acquire_wait;
424 int acquire_err;
425 struct completion releasing_wait;
426
427 spinlock_t object_map_lock;
428 u8 *object_map;
429 u64 object_map_size; /* in objects */
430 u64 object_map_flags;
431
432 struct workqueue_struct *task_wq;
433
434 struct rbd_spec *parent_spec;
435 u64 parent_overlap;
436 atomic_t parent_ref;
437 struct rbd_device *parent;
438
439 /* Block layer tags. */
440 struct blk_mq_tag_set tag_set;
441
442 /* protects updating the header */
443 struct rw_semaphore header_rwsem;
444
445 struct rbd_mapping mapping;
446
447 struct list_head node;
448
449 /* sysfs related */
450 struct device dev;
451 unsigned long open_count; /* protected by lock */
452};
453
454/*
455 * Flag bits for rbd_dev->flags:
456 * - REMOVING (which is coupled with rbd_dev->open_count) is protected
457 * by rbd_dev->lock
458 */
459enum rbd_dev_flags {
460 RBD_DEV_FLAG_EXISTS, /* rbd_dev_device_setup() ran */
461 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
462 RBD_DEV_FLAG_READONLY, /* -o ro or snapshot */
463};
464
465static DEFINE_MUTEX(client_mutex); /* Serialize client creation */
466
467static LIST_HEAD(rbd_dev_list); /* devices */
468static DEFINE_SPINLOCK(rbd_dev_list_lock);
469
470static LIST_HEAD(rbd_client_list); /* clients */
471static DEFINE_SPINLOCK(rbd_client_list_lock);
472
473/* Slab caches for frequently-allocated structures */
474
475static struct kmem_cache *rbd_img_request_cache;
476static struct kmem_cache *rbd_obj_request_cache;
477
478static int rbd_major;
479static DEFINE_IDA(rbd_dev_id_ida);
480
481static struct workqueue_struct *rbd_wq;
482
483static struct ceph_snap_context rbd_empty_snapc = {
484 .nref = REFCOUNT_INIT(1),
485};
486
487/*
488 * single-major requires >= 0.75 version of userspace rbd utility.
489 */
490static bool single_major = true;
491module_param(single_major, bool, 0444);
492MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
493
494static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count);
495static ssize_t remove_store(const struct bus_type *bus, const char *buf,
496 size_t count);
497static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf,
498 size_t count);
499static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf,
500 size_t count);
501static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
502
503static int rbd_dev_id_to_minor(int dev_id)
504{
505 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
506}
507
508static int minor_to_rbd_dev_id(int minor)
509{
510 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
511}
512
513static bool rbd_is_ro(struct rbd_device *rbd_dev)
514{
515 return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
516}
517
518static bool rbd_is_snap(struct rbd_device *rbd_dev)
519{
520 return rbd_dev->spec->snap_id != CEPH_NOSNAP;
521}
522
523static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
524{
525 lockdep_assert_held(&rbd_dev->lock_rwsem);
526
527 return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
528 rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
529}
530
531static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
532{
533 bool is_lock_owner;
534
535 down_read(sem: &rbd_dev->lock_rwsem);
536 is_lock_owner = __rbd_is_lock_owner(rbd_dev);
537 up_read(sem: &rbd_dev->lock_rwsem);
538 return is_lock_owner;
539}
540
541static ssize_t supported_features_show(const struct bus_type *bus, char *buf)
542{
543 return sprintf(buf, fmt: "0x%llx\n", RBD_FEATURES_SUPPORTED);
544}
545
546static BUS_ATTR_WO(add);
547static BUS_ATTR_WO(remove);
548static BUS_ATTR_WO(add_single_major);
549static BUS_ATTR_WO(remove_single_major);
550static BUS_ATTR_RO(supported_features);
551
552static struct attribute *rbd_bus_attrs[] = {
553 &bus_attr_add.attr,
554 &bus_attr_remove.attr,
555 &bus_attr_add_single_major.attr,
556 &bus_attr_remove_single_major.attr,
557 &bus_attr_supported_features.attr,
558 NULL,
559};
560
561static umode_t rbd_bus_is_visible(struct kobject *kobj,
562 struct attribute *attr, int index)
563{
564 if (!single_major &&
565 (attr == &bus_attr_add_single_major.attr ||
566 attr == &bus_attr_remove_single_major.attr))
567 return 0;
568
569 return attr->mode;
570}
571
572static const struct attribute_group rbd_bus_group = {
573 .attrs = rbd_bus_attrs,
574 .is_visible = rbd_bus_is_visible,
575};
576__ATTRIBUTE_GROUPS(rbd_bus);
577
578static const struct bus_type rbd_bus_type = {
579 .name = "rbd",
580 .bus_groups = rbd_bus_groups,
581};
582
583static void rbd_root_dev_release(struct device *dev)
584{
585}
586
587static struct device rbd_root_dev = {
588 .init_name = "rbd",
589 .release = rbd_root_dev_release,
590};
591
592static __printf(2, 3)
593void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
594{
595 struct va_format vaf;
596 va_list args;
597
598 va_start(args, fmt);
599 vaf.fmt = fmt;
600 vaf.va = &args;
601
602 if (!rbd_dev)
603 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
604 else if (rbd_dev->disk)
605 printk(KERN_WARNING "%s: %s: %pV\n",
606 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
607 else if (rbd_dev->spec && rbd_dev->spec->image_name)
608 printk(KERN_WARNING "%s: image %s: %pV\n",
609 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
610 else if (rbd_dev->spec && rbd_dev->spec->image_id)
611 printk(KERN_WARNING "%s: id %s: %pV\n",
612 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
613 else /* punt */
614 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
615 RBD_DRV_NAME, rbd_dev, &vaf);
616 va_end(args);
617}
618
619#ifdef RBD_DEBUG
620#define rbd_assert(expr) \
621 if (unlikely(!(expr))) { \
622 printk(KERN_ERR "\nAssertion failure in %s() " \
623 "at line %d:\n\n" \
624 "\trbd_assert(%s);\n\n", \
625 __func__, __LINE__, #expr); \
626 BUG(); \
627 }
628#else /* !RBD_DEBUG */
629# define rbd_assert(expr) ((void) 0)
630#endif /* !RBD_DEBUG */
631
632static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
633
634static int rbd_dev_refresh(struct rbd_device *rbd_dev);
635static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev,
636 struct rbd_image_header *header);
637static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
638 u64 snap_id);
639static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
640 u8 *order, u64 *snap_size);
641static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
642
643static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
644static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
645
646/*
647 * Return true if nothing else is pending.
648 */
649static bool pending_result_dec(struct pending_result *pending, int *result)
650{
651 rbd_assert(pending->num_pending > 0);
652
653 if (*result && !pending->result)
654 pending->result = *result;
655 if (--pending->num_pending)
656 return false;
657
658 *result = pending->result;
659 return true;
660}
661
662static int rbd_open(struct gendisk *disk, blk_mode_t mode)
663{
664 struct rbd_device *rbd_dev = disk->private_data;
665 bool removing = false;
666
667 spin_lock_irq(lock: &rbd_dev->lock);
668 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
669 removing = true;
670 else
671 rbd_dev->open_count++;
672 spin_unlock_irq(lock: &rbd_dev->lock);
673 if (removing)
674 return -ENOENT;
675
676 (void) get_device(dev: &rbd_dev->dev);
677
678 return 0;
679}
680
681static void rbd_release(struct gendisk *disk)
682{
683 struct rbd_device *rbd_dev = disk->private_data;
684 unsigned long open_count_before;
685
686 spin_lock_irq(lock: &rbd_dev->lock);
687 open_count_before = rbd_dev->open_count--;
688 spin_unlock_irq(lock: &rbd_dev->lock);
689 rbd_assert(open_count_before > 0);
690
691 put_device(dev: &rbd_dev->dev);
692}
693
694static const struct block_device_operations rbd_bd_ops = {
695 .owner = THIS_MODULE,
696 .open = rbd_open,
697 .release = rbd_release,
698};
699
700/*
701 * Initialize an rbd client instance. Success or not, this function
702 * consumes ceph_opts. Caller holds client_mutex.
703 */
704static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
705{
706 struct rbd_client *rbdc;
707 int ret = -ENOMEM;
708
709 dout("%s:\n", __func__);
710 rbdc = kmalloc(size: sizeof(struct rbd_client), GFP_KERNEL);
711 if (!rbdc)
712 goto out_opt;
713
714 kref_init(kref: &rbdc->kref);
715 INIT_LIST_HEAD(list: &rbdc->node);
716
717 rbdc->client = ceph_create_client(opt: ceph_opts, private: rbdc);
718 if (IS_ERR(ptr: rbdc->client))
719 goto out_rbdc;
720 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
721
722 ret = ceph_open_session(client: rbdc->client);
723 if (ret < 0)
724 goto out_client;
725
726 spin_lock(lock: &rbd_client_list_lock);
727 list_add_tail(new: &rbdc->node, head: &rbd_client_list);
728 spin_unlock(lock: &rbd_client_list_lock);
729
730 dout("%s: rbdc %p\n", __func__, rbdc);
731
732 return rbdc;
733out_client:
734 ceph_destroy_client(client: rbdc->client);
735out_rbdc:
736 kfree(objp: rbdc);
737out_opt:
738 if (ceph_opts)
739 ceph_destroy_options(opt: ceph_opts);
740 dout("%s: error %d\n", __func__, ret);
741
742 return ERR_PTR(error: ret);
743}
744
745static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
746{
747 kref_get(kref: &rbdc->kref);
748
749 return rbdc;
750}
751
752/*
753 * Find a ceph client with specific addr and configuration. If
754 * found, bump its reference count.
755 */
756static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
757{
758 struct rbd_client *rbdc = NULL, *iter;
759
760 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
761 return NULL;
762
763 spin_lock(lock: &rbd_client_list_lock);
764 list_for_each_entry(iter, &rbd_client_list, node) {
765 if (!ceph_compare_options(new_opt: ceph_opts, client: iter->client)) {
766 __rbd_get_client(rbdc: iter);
767
768 rbdc = iter;
769 break;
770 }
771 }
772 spin_unlock(lock: &rbd_client_list_lock);
773
774 return rbdc;
775}
776
777/*
778 * (Per device) rbd map options
779 */
780enum {
781 Opt_queue_depth,
782 Opt_alloc_size,
783 Opt_lock_timeout,
784 /* int args above */
785 Opt_pool_ns,
786 Opt_compression_hint,
787 /* string args above */
788 Opt_read_only,
789 Opt_read_write,
790 Opt_lock_on_read,
791 Opt_exclusive,
792 Opt_notrim,
793};
794
795enum {
796 Opt_compression_hint_none,
797 Opt_compression_hint_compressible,
798 Opt_compression_hint_incompressible,
799};
800
801static const struct constant_table rbd_param_compression_hint[] = {
802 {"none", Opt_compression_hint_none},
803 {"compressible", Opt_compression_hint_compressible},
804 {"incompressible", Opt_compression_hint_incompressible},
805 {}
806};
807
808static const struct fs_parameter_spec rbd_parameters[] = {
809 fsparam_u32 ("alloc_size", Opt_alloc_size),
810 fsparam_enum ("compression_hint", Opt_compression_hint,
811 rbd_param_compression_hint),
812 fsparam_flag ("exclusive", Opt_exclusive),
813 fsparam_flag ("lock_on_read", Opt_lock_on_read),
814 fsparam_u32 ("lock_timeout", Opt_lock_timeout),
815 fsparam_flag ("notrim", Opt_notrim),
816 fsparam_string ("_pool_ns", Opt_pool_ns),
817 fsparam_u32 ("queue_depth", Opt_queue_depth),
818 fsparam_flag ("read_only", Opt_read_only),
819 fsparam_flag ("read_write", Opt_read_write),
820 fsparam_flag ("ro", Opt_read_only),
821 fsparam_flag ("rw", Opt_read_write),
822 {}
823};
824
825struct rbd_options {
826 int queue_depth;
827 int alloc_size;
828 unsigned long lock_timeout;
829 bool read_only;
830 bool lock_on_read;
831 bool exclusive;
832 bool trim;
833
834 u32 alloc_hint_flags; /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */
835};
836
837#define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_DEFAULT_RQ
838#define RBD_ALLOC_SIZE_DEFAULT (64 * 1024)
839#define RBD_LOCK_TIMEOUT_DEFAULT 0 /* no timeout */
840#define RBD_READ_ONLY_DEFAULT false
841#define RBD_LOCK_ON_READ_DEFAULT false
842#define RBD_EXCLUSIVE_DEFAULT false
843#define RBD_TRIM_DEFAULT true
844
845struct rbd_parse_opts_ctx {
846 struct rbd_spec *spec;
847 struct ceph_options *copts;
848 struct rbd_options *opts;
849};
850
851static char* obj_op_name(enum obj_operation_type op_type)
852{
853 switch (op_type) {
854 case OBJ_OP_READ:
855 return "read";
856 case OBJ_OP_WRITE:
857 return "write";
858 case OBJ_OP_DISCARD:
859 return "discard";
860 case OBJ_OP_ZEROOUT:
861 return "zeroout";
862 default:
863 return "???";
864 }
865}
866
867/*
868 * Destroy ceph client
869 *
870 * Caller must hold rbd_client_list_lock.
871 */
872static void rbd_client_release(struct kref *kref)
873{
874 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
875
876 dout("%s: rbdc %p\n", __func__, rbdc);
877 spin_lock(lock: &rbd_client_list_lock);
878 list_del(entry: &rbdc->node);
879 spin_unlock(lock: &rbd_client_list_lock);
880
881 ceph_destroy_client(client: rbdc->client);
882 kfree(objp: rbdc);
883}
884
885/*
886 * Drop reference to ceph client node. If it's not referenced anymore, release
887 * it.
888 */
889static void rbd_put_client(struct rbd_client *rbdc)
890{
891 if (rbdc)
892 kref_put(kref: &rbdc->kref, release: rbd_client_release);
893}
894
895/*
896 * Get a ceph client with specific addr and configuration, if one does
897 * not exist create it. Either way, ceph_opts is consumed by this
898 * function.
899 */
900static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
901{
902 struct rbd_client *rbdc;
903 int ret;
904
905 mutex_lock(&client_mutex);
906 rbdc = rbd_client_find(ceph_opts);
907 if (rbdc) {
908 ceph_destroy_options(opt: ceph_opts);
909
910 /*
911 * Using an existing client. Make sure ->pg_pools is up to
912 * date before we look up the pool id in do_rbd_add().
913 */
914 ret = ceph_wait_for_latest_osdmap(client: rbdc->client,
915 timeout: rbdc->client->options->mount_timeout);
916 if (ret) {
917 rbd_warn(NULL, fmt: "failed to get latest osdmap: %d", ret);
918 rbd_put_client(rbdc);
919 rbdc = ERR_PTR(error: ret);
920 }
921 } else {
922 rbdc = rbd_client_create(ceph_opts);
923 }
924 mutex_unlock(lock: &client_mutex);
925
926 return rbdc;
927}
928
929static bool rbd_image_format_valid(u32 image_format)
930{
931 return image_format == 1 || image_format == 2;
932}
933
934static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
935{
936 size_t size;
937 u32 snap_count;
938
939 /* The header has to start with the magic rbd header text */
940 if (memcmp(p: &ondisk->text, RBD_HEADER_TEXT, size: sizeof (RBD_HEADER_TEXT)))
941 return false;
942
943 /* The bio layer requires at least sector-sized I/O */
944
945 if (ondisk->options.order < SECTOR_SHIFT)
946 return false;
947
948 /* If we use u64 in a few spots we may be able to loosen this */
949
950 if (ondisk->options.order > 8 * sizeof (int) - 1)
951 return false;
952
953 /*
954 * The size of a snapshot header has to fit in a size_t, and
955 * that limits the number of snapshots.
956 */
957 snap_count = le32_to_cpu(ondisk->snap_count);
958 size = SIZE_MAX - sizeof (struct ceph_snap_context);
959 if (snap_count > size / sizeof (__le64))
960 return false;
961
962 /*
963 * Not only that, but the size of the entire the snapshot
964 * header must also be representable in a size_t.
965 */
966 size -= snap_count * sizeof (__le64);
967 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
968 return false;
969
970 return true;
971}
972
973/*
974 * returns the size of an object in the image
975 */
976static u32 rbd_obj_bytes(struct rbd_image_header *header)
977{
978 return 1U << header->obj_order;
979}
980
981static void rbd_init_layout(struct rbd_device *rbd_dev)
982{
983 if (rbd_dev->header.stripe_unit == 0 ||
984 rbd_dev->header.stripe_count == 0) {
985 rbd_dev->header.stripe_unit = rbd_obj_bytes(header: &rbd_dev->header);
986 rbd_dev->header.stripe_count = 1;
987 }
988
989 rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
990 rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
991 rbd_dev->layout.object_size = rbd_obj_bytes(header: &rbd_dev->header);
992 rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
993 rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
994 RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
995}
996
997static void rbd_image_header_cleanup(struct rbd_image_header *header)
998{
999 kfree(objp: header->object_prefix);
1000 ceph_put_snap_context(sc: header->snapc);
1001 kfree(objp: header->snap_sizes);
1002 kfree(objp: header->snap_names);
1003
1004 memset(header, 0, sizeof(*header));
1005}
1006
1007/*
1008 * Fill an rbd image header with information from the given format 1
1009 * on-disk header.
1010 */
1011static int rbd_header_from_disk(struct rbd_image_header *header,
1012 struct rbd_image_header_ondisk *ondisk,
1013 bool first_time)
1014{
1015 struct ceph_snap_context *snapc;
1016 char *object_prefix = NULL;
1017 char *snap_names = NULL;
1018 u64 *snap_sizes = NULL;
1019 u32 snap_count;
1020 int ret = -ENOMEM;
1021 u32 i;
1022
1023 /* Allocate this now to avoid having to handle failure below */
1024
1025 if (first_time) {
1026 object_prefix = kstrndup(s: ondisk->object_prefix,
1027 len: sizeof(ondisk->object_prefix),
1028 GFP_KERNEL);
1029 if (!object_prefix)
1030 return -ENOMEM;
1031 }
1032
1033 /* Allocate the snapshot context and fill it in */
1034
1035 snap_count = le32_to_cpu(ondisk->snap_count);
1036 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1037 if (!snapc)
1038 goto out_err;
1039 snapc->seq = le64_to_cpu(ondisk->snap_seq);
1040 if (snap_count) {
1041 struct rbd_image_snap_ondisk *snaps;
1042 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1043
1044 /* We'll keep a copy of the snapshot names... */
1045
1046 if (snap_names_len > (u64)SIZE_MAX)
1047 goto out_2big;
1048 snap_names = kmalloc(size: snap_names_len, GFP_KERNEL);
1049 if (!snap_names)
1050 goto out_err;
1051
1052 /* ...as well as the array of their sizes. */
1053 snap_sizes = kmalloc_array(n: snap_count,
1054 size: sizeof(*header->snap_sizes),
1055 GFP_KERNEL);
1056 if (!snap_sizes)
1057 goto out_err;
1058
1059 /*
1060 * Copy the names, and fill in each snapshot's id
1061 * and size.
1062 *
1063 * Note that rbd_dev_v1_header_info() guarantees the
1064 * ondisk buffer we're working with has
1065 * snap_names_len bytes beyond the end of the
1066 * snapshot id array, this memcpy() is safe.
1067 */
1068 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1069 snaps = ondisk->snaps;
1070 for (i = 0; i < snap_count; i++) {
1071 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1072 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1073 }
1074 }
1075
1076 /* We won't fail any more, fill in the header */
1077
1078 if (first_time) {
1079 header->object_prefix = object_prefix;
1080 header->obj_order = ondisk->options.order;
1081 }
1082
1083 /* The remaining fields always get updated (when we refresh) */
1084
1085 header->image_size = le64_to_cpu(ondisk->image_size);
1086 header->snapc = snapc;
1087 header->snap_names = snap_names;
1088 header->snap_sizes = snap_sizes;
1089
1090 return 0;
1091out_2big:
1092 ret = -EIO;
1093out_err:
1094 kfree(objp: snap_sizes);
1095 kfree(objp: snap_names);
1096 ceph_put_snap_context(sc: snapc);
1097 kfree(objp: object_prefix);
1098
1099 return ret;
1100}
1101
1102static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1103{
1104 const char *snap_name;
1105
1106 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1107
1108 /* Skip over names until we find the one we are looking for */
1109
1110 snap_name = rbd_dev->header.snap_names;
1111 while (which--)
1112 snap_name += strlen(snap_name) + 1;
1113
1114 return kstrdup(s: snap_name, GFP_KERNEL);
1115}
1116
1117/*
1118 * Snapshot id comparison function for use with qsort()/bsearch().
1119 * Note that result is for snapshots in *descending* order.
1120 */
1121static int snapid_compare_reverse(const void *s1, const void *s2)
1122{
1123 u64 snap_id1 = *(u64 *)s1;
1124 u64 snap_id2 = *(u64 *)s2;
1125
1126 if (snap_id1 < snap_id2)
1127 return 1;
1128 return snap_id1 == snap_id2 ? 0 : -1;
1129}
1130
1131/*
1132 * Search a snapshot context to see if the given snapshot id is
1133 * present.
1134 *
1135 * Returns the position of the snapshot id in the array if it's found,
1136 * or BAD_SNAP_INDEX otherwise.
1137 *
1138 * Note: The snapshot array is in kept sorted (by the osd) in
1139 * reverse order, highest snapshot id first.
1140 */
1141static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1142{
1143 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1144 u64 *found;
1145
1146 found = bsearch(key: &snap_id, base: &snapc->snaps, num: snapc->num_snaps,
1147 size: sizeof (snap_id), cmp: snapid_compare_reverse);
1148
1149 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1150}
1151
1152static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1153 u64 snap_id)
1154{
1155 u32 which;
1156 const char *snap_name;
1157
1158 which = rbd_dev_snap_index(rbd_dev, snap_id);
1159 if (which == BAD_SNAP_INDEX)
1160 return ERR_PTR(error: -ENOENT);
1161
1162 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1163 return snap_name ? snap_name : ERR_PTR(error: -ENOMEM);
1164}
1165
1166static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1167{
1168 if (snap_id == CEPH_NOSNAP)
1169 return RBD_SNAP_HEAD_NAME;
1170
1171 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1172 if (rbd_dev->image_format == 1)
1173 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1174
1175 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1176}
1177
1178static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1179 u64 *snap_size)
1180{
1181 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1182 if (snap_id == CEPH_NOSNAP) {
1183 *snap_size = rbd_dev->header.image_size;
1184 } else if (rbd_dev->image_format == 1) {
1185 u32 which;
1186
1187 which = rbd_dev_snap_index(rbd_dev, snap_id);
1188 if (which == BAD_SNAP_INDEX)
1189 return -ENOENT;
1190
1191 *snap_size = rbd_dev->header.snap_sizes[which];
1192 } else {
1193 u64 size = 0;
1194 int ret;
1195
1196 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, snap_size: &size);
1197 if (ret)
1198 return ret;
1199
1200 *snap_size = size;
1201 }
1202 return 0;
1203}
1204
1205static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1206{
1207 u64 snap_id = rbd_dev->spec->snap_id;
1208 u64 size = 0;
1209 int ret;
1210
1211 ret = rbd_snap_size(rbd_dev, snap_id, snap_size: &size);
1212 if (ret)
1213 return ret;
1214
1215 rbd_dev->mapping.size = size;
1216 return 0;
1217}
1218
1219static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1220{
1221 rbd_dev->mapping.size = 0;
1222}
1223
1224static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1225{
1226 struct ceph_bio_iter it = *bio_pos;
1227
1228 ceph_bio_iter_advance(&it, off);
1229 ceph_bio_iter_advance_step(&it, bytes, ({
1230 memzero_bvec(&bv);
1231 }));
1232}
1233
1234static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1235{
1236 struct ceph_bvec_iter it = *bvec_pos;
1237
1238 ceph_bvec_iter_advance(&it, off);
1239 ceph_bvec_iter_advance_step(&it, bytes, ({
1240 memzero_bvec(&bv);
1241 }));
1242}
1243
1244/*
1245 * Zero a range in @obj_req data buffer defined by a bio (list) or
1246 * (private) bio_vec array.
1247 *
1248 * @off is relative to the start of the data buffer.
1249 */
1250static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1251 u32 bytes)
1252{
1253 dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1254
1255 switch (obj_req->img_request->data_type) {
1256 case OBJ_REQUEST_BIO:
1257 zero_bios(bio_pos: &obj_req->bio_pos, off, bytes);
1258 break;
1259 case OBJ_REQUEST_BVECS:
1260 case OBJ_REQUEST_OWN_BVECS:
1261 zero_bvecs(bvec_pos: &obj_req->bvec_pos, off, bytes);
1262 break;
1263 default:
1264 BUG();
1265 }
1266}
1267
1268static void rbd_obj_request_destroy(struct kref *kref);
1269static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1270{
1271 rbd_assert(obj_request != NULL);
1272 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1273 kref_read(&obj_request->kref));
1274 kref_put(kref: &obj_request->kref, release: rbd_obj_request_destroy);
1275}
1276
1277static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1278 struct rbd_obj_request *obj_request)
1279{
1280 rbd_assert(obj_request->img_request == NULL);
1281
1282 /* Image request now owns object's original reference */
1283 obj_request->img_request = img_request;
1284 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1285}
1286
1287static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1288 struct rbd_obj_request *obj_request)
1289{
1290 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1291 list_del(entry: &obj_request->ex.oe_item);
1292 rbd_assert(obj_request->img_request == img_request);
1293 rbd_obj_request_put(obj_request);
1294}
1295
1296static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1297{
1298 struct rbd_obj_request *obj_req = osd_req->r_priv;
1299
1300 dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1301 __func__, osd_req, obj_req, obj_req->ex.oe_objno,
1302 obj_req->ex.oe_off, obj_req->ex.oe_len);
1303 ceph_osdc_start_request(osdc: osd_req->r_osdc, req: osd_req);
1304}
1305
1306/*
1307 * The default/initial value for all image request flags is 0. Each
1308 * is conditionally set to 1 at image request initialization time
1309 * and currently never change thereafter.
1310 */
1311static void img_request_layered_set(struct rbd_img_request *img_request)
1312{
1313 set_bit(nr: IMG_REQ_LAYERED, addr: &img_request->flags);
1314}
1315
1316static bool img_request_layered_test(struct rbd_img_request *img_request)
1317{
1318 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1319}
1320
1321static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1322{
1323 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1324
1325 return !obj_req->ex.oe_off &&
1326 obj_req->ex.oe_len == rbd_dev->layout.object_size;
1327}
1328
1329static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1330{
1331 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1332
1333 return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1334 rbd_dev->layout.object_size;
1335}
1336
1337/*
1338 * Must be called after rbd_obj_calc_img_extents().
1339 */
1340static void rbd_obj_set_copyup_enabled(struct rbd_obj_request *obj_req)
1341{
1342 rbd_assert(obj_req->img_request->snapc);
1343
1344 if (obj_req->img_request->op_type == OBJ_OP_DISCARD) {
1345 dout("%s %p objno %llu discard\n", __func__, obj_req,
1346 obj_req->ex.oe_objno);
1347 return;
1348 }
1349
1350 if (!obj_req->num_img_extents) {
1351 dout("%s %p objno %llu not overlapping\n", __func__, obj_req,
1352 obj_req->ex.oe_objno);
1353 return;
1354 }
1355
1356 if (rbd_obj_is_entire(obj_req) &&
1357 !obj_req->img_request->snapc->num_snaps) {
1358 dout("%s %p objno %llu entire\n", __func__, obj_req,
1359 obj_req->ex.oe_objno);
1360 return;
1361 }
1362
1363 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
1364}
1365
1366static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1367{
1368 return ceph_file_extents_bytes(file_extents: obj_req->img_extents,
1369 num_file_extents: obj_req->num_img_extents);
1370}
1371
1372static bool rbd_img_is_write(struct rbd_img_request *img_req)
1373{
1374 switch (img_req->op_type) {
1375 case OBJ_OP_READ:
1376 return false;
1377 case OBJ_OP_WRITE:
1378 case OBJ_OP_DISCARD:
1379 case OBJ_OP_ZEROOUT:
1380 return true;
1381 default:
1382 BUG();
1383 }
1384}
1385
1386static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1387{
1388 struct rbd_obj_request *obj_req = osd_req->r_priv;
1389 int result;
1390
1391 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1392 osd_req->r_result, obj_req);
1393
1394 /*
1395 * Writes aren't allowed to return a data payload. In some
1396 * guarded write cases (e.g. stat + zero on an empty object)
1397 * a stat response makes it through, but we don't care.
1398 */
1399 if (osd_req->r_result > 0 && rbd_img_is_write(img_req: obj_req->img_request))
1400 result = 0;
1401 else
1402 result = osd_req->r_result;
1403
1404 rbd_obj_handle_request(obj_req, result);
1405}
1406
1407static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1408{
1409 struct rbd_obj_request *obj_request = osd_req->r_priv;
1410 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1411 struct ceph_options *opt = rbd_dev->rbd_client->client->options;
1412
1413 osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica;
1414 osd_req->r_snapid = obj_request->img_request->snap_id;
1415}
1416
1417static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1418{
1419 struct rbd_obj_request *obj_request = osd_req->r_priv;
1420
1421 osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1422 ktime_get_real_ts64(tv: &osd_req->r_mtime);
1423 osd_req->r_data_offset = obj_request->ex.oe_off;
1424}
1425
1426static struct ceph_osd_request *
1427__rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1428 struct ceph_snap_context *snapc, int num_ops)
1429{
1430 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1431 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1432 struct ceph_osd_request *req;
1433 const char *name_format = rbd_dev->image_format == 1 ?
1434 RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1435 int ret;
1436
1437 req = ceph_osdc_alloc_request(osdc, snapc, num_ops, use_mempool: false, GFP_NOIO);
1438 if (!req)
1439 return ERR_PTR(error: -ENOMEM);
1440
1441 list_add_tail(new: &req->r_private_item, head: &obj_req->osd_reqs);
1442 req->r_callback = rbd_osd_req_callback;
1443 req->r_priv = obj_req;
1444
1445 /*
1446 * Data objects may be stored in a separate pool, but always in
1447 * the same namespace in that pool as the header in its pool.
1448 */
1449 ceph_oloc_copy(dest: &req->r_base_oloc, src: &rbd_dev->header_oloc);
1450 req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1451
1452 ret = ceph_oid_aprintf(oid: &req->r_base_oid, GFP_NOIO, fmt: name_format,
1453 rbd_dev->header.object_prefix,
1454 obj_req->ex.oe_objno);
1455 if (ret)
1456 return ERR_PTR(error: ret);
1457
1458 return req;
1459}
1460
1461static struct ceph_osd_request *
1462rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1463{
1464 rbd_assert(obj_req->img_request->snapc);
1465 return __rbd_obj_add_osd_request(obj_req, snapc: obj_req->img_request->snapc,
1466 num_ops);
1467}
1468
1469static struct rbd_obj_request *rbd_obj_request_create(void)
1470{
1471 struct rbd_obj_request *obj_request;
1472
1473 obj_request = kmem_cache_zalloc(k: rbd_obj_request_cache, GFP_NOIO);
1474 if (!obj_request)
1475 return NULL;
1476
1477 ceph_object_extent_init(ex: &obj_request->ex);
1478 INIT_LIST_HEAD(list: &obj_request->osd_reqs);
1479 mutex_init(&obj_request->state_mutex);
1480 kref_init(kref: &obj_request->kref);
1481
1482 dout("%s %p\n", __func__, obj_request);
1483 return obj_request;
1484}
1485
1486static void rbd_obj_request_destroy(struct kref *kref)
1487{
1488 struct rbd_obj_request *obj_request;
1489 struct ceph_osd_request *osd_req;
1490 u32 i;
1491
1492 obj_request = container_of(kref, struct rbd_obj_request, kref);
1493
1494 dout("%s: obj %p\n", __func__, obj_request);
1495
1496 while (!list_empty(head: &obj_request->osd_reqs)) {
1497 osd_req = list_first_entry(&obj_request->osd_reqs,
1498 struct ceph_osd_request, r_private_item);
1499 list_del_init(entry: &osd_req->r_private_item);
1500 ceph_osdc_put_request(req: osd_req);
1501 }
1502
1503 switch (obj_request->img_request->data_type) {
1504 case OBJ_REQUEST_NODATA:
1505 case OBJ_REQUEST_BIO:
1506 case OBJ_REQUEST_BVECS:
1507 break; /* Nothing to do */
1508 case OBJ_REQUEST_OWN_BVECS:
1509 kfree(objp: obj_request->bvec_pos.bvecs);
1510 break;
1511 default:
1512 BUG();
1513 }
1514
1515 kfree(objp: obj_request->img_extents);
1516 if (obj_request->copyup_bvecs) {
1517 for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1518 if (obj_request->copyup_bvecs[i].bv_page)
1519 __free_page(obj_request->copyup_bvecs[i].bv_page);
1520 }
1521 kfree(objp: obj_request->copyup_bvecs);
1522 }
1523
1524 kmem_cache_free(s: rbd_obj_request_cache, objp: obj_request);
1525}
1526
1527/* It's OK to call this for a device with no parent */
1528
1529static void rbd_spec_put(struct rbd_spec *spec);
1530static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1531{
1532 rbd_dev_remove_parent(rbd_dev);
1533 rbd_spec_put(spec: rbd_dev->parent_spec);
1534 rbd_dev->parent_spec = NULL;
1535 rbd_dev->parent_overlap = 0;
1536}
1537
1538/*
1539 * Parent image reference counting is used to determine when an
1540 * image's parent fields can be safely torn down--after there are no
1541 * more in-flight requests to the parent image. When the last
1542 * reference is dropped, cleaning them up is safe.
1543 */
1544static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1545{
1546 int counter;
1547
1548 if (!rbd_dev->parent_spec)
1549 return;
1550
1551 counter = atomic_dec_return_safe(v: &rbd_dev->parent_ref);
1552 if (counter > 0)
1553 return;
1554
1555 /* Last reference; clean up parent data structures */
1556
1557 if (!counter)
1558 rbd_dev_unparent(rbd_dev);
1559 else
1560 rbd_warn(rbd_dev, fmt: "parent reference underflow");
1561}
1562
1563/*
1564 * If an image has a non-zero parent overlap, get a reference to its
1565 * parent.
1566 *
1567 * Returns true if the rbd device has a parent with a non-zero
1568 * overlap and a reference for it was successfully taken, or
1569 * false otherwise.
1570 */
1571static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1572{
1573 int counter = 0;
1574
1575 if (!rbd_dev->parent_spec)
1576 return false;
1577
1578 if (rbd_dev->parent_overlap)
1579 counter = atomic_inc_return_safe(v: &rbd_dev->parent_ref);
1580
1581 if (counter < 0)
1582 rbd_warn(rbd_dev, fmt: "parent reference overflow");
1583
1584 return counter > 0;
1585}
1586
1587static void rbd_img_request_init(struct rbd_img_request *img_request,
1588 struct rbd_device *rbd_dev,
1589 enum obj_operation_type op_type)
1590{
1591 memset(img_request, 0, sizeof(*img_request));
1592
1593 img_request->rbd_dev = rbd_dev;
1594 img_request->op_type = op_type;
1595
1596 INIT_LIST_HEAD(list: &img_request->lock_item);
1597 INIT_LIST_HEAD(list: &img_request->object_extents);
1598 mutex_init(&img_request->state_mutex);
1599}
1600
1601/*
1602 * Only snap_id is captured here, for reads. For writes, snapshot
1603 * context is captured in rbd_img_object_requests() after exclusive
1604 * lock is ensured to be held.
1605 */
1606static void rbd_img_capture_header(struct rbd_img_request *img_req)
1607{
1608 struct rbd_device *rbd_dev = img_req->rbd_dev;
1609
1610 lockdep_assert_held(&rbd_dev->header_rwsem);
1611
1612 if (!rbd_img_is_write(img_req))
1613 img_req->snap_id = rbd_dev->spec->snap_id;
1614
1615 if (rbd_dev_parent_get(rbd_dev))
1616 img_request_layered_set(img_request: img_req);
1617}
1618
1619static void rbd_img_request_destroy(struct rbd_img_request *img_request)
1620{
1621 struct rbd_obj_request *obj_request;
1622 struct rbd_obj_request *next_obj_request;
1623
1624 dout("%s: img %p\n", __func__, img_request);
1625
1626 WARN_ON(!list_empty(&img_request->lock_item));
1627 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1628 rbd_img_obj_request_del(img_request, obj_request);
1629
1630 if (img_request_layered_test(img_request))
1631 rbd_dev_parent_put(rbd_dev: img_request->rbd_dev);
1632
1633 if (rbd_img_is_write(img_req: img_request))
1634 ceph_put_snap_context(sc: img_request->snapc);
1635
1636 if (test_bit(IMG_REQ_CHILD, &img_request->flags))
1637 kmem_cache_free(s: rbd_img_request_cache, objp: img_request);
1638}
1639
1640#define BITS_PER_OBJ 2
1641#define OBJS_PER_BYTE (BITS_PER_BYTE / BITS_PER_OBJ)
1642#define OBJ_MASK ((1 << BITS_PER_OBJ) - 1)
1643
1644static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1645 u64 *index, u8 *shift)
1646{
1647 u32 off;
1648
1649 rbd_assert(objno < rbd_dev->object_map_size);
1650 *index = div_u64_rem(dividend: objno, OBJS_PER_BYTE, remainder: &off);
1651 *shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1652}
1653
1654static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1655{
1656 u64 index;
1657 u8 shift;
1658
1659 lockdep_assert_held(&rbd_dev->object_map_lock);
1660 __rbd_object_map_index(rbd_dev, objno, index: &index, shift: &shift);
1661 return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1662}
1663
1664static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1665{
1666 u64 index;
1667 u8 shift;
1668 u8 *p;
1669
1670 lockdep_assert_held(&rbd_dev->object_map_lock);
1671 rbd_assert(!(val & ~OBJ_MASK));
1672
1673 __rbd_object_map_index(rbd_dev, objno, index: &index, shift: &shift);
1674 p = &rbd_dev->object_map[index];
1675 *p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1676}
1677
1678static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1679{
1680 u8 state;
1681
1682 spin_lock(lock: &rbd_dev->object_map_lock);
1683 state = __rbd_object_map_get(rbd_dev, objno);
1684 spin_unlock(lock: &rbd_dev->object_map_lock);
1685 return state;
1686}
1687
1688static bool use_object_map(struct rbd_device *rbd_dev)
1689{
1690 /*
1691 * An image mapped read-only can't use the object map -- it isn't
1692 * loaded because the header lock isn't acquired. Someone else can
1693 * write to the image and update the object map behind our back.
1694 *
1695 * A snapshot can't be written to, so using the object map is always
1696 * safe.
1697 */
1698 if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev))
1699 return false;
1700
1701 return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1702 !(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1703}
1704
1705static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1706{
1707 u8 state;
1708
1709 /* fall back to default logic if object map is disabled or invalid */
1710 if (!use_object_map(rbd_dev))
1711 return true;
1712
1713 state = rbd_object_map_get(rbd_dev, objno);
1714 return state != OBJECT_NONEXISTENT;
1715}
1716
1717static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1718 struct ceph_object_id *oid)
1719{
1720 if (snap_id == CEPH_NOSNAP)
1721 ceph_oid_printf(oid, fmt: "%s%s", RBD_OBJECT_MAP_PREFIX,
1722 rbd_dev->spec->image_id);
1723 else
1724 ceph_oid_printf(oid, fmt: "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1725 rbd_dev->spec->image_id, snap_id);
1726}
1727
1728static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1729{
1730 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1731 CEPH_DEFINE_OID_ONSTACK(oid);
1732 u8 lock_type;
1733 char *lock_tag;
1734 struct ceph_locker *lockers;
1735 u32 num_lockers;
1736 bool broke_lock = false;
1737 int ret;
1738
1739 rbd_object_map_name(rbd_dev, CEPH_NOSNAP, oid: &oid);
1740
1741again:
1742 ret = ceph_cls_lock(osdc, oid: &oid, oloc: &rbd_dev->header_oloc, RBD_LOCK_NAME,
1743 type: CEPH_CLS_LOCK_EXCLUSIVE, cookie: "", tag: "", desc: "", flags: 0);
1744 if (ret != -EBUSY || broke_lock) {
1745 if (ret == -EEXIST)
1746 ret = 0; /* already locked by myself */
1747 if (ret)
1748 rbd_warn(rbd_dev, fmt: "failed to lock object map: %d", ret);
1749 return ret;
1750 }
1751
1752 ret = ceph_cls_lock_info(osdc, oid: &oid, oloc: &rbd_dev->header_oloc,
1753 RBD_LOCK_NAME, type: &lock_type, tag: &lock_tag,
1754 lockers: &lockers, num_lockers: &num_lockers);
1755 if (ret) {
1756 if (ret == -ENOENT)
1757 goto again;
1758
1759 rbd_warn(rbd_dev, fmt: "failed to get object map lockers: %d", ret);
1760 return ret;
1761 }
1762
1763 kfree(objp: lock_tag);
1764 if (num_lockers == 0)
1765 goto again;
1766
1767 rbd_warn(rbd_dev, fmt: "breaking object map lock owned by %s%llu",
1768 ENTITY_NAME(lockers[0].id.name));
1769
1770 ret = ceph_cls_break_lock(osdc, oid: &oid, oloc: &rbd_dev->header_oloc,
1771 RBD_LOCK_NAME, cookie: lockers[0].id.cookie,
1772 locker: &lockers[0].id.name);
1773 ceph_free_lockers(lockers, num_lockers);
1774 if (ret) {
1775 if (ret == -ENOENT)
1776 goto again;
1777
1778 rbd_warn(rbd_dev, fmt: "failed to break object map lock: %d", ret);
1779 return ret;
1780 }
1781
1782 broke_lock = true;
1783 goto again;
1784}
1785
1786static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1787{
1788 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1789 CEPH_DEFINE_OID_ONSTACK(oid);
1790 int ret;
1791
1792 rbd_object_map_name(rbd_dev, CEPH_NOSNAP, oid: &oid);
1793
1794 ret = ceph_cls_unlock(osdc, oid: &oid, oloc: &rbd_dev->header_oloc, RBD_LOCK_NAME,
1795 cookie: "");
1796 if (ret && ret != -ENOENT)
1797 rbd_warn(rbd_dev, fmt: "failed to unlock object map: %d", ret);
1798}
1799
1800static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1801{
1802 u8 struct_v;
1803 u32 struct_len;
1804 u32 header_len;
1805 void *header_end;
1806 int ret;
1807
1808 ceph_decode_32_safe(p, end, header_len, e_inval);
1809 header_end = *p + header_len;
1810
1811 ret = ceph_start_decoding(p, end, v: 1, name: "BitVector header", struct_v: &struct_v,
1812 struct_len: &struct_len);
1813 if (ret)
1814 return ret;
1815
1816 ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1817
1818 *p = header_end;
1819 return 0;
1820
1821e_inval:
1822 return -EINVAL;
1823}
1824
1825static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1826{
1827 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1828 CEPH_DEFINE_OID_ONSTACK(oid);
1829 struct page **pages;
1830 void *p, *end;
1831 size_t reply_len;
1832 u64 num_objects;
1833 u64 object_map_bytes;
1834 u64 object_map_size;
1835 int num_pages;
1836 int ret;
1837
1838 rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1839
1840 num_objects = ceph_get_num_objects(l: &rbd_dev->layout,
1841 size: rbd_dev->mapping.size);
1842 object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1843 BITS_PER_BYTE);
1844 num_pages = calc_pages_for(off: 0, len: object_map_bytes) + 1;
1845 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1846 if (IS_ERR(ptr: pages))
1847 return PTR_ERR(ptr: pages);
1848
1849 reply_len = num_pages * PAGE_SIZE;
1850 rbd_object_map_name(rbd_dev, snap_id: rbd_dev->spec->snap_id, oid: &oid);
1851 ret = ceph_osdc_call(osdc, oid: &oid, oloc: &rbd_dev->header_oloc,
1852 class: "rbd", method: "object_map_load", flags: CEPH_OSD_FLAG_READ,
1853 NULL, req_len: 0, resp_pages: pages, resp_len: &reply_len);
1854 if (ret)
1855 goto out;
1856
1857 p = page_address(pages[0]);
1858 end = p + min(reply_len, (size_t)PAGE_SIZE);
1859 ret = decode_object_map_header(p: &p, end, object_map_size: &object_map_size);
1860 if (ret)
1861 goto out;
1862
1863 if (object_map_size != num_objects) {
1864 rbd_warn(rbd_dev, fmt: "object map size mismatch: %llu vs %llu",
1865 object_map_size, num_objects);
1866 ret = -EINVAL;
1867 goto out;
1868 }
1869
1870 if (offset_in_page(p) + object_map_bytes > reply_len) {
1871 ret = -EINVAL;
1872 goto out;
1873 }
1874
1875 rbd_dev->object_map = kvmalloc(size: object_map_bytes, GFP_KERNEL);
1876 if (!rbd_dev->object_map) {
1877 ret = -ENOMEM;
1878 goto out;
1879 }
1880
1881 rbd_dev->object_map_size = object_map_size;
1882 ceph_copy_from_page_vector(pages, data: rbd_dev->object_map,
1883 offset_in_page(p), len: object_map_bytes);
1884
1885out:
1886 ceph_release_page_vector(pages, num_pages);
1887 return ret;
1888}
1889
1890static void rbd_object_map_free(struct rbd_device *rbd_dev)
1891{
1892 kvfree(addr: rbd_dev->object_map);
1893 rbd_dev->object_map = NULL;
1894 rbd_dev->object_map_size = 0;
1895}
1896
1897static int rbd_object_map_load(struct rbd_device *rbd_dev)
1898{
1899 int ret;
1900
1901 ret = __rbd_object_map_load(rbd_dev);
1902 if (ret)
1903 return ret;
1904
1905 ret = rbd_dev_v2_get_flags(rbd_dev);
1906 if (ret) {
1907 rbd_object_map_free(rbd_dev);
1908 return ret;
1909 }
1910
1911 if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
1912 rbd_warn(rbd_dev, fmt: "object map is invalid");
1913
1914 return 0;
1915}
1916
1917static int rbd_object_map_open(struct rbd_device *rbd_dev)
1918{
1919 int ret;
1920
1921 ret = rbd_object_map_lock(rbd_dev);
1922 if (ret)
1923 return ret;
1924
1925 ret = rbd_object_map_load(rbd_dev);
1926 if (ret) {
1927 rbd_object_map_unlock(rbd_dev);
1928 return ret;
1929 }
1930
1931 return 0;
1932}
1933
1934static void rbd_object_map_close(struct rbd_device *rbd_dev)
1935{
1936 rbd_object_map_free(rbd_dev);
1937 rbd_object_map_unlock(rbd_dev);
1938}
1939
1940/*
1941 * This function needs snap_id (or more precisely just something to
1942 * distinguish between HEAD and snapshot object maps), new_state and
1943 * current_state that were passed to rbd_object_map_update().
1944 *
1945 * To avoid allocating and stashing a context we piggyback on the OSD
1946 * request. A HEAD update has two ops (assert_locked). For new_state
1947 * and current_state we decode our own object_map_update op, encoded in
1948 * rbd_cls_object_map_update().
1949 */
1950static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
1951 struct ceph_osd_request *osd_req)
1952{
1953 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1954 struct ceph_osd_data *osd_data;
1955 u64 objno;
1956 u8 state, new_state, current_state;
1957 bool has_current_state;
1958 void *p;
1959
1960 if (osd_req->r_result)
1961 return osd_req->r_result;
1962
1963 /*
1964 * Nothing to do for a snapshot object map.
1965 */
1966 if (osd_req->r_num_ops == 1)
1967 return 0;
1968
1969 /*
1970 * Update in-memory HEAD object map.
1971 */
1972 rbd_assert(osd_req->r_num_ops == 2);
1973 osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
1974 rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
1975
1976 p = page_address(osd_data->pages[0]);
1977 objno = ceph_decode_64(p: &p);
1978 rbd_assert(objno == obj_req->ex.oe_objno);
1979 rbd_assert(ceph_decode_64(&p) == objno + 1);
1980 new_state = ceph_decode_8(p: &p);
1981 has_current_state = ceph_decode_8(p: &p);
1982 if (has_current_state)
1983 current_state = ceph_decode_8(p: &p);
1984
1985 spin_lock(lock: &rbd_dev->object_map_lock);
1986 state = __rbd_object_map_get(rbd_dev, objno);
1987 if (!has_current_state || current_state == state ||
1988 (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
1989 __rbd_object_map_set(rbd_dev, objno, val: new_state);
1990 spin_unlock(lock: &rbd_dev->object_map_lock);
1991
1992 return 0;
1993}
1994
1995static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
1996{
1997 struct rbd_obj_request *obj_req = osd_req->r_priv;
1998 int result;
1999
2000 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
2001 osd_req->r_result, obj_req);
2002
2003 result = rbd_object_map_update_finish(obj_req, osd_req);
2004 rbd_obj_handle_request(obj_req, result);
2005}
2006
2007static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
2008{
2009 u8 state = rbd_object_map_get(rbd_dev, objno);
2010
2011 if (state == new_state ||
2012 (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
2013 (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
2014 return false;
2015
2016 return true;
2017}
2018
2019static int rbd_cls_object_map_update(struct ceph_osd_request *req,
2020 int which, u64 objno, u8 new_state,
2021 const u8 *current_state)
2022{
2023 struct page **pages;
2024 void *p, *start;
2025 int ret;
2026
2027 ret = osd_req_op_cls_init(osd_req: req, which, class: "rbd", method: "object_map_update");
2028 if (ret)
2029 return ret;
2030
2031 pages = ceph_alloc_page_vector(num_pages: 1, GFP_NOIO);
2032 if (IS_ERR(ptr: pages))
2033 return PTR_ERR(ptr: pages);
2034
2035 p = start = page_address(pages[0]);
2036 ceph_encode_64(p: &p, v: objno);
2037 ceph_encode_64(p: &p, v: objno + 1);
2038 ceph_encode_8(p: &p, v: new_state);
2039 if (current_state) {
2040 ceph_encode_8(p: &p, v: 1);
2041 ceph_encode_8(p: &p, v: *current_state);
2042 } else {
2043 ceph_encode_8(p: &p, v: 0);
2044 }
2045
2046 osd_req_op_cls_request_data_pages(req, which, pages, length: p - start, alignment: 0,
2047 pages_from_pool: false, own_pages: true);
2048 return 0;
2049}
2050
2051/*
2052 * Return:
2053 * 0 - object map update sent
2054 * 1 - object map update isn't needed
2055 * <0 - error
2056 */
2057static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2058 u8 new_state, const u8 *current_state)
2059{
2060 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2061 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2062 struct ceph_osd_request *req;
2063 int num_ops = 1;
2064 int which = 0;
2065 int ret;
2066
2067 if (snap_id == CEPH_NOSNAP) {
2068 if (!update_needed(rbd_dev, objno: obj_req->ex.oe_objno, new_state))
2069 return 1;
2070
2071 num_ops++; /* assert_locked */
2072 }
2073
2074 req = ceph_osdc_alloc_request(osdc, NULL, num_ops, use_mempool: false, GFP_NOIO);
2075 if (!req)
2076 return -ENOMEM;
2077
2078 list_add_tail(new: &req->r_private_item, head: &obj_req->osd_reqs);
2079 req->r_callback = rbd_object_map_callback;
2080 req->r_priv = obj_req;
2081
2082 rbd_object_map_name(rbd_dev, snap_id, oid: &req->r_base_oid);
2083 ceph_oloc_copy(dest: &req->r_base_oloc, src: &rbd_dev->header_oloc);
2084 req->r_flags = CEPH_OSD_FLAG_WRITE;
2085 ktime_get_real_ts64(tv: &req->r_mtime);
2086
2087 if (snap_id == CEPH_NOSNAP) {
2088 /*
2089 * Protect against possible race conditions during lock
2090 * ownership transitions.
2091 */
2092 ret = ceph_cls_assert_locked(req, which: which++, RBD_LOCK_NAME,
2093 type: CEPH_CLS_LOCK_EXCLUSIVE, cookie: "", tag: "");
2094 if (ret)
2095 return ret;
2096 }
2097
2098 ret = rbd_cls_object_map_update(req, which, objno: obj_req->ex.oe_objno,
2099 new_state, current_state);
2100 if (ret)
2101 return ret;
2102
2103 ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2104 if (ret)
2105 return ret;
2106
2107 ceph_osdc_start_request(osdc, req);
2108 return 0;
2109}
2110
2111static void prune_extents(struct ceph_file_extent *img_extents,
2112 u32 *num_img_extents, u64 overlap)
2113{
2114 u32 cnt = *num_img_extents;
2115
2116 /* drop extents completely beyond the overlap */
2117 while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2118 cnt--;
2119
2120 if (cnt) {
2121 struct ceph_file_extent *ex = &img_extents[cnt - 1];
2122
2123 /* trim final overlapping extent */
2124 if (ex->fe_off + ex->fe_len > overlap)
2125 ex->fe_len = overlap - ex->fe_off;
2126 }
2127
2128 *num_img_extents = cnt;
2129}
2130
2131/*
2132 * Determine the byte range(s) covered by either just the object extent
2133 * or the entire object in the parent image.
2134 */
2135static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2136 bool entire)
2137{
2138 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2139 int ret;
2140
2141 if (!rbd_dev->parent_overlap)
2142 return 0;
2143
2144 ret = ceph_extent_to_file(l: &rbd_dev->layout, objno: obj_req->ex.oe_objno,
2145 objoff: entire ? 0 : obj_req->ex.oe_off,
2146 objlen: entire ? rbd_dev->layout.object_size :
2147 obj_req->ex.oe_len,
2148 file_extents: &obj_req->img_extents,
2149 num_file_extents: &obj_req->num_img_extents);
2150 if (ret)
2151 return ret;
2152
2153 prune_extents(img_extents: obj_req->img_extents, num_img_extents: &obj_req->num_img_extents,
2154 overlap: rbd_dev->parent_overlap);
2155 return 0;
2156}
2157
2158static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2159{
2160 struct rbd_obj_request *obj_req = osd_req->r_priv;
2161
2162 switch (obj_req->img_request->data_type) {
2163 case OBJ_REQUEST_BIO:
2164 osd_req_op_extent_osd_data_bio(osd_req, which,
2165 bio_pos: &obj_req->bio_pos,
2166 bio_length: obj_req->ex.oe_len);
2167 break;
2168 case OBJ_REQUEST_BVECS:
2169 case OBJ_REQUEST_OWN_BVECS:
2170 rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2171 obj_req->ex.oe_len);
2172 rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2173 osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2174 bvec_pos: &obj_req->bvec_pos);
2175 break;
2176 default:
2177 BUG();
2178 }
2179}
2180
2181static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2182{
2183 struct page **pages;
2184
2185 /*
2186 * The response data for a STAT call consists of:
2187 * le64 length;
2188 * struct {
2189 * le32 tv_sec;
2190 * le32 tv_nsec;
2191 * } mtime;
2192 */
2193 pages = ceph_alloc_page_vector(num_pages: 1, GFP_NOIO);
2194 if (IS_ERR(ptr: pages))
2195 return PTR_ERR(ptr: pages);
2196
2197 osd_req_op_init(osd_req, which, opcode: CEPH_OSD_OP_STAT, flags: 0);
2198 osd_req_op_raw_data_in_pages(osd_req, which, pages,
2199 length: 8 + sizeof(struct ceph_timespec),
2200 alignment: 0, pages_from_pool: false, own_pages: true);
2201 return 0;
2202}
2203
2204static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2205 u32 bytes)
2206{
2207 struct rbd_obj_request *obj_req = osd_req->r_priv;
2208 int ret;
2209
2210 ret = osd_req_op_cls_init(osd_req, which, class: "rbd", method: "copyup");
2211 if (ret)
2212 return ret;
2213
2214 osd_req_op_cls_request_data_bvecs(osd_req, which, bvecs: obj_req->copyup_bvecs,
2215 num_bvecs: obj_req->copyup_bvec_count, bytes);
2216 return 0;
2217}
2218
2219static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2220{
2221 obj_req->read_state = RBD_OBJ_READ_START;
2222 return 0;
2223}
2224
2225static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2226 int which)
2227{
2228 struct rbd_obj_request *obj_req = osd_req->r_priv;
2229 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2230 u16 opcode;
2231
2232 if (!use_object_map(rbd_dev) ||
2233 !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2234 osd_req_op_alloc_hint_init(osd_req, which: which++,
2235 expected_object_size: rbd_dev->layout.object_size,
2236 expected_write_size: rbd_dev->layout.object_size,
2237 flags: rbd_dev->opts->alloc_hint_flags);
2238 }
2239
2240 if (rbd_obj_is_entire(obj_req))
2241 opcode = CEPH_OSD_OP_WRITEFULL;
2242 else
2243 opcode = CEPH_OSD_OP_WRITE;
2244
2245 osd_req_op_extent_init(osd_req, which, opcode,
2246 offset: obj_req->ex.oe_off, length: obj_req->ex.oe_len, truncate_size: 0, truncate_seq: 0);
2247 rbd_osd_setup_data(osd_req, which);
2248}
2249
2250static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2251{
2252 int ret;
2253
2254 /* reverse map the entire object onto the parent */
2255 ret = rbd_obj_calc_img_extents(obj_req, entire: true);
2256 if (ret)
2257 return ret;
2258
2259 obj_req->write_state = RBD_OBJ_WRITE_START;
2260 return 0;
2261}
2262
2263static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2264{
2265 return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2266 CEPH_OSD_OP_ZERO;
2267}
2268
2269static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2270 int which)
2271{
2272 struct rbd_obj_request *obj_req = osd_req->r_priv;
2273
2274 if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2275 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2276 osd_req_op_init(osd_req, which, opcode: CEPH_OSD_OP_DELETE, flags: 0);
2277 } else {
2278 osd_req_op_extent_init(osd_req, which,
2279 opcode: truncate_or_zero_opcode(obj_req),
2280 offset: obj_req->ex.oe_off, length: obj_req->ex.oe_len,
2281 truncate_size: 0, truncate_seq: 0);
2282 }
2283}
2284
2285static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2286{
2287 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2288 u64 off, next_off;
2289 int ret;
2290
2291 /*
2292 * Align the range to alloc_size boundary and punt on discards
2293 * that are too small to free up any space.
2294 *
2295 * alloc_size == object_size && is_tail() is a special case for
2296 * filestore with filestore_punch_hole = false, needed to allow
2297 * truncate (in addition to delete).
2298 */
2299 if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2300 !rbd_obj_is_tail(obj_req)) {
2301 off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2302 next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2303 rbd_dev->opts->alloc_size);
2304 if (off >= next_off)
2305 return 1;
2306
2307 dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2308 obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2309 off, next_off - off);
2310 obj_req->ex.oe_off = off;
2311 obj_req->ex.oe_len = next_off - off;
2312 }
2313
2314 /* reverse map the entire object onto the parent */
2315 ret = rbd_obj_calc_img_extents(obj_req, entire: true);
2316 if (ret)
2317 return ret;
2318
2319 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2320 if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2321 obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2322
2323 obj_req->write_state = RBD_OBJ_WRITE_START;
2324 return 0;
2325}
2326
2327static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2328 int which)
2329{
2330 struct rbd_obj_request *obj_req = osd_req->r_priv;
2331 u16 opcode;
2332
2333 if (rbd_obj_is_entire(obj_req)) {
2334 if (obj_req->num_img_extents) {
2335 if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2336 osd_req_op_init(osd_req, which: which++,
2337 opcode: CEPH_OSD_OP_CREATE, flags: 0);
2338 opcode = CEPH_OSD_OP_TRUNCATE;
2339 } else {
2340 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2341 osd_req_op_init(osd_req, which: which++,
2342 opcode: CEPH_OSD_OP_DELETE, flags: 0);
2343 opcode = 0;
2344 }
2345 } else {
2346 opcode = truncate_or_zero_opcode(obj_req);
2347 }
2348
2349 if (opcode)
2350 osd_req_op_extent_init(osd_req, which, opcode,
2351 offset: obj_req->ex.oe_off, length: obj_req->ex.oe_len,
2352 truncate_size: 0, truncate_seq: 0);
2353}
2354
2355static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2356{
2357 int ret;
2358
2359 /* reverse map the entire object onto the parent */
2360 ret = rbd_obj_calc_img_extents(obj_req, entire: true);
2361 if (ret)
2362 return ret;
2363
2364 if (!obj_req->num_img_extents) {
2365 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2366 if (rbd_obj_is_entire(obj_req))
2367 obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2368 }
2369
2370 obj_req->write_state = RBD_OBJ_WRITE_START;
2371 return 0;
2372}
2373
2374static int count_write_ops(struct rbd_obj_request *obj_req)
2375{
2376 struct rbd_img_request *img_req = obj_req->img_request;
2377
2378 switch (img_req->op_type) {
2379 case OBJ_OP_WRITE:
2380 if (!use_object_map(rbd_dev: img_req->rbd_dev) ||
2381 !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2382 return 2; /* setallochint + write/writefull */
2383
2384 return 1; /* write/writefull */
2385 case OBJ_OP_DISCARD:
2386 return 1; /* delete/truncate/zero */
2387 case OBJ_OP_ZEROOUT:
2388 if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2389 !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2390 return 2; /* create + truncate */
2391
2392 return 1; /* delete/truncate/zero */
2393 default:
2394 BUG();
2395 }
2396}
2397
2398static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2399 int which)
2400{
2401 struct rbd_obj_request *obj_req = osd_req->r_priv;
2402
2403 switch (obj_req->img_request->op_type) {
2404 case OBJ_OP_WRITE:
2405 __rbd_osd_setup_write_ops(osd_req, which);
2406 break;
2407 case OBJ_OP_DISCARD:
2408 __rbd_osd_setup_discard_ops(osd_req, which);
2409 break;
2410 case OBJ_OP_ZEROOUT:
2411 __rbd_osd_setup_zeroout_ops(osd_req, which);
2412 break;
2413 default:
2414 BUG();
2415 }
2416}
2417
2418/*
2419 * Prune the list of object requests (adjust offset and/or length, drop
2420 * redundant requests). Prepare object request state machines and image
2421 * request state machine for execution.
2422 */
2423static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2424{
2425 struct rbd_obj_request *obj_req, *next_obj_req;
2426 int ret;
2427
2428 for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2429 switch (img_req->op_type) {
2430 case OBJ_OP_READ:
2431 ret = rbd_obj_init_read(obj_req);
2432 break;
2433 case OBJ_OP_WRITE:
2434 ret = rbd_obj_init_write(obj_req);
2435 break;
2436 case OBJ_OP_DISCARD:
2437 ret = rbd_obj_init_discard(obj_req);
2438 break;
2439 case OBJ_OP_ZEROOUT:
2440 ret = rbd_obj_init_zeroout(obj_req);
2441 break;
2442 default:
2443 BUG();
2444 }
2445 if (ret < 0)
2446 return ret;
2447 if (ret > 0) {
2448 rbd_img_obj_request_del(img_request: img_req, obj_request: obj_req);
2449 continue;
2450 }
2451 }
2452
2453 img_req->state = RBD_IMG_START;
2454 return 0;
2455}
2456
2457union rbd_img_fill_iter {
2458 struct ceph_bio_iter bio_iter;
2459 struct ceph_bvec_iter bvec_iter;
2460};
2461
2462struct rbd_img_fill_ctx {
2463 enum obj_request_type pos_type;
2464 union rbd_img_fill_iter *pos;
2465 union rbd_img_fill_iter iter;
2466 ceph_object_extent_fn_t set_pos_fn;
2467 ceph_object_extent_fn_t count_fn;
2468 ceph_object_extent_fn_t copy_fn;
2469};
2470
2471static struct ceph_object_extent *alloc_object_extent(void *arg)
2472{
2473 struct rbd_img_request *img_req = arg;
2474 struct rbd_obj_request *obj_req;
2475
2476 obj_req = rbd_obj_request_create();
2477 if (!obj_req)
2478 return NULL;
2479
2480 rbd_img_obj_request_add(img_request: img_req, obj_request: obj_req);
2481 return &obj_req->ex;
2482}
2483
2484/*
2485 * While su != os && sc == 1 is technically not fancy (it's the same
2486 * layout as su == os && sc == 1), we can't use the nocopy path for it
2487 * because ->set_pos_fn() should be called only once per object.
2488 * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2489 * treat su != os && sc == 1 as fancy.
2490 */
2491static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2492{
2493 return l->stripe_unit != l->object_size;
2494}
2495
2496static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2497 struct ceph_file_extent *img_extents,
2498 u32 num_img_extents,
2499 struct rbd_img_fill_ctx *fctx)
2500{
2501 u32 i;
2502 int ret;
2503
2504 img_req->data_type = fctx->pos_type;
2505
2506 /*
2507 * Create object requests and set each object request's starting
2508 * position in the provided bio (list) or bio_vec array.
2509 */
2510 fctx->iter = *fctx->pos;
2511 for (i = 0; i < num_img_extents; i++) {
2512 ret = ceph_file_to_extents(l: &img_req->rbd_dev->layout,
2513 off: img_extents[i].fe_off,
2514 len: img_extents[i].fe_len,
2515 object_extents: &img_req->object_extents,
2516 alloc_fn: alloc_object_extent, alloc_arg: img_req,
2517 action_fn: fctx->set_pos_fn, action_arg: &fctx->iter);
2518 if (ret)
2519 return ret;
2520 }
2521
2522 return __rbd_img_fill_request(img_req);
2523}
2524
2525/*
2526 * Map a list of image extents to a list of object extents, create the
2527 * corresponding object requests (normally each to a different object,
2528 * but not always) and add them to @img_req. For each object request,
2529 * set up its data descriptor to point to the corresponding chunk(s) of
2530 * @fctx->pos data buffer.
2531 *
2532 * Because ceph_file_to_extents() will merge adjacent object extents
2533 * together, each object request's data descriptor may point to multiple
2534 * different chunks of @fctx->pos data buffer.
2535 *
2536 * @fctx->pos data buffer is assumed to be large enough.
2537 */
2538static int rbd_img_fill_request(struct rbd_img_request *img_req,
2539 struct ceph_file_extent *img_extents,
2540 u32 num_img_extents,
2541 struct rbd_img_fill_ctx *fctx)
2542{
2543 struct rbd_device *rbd_dev = img_req->rbd_dev;
2544 struct rbd_obj_request *obj_req;
2545 u32 i;
2546 int ret;
2547
2548 if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2549 !rbd_layout_is_fancy(l: &rbd_dev->layout))
2550 return rbd_img_fill_request_nocopy(img_req, img_extents,
2551 num_img_extents, fctx);
2552
2553 img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2554
2555 /*
2556 * Create object requests and determine ->bvec_count for each object
2557 * request. Note that ->bvec_count sum over all object requests may
2558 * be greater than the number of bio_vecs in the provided bio (list)
2559 * or bio_vec array because when mapped, those bio_vecs can straddle
2560 * stripe unit boundaries.
2561 */
2562 fctx->iter = *fctx->pos;
2563 for (i = 0; i < num_img_extents; i++) {
2564 ret = ceph_file_to_extents(l: &rbd_dev->layout,
2565 off: img_extents[i].fe_off,
2566 len: img_extents[i].fe_len,
2567 object_extents: &img_req->object_extents,
2568 alloc_fn: alloc_object_extent, alloc_arg: img_req,
2569 action_fn: fctx->count_fn, action_arg: &fctx->iter);
2570 if (ret)
2571 return ret;
2572 }
2573
2574 for_each_obj_request(img_req, obj_req) {
2575 obj_req->bvec_pos.bvecs = kmalloc_array(n: obj_req->bvec_count,
2576 size: sizeof(*obj_req->bvec_pos.bvecs),
2577 GFP_NOIO);
2578 if (!obj_req->bvec_pos.bvecs)
2579 return -ENOMEM;
2580 }
2581
2582 /*
2583 * Fill in each object request's private bio_vec array, splitting and
2584 * rearranging the provided bio_vecs in stripe unit chunks as needed.
2585 */
2586 fctx->iter = *fctx->pos;
2587 for (i = 0; i < num_img_extents; i++) {
2588 ret = ceph_iterate_extents(l: &rbd_dev->layout,
2589 off: img_extents[i].fe_off,
2590 len: img_extents[i].fe_len,
2591 object_extents: &img_req->object_extents,
2592 action_fn: fctx->copy_fn, action_arg: &fctx->iter);
2593 if (ret)
2594 return ret;
2595 }
2596
2597 return __rbd_img_fill_request(img_req);
2598}
2599
2600static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2601 u64 off, u64 len)
2602{
2603 struct ceph_file_extent ex = { off, len };
2604 union rbd_img_fill_iter dummy = {};
2605 struct rbd_img_fill_ctx fctx = {
2606 .pos_type = OBJ_REQUEST_NODATA,
2607 .pos = &dummy,
2608 };
2609
2610 return rbd_img_fill_request(img_req, img_extents: &ex, num_img_extents: 1, fctx: &fctx);
2611}
2612
2613static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2614{
2615 struct rbd_obj_request *obj_req =
2616 container_of(ex, struct rbd_obj_request, ex);
2617 struct ceph_bio_iter *it = arg;
2618
2619 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2620 obj_req->bio_pos = *it;
2621 ceph_bio_iter_advance(it, bytes);
2622}
2623
2624static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2625{
2626 struct rbd_obj_request *obj_req =
2627 container_of(ex, struct rbd_obj_request, ex);
2628 struct ceph_bio_iter *it = arg;
2629
2630 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2631 ceph_bio_iter_advance_step(it, bytes, ({
2632 obj_req->bvec_count++;
2633 }));
2634
2635}
2636
2637static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2638{
2639 struct rbd_obj_request *obj_req =
2640 container_of(ex, struct rbd_obj_request, ex);
2641 struct ceph_bio_iter *it = arg;
2642
2643 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2644 ceph_bio_iter_advance_step(it, bytes, ({
2645 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2646 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2647 }));
2648}
2649
2650static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2651 struct ceph_file_extent *img_extents,
2652 u32 num_img_extents,
2653 struct ceph_bio_iter *bio_pos)
2654{
2655 struct rbd_img_fill_ctx fctx = {
2656 .pos_type = OBJ_REQUEST_BIO,
2657 .pos = (union rbd_img_fill_iter *)bio_pos,
2658 .set_pos_fn = set_bio_pos,
2659 .count_fn = count_bio_bvecs,
2660 .copy_fn = copy_bio_bvecs,
2661 };
2662
2663 return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2664 fctx: &fctx);
2665}
2666
2667static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2668 u64 off, u64 len, struct bio *bio)
2669{
2670 struct ceph_file_extent ex = { off, len };
2671 struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2672
2673 return __rbd_img_fill_from_bio(img_req, img_extents: &ex, num_img_extents: 1, bio_pos: &it);
2674}
2675
2676static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2677{
2678 struct rbd_obj_request *obj_req =
2679 container_of(ex, struct rbd_obj_request, ex);
2680 struct ceph_bvec_iter *it = arg;
2681
2682 obj_req->bvec_pos = *it;
2683 ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2684 ceph_bvec_iter_advance(it, bytes);
2685}
2686
2687static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2688{
2689 struct rbd_obj_request *obj_req =
2690 container_of(ex, struct rbd_obj_request, ex);
2691 struct ceph_bvec_iter *it = arg;
2692
2693 ceph_bvec_iter_advance_step(it, bytes, ({
2694 obj_req->bvec_count++;
2695 }));
2696}
2697
2698static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2699{
2700 struct rbd_obj_request *obj_req =
2701 container_of(ex, struct rbd_obj_request, ex);
2702 struct ceph_bvec_iter *it = arg;
2703
2704 ceph_bvec_iter_advance_step(it, bytes, ({
2705 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2706 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2707 }));
2708}
2709
2710static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2711 struct ceph_file_extent *img_extents,
2712 u32 num_img_extents,
2713 struct ceph_bvec_iter *bvec_pos)
2714{
2715 struct rbd_img_fill_ctx fctx = {
2716 .pos_type = OBJ_REQUEST_BVECS,
2717 .pos = (union rbd_img_fill_iter *)bvec_pos,
2718 .set_pos_fn = set_bvec_pos,
2719 .count_fn = count_bvecs,
2720 .copy_fn = copy_bvecs,
2721 };
2722
2723 return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2724 fctx: &fctx);
2725}
2726
2727static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2728 struct ceph_file_extent *img_extents,
2729 u32 num_img_extents,
2730 struct bio_vec *bvecs)
2731{
2732 struct ceph_bvec_iter it = {
2733 .bvecs = bvecs,
2734 .iter = { .bi_size = ceph_file_extents_bytes(file_extents: img_extents,
2735 num_file_extents: num_img_extents) },
2736 };
2737
2738 return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2739 bvec_pos: &it);
2740}
2741
2742static void rbd_img_handle_request_work(struct work_struct *work)
2743{
2744 struct rbd_img_request *img_req =
2745 container_of(work, struct rbd_img_request, work);
2746
2747 rbd_img_handle_request(img_req, result: img_req->work_result);
2748}
2749
2750static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2751{
2752 INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2753 img_req->work_result = result;
2754 queue_work(wq: rbd_wq, work: &img_req->work);
2755}
2756
2757static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2758{
2759 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2760
2761 if (rbd_object_map_may_exist(rbd_dev, objno: obj_req->ex.oe_objno)) {
2762 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2763 return true;
2764 }
2765
2766 dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2767 obj_req->ex.oe_objno);
2768 return false;
2769}
2770
2771static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2772{
2773 struct ceph_osd_request *osd_req;
2774 int ret;
2775
2776 osd_req = __rbd_obj_add_osd_request(obj_req, NULL, num_ops: 1);
2777 if (IS_ERR(ptr: osd_req))
2778 return PTR_ERR(ptr: osd_req);
2779
2780 osd_req_op_extent_init(osd_req, which: 0, opcode: CEPH_OSD_OP_READ,
2781 offset: obj_req->ex.oe_off, length: obj_req->ex.oe_len, truncate_size: 0, truncate_seq: 0);
2782 rbd_osd_setup_data(osd_req, which: 0);
2783 rbd_osd_format_read(osd_req);
2784
2785 ret = ceph_osdc_alloc_messages(req: osd_req, GFP_NOIO);
2786 if (ret)
2787 return ret;
2788
2789 rbd_osd_submit(osd_req);
2790 return 0;
2791}
2792
2793static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2794{
2795 struct rbd_img_request *img_req = obj_req->img_request;
2796 struct rbd_device *parent = img_req->rbd_dev->parent;
2797 struct rbd_img_request *child_img_req;
2798 int ret;
2799
2800 child_img_req = kmem_cache_alloc(cachep: rbd_img_request_cache, GFP_NOIO);
2801 if (!child_img_req)
2802 return -ENOMEM;
2803
2804 rbd_img_request_init(img_request: child_img_req, rbd_dev: parent, op_type: OBJ_OP_READ);
2805 __set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2806 child_img_req->obj_request = obj_req;
2807
2808 down_read(sem: &parent->header_rwsem);
2809 rbd_img_capture_header(img_req: child_img_req);
2810 up_read(sem: &parent->header_rwsem);
2811
2812 dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2813 obj_req);
2814
2815 if (!rbd_img_is_write(img_req)) {
2816 switch (img_req->data_type) {
2817 case OBJ_REQUEST_BIO:
2818 ret = __rbd_img_fill_from_bio(img_req: child_img_req,
2819 img_extents: obj_req->img_extents,
2820 num_img_extents: obj_req->num_img_extents,
2821 bio_pos: &obj_req->bio_pos);
2822 break;
2823 case OBJ_REQUEST_BVECS:
2824 case OBJ_REQUEST_OWN_BVECS:
2825 ret = __rbd_img_fill_from_bvecs(img_req: child_img_req,
2826 img_extents: obj_req->img_extents,
2827 num_img_extents: obj_req->num_img_extents,
2828 bvec_pos: &obj_req->bvec_pos);
2829 break;
2830 default:
2831 BUG();
2832 }
2833 } else {
2834 ret = rbd_img_fill_from_bvecs(img_req: child_img_req,
2835 img_extents: obj_req->img_extents,
2836 num_img_extents: obj_req->num_img_extents,
2837 bvecs: obj_req->copyup_bvecs);
2838 }
2839 if (ret) {
2840 rbd_img_request_destroy(img_request: child_img_req);
2841 return ret;
2842 }
2843
2844 /* avoid parent chain recursion */
2845 rbd_img_schedule(img_req: child_img_req, result: 0);
2846 return 0;
2847}
2848
2849static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2850{
2851 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2852 int ret;
2853
2854again:
2855 switch (obj_req->read_state) {
2856 case RBD_OBJ_READ_START:
2857 rbd_assert(!*result);
2858
2859 if (!rbd_obj_may_exist(obj_req)) {
2860 *result = -ENOENT;
2861 obj_req->read_state = RBD_OBJ_READ_OBJECT;
2862 goto again;
2863 }
2864
2865 ret = rbd_obj_read_object(obj_req);
2866 if (ret) {
2867 *result = ret;
2868 return true;
2869 }
2870 obj_req->read_state = RBD_OBJ_READ_OBJECT;
2871 return false;
2872 case RBD_OBJ_READ_OBJECT:
2873 if (*result == -ENOENT && rbd_dev->parent_overlap) {
2874 /* reverse map this object extent onto the parent */
2875 ret = rbd_obj_calc_img_extents(obj_req, entire: false);
2876 if (ret) {
2877 *result = ret;
2878 return true;
2879 }
2880 if (obj_req->num_img_extents) {
2881 ret = rbd_obj_read_from_parent(obj_req);
2882 if (ret) {
2883 *result = ret;
2884 return true;
2885 }
2886 obj_req->read_state = RBD_OBJ_READ_PARENT;
2887 return false;
2888 }
2889 }
2890
2891 /*
2892 * -ENOENT means a hole in the image -- zero-fill the entire
2893 * length of the request. A short read also implies zero-fill
2894 * to the end of the request.
2895 */
2896 if (*result == -ENOENT) {
2897 rbd_obj_zero_range(obj_req, off: 0, bytes: obj_req->ex.oe_len);
2898 *result = 0;
2899 } else if (*result >= 0) {
2900 if (*result < obj_req->ex.oe_len)
2901 rbd_obj_zero_range(obj_req, off: *result,
2902 bytes: obj_req->ex.oe_len - *result);
2903 else
2904 rbd_assert(*result == obj_req->ex.oe_len);
2905 *result = 0;
2906 }
2907 return true;
2908 case RBD_OBJ_READ_PARENT:
2909 /*
2910 * The parent image is read only up to the overlap -- zero-fill
2911 * from the overlap to the end of the request.
2912 */
2913 if (!*result) {
2914 u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
2915
2916 if (obj_overlap < obj_req->ex.oe_len)
2917 rbd_obj_zero_range(obj_req, off: obj_overlap,
2918 bytes: obj_req->ex.oe_len - obj_overlap);
2919 }
2920 return true;
2921 default:
2922 BUG();
2923 }
2924}
2925
2926static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
2927{
2928 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2929
2930 if (rbd_object_map_may_exist(rbd_dev, objno: obj_req->ex.oe_objno))
2931 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2932
2933 if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
2934 (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
2935 dout("%s %p noop for nonexistent\n", __func__, obj_req);
2936 return true;
2937 }
2938
2939 return false;
2940}
2941
2942/*
2943 * Return:
2944 * 0 - object map update sent
2945 * 1 - object map update isn't needed
2946 * <0 - error
2947 */
2948static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
2949{
2950 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2951 u8 new_state;
2952
2953 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
2954 return 1;
2955
2956 if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
2957 new_state = OBJECT_PENDING;
2958 else
2959 new_state = OBJECT_EXISTS;
2960
2961 return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
2962}
2963
2964static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
2965{
2966 struct ceph_osd_request *osd_req;
2967 int num_ops = count_write_ops(obj_req);
2968 int which = 0;
2969 int ret;
2970
2971 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
2972 num_ops++; /* stat */
2973
2974 osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
2975 if (IS_ERR(ptr: osd_req))
2976 return PTR_ERR(ptr: osd_req);
2977
2978 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
2979 ret = rbd_osd_setup_stat(osd_req, which: which++);
2980 if (ret)
2981 return ret;
2982 }
2983
2984 rbd_osd_setup_write_ops(osd_req, which);
2985 rbd_osd_format_write(osd_req);
2986
2987 ret = ceph_osdc_alloc_messages(req: osd_req, GFP_NOIO);
2988 if (ret)
2989 return ret;
2990
2991 rbd_osd_submit(osd_req);
2992 return 0;
2993}
2994
2995/*
2996 * copyup_bvecs pages are never highmem pages
2997 */
2998static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
2999{
3000 struct ceph_bvec_iter it = {
3001 .bvecs = bvecs,
3002 .iter = { .bi_size = bytes },
3003 };
3004
3005 ceph_bvec_iter_advance_step(&it, bytes, ({
3006 if (memchr_inv(bvec_virt(&bv), 0, bv.bv_len))
3007 return false;
3008 }));
3009 return true;
3010}
3011
3012#define MODS_ONLY U32_MAX
3013
3014static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
3015 u32 bytes)
3016{
3017 struct ceph_osd_request *osd_req;
3018 int ret;
3019
3020 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3021 rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3022
3023 osd_req = __rbd_obj_add_osd_request(obj_req, snapc: &rbd_empty_snapc, num_ops: 1);
3024 if (IS_ERR(ptr: osd_req))
3025 return PTR_ERR(ptr: osd_req);
3026
3027 ret = rbd_osd_setup_copyup(osd_req, which: 0, bytes);
3028 if (ret)
3029 return ret;
3030
3031 rbd_osd_format_write(osd_req);
3032
3033 ret = ceph_osdc_alloc_messages(req: osd_req, GFP_NOIO);
3034 if (ret)
3035 return ret;
3036
3037 rbd_osd_submit(osd_req);
3038 return 0;
3039}
3040
3041static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3042 u32 bytes)
3043{
3044 struct ceph_osd_request *osd_req;
3045 int num_ops = count_write_ops(obj_req);
3046 int which = 0;
3047 int ret;
3048
3049 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3050
3051 if (bytes != MODS_ONLY)
3052 num_ops++; /* copyup */
3053
3054 osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3055 if (IS_ERR(ptr: osd_req))
3056 return PTR_ERR(ptr: osd_req);
3057
3058 if (bytes != MODS_ONLY) {
3059 ret = rbd_osd_setup_copyup(osd_req, which: which++, bytes);
3060 if (ret)
3061 return ret;
3062 }
3063
3064 rbd_osd_setup_write_ops(osd_req, which);
3065 rbd_osd_format_write(osd_req);
3066
3067 ret = ceph_osdc_alloc_messages(req: osd_req, GFP_NOIO);
3068 if (ret)
3069 return ret;
3070
3071 rbd_osd_submit(osd_req);
3072 return 0;
3073}
3074
3075static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3076{
3077 u32 i;
3078
3079 rbd_assert(!obj_req->copyup_bvecs);
3080 obj_req->copyup_bvec_count = calc_pages_for(off: 0, len: obj_overlap);
3081 obj_req->copyup_bvecs = kcalloc(n: obj_req->copyup_bvec_count,
3082 size: sizeof(*obj_req->copyup_bvecs),
3083 GFP_NOIO);
3084 if (!obj_req->copyup_bvecs)
3085 return -ENOMEM;
3086
3087 for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3088 unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3089 struct page *page = alloc_page(GFP_NOIO);
3090
3091 if (!page)
3092 return -ENOMEM;
3093
3094 bvec_set_page(bv: &obj_req->copyup_bvecs[i], page, len, offset: 0);
3095 obj_overlap -= len;
3096 }
3097
3098 rbd_assert(!obj_overlap);
3099 return 0;
3100}
3101
3102/*
3103 * The target object doesn't exist. Read the data for the entire
3104 * target object up to the overlap point (if any) from the parent,
3105 * so we can use it for a copyup.
3106 */
3107static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3108{
3109 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3110 int ret;
3111
3112 rbd_assert(obj_req->num_img_extents);
3113 prune_extents(img_extents: obj_req->img_extents, num_img_extents: &obj_req->num_img_extents,
3114 overlap: rbd_dev->parent_overlap);
3115 if (!obj_req->num_img_extents) {
3116 /*
3117 * The overlap has become 0 (most likely because the
3118 * image has been flattened). Re-submit the original write
3119 * request -- pass MODS_ONLY since the copyup isn't needed
3120 * anymore.
3121 */
3122 return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3123 }
3124
3125 ret = setup_copyup_bvecs(obj_req, obj_overlap: rbd_obj_img_extents_bytes(obj_req));
3126 if (ret)
3127 return ret;
3128
3129 return rbd_obj_read_from_parent(obj_req);
3130}
3131
3132static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3133{
3134 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3135 struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3136 u8 new_state;
3137 u32 i;
3138 int ret;
3139
3140 rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3141
3142 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3143 return;
3144
3145 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3146 return;
3147
3148 for (i = 0; i < snapc->num_snaps; i++) {
3149 if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3150 i + 1 < snapc->num_snaps)
3151 new_state = OBJECT_EXISTS_CLEAN;
3152 else
3153 new_state = OBJECT_EXISTS;
3154
3155 ret = rbd_object_map_update(obj_req, snap_id: snapc->snaps[i],
3156 new_state, NULL);
3157 if (ret < 0) {
3158 obj_req->pending.result = ret;
3159 return;
3160 }
3161
3162 rbd_assert(!ret);
3163 obj_req->pending.num_pending++;
3164 }
3165}
3166
3167static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3168{
3169 u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3170 int ret;
3171
3172 rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3173
3174 /*
3175 * Only send non-zero copyup data to save some I/O and network
3176 * bandwidth -- zero copyup data is equivalent to the object not
3177 * existing.
3178 */
3179 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3180 bytes = 0;
3181
3182 if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3183 /*
3184 * Send a copyup request with an empty snapshot context to
3185 * deep-copyup the object through all existing snapshots.
3186 * A second request with the current snapshot context will be
3187 * sent for the actual modification.
3188 */
3189 ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3190 if (ret) {
3191 obj_req->pending.result = ret;
3192 return;
3193 }
3194
3195 obj_req->pending.num_pending++;
3196 bytes = MODS_ONLY;
3197 }
3198
3199 ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3200 if (ret) {
3201 obj_req->pending.result = ret;
3202 return;
3203 }
3204
3205 obj_req->pending.num_pending++;
3206}
3207
3208static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3209{
3210 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3211 int ret;
3212
3213again:
3214 switch (obj_req->copyup_state) {
3215 case RBD_OBJ_COPYUP_START:
3216 rbd_assert(!*result);
3217
3218 ret = rbd_obj_copyup_read_parent(obj_req);
3219 if (ret) {
3220 *result = ret;
3221 return true;
3222 }
3223 if (obj_req->num_img_extents)
3224 obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3225 else
3226 obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3227 return false;
3228 case RBD_OBJ_COPYUP_READ_PARENT:
3229 if (*result)
3230 return true;
3231
3232 if (is_zero_bvecs(bvecs: obj_req->copyup_bvecs,
3233 bytes: rbd_obj_img_extents_bytes(obj_req))) {
3234 dout("%s %p detected zeros\n", __func__, obj_req);
3235 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3236 }
3237
3238 rbd_obj_copyup_object_maps(obj_req);
3239 if (!obj_req->pending.num_pending) {
3240 *result = obj_req->pending.result;
3241 obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3242 goto again;
3243 }
3244 obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3245 return false;
3246 case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3247 if (!pending_result_dec(pending: &obj_req->pending, result))
3248 return false;
3249 fallthrough;
3250 case RBD_OBJ_COPYUP_OBJECT_MAPS:
3251 if (*result) {
3252 rbd_warn(rbd_dev, fmt: "snap object map update failed: %d",
3253 *result);
3254 return true;
3255 }
3256
3257 rbd_obj_copyup_write_object(obj_req);
3258 if (!obj_req->pending.num_pending) {
3259 *result = obj_req->pending.result;
3260 obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3261 goto again;
3262 }
3263 obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3264 return false;
3265 case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3266 if (!pending_result_dec(pending: &obj_req->pending, result))
3267 return false;
3268 fallthrough;
3269 case RBD_OBJ_COPYUP_WRITE_OBJECT:
3270 return true;
3271 default:
3272 BUG();
3273 }
3274}
3275
3276/*
3277 * Return:
3278 * 0 - object map update sent
3279 * 1 - object map update isn't needed
3280 * <0 - error
3281 */
3282static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3283{
3284 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3285 u8 current_state = OBJECT_PENDING;
3286
3287 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3288 return 1;
3289
3290 if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3291 return 1;
3292
3293 return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3294 current_state: &current_state);
3295}
3296
3297static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3298{
3299 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3300 int ret;
3301
3302again:
3303 switch (obj_req->write_state) {
3304 case RBD_OBJ_WRITE_START:
3305 rbd_assert(!*result);
3306
3307 rbd_obj_set_copyup_enabled(obj_req);
3308 if (rbd_obj_write_is_noop(obj_req))
3309 return true;
3310
3311 ret = rbd_obj_write_pre_object_map(obj_req);
3312 if (ret < 0) {
3313 *result = ret;
3314 return true;
3315 }
3316 obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3317 if (ret > 0)
3318 goto again;
3319 return false;
3320 case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3321 if (*result) {
3322 rbd_warn(rbd_dev, fmt: "pre object map update failed: %d",
3323 *result);
3324 return true;
3325 }
3326 ret = rbd_obj_write_object(obj_req);
3327 if (ret) {
3328 *result = ret;
3329 return true;
3330 }
3331 obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3332 return false;
3333 case RBD_OBJ_WRITE_OBJECT:
3334 if (*result == -ENOENT) {
3335 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3336 *result = 0;
3337 obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3338 obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3339 goto again;
3340 }
3341 /*
3342 * On a non-existent object:
3343 * delete - -ENOENT, truncate/zero - 0
3344 */
3345 if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3346 *result = 0;
3347 }
3348 if (*result)
3349 return true;
3350
3351 obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3352 goto again;
3353 case __RBD_OBJ_WRITE_COPYUP:
3354 if (!rbd_obj_advance_copyup(obj_req, result))
3355 return false;
3356 fallthrough;
3357 case RBD_OBJ_WRITE_COPYUP:
3358 if (*result) {
3359 rbd_warn(rbd_dev, fmt: "copyup failed: %d", *result);
3360 return true;
3361 }
3362 ret = rbd_obj_write_post_object_map(obj_req);
3363 if (ret < 0) {
3364 *result = ret;
3365 return true;
3366 }
3367 obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3368 if (ret > 0)
3369 goto again;
3370 return false;
3371 case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3372 if (*result)
3373 rbd_warn(rbd_dev, fmt: "post object map update failed: %d",
3374 *result);
3375 return true;
3376 default:
3377 BUG();
3378 }
3379}
3380
3381/*
3382 * Return true if @obj_req is completed.
3383 */
3384static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3385 int *result)
3386{
3387 struct rbd_img_request *img_req = obj_req->img_request;
3388 struct rbd_device *rbd_dev = img_req->rbd_dev;
3389 bool done;
3390
3391 mutex_lock(&obj_req->state_mutex);
3392 if (!rbd_img_is_write(img_req))
3393 done = rbd_obj_advance_read(obj_req, result);
3394 else
3395 done = rbd_obj_advance_write(obj_req, result);
3396 mutex_unlock(lock: &obj_req->state_mutex);
3397
3398 if (done && *result) {
3399 rbd_assert(*result < 0);
3400 rbd_warn(rbd_dev, fmt: "%s at objno %llu %llu~%llu result %d",
3401 obj_op_name(op_type: img_req->op_type), obj_req->ex.oe_objno,
3402 obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3403 }
3404 return done;
3405}
3406
3407/*
3408 * This is open-coded in rbd_img_handle_request() to avoid parent chain
3409 * recursion.
3410 */
3411static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3412{
3413 if (__rbd_obj_handle_request(obj_req, result: &result))
3414 rbd_img_handle_request(img_req: obj_req->img_request, result);
3415}
3416
3417static bool need_exclusive_lock(struct rbd_img_request *img_req)
3418{
3419 struct rbd_device *rbd_dev = img_req->rbd_dev;
3420
3421 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3422 return false;
3423
3424 if (rbd_is_ro(rbd_dev))
3425 return false;
3426
3427 rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3428 if (rbd_dev->opts->lock_on_read ||
3429 (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3430 return true;
3431
3432 return rbd_img_is_write(img_req);
3433}
3434
3435static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3436{
3437 struct rbd_device *rbd_dev = img_req->rbd_dev;
3438 bool locked;
3439
3440 lockdep_assert_held(&rbd_dev->lock_rwsem);
3441 locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3442 spin_lock(lock: &rbd_dev->lock_lists_lock);
3443 rbd_assert(list_empty(&img_req->lock_item));
3444 if (!locked)
3445 list_add_tail(new: &img_req->lock_item, head: &rbd_dev->acquiring_list);
3446 else
3447 list_add_tail(new: &img_req->lock_item, head: &rbd_dev->running_list);
3448 spin_unlock(lock: &rbd_dev->lock_lists_lock);
3449 return locked;
3450}
3451
3452static void rbd_lock_del_request(struct rbd_img_request *img_req)
3453{
3454 struct rbd_device *rbd_dev = img_req->rbd_dev;
3455 bool need_wakeup = false;
3456
3457 lockdep_assert_held(&rbd_dev->lock_rwsem);
3458 spin_lock(lock: &rbd_dev->lock_lists_lock);
3459 if (!list_empty(head: &img_req->lock_item)) {
3460 list_del_init(entry: &img_req->lock_item);
3461 need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING &&
3462 list_empty(head: &rbd_dev->running_list));
3463 }
3464 spin_unlock(lock: &rbd_dev->lock_lists_lock);
3465 if (need_wakeup)
3466 complete(&rbd_dev->releasing_wait);
3467}
3468
3469static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3470{
3471 struct rbd_device *rbd_dev = img_req->rbd_dev;
3472
3473 if (!need_exclusive_lock(img_req))
3474 return 1;
3475
3476 if (rbd_lock_add_request(img_req))
3477 return 1;
3478
3479 if (rbd_dev->opts->exclusive) {
3480 WARN_ON(1); /* lock got released? */
3481 return -EROFS;
3482 }
3483
3484 /*
3485 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3486 * and cancel_delayed_work() in wake_lock_waiters().
3487 */
3488 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3489 queue_delayed_work(wq: rbd_dev->task_wq, dwork: &rbd_dev->lock_dwork, delay: 0);
3490 return 0;
3491}
3492
3493static void rbd_img_object_requests(struct rbd_img_request *img_req)
3494{
3495 struct rbd_device *rbd_dev = img_req->rbd_dev;
3496 struct rbd_obj_request *obj_req;
3497
3498 rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3499 rbd_assert(!need_exclusive_lock(img_req) ||
3500 __rbd_is_lock_owner(rbd_dev));
3501
3502 if (rbd_img_is_write(img_req)) {
3503 rbd_assert(!img_req->snapc);
3504 down_read(sem: &rbd_dev->header_rwsem);
3505 img_req->snapc = ceph_get_snap_context(sc: rbd_dev->header.snapc);
3506 up_read(sem: &rbd_dev->header_rwsem);
3507 }
3508
3509 for_each_obj_request(img_req, obj_req) {
3510 int result = 0;
3511
3512 if (__rbd_obj_handle_request(obj_req, result: &result)) {
3513 if (result) {
3514 img_req->pending.result = result;
3515 return;
3516 }
3517 } else {
3518 img_req->pending.num_pending++;
3519 }
3520 }
3521}
3522
3523static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3524{
3525 int ret;
3526
3527again:
3528 switch (img_req->state) {
3529 case RBD_IMG_START:
3530 rbd_assert(!*result);
3531
3532 ret = rbd_img_exclusive_lock(img_req);
3533 if (ret < 0) {
3534 *result = ret;
3535 return true;
3536 }
3537 img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3538 if (ret > 0)
3539 goto again;
3540 return false;
3541 case RBD_IMG_EXCLUSIVE_LOCK:
3542 if (*result)
3543 return true;
3544
3545 rbd_img_object_requests(img_req);
3546 if (!img_req->pending.num_pending) {
3547 *result = img_req->pending.result;
3548 img_req->state = RBD_IMG_OBJECT_REQUESTS;
3549 goto again;
3550 }
3551 img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3552 return false;
3553 case __RBD_IMG_OBJECT_REQUESTS:
3554 if (!pending_result_dec(pending: &img_req->pending, result))
3555 return false;
3556 fallthrough;
3557 case RBD_IMG_OBJECT_REQUESTS:
3558 return true;
3559 default:
3560 BUG();
3561 }
3562}
3563
3564/*
3565 * Return true if @img_req is completed.
3566 */
3567static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3568 int *result)
3569{
3570 struct rbd_device *rbd_dev = img_req->rbd_dev;
3571 bool done;
3572
3573 if (need_exclusive_lock(img_req)) {
3574 down_read(sem: &rbd_dev->lock_rwsem);
3575 mutex_lock(&img_req->state_mutex);
3576 done = rbd_img_advance(img_req, result);
3577 if (done)
3578 rbd_lock_del_request(img_req);
3579 mutex_unlock(lock: &img_req->state_mutex);
3580 up_read(sem: &rbd_dev->lock_rwsem);
3581 } else {
3582 mutex_lock(&img_req->state_mutex);
3583 done = rbd_img_advance(img_req, result);
3584 mutex_unlock(lock: &img_req->state_mutex);
3585 }
3586
3587 if (done && *result) {
3588 rbd_assert(*result < 0);
3589 rbd_warn(rbd_dev, fmt: "%s%s result %d",
3590 test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3591 obj_op_name(op_type: img_req->op_type), *result);
3592 }
3593 return done;
3594}
3595
3596static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3597{
3598again:
3599 if (!__rbd_img_handle_request(img_req, result: &result))
3600 return;
3601
3602 if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3603 struct rbd_obj_request *obj_req = img_req->obj_request;
3604
3605 rbd_img_request_destroy(img_request: img_req);
3606 if (__rbd_obj_handle_request(obj_req, result: &result)) {
3607 img_req = obj_req->img_request;
3608 goto again;
3609 }
3610 } else {
3611 struct request *rq = blk_mq_rq_from_pdu(pdu: img_req);
3612
3613 rbd_img_request_destroy(img_request: img_req);
3614 blk_mq_end_request(rq, error: errno_to_blk_status(errno: result));
3615 }
3616}
3617
3618static const struct rbd_client_id rbd_empty_cid;
3619
3620static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3621 const struct rbd_client_id *rhs)
3622{
3623 return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3624}
3625
3626static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3627{
3628 struct rbd_client_id cid;
3629
3630 mutex_lock(&rbd_dev->watch_mutex);
3631 cid.gid = ceph_client_gid(client: rbd_dev->rbd_client->client);
3632 cid.handle = rbd_dev->watch_cookie;
3633 mutex_unlock(lock: &rbd_dev->watch_mutex);
3634 return cid;
3635}
3636
3637/*
3638 * lock_rwsem must be held for write
3639 */
3640static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3641 const struct rbd_client_id *cid)
3642{
3643 dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3644 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3645 cid->gid, cid->handle);
3646 rbd_dev->owner_cid = *cid; /* struct */
3647}
3648
3649static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3650{
3651 mutex_lock(&rbd_dev->watch_mutex);
3652 sprintf(buf, fmt: "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3653 mutex_unlock(lock: &rbd_dev->watch_mutex);
3654}
3655
3656static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3657{
3658 struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3659
3660 rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3661 strcpy(p: rbd_dev->lock_cookie, q: cookie);
3662 rbd_set_owner_cid(rbd_dev, cid: &cid);
3663 queue_work(wq: rbd_dev->task_wq, work: &rbd_dev->acquired_lock_work);
3664}
3665
3666/*
3667 * lock_rwsem must be held for write
3668 */
3669static int rbd_lock(struct rbd_device *rbd_dev)
3670{
3671 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3672 char cookie[32];
3673 int ret;
3674
3675 WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3676 rbd_dev->lock_cookie[0] != '\0');
3677
3678 format_lock_cookie(rbd_dev, buf: cookie);
3679 ret = ceph_cls_lock(osdc, oid: &rbd_dev->header_oid, oloc: &rbd_dev->header_oloc,
3680 RBD_LOCK_NAME, type: CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3681 RBD_LOCK_TAG, desc: "", flags: 0);
3682 if (ret && ret != -EEXIST)
3683 return ret;
3684
3685 __rbd_lock(rbd_dev, cookie);
3686 return 0;
3687}
3688
3689/*
3690 * lock_rwsem must be held for write
3691 */
3692static void rbd_unlock(struct rbd_device *rbd_dev)
3693{
3694 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3695 int ret;
3696
3697 WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3698 rbd_dev->lock_cookie[0] == '\0');
3699
3700 ret = ceph_cls_unlock(osdc, oid: &rbd_dev->header_oid, oloc: &rbd_dev->header_oloc,
3701 RBD_LOCK_NAME, cookie: rbd_dev->lock_cookie);
3702 if (ret && ret != -ENOENT)
3703 rbd_warn(rbd_dev, fmt: "failed to unlock header: %d", ret);
3704
3705 /* treat errors as the image is unlocked */
3706 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3707 rbd_dev->lock_cookie[0] = '\0';
3708 rbd_set_owner_cid(rbd_dev, cid: &rbd_empty_cid);
3709 queue_work(wq: rbd_dev->task_wq, work: &rbd_dev->released_lock_work);
3710}
3711
3712static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3713 enum rbd_notify_op notify_op,
3714 struct page ***preply_pages,
3715 size_t *preply_len)
3716{
3717 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3718 struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3719 char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3720 int buf_size = sizeof(buf);
3721 void *p = buf;
3722
3723 dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3724
3725 /* encode *LockPayload NotifyMessage (op + ClientId) */
3726 ceph_start_encoding(p: &p, struct_v: 2, struct_compat: 1, struct_len: buf_size - CEPH_ENCODING_START_BLK_LEN);
3727 ceph_encode_32(p: &p, v: notify_op);
3728 ceph_encode_64(p: &p, v: cid.gid);
3729 ceph_encode_64(p: &p, v: cid.handle);
3730
3731 return ceph_osdc_notify(osdc, oid: &rbd_dev->header_oid,
3732 oloc: &rbd_dev->header_oloc, payload: buf, payload_len: buf_size,
3733 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3734}
3735
3736static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3737 enum rbd_notify_op notify_op)
3738{
3739 __rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL);
3740}
3741
3742static void rbd_notify_acquired_lock(struct work_struct *work)
3743{
3744 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3745 acquired_lock_work);
3746
3747 rbd_notify_op_lock(rbd_dev, notify_op: RBD_NOTIFY_OP_ACQUIRED_LOCK);
3748}
3749
3750static void rbd_notify_released_lock(struct work_struct *work)
3751{
3752 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3753 released_lock_work);
3754
3755 rbd_notify_op_lock(rbd_dev, notify_op: RBD_NOTIFY_OP_RELEASED_LOCK);
3756}
3757
3758static int rbd_request_lock(struct rbd_device *rbd_dev)
3759{
3760 struct page **reply_pages;
3761 size_t reply_len;
3762 bool lock_owner_responded = false;
3763 int ret;
3764
3765 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3766
3767 ret = __rbd_notify_op_lock(rbd_dev, notify_op: RBD_NOTIFY_OP_REQUEST_LOCK,
3768 preply_pages: &reply_pages, preply_len: &reply_len);
3769 if (ret && ret != -ETIMEDOUT) {
3770 rbd_warn(rbd_dev, fmt: "failed to request lock: %d", ret);
3771 goto out;
3772 }
3773
3774 if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3775 void *p = page_address(reply_pages[0]);
3776 void *const end = p + reply_len;
3777 u32 n;
3778
3779 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3780 while (n--) {
3781 u8 struct_v;
3782 u32 len;
3783
3784 ceph_decode_need(&p, end, 8 + 8, e_inval);
3785 p += 8 + 8; /* skip gid and cookie */
3786
3787 ceph_decode_32_safe(&p, end, len, e_inval);
3788 if (!len)
3789 continue;
3790
3791 if (lock_owner_responded) {
3792 rbd_warn(rbd_dev,
3793 fmt: "duplicate lock owners detected");
3794 ret = -EIO;
3795 goto out;
3796 }
3797
3798 lock_owner_responded = true;
3799 ret = ceph_start_decoding(p: &p, end, v: 1, name: "ResponseMessage",
3800 struct_v: &struct_v, struct_len: &len);
3801 if (ret) {
3802 rbd_warn(rbd_dev,
3803 fmt: "failed to decode ResponseMessage: %d",
3804 ret);
3805 goto e_inval;
3806 }
3807
3808 ret = ceph_decode_32(p: &p);
3809 }
3810 }
3811
3812 if (!lock_owner_responded) {
3813 rbd_warn(rbd_dev, fmt: "no lock owners detected");
3814 ret = -ETIMEDOUT;
3815 }
3816
3817out:
3818 ceph_release_page_vector(pages: reply_pages, num_pages: calc_pages_for(off: 0, len: reply_len));
3819 return ret;
3820
3821e_inval:
3822 ret = -EINVAL;
3823 goto out;
3824}
3825
3826/*
3827 * Either image request state machine(s) or rbd_add_acquire_lock()
3828 * (i.e. "rbd map").
3829 */
3830static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3831{
3832 struct rbd_img_request *img_req;
3833
3834 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3835 lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3836
3837 cancel_delayed_work(dwork: &rbd_dev->lock_dwork);
3838 if (!completion_done(x: &rbd_dev->acquire_wait)) {
3839 rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3840 list_empty(&rbd_dev->running_list));
3841 rbd_dev->acquire_err = result;
3842 complete_all(&rbd_dev->acquire_wait);
3843 return;
3844 }
3845
3846 while (!list_empty(head: &rbd_dev->acquiring_list)) {
3847 img_req = list_first_entry(&rbd_dev->acquiring_list,
3848 struct rbd_img_request, lock_item);
3849 mutex_lock(&img_req->state_mutex);
3850 rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3851 if (!result)
3852 list_move_tail(list: &img_req->lock_item,
3853 head: &rbd_dev->running_list);
3854 else
3855 list_del_init(entry: &img_req->lock_item);
3856 rbd_img_schedule(img_req, result);
3857 mutex_unlock(lock: &img_req->state_mutex);
3858 }
3859}
3860
3861static bool locker_equal(const struct ceph_locker *lhs,
3862 const struct ceph_locker *rhs)
3863{
3864 return lhs->id.name.type == rhs->id.name.type &&
3865 lhs->id.name.num == rhs->id.name.num &&
3866 !strcmp(lhs->id.cookie, rhs->id.cookie) &&
3867 ceph_addr_equal_no_type(lhs: &lhs->info.addr, rhs: &rhs->info.addr);
3868}
3869
3870static void free_locker(struct ceph_locker *locker)
3871{
3872 if (locker)
3873 ceph_free_lockers(lockers: locker, num_lockers: 1);
3874}
3875
3876static struct ceph_locker *get_lock_owner_info(struct rbd_device *rbd_dev)
3877{
3878 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3879 struct ceph_locker *lockers;
3880 u32 num_lockers;
3881 u8 lock_type;
3882 char *lock_tag;
3883 u64 handle;
3884 int ret;
3885
3886 ret = ceph_cls_lock_info(osdc, oid: &rbd_dev->header_oid,
3887 oloc: &rbd_dev->header_oloc, RBD_LOCK_NAME,
3888 type: &lock_type, tag: &lock_tag, lockers: &lockers, num_lockers: &num_lockers);
3889 if (ret) {
3890 rbd_warn(rbd_dev, fmt: "failed to get header lockers: %d", ret);
3891 return ERR_PTR(error: ret);
3892 }
3893
3894 if (num_lockers == 0) {
3895 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3896 lockers = NULL;
3897 goto out;
3898 }
3899
3900 if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3901 rbd_warn(rbd_dev, fmt: "locked by external mechanism, tag %s",
3902 lock_tag);
3903 goto err_busy;
3904 }
3905
3906 if (lock_type != CEPH_CLS_LOCK_EXCLUSIVE) {
3907 rbd_warn(rbd_dev, fmt: "incompatible lock type detected");
3908 goto err_busy;
3909 }
3910
3911 WARN_ON(num_lockers != 1);
3912 ret = sscanf(lockers[0].id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu",
3913 &handle);
3914 if (ret != 1) {
3915 rbd_warn(rbd_dev, fmt: "locked by external mechanism, cookie %s",
3916 lockers[0].id.cookie);
3917 goto err_busy;
3918 }
3919 if (ceph_addr_is_blank(addr: &lockers[0].info.addr)) {
3920 rbd_warn(rbd_dev, fmt: "locker has a blank address");
3921 goto err_busy;
3922 }
3923
3924 dout("%s rbd_dev %p got locker %s%llu@%pISpc/%u handle %llu\n",
3925 __func__, rbd_dev, ENTITY_NAME(lockers[0].id.name),
3926 &lockers[0].info.addr.in_addr,
3927 le32_to_cpu(lockers[0].info.addr.nonce), handle);
3928
3929out:
3930 kfree(objp: lock_tag);
3931 return lockers;
3932
3933err_busy:
3934 kfree(objp: lock_tag);
3935 ceph_free_lockers(lockers, num_lockers);
3936 return ERR_PTR(error: -EBUSY);
3937}
3938
3939static int find_watcher(struct rbd_device *rbd_dev,
3940 const struct ceph_locker *locker)
3941{
3942 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3943 struct ceph_watch_item *watchers;
3944 u32 num_watchers;
3945 u64 cookie;
3946 int i;
3947 int ret;
3948
3949 ret = ceph_osdc_list_watchers(osdc, oid: &rbd_dev->header_oid,
3950 oloc: &rbd_dev->header_oloc, watchers: &watchers,
3951 num_watchers: &num_watchers);
3952 if (ret) {
3953 rbd_warn(rbd_dev, fmt: "failed to get watchers: %d", ret);
3954 return ret;
3955 }
3956
3957 sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3958 for (i = 0; i < num_watchers; i++) {
3959 /*
3960 * Ignore addr->type while comparing. This mimics
3961 * entity_addr_t::get_legacy_str() + strcmp().
3962 */
3963 if (ceph_addr_equal_no_type(lhs: &watchers[i].addr,
3964 rhs: &locker->info.addr) &&
3965 watchers[i].cookie == cookie) {
3966 struct rbd_client_id cid = {
3967 .gid = le64_to_cpu(watchers[i].name.num),
3968 .handle = cookie,
3969 };
3970
3971 dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3972 rbd_dev, cid.gid, cid.handle);
3973 rbd_set_owner_cid(rbd_dev, cid: &cid);
3974 ret = 1;
3975 goto out;
3976 }
3977 }
3978
3979 dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3980 ret = 0;
3981out:
3982 kfree(objp: watchers);
3983 return ret;
3984}
3985
3986/*
3987 * lock_rwsem must be held for write
3988 */
3989static int rbd_try_lock(struct rbd_device *rbd_dev)
3990{
3991 struct ceph_client *client = rbd_dev->rbd_client->client;
3992 struct ceph_locker *locker, *refreshed_locker;
3993 int ret;
3994
3995 for (;;) {
3996 locker = refreshed_locker = NULL;
3997
3998 ret = rbd_lock(rbd_dev);
3999 if (!ret)
4000 goto out;
4001 if (ret != -EBUSY) {
4002 rbd_warn(rbd_dev, fmt: "failed to lock header: %d", ret);
4003 goto out;
4004 }
4005
4006 /* determine if the current lock holder is still alive */
4007 locker = get_lock_owner_info(rbd_dev);
4008 if (IS_ERR(ptr: locker)) {
4009 ret = PTR_ERR(ptr: locker);
4010 locker = NULL;
4011 goto out;
4012 }
4013 if (!locker)
4014 goto again;
4015
4016 ret = find_watcher(rbd_dev, locker);
4017 if (ret)
4018 goto out; /* request lock or error */
4019
4020 refreshed_locker = get_lock_owner_info(rbd_dev);
4021 if (IS_ERR(ptr: refreshed_locker)) {
4022 ret = PTR_ERR(ptr: refreshed_locker);
4023 refreshed_locker = NULL;
4024 goto out;
4025 }
4026 if (!refreshed_locker ||
4027 !locker_equal(lhs: locker, rhs: refreshed_locker))
4028 goto again;
4029
4030 rbd_warn(rbd_dev, fmt: "breaking header lock owned by %s%llu",
4031 ENTITY_NAME(locker->id.name));
4032
4033 ret = ceph_monc_blocklist_add(monc: &client->monc,
4034 client_addr: &locker->info.addr);
4035 if (ret) {
4036 rbd_warn(rbd_dev, fmt: "failed to blocklist %s%llu: %d",
4037 ENTITY_NAME(locker->id.name), ret);
4038 goto out;
4039 }
4040
4041 ret = ceph_cls_break_lock(osdc: &client->osdc, oid: &rbd_dev->header_oid,
4042 oloc: &rbd_dev->header_oloc, RBD_LOCK_NAME,
4043 cookie: locker->id.cookie, locker: &locker->id.name);
4044 if (ret && ret != -ENOENT) {
4045 rbd_warn(rbd_dev, fmt: "failed to break header lock: %d",
4046 ret);
4047 goto out;
4048 }
4049
4050again:
4051 free_locker(locker: refreshed_locker);
4052 free_locker(locker);
4053 }
4054
4055out:
4056 free_locker(locker: refreshed_locker);
4057 free_locker(locker);
4058 return ret;
4059}
4060
4061static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
4062{
4063 int ret;
4064
4065 ret = rbd_dev_refresh(rbd_dev);
4066 if (ret)
4067 return ret;
4068
4069 if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
4070 ret = rbd_object_map_open(rbd_dev);
4071 if (ret)
4072 return ret;
4073 }
4074
4075 return 0;
4076}
4077
4078/*
4079 * Return:
4080 * 0 - lock acquired
4081 * 1 - caller should call rbd_request_lock()
4082 * <0 - error
4083 */
4084static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
4085{
4086 int ret;
4087
4088 down_read(sem: &rbd_dev->lock_rwsem);
4089 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4090 rbd_dev->lock_state);
4091 if (__rbd_is_lock_owner(rbd_dev)) {
4092 up_read(sem: &rbd_dev->lock_rwsem);
4093 return 0;
4094 }
4095
4096 up_read(sem: &rbd_dev->lock_rwsem);
4097 down_write(sem: &rbd_dev->lock_rwsem);
4098 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4099 rbd_dev->lock_state);
4100 if (__rbd_is_lock_owner(rbd_dev)) {
4101 up_write(sem: &rbd_dev->lock_rwsem);
4102 return 0;
4103 }
4104
4105 ret = rbd_try_lock(rbd_dev);
4106 if (ret < 0) {
4107 rbd_warn(rbd_dev, fmt: "failed to acquire lock: %d", ret);
4108 goto out;
4109 }
4110 if (ret > 0) {
4111 up_write(sem: &rbd_dev->lock_rwsem);
4112 return ret;
4113 }
4114
4115 rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4116 rbd_assert(list_empty(&rbd_dev->running_list));
4117
4118 ret = rbd_post_acquire_action(rbd_dev);
4119 if (ret) {
4120 rbd_warn(rbd_dev, fmt: "post-acquire action failed: %d", ret);
4121 /*
4122 * Can't stay in RBD_LOCK_STATE_LOCKED because
4123 * rbd_lock_add_request() would let the request through,
4124 * assuming that e.g. object map is locked and loaded.
4125 */
4126 rbd_unlock(rbd_dev);
4127 }
4128
4129out:
4130 wake_lock_waiters(rbd_dev, result: ret);
4131 up_write(sem: &rbd_dev->lock_rwsem);
4132 return ret;
4133}
4134
4135static void rbd_acquire_lock(struct work_struct *work)
4136{
4137 struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4138 struct rbd_device, lock_dwork);
4139 int ret;
4140
4141 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4142again:
4143 ret = rbd_try_acquire_lock(rbd_dev);
4144 if (ret <= 0) {
4145 dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4146 return;
4147 }
4148
4149 ret = rbd_request_lock(rbd_dev);
4150 if (ret == -ETIMEDOUT) {
4151 goto again; /* treat this as a dead client */
4152 } else if (ret == -EROFS) {
4153 rbd_warn(rbd_dev, fmt: "peer will not release lock");
4154 down_write(sem: &rbd_dev->lock_rwsem);
4155 wake_lock_waiters(rbd_dev, result: ret);
4156 up_write(sem: &rbd_dev->lock_rwsem);
4157 } else if (ret < 0) {
4158 rbd_warn(rbd_dev, fmt: "error requesting lock: %d", ret);
4159 mod_delayed_work(wq: rbd_dev->task_wq, dwork: &rbd_dev->lock_dwork,
4160 RBD_RETRY_DELAY);
4161 } else {
4162 /*
4163 * lock owner acked, but resend if we don't see them
4164 * release the lock
4165 */
4166 dout("%s rbd_dev %p requeuing lock_dwork\n", __func__,
4167 rbd_dev);
4168 mod_delayed_work(wq: rbd_dev->task_wq, dwork: &rbd_dev->lock_dwork,
4169 delay: msecs_to_jiffies(m: 2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4170 }
4171}
4172
4173static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4174{
4175 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4176 lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4177
4178 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4179 return false;
4180
4181 /*
4182 * Ensure that all in-flight IO is flushed.
4183 */
4184 rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
4185 rbd_assert(!completion_done(&rbd_dev->releasing_wait));
4186 if (list_empty(head: &rbd_dev->running_list))
4187 return true;
4188
4189 up_write(sem: &rbd_dev->lock_rwsem);
4190 wait_for_completion(&rbd_dev->releasing_wait);
4191
4192 down_write(sem: &rbd_dev->lock_rwsem);
4193 if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
4194 return false;
4195
4196 rbd_assert(list_empty(&rbd_dev->running_list));
4197 return true;
4198}
4199
4200static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4201{
4202 if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4203 rbd_object_map_close(rbd_dev);
4204}
4205
4206static void __rbd_release_lock(struct rbd_device *rbd_dev)
4207{
4208 rbd_assert(list_empty(&rbd_dev->running_list));
4209
4210 rbd_pre_release_action(rbd_dev);
4211 rbd_unlock(rbd_dev);
4212}
4213
4214/*
4215 * lock_rwsem must be held for write
4216 */
4217static void rbd_release_lock(struct rbd_device *rbd_dev)
4218{
4219 if (!rbd_quiesce_lock(rbd_dev))
4220 return;
4221
4222 __rbd_release_lock(rbd_dev);
4223
4224 /*
4225 * Give others a chance to grab the lock - we would re-acquire
4226 * almost immediately if we got new IO while draining the running
4227 * list otherwise. We need to ack our own notifications, so this
4228 * lock_dwork will be requeued from rbd_handle_released_lock() by
4229 * way of maybe_kick_acquire().
4230 */
4231 cancel_delayed_work(dwork: &rbd_dev->lock_dwork);
4232}
4233
4234static void rbd_release_lock_work(struct work_struct *work)
4235{
4236 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4237 unlock_work);
4238
4239 down_write(sem: &rbd_dev->lock_rwsem);
4240 rbd_release_lock(rbd_dev);
4241 up_write(sem: &rbd_dev->lock_rwsem);
4242}
4243
4244static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4245{
4246 bool have_requests;
4247
4248 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4249 if (__rbd_is_lock_owner(rbd_dev))
4250 return;
4251
4252 spin_lock(lock: &rbd_dev->lock_lists_lock);
4253 have_requests = !list_empty(head: &rbd_dev->acquiring_list);
4254 spin_unlock(lock: &rbd_dev->lock_lists_lock);
4255 if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4256 dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4257 mod_delayed_work(wq: rbd_dev->task_wq, dwork: &rbd_dev->lock_dwork, delay: 0);
4258 }
4259}
4260
4261static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4262 void **p)
4263{
4264 struct rbd_client_id cid = { 0 };
4265
4266 if (struct_v >= 2) {
4267 cid.gid = ceph_decode_64(p);
4268 cid.handle = ceph_decode_64(p);
4269 }
4270
4271 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4272 cid.handle);
4273 if (!rbd_cid_equal(lhs: &cid, rhs: &rbd_empty_cid)) {
4274 down_write(sem: &rbd_dev->lock_rwsem);
4275 if (rbd_cid_equal(lhs: &cid, rhs: &rbd_dev->owner_cid)) {
4276 dout("%s rbd_dev %p cid %llu-%llu == owner_cid\n",
4277 __func__, rbd_dev, cid.gid, cid.handle);
4278 } else {
4279 rbd_set_owner_cid(rbd_dev, cid: &cid);
4280 }
4281 downgrade_write(sem: &rbd_dev->lock_rwsem);
4282 } else {
4283 down_read(sem: &rbd_dev->lock_rwsem);
4284 }
4285
4286 maybe_kick_acquire(rbd_dev);
4287 up_read(sem: &rbd_dev->lock_rwsem);
4288}
4289
4290static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4291 void **p)
4292{
4293 struct rbd_client_id cid = { 0 };
4294
4295 if (struct_v >= 2) {
4296 cid.gid = ceph_decode_64(p);
4297 cid.handle = ceph_decode_64(p);
4298 }
4299
4300 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4301 cid.handle);
4302 if (!rbd_cid_equal(lhs: &cid, rhs: &rbd_empty_cid)) {
4303 down_write(sem: &rbd_dev->lock_rwsem);
4304 if (!rbd_cid_equal(lhs: &cid, rhs: &rbd_dev->owner_cid)) {
4305 dout("%s rbd_dev %p cid %llu-%llu != owner_cid %llu-%llu\n",
4306 __func__, rbd_dev, cid.gid, cid.handle,
4307 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4308 } else {
4309 rbd_set_owner_cid(rbd_dev, cid: &rbd_empty_cid);
4310 }
4311 downgrade_write(sem: &rbd_dev->lock_rwsem);
4312 } else {
4313 down_read(sem: &rbd_dev->lock_rwsem);
4314 }
4315
4316 maybe_kick_acquire(rbd_dev);
4317 up_read(sem: &rbd_dev->lock_rwsem);
4318}
4319
4320/*
4321 * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4322 * ResponseMessage is needed.
4323 */
4324static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4325 void **p)
4326{
4327 struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4328 struct rbd_client_id cid = { 0 };
4329 int result = 1;
4330
4331 if (struct_v >= 2) {
4332 cid.gid = ceph_decode_64(p);
4333 cid.handle = ceph_decode_64(p);
4334 }
4335
4336 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4337 cid.handle);
4338 if (rbd_cid_equal(lhs: &cid, rhs: &my_cid))
4339 return result;
4340
4341 down_read(sem: &rbd_dev->lock_rwsem);
4342 if (__rbd_is_lock_owner(rbd_dev)) {
4343 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4344 rbd_cid_equal(lhs: &rbd_dev->owner_cid, rhs: &rbd_empty_cid))
4345 goto out_unlock;
4346
4347 /*
4348 * encode ResponseMessage(0) so the peer can detect
4349 * a missing owner
4350 */
4351 result = 0;
4352
4353 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4354 if (!rbd_dev->opts->exclusive) {
4355 dout("%s rbd_dev %p queueing unlock_work\n",
4356 __func__, rbd_dev);
4357 queue_work(wq: rbd_dev->task_wq,
4358 work: &rbd_dev->unlock_work);
4359 } else {
4360 /* refuse to release the lock */
4361 result = -EROFS;
4362 }
4363 }
4364 }
4365
4366out_unlock:
4367 up_read(sem: &rbd_dev->lock_rwsem);
4368 return result;
4369}
4370
4371static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4372 u64 notify_id, u64 cookie, s32 *result)
4373{
4374 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4375 char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4376 int buf_size = sizeof(buf);
4377 int ret;
4378
4379 if (result) {
4380 void *p = buf;
4381
4382 /* encode ResponseMessage */
4383 ceph_start_encoding(p: &p, struct_v: 1, struct_compat: 1,
4384 struct_len: buf_size - CEPH_ENCODING_START_BLK_LEN);
4385 ceph_encode_32(p: &p, v: *result);
4386 } else {
4387 buf_size = 0;
4388 }
4389
4390 ret = ceph_osdc_notify_ack(osdc, oid: &rbd_dev->header_oid,
4391 oloc: &rbd_dev->header_oloc, notify_id, cookie,
4392 payload: buf, payload_len: buf_size);
4393 if (ret)
4394 rbd_warn(rbd_dev, fmt: "acknowledge_notify failed: %d", ret);
4395}
4396
4397static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4398 u64 cookie)
4399{
4400 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4401 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4402}
4403
4404static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4405 u64 notify_id, u64 cookie, s32 result)
4406{
4407 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4408 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, result: &result);
4409}
4410
4411static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4412 u64 notifier_id, void *data, size_t data_len)
4413{
4414 struct rbd_device *rbd_dev = arg;
4415 void *p = data;
4416 void *const end = p + data_len;
4417 u8 struct_v = 0;
4418 u32 len;
4419 u32 notify_op;
4420 int ret;
4421
4422 dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4423 __func__, rbd_dev, cookie, notify_id, data_len);
4424 if (data_len) {
4425 ret = ceph_start_decoding(p: &p, end, v: 1, name: "NotifyMessage",
4426 struct_v: &struct_v, struct_len: &len);
4427 if (ret) {
4428 rbd_warn(rbd_dev, fmt: "failed to decode NotifyMessage: %d",
4429 ret);
4430 return;
4431 }
4432
4433 notify_op = ceph_decode_32(p: &p);
4434 } else {
4435 /* legacy notification for header updates */
4436 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4437 len = 0;
4438 }
4439
4440 dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4441 switch (notify_op) {
4442 case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4443 rbd_handle_acquired_lock(rbd_dev, struct_v, p: &p);
4444 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4445 break;
4446 case RBD_NOTIFY_OP_RELEASED_LOCK:
4447 rbd_handle_released_lock(rbd_dev, struct_v, p: &p);
4448 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4449 break;
4450 case RBD_NOTIFY_OP_REQUEST_LOCK:
4451 ret = rbd_handle_request_lock(rbd_dev, struct_v, p: &p);
4452 if (ret <= 0)
4453 rbd_acknowledge_notify_result(rbd_dev, notify_id,
4454 cookie, result: ret);
4455 else
4456 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4457 break;
4458 case RBD_NOTIFY_OP_HEADER_UPDATE:
4459 ret = rbd_dev_refresh(rbd_dev);
4460 if (ret)
4461 rbd_warn(rbd_dev, fmt: "refresh failed: %d", ret);
4462
4463 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4464 break;
4465 default:
4466 if (rbd_is_lock_owner(rbd_dev))
4467 rbd_acknowledge_notify_result(rbd_dev, notify_id,
4468 cookie, result: -EOPNOTSUPP);
4469 else
4470 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4471 break;
4472 }
4473}
4474
4475static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4476
4477static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4478{
4479 struct rbd_device *rbd_dev = arg;
4480
4481 rbd_warn(rbd_dev, fmt: "encountered watch error: %d", err);
4482
4483 down_write(sem: &rbd_dev->lock_rwsem);
4484 rbd_set_owner_cid(rbd_dev, cid: &rbd_empty_cid);
4485 up_write(sem: &rbd_dev->lock_rwsem);
4486
4487 mutex_lock(&rbd_dev->watch_mutex);
4488 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4489 __rbd_unregister_watch(rbd_dev);
4490 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4491
4492 queue_delayed_work(wq: rbd_dev->task_wq, dwork: &rbd_dev->watch_dwork, delay: 0);
4493 }
4494 mutex_unlock(lock: &rbd_dev->watch_mutex);
4495}
4496
4497/*
4498 * watch_mutex must be locked
4499 */
4500static int __rbd_register_watch(struct rbd_device *rbd_dev)
4501{
4502 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4503 struct ceph_osd_linger_request *handle;
4504
4505 rbd_assert(!rbd_dev->watch_handle);
4506 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4507
4508 handle = ceph_osdc_watch(osdc, oid: &rbd_dev->header_oid,
4509 oloc: &rbd_dev->header_oloc, wcb: rbd_watch_cb,
4510 errcb: rbd_watch_errcb, data: rbd_dev);
4511 if (IS_ERR(ptr: handle))
4512 return PTR_ERR(ptr: handle);
4513
4514 rbd_dev->watch_handle = handle;
4515 return 0;
4516}
4517
4518/*
4519 * watch_mutex must be locked
4520 */
4521static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4522{
4523 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4524 int ret;
4525
4526 rbd_assert(rbd_dev->watch_handle);
4527 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4528
4529 ret = ceph_osdc_unwatch(osdc, lreq: rbd_dev->watch_handle);
4530 if (ret)
4531 rbd_warn(rbd_dev, fmt: "failed to unwatch: %d", ret);
4532
4533 rbd_dev->watch_handle = NULL;
4534}
4535
4536static int rbd_register_watch(struct rbd_device *rbd_dev)
4537{
4538 int ret;
4539
4540 mutex_lock(&rbd_dev->watch_mutex);
4541 rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4542 ret = __rbd_register_watch(rbd_dev);
4543 if (ret)
4544 goto out;
4545
4546 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4547 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4548
4549out:
4550 mutex_unlock(lock: &rbd_dev->watch_mutex);
4551 return ret;
4552}
4553
4554static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4555{
4556 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4557
4558 cancel_work_sync(work: &rbd_dev->acquired_lock_work);
4559 cancel_work_sync(work: &rbd_dev->released_lock_work);
4560 cancel_delayed_work_sync(dwork: &rbd_dev->lock_dwork);
4561 cancel_work_sync(work: &rbd_dev->unlock_work);
4562}
4563
4564/*
4565 * header_rwsem must not be held to avoid a deadlock with
4566 * rbd_dev_refresh() when flushing notifies.
4567 */
4568static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4569{
4570 cancel_tasks_sync(rbd_dev);
4571
4572 mutex_lock(&rbd_dev->watch_mutex);
4573 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4574 __rbd_unregister_watch(rbd_dev);
4575 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4576 mutex_unlock(lock: &rbd_dev->watch_mutex);
4577
4578 cancel_delayed_work_sync(dwork: &rbd_dev->watch_dwork);
4579 ceph_osdc_flush_notifies(osdc: &rbd_dev->rbd_client->client->osdc);
4580}
4581
4582/*
4583 * lock_rwsem must be held for write
4584 */
4585static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4586{
4587 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4588 char cookie[32];
4589 int ret;
4590
4591 if (!rbd_quiesce_lock(rbd_dev))
4592 return;
4593
4594 format_lock_cookie(rbd_dev, buf: cookie);
4595 ret = ceph_cls_set_cookie(osdc, oid: &rbd_dev->header_oid,
4596 oloc: &rbd_dev->header_oloc, RBD_LOCK_NAME,
4597 type: CEPH_CLS_LOCK_EXCLUSIVE, old_cookie: rbd_dev->lock_cookie,
4598 RBD_LOCK_TAG, new_cookie: cookie);
4599 if (ret) {
4600 if (ret != -EOPNOTSUPP)
4601 rbd_warn(rbd_dev, fmt: "failed to update lock cookie: %d",
4602 ret);
4603
4604 /*
4605 * Lock cookie cannot be updated on older OSDs, so do
4606 * a manual release and queue an acquire.
4607 */
4608 __rbd_release_lock(rbd_dev);
4609 queue_delayed_work(wq: rbd_dev->task_wq, dwork: &rbd_dev->lock_dwork, delay: 0);
4610 } else {
4611 __rbd_lock(rbd_dev, cookie);
4612 wake_lock_waiters(rbd_dev, result: 0);
4613 }
4614}
4615
4616static void rbd_reregister_watch(struct work_struct *work)
4617{
4618 struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4619 struct rbd_device, watch_dwork);
4620 int ret;
4621
4622 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4623
4624 mutex_lock(&rbd_dev->watch_mutex);
4625 if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4626 mutex_unlock(lock: &rbd_dev->watch_mutex);
4627 return;
4628 }
4629
4630 ret = __rbd_register_watch(rbd_dev);
4631 if (ret) {
4632 rbd_warn(rbd_dev, fmt: "failed to reregister watch: %d", ret);
4633 if (ret != -EBLOCKLISTED && ret != -ENOENT) {
4634 queue_delayed_work(wq: rbd_dev->task_wq,
4635 dwork: &rbd_dev->watch_dwork,
4636 RBD_RETRY_DELAY);
4637 mutex_unlock(lock: &rbd_dev->watch_mutex);
4638 return;
4639 }
4640
4641 mutex_unlock(lock: &rbd_dev->watch_mutex);
4642 down_write(sem: &rbd_dev->lock_rwsem);
4643 wake_lock_waiters(rbd_dev, result: ret);
4644 up_write(sem: &rbd_dev->lock_rwsem);
4645 return;
4646 }
4647
4648 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4649 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4650 mutex_unlock(lock: &rbd_dev->watch_mutex);
4651
4652 down_write(sem: &rbd_dev->lock_rwsem);
4653 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4654 rbd_reacquire_lock(rbd_dev);
4655 up_write(sem: &rbd_dev->lock_rwsem);
4656
4657 ret = rbd_dev_refresh(rbd_dev);
4658 if (ret)
4659 rbd_warn(rbd_dev, fmt: "reregistration refresh failed: %d", ret);
4660}
4661
4662/*
4663 * Synchronous osd object method call. Returns the number of bytes
4664 * returned in the outbound buffer, or a negative error code.
4665 */
4666static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4667 struct ceph_object_id *oid,
4668 struct ceph_object_locator *oloc,
4669 const char *method_name,
4670 const void *outbound,
4671 size_t outbound_size,
4672 void *inbound,
4673 size_t inbound_size)
4674{
4675 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4676 struct page *req_page = NULL;
4677 struct page *reply_page;
4678 int ret;
4679
4680 /*
4681 * Method calls are ultimately read operations. The result
4682 * should placed into the inbound buffer provided. They
4683 * also supply outbound data--parameters for the object
4684 * method. Currently if this is present it will be a
4685 * snapshot id.
4686 */
4687 if (outbound) {
4688 if (outbound_size > PAGE_SIZE)
4689 return -E2BIG;
4690
4691 req_page = alloc_page(GFP_KERNEL);
4692 if (!req_page)
4693 return -ENOMEM;
4694
4695 memcpy(page_address(req_page), outbound, outbound_size);
4696 }
4697
4698 reply_page = alloc_page(GFP_KERNEL);
4699 if (!reply_page) {
4700 if (req_page)
4701 __free_page(req_page);
4702 return -ENOMEM;
4703 }
4704
4705 ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method: method_name,
4706 flags: CEPH_OSD_FLAG_READ, req_page, req_len: outbound_size,
4707 resp_pages: &reply_page, resp_len: &inbound_size);
4708 if (!ret) {
4709 memcpy(inbound, page_address(reply_page), inbound_size);
4710 ret = inbound_size;
4711 }
4712
4713 if (req_page)
4714 __free_page(req_page);
4715 __free_page(reply_page);
4716 return ret;
4717}
4718
4719static void rbd_queue_workfn(struct work_struct *work)
4720{
4721 struct rbd_img_request *img_request =
4722 container_of(work, struct rbd_img_request, work);
4723 struct rbd_device *rbd_dev = img_request->rbd_dev;
4724 enum obj_operation_type op_type = img_request->op_type;
4725 struct request *rq = blk_mq_rq_from_pdu(pdu: img_request);
4726 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4727 u64 length = blk_rq_bytes(rq);
4728 u64 mapping_size;
4729 int result;
4730
4731 /* Ignore/skip any zero-length requests */
4732 if (!length) {
4733 dout("%s: zero-length request\n", __func__);
4734 result = 0;
4735 goto err_img_request;
4736 }
4737
4738 blk_mq_start_request(rq);
4739
4740 down_read(sem: &rbd_dev->header_rwsem);
4741 mapping_size = rbd_dev->mapping.size;
4742 rbd_img_capture_header(img_req: img_request);
4743 up_read(sem: &rbd_dev->header_rwsem);
4744
4745 if (offset + length > mapping_size) {
4746 rbd_warn(rbd_dev, fmt: "beyond EOD (%llu~%llu > %llu)", offset,
4747 length, mapping_size);
4748 result = -EIO;
4749 goto err_img_request;
4750 }
4751
4752 dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4753 img_request, obj_op_name(op_type), offset, length);
4754
4755 if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4756 result = rbd_img_fill_nodata(img_req: img_request, off: offset, len: length);
4757 else
4758 result = rbd_img_fill_from_bio(img_req: img_request, off: offset, len: length,
4759 bio: rq->bio);
4760 if (result)
4761 goto err_img_request;
4762
4763 rbd_img_handle_request(img_req: img_request, result: 0);
4764 return;
4765
4766err_img_request:
4767 rbd_img_request_destroy(img_request);
4768 if (result)
4769 rbd_warn(rbd_dev, fmt: "%s %llx at %llx result %d",
4770 obj_op_name(op_type), length, offset, result);
4771 blk_mq_end_request(rq, error: errno_to_blk_status(errno: result));
4772}
4773
4774static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4775 const struct blk_mq_queue_data *bd)
4776{
4777 struct rbd_device *rbd_dev = hctx->queue->queuedata;
4778 struct rbd_img_request *img_req = blk_mq_rq_to_pdu(rq: bd->rq);
4779 enum obj_operation_type op_type;
4780
4781 switch (req_op(req: bd->rq)) {
4782 case REQ_OP_DISCARD:
4783 op_type = OBJ_OP_DISCARD;
4784 break;
4785 case REQ_OP_WRITE_ZEROES:
4786 op_type = OBJ_OP_ZEROOUT;
4787 break;
4788 case REQ_OP_WRITE:
4789 op_type = OBJ_OP_WRITE;
4790 break;
4791 case REQ_OP_READ:
4792 op_type = OBJ_OP_READ;
4793 break;
4794 default:
4795 rbd_warn(rbd_dev, fmt: "unknown req_op %d", req_op(req: bd->rq));
4796 return BLK_STS_IOERR;
4797 }
4798
4799 rbd_img_request_init(img_request: img_req, rbd_dev, op_type);
4800
4801 if (rbd_img_is_write(img_req)) {
4802 if (rbd_is_ro(rbd_dev)) {
4803 rbd_warn(rbd_dev, fmt: "%s on read-only mapping",
4804 obj_op_name(op_type: img_req->op_type));
4805 return BLK_STS_IOERR;
4806 }
4807 rbd_assert(!rbd_is_snap(rbd_dev));
4808 }
4809
4810 INIT_WORK(&img_req->work, rbd_queue_workfn);
4811 queue_work(wq: rbd_wq, work: &img_req->work);
4812 return BLK_STS_OK;
4813}
4814
4815static void rbd_free_disk(struct rbd_device *rbd_dev)
4816{
4817 put_disk(disk: rbd_dev->disk);
4818 blk_mq_free_tag_set(set: &rbd_dev->tag_set);
4819 rbd_dev->disk = NULL;
4820}
4821
4822static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4823 struct ceph_object_id *oid,
4824 struct ceph_object_locator *oloc,
4825 void *buf, int buf_len)
4826
4827{
4828 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4829 struct ceph_osd_request *req;
4830 struct page **pages;
4831 int num_pages = calc_pages_for(off: 0, len: buf_len);
4832 int ret;
4833
4834 req = ceph_osdc_alloc_request(osdc, NULL, num_ops: 1, use_mempool: false, GFP_KERNEL);
4835 if (!req)
4836 return -ENOMEM;
4837
4838 ceph_oid_copy(dest: &req->r_base_oid, src: oid);
4839 ceph_oloc_copy(dest: &req->r_base_oloc, src: oloc);
4840 req->r_flags = CEPH_OSD_FLAG_READ;
4841
4842 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4843 if (IS_ERR(ptr: pages)) {
4844 ret = PTR_ERR(ptr: pages);
4845 goto out_req;
4846 }
4847
4848 osd_req_op_extent_init(osd_req: req, which: 0, opcode: CEPH_OSD_OP_READ, offset: 0, length: buf_len, truncate_size: 0, truncate_seq: 0);
4849 osd_req_op_extent_osd_data_pages(req, which: 0, pages, length: buf_len, alignment: 0, pages_from_pool: false,
4850 own_pages: true);
4851
4852 ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4853 if (ret)
4854 goto out_req;
4855
4856 ceph_osdc_start_request(osdc, req);
4857 ret = ceph_osdc_wait_request(osdc, req);
4858 if (ret >= 0)
4859 ceph_copy_from_page_vector(pages, data: buf, off: 0, len: ret);
4860
4861out_req:
4862 ceph_osdc_put_request(req);
4863 return ret;
4864}
4865
4866/*
4867 * Read the complete header for the given rbd device. On successful
4868 * return, the rbd_dev->header field will contain up-to-date
4869 * information about the image.
4870 */
4871static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev,
4872 struct rbd_image_header *header,
4873 bool first_time)
4874{
4875 struct rbd_image_header_ondisk *ondisk = NULL;
4876 u32 snap_count = 0;
4877 u64 names_size = 0;
4878 u32 want_count;
4879 int ret;
4880
4881 /*
4882 * The complete header will include an array of its 64-bit
4883 * snapshot ids, followed by the names of those snapshots as
4884 * a contiguous block of NUL-terminated strings. Note that
4885 * the number of snapshots could change by the time we read
4886 * it in, in which case we re-read it.
4887 */
4888 do {
4889 size_t size;
4890
4891 kfree(objp: ondisk);
4892
4893 size = sizeof (*ondisk);
4894 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4895 size += names_size;
4896 ondisk = kmalloc(size, GFP_KERNEL);
4897 if (!ondisk)
4898 return -ENOMEM;
4899
4900 ret = rbd_obj_read_sync(rbd_dev, oid: &rbd_dev->header_oid,
4901 oloc: &rbd_dev->header_oloc, buf: ondisk, buf_len: size);
4902 if (ret < 0)
4903 goto out;
4904 if ((size_t)ret < size) {
4905 ret = -ENXIO;
4906 rbd_warn(rbd_dev, fmt: "short header read (want %zd got %d)",
4907 size, ret);
4908 goto out;
4909 }
4910 if (!rbd_dev_ondisk_valid(ondisk)) {
4911 ret = -ENXIO;
4912 rbd_warn(rbd_dev, fmt: "invalid header");
4913 goto out;
4914 }
4915
4916 names_size = le64_to_cpu(ondisk->snap_names_len);
4917 want_count = snap_count;
4918 snap_count = le32_to_cpu(ondisk->snap_count);
4919 } while (snap_count != want_count);
4920
4921 ret = rbd_header_from_disk(header, ondisk, first_time);
4922out:
4923 kfree(objp: ondisk);
4924
4925 return ret;
4926}
4927
4928static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4929{
4930 sector_t size;
4931
4932 /*
4933 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4934 * try to update its size. If REMOVING is set, updating size
4935 * is just useless work since the device can't be opened.
4936 */
4937 if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4938 !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4939 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4940 dout("setting size to %llu sectors", (unsigned long long)size);
4941 set_capacity_and_notify(disk: rbd_dev->disk, size);
4942 }
4943}
4944
4945static const struct blk_mq_ops rbd_mq_ops = {
4946 .queue_rq = rbd_queue_rq,
4947};
4948
4949static int rbd_init_disk(struct rbd_device *rbd_dev)
4950{
4951 struct gendisk *disk;
4952 struct request_queue *q;
4953 unsigned int objset_bytes =
4954 rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
4955 struct queue_limits lim = {
4956 .max_hw_sectors = objset_bytes >> SECTOR_SHIFT,
4957 .max_user_sectors = objset_bytes >> SECTOR_SHIFT,
4958 .io_min = rbd_dev->opts->alloc_size,
4959 .io_opt = rbd_dev->opts->alloc_size,
4960 .max_segments = USHRT_MAX,
4961 .max_segment_size = UINT_MAX,
4962 };
4963 int err;
4964
4965 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4966 rbd_dev->tag_set.ops = &rbd_mq_ops;
4967 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4968 rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4969 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
4970 rbd_dev->tag_set.nr_hw_queues = num_present_cpus();
4971 rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request);
4972
4973 err = blk_mq_alloc_tag_set(set: &rbd_dev->tag_set);
4974 if (err)
4975 return err;
4976
4977 if (rbd_dev->opts->trim) {
4978 lim.discard_granularity = rbd_dev->opts->alloc_size;
4979 lim.max_hw_discard_sectors = objset_bytes >> SECTOR_SHIFT;
4980 lim.max_write_zeroes_sectors = objset_bytes >> SECTOR_SHIFT;
4981 }
4982
4983 disk = blk_mq_alloc_disk(&rbd_dev->tag_set, &lim, rbd_dev);
4984 if (IS_ERR(ptr: disk)) {
4985 err = PTR_ERR(ptr: disk);
4986 goto out_tag_set;
4987 }
4988 q = disk->queue;
4989
4990 snprintf(buf: disk->disk_name, size: sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4991 rbd_dev->dev_id);
4992 disk->major = rbd_dev->major;
4993 disk->first_minor = rbd_dev->minor;
4994 if (single_major)
4995 disk->minors = (1 << RBD_SINGLE_MAJOR_PART_SHIFT);
4996 else
4997 disk->minors = RBD_MINORS_PER_MAJOR;
4998 disk->fops = &rbd_bd_ops;
4999 disk->private_data = rbd_dev;
5000
5001 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
5002 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
5003
5004 if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
5005 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
5006
5007 rbd_dev->disk = disk;
5008
5009 return 0;
5010out_tag_set:
5011 blk_mq_free_tag_set(set: &rbd_dev->tag_set);
5012 return err;
5013}
5014
5015/*
5016 sysfs
5017*/
5018
5019static struct rbd_device *dev_to_rbd_dev(struct device *dev)
5020{
5021 return container_of(dev, struct rbd_device, dev);
5022}
5023
5024static ssize_t rbd_size_show(struct device *dev,
5025 struct device_attribute *attr, char *buf)
5026{
5027 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5028
5029 return sprintf(buf, fmt: "%llu\n",
5030 (unsigned long long)rbd_dev->mapping.size);
5031}
5032
5033static ssize_t rbd_features_show(struct device *dev,
5034 struct device_attribute *attr, char *buf)
5035{
5036 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5037
5038 return sprintf(buf, fmt: "0x%016llx\n", rbd_dev->header.features);
5039}
5040
5041static ssize_t rbd_major_show(struct device *dev,
5042 struct device_attribute *attr, char *buf)
5043{
5044 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5045
5046 if (rbd_dev->major)
5047 return sprintf(buf, fmt: "%d\n", rbd_dev->major);
5048
5049 return sprintf(buf, fmt: "(none)\n");
5050}
5051
5052static ssize_t rbd_minor_show(struct device *dev,
5053 struct device_attribute *attr, char *buf)
5054{
5055 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5056
5057 return sprintf(buf, fmt: "%d\n", rbd_dev->minor);
5058}
5059
5060static ssize_t rbd_client_addr_show(struct device *dev,
5061 struct device_attribute *attr, char *buf)
5062{
5063 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5064 struct ceph_entity_addr *client_addr =
5065 ceph_client_addr(client: rbd_dev->rbd_client->client);
5066
5067 return sprintf(buf, fmt: "%pISpc/%u\n", &client_addr->in_addr,
5068 le32_to_cpu(client_addr->nonce));
5069}
5070
5071static ssize_t rbd_client_id_show(struct device *dev,
5072 struct device_attribute *attr, char *buf)
5073{
5074 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5075
5076 return sprintf(buf, fmt: "client%lld\n",
5077 ceph_client_gid(client: rbd_dev->rbd_client->client));
5078}
5079
5080static ssize_t rbd_cluster_fsid_show(struct device *dev,
5081 struct device_attribute *attr, char *buf)
5082{
5083 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5084
5085 return sprintf(buf, fmt: "%pU\n", &rbd_dev->rbd_client->client->fsid);
5086}
5087
5088static ssize_t rbd_config_info_show(struct device *dev,
5089 struct device_attribute *attr, char *buf)
5090{
5091 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5092
5093 if (!capable(CAP_SYS_ADMIN))
5094 return -EPERM;
5095
5096 return sprintf(buf, fmt: "%s\n", rbd_dev->config_info);
5097}
5098
5099static ssize_t rbd_pool_show(struct device *dev,
5100 struct device_attribute *attr, char *buf)
5101{
5102 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5103
5104 return sprintf(buf, fmt: "%s\n", rbd_dev->spec->pool_name);
5105}
5106
5107static ssize_t rbd_pool_id_show(struct device *dev,
5108 struct device_attribute *attr, char *buf)
5109{
5110 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5111
5112 return sprintf(buf, fmt: "%llu\n",
5113 (unsigned long long) rbd_dev->spec->pool_id);
5114}
5115
5116static ssize_t rbd_pool_ns_show(struct device *dev,
5117 struct device_attribute *attr, char *buf)
5118{
5119 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5120
5121 return sprintf(buf, fmt: "%s\n", rbd_dev->spec->pool_ns ?: "");
5122}
5123
5124static ssize_t rbd_name_show(struct device *dev,
5125 struct device_attribute *attr, char *buf)
5126{
5127 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5128
5129 if (rbd_dev->spec->image_name)
5130 return sprintf(buf, fmt: "%s\n", rbd_dev->spec->image_name);
5131
5132 return sprintf(buf, fmt: "(unknown)\n");
5133}
5134
5135static ssize_t rbd_image_id_show(struct device *dev,
5136 struct device_attribute *attr, char *buf)
5137{
5138 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5139
5140 return sprintf(buf, fmt: "%s\n", rbd_dev->spec->image_id);
5141}
5142
5143/*
5144 * Shows the name of the currently-mapped snapshot (or
5145 * RBD_SNAP_HEAD_NAME for the base image).
5146 */
5147static ssize_t rbd_snap_show(struct device *dev,
5148 struct device_attribute *attr,
5149 char *buf)
5150{
5151 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5152
5153 return sprintf(buf, fmt: "%s\n", rbd_dev->spec->snap_name);
5154}
5155
5156static ssize_t rbd_snap_id_show(struct device *dev,
5157 struct device_attribute *attr, char *buf)
5158{
5159 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5160
5161 return sprintf(buf, fmt: "%llu\n", rbd_dev->spec->snap_id);
5162}
5163
5164/*
5165 * For a v2 image, shows the chain of parent images, separated by empty
5166 * lines. For v1 images or if there is no parent, shows "(no parent
5167 * image)".
5168 */
5169static ssize_t rbd_parent_show(struct device *dev,
5170 struct device_attribute *attr,
5171 char *buf)
5172{
5173 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5174 ssize_t count = 0;
5175
5176 if (!rbd_dev->parent)
5177 return sprintf(buf, fmt: "(no parent image)\n");
5178
5179 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5180 struct rbd_spec *spec = rbd_dev->parent_spec;
5181
5182 count += sprintf(buf: &buf[count], fmt: "%s"
5183 "pool_id %llu\npool_name %s\n"
5184 "pool_ns %s\n"
5185 "image_id %s\nimage_name %s\n"
5186 "snap_id %llu\nsnap_name %s\n"
5187 "overlap %llu\n",
5188 !count ? "" : "\n", /* first? */
5189 spec->pool_id, spec->pool_name,
5190 spec->pool_ns ?: "",
5191 spec->image_id, spec->image_name ?: "(unknown)",
5192 spec->snap_id, spec->snap_name,
5193 rbd_dev->parent_overlap);
5194 }
5195
5196 return count;
5197}
5198
5199static ssize_t rbd_image_refresh(struct device *dev,
5200 struct device_attribute *attr,
5201 const char *buf,
5202 size_t size)
5203{
5204 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5205 int ret;
5206
5207 if (!capable(CAP_SYS_ADMIN))
5208 return -EPERM;
5209
5210 ret = rbd_dev_refresh(rbd_dev);
5211 if (ret)
5212 return ret;
5213
5214 return size;
5215}
5216
5217static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5218static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5219static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5220static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5221static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5222static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5223static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5224static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5225static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5226static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5227static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5228static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5229static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5230static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5231static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5232static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5233static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5234
5235static struct attribute *rbd_attrs[] = {
5236 &dev_attr_size.attr,
5237 &dev_attr_features.attr,
5238 &dev_attr_major.attr,
5239 &dev_attr_minor.attr,
5240 &dev_attr_client_addr.attr,
5241 &dev_attr_client_id.attr,
5242 &dev_attr_cluster_fsid.attr,
5243 &dev_attr_config_info.attr,
5244 &dev_attr_pool.attr,
5245 &dev_attr_pool_id.attr,
5246 &dev_attr_pool_ns.attr,
5247 &dev_attr_name.attr,
5248 &dev_attr_image_id.attr,
5249 &dev_attr_current_snap.attr,
5250 &dev_attr_snap_id.attr,
5251 &dev_attr_parent.attr,
5252 &dev_attr_refresh.attr,
5253 NULL
5254};
5255
5256static struct attribute_group rbd_attr_group = {
5257 .attrs = rbd_attrs,
5258};
5259
5260static const struct attribute_group *rbd_attr_groups[] = {
5261 &rbd_attr_group,
5262 NULL
5263};
5264
5265static void rbd_dev_release(struct device *dev);
5266
5267static const struct device_type rbd_device_type = {
5268 .name = "rbd",
5269 .groups = rbd_attr_groups,
5270 .release = rbd_dev_release,
5271};
5272
5273static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5274{
5275 kref_get(kref: &spec->kref);
5276
5277 return spec;
5278}
5279
5280static void rbd_spec_free(struct kref *kref);
5281static void rbd_spec_put(struct rbd_spec *spec)
5282{
5283 if (spec)
5284 kref_put(kref: &spec->kref, release: rbd_spec_free);
5285}
5286
5287static struct rbd_spec *rbd_spec_alloc(void)
5288{
5289 struct rbd_spec *spec;
5290
5291 spec = kzalloc(size: sizeof (*spec), GFP_KERNEL);
5292 if (!spec)
5293 return NULL;
5294
5295 spec->pool_id = CEPH_NOPOOL;
5296 spec->snap_id = CEPH_NOSNAP;
5297 kref_init(kref: &spec->kref);
5298
5299 return spec;
5300}
5301
5302static void rbd_spec_free(struct kref *kref)
5303{
5304 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5305
5306 kfree(objp: spec->pool_name);
5307 kfree(objp: spec->pool_ns);
5308 kfree(objp: spec->image_id);
5309 kfree(objp: spec->image_name);
5310 kfree(objp: spec->snap_name);
5311 kfree(objp: spec);
5312}
5313
5314static void rbd_dev_free(struct rbd_device *rbd_dev)
5315{
5316 WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5317 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5318
5319 ceph_oid_destroy(oid: &rbd_dev->header_oid);
5320 ceph_oloc_destroy(oloc: &rbd_dev->header_oloc);
5321 kfree(objp: rbd_dev->config_info);
5322
5323 rbd_put_client(rbdc: rbd_dev->rbd_client);
5324 rbd_spec_put(spec: rbd_dev->spec);
5325 kfree(objp: rbd_dev->opts);
5326 kfree(objp: rbd_dev);
5327}
5328
5329static void rbd_dev_release(struct device *dev)
5330{
5331 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5332 bool need_put = !!rbd_dev->opts;
5333
5334 if (need_put) {
5335 destroy_workqueue(wq: rbd_dev->task_wq);
5336 ida_free(&rbd_dev_id_ida, id: rbd_dev->dev_id);
5337 }
5338
5339 rbd_dev_free(rbd_dev);
5340
5341 /*
5342 * This is racy, but way better than putting module outside of
5343 * the release callback. The race window is pretty small, so
5344 * doing something similar to dm (dm-builtin.c) is overkill.
5345 */
5346 if (need_put)
5347 module_put(THIS_MODULE);
5348}
5349
5350static struct rbd_device *__rbd_dev_create(struct rbd_spec *spec)
5351{
5352 struct rbd_device *rbd_dev;
5353
5354 rbd_dev = kzalloc(size: sizeof(*rbd_dev), GFP_KERNEL);
5355 if (!rbd_dev)
5356 return NULL;
5357
5358 spin_lock_init(&rbd_dev->lock);
5359 INIT_LIST_HEAD(list: &rbd_dev->node);
5360 init_rwsem(&rbd_dev->header_rwsem);
5361
5362 rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5363 ceph_oid_init(oid: &rbd_dev->header_oid);
5364 rbd_dev->header_oloc.pool = spec->pool_id;
5365 if (spec->pool_ns) {
5366 WARN_ON(!*spec->pool_ns);
5367 rbd_dev->header_oloc.pool_ns =
5368 ceph_find_or_create_string(str: spec->pool_ns,
5369 strlen(spec->pool_ns));
5370 }
5371
5372 mutex_init(&rbd_dev->watch_mutex);
5373 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5374 INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5375
5376 init_rwsem(&rbd_dev->lock_rwsem);
5377 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5378 INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5379 INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5380 INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5381 INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5382 spin_lock_init(&rbd_dev->lock_lists_lock);
5383 INIT_LIST_HEAD(list: &rbd_dev->acquiring_list);
5384 INIT_LIST_HEAD(list: &rbd_dev->running_list);
5385 init_completion(x: &rbd_dev->acquire_wait);
5386 init_completion(x: &rbd_dev->releasing_wait);
5387
5388 spin_lock_init(&rbd_dev->object_map_lock);
5389
5390 rbd_dev->dev.bus = &rbd_bus_type;
5391 rbd_dev->dev.type = &rbd_device_type;
5392 rbd_dev->dev.parent = &rbd_root_dev;
5393 device_initialize(dev: &rbd_dev->dev);
5394
5395 return rbd_dev;
5396}
5397
5398/*
5399 * Create a mapping rbd_dev.
5400 */
5401static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5402 struct rbd_spec *spec,
5403 struct rbd_options *opts)
5404{
5405 struct rbd_device *rbd_dev;
5406
5407 rbd_dev = __rbd_dev_create(spec);
5408 if (!rbd_dev)
5409 return NULL;
5410
5411 /* get an id and fill in device name */
5412 rbd_dev->dev_id = ida_alloc_max(ida: &rbd_dev_id_ida,
5413 max: minor_to_rbd_dev_id(minor: 1 << MINORBITS) - 1,
5414 GFP_KERNEL);
5415 if (rbd_dev->dev_id < 0)
5416 goto fail_rbd_dev;
5417
5418 sprintf(buf: rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5419 rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5420 rbd_dev->name);
5421 if (!rbd_dev->task_wq)
5422 goto fail_dev_id;
5423
5424 /* we have a ref from do_rbd_add() */
5425 __module_get(THIS_MODULE);
5426
5427 rbd_dev->rbd_client = rbdc;
5428 rbd_dev->spec = spec;
5429 rbd_dev->opts = opts;
5430
5431 dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5432 return rbd_dev;
5433
5434fail_dev_id:
5435 ida_free(&rbd_dev_id_ida, id: rbd_dev->dev_id);
5436fail_rbd_dev:
5437 rbd_dev_free(rbd_dev);
5438 return NULL;
5439}
5440
5441static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5442{
5443 if (rbd_dev)
5444 put_device(dev: &rbd_dev->dev);
5445}
5446
5447/*
5448 * Get the size and object order for an image snapshot, or if
5449 * snap_id is CEPH_NOSNAP, gets this information for the base
5450 * image.
5451 */
5452static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5453 u8 *order, u64 *snap_size)
5454{
5455 __le64 snapid = cpu_to_le64(snap_id);
5456 int ret;
5457 struct {
5458 u8 order;
5459 __le64 size;
5460 } __attribute__ ((packed)) size_buf = { 0 };
5461
5462 ret = rbd_obj_method_sync(rbd_dev, oid: &rbd_dev->header_oid,
5463 oloc: &rbd_dev->header_oloc, method_name: "get_size",
5464 outbound: &snapid, outbound_size: sizeof(snapid),
5465 inbound: &size_buf, inbound_size: sizeof(size_buf));
5466 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5467 if (ret < 0)
5468 return ret;
5469 if (ret < sizeof (size_buf))
5470 return -ERANGE;
5471
5472 if (order) {
5473 *order = size_buf.order;
5474 dout(" order %u", (unsigned int)*order);
5475 }
5476 *snap_size = le64_to_cpu(size_buf.size);
5477
5478 dout(" snap_id 0x%016llx snap_size = %llu\n",
5479 (unsigned long long)snap_id,
5480 (unsigned long long)*snap_size);
5481
5482 return 0;
5483}
5484
5485static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev,
5486 char **pobject_prefix)
5487{
5488 size_t size;
5489 void *reply_buf;
5490 char *object_prefix;
5491 int ret;
5492 void *p;
5493
5494 /* Response will be an encoded string, which includes a length */
5495 size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5496 reply_buf = kzalloc(size, GFP_KERNEL);
5497 if (!reply_buf)
5498 return -ENOMEM;
5499
5500 ret = rbd_obj_method_sync(rbd_dev, oid: &rbd_dev->header_oid,
5501 oloc: &rbd_dev->header_oloc, method_name: "get_object_prefix",
5502 NULL, outbound_size: 0, inbound: reply_buf, inbound_size: size);
5503 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5504 if (ret < 0)
5505 goto out;
5506
5507 p = reply_buf;
5508 object_prefix = ceph_extract_encoded_string(p: &p, end: p + ret, NULL,
5509 GFP_NOIO);
5510 if (IS_ERR(ptr: object_prefix)) {
5511 ret = PTR_ERR(ptr: object_prefix);
5512 goto out;
5513 }
5514 ret = 0;
5515
5516 *pobject_prefix = object_prefix;
5517 dout(" object_prefix = %s\n", object_prefix);
5518out:
5519 kfree(objp: reply_buf);
5520
5521 return ret;
5522}
5523
5524static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5525 bool read_only, u64 *snap_features)
5526{
5527 struct {
5528 __le64 snap_id;
5529 u8 read_only;
5530 } features_in;
5531 struct {
5532 __le64 features;
5533 __le64 incompat;
5534 } __attribute__ ((packed)) features_buf = { 0 };
5535 u64 unsup;
5536 int ret;
5537
5538 features_in.snap_id = cpu_to_le64(snap_id);
5539 features_in.read_only = read_only;
5540
5541 ret = rbd_obj_method_sync(rbd_dev, oid: &rbd_dev->header_oid,
5542 oloc: &rbd_dev->header_oloc, method_name: "get_features",
5543 outbound: &features_in, outbound_size: sizeof(features_in),
5544 inbound: &features_buf, inbound_size: sizeof(features_buf));
5545 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5546 if (ret < 0)
5547 return ret;
5548 if (ret < sizeof (features_buf))
5549 return -ERANGE;
5550
5551 unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5552 if (unsup) {
5553 rbd_warn(rbd_dev, fmt: "image uses unsupported features: 0x%llx",
5554 unsup);
5555 return -ENXIO;
5556 }
5557
5558 *snap_features = le64_to_cpu(features_buf.features);
5559
5560 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5561 (unsigned long long)snap_id,
5562 (unsigned long long)*snap_features,
5563 (unsigned long long)le64_to_cpu(features_buf.incompat));
5564
5565 return 0;
5566}
5567
5568/*
5569 * These are generic image flags, but since they are used only for
5570 * object map, store them in rbd_dev->object_map_flags.
5571 *
5572 * For the same reason, this function is called only on object map
5573 * (re)load and not on header refresh.
5574 */
5575static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5576{
5577 __le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5578 __le64 flags;
5579 int ret;
5580
5581 ret = rbd_obj_method_sync(rbd_dev, oid: &rbd_dev->header_oid,
5582 oloc: &rbd_dev->header_oloc, method_name: "get_flags",
5583 outbound: &snapid, outbound_size: sizeof(snapid),
5584 inbound: &flags, inbound_size: sizeof(flags));
5585 if (ret < 0)
5586 return ret;
5587 if (ret < sizeof(flags))
5588 return -EBADMSG;
5589
5590 rbd_dev->object_map_flags = le64_to_cpu(flags);
5591 return 0;
5592}
5593
5594struct parent_image_info {
5595 u64 pool_id;
5596 const char *pool_ns;
5597 const char *image_id;
5598 u64 snap_id;
5599
5600 bool has_overlap;
5601 u64 overlap;
5602};
5603
5604static void rbd_parent_info_cleanup(struct parent_image_info *pii)
5605{
5606 kfree(objp: pii->pool_ns);
5607 kfree(objp: pii->image_id);
5608
5609 memset(pii, 0, sizeof(*pii));
5610}
5611
5612/*
5613 * The caller is responsible for @pii.
5614 */
5615static int decode_parent_image_spec(void **p, void *end,
5616 struct parent_image_info *pii)
5617{
5618 u8 struct_v;
5619 u32 struct_len;
5620 int ret;
5621
5622 ret = ceph_start_decoding(p, end, v: 1, name: "ParentImageSpec",
5623 struct_v: &struct_v, struct_len: &struct_len);
5624 if (ret)
5625 return ret;
5626
5627 ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5628 pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5629 if (IS_ERR(ptr: pii->pool_ns)) {
5630 ret = PTR_ERR(ptr: pii->pool_ns);
5631 pii->pool_ns = NULL;
5632 return ret;
5633 }
5634 pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5635 if (IS_ERR(ptr: pii->image_id)) {
5636 ret = PTR_ERR(ptr: pii->image_id);
5637 pii->image_id = NULL;
5638 return ret;
5639 }
5640 ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5641 return 0;
5642
5643e_inval:
5644 return -EINVAL;
5645}
5646
5647static int __get_parent_info(struct rbd_device *rbd_dev,
5648 struct page *req_page,
5649 struct page *reply_page,
5650 struct parent_image_info *pii)
5651{
5652 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5653 size_t reply_len = PAGE_SIZE;
5654 void *p, *end;
5655 int ret;
5656
5657 ret = ceph_osdc_call(osdc, oid: &rbd_dev->header_oid, oloc: &rbd_dev->header_oloc,
5658 class: "rbd", method: "parent_get", flags: CEPH_OSD_FLAG_READ,
5659 req_page, req_len: sizeof(u64), resp_pages: &reply_page, resp_len: &reply_len);
5660 if (ret)
5661 return ret == -EOPNOTSUPP ? 1 : ret;
5662
5663 p = page_address(reply_page);
5664 end = p + reply_len;
5665 ret = decode_parent_image_spec(p: &p, end, pii);
5666 if (ret)
5667 return ret;
5668
5669 ret = ceph_osdc_call(osdc, oid: &rbd_dev->header_oid, oloc: &rbd_dev->header_oloc,
5670 class: "rbd", method: "parent_overlap_get", flags: CEPH_OSD_FLAG_READ,
5671 req_page, req_len: sizeof(u64), resp_pages: &reply_page, resp_len: &reply_len);
5672 if (ret)
5673 return ret;
5674
5675 p = page_address(reply_page);
5676 end = p + reply_len;
5677 ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5678 if (pii->has_overlap)
5679 ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5680
5681 dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5682 __func__, pii->pool_id, pii->pool_ns, pii->image_id, pii->snap_id,
5683 pii->has_overlap, pii->overlap);
5684 return 0;
5685
5686e_inval:
5687 return -EINVAL;
5688}
5689
5690/*
5691 * The caller is responsible for @pii.
5692 */
5693static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5694 struct page *req_page,
5695 struct page *reply_page,
5696 struct parent_image_info *pii)
5697{
5698 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5699 size_t reply_len = PAGE_SIZE;
5700 void *p, *end;
5701 int ret;
5702
5703 ret = ceph_osdc_call(osdc, oid: &rbd_dev->header_oid, oloc: &rbd_dev->header_oloc,
5704 class: "rbd", method: "get_parent", flags: CEPH_OSD_FLAG_READ,
5705 req_page, req_len: sizeof(u64), resp_pages: &reply_page, resp_len: &reply_len);
5706 if (ret)
5707 return ret;
5708
5709 p = page_address(reply_page);
5710 end = p + reply_len;
5711 ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5712 pii->image_id = ceph_extract_encoded_string(p: &p, end, NULL, GFP_KERNEL);
5713 if (IS_ERR(ptr: pii->image_id)) {
5714 ret = PTR_ERR(ptr: pii->image_id);
5715 pii->image_id = NULL;
5716 return ret;
5717 }
5718 ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5719 pii->has_overlap = true;
5720 ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5721
5722 dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5723 __func__, pii->pool_id, pii->pool_ns, pii->image_id, pii->snap_id,
5724 pii->has_overlap, pii->overlap);
5725 return 0;
5726
5727e_inval:
5728 return -EINVAL;
5729}
5730
5731static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev,
5732 struct parent_image_info *pii)
5733{
5734 struct page *req_page, *reply_page;
5735 void *p;
5736 int ret;
5737
5738 req_page = alloc_page(GFP_KERNEL);
5739 if (!req_page)
5740 return -ENOMEM;
5741
5742 reply_page = alloc_page(GFP_KERNEL);
5743 if (!reply_page) {
5744 __free_page(req_page);
5745 return -ENOMEM;
5746 }
5747
5748 p = page_address(req_page);
5749 ceph_encode_64(p: &p, v: rbd_dev->spec->snap_id);
5750 ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5751 if (ret > 0)
5752 ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5753 pii);
5754
5755 __free_page(req_page);
5756 __free_page(reply_page);
5757 return ret;
5758}
5759
5760static int rbd_dev_setup_parent(struct rbd_device *rbd_dev)
5761{
5762 struct rbd_spec *parent_spec;
5763 struct parent_image_info pii = { 0 };
5764 int ret;
5765
5766 parent_spec = rbd_spec_alloc();
5767 if (!parent_spec)
5768 return -ENOMEM;
5769
5770 ret = rbd_dev_v2_parent_info(rbd_dev, pii: &pii);
5771 if (ret)
5772 goto out_err;
5773
5774 if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap)
5775 goto out; /* No parent? No problem. */
5776
5777 /* The ceph file layout needs to fit pool id in 32 bits */
5778
5779 ret = -EIO;
5780 if (pii.pool_id > (u64)U32_MAX) {
5781 rbd_warn(NULL, fmt: "parent pool id too large (%llu > %u)",
5782 (unsigned long long)pii.pool_id, U32_MAX);
5783 goto out_err;
5784 }
5785
5786 /*
5787 * The parent won't change except when the clone is flattened,
5788 * so we only need to record the parent image spec once.
5789 */
5790 parent_spec->pool_id = pii.pool_id;
5791 if (pii.pool_ns && *pii.pool_ns) {
5792 parent_spec->pool_ns = pii.pool_ns;
5793 pii.pool_ns = NULL;
5794 }
5795 parent_spec->image_id = pii.image_id;
5796 pii.image_id = NULL;
5797 parent_spec->snap_id = pii.snap_id;
5798
5799 rbd_assert(!rbd_dev->parent_spec);
5800 rbd_dev->parent_spec = parent_spec;
5801 parent_spec = NULL; /* rbd_dev now owns this */
5802
5803 /*
5804 * Record the parent overlap. If it's zero, issue a warning as
5805 * we will proceed as if there is no parent.
5806 */
5807 if (!pii.overlap)
5808 rbd_warn(rbd_dev, fmt: "clone is standalone (overlap 0)");
5809 rbd_dev->parent_overlap = pii.overlap;
5810
5811out:
5812 ret = 0;
5813out_err:
5814 rbd_parent_info_cleanup(pii: &pii);
5815 rbd_spec_put(spec: parent_spec);
5816 return ret;
5817}
5818
5819static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev,
5820 u64 *stripe_unit, u64 *stripe_count)
5821{
5822 struct {
5823 __le64 stripe_unit;
5824 __le64 stripe_count;
5825 } __attribute__ ((packed)) striping_info_buf = { 0 };
5826 size_t size = sizeof (striping_info_buf);
5827 int ret;
5828
5829 ret = rbd_obj_method_sync(rbd_dev, oid: &rbd_dev->header_oid,
5830 oloc: &rbd_dev->header_oloc, method_name: "get_stripe_unit_count",
5831 NULL, outbound_size: 0, inbound: &striping_info_buf, inbound_size: size);
5832 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5833 if (ret < 0)
5834 return ret;
5835 if (ret < size)
5836 return -ERANGE;
5837
5838 *stripe_unit = le64_to_cpu(striping_info_buf.stripe_unit);
5839 *stripe_count = le64_to_cpu(striping_info_buf.stripe_count);
5840 dout(" stripe_unit = %llu stripe_count = %llu\n", *stripe_unit,
5841 *stripe_count);
5842
5843 return 0;
5844}
5845
5846static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev, s64 *data_pool_id)
5847{
5848 __le64 data_pool_buf;
5849 int ret;
5850
5851 ret = rbd_obj_method_sync(rbd_dev, oid: &rbd_dev->header_oid,
5852 oloc: &rbd_dev->header_oloc, method_name: "get_data_pool",
5853 NULL, outbound_size: 0, inbound: &data_pool_buf,
5854 inbound_size: sizeof(data_pool_buf));
5855 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5856 if (ret < 0)
5857 return ret;
5858 if (ret < sizeof(data_pool_buf))
5859 return -EBADMSG;
5860
5861 *data_pool_id = le64_to_cpu(data_pool_buf);
5862 dout(" data_pool_id = %lld\n", *data_pool_id);
5863 WARN_ON(*data_pool_id == CEPH_NOPOOL);
5864
5865 return 0;
5866}
5867
5868static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5869{
5870 CEPH_DEFINE_OID_ONSTACK(oid);
5871 size_t image_id_size;
5872 char *image_id;
5873 void *p;
5874 void *end;
5875 size_t size;
5876 void *reply_buf = NULL;
5877 size_t len = 0;
5878 char *image_name = NULL;
5879 int ret;
5880
5881 rbd_assert(!rbd_dev->spec->image_name);
5882
5883 len = strlen(rbd_dev->spec->image_id);
5884 image_id_size = sizeof (__le32) + len;
5885 image_id = kmalloc(size: image_id_size, GFP_KERNEL);
5886 if (!image_id)
5887 return NULL;
5888
5889 p = image_id;
5890 end = image_id + image_id_size;
5891 ceph_encode_string(p: &p, end, s: rbd_dev->spec->image_id, len: (u32)len);
5892
5893 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5894 reply_buf = kmalloc(size, GFP_KERNEL);
5895 if (!reply_buf)
5896 goto out;
5897
5898 ceph_oid_printf(oid: &oid, fmt: "%s", RBD_DIRECTORY);
5899 ret = rbd_obj_method_sync(rbd_dev, oid: &oid, oloc: &rbd_dev->header_oloc,
5900 method_name: "dir_get_name", outbound: image_id, outbound_size: image_id_size,
5901 inbound: reply_buf, inbound_size: size);
5902 if (ret < 0)
5903 goto out;
5904 p = reply_buf;
5905 end = reply_buf + ret;
5906
5907 image_name = ceph_extract_encoded_string(p: &p, end, lenp: &len, GFP_KERNEL);
5908 if (IS_ERR(ptr: image_name))
5909 image_name = NULL;
5910 else
5911 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5912out:
5913 kfree(objp: reply_buf);
5914 kfree(objp: image_id);
5915
5916 return image_name;
5917}
5918
5919static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5920{
5921 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5922 const char *snap_name;
5923 u32 which = 0;
5924
5925 /* Skip over names until we find the one we are looking for */
5926
5927 snap_name = rbd_dev->header.snap_names;
5928 while (which < snapc->num_snaps) {
5929 if (!strcmp(name, snap_name))
5930 return snapc->snaps[which];
5931 snap_name += strlen(snap_name) + 1;
5932 which++;
5933 }
5934 return CEPH_NOSNAP;
5935}
5936
5937static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5938{
5939 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5940 u32 which;
5941 bool found = false;
5942 u64 snap_id;
5943
5944 for (which = 0; !found && which < snapc->num_snaps; which++) {
5945 const char *snap_name;
5946
5947 snap_id = snapc->snaps[which];
5948 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5949 if (IS_ERR(ptr: snap_name)) {
5950 /* ignore no-longer existing snapshots */
5951 if (PTR_ERR(ptr: snap_name) == -ENOENT)
5952 continue;
5953 else
5954 break;
5955 }
5956 found = !strcmp(name, snap_name);
5957 kfree(objp: snap_name);
5958 }
5959 return found ? snap_id : CEPH_NOSNAP;
5960}
5961
5962/*
5963 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5964 * no snapshot by that name is found, or if an error occurs.
5965 */
5966static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5967{
5968 if (rbd_dev->image_format == 1)
5969 return rbd_v1_snap_id_by_name(rbd_dev, name);
5970
5971 return rbd_v2_snap_id_by_name(rbd_dev, name);
5972}
5973
5974/*
5975 * An image being mapped will have everything but the snap id.
5976 */
5977static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
5978{
5979 struct rbd_spec *spec = rbd_dev->spec;
5980
5981 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
5982 rbd_assert(spec->image_id && spec->image_name);
5983 rbd_assert(spec->snap_name);
5984
5985 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
5986 u64 snap_id;
5987
5988 snap_id = rbd_snap_id_by_name(rbd_dev, name: spec->snap_name);
5989 if (snap_id == CEPH_NOSNAP)
5990 return -ENOENT;
5991
5992 spec->snap_id = snap_id;
5993 } else {
5994 spec->snap_id = CEPH_NOSNAP;
5995 }
5996
5997 return 0;
5998}
5999
6000/*
6001 * A parent image will have all ids but none of the names.
6002 *
6003 * All names in an rbd spec are dynamically allocated. It's OK if we
6004 * can't figure out the name for an image id.
6005 */
6006static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
6007{
6008 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
6009 struct rbd_spec *spec = rbd_dev->spec;
6010 const char *pool_name;
6011 const char *image_name;
6012 const char *snap_name;
6013 int ret;
6014
6015 rbd_assert(spec->pool_id != CEPH_NOPOOL);
6016 rbd_assert(spec->image_id);
6017 rbd_assert(spec->snap_id != CEPH_NOSNAP);
6018
6019 /* Get the pool name; we have to make our own copy of this */
6020
6021 pool_name = ceph_pg_pool_name_by_id(map: osdc->osdmap, id: spec->pool_id);
6022 if (!pool_name) {
6023 rbd_warn(rbd_dev, fmt: "no pool with id %llu", spec->pool_id);
6024 return -EIO;
6025 }
6026 pool_name = kstrdup(s: pool_name, GFP_KERNEL);
6027 if (!pool_name)
6028 return -ENOMEM;
6029
6030 /* Fetch the image name; tolerate failure here */
6031
6032 image_name = rbd_dev_image_name(rbd_dev);
6033 if (!image_name)
6034 rbd_warn(rbd_dev, fmt: "unable to get image name");
6035
6036 /* Fetch the snapshot name */
6037
6038 snap_name = rbd_snap_name(rbd_dev, snap_id: spec->snap_id);
6039 if (IS_ERR(ptr: snap_name)) {
6040 ret = PTR_ERR(ptr: snap_name);
6041 goto out_err;
6042 }
6043
6044 spec->pool_name = pool_name;
6045 spec->image_name = image_name;
6046 spec->snap_name = snap_name;
6047
6048 return 0;
6049
6050out_err:
6051 kfree(objp: image_name);
6052 kfree(objp: pool_name);
6053 return ret;
6054}
6055
6056static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev,
6057 struct ceph_snap_context **psnapc)
6058{
6059 size_t size;
6060 int ret;
6061 void *reply_buf;
6062 void *p;
6063 void *end;
6064 u64 seq;
6065 u32 snap_count;
6066 struct ceph_snap_context *snapc;
6067 u32 i;
6068
6069 /*
6070 * We'll need room for the seq value (maximum snapshot id),
6071 * snapshot count, and array of that many snapshot ids.
6072 * For now we have a fixed upper limit on the number we're
6073 * prepared to receive.
6074 */
6075 size = sizeof (__le64) + sizeof (__le32) +
6076 RBD_MAX_SNAP_COUNT * sizeof (__le64);
6077 reply_buf = kzalloc(size, GFP_KERNEL);
6078 if (!reply_buf)
6079 return -ENOMEM;
6080
6081 ret = rbd_obj_method_sync(rbd_dev, oid: &rbd_dev->header_oid,
6082 oloc: &rbd_dev->header_oloc, method_name: "get_snapcontext",
6083 NULL, outbound_size: 0, inbound: reply_buf, inbound_size: size);
6084 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6085 if (ret < 0)
6086 goto out;
6087
6088 p = reply_buf;
6089 end = reply_buf + ret;
6090 ret = -ERANGE;
6091 ceph_decode_64_safe(&p, end, seq, out);
6092 ceph_decode_32_safe(&p, end, snap_count, out);
6093
6094 /*
6095 * Make sure the reported number of snapshot ids wouldn't go
6096 * beyond the end of our buffer. But before checking that,
6097 * make sure the computed size of the snapshot context we
6098 * allocate is representable in a size_t.
6099 */
6100 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6101 / sizeof (u64)) {
6102 ret = -EINVAL;
6103 goto out;
6104 }
6105 if (!ceph_has_room(p: &p, end, n: snap_count * sizeof (__le64)))
6106 goto out;
6107 ret = 0;
6108
6109 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6110 if (!snapc) {
6111 ret = -ENOMEM;
6112 goto out;
6113 }
6114 snapc->seq = seq;
6115 for (i = 0; i < snap_count; i++)
6116 snapc->snaps[i] = ceph_decode_64(p: &p);
6117
6118 *psnapc = snapc;
6119 dout(" snap context seq = %llu, snap_count = %u\n",
6120 (unsigned long long)seq, (unsigned int)snap_count);
6121out:
6122 kfree(objp: reply_buf);
6123
6124 return ret;
6125}
6126
6127static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6128 u64 snap_id)
6129{
6130 size_t size;
6131 void *reply_buf;
6132 __le64 snapid;
6133 int ret;
6134 void *p;
6135 void *end;
6136 char *snap_name;
6137
6138 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6139 reply_buf = kmalloc(size, GFP_KERNEL);
6140 if (!reply_buf)
6141 return ERR_PTR(error: -ENOMEM);
6142
6143 snapid = cpu_to_le64(snap_id);
6144 ret = rbd_obj_method_sync(rbd_dev, oid: &rbd_dev->header_oid,
6145 oloc: &rbd_dev->header_oloc, method_name: "get_snapshot_name",
6146 outbound: &snapid, outbound_size: sizeof(snapid), inbound: reply_buf, inbound_size: size);
6147 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6148 if (ret < 0) {
6149 snap_name = ERR_PTR(error: ret);
6150 goto out;
6151 }
6152
6153 p = reply_buf;
6154 end = reply_buf + ret;
6155 snap_name = ceph_extract_encoded_string(p: &p, end, NULL, GFP_KERNEL);
6156 if (IS_ERR(ptr: snap_name))
6157 goto out;
6158
6159 dout(" snap_id 0x%016llx snap_name = %s\n",
6160 (unsigned long long)snap_id, snap_name);
6161out:
6162 kfree(objp: reply_buf);
6163
6164 return snap_name;
6165}
6166
6167static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev,
6168 struct rbd_image_header *header,
6169 bool first_time)
6170{
6171 int ret;
6172
6173 ret = _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
6174 order: first_time ? &header->obj_order : NULL,
6175 snap_size: &header->image_size);
6176 if (ret)
6177 return ret;
6178
6179 if (first_time) {
6180 ret = rbd_dev_v2_header_onetime(rbd_dev, header);
6181 if (ret)
6182 return ret;
6183 }
6184
6185 ret = rbd_dev_v2_snap_context(rbd_dev, psnapc: &header->snapc);
6186 if (ret)
6187 return ret;
6188
6189 return 0;
6190}
6191
6192static int rbd_dev_header_info(struct rbd_device *rbd_dev,
6193 struct rbd_image_header *header,
6194 bool first_time)
6195{
6196 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6197 rbd_assert(!header->object_prefix && !header->snapc);
6198
6199 if (rbd_dev->image_format == 1)
6200 return rbd_dev_v1_header_info(rbd_dev, header, first_time);
6201
6202 return rbd_dev_v2_header_info(rbd_dev, header, first_time);
6203}
6204
6205/*
6206 * Skips over white space at *buf, and updates *buf to point to the
6207 * first found non-space character (if any). Returns the length of
6208 * the token (string of non-white space characters) found. Note
6209 * that *buf must be terminated with '\0'.
6210 */
6211static inline size_t next_token(const char **buf)
6212{
6213 /*
6214 * These are the characters that produce nonzero for
6215 * isspace() in the "C" and "POSIX" locales.
6216 */
6217 static const char spaces[] = " \f\n\r\t\v";
6218
6219 *buf += strspn(*buf, spaces); /* Find start of token */
6220
6221 return strcspn(*buf, spaces); /* Return token length */
6222}
6223
6224/*
6225 * Finds the next token in *buf, dynamically allocates a buffer big
6226 * enough to hold a copy of it, and copies the token into the new
6227 * buffer. The copy is guaranteed to be terminated with '\0'. Note
6228 * that a duplicate buffer is created even for a zero-length token.
6229 *
6230 * Returns a pointer to the newly-allocated duplicate, or a null
6231 * pointer if memory for the duplicate was not available. If
6232 * the lenp argument is a non-null pointer, the length of the token
6233 * (not including the '\0') is returned in *lenp.
6234 *
6235 * If successful, the *buf pointer will be updated to point beyond
6236 * the end of the found token.
6237 *
6238 * Note: uses GFP_KERNEL for allocation.
6239 */
6240static inline char *dup_token(const char **buf, size_t *lenp)
6241{
6242 char *dup;
6243 size_t len;
6244
6245 len = next_token(buf);
6246 dup = kmemdup(p: *buf, size: len + 1, GFP_KERNEL);
6247 if (!dup)
6248 return NULL;
6249 *(dup + len) = '\0';
6250 *buf += len;
6251
6252 if (lenp)
6253 *lenp = len;
6254
6255 return dup;
6256}
6257
6258static int rbd_parse_param(struct fs_parameter *param,
6259 struct rbd_parse_opts_ctx *pctx)
6260{
6261 struct rbd_options *opt = pctx->opts;
6262 struct fs_parse_result result;
6263 struct p_log log = {.prefix = "rbd"};
6264 int token, ret;
6265
6266 ret = ceph_parse_param(param, opt: pctx->copts, NULL);
6267 if (ret != -ENOPARAM)
6268 return ret;
6269
6270 token = __fs_parse(log: &log, desc: rbd_parameters, value: param, result: &result);
6271 dout("%s fs_parse '%s' token %d\n", __func__, param->key, token);
6272 if (token < 0) {
6273 if (token == -ENOPARAM)
6274 return inval_plog(&log, "Unknown parameter '%s'",
6275 param->key);
6276 return token;
6277 }
6278
6279 switch (token) {
6280 case Opt_queue_depth:
6281 if (result.uint_32 < 1)
6282 goto out_of_range;
6283 opt->queue_depth = result.uint_32;
6284 break;
6285 case Opt_alloc_size:
6286 if (result.uint_32 < SECTOR_SIZE)
6287 goto out_of_range;
6288 if (!is_power_of_2(n: result.uint_32))
6289 return inval_plog(&log, "alloc_size must be a power of 2");
6290 opt->alloc_size = result.uint_32;
6291 break;
6292 case Opt_lock_timeout:
6293 /* 0 is "wait forever" (i.e. infinite timeout) */
6294 if (result.uint_32 > INT_MAX / 1000)
6295 goto out_of_range;
6296 opt->lock_timeout = msecs_to_jiffies(m: result.uint_32 * 1000);
6297 break;
6298 case Opt_pool_ns:
6299 kfree(objp: pctx->spec->pool_ns);
6300 pctx->spec->pool_ns = param->string;
6301 param->string = NULL;
6302 break;
6303 case Opt_compression_hint:
6304 switch (result.uint_32) {
6305 case Opt_compression_hint_none:
6306 opt->alloc_hint_flags &=
6307 ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE |
6308 CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE);
6309 break;
6310 case Opt_compression_hint_compressible:
6311 opt->alloc_hint_flags |=
6312 CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6313 opt->alloc_hint_flags &=
6314 ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6315 break;
6316 case Opt_compression_hint_incompressible:
6317 opt->alloc_hint_flags |=
6318 CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6319 opt->alloc_hint_flags &=
6320 ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6321 break;
6322 default:
6323 BUG();
6324 }
6325 break;
6326 case Opt_read_only:
6327 opt->read_only = true;
6328 break;
6329 case Opt_read_write:
6330 opt->read_only = false;
6331 break;
6332 case Opt_lock_on_read:
6333 opt->lock_on_read = true;
6334 break;
6335 case Opt_exclusive:
6336 opt->exclusive = true;
6337 break;
6338 case Opt_notrim:
6339 opt->trim = false;
6340 break;
6341 default:
6342 BUG();
6343 }
6344
6345 return 0;
6346
6347out_of_range:
6348 return inval_plog(&log, "%s out of range", param->key);
6349}
6350
6351/*
6352 * This duplicates most of generic_parse_monolithic(), untying it from
6353 * fs_context and skipping standard superblock and security options.
6354 */
6355static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx)
6356{
6357 char *key;
6358 int ret = 0;
6359
6360 dout("%s '%s'\n", __func__, options);
6361 while ((key = strsep(&options, ",")) != NULL) {
6362 if (*key) {
6363 struct fs_parameter param = {
6364 .key = key,
6365 .type = fs_value_is_flag,
6366 };
6367 char *value = strchr(key, '=');
6368 size_t v_len = 0;
6369
6370 if (value) {
6371 if (value == key)
6372 continue;
6373 *value++ = 0;
6374 v_len = strlen(value);
6375 param.string = kmemdup_nul(s: value, len: v_len,
6376 GFP_KERNEL);
6377 if (!param.string)
6378 return -ENOMEM;
6379 param.type = fs_value_is_string;
6380 }
6381 param.size = v_len;
6382
6383 ret = rbd_parse_param(param: &param, pctx);
6384 kfree(objp: param.string);
6385 if (ret)
6386 break;
6387 }
6388 }
6389
6390 return ret;
6391}
6392
6393/*
6394 * Parse the options provided for an "rbd add" (i.e., rbd image
6395 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
6396 * and the data written is passed here via a NUL-terminated buffer.
6397 * Returns 0 if successful or an error code otherwise.
6398 *
6399 * The information extracted from these options is recorded in
6400 * the other parameters which return dynamically-allocated
6401 * structures:
6402 * ceph_opts
6403 * The address of a pointer that will refer to a ceph options
6404 * structure. Caller must release the returned pointer using
6405 * ceph_destroy_options() when it is no longer needed.
6406 * rbd_opts
6407 * Address of an rbd options pointer. Fully initialized by
6408 * this function; caller must release with kfree().
6409 * spec
6410 * Address of an rbd image specification pointer. Fully
6411 * initialized by this function based on parsed options.
6412 * Caller must release with rbd_spec_put().
6413 *
6414 * The options passed take this form:
6415 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6416 * where:
6417 * <mon_addrs>
6418 * A comma-separated list of one or more monitor addresses.
6419 * A monitor address is an ip address, optionally followed
6420 * by a port number (separated by a colon).
6421 * I.e.: ip1[:port1][,ip2[:port2]...]
6422 * <options>
6423 * A comma-separated list of ceph and/or rbd options.
6424 * <pool_name>
6425 * The name of the rados pool containing the rbd image.
6426 * <image_name>
6427 * The name of the image in that pool to map.
6428 * <snap_id>
6429 * An optional snapshot id. If provided, the mapping will
6430 * present data from the image at the time that snapshot was
6431 * created. The image head is used if no snapshot id is
6432 * provided. Snapshot mappings are always read-only.
6433 */
6434static int rbd_add_parse_args(const char *buf,
6435 struct ceph_options **ceph_opts,
6436 struct rbd_options **opts,
6437 struct rbd_spec **rbd_spec)
6438{
6439 size_t len;
6440 char *options;
6441 const char *mon_addrs;
6442 char *snap_name;
6443 size_t mon_addrs_size;
6444 struct rbd_parse_opts_ctx pctx = { 0 };
6445 int ret;
6446
6447 /* The first four tokens are required */
6448
6449 len = next_token(buf: &buf);
6450 if (!len) {
6451 rbd_warn(NULL, fmt: "no monitor address(es) provided");
6452 return -EINVAL;
6453 }
6454 mon_addrs = buf;
6455 mon_addrs_size = len;
6456 buf += len;
6457
6458 ret = -EINVAL;
6459 options = dup_token(buf: &buf, NULL);
6460 if (!options)
6461 return -ENOMEM;
6462 if (!*options) {
6463 rbd_warn(NULL, fmt: "no options provided");
6464 goto out_err;
6465 }
6466
6467 pctx.spec = rbd_spec_alloc();
6468 if (!pctx.spec)
6469 goto out_mem;
6470
6471 pctx.spec->pool_name = dup_token(buf: &buf, NULL);
6472 if (!pctx.spec->pool_name)
6473 goto out_mem;
6474 if (!*pctx.spec->pool_name) {
6475 rbd_warn(NULL, fmt: "no pool name provided");
6476 goto out_err;
6477 }
6478
6479 pctx.spec->image_name = dup_token(buf: &buf, NULL);
6480 if (!pctx.spec->image_name)
6481 goto out_mem;
6482 if (!*pctx.spec->image_name) {
6483 rbd_warn(NULL, fmt: "no image name provided");
6484 goto out_err;
6485 }
6486
6487 /*
6488 * Snapshot name is optional; default is to use "-"
6489 * (indicating the head/no snapshot).
6490 */
6491 len = next_token(buf: &buf);
6492 if (!len) {
6493 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6494 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6495 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
6496 ret = -ENAMETOOLONG;
6497 goto out_err;
6498 }
6499 snap_name = kmemdup(p: buf, size: len + 1, GFP_KERNEL);
6500 if (!snap_name)
6501 goto out_mem;
6502 *(snap_name + len) = '\0';
6503 pctx.spec->snap_name = snap_name;
6504
6505 pctx.copts = ceph_alloc_options();
6506 if (!pctx.copts)
6507 goto out_mem;
6508
6509 /* Initialize all rbd options to the defaults */
6510
6511 pctx.opts = kzalloc(size: sizeof(*pctx.opts), GFP_KERNEL);
6512 if (!pctx.opts)
6513 goto out_mem;
6514
6515 pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6516 pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6517 pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6518 pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6519 pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6520 pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6521 pctx.opts->trim = RBD_TRIM_DEFAULT;
6522
6523 ret = ceph_parse_mon_ips(buf: mon_addrs, len: mon_addrs_size, opt: pctx.copts, NULL,
6524 delim: ',');
6525 if (ret)
6526 goto out_err;
6527
6528 ret = rbd_parse_options(options, pctx: &pctx);
6529 if (ret)
6530 goto out_err;
6531
6532 *ceph_opts = pctx.copts;
6533 *opts = pctx.opts;
6534 *rbd_spec = pctx.spec;
6535 kfree(objp: options);
6536 return 0;
6537
6538out_mem:
6539 ret = -ENOMEM;
6540out_err:
6541 kfree(objp: pctx.opts);
6542 ceph_destroy_options(opt: pctx.copts);
6543 rbd_spec_put(spec: pctx.spec);
6544 kfree(objp: options);
6545 return ret;
6546}
6547
6548static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6549{
6550 down_write(sem: &rbd_dev->lock_rwsem);
6551 if (__rbd_is_lock_owner(rbd_dev))
6552 __rbd_release_lock(rbd_dev);
6553 up_write(sem: &rbd_dev->lock_rwsem);
6554}
6555
6556/*
6557 * If the wait is interrupted, an error is returned even if the lock
6558 * was successfully acquired. rbd_dev_image_unlock() will release it
6559 * if needed.
6560 */
6561static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6562{
6563 long ret;
6564
6565 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6566 if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6567 return 0;
6568
6569 rbd_warn(rbd_dev, fmt: "exclusive-lock feature is not enabled");
6570 return -EINVAL;
6571 }
6572
6573 if (rbd_is_ro(rbd_dev))
6574 return 0;
6575
6576 rbd_assert(!rbd_is_lock_owner(rbd_dev));
6577 queue_delayed_work(wq: rbd_dev->task_wq, dwork: &rbd_dev->lock_dwork, delay: 0);
6578 ret = wait_for_completion_killable_timeout(x: &rbd_dev->acquire_wait,
6579 timeout: ceph_timeout_jiffies(timeout: rbd_dev->opts->lock_timeout));
6580 if (ret > 0) {
6581 ret = rbd_dev->acquire_err;
6582 } else {
6583 cancel_delayed_work_sync(dwork: &rbd_dev->lock_dwork);
6584 if (!ret)
6585 ret = -ETIMEDOUT;
6586
6587 rbd_warn(rbd_dev, fmt: "failed to acquire lock: %ld", ret);
6588 }
6589 if (ret)
6590 return ret;
6591
6592 /*
6593 * The lock may have been released by now, unless automatic lock
6594 * transitions are disabled.
6595 */
6596 rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev));
6597 return 0;
6598}
6599
6600/*
6601 * An rbd format 2 image has a unique identifier, distinct from the
6602 * name given to it by the user. Internally, that identifier is
6603 * what's used to specify the names of objects related to the image.
6604 *
6605 * A special "rbd id" object is used to map an rbd image name to its
6606 * id. If that object doesn't exist, then there is no v2 rbd image
6607 * with the supplied name.
6608 *
6609 * This function will record the given rbd_dev's image_id field if
6610 * it can be determined, and in that case will return 0. If any
6611 * errors occur a negative errno will be returned and the rbd_dev's
6612 * image_id field will be unchanged (and should be NULL).
6613 */
6614static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6615{
6616 int ret;
6617 size_t size;
6618 CEPH_DEFINE_OID_ONSTACK(oid);
6619 void *response;
6620 char *image_id;
6621
6622 /*
6623 * When probing a parent image, the image id is already
6624 * known (and the image name likely is not). There's no
6625 * need to fetch the image id again in this case. We
6626 * do still need to set the image format though.
6627 */
6628 if (rbd_dev->spec->image_id) {
6629 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6630
6631 return 0;
6632 }
6633
6634 /*
6635 * First, see if the format 2 image id file exists, and if
6636 * so, get the image's persistent id from it.
6637 */
6638 ret = ceph_oid_aprintf(oid: &oid, GFP_KERNEL, fmt: "%s%s", RBD_ID_PREFIX,
6639 rbd_dev->spec->image_name);
6640 if (ret)
6641 return ret;
6642
6643 dout("rbd id object name is %s\n", oid.name);
6644
6645 /* Response will be an encoded string, which includes a length */
6646 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6647 response = kzalloc(size, GFP_NOIO);
6648 if (!response) {
6649 ret = -ENOMEM;
6650 goto out;
6651 }
6652
6653 /* If it doesn't exist we'll assume it's a format 1 image */
6654
6655 ret = rbd_obj_method_sync(rbd_dev, oid: &oid, oloc: &rbd_dev->header_oloc,
6656 method_name: "get_id", NULL, outbound_size: 0,
6657 inbound: response, inbound_size: size);
6658 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6659 if (ret == -ENOENT) {
6660 image_id = kstrdup(s: "", GFP_KERNEL);
6661 ret = image_id ? 0 : -ENOMEM;
6662 if (!ret)
6663 rbd_dev->image_format = 1;
6664 } else if (ret >= 0) {
6665 void *p = response;
6666
6667 image_id = ceph_extract_encoded_string(p: &p, end: p + ret,
6668 NULL, GFP_NOIO);
6669 ret = PTR_ERR_OR_ZERO(ptr: image_id);
6670 if (!ret)
6671 rbd_dev->image_format = 2;
6672 }
6673
6674 if (!ret) {
6675 rbd_dev->spec->image_id = image_id;
6676 dout("image_id is %s\n", image_id);
6677 }
6678out:
6679 kfree(objp: response);
6680 ceph_oid_destroy(oid: &oid);
6681 return ret;
6682}
6683
6684/*
6685 * Undo whatever state changes are made by v1 or v2 header info
6686 * call.
6687 */
6688static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6689{
6690 rbd_dev_parent_put(rbd_dev);
6691 rbd_object_map_free(rbd_dev);
6692 rbd_dev_mapping_clear(rbd_dev);
6693
6694 /* Free dynamic fields from the header, then zero it out */
6695
6696 rbd_image_header_cleanup(header: &rbd_dev->header);
6697}
6698
6699static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev,
6700 struct rbd_image_header *header)
6701{
6702 int ret;
6703
6704 ret = rbd_dev_v2_object_prefix(rbd_dev, pobject_prefix: &header->object_prefix);
6705 if (ret)
6706 return ret;
6707
6708 /*
6709 * Get the and check features for the image. Currently the
6710 * features are assumed to never change.
6711 */
6712 ret = _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
6713 read_only: rbd_is_ro(rbd_dev), snap_features: &header->features);
6714 if (ret)
6715 return ret;
6716
6717 /* If the image supports fancy striping, get its parameters */
6718
6719 if (header->features & RBD_FEATURE_STRIPINGV2) {
6720 ret = rbd_dev_v2_striping_info(rbd_dev, stripe_unit: &header->stripe_unit,
6721 stripe_count: &header->stripe_count);
6722 if (ret)
6723 return ret;
6724 }
6725
6726 if (header->features & RBD_FEATURE_DATA_POOL) {
6727 ret = rbd_dev_v2_data_pool(rbd_dev, data_pool_id: &header->data_pool_id);
6728 if (ret)
6729 return ret;
6730 }
6731
6732 return 0;
6733}
6734
6735/*
6736 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6737 * rbd_dev_image_probe() recursion depth, which means it's also the
6738 * length of the already discovered part of the parent chain.
6739 */
6740static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6741{
6742 struct rbd_device *parent = NULL;
6743 int ret;
6744
6745 if (!rbd_dev->parent_spec)
6746 return 0;
6747
6748 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6749 pr_info("parent chain is too long (%d)\n", depth);
6750 ret = -EINVAL;
6751 goto out_err;
6752 }
6753
6754 parent = __rbd_dev_create(spec: rbd_dev->parent_spec);
6755 if (!parent) {
6756 ret = -ENOMEM;
6757 goto out_err;
6758 }
6759
6760 /*
6761 * Images related by parent/child relationships always share
6762 * rbd_client and spec/parent_spec, so bump their refcounts.
6763 */
6764 parent->rbd_client = __rbd_get_client(rbdc: rbd_dev->rbd_client);
6765 parent->spec = rbd_spec_get(spec: rbd_dev->parent_spec);
6766
6767 __set_bit(RBD_DEV_FLAG_READONLY, &parent->flags);
6768
6769 ret = rbd_dev_image_probe(rbd_dev: parent, depth);
6770 if (ret < 0)
6771 goto out_err;
6772
6773 rbd_dev->parent = parent;
6774 atomic_set(v: &rbd_dev->parent_ref, i: 1);
6775 return 0;
6776
6777out_err:
6778 rbd_dev_unparent(rbd_dev);
6779 rbd_dev_destroy(rbd_dev: parent);
6780 return ret;
6781}
6782
6783static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6784{
6785 clear_bit(nr: RBD_DEV_FLAG_EXISTS, addr: &rbd_dev->flags);
6786 rbd_free_disk(rbd_dev);
6787 if (!single_major)
6788 unregister_blkdev(major: rbd_dev->major, name: rbd_dev->name);
6789}
6790
6791/*
6792 * rbd_dev->header_rwsem must be locked for write and will be unlocked
6793 * upon return.
6794 */
6795static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6796{
6797 int ret;
6798
6799 /* Record our major and minor device numbers. */
6800
6801 if (!single_major) {
6802 ret = register_blkdev(0, rbd_dev->name);
6803 if (ret < 0)
6804 goto err_out_unlock;
6805
6806 rbd_dev->major = ret;
6807 rbd_dev->minor = 0;
6808 } else {
6809 rbd_dev->major = rbd_major;
6810 rbd_dev->minor = rbd_dev_id_to_minor(dev_id: rbd_dev->dev_id);
6811 }
6812
6813 /* Set up the blkdev mapping. */
6814
6815 ret = rbd_init_disk(rbd_dev);
6816 if (ret)
6817 goto err_out_blkdev;
6818
6819 set_capacity(disk: rbd_dev->disk, size: rbd_dev->mapping.size / SECTOR_SIZE);
6820 set_disk_ro(disk: rbd_dev->disk, read_only: rbd_is_ro(rbd_dev));
6821
6822 ret = dev_set_name(dev: &rbd_dev->dev, name: "%d", rbd_dev->dev_id);
6823 if (ret)
6824 goto err_out_disk;
6825
6826 set_bit(nr: RBD_DEV_FLAG_EXISTS, addr: &rbd_dev->flags);
6827 up_write(sem: &rbd_dev->header_rwsem);
6828 return 0;
6829
6830err_out_disk:
6831 rbd_free_disk(rbd_dev);
6832err_out_blkdev:
6833 if (!single_major)
6834 unregister_blkdev(major: rbd_dev->major, name: rbd_dev->name);
6835err_out_unlock:
6836 up_write(sem: &rbd_dev->header_rwsem);
6837 return ret;
6838}
6839
6840static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6841{
6842 struct rbd_spec *spec = rbd_dev->spec;
6843 int ret;
6844
6845 /* Record the header object name for this rbd image. */
6846
6847 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6848 if (rbd_dev->image_format == 1)
6849 ret = ceph_oid_aprintf(oid: &rbd_dev->header_oid, GFP_KERNEL, fmt: "%s%s",
6850 spec->image_name, RBD_SUFFIX);
6851 else
6852 ret = ceph_oid_aprintf(oid: &rbd_dev->header_oid, GFP_KERNEL, fmt: "%s%s",
6853 RBD_HEADER_PREFIX, spec->image_id);
6854
6855 return ret;
6856}
6857
6858static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap)
6859{
6860 if (!is_snap) {
6861 pr_info("image %s/%s%s%s does not exist\n",
6862 rbd_dev->spec->pool_name,
6863 rbd_dev->spec->pool_ns ?: "",
6864 rbd_dev->spec->pool_ns ? "/" : "",
6865 rbd_dev->spec->image_name);
6866 } else {
6867 pr_info("snap %s/%s%s%s@%s does not exist\n",
6868 rbd_dev->spec->pool_name,
6869 rbd_dev->spec->pool_ns ?: "",
6870 rbd_dev->spec->pool_ns ? "/" : "",
6871 rbd_dev->spec->image_name,
6872 rbd_dev->spec->snap_name);
6873 }
6874}
6875
6876static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6877{
6878 if (!rbd_is_ro(rbd_dev))
6879 rbd_unregister_watch(rbd_dev);
6880
6881 rbd_dev_unprobe(rbd_dev);
6882 rbd_dev->image_format = 0;
6883 kfree(objp: rbd_dev->spec->image_id);
6884 rbd_dev->spec->image_id = NULL;
6885}
6886
6887/*
6888 * Probe for the existence of the header object for the given rbd
6889 * device. If this image is the one being mapped (i.e., not a
6890 * parent), initiate a watch on its header object before using that
6891 * object to get detailed information about the rbd image.
6892 *
6893 * On success, returns with header_rwsem held for write if called
6894 * with @depth == 0.
6895 */
6896static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6897{
6898 bool need_watch = !rbd_is_ro(rbd_dev);
6899 int ret;
6900
6901 /*
6902 * Get the id from the image id object. Unless there's an
6903 * error, rbd_dev->spec->image_id will be filled in with
6904 * a dynamically-allocated string, and rbd_dev->image_format
6905 * will be set to either 1 or 2.
6906 */
6907 ret = rbd_dev_image_id(rbd_dev);
6908 if (ret)
6909 return ret;
6910
6911 ret = rbd_dev_header_name(rbd_dev);
6912 if (ret)
6913 goto err_out_format;
6914
6915 if (need_watch) {
6916 ret = rbd_register_watch(rbd_dev);
6917 if (ret) {
6918 if (ret == -ENOENT)
6919 rbd_print_dne(rbd_dev, is_snap: false);
6920 goto err_out_format;
6921 }
6922 }
6923
6924 if (!depth)
6925 down_write(sem: &rbd_dev->header_rwsem);
6926
6927 ret = rbd_dev_header_info(rbd_dev, header: &rbd_dev->header, first_time: true);
6928 if (ret) {
6929 if (ret == -ENOENT && !need_watch)
6930 rbd_print_dne(rbd_dev, is_snap: false);
6931 goto err_out_probe;
6932 }
6933
6934 rbd_init_layout(rbd_dev);
6935
6936 /*
6937 * If this image is the one being mapped, we have pool name and
6938 * id, image name and id, and snap name - need to fill snap id.
6939 * Otherwise this is a parent image, identified by pool, image
6940 * and snap ids - need to fill in names for those ids.
6941 */
6942 if (!depth)
6943 ret = rbd_spec_fill_snap_id(rbd_dev);
6944 else
6945 ret = rbd_spec_fill_names(rbd_dev);
6946 if (ret) {
6947 if (ret == -ENOENT)
6948 rbd_print_dne(rbd_dev, is_snap: true);
6949 goto err_out_probe;
6950 }
6951
6952 ret = rbd_dev_mapping_set(rbd_dev);
6953 if (ret)
6954 goto err_out_probe;
6955
6956 if (rbd_is_snap(rbd_dev) &&
6957 (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
6958 ret = rbd_object_map_load(rbd_dev);
6959 if (ret)
6960 goto err_out_probe;
6961 }
6962
6963 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
6964 ret = rbd_dev_setup_parent(rbd_dev);
6965 if (ret)
6966 goto err_out_probe;
6967 }
6968
6969 ret = rbd_dev_probe_parent(rbd_dev, depth);
6970 if (ret)
6971 goto err_out_probe;
6972
6973 dout("discovered format %u image, header name is %s\n",
6974 rbd_dev->image_format, rbd_dev->header_oid.name);
6975 return 0;
6976
6977err_out_probe:
6978 if (!depth)
6979 up_write(sem: &rbd_dev->header_rwsem);
6980 if (need_watch)
6981 rbd_unregister_watch(rbd_dev);
6982 rbd_dev_unprobe(rbd_dev);
6983err_out_format:
6984 rbd_dev->image_format = 0;
6985 kfree(objp: rbd_dev->spec->image_id);
6986 rbd_dev->spec->image_id = NULL;
6987 return ret;
6988}
6989
6990static void rbd_dev_update_header(struct rbd_device *rbd_dev,
6991 struct rbd_image_header *header)
6992{
6993 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6994 rbd_assert(rbd_dev->header.object_prefix); /* !first_time */
6995
6996 if (rbd_dev->header.image_size != header->image_size) {
6997 rbd_dev->header.image_size = header->image_size;
6998
6999 if (!rbd_is_snap(rbd_dev)) {
7000 rbd_dev->mapping.size = header->image_size;
7001 rbd_dev_update_size(rbd_dev);
7002 }
7003 }
7004
7005 ceph_put_snap_context(sc: rbd_dev->header.snapc);
7006 rbd_dev->header.snapc = header->snapc;
7007 header->snapc = NULL;
7008
7009 if (rbd_dev->image_format == 1) {
7010 kfree(objp: rbd_dev->header.snap_names);
7011 rbd_dev->header.snap_names = header->snap_names;
7012 header->snap_names = NULL;
7013
7014 kfree(objp: rbd_dev->header.snap_sizes);
7015 rbd_dev->header.snap_sizes = header->snap_sizes;
7016 header->snap_sizes = NULL;
7017 }
7018}
7019
7020static void rbd_dev_update_parent(struct rbd_device *rbd_dev,
7021 struct parent_image_info *pii)
7022{
7023 if (pii->pool_id == CEPH_NOPOOL || !pii->has_overlap) {
7024 /*
7025 * Either the parent never existed, or we have
7026 * record of it but the image got flattened so it no
7027 * longer has a parent. When the parent of a
7028 * layered image disappears we immediately set the
7029 * overlap to 0. The effect of this is that all new
7030 * requests will be treated as if the image had no
7031 * parent.
7032 *
7033 * If !pii.has_overlap, the parent image spec is not
7034 * applicable. It's there to avoid duplication in each
7035 * snapshot record.
7036 */
7037 if (rbd_dev->parent_overlap) {
7038 rbd_dev->parent_overlap = 0;
7039 rbd_dev_parent_put(rbd_dev);
7040 pr_info("%s: clone has been flattened\n",
7041 rbd_dev->disk->disk_name);
7042 }
7043 } else {
7044 rbd_assert(rbd_dev->parent_spec);
7045
7046 /*
7047 * Update the parent overlap. If it became zero, issue
7048 * a warning as we will proceed as if there is no parent.
7049 */
7050 if (!pii->overlap && rbd_dev->parent_overlap)
7051 rbd_warn(rbd_dev,
7052 fmt: "clone has become standalone (overlap 0)");
7053 rbd_dev->parent_overlap = pii->overlap;
7054 }
7055}
7056
7057static int rbd_dev_refresh(struct rbd_device *rbd_dev)
7058{
7059 struct rbd_image_header header = { 0 };
7060 struct parent_image_info pii = { 0 };
7061 int ret;
7062
7063 dout("%s rbd_dev %p\n", __func__, rbd_dev);
7064
7065 ret = rbd_dev_header_info(rbd_dev, header: &header, first_time: false);
7066 if (ret)
7067 goto out;
7068
7069 /*
7070 * If there is a parent, see if it has disappeared due to the
7071 * mapped image getting flattened.
7072 */
7073 if (rbd_dev->parent) {
7074 ret = rbd_dev_v2_parent_info(rbd_dev, pii: &pii);
7075 if (ret)
7076 goto out;
7077 }
7078
7079 down_write(sem: &rbd_dev->header_rwsem);
7080 rbd_dev_update_header(rbd_dev, header: &header);
7081 if (rbd_dev->parent)
7082 rbd_dev_update_parent(rbd_dev, pii: &pii);
7083 up_write(sem: &rbd_dev->header_rwsem);
7084
7085out:
7086 rbd_parent_info_cleanup(pii: &pii);
7087 rbd_image_header_cleanup(header: &header);
7088 return ret;
7089}
7090
7091static ssize_t do_rbd_add(const char *buf, size_t count)
7092{
7093 struct rbd_device *rbd_dev = NULL;
7094 struct ceph_options *ceph_opts = NULL;
7095 struct rbd_options *rbd_opts = NULL;
7096 struct rbd_spec *spec = NULL;
7097 struct rbd_client *rbdc;
7098 int rc;
7099
7100 if (!capable(CAP_SYS_ADMIN))
7101 return -EPERM;
7102
7103 if (!try_module_get(THIS_MODULE))
7104 return -ENODEV;
7105
7106 /* parse add command */
7107 rc = rbd_add_parse_args(buf, ceph_opts: &ceph_opts, opts: &rbd_opts, rbd_spec: &spec);
7108 if (rc < 0)
7109 goto out;
7110
7111 rbdc = rbd_get_client(ceph_opts);
7112 if (IS_ERR(ptr: rbdc)) {
7113 rc = PTR_ERR(ptr: rbdc);
7114 goto err_out_args;
7115 }
7116
7117 /* pick the pool */
7118 rc = ceph_pg_poolid_by_name(map: rbdc->client->osdc.osdmap, name: spec->pool_name);
7119 if (rc < 0) {
7120 if (rc == -ENOENT)
7121 pr_info("pool %s does not exist\n", spec->pool_name);
7122 goto err_out_client;
7123 }
7124 spec->pool_id = (u64)rc;
7125
7126 rbd_dev = rbd_dev_create(rbdc, spec, opts: rbd_opts);
7127 if (!rbd_dev) {
7128 rc = -ENOMEM;
7129 goto err_out_client;
7130 }
7131 rbdc = NULL; /* rbd_dev now owns this */
7132 spec = NULL; /* rbd_dev now owns this */
7133 rbd_opts = NULL; /* rbd_dev now owns this */
7134
7135 /* if we are mapping a snapshot it will be a read-only mapping */
7136 if (rbd_dev->opts->read_only ||
7137 strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME))
7138 __set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
7139
7140 rbd_dev->config_info = kstrdup(s: buf, GFP_KERNEL);
7141 if (!rbd_dev->config_info) {
7142 rc = -ENOMEM;
7143 goto err_out_rbd_dev;
7144 }
7145
7146 rc = rbd_dev_image_probe(rbd_dev, depth: 0);
7147 if (rc < 0)
7148 goto err_out_rbd_dev;
7149
7150 if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7151 rbd_warn(rbd_dev, fmt: "alloc_size adjusted to %u",
7152 rbd_dev->layout.object_size);
7153 rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7154 }
7155
7156 rc = rbd_dev_device_setup(rbd_dev);
7157 if (rc)
7158 goto err_out_image_probe;
7159
7160 rc = rbd_add_acquire_lock(rbd_dev);
7161 if (rc)
7162 goto err_out_image_lock;
7163
7164 /* Everything's ready. Announce the disk to the world. */
7165
7166 rc = device_add(dev: &rbd_dev->dev);
7167 if (rc)
7168 goto err_out_image_lock;
7169
7170 rc = device_add_disk(parent: &rbd_dev->dev, disk: rbd_dev->disk, NULL);
7171 if (rc)
7172 goto err_out_cleanup_disk;
7173
7174 spin_lock(lock: &rbd_dev_list_lock);
7175 list_add_tail(new: &rbd_dev->node, head: &rbd_dev_list);
7176 spin_unlock(lock: &rbd_dev_list_lock);
7177
7178 pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7179 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7180 rbd_dev->header.features);
7181 rc = count;
7182out:
7183 module_put(THIS_MODULE);
7184 return rc;
7185
7186err_out_cleanup_disk:
7187 rbd_free_disk(rbd_dev);
7188err_out_image_lock:
7189 rbd_dev_image_unlock(rbd_dev);
7190 rbd_dev_device_release(rbd_dev);
7191err_out_image_probe:
7192 rbd_dev_image_release(rbd_dev);
7193err_out_rbd_dev:
7194 rbd_dev_destroy(rbd_dev);
7195err_out_client:
7196 rbd_put_client(rbdc);
7197err_out_args:
7198 rbd_spec_put(spec);
7199 kfree(objp: rbd_opts);
7200 goto out;
7201}
7202
7203static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count)
7204{
7205 if (single_major)
7206 return -EINVAL;
7207
7208 return do_rbd_add(buf, count);
7209}
7210
7211static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf,
7212 size_t count)
7213{
7214 return do_rbd_add(buf, count);
7215}
7216
7217static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7218{
7219 while (rbd_dev->parent) {
7220 struct rbd_device *first = rbd_dev;
7221 struct rbd_device *second = first->parent;
7222 struct rbd_device *third;
7223
7224 /*
7225 * Follow to the parent with no grandparent and
7226 * remove it.
7227 */
7228 while (second && (third = second->parent)) {
7229 first = second;
7230 second = third;
7231 }
7232 rbd_assert(second);
7233 rbd_dev_image_release(rbd_dev: second);
7234 rbd_dev_destroy(rbd_dev: second);
7235 first->parent = NULL;
7236 first->parent_overlap = 0;
7237
7238 rbd_assert(first->parent_spec);
7239 rbd_spec_put(spec: first->parent_spec);
7240 first->parent_spec = NULL;
7241 }
7242}
7243
7244static ssize_t do_rbd_remove(const char *buf, size_t count)
7245{
7246 struct rbd_device *rbd_dev = NULL;
7247 int dev_id;
7248 char opt_buf[6];
7249 bool force = false;
7250 int ret;
7251
7252 if (!capable(CAP_SYS_ADMIN))
7253 return -EPERM;
7254
7255 dev_id = -1;
7256 opt_buf[0] = '\0';
7257 sscanf(buf, "%d %5s", &dev_id, opt_buf);
7258 if (dev_id < 0) {
7259 pr_err("dev_id out of range\n");
7260 return -EINVAL;
7261 }
7262 if (opt_buf[0] != '\0') {
7263 if (!strcmp(opt_buf, "force")) {
7264 force = true;
7265 } else {
7266 pr_err("bad remove option at '%s'\n", opt_buf);
7267 return -EINVAL;
7268 }
7269 }
7270
7271 ret = -ENOENT;
7272 spin_lock(lock: &rbd_dev_list_lock);
7273 list_for_each_entry(rbd_dev, &rbd_dev_list, node) {
7274 if (rbd_dev->dev_id == dev_id) {
7275 ret = 0;
7276 break;
7277 }
7278 }
7279 if (!ret) {
7280 spin_lock_irq(lock: &rbd_dev->lock);
7281 if (rbd_dev->open_count && !force)
7282 ret = -EBUSY;
7283 else if (test_and_set_bit(nr: RBD_DEV_FLAG_REMOVING,
7284 addr: &rbd_dev->flags))
7285 ret = -EINPROGRESS;
7286 spin_unlock_irq(lock: &rbd_dev->lock);
7287 }
7288 spin_unlock(lock: &rbd_dev_list_lock);
7289 if (ret)
7290 return ret;
7291
7292 if (force) {
7293 /*
7294 * Prevent new IO from being queued and wait for existing
7295 * IO to complete/fail.
7296 */
7297 blk_mq_freeze_queue(q: rbd_dev->disk->queue);
7298 blk_mark_disk_dead(disk: rbd_dev->disk);
7299 }
7300
7301 del_gendisk(gp: rbd_dev->disk);
7302 spin_lock(lock: &rbd_dev_list_lock);
7303 list_del_init(entry: &rbd_dev->node);
7304 spin_unlock(lock: &rbd_dev_list_lock);
7305 device_del(dev: &rbd_dev->dev);
7306
7307 rbd_dev_image_unlock(rbd_dev);
7308 rbd_dev_device_release(rbd_dev);
7309 rbd_dev_image_release(rbd_dev);
7310 rbd_dev_destroy(rbd_dev);
7311 return count;
7312}
7313
7314static ssize_t remove_store(const struct bus_type *bus, const char *buf, size_t count)
7315{
7316 if (single_major)
7317 return -EINVAL;
7318
7319 return do_rbd_remove(buf, count);
7320}
7321
7322static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf,
7323 size_t count)
7324{
7325 return do_rbd_remove(buf, count);
7326}
7327
7328/*
7329 * create control files in sysfs
7330 * /sys/bus/rbd/...
7331 */
7332static int __init rbd_sysfs_init(void)
7333{
7334 int ret;
7335
7336 ret = device_register(dev: &rbd_root_dev);
7337 if (ret < 0) {
7338 put_device(dev: &rbd_root_dev);
7339 return ret;
7340 }
7341
7342 ret = bus_register(bus: &rbd_bus_type);
7343 if (ret < 0)
7344 device_unregister(dev: &rbd_root_dev);
7345
7346 return ret;
7347}
7348
7349static void __exit rbd_sysfs_cleanup(void)
7350{
7351 bus_unregister(bus: &rbd_bus_type);
7352 device_unregister(dev: &rbd_root_dev);
7353}
7354
7355static int __init rbd_slab_init(void)
7356{
7357 rbd_assert(!rbd_img_request_cache);
7358 rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7359 if (!rbd_img_request_cache)
7360 return -ENOMEM;
7361
7362 rbd_assert(!rbd_obj_request_cache);
7363 rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7364 if (!rbd_obj_request_cache)
7365 goto out_err;
7366
7367 return 0;
7368
7369out_err:
7370 kmem_cache_destroy(s: rbd_img_request_cache);
7371 rbd_img_request_cache = NULL;
7372 return -ENOMEM;
7373}
7374
7375static void rbd_slab_exit(void)
7376{
7377 rbd_assert(rbd_obj_request_cache);
7378 kmem_cache_destroy(s: rbd_obj_request_cache);
7379 rbd_obj_request_cache = NULL;
7380
7381 rbd_assert(rbd_img_request_cache);
7382 kmem_cache_destroy(s: rbd_img_request_cache);
7383 rbd_img_request_cache = NULL;
7384}
7385
7386static int __init rbd_init(void)
7387{
7388 int rc;
7389
7390 if (!libceph_compatible(NULL)) {
7391 rbd_warn(NULL, fmt: "libceph incompatibility (quitting)");
7392 return -EINVAL;
7393 }
7394
7395 rc = rbd_slab_init();
7396 if (rc)
7397 return rc;
7398
7399 /*
7400 * The number of active work items is limited by the number of
7401 * rbd devices * queue depth, so leave @max_active at default.
7402 */
7403 rbd_wq = alloc_workqueue(RBD_DRV_NAME, flags: WQ_MEM_RECLAIM, max_active: 0);
7404 if (!rbd_wq) {
7405 rc = -ENOMEM;
7406 goto err_out_slab;
7407 }
7408
7409 if (single_major) {
7410 rbd_major = register_blkdev(0, RBD_DRV_NAME);
7411 if (rbd_major < 0) {
7412 rc = rbd_major;
7413 goto err_out_wq;
7414 }
7415 }
7416
7417 rc = rbd_sysfs_init();
7418 if (rc)
7419 goto err_out_blkdev;
7420
7421 if (single_major)
7422 pr_info("loaded (major %d)\n", rbd_major);
7423 else
7424 pr_info("loaded\n");
7425
7426 return 0;
7427
7428err_out_blkdev:
7429 if (single_major)
7430 unregister_blkdev(major: rbd_major, RBD_DRV_NAME);
7431err_out_wq:
7432 destroy_workqueue(wq: rbd_wq);
7433err_out_slab:
7434 rbd_slab_exit();
7435 return rc;
7436}
7437
7438static void __exit rbd_exit(void)
7439{
7440 ida_destroy(ida: &rbd_dev_id_ida);
7441 rbd_sysfs_cleanup();
7442 if (single_major)
7443 unregister_blkdev(major: rbd_major, RBD_DRV_NAME);
7444 destroy_workqueue(wq: rbd_wq);
7445 rbd_slab_exit();
7446}
7447
7448module_init(rbd_init);
7449module_exit(rbd_exit);
7450
7451MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
7452MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
7453MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
7454/* following authorship retained from original osdblk.c */
7455MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
7456
7457MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7458MODULE_LICENSE("GPL");
7459

source code of linux/drivers/block/rbd.c